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Preface to the Second Edition

In the eight years since the publication of the ®rst edition, the ®eld

of model predictive control (MPC) has seen tremendous progress. First

and foremost, the algorithms and high-level software available for solv-

ing challenging nonlinear optimal control problems have advanced sig-

ni®cantly. For this reason, we have added a new chapter, Chapter 8,

ªNumerical Optimal Control,º and coauthor, Professor Moritz M. Diehl.

This chapter gives an introduction into methods for the numerical so-

lution of the MPC optimization problem. Numerical optimal control

builds on two ®elds: simulation of differential equations, and numeri-

cal optimization. Simulation is often covered in undergraduate courses

and is therefore only brie¯y reviewed. Optimization is treated in much

more detail, covering topics such as derivative computations, Hessian

approximations, and handling inequalities. Most importantly, the chap-

ter presents some of the many ways that the speci®c structure of opti-

mal control problems arising in MPC can be exploited algorithmically.

We have also added a software release with the second edition of

the text. The software enables the solution of all of the examples and

exercises in the text requiring numerical calculation. The software is

based on the freely available CasADi language, and a high-level set of

Octave/MATLAB functions, MPCTools, to serve as an interface to CasADi.

These tools have been tested in several MPC short courses to audiences

composed of researchers and practitioners. The software can be down-

loaded from www.chemengr.ucsb.edu/~jbraw/mpc.

In Chapter 2, we have added sections covering the following topics:

• economic MPC

• MPC with discrete actuators

We also present a more recent form of suboptimal MPC that is prov-

ably robust as well as computationally tractable for online solution of

nonconvex MPC problems.

In Chapter 3, we have added a discussion of stochastic MPC, which

has received considerable recent research attention.

In Chapter 4, we have added a new treatment of state estimation

with persistent, bounded process and measurement disturbances. We

have also removed the discussion of particle ®ltering. There are two
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reasons for this removal; ®rst, we wanted to maintain a manageable

total length of the text; second, all of the available sampling strate-

gies in particle ®ltering come up against the ªcurse of dimensionality,º

which renders the state estimates inaccurate for dimension higher than

about ®ve. The material on particle ®ltering remains available on the

text website.

In Chapter 6, we have added a new section for distributed MPC of

nonlinear systems.

In Chapter 7, we have added the software to compute the critical

regions in explicit MPC.

Throughout the text, we support the stronger KL-de®nition of asymp-

totic stability, in place of the classical de®nition used in the ®rst edition.

The most signi®cant notational change is to denote a sequence with

�a; b; c; : : :� instead of with fa;b; c; : : :g as in the ®rst edition.

JBR

Madison, Wis., USA

DQM

London, England

MMD

Freiburg, Germany

Added for the second edition, third printing

The second edition, ®rst printing was made available electronically in

October 2018. The February 2019 second (electronic only) printing

mainly corrected typographical errors. This third printing was printed

as a paperback and made available electronically in October 2020.

In this third printing, besides removing typographical and other er-

rors, Chapter 4 was revised signi®cantly. The analysis of Moving Hori-

zon Estimation and Full Information Estimation with bounded distur-

bances has improved signi®cantly in the last several years due to the

research efforts of several groups. We have attempted to bring the

material in Chapter 4 up to date with this current literature.

Moreover, the section in Chapter 3 on Stochastic MPC was updated,

and a new section on discrete actuators was added to Chapter 8.

JBR

Santa Barbara, CA, USA

DQM

London, England

MMD

Freiburg, Germany



Preface

Our goal in this text is to provide a comprehensive and foundational

treatment of the theory and design of model predictive control (MPC).

By now several excellent monographs emphasizing various aspects of

MPC have appeared (a list appears at the beginning of Chapter 1, and

the reader may naturally wonder what is offered here that is new and

different. By providing a comprehensive treatment of the MPC foun-

dation, we hope that this text enables researchers to learn and teach

the fundamentals of MPC without continuously searching the diverse

control research literature for omitted arguments and requisite back-

ground material. When teaching the subject, it is essential to have a

collection of exercises that enables the students to assess their level of

comprehension andmastery of the topics. To support the teaching and

learning of MPC, we have included more than 200 end-of-chapter exer-

cises. A complete solution manual (more than 300 pages) is available

for course instructors.

Chapter 1 is introductory. It is intended for graduate students in en-

gineering who have not yet had a systems course. But it serves a second

purpose for those who have already taken the ®rst graduate systems

course. It derives all the results of the linear quadratic regulator and

optimal Kalman ®lter using only those arguments that extend to the

nonlinear and constrained cases to be covered in the later chapters.

Instructors may ®nd that this tailored treatment of the introductory

systems material serves both as a review and a preview of arguments

to come in the later chapters.

Chapters 2±4 are foundational and should probably be covered in

any graduate level MPC course. Chapter 2 covers regulation to the ori-

gin for nonlinear and constrained systems. This material presents in a

uni®ed fashion many of the major research advances in MPC that took

place during the last 20 years. It also includes more recent topics such

as regulation to an unreachable setpoint that are only now appearing in

the research literature. Chapter 3 addressesMPCdesign for robustness,

with a focus on MPC using tubes or bundles of trajectories in place of

the single nominal trajectory. This chapter again uni®es a large body of

research literature concerned with robust MPC. Chapter 4 covers state

estimation with an emphasis on moving horizon estimation, but also

viii



ix

covers extended and unscented Kalman ®ltering, and particle ®ltering.

Chapters 5±7 present more specialized topics. Chapter 5 addresses

the special requirements of MPC based on output measurement instead

of state measurement. Chapter 6 discusses how to design distributed

MPC controllers for large-scale systems that are decomposed intomany

smaller, interacting subsystems. Chapter 7 covers the explicit optimal

control of constrained linear systems. The choice of coverage of these

three chapters may vary depending on the instructor's or student's own

research interests.

Three appendices are included, again, so that the reader is not sent

off to search a large research literature for the fundamental arguments

used in the text. Appendix A covers the required mathematical back-

ground. Appendix B summarizes the results used for stability analysis

including the various types of stability and Lyapunov function theory.

Since MPC is an optimization-based controller, Appendix C covers the

relevant results from optimization theory. In order to reduce the size

and expense of the text, the three appendices are available on the web:

www.chemengr.ucsb.edu/~jbraw/mpc. Note, however, that all mate-

rial in the appendices is included in the book's printed table of contents,

and subject and author indices. The website also includes sample ex-

ams, and homework assignments for a one-semester graduate course

in MPC. All of the examples and exercises in the text were solved with

Octave. Octave is freely available from www.octave.org.

JBR DQM

Madison, Wisconsin, USA London, England
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1

Getting Started with Model Predictive

Control

1.1 Introduction

The main purpose of this chapter is to provide a compact and acces-

sible overview of the essential elements of model predictive control

(MPC). We introduce deterministic and stochastic models, regulation,

state estimation, dynamic programming (DP), tracking, disturbances,

and some important performance properties such as closed-loop sta-

bility and zero offset to disturbances. The reader with background in

MPC and linear systems theory may wish to skim this chapter brie¯y

and proceed to Chapter 2. Other introductory texts covering the ba-

sics of MPC include Maciejowski (2002); Camacho and Bordons (2004);

Rossiter (2004); Goodwin, SerÂon, and De DonÂa (2005); Kwon (2005);

Wang (2009).

1.2 Models and Modeling

Model predictive control has its roots in optimal control. The basic

concept of MPC is to use a dynamic model to forecast system behavior,

and optimize the forecast to produce the best decisionÐthe control

move at the current time. Models are therefore central to every form of

MPC. Because the optimal control move depends on the initial state of

the dynamic system, a second basic concept in MPC is to use the past

record of measurements to determine the most likely initial state of the

system. The state estimation problem is to examine the record of past

data, and reconcile these measurements with the model to determine

themost likely value of the state at the current time. Both the regulation

problem, in which a model forecast is used to produce the optimal

control action, and the estimation problem, in which the past record

1
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of measurements is used to produce an optimal state estimate, involve

dynamic models and optimization.

We ®rst discuss the dynamic models used in this text. We start with

the familiar differential equation models

dx

dt
� f�x;u; t�

y � h�x;u; t�
x�t0� � x0

in which x 2 Rn is the state, u 2 Rm is the input, y 2 Rp is the

output, and t 2 R is time. We use Rn to denote the set of real-valued

n-vectors. The initial condition speci®es the value of the state x at

time t � t0, and we seek a solution to the differential equation for time

greater than t0, t 2 R�t0 . Often we de®ne the initial time to be zero,

with a corresponding initial condition, in which case t 2 R�0.

1.2.1 Linear Dynamic Models

Time-varying model. The most general linear state space model is

the time-varying model

dx

dt
� A�t�x � B�t�u

y � C�t�x �D�t�u
x�0� � x0

in which A�t� 2 Rn�n is the state transition matrix, B�t� 2 Rn�m is

the input matrix, C�t� 2 Rp�n is the output matrix, and D�t� 2 Rp�m

allows a direct coupling between u and y . In many applications D � 0.

Time-invariant model. If A, B, C , and D are time invariant, the linear

model reduces to

dx

dt
� Ax � Bu

y � Cx �Du (1.1)

x�0� � x0
One of the main motivations for using linear models to approximate

physical systems is the ease of solution and analysis of linear models.

Equation (1.1) can be solved to yield

x�t� � eAtx0 �
Z t
0
eA�t���Bu���d� (1.2)
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u�s� y�s�
G�s�

Figure 1.1: System with input u, output y, and transfer function ma-

trix G connecting them; the model is y � Gu.

in which eAt 2 Rn�n is the matrix exponential.1 Notice the solution

is a convolution integral of the entire u�t� behavior weighted by the

matrix exponential of At. We will see later that the eigenvalues of A

determine whether the past u�t� has more effect or less effect on the

current x�t� as time increases.

1.2.2 Input-Output Models

If we know little about the internal structure of a system, it may be

convenient to take another approach in which we suppress the state

variable, and focus attention only on themanipulatable inputs andmea-

surable outputs. As shown in Figure 1.1, we consider the system to be

the connection between u and y . In this viewpoint, we usually perform

system identi®cation experiments in which we manipulate u and mea-

sure y , and develop simple linear models for G. To take advantage of

the usual block diagram manipulation of simple series and feedback

connections, it is convenient to consider the Laplace transform of the

signals rather than the time functions

y�s� :�
Z1
0
e�sty�t�dt

in which s 2 C is the complex-valued Laplace transform variable, in con-

trast to t, which is the real-valued time variable. The symbol :� means

ªequal by de®nitionº or ªis de®ned by.º The transfer function matrix

is then identi®ed from the data, and the block diagram represents the

1We can de®ne the exponential of matrix X in terms of its Taylor series

eX :� 1

0!
I � 1

1!
X � 1

2!
X2 � 1

3!
X3 � � � �

This series converges for all X.
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following mathematical relationship between input and output

y�s� � G�s�u�s�

G�s� 2 Cp�m is the transfer function matrix. Notice the state does

not appear in this input-output description. If we are obtaining G�s�

instead from a state space model, then G�s� � C�sI � A��1B �D, and
we assume x�0� � 0 as the system initial condition.

1.2.3 Distributed Models

Distributed models arise whenever we consider systems that are not

spatially uniform. Consider, for example, a multicomponent, chemi-

cal mixture undergoing convection and chemical reaction. The micro-

scopic mass balance for species A is

@cA
@t
�r � �cAvA�� RA � 0

in which cA is the molar concentration of species A, vA is the velocity

of speciesA, and RA is the production rate of speciesA due to chemical

reaction, in which

r :� �x @
@x
� �y @

@y
� �z @

@z

and the �x;y;z are the respective unit vectors in the �x;y; z� spatial

coordinates.

We also should note that the distribution does not have to be ªspa-

tial.º Consider a particle size distribution f�r ; t� in which f�r ; t�dr

represents the number of particles of size r to r �dr in a particle reac-

tor at time t. The reactor volume is considered well mixed and spatially

homogeneous. If the particles nucleate at zero size with nucleation rate

B�t� and grow with growth rate, G�t�, the evolution of the particle size

distribution is given by

@f

@t
� �G@f

@r

f�r ; t� � B=G r � 0 t � 0

f�r ; t� � f0�r� r � 0 t � 0

Again we have partial differential equation descriptions even though

the particle reactor is well mixed and spatially uniform.
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1.2.4 Discrete Time Models

Discrete time models are often convenient if the system of interest is

sampled at discrete times. If the sampling rate is chosen appropriately,

the behavior between the samples can be safely ignored and the model

describes exclusively the behavior at the sample times. The ®nite di-

mensional, linear, time-invariant, discrete time model is

x�k� 1� � Ax�k�� Bu�k�
y�k� � Cx�k��Du�k� (1.3)

x�0� � x0
in which k 2 I�0 is a nonnegative integer denoting the sample number,

which is connected to time by t � k� in which � is the sample time.

We use I to denote the set of integers and I�0 to denote the set of non-

negative integers. The linear discrete time model is a linear difference

equation.

It is sometimes convenient to write the time index with a subscript

xk�1 � Axk � Buk
yk � Cxk �Duk
x0 given

but we avoid this notation in this text. To reduce the notational com-

plexity we usually express (1.3) as

x� � Ax � Bu
y � Cx �Du

x�0� � x0
in which the superscript � means the state at the next sample time.

The linear discrete time model is convenient for presenting the ideas

and concepts of MPC in the simplest possible mathematical setting.

Because the model is linear, analytical solutions are readily derived.

The solution to (1.3) is

x�k� � Akx0 �
k�1X
j�0

Ak�j�1Bu�j� (1.4)

Notice that a convolution sum corresponds to the convolution integral

of (1.2) and powers of A correspond to the matrix exponential. Be-

cause (1.4) involves only multiplication and addition, it is convenient

to program for computation.
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The discrete time analog of the continuous time input-output model

is obtained by de®ning the Z-transform of the signals

y�z� :�
1X
k�0

zky�k�

The discrete transfer function matrix G�z� then represents the discrete

input-output model

y�z� � G�z�u�z�
and G�z� 2 Cp�m is the transfer function matrix. Notice the state does

not appear in this input-output description. We make only passing

reference to transfer function models in this text.

1.2.5 Constraints

The manipulated inputs (valve positions, voltages, torques, etc.) to

most physical systems are bounded. We include these constraints by

linear inequalities

Eu�k� � e k 2 I�0
in which

E �
"
I

�I

#
e �

"
u

�u

#
are chosen to describe simple bounds such as

u � u�k� � u k 2 I�0
We sometimes wish to impose constraints on states or outputs for rea-

sons of safety, operability, product quality, etc. These can be stated

as

Fx�k� � f k 2 I�0
Practitioners ®nd it convenient in some applications to limit the rate of

change of the input, u�k��u�k�1�. To maintain the state space form

of the model, we may augment the state as

xe�k� � " x�k�

u�k� 1�

#

and the augmented system model becomes

xe� � Aexe � Beu
y � Cexe
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in which

Ae � "A 0

0 0

#
Be � "B

I

#
Ce � hC 0

i
A rate of change constraint such as

� � u�k��u�k� 1� � � k 2 I�0

is then stated as

Fxe�k�� Eu�k� � e F �
"
0 �I
0 I

#
E �

"
I

�I

#
e �

"
�

��

#

To simplify analysis, it pays to maintain linear constraints when us-

ing linear dynamic models. So if we want to consider fairly general

constraints for a linear system, we choose the form

Fx�k�� Eu�k� � e k 2 I�0

which subsumes all the forms listed previously.

When we consider nonlinear systems, analysis of the controller is

not signi®cantly simpli®ed by maintaining linear inequalities, and we

generalize the constraints to set membership

x�k� 2 X u�k� 2 U k 2 I�0

or, more generally

�x�k�;u�k�� 2 Z k 2 I�0

We should bear in mind one general distinction between input con-

straints, and output or state constraints. The input constraints often

represent physical limits. In these cases, if the controller does not

respect the input constraints, the physical system enforces them. In

contrast, the output or state constraints are usually desirables. They

may not be achievable depending on the disturbances affecting the sys-

tem. It is often the function of an MPC controller to determine in real

time that the output or state constraints are not achievable, and relax

them in some satisfactory manner. As we discuss in Chapter 2, these

considerations lead implementers of MPC often to set up the optimiza-

tion problem using hard constraints for the input constraints and some

form of soft constraints for the output or state constraints.
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Soft state or output constraints. A simple formulation for soft state

or output constraints is presented next. Consider a set of hard input

and state constraints such as those described previously

Eu�k� � e Fx�k� � f k 2 I�0
To soften state constraints one introduces slack variables, "�k�, which

are considered decision variables, like the manipulated inputs. One

then relaxes the state constraints via

Fx�k� � f � "�k� k 2 I�0
and adds the new ªinputº constraint

"�k� � 0 k 2 I�0
Consider the augmented input to be ue�k� � �u�k�; "�k��, the soft state
constraint formulation is then a set of mixed input-state constraints

Fex�k�� Eeue�k� � ee k � 0

with

Fe �
26400
F

375 Ee �
264E 0

0 �I
0 �I

375 ue � "u
"

#
ee �

264e0
f

375
As we discuss subsequently, one then formulates a stage-cost penalty

that weights how much one cares about the state x, the input u and

the violation of the hard state constraint, which is given by ". The hard

state constraint has been replaced by a mixed state-input constraint.

The bene®t of this reformulation is that the state constraint cannot

cause an infeasiblity in the control problem because it can be relaxed

by choosing "; large values of "may be undesirable as measured by the

stage-cost function, but they are not infeasible.

Discrete actuators and integrality constraints. In many industrial

applications, a subset of the actuators or decision variables may be in-

teger valued or discrete. A common case arises when the process has

banks of similar units such as furnaces, heaters, chillers, compressors,

etc., operating in parallel. In this kind of process, part of the control

problem is to decide howmany andwhich of these discrete units should

be on or off during process operation to meet the setpoint or reject a

disturbance. Discrete decisions also arise in many scheduling prob-

lems. In chemical production scheduling, for example, the discrete de-

cisions can be whether or not to produce a certain chemical in a certain
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(a) (b)

Figure 1.2: Typical input constraint sets U for (a) continuous ac-

tuators and (b) mixed continuous/discrete actuators.

The origin (circle) represents the steady-state operating

point.

reactor during the production schedule. Since these decisions are often

made repeatedly as new measurement information becomes available,

these (re)scheduling problems are also feedback control problems.

To de®ne discrete-valued actuators, one may add constraints like

ui�k� 2 f0;1g i 2 ID; k 2 I�0
in which the set ID � f1;2; : : : ;mg represents the indices of the actu-

ators that are discrete, which are binary (on/off) decisions in the case

illustrated above. Alternatively, one may use the general set member-

ship constraint u�k� 2 U, and employ the set U to de®ne the discrete

actuators as shown in Figure 1.2. In the remainder of this introduc-

tory chapter we focus exclusively on continuous actuators, but return

to discrete actuators in later chapters.

1.2.6 Deterministic and Stochastic

If one examinesmeasurements coming from any complex, physical pro-

cess, ¯uctuations in the data as depicted in Figure 1.3 are invariably

present. For applications at small length scales, the ¯uctuations may

be caused by the random behavior of small numbers of molecules. This

type of application is becoming increasingly prevalent as scientists and

engineers study applications in nanotechnology. This type of system

also arises in life science applications when modeling the interactions

of a few virus particles or protein molecules with living cells. In these

applications there is no deterministic simulation model; the only sys-

tem model available is stochastic.
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Figure 1.3: Output of a stochastic system versus time.

Linear time-invariant models. In mainstream, classical process con-

trol problems, we are usually concerned withmodeling, monitoring and

controlling macroscopic systems, i.e., we are not considering systems

composed of small numbers of molecules. So one may naturally ask

(many do) what is the motivation for stochastic models in this arena?

The motivation for stochastic models is to account for the unmodeled

effects of the environment (disturbances) on the system under study. If

we examine themeasurement from any process control system of inter-

est, no matter how ªmacroscopic,º we are confronted with the physical

reality that the measurement still looks a lot like Figure 1.3. If it is im-

portant to model the observed measurement ¯uctuations, we turn to

stochastic models.

Some of the observed ¯uctuation in the data is assignable to the

measurement device. This source of ¯uctuation is known as measure-

ment ªnoise.º Some of the observed ¯uctuation in the data is assignable

to unmodeled disturbances from the environment affecting the state of

the system. The simplest stochastic model for representing these two

possible sources of disturbances is a linear model with added random
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variables

x� � Ax � Bu�Gw
y � Cx �Du� v

with initial condition x�0� � x0: The variable w 2 Rg is the random

variable acting on the state transition, v 2 Rp is a random variable act-

ing on the measured output, and x0 is a random variable specifying the

initial state. The random variable v is used to model the measurement

noise and w models the process disturbance. The matrix G 2 Rn�g

allows further re®nement of the modeling between the source of the

disturbance and its effect on the state. Often G is chosen to be the

identity matrix with g � n.

1.3 Introductory MPC Regulator

1.3.1 Linear Quadratic Problem

We start by designing a controller to take the state of a deterministic,

linear system to the origin. If the setpoint is not the origin, or we wish

to track a time-varying setpoint trajectory, we will subsequently make

modi®cations of the zero setpoint problem to account for that. The

system model is

x� � Ax � Bu
y � Cx (1.5)

In this ®rst problem, we assume that the state ismeasured, orC � I. We

will handle the output measurement problem with state estimation in

the next section. Using the model we can predict how the state evolves

given any set of inputs we are considering. Consider N time steps into

the future and collect the input sequence into u

u � �u�0�;u�1�; : : : ; u�N � 1��

Constraints on the u sequence (i.e., valve saturations, etc.) are covered

extensively in Chapter 2. The constraints are the main feature that

distinguishes MPC from the standard linear quadratic (LQ) control.

We ®rst de®ne an objective function V��� to measure the deviation

of the trajectory of x�k�;u�k� from zero by summing the weighted

squares

V�x�0�;u� � 1

2

N�1X
k�0

�
x�k�0Qx�k��u�k�0Ru�k��� 1

2
x�N�0Pfx�N�
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subject to

x� � Ax � Bu
The objective function depends on the input sequence and state se-

quence. The initial state is available from the measurement. The re-

mainder of the state trajectory, x�k�; k � 1; : : : ;N, is determined by the

model and the input sequence u. So we show the objective function's

explicit dependence on the input sequence and initial state. The tuning

parameters in the controller are the matrices Q and R. We allow the

®nal state penalty to have a different weighting matrix, Pf , for general-

ity. Large values of Q in comparison to R re¯ect the designer's intent

to drive the state to the origin quickly at the expense of large control

action. Penalizing the control action through large values of R relative

to Q is the way to reduce the control action and slow down the rate at

which the state approaches the origin. Choosing appropriate values of

Q and R (i.e., tuning) is not always obvious, and this dif®culty is one of

the challenges faced by industrial practitioners of LQ control. Notice

that MPC inherits this tuning challenge.

We then formulate the following optimal LQ control problem

min
u
V�x�0�;u� (1.6)

The Q, Pf , and R matrices often are chosen to be diagonal, but we do

not assume that here. We assume, however, that Q, Pf , and R are real

and symmetric ; Q and Pf are positive semide®nite; and R is positive

de®nite. These assumptions guarantee that the solution to the optimal

control problem exists and is unique.

1.3.2 Optimizing Multistage Functions

We next provide a brief introduction to methods for solving multistage

optimization problems like (1.6). Consider the set of variablesw, x, y ,

and z, and the following function to be optimized

f�w;x�� g�x;y�� h�y; z�

Notice that the objective function has a special structure in which each

stage's cost function in the sum depends only on adjacent variable

pairs. For the ®rst version of this problem, we consider w to be a

®xed parameter, and we would like to solve the problem

min
x;y;z

f�w;x�� g�x;y�� h�y; z� w ®xed
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One option is to optimize simultaneously over all three decision vari-

ables. Because of the objective function's special structure, however,

we can obtain the solution by optimizing a sequence of three single-

variable problems de®ned as follows

min
x

�
f�w;x��min

y

�
g�x;y��min

z
h�y; z�

��
We solve the inner problem over z ®rst, and denote the optimal value

and solution as follows

h0�y� �min
z
h�y; z� z0�y� � argmin

z
h�y; z�

Notice that the optimal z and value function for this problem are both

expressed as a function of the y variable. We then move to the next

optimization problem and solve for the y variable

min
y
g�x;y�� h0�y�

and denote the solution and value function as

g0�x� �min
y
g�x;y�� h0�y� y0�x� � argmin

y
g�x;y�� h0�y�

The optimal solution for y is a function of x, the remaining variable to

be optimized. The third and ®nal optimization is

min
x
f�w;x�� g0�x�

with solution and value function

f 0�w� �min
x
f�w;x�� g0�x� x0�w� � argmin

x
f�w;x�� g0�x�

We summarize the recursion with the following annotated equation

min
x

�
f�w;x��

g0�x�; y0�x�z }| {
min
y

�
g�x;y��min

z
h�y; z�| {z }

h0�y�; z0�y�

� �

| {z }
f 0�w�; x0�w�

If we are mainly interested in the ®rst variable x, then the function

x0�w� is of primary interest and we have obtained this function quite

ef®ciently. This nested solution approach is an example of a class of
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techniques known as dynamic programming (DP). DP was developed

by Bellman (Bellman, 1957; Bellman and Dreyfus, 1962) as an ef®cient

means for solving these kinds of multistage optimization problems.

Bertsekas (1987) provides an overview of DP.

The version of the method we just used is called backward DP be-

cause we ®nd the variables in reverse order: ®rst z, then y , and ®nally

x. Notice we ®nd the optimal solutions as functions of the variables to

be optimized at the next stage. If we wish to ®nd the other variables

y and z as a function of the known parameter w, then we nest the

optimal solutions found by the backward DP recursion

ye 0�w� � y0�x0�w�� ze 0�w� � z0� ye 0�w�� � z0�y0�x0�w���

Aswe see shortly, backwardDP is themethod of choice for the regulator

problem.

In the state estimation problem to be considered later in this chap-

ter, w becomes a variable to be optimized, and z plays the role of a

parameter. We wish to solve the problem

min
w;x;y

f�w;x�� g�x;y�� h�y; z� z ®xed

We can still break the problem into three smaller nested problems, but

the order is reversed

min
y

�
h�y; z��

g0�y�; x0�y�z }| {
min
x

�
g�x;y��min

w
f�w;x�| {z }

f
0
�x�; w0�x�

� �

| {z }
h
0
�z�; y0�z�

(1.7)

This form is called forward DP because we ®nd the variables in the

order given: ®rstw, then x, and ®nally y . The optimal value functions

and optimal solutions at each of the three stages are shown in (1.7).

This version is preferable if we are primarily interested in ®nding the

®nal variable y as a function of the parameter z. As before, if we need

the other optimized variables x andw as a function of the parameter z,

wemust insert the optimal functions found by the forwardDP recursion

xe0�z� � x0�y0�z�� we 0
�z� � w0�xe0�z�� � w0�x0�y0�z���

For the reader interested in trying some exercises to reinforce the con-

cepts of DP, Exercise 1.15 considers ®nding the function we 0
�z� with



1.3 Introductory MPC Regulator 15
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Figure 1.4: Level sets of two quadratic functions V1�x� � �1=4�,

V2�x� � �1=4�, and their sum; V�x� � V1�x��V2�x� � 2.

backward DP instead of forward DP as we just did here. Exercise C.1

discusses showing that the nested optimizations indeed give the same

answer as simultaneous optimization over all decision variables.

Finally, if we optimize over all four variables, including the one con-

sidered as a ®xed parameter in the two versions of DP we used, then

we have two equivalent ways to express the value of the complete op-

timization

min
w;x;y;z

f�w;x�� g�x;y�� h�y; z� �min
w
f 0�w� �min

z
h
0
�z�

The result in the next example proves useful in combining quadratic

functions to solve the LQ problem.

Example 1.1: Sum of quadratic functions

Consider the two quadratic functions given by

V1�x� � �1=2��x � a�0A�x � a� V2�x� � �1=2��x � b�0B�x � b�
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in which A;B > 0 are positive de®nite matrices and a and b are n-

vectors locating the minimum of each function. Figure 1.4 displays the

ellipses de®ned by the level sets V1�x� � 1=4 and V2�x� � 1=4 for the

following data

A �
"
1:25 0:75

0:75 1:25

#
a �

"
�1
0

#
B �

"
1:5 �0:5
�0:5 1:5

#
b �

"
1

1

#

(a) Show that the sum V�x� � V1�x�� V2�x� is also quadratic

V�x� � �1=2���x � v�0H�x � v�� d�

in which

H � A� B v � H�1 �Aa� Bb�
d � ��Aa� Bb�0H�1�Aa� Bb�� a0Aa� b0Bb

and verify the three ellipses given in Figure 1.4.

(b) Consider a generalization useful in the discussion of the upcom-

ing regulation and state estimation problems. Let

V1�x� � �1=2��x�a�0A�x�a� V2�x� � �1=2��Cx�b�0B�Cx�b�

Derive the formulas for H;v;d for this case.

(c) Use the matrix inversion lemma (see Exercise 1.12) and show that

V�x� of part (b) can be expressed also in an inverse form, which

is useful in state estimation problems

V�x� � �1=2���x � v�0He �1�x � v�� d�
He � A�1 �A�1C0�CA�1C0 � B�1��1CA�1
v � a�A�1C0�CA�1C0 � B�1��1 �b � Ca�
d � �b � Ca�0�CA�1C0 � B�1��1�b � Ca�

Solution

(a) The sum of two quadratics is also quadratic, so we parameterize

the sum as

V�x� � �1=2� ��x � v�0H�x � v�� d�
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and solve forv ,H, andd. Comparing the expansion of the quadrat-

ics of the right- and left-hand sides gives

x0Hx�2x0Hv�v0Hv�d � x0�A�B�x�2x0�Aa�Bb��a0Aa�b0Bb

Equating terms at each order gives

H � A� B
v � H�1�Aa� Bb�
d � �v0Hv � a0Aa� b0Bb
� ��Aa� Bb�0H�1�Aa� Bb�� a0Aa� b0Bb

Notice that H is positive de®nite since A and B are positive de®-

nite. Substituting the values of a, A, b, and B gives

H �
"
2:75 0:25

0:25 2:75

#
v �

"
�0:1
0:1

#
d � 3:2

The level set V�x� � 2 is also plotted in Figure 1.4.

(b) Expanding and comparing terms as before, we obtain

H � A� C0BC
v � H�1�Aa� C0Bb�
d � ��Aa� C0Bb�0H�1�Aa� C0Bb�� a0Aa� b0Bb (1.8)

Notice that H is positive de®nite since A is positive de®nite and

C0BC is positive semide®nite for any C .

(c) De®ne x � x � a and b � b � Ca, and express the problem as

V�x� � �1=2�x0Ax � �1=2��C�x � a�� b�0B�C�x � a�� b�
� �1=2�x0Ax � �1=2��Cx � b�0B�Cx � b�

Apply the solution of part (b) to obtain

V�x� � �1=2���x � v�0H�x � v�� d�
H � A� C0BC v � H�1C0Bb

d � �b � Ca�0�B � BCH�1C0B��1�b � Ca�
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From the matrix inversion lemma, use (1.54) on H and (1.55) on

v to obtain

H�1 � He � A�1 �A�1C0�CA�1C0 � B�1��1CA�1
v � A�1C0�CA�1C0 � B�1��1b
d � �b � Ca�0�CA�1C0 � B�1��1�b � Ca�

The function V�x� is then given by

V�x� � �1=2���x � v�0He �1�x � v�� d�
with v � a�A�1C0�CA�1C0 � B�1��1 �b � Ca�. �

1.3.3 Dynamic Programming Solution

After this brief introduction to DP, we apply it to solve the LQ con-

trol problem. We ®rst rewrite (1.6) in the following form to see the

structure clearly

V�x�0�;u� �
N�1X
k�0

`�x�k�;u�k��� `N�x�N�� s.t. x� � Ax � Bu

in which the stage cost `�x;u� � �1=2��x0Qx�u0Ru�; k � 0; : : : ;N�1
and the terminal stage cost `N�x� � �1=2�x0Pfx. Since x�0� is known,
we choose backward DP as the convenient method to solve this prob-

lem. We ®rst rearrange the overall objective function so we can opti-

mize over input u�N � 1� and state x�N�

min
u�0�;x�1�;:::u�N�2�;x�N�1�

`�x�0�;u�0��� `�x�1�;u�1��� � � ��

min
u�N�1�;x�N�

`�x�N � 1�;u�N � 1��� `N�x�N��

subject to

x�k� 1� � Ax�k�� Bu�k� k � 0; : : : N � 1

The problem to be solved at the last stage is

min
u�N�1�;x�N�

`�x�N � 1�;u�N � 1��� `N�x�N�� (1.9)

subject to

x�N� � Ax�N � 1�� Bu�N � 1�
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in which x�N � 1� appears in this stage as a parameter. We denote the

optimal cost by V0
N�1�x�N � 1�� and the optimal decision variables by

u0
N�1�x�N � 1�� and x0

N�x�N � 1��. The optimal cost and decisions at

the last stage are parameterized by the state at the previous stage as

we expect in backward DP. We next solve this optimization. First we

substitute the state equation for x�N� and combine the two quadratic

terms using (1.8)

`�x�N � 1�;u�N � 1��� `N�x�N��
� �1=2�

�
jx�N � 1�j2Q � ju�N � 1�j2R � jAx�N � 1�� Bu�N � 1�j2Pf

�
� �1=2�

�
jx�N � 1�j2Q � j�u�N � 1�� v�j2H � d

�
in which

H � R � B0PfB
v � ��B0PfB � R��1B0PfA x�N � 1�

d � x�N � 1�0
�
A0PfA�A0PfB�B0PfB � R��1B0PfA

�
x�N � 1�

Given this form of the cost function, we see by inspection that the opti-

mal input for u�N�1� is v , so the optimal control law at stage N�1 is

a linear function of the state x�N�1�. Then using the model equation,

the optimal ®nal state is also a linear function of state x�N � 1�. The

optimal cost is �1=2��jx�N � 1�j2Q � d�, which makes the optimal cost

a quadratic function of x�N � 1�. Summarizing, for all x

u0
N�1�x� � K�N � 1� x

x0
N�x� � �A� BK�N � 1�� x

V0
N�1�x� � �1=2�x0 ��N � 1� x

with the de®nitions

K�N � 1� :� ��B0PfB � R��1B0PfA
��N � 1� :� Q�A0PfA�A0PfB�B0PfB � R��1B0PfA

The function V0
N�1�x� de®nes the optimal cost to go from state x for the

last stage under the optimal control law u0
N�1�x�. Having this function

allows us to move to the next stage of the DP recursion. For the next

stage we solve the optimization

min
u�N�2�;x�N�1�

`�x�N � 2�;u�N � 2��� V0
N�1�x�N � 1��
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subject to

x�N � 1� � Ax�N � 2�� Bu�N � 2�

Notice that this problem is identical in structure to the stage we just

solved, (1.9), and we can write out the solution by simply renaming

variables

u0
N�2�x� � K�N � 2� x

x0
N�1�x� � �A� BK�N � 2�� x

V0
N�2�x� � �1=2�x0 ��N � 2� x

K�N � 2� :� ��B0��N � 1�B � R��1B0��N � 1�A

��N � 2� :� Q�A0��N � 1�A�
A0��N � 1�B�B0��N � 1�B � R��1B0��N � 1�A

The recursion from��N�1� to��N�2� is known as a backward Riccati
iteration. To summarize, the backward Riccati iteration is de®ned as

follows

��k� 1� � Q�A0��k�A�A0��k�B �B0��k�B � R��1 B0��k�A
k � N;N � 1; : : : ;1 (1.10)

with terminal condition

��N� � Pf (1.11)

The terminal condition replaces the typical initial condition because

the iteration is running backward. The optimal control policy at each

stage is

u0
k�x� � K�k�x k � N � 1; N � 2; : : : ;0 (1.12)

The optimal gain at time k is computed from the Riccati matrix at time

k� 1

K�k� � � �B0��k� 1�B � R��1 B0��k� 1�A k � N � 1; N � 2; : : : ;0

(1.13)

and the optimal cost to go from time k to time N is

V0
k �x� � �1=2�x0��k�x k � N;N � 1; : : : ;0 (1.14)
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1.3.4 The In®nite Horizon LQ Problem

Let us motivate the in®nite horizon problem by showing a weakness of

the ®nite horizon problem. Kalman (1960b, p.113) pointed out in his

classic 1960 paper that optimality does not ensure stability.

In the engineering literature it is often assumed (tacitly and

incorrectly) that a system with optimal control law (6.8) is

necessarily stable.

Assume that we use as our control law the ®rst feedback gain of the

®nite horizon problem, K�0�

u�k� � K�0�x�k�

Then the stability of the closed-loop system is determined by the eigen-

values ofA�BK�0�. We now construct an example that shows choosing

Q > 0, R > 0, and N � 1 does not ensure stability. In fact, we can ®nd

reasonable values of these parameters such that the controller desta-

bilizes a stable system.2 Let

A �
"

4=3 �2=3
1 0

#
B �

"
1

0

#
C � ��2=3 1�

This system is chosen so that G�z� has a zero at z � 3=2, i.e., an unsta-

ble zero. We now construct an LQ controller that inverts this zero and

hence produces an unstable system. We would like to choose Q � C0C
so that y itself is penalized, but that Q is only semide®nite. We add a

small positive de®nite piece to C0C so that Q is positive de®nite, and

choose a small positive R penalty (to encourage the controller to mis-

behave), and N � 5

Q � C0C � 0:001I �
"

4=9� :001 �2=3
�2=3 1:001

#
R � 0:001

We now iterate the Riccati equation four times starting from � � Pf �
Q and compute K�0� for N � 5; then we compute the eigenvalues of

A� BK�0� and achieve3

eig�A� BK5�0�� � f1:307;0:001g
2In Chapter 2, we present several controller design methods that prevent this kind

of instability.
3Please check this answer with Octave or MATLAB.
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Using this controller the closed-loop system evolution is x�k� � �A �
BK5�0��kx0. Since an eigenvalue of A � BK5�0� is greater than unity,

x�k�!1 as k!1. In other words the closed-loop system is unstable.

If we continue to iterate the Riccati equation, which corresponds to

increasing the horizon in the controller, we obtain for N � 7

eig�A� BK7�0�� � f0:989;0:001g

and the controller is stabilizing. If we continue iterating the Riccati

equation, we converge to the following steady-state closed-loop eigen-

values

eig�A� BK1�0�� � f0:664;0:001g

This controller corresponds to an in®nite horizon control law. Notice

that it is stabilizing and has a reasonable stability margin. Nominal

stability is a guaranteed property of in®nite horizon controllers as we

prove in the next section.

With this motivation, we are led to consider directly the in®nite hori-

zon case

V�x�0�;u� � 1

2

1X
k�0

x�k�0Qx�k��u�k�0Ru�k� (1.15)

in whichx�k� is the solution at time k ofx� � Ax�Bu if the initial state

is x�0� and the input sequence is u. If we are interested in a continuous

process (i.e., no ®nal time), then the natural cost function is an in®nite

horizon cost. If we were truly interested in a batch process (i.e., the

process does stop at k � N), then stability is not a relevant property,

and we naturally would use the ®nite horizon LQ controller and the

time-varying controller, u�k� � K�k�x�k�; k � 0;1; : : : ;N.

In considering the in®nite horizon problem, we ®rst restrict atten-

tion to systems for which there exist input sequences that give bounded

cost. Consider the caseA � I and B � 0, for example. Regardless of the

choice of input sequence, (1.15) is unbounded for x�0� � 0. It seems

clear that we are not going to stabilize an unstable system (A � I) with-
out any input (B � 0). This is an example of an uncontrollable system.

In order to state the sharpest results on stabilization, we require the

concepts of controllability, stabilizability, observability, and detectabil-

ity. We shall de®ne these concepts subsequently.
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1.3.5 Controllability

A system is controllable if, for any pair of states x; z in the state space,

z can be reached in ®nite time from x (or x controlled to z) (Sontag,

1998, p.83). A linear discrete time system x� � Ax � Bu is therefore

controllable if there exists a ®nite time N and a sequence of inputs

�u�0�;u�1�; : : : u�N � 1��

that can transfer the system from any x to any z in which

z � ANx �
h
B AB � � � AN�1B

i
266664
u�N � 1�

u�N � 2�
...

u�0�

377775
We can simplify this condition by noting that the matrix powers Ak

for k � n are expressible as linear combinations of the powers 0 to

n � 1. This result is a consequence of the Cayley-Hamilton theorem

(Horn and Johnson, 1985, pp. 86±87). Therefore the range of thematrixh
B AB � � � AN�1B

i
forN � n is the same as

h
B AB � � � An�1B

i
.

In other words, for an unconstrained linear system, if we cannot reach

z in n moves, we cannot reach z in any number of moves. The ques-

tion of controllability of a linear time-invariant system is therefore a

question of existence of solutions to linear equations for an arbitrary

right-hand side

h
B AB � � � An�1B

i
266664
u�n� 1�

u�n� 2�
...

u�0�

377775 � z �Anx

The matrix appearing in this equation is known as the controllability

matrix C
C �

h
B AB � � � An�1B

i
(1.16)

From the fundamental theorem of linear algebra, we know a solution

exists for all right-hand sides if and only if the rows of the n � nm
controllability matrix are linearly independent.4 Therefore, the system

�A; B� is controllable if and only if

rank�C� � n
4See Section A.4 of Appendix A or (Strang, 1980, pp.87±88) for a review of this result.
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The following result for checking controllability also proves useful (Hau-

tus, 1972).

Lemma 1.2 (Hautus lemma for controllability). A system is controllable

if and only if

rank
h
�I �A B

i
� n for all � 2 C (1.17)

in which C is the set of complex numbers.

Notice that the ®rst n columns of the matrix in (1.17) are linearly

independent if � is not an eigenvalue of A, so (1.17) is equivalent to

checking the rank at just the eigenvalues of A

rank
h
�I �A B

i
� n for all � 2 eig�A�

1.3.6 Convergence of the Linear Quadratic Regulator

We now show that the in®nite horizon regulator asymptotically stabi-

lizes the origin for the closed-loop system. De®ne the in®nite horizon

objective function

V�x;u� � 1

2

1X
k�0

x�k�0Qx�k��u�k�0Ru�k�

subject to

x� � Ax � Bu
x�0� � x

withQ;R > 0. If �A; B� is controllable, the solution to the optimization

problem

min
u
V�x;u�

exists and is unique for all x. We denote the optimal solution by u0�x�,

and the ®rst input in the optimal sequence byu0�x�. The feedback con-

trol law �1��� for this in®nite horizon case is then de®ned asu � �1�x�
in which �1�x� � u0�x� � u0�0;x�. As stated in the following lemma,

this in®nite horizon linear quadratic regulator (LQR) is stabilizing.

Lemma 1.3 (LQR convergence). For �A; B� controllable, the in®nite hori-

zon LQR with Q;R > 0 gives a convergent closed-loop system

x� � Ax � B�1�x�



1.3 Introductory MPC Regulator 25

Proof. The cost of the in®nite horizon objective is bounded above for

allx�0� because �A; B� is controllable. Controllability implies that there

exists a sequence of n inputs �u�0�;u�1�; : : : ; u�n� 1�� that transfers

the state from any x�0� to x�n� � 0. A zero control sequence after

k � n for �u�n� 1�;u�n� 2�; : : :� generates zero cost for all terms

in V after k � n, and the objective function for this in®nite control

sequence is therefore ®nite. The cost function is strictly convex in u

because R > 0 so the solution to the optimization is unique.

If we consider the sequence of costs to go along the closed-loop

trajectory, we have

Vk�1 � Vk � �1=2�
�
x�k�0Qx�k��u�k�0Ru�k��

in which Vk � V0�x�k�� is the cost at time k for state value x�k�

and u�k� � u0�x�k�� is the optimal control for state x�k�. The cost

along the closed-loop trajectory is nonincreasing and bounded below

(by zero). Therefore, the sequence �Vk� converges and

x�k�0Qx�k�! 0 u�k�0Ru�k�! 0 as k!1
Since Q;R > 0, we have

x�k�! 0 u�k�! 0 as k!1
and closed-loop convergence is established. �

In fact we know more. From the previous sections, we know the

optimal solution is found by iterating the Riccati equation, and the

optimal in®nite horizon control law and optimal cost are given by

u0�x� � Kx V0�x� � �1=2�x0�x
in which

K � ��B0�B � R��1B0�A
� � Q�A0�A�A0�B�B0�B � R��1B0�A (1.18)

Proving Lemma 1.3 has shown also that for �A; B� controllable and Q;

R > 0, a positive de®nite solution to the discrete algebraic Riccati equa-

tion (DARE), (1.18), exists and the eigenvalues of �A�BK� are asymptot-

ically stable for the K corresponding to this solution (Bertsekas, 1987,

pp.58±64).

This basic approach to establishing regulator stability will be gener-

alized in Chapter 2 to handle constrained and nonlinear systems, so it
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is helpful for the new student to ®rst become familiar with these ideas

in the unconstrained, linear setting. For linear systems, asymptotic

convergence is equivalent to asymptotic stability, and we delay the dis-

cussion of stability until Chapter 2. In Chapter 2 the optimal cost is

shown to be a Lyapunov function for the closed-loop system. We also

can strengthen the stability for linear systems from asymptotic stability

to exponential stability based on the form of the Lyapunov function.

The LQR convergence result in Lemma 1.3 is the simplest to estab-

lish, but we can enlarge the class of systems and penalties for which

closed-loop stability is guaranteed. The system restriction can be weak-

ened from controllability to stabilizability, which is discussed in Exer-

cises 1.19 and 1.20. The restriction on the allowable state penalty Q

can be weakened from Q > 0 to Q � 0 and �A;Q� detectable, which

is also discussed in Exercise 1.20. The restriction R > 0 is retained to

ensure uniqueness of the control law. In applications, if one cares little

about the cost of the control, then R is chosen to be small, but positive

de®nite.

1.4 Introductory State Estimation

The next topic is state estimation. In most applications, the variables

that are conveniently or economically measurable (y) are a small sub-

set of the variables required to model the system (x). Moreover, the

measurement is corrupted with sensor noise and the state evolution

is corrupted with process noise. Determining a good state estimate

for use in the regulator in the face of a noisy and incomplete output

measurement is a challenging task. That is the challenge of state esti-

mation.

To fully appreciate the fundamentals of state estimation, we must

address the ¯uctuations in the data. Probability theory has proven it-

self as the most successful and versatile approach to modeling these

¯uctuations. In this section we introduce the probability fundamentals

necessary to develop an optimal state estimator in the simplest possi-

ble setting: a linear discrete timemodel subject to normally distributed

process andmeasurement noise. This optimal state estimator is known

as the Kalman ®lter (Kalman, 1960a). In Chapter 4 we revisit the state

estimation problem in a much wider setting, and consider nonlinear

models and constraints on the system that preclude an analytical solu-

tion such as the Kalman ®lter. The probability theory presented here

is also preparation for understanding that chapter.
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1.4.1 Linear Systems and Normal Distributions

This section summarizes the probability and random variable results

required for deriving a linear optimal estimator such as the Kalman ®l-

ter. We assume that the reader is familiar with the concepts of a random

variable, probability density and distribution, the multivariate normal

distribution, mean and variance, statistical independence, and condi-

tional probability. Readers unfamiliar with these terms should study

the material in Appendix A before reading this and the next sections.

In the following discussion let x, y , and z be vectors of random

variables. We use the notation

x � N�m;P�
px�x� � n�x;m;P�

to denote random variable x is normally distributed with meanm and

covariance (or simply variance) P , in which

n�x;m;P� � 1

�2��n=2�detP�1=2
exp

�
�1
2
�x �m�0P�1�x �m�

�
(1.19)

and detP denotes the determinant of matrix P . Note that if x 2 Rn,

then m 2 Rn and P 2 Rn�n is a positive de®nite matrix. We require

three main results. The simplest version can be stated as follows.

Joint independent normals. If x and y are normally distributed and

(statistically) independent5

x � N�mx; Px� y � N�my ; Py�

then their joint density is given by

px;y�x;y� � n�x;mx; Px� n�y;my ; Py�"
x

y

#
� N

 "
mx

my

#
;

"
Px 0

0 Py

#!
(1.20)

Note that, depending on convenience, we use both �x;y� and the

vector
� x
y
�
to denote the pair of random variables.

Linear transformation of a normal. If x is normally distributed with

mean m and variance P , and y is a linear transformation of x,

y � Ax, then y is distributed with mean Am and variance APA0

x � N�m;P� y � Ax y � N�Am;APA0� (1.21)
5Wemay emphasize that two vectors of random variables are independent using sta-

tistically independent to distinguish this concept from linear independence of vectors.
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Conditional of a joint normal. Ifx andy are jointly normally distributed

as "
x

y

#
� N

 "
mx

my

#"
Px Pxy
Pyx Py

#!
then the conditional density of x given y is also normal

pxjy�xjy� � n�x;m;P� (1.22)

in which the mean is

m �mx � PxyP�1y �y �my�

and the covariance is

P � Px � PxyP�1y Pyx

Note that the conditional mean m is itself a random variable because

it depends on the random variable y .

To derive the optimal estimator, we actually require these three

main results conditioned on additional random variables. The anal-

ogous results are the following.

Joint independent normals. If pxjz�xjz� is normal, and y is statisti-

cally independent of x and z and normally distributed

pxjz�xjz� � n�x;mx; Px�

y � N�my ; Py� y independent of x and z

then the conditional joint density of �x;y� given z is

px;yjz�x;yjz� � n�x;mx; Px� n�y;my ; Py�

px;yjz

 "
x

y

#�����z
!
� n

 "
x

y

#
;

"
mx

my

#
;

"
Px 0

0 Py

#!
(1.23)

Linear transformation of a normal.

pxjz�xjz� � n�x;m;P� y � Ax
pyjz�yjz� � n�y;Am;APA0� (1.24)
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Conditional of a joint normal. Ifx andy are jointly normally distributed

as

px;yjz

 "
x

y

#�����z
!
� n

 "
x

y

#
;

"
mx

my

#
;

"
Px Pxy
Pyx Py

#!
then the conditional density of x given y;z is also normal

pxjy;z�xjy;z� � n�x;m;P� (1.25)

in which

m �mx � PxyP�1y �y �my�

P � Px � PxyP�1y Pyx

1.4.2 Linear Optimal State Estimation

We start by assuming the initial state x�0� is normally distributed with

some mean and covariance

x�0� � N�x�0�;Q�0��

In applications, we often do not know x�0� or Q�0�. In such cases we

often set x�0� � 0 and choose a large value for Q�0� to indicate our

lack of prior knowledge. The choice of a large variance prior forces the

upcoming y�k� measurements to determine the state estimate Ãx�k�.

Combining the measurement. We obtain noisy measurement y�0�

satisfying

y�0� � Cx�0�� v�0�
in which v�0� � N�0; R� is the measurement noise. If the measurement

process is quite noisy, then R is large. If the measurements are highly

accurate, then R is small. We choose a zero mean for v because all

of the deterministic effects with nonzero mean are considered part

of the model, and the measurement noise re¯ects what is left after

all these other effects have been considered. Given the measurement

y�0�, we want to obtain the conditional density px�0�jy�0��x�0�jy�0��.
This conditional density describes the change in our knowledge about

x�0� after we obtain measurement y�0�. This step is the essence of

state estimation. To derive this conditional density, ®rst consider the

pair of variables �x�0�;y�0�� given as"
x�0�

y�0�

#
�
"
I 0

C I

#"
x�0�

v�0�

#
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We assume that the noise v�0� is statistically independent of x�0�,

and use the independent joint normal result (1.20) to express the joint

density of �x�0�; v�0��"
x�0�

v�0�

#
� N

 "
x�0�

0

#
;

"
Q�0� 0

0 R

#!

From the previous equation, the pair �x�0�;y�0�� is a linear transfor-

mation of the pair �x�0�; v�0��. Therefore, using the linear transfor-

mation of normal result (1.21), and the density of �x�0�; v�0�� gives

the density of �x�0�;y�0��"
x�0�

y�0�

#
� N

 "
x�0�

Cx�0�

#
;

"
Q�0� Q�0�C0

CQ�0� CQ�0�C0 � R

#!

Given this joint density, we then use the conditional of a joint normal

result (1.22) to obtain

px�0�jy�0�
�
x�0�jy�0�� � n�x�0�;m;P�

in which

m � x�0�� L�0� �y�0�� Cx�0��
L�0� � Q�0�C0�CQ�0�C0 � R��1
P � Q�0��Q�0�C0�CQ�0�C0 � R��1CQ�0�

We see that the conditional density px�0�jy�0� is normal. The optimal

state estimate is the value of x�0� that maximizes this conditional den-

sity. For a normal, that is the mean, and we choose Ãx�0� � m. We

also denote the variance in this conditional after measurement y�0�

by P�0� � P with P given in the previous equation. The change in

variance after measurement (Q�0� to P�0�) quanti®es the information

increase by obtaining measurement y�0�. The variance after measure-

ment, P�0�, is always less than or equal to Q�0�, which implies that we

can only gain information by measurement; but the information gain

may be small if the measurement device is poor and the measurement

noise variance R is large.

Forecasting the state evolution. Next we consider the state evolution

from k � 0 to k � 1, which satis®es

x�1� �
h
A I

i"x�0�
w�0�

#
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in whichw�0� � N�0;Q� is the process noise. If the state is subjected to
large disturbances, thenQ is large, and if the disturbances are small,Q

is small. Again we choose zero mean for w because the nonzero-mean

disturbances should have been accounted for in the system model. We

next calculate the conditional density px�1�jy�0�. Now we require the

conditional version of the joint density �x�0�;w�0��. We assume that

the process noise w�0� is statistically independent of both x�0� and

v�0�, hence it is also independent ofy�0�, which is a linear combination

of x�0� and v�0�. Therefore we use (1.23) to obtain"
x�0�

w�0�

#
� N

 "
Ãx�0�

0

#
;

"
P�0� 0

0 Q

#!

We then use the conditional version of the linear transformation of a

normal (1.24) to obtain

px�1�jy�0��x�1�jy�0�� � n�x�1�; Ãx��1�; P��1��

in which the mean and variance are

Ãx��1� � AÃx�0� P��1� � AP�0�A0 �Q

We see that forecasting forward one time step may increase or decrease

the conditional variance of the state. If the eigenvalues of A are less

than unity, for example, the term AP�0�A0 may be smaller than P�0�,

but the process noise Q adds a positive contribution. If the system is

unstable, AP�0�A0 may be larger than P�0�, and then the conditional

variance de®nitely increases upon forecasting. See also Exercise 1.27

for further discussion of this point.

Given that px�1�jy�0� is also a normal, we are situated to add mea-

surement y�1� and continue the process of adding measurements fol-

lowed by forecasting forward one time step until we have processed

all the available data. Because this process is recursive, the storage re-

quirements are small. We need to store only the current state estimate

and variance, and can discard the measurements as they are processed.

The required online calculation is minor. These features make the op-

timal linear estimator an ideal candidate for rapid online application.

We next summarize the state estimation recursion.

Summary. Denote the measurement trajectory by

y�k� :� �y�0�;y�1�; : : : y�k��
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At time k the conditional density with data y�k� 1� is normal

px�k�jy�k�1��x�k�jy�k� 1�� � n�x�k�; Ãx��k�; P��k��

and we denote the mean and variance with a superscript minus to in-

dicate these are the statistics before measurement y�k�. At k � 0, the

recursion starts with Ãx��0� � x�0� and P��0� � Q�0� as discussed

previously. We obtain measurement y�k� which satis®es"
x�k�

y�k�

#
�
"
I 0

C I

#"
x�k�

v�k�

#

The density of �x�k�; v�k�� follows from (1.23) since measurement

noise v�k� is independent of x�k� and y�k� 1�"
x�k�

v�k�

#
� N

 "
Ãx��k�

0

#
;

"
P��k� 0

0 R

#!

Equation (1.24) then gives the joint density"
x�k�

y�k�

#
� N

 "
Ãx��k�

C Ãx��k�

#
;

"
P��k� P��k�C0

CP��k� CP��k�C0 � R

#!

We note
�
y�k� 1�;y�k�

� � y�k�, and using the conditional density

result (1.25) gives

px�k�jy�k� �x�k�jy�k�� � n�x�k�; Ãx�k�; P�k��

in which

Ãx�k� � Ãx��k�� L�k� �y�k�� C Ãx��k��
L�k� � P��k�C0�CP��k�C0 � R��1
P�k� � P��k�� P��k�C0�CP��k�C0 � R��1CP��k�

We forecast from k to k� 1 using the model

x�k� 1� �
h
A I

i"x�k�
w�k�

#

Because w�k� is independent of x�k� and y�k�, the joint density of

�x�k�;w�k�� follows from a second use of (1.23)"
x�k�

w�k�

#
� N

 "
Ãx�k�

0

#
;

"
P�k� 0

0 Q

#!
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and a second use of the linear transformation result (1.24) gives

px�k�1�jy�k��x�k� 1�jy�k�� � n�x�k� 1�; Ãx��k� 1�; P��k� 1��

in which

Ãx��k� 1� � AÃx�k�
P��k� 1� � AP�k�A0 �Q

and the recursion is complete.

1.4.3 Least Squares Estimation

We next consider the state estimation problem as a deterministic op-

timization problem rather than an exercise in maximizing conditional

density. This viewpoint proves valuable in Chapter 4 when we wish to

add constraints to the state estimator. Consider a time horizon with

measurements y�k�; k � 0;1; : : : ; T . We consider the prior information

to be our best initial guess of the initial state x�0�, denoted x�0�, and

weighting matrices P��0�, Q, and R for the initial state, process distur-

bance, and measurement disturbance. A reasonably ¯exible choice for

objective function is

VT �x�T�� � 1

2

�
jx�0�� x�0�j2�P��0���1 �

T�1X
k�0

jx�k� 1��Ax�k�j2Q�1 �
TX
k�0

��y�k�� Cx�k���2R�1 � (1.26)

in which x�T� :� �x�0�; x�1�; : : : ; x�T��. We claim and then show that

the following (deterministic) least squares optimization problem pro-

duces the same result as the conditional density functionmaximization

of the Kalman ®lter

min
x�T�

VT �x�T�� (1.27)

Game plan. Using forward DP, we can decompose and solve recur-

sively the least squares state estimation problem. To see clearly how

the procedure works, ®rst we write out the terms in the state estimation

least squares problem (1.27)
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min
x�0�;:::;x�T�

1

2

�
jx�0�� x�0�j2�P��0���1�

��y�0�� Cx�0���2R�1�jx�1��Ax�0�j2Q�1
� ��y�1�� Cx�1���2R�1 � jx�2��Ax�1�j2Q�1 � � � ��

jx�T��Ax�T � 1�j2Q�1 �
��y�T�� Cx�T���2R�1 � (1.28)

We decompose this T -stage optimization problem with forward DP.

First we combine the prior and the measurement y�0� into the quad-

ratic function V0�x�0�� as shown in the following equation

min
x�T�;:::;x�1�

arrival cost V�1 �x�1��z }| {
min
x�0�

1

2

�
jx�0�� x�0�j2

�P��0���1
�
��y�0�� Cx�0�

��2
R�1| {z }

combine V0�x�0��

�jx�1��Ax�0�j2
Q�1

�

��y�1�� Cx�1�
��2
R�1 � jx�2��Ax�1�j2

Q�1
� � � ��

jx�T��Ax�T � 1�j2
Q�1

�
��y�T�� Cx�T�

��2
R�1

�

Then we optimize over the ®rst state, x�0�. This produces the arrival

cost for the ®rst stage, V�1 �x�1��, which we will show is also quadratic

V�1 �x�1�� �
1

2

��x�1�� Ãx��1�
��2
�P��1���1

Next we combine the arrival cost of the ®rst stage with the next mea-

surement y�1� to obtain V1�x�1��

min
x�T�;:::;x�2�

arrival cost V�2 �x�2��z }| {
min
x�1�

1

2

���x�1�� Ãx��1�
��2
�P��1���1 �

��y�1�� Cx�1�
��2
R�1| {z }

combine V1�x�1��

�jx�2��Ax�1�j2
Q�1

�

��y�2�� Cx�2�
��2
R�1 � jx�3��Ax�2�j2

Q�1
� � � ��

jx�T��Ax�T � 1�j2
Q�1

�
��y�T�� Cx�T�

��2
R�1

�
(1.29)

We optimize over the second state, x�1�, which de®nes arrival cost for

the ®rst two stages, V�2 �x�2��. We continue in this fashion until we

have optimized ®nally over x�T� and have solved (1.28). Now that we

have in mind an overall game plan for solving the problem, we look at

each step in detail and develop the recursion formulas of forward DP.
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Combine prior and measurement. Combining the prior and mea-

surement de®nes V0

V0�x�0�� � 1

2

�
jx�0�� x�0�j2�P��0���1| {z }

prior

���y�0�� Cx�0���2R�1| {z }
measurement

�
(1.30)

which can be expressed also as

V0�x�0�� � 1

2

�
jx�0�� x�0�j2�P��0���1 ����y�0�� Cx�0��� C�x�0�� x�0����2R�1 �

Using the third form in Example 1.1 we can combine these two terms

into a single quadratic function

V0�x�0�� � �1=2�
�
�x�0�� x�0�� v�0He �1�x�0�� x�0�� v�� d�0��

in which

v � P��0�C0�CP��0�C0 � R��1 �y�0�� Cx�0��
He � P��0�� P��0�C0�CP��0�C0 � R��1CP��0�

d�0� � ��y�0�� Cx�0���2�CP��0�C0�R��1
If we de®ne

P�0� � P��0�� P��0�C0�CP��0�C0 � R��1CP��0�
L�0� � P��0�C0�CP��0�C0 � R��1

and de®ne the state estimate Ãx�0� as follows

Ãx�0� � x�0�� v
Ãx�0� � x�0�� L�0� �y�0�� Cx�0��

then we have the following compact expression for the function V0.

V0�x�0�� � �1=2��jx�0�� Ãx�0�j2P�0��1 � d�0��
State evolution and arrival cost. Now we add the next term in (1.28)

to the function V0��� and denote the sum as V���
V�x�0�; x�1�� � V0�x�0��� �1=2� jx�1��Ax�0�j2Q�1
V�x�0�; x�1�� � 1

2

� jx�0�� Ãx�0�j2P�0��1 � jx�1��Ax�0�j2Q�1 � d�0�
�
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Again using the third form in Example 1.1, we can add the two quadrat-

ics to obtain

V�x�0�; x�1�� � �1=2��jx�0�� vj2eH�1 � d�
in which

v � Ãx�0�� P�0�A0 �AP�0�A0 �Q��1 �x�1��AÃx�0��
d � �x�1��AÃx�0��0 �AP�0�A0 �Q��1 �x�1��AÃx�0��� d�0�
He � P�0�� P�0�A0 �AP�0�A0 �Q��1AP�0�

This form is convenient for optimization over the ®rst decision variable

x�0�; by inspection the solution isx�0� � v and the cost is d. We de®ne

the arrival cost to be the result of this optimization

V�1 �x�1�� �min
x�0�

V�x�0�; x�1��

and we have that

V�1 �x�1�� � �1=2��
��x�1�� Ãx��1�

��2
�P��1���1 � d�0��

with

Ãx��1� � AÃx�0�
P��1� � AP�0�A0 �Q

Combine arrival cost and measurement. We now combine the ar-

rival cost and measurement for the next stage of the optimization to

obtain

V1�x�1�� � V�1 �x�1��| {z }
prior

� �1=2����y�1�� Cx�1����2R�1| {z }
measurement

V1�x�1�� � 1

2

���x�1�� Ãx��1�
��2
�P��1���1 �

��y�1�� Cx�1���2R�1 � d�0��
We can see that this equation is exactly the form as (1.30) of the previ-

ous step, and, by simply changing the variable names, we have that

P�1� � P��1�� P��1�C0�CP��1�C0 � R��1CP��1�
L�1� � P��1�C0�CP��1�C0 � R��1
Ãx�1� � Ãx��1�� L�1��y�1�� C Ãx��1��
d�1� � d�0�� ��y�1�� C Ãx��1���2�CP��1�C0�R��1

and the cost function V1 is de®ned as

V1�x�1�� � �1=2��jx�1�� Ãx�1�jP�1��1 � d�1��
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Recursion and termination. The recursion can be summarized by

two steps. Adding the measurement at time k produces

P�k� � P��k�� P��k�C0�CP��k�C0 � R��1CP��k�
L�k� � P��k�C0�CP��k�C0 � R��1
Ãx�k� � Ãx��k�� L�k��y�k�� C Ãx��k��
d�k� � d�k� 1�� ��y�k�� C Ãx��k���2�CP��k�C0�R��1

Propagating the model to time k� 1 produces

Ãx��k� 1� � AÃx�k�
P��k� 1� � AP�k�A0 �Q

and the recursion starts with the prior information Ãx��0� � x�0� and
P��0�. The arrival cost, V�k , and arrival cost plus measurement, Vk, for

each stage are given by

V�k �x�k�� � �1=2�
� ��x�k�� Ãx��k�

��2
�P��k���1 � d�k� 1�

�
Vk�x�k�� � �1=2�

� jx�k�� Ãx�k�j2�P�k���1 � d�k�
�

The process terminates with the ®nal measurement y�T�, at which

point we have recursively solved the original problem (1.28).

We see by inspection that the recursion formulas given by forward

DP of (1.28) are the same as those found by calculating the conditional

density function in Section 1.4.2. Moreover, the conditional densities

before and after measurement are closely related to the least squares

value functions as shown below

p�x�k�jy�k� 1�� � 1

�2��n=2�detP��k��1=2

exp
�� �V�k �x�k��� �1=2�d�k� 1��

�

p�x�k�jy�k�� � 1

�2��n=2�detP�k��1=2

exp
�� �Vk�x�k��� �1=2�d�k��� (1.31)

The discovery (and rediscovery) of the close connection between re-

cursive least squares and optimal statistical estimation has not always

been greeted happily by researchers:
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The recursive least squares approach was actually inspired

by probabilistic results that automatically produce an equa-

tion of evolution for the estimate (the conditional mean).

In fact, much of the recent least squares work did nothing

more than rederive the probabilistic results (perhaps in an

attempt to understand them). As a result, much of the least

squares work contributes very little to estimation theory.

ÐJazwinski (1970, pp.152±153)

In contrast with this view, we ®nd both approaches valuable in the

subsequent development. The probabilistic approach, which views the

state estimator as maximizing conditional density of the state given

measurement, offers the most insight. It provides a rigorous basis for

comparing different estimators based on the variance of their estimate

error. It also speci®es what information is required to de®ne an op-

timal estimator, with variances Q and R of primary importance. In

the probabilistic framework, these parameters should be found from

modeling and data. The main de®ciency in the least squares viewpoint

is that the objective function, although reasonable, is ad hoc and not

justi®ed. The choice of weighting matricesQ and R is arbitrary. Practi-

tioners generally choose these parameters based on a tradeoff between

the competing goals of speed of estimator response and insensitivity

to measurement noise. But a careful statement of this tradeoff often

just leads back to the probabilistic viewpoint in which the process dis-

turbance and measurement disturbance are modeled as normal distri-

butions. If we restrict attention to unconstrained linear systems, the

probabilistic viewpoint is clearly superior.

Approaching state estimation with the perspective of least squares

pays off, however, when the models are signi®cantly more complex. It

is generally intractable to ®nd and maximize the conditional density of

the state given measurements for complex, nonlinear and constrained

models. Although the state estimation problem can be stated in the

language of probability, it cannot be solved with current methods. But

reasonable objective functions can be chosen for even complex, nonlin-

ear and constrained models. Moreover, knowing which least squares

problems correspond to which statistically optimal estimation prob-

lems for the simple linear case, provides the engineer with valuable in-

sight in choosing useful objective functions for nonlinear estimation.

We explore these more complex and realistic estimation problems in

Chapter 4. The perspective of least squares also leads to succinct ar-

guments for establishing estimator stability, which we take up shortly.
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TT �N0

x�T�

moving horizon

full information

x�T �N�

y�T�y�T �N�

Figure 1.5: Schematic of the moving horizon estimation problem.

First we consider situations in which it is advantageous to use moving

horizon estimation.

1.4.4 Moving Horizon Estimation

When using nonlinear models or considering constraints on the esti-

mates, we cannot calculate the conditional density recursively in closed

form as we did in Kalman ®ltering. Similarly, we cannot solve recur-

sively the least squares problem. If we use least squares we must opti-

mize all the states in the trajectory x�T� simultaneously to obtain the

state estimates. This optimization problem becomes computationally

intractable as T increases. Moving horizon estimation (MHE) removes

this dif®culty by considering only themost recentNmeasurements and

®nds only the most recent N values of the state trajectory as sketched

in Figure 1.5. The states to be estimated are xN�T� �
�
x�T � N�; : : : ;

x�T�
�
given measurements yN�T� �

�
y�T �N�; : : : ; y�T��. The data

have been broken into two sections with �y�T �N � 1�;yN�T�� � y�T�.

We assume here that T � N�1 to ignore the initial period in which the

estimation window ®lls with measurements and assume that the win-

dow is always full.

The simplest form of MHE is the following least squares problem

min
xN�T�

ÃVT �xN�T�� (1.32)
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in which the objective function is

ÃVT �xN�T�� � 1

2

� T�1X
k�T�N

jx�k� 1��Ax�k�j2Q�1 �

TX
k�T�N

��y�k�� Cx�k���2R�1 � (1.33)

We use the circum¯ex (hat) to indicate this is the MHE cost function

considering data sequence from T �N to T rather than the full infor-

mation or least squares cost considering the data from 0 to T .

MHE in terms of least squares. Notice that from our previous DP

recursion in (1.29), we can write the full least squares problem as

VT �xN�T�� � V�T�N�x�T �N���
1

2

� T�1X
k�T�N

jx�k� 1��Ax�k�j2Q�1 �
TX

k�T�N

��y�k�� Cx�k���2R�1 �

in which V�T�N��� is the arrival cost at time T � N. Comparing these

two objective functions, it is clear that the simplest form of MHE is

equivalent to setting up a full least squares problem, but then setting

the arrival cost function V�T�N��� to zero.

MHE in terms of conditional density. Because we have established

the close connection between least squares and conditional density in

(1.31), we can write the full least squares problem also as an equivalent

conditional density maximization

max
x�T�

px�T�jyN�T��x�T�jyN�T��

with prior density

px�T�N�jy�T�N�1��xjy�T �N � 1�� � c exp��V�T�N�x�� (1.34)

in which the constant c can be found from (1.19) if desired, but its

value does not change the solution to the optimization. We can see

from (1.34) that setting V�T�N��� to zero in the simplest form of MHE is

equivalent to giving in®nite variance to the conditional density of x�T�
N�jy�T � N � 1�. This means we are using no information about the

state x�T�N� and completely discounting the previous measurements

y�T �N � 1�.
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To provide a more ¯exible MHE problem, we therefore introduce a

penalty on the ®rst state to account for the neglected data y�T �N�1�

ÃVT �xN�T�� � �T�N�x�T �N���
1

2

� T�1X
k�T�N

jx�k� 1��Ax�k�j2Q�1 �
TX

k�T�N

��y�k�� Cx�k���2R�1 �

For the linear Gaussian case, we can account for the neglected data

exactly with no approximation by setting � equal to the arrival cost, or,

equivalently, the negative logarithm of the conditional density of the

state given the prior measurements. Indeed, there is no need to use

MHE for the linear Gaussian problem at all because we can solve the

full problem recursively. When addressing nonlinear and constrained

problems in Chapter 4, however, we must approximate the conditional

density of the state given the prior measurements in MHE to obtain a

computationally tractable and high-quality estimator.

1.4.5 Observability

We next explore the convergence properties of the state estimators.

For this we require the concept of system observability. The basic idea

of observability is that any two distinct states can be distinguished by

applying some input and observing the two system outputs over some

®nite time interval (Sontag, 1998, p.262±263). We discuss this general

de®nition in more detail when treating nonlinear systems in Chapter

4, but observability for linear systems is much simpler. First of all, the

applied input is irrelevant and we can set it to zero. Therefore consider

the linear time-invariant system �A;C� with zero input

x�k� 1� � Ax�k�
y�k� � Cx�k�

The system is observable if there exists a ®nite N, such that for every

x�0�,Nmeasurements
�
y�0�;y�1�; : : : ; y�N � 1�

�
distinguish uniquely

the initial state x�0�. Similarly to the case of controllability, if we can-

not determine the initial state using n measurements, we cannot de-

termine it using N > n measurements. Therefore we can develop a

convenient test for observability as follows. For n measurements, the
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system model gives 266664
y�0�

y�1�
...

y�n� 1�

377775 �
266664

C

CA
...

CAn�1

377775x�0� (1.35)

The question of observability is therefore a question of uniqueness of

solutions to these linear equations. The matrix appearing in this equa-

tion is known as the observability matrix O

O �

266664
C

CA
...

CAn�1

377775 (1.36)

From the fundamental theorem of linear algebra, we know the solution

to (1.35) is unique if and only if the columns of the np�n observability

matrix are linearly independent.6 Therefore, we have that the system

�A;C� is observable if and only if

rank�O� � n

The following result for checking observability also proves useful (Hau-

tus, 1972).

Lemma 1.4 (Hautus lemma for observability). A system is observable if

and only if

rank

"
�I �A
C

#
� n for all � 2 C (1.37)

in which C is the set of complex numbers.

Notice that the ®rst n rows of the matrix in (1.37) are linearly inde-

pendent if � � eig�A�, so (1.37) is equivalent to checking the rank at

just the eigenvalues of A

rank

"
�I �A
C

#
� n for all � 2 eig�A�

6See Section A.4 of Appendix A or (Strang, 1980, pp.87±88) for a review of this result.
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1.4.6 Convergence of the State Estimator

Next we consider the question of convergence of the estimates of sev-

eral of the estimators we have considered. The simplest convergence

question to ask is the following. Given an initial estimate error, and

zero state andmeasurement noises, does the state estimate converge to

the state as time increases and more measurements become available?

If the answer to this question is yes, we say the estimates converge;

sometimes we say the estimator converges. As with the regulator, op-

timality of an estimator does not ensure its stability. Consider the case

A � I; C � 0. The optimal estimate is Ãx�k� � x�0�, which does not

converge to the true state unless we have luckily chosen x�0� � x�0�.7
Obviously the lack of stability is caused by our choosing an unobserv-

able (undetectable) system.

We treat ®rst the Kalman ®ltering or full least squares problem. Re-

call that this estimator optimizes over the entire state trajectory x�T� :�
�x�0�; : : : ; x�T�� based on all measurements y�T� :� �y�0�; : : : ; y�T��.
In order to establish convergence, the following result on the optimal

estimator cost function proves useful.

Lemma 1.5 (Convergence of estimator cost). Given noise-free measure-

ments y�T� � �
Cx�0�; CAx�0�; : : : ; CATx�0�

�
, the optimal estimator

cost V0
T �y�T�� converges as T !1.

Proof. Denote the optimal state sequence at time T given measurement

y�T� by

�Ãx�0jT�; Ãx�1jT�; : : : ; Ãx�T jT��
We wish to compare the optimal costs at time T and T � 1. Therefore,

consider using the ®rst T � 1 elements of the solution at time T as

decision variables in the state estimation problem at time T � 1. The

cost for those decision variables at time T � 1 is given by

V0
T �

1

2

�
jÃx�T jT��AÃx�T � 1jT�j2Q�1 �

��y�T�� C Ãx�T jT���2R�1 �
In other words, we have the full cost at time T and we deduct the cost

of the last stage, which is not present at T � 1. Now this choice of

decision variables is not necessarily optimal at time T � 1, so we have

the inequality

V0
T�1 � V0

T�
1

2

�
jÃx�T jT��AÃx�T � 1jT�j2Q�1�

��y�T�� C Ãx�T jT���2R�1 �
7If we could count on that kind of luck, we would have no need for state estimation.
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Because the quadratic terms are nonnegative, the sequence of opti-

mal estimator costs is nondecreasing with increasing T . We can es-

tablish that the optimal cost is bounded above as follows: at any time

T we can choose the decision variables to be
�
x�0�;Ax�0�; : : : ; ATx�0�

�
,

which achieves cost jx�0�� x�0�j2�P��0���1 independent of T . The opti-
mal cost sequence is nondecreasing and bounded above and, therefore,

converges. �

The optimal estimator cost converges regardless of system observ-

ability. But if we want the optimal estimate to converge to the state, we

have to restrict the system further. The following lemma provides an

example of what is required.

Lemma 1.6 (Estimator convergence). For �A;C� observable, Q;R > 0,

and noise-free measurements y�T� � �
Cx�0�; CAx�0�; : : : ; CATx�0�

�
,

the optimal linear state estimate converges to the state

Ãx�T�! x�T� as T !1

Proof. To compress the notation somewhat, let ÃwT �j� � Ãx�T � j �
1jT �n� 1��AÃx�T � jjT �n� 1�. Using the optimal solution at time

T � n � 1 as decision variables at time T � 1 allows us to write the

following inequality

V0
T�1 � V0

T�n�1�
1

2

� n�2X
j��1

�� ÃwT �j�
��2
Q�1 �

n�1X
j�0

��y�T � j�� C Ãx�T � jjT �n� 1�
��2
R�1

�

Because the sequence of optimal costs converges with increasing T ,

and Q�1; R�1 > 0, we have established that for increasing T

ÃwT �j�! 0 j � �1; : : : ; n� 2

y�T � j�� C Ãx�T � jjT �n� 1�! 0 j � 0; : : : ; n� 1 (1.38)

From the systemmodel we have the following relationship between the

last n stages in the optimization problem at time T � n � 1 with data
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y�T �n� 1�266664
Ãx�T jT �n� 1�

Ãx�T � 1jT �n� 1�
...

Ãx�T �n� 1jT �n� 1�

377775 �
266664
I

A
...

An�1

377775 Ãx�T jT �n� 1��

266664
0

I 0
...

...
. . .

An�2 An�3 � � � I

377775
266664

ÃwT �0�

ÃwT �1�
...

ÃwT �n� 2�

377775 (1.39)

We note the measurements satisfy266664
y�T�

y�T � 1�
...

y�T �n� 1�

377775 � Ox�T�
Multiplying (1.39) by C and subtracting gives

2666664
y�T�� C Ãx�T jT �n� 1�

y�T � 1�� C Ãx�T � 1jT �n� 1�
...

y�T �n� 1�� C Ãx�T �n� 1jT �n� 1�

3777775 � O
�
x�T�� Ãx�T jT �n� 1�

��
2666664

0

C 0
...

...
. . .

CAn�2 CAn�3 � � � C

3777775

2666664
ÃwT �0�

ÃwT �1�
...

ÃwT �n� 2�

3777775
Applying (1.38) to this equation, we conclude O�x�T� � Ãx�T jT � n �
1�� ! 0 with increasing T . Because the observability matrix has inde-

pendent columns, we conclude x�T� � Ãx�T jT � n � 1� ! 0 as T ! 1.
Thus we conclude that the smoothed estimate Ãx�T jT�n�1� converges
to the state x�T�. Because the ÃwT �j� terms go to zero with increasing

T , the last line of (1.39) gives Ãx�T�n�1jT�n�1�! An�1Ãx�T jT�n�1�
as T !1. From the systemmodel An�1x�T� � x�T�n�1� and, there-
fore, after replacing T �n� 1 by T , we have

Ãx�T jT�! x�T� as T !1
and asymptotic convergence of the estimator is established. �
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This convergence result also covers MHE with prior weighting set to

the exact arrival cost because that is equivalent to Kalman ®ltering and

full least squares. The simplest form of MHE, which discounts prior

data completely, is also a convergent estimator, however, as discussed

in Exercise 1.28.

The estimator convergence result in Lemma 1.6 is the simplest to

establish, but, as in the case of the LQ regulator, we can enlarge the

class of systems andweightingmatrices (variances) for which estimator

convergence is guaranteed. The system restriction can be weakened

from observability to detectability, which is discussed in Exercises 1.31

and 1.32. The restriction on the process disturbance weight (variance)

Q can be weakened from Q > 0 to Q � 0 and �A;Q� stabilizable, which

is discussed in Exercise 1.33. The restriction R > 0 remains to ensure

uniqueness of the estimator.

1.5 Tracking, Disturbances, and Zero Offset

In the last section of this chapter we show brie¯y how to use the MPC

regulator and MHE estimator to handle different kinds of control prob-

lems, including setpoint tracking and rejecting nonzero disturbances.

1.5.1 Tracking

It is a standard objective in applications to use a feedback controller

to move the measured outputs of a system to a speci®ed and constant

setpoint. This problem is known as setpoint tracking. In Chapter 5

we consider the case in which the system is nonlinear and constrained,

but for simplicity here we consider the linear unconstrained system

in which ysp is an arbitrary constant. In the regulation problem of

Section 1.3 we assumed that the goal was to take the state of the system

to the origin. Such a regulator can be used to treat the setpoint tracking

problem with a coordinate transformation. Denote the desired output

setpoint as ysp. Denote a steady state of the system model as �xs ; us�.

From (1.5), the steady state satis®es

h
I �A �B

i"xs
us

#
� 0

For unconstrained systems, we also impose the requirement that the

steady state satis®es Cxs � ysp for the tracking problem, giving the
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set of equations "
I �A �B
C 0

#"
xs
us

#
�
"

0

ysp

#
(1.40)

If this set of equations has a solution, we can then de®ne deviation

variables

xe�k� � x�k�� xs
ue�k� � u�k��us

that satisfy the dynamic model

xe�k� 1� � x�k� 1�� xs
� Ax�k�� Bu�k�� �Axs � Bus�

xe�k� 1� � Axe�k�� Bue�k�
so that the deviation variables satisfy the same model equation as the

original variables. The zero regulation problem applied to the system in

deviation variables ®nds ue�k� that takes xe�k� to zero, or, equivalently,

which takes x�k� to xs , so that at steady state, Cx�k� � Cxs � ysp,

which is the goal of the setpoint tracking problem. After solving the

regulation problem in deviation variables, the input applied to the sys-

tem is u�k� � ue�k��us .
We next discuss when we can solve (1.40). We also note that for con-

strained systems, we must impose the constraints on the steady state

�xs ; us�. The matrix in (1.40) is a �n� p�� �n�m� matrix. For (1.40)

to have a solution for all ysp, it is suf®cient that the rows of the ma-

trix are linearly independent. That requires p �m: we require at least

as many inputs as outputs with setpoints. But it is not uncommon in

applications to have many more measured outputs than manipulated

inputs. To handle these more general situations, we choose a matrix

H and denote a new variable r � Hy as a selection of linear combi-

nations of the measured outputs. The variable r 2 Rnc is known as

the controlled variable. For cases in which p > m, we choose some set

of outputs nc �m, as controlled variables, and assign setpoints to r ,

denoted rsp.

We alsowish to treat systemswithmore inputs than outputs,m > p.

For these cases, the solution to (1.40) may exist for some choice of H

and rsp, but cannot be unique. If we wish to obtain a unique steady

state, then we also must provide desired values for the steady inputs,

usp. To handle constrained systems, we simply impose the constraints

on �xs ; us�.
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Steady-state target problem. Our candidate optimization problem is

therefore

min
xs ;us

1

2

���us �usp

��2
Rs
� ��Cxs �ysp

��2
Qs

�
(1.41a)

subject to "
I �A �B
HC 0

#"
xs
us

#
�
"
0

rsp

#
(1.41b)

Eus � e (1.41c)

FCxs � f (1.41d)

We make the following assumptions.

Assumption 1.7 (Target feasibility and uniqueness).

(a) The target problem is feasible for the controlled variable setpoints

of interest rsp.

(b) The steady-state input penalty Rs is positive de®nite.

Assumption 1.7 (a) ensures that the solution �xs ; us� exists, and

Assumption 1.7 (b) ensures that the solution is unique. If one chooses

nc � 0, then no controlled variables are required to be at setpoint, and

the problem is feasible for any �usp; ysp� because �xs ; us� � �0;0� is a
feasible point. Exercises 1.56 and 1.57 explore the connection between

feasibility of the equality constraints and the number of controlled vari-

ables relative to the number of inputs and outputs. One restriction is

that the number of controlled variables chosen to be offset free must

be less than or equal to the number of manipulated variables and the

number of measurements, nc �m and nc � p.
Dynamic regulation problem. Given the steady-state solution, we de-

®ne the following multistage objective function

V�xe�0�;ue� � 1

2

N�1X
k�0

��xe�k���2Q � ��ue�k���2R s.t. xe� � Axe � Bue
in which xe�0� � Ãx�k� � xs , i.e., the initial condition for the regula-

tion problem comes from the state estimate shifted by the steady-state

xs . The regulator solves the following dynamic, zero-state regulation

problem

mineu V�xe�0�;ue�



1.5 Tracking, Disturbances, and Zero Offset 49

subject to

Eue � e� Eus
FCxe � f � FCxs

in which the constraints also are shifted by the steady state �xs ; us�.

The optimal cost and solution are V0�xe�0�� and ue0�xe�0��. The mov-

ing horizon control law uses the ®rst move of this optimal sequence,

ue0�xe�0�� � ue0�0;xe�0��, so the controller output is u�k� � ue0�xe�0���
us .

1.5.2 Disturbances and Zero Offset

Another common objective in applications is to use a feedback con-

troller to compensate for an unmeasured disturbance to the system

with the input so the disturbance's effect on the controlled variable

is mitigated. This problem is known as disturbance rejection. We may

wish to design a feedback controller that compensates for nonzero dis-

turbances such that the selected controlled variables asymptotically ap-

proach their setpoints without offset. This property is known as zero

offset. In this section we show a simple method for constructing an

MPC controller to achieve zero offset.

In Chapter 5, we address the full problem. Here we must be content

to limit our objective. We will ensure that if the system is stabilized in

the presence of the disturbance, then there is zero offset. But we will

not attempt to construct the controller that ensures stabilization over

an interesting class of disturbances. That topic is treated in Chapter 5.

This more limited objective is similar to what one achieves when us-

ing the integral mode in proportional-integral-derivative (PID) control

of an unconstrained system: either there is zero steady offset, or the

system trajectory is unbounded. In a constrained system, the state-

ment is amended to: either there is zero steady offset, or the system

trajectory is unbounded, or the system constraints are active at steady

state. In both constrained and unconstrained systems, the zero-offset

property precludes one undesirable possibility: the system settles at

an unconstrained steady state, and the steady state displays offset in

the controlled variables.

A simple method to compensate for an unmeasured disturbance is

to (i) model the disturbance, (ii) use the measurements and model to

estimate the disturbance, and (iii) ®nd the inputs that minimize the

effect of the disturbance on the controlled variables. The choice of
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disturbance model is motivated by the zero-offset goal. To achieve

offset-free performance we augment the system state with an integrat-

ing disturbance d driven by a white noise wd

d� � d�wd (1.42)

This choice is motivated by the works of Davison and Smith (1971,

1974); Qiu and Davison (1993) and the Internal Model Principle of Fran-

cis and Wonham (1976). To remove offset, one designs a control sys-

tem that can remove asymptotically constant, nonzero disturbances

(Davison and Smith, 1971), (Kwakernaak and Sivan, 1972, p.278). To

accomplish this end, the original system is augmented with a replicate

of the constant, nonzero disturbance model, (1.42). Thus the states of

the original system are moved onto the manifold that cancels the effect

of the disturbance on the controlled variables. The augmented system

model used for the state estimator is given by"
x

d

#�
�
"
A Bd
0 I

#"
x

d

#
�
"
B

0

#
u�w (1.43a)

y �
h
C Cd

i"x
d

#
� v (1.43b)

and we are free to choose how the integrating disturbance affects the

states andmeasured outputs through the choice of Bd and Cd. The only

restriction is that the augmented system is detectable. That restriction

can be easily checked using the following result.

Lemma 1.8 (Detectability of the augmented system). The augmented

system (1.43) is detectable if and only if the unaugmented system �A;C�

is detectable, and the following condition holds

rank

"
I �A �Bd
C Cd

#
� n�nd (1.44)

Corollary 1.9 (Dimension of the disturbance). The maximal dimension

of the disturbance d in (1.43) such that the augmented system is de-

tectable is equal to the number of measurements, that is

nd � p

A pair of matrices �Bd; Cd� such that (1.44) is satis®ed always exists.

In fact, since �A;C� is detectable, the submatrix
h
I�A
C

i
2 R�p�n��n has
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rank n. Thus, we can choose any nd � p columns in Rp�n independent

of
h
I�A
C

i
for

h
�Bd
Cd

i
.

The state and the additional integrating disturbance are estimated

from the plant measurement using a Kalman ®lter designed for the

augmented system. The variances of the stochastic disturbances w

and v may be treated as adjustable parameters or found from input-

output measurements (Odelson, Rajamani, and Rawlings, 2006). The

estimator provides Ãx�k� and Ãd�k� at each time k. The best forecast of

the steady-state disturbance using (1.42) is simply

Ãds � Ãd�k�

The steady-state target problem is therefore modi®ed to account for

the nonzero disturbance Ãds

min
xs ;us

1

2

���us �usp

��2
Rs
�
���Cxs � Cd Ãds �ysp

���2
Qs

�
(1.45a)

subject to "
I �A �B
HC 0

#"
xs
us

#
�
"

Bd Ãds
rsp �HCd Ãds

#
(1.45b)

Eus � e (1.45c)

FCxs � f � FCd Ãds (1.45d)

Comparing (1.41) to (1.45), we see the disturbance model affects the

steady-state target determination in four ways.

1. The output target is modi®ed in (1.45a) to account for the effect

of the disturbance on the measured output (ysp ! ysp � Cd Ãds ).

2. The output constraint in (1.45d) is similarly modi®ed (f ! f �
FCd Ãds ).

3. The system steady-state relation in (1.45b) is modi®ed to account

for the effect of the disturbance on the state evolution (0! Bd Ãds ).

4. The controlled variable target in (1.45b) is modi®ed to account

for the effect of the disturbance on the controlled variable (rsp !
rsp �HCd Ãds ).

Given the steady-state target, the same dynamic regulation problem as

presented in the tracking section, Section 1.5, is used for the regulator.



52 Getting Started with Model Predictive Control

"
Ãx
Ãd

#�
�
"
A Bd
0 I

#"
Ãx
Ãd

#
�
"
B
0

#
u�24Lex

Led
35�y � hC Cdi

"
Ãx
Ãd

#�Ãx
Ãd

xs
us

Ãx

estimator

target
selector

xe� � Axe � Bue
�Q;R�

u y

ysp; usp; rsp
�Qs ; Rs�

regulator plant

Figure 1.6: MPC controller consisting of: receding horizon regula-

tor, state estimator, and target selector; for simplicity we

show the steady-state Kalman predictor form of the state

estimator where Ãx :� Ãx�k j k� 1� and Lex :� ALx � BdLd
and Led :� Ld.

In other words, the regulator is based on the deterministic system �A;

B� in which the current state is Ãx�k� � xs and the goal is to take the

system to the origin.

The following lemma summarizes the offset-free control property

of the combined control system.

Lemma 1.10 (Offset-free control). Consider a system controlled by the

MPC algorithm as shown in Figure 1.6. The target problem (1.45) is

assumed feasible. Augment the system model with a number of inte-

grating disturbances equal to the number of measurements �nd � p�;
choose any Bd 2 Rn�p, Cd 2 Rp�p such that

rank

"
I �A �Bd
C Cd

#
� n� p

If the plant output y�k� goes to steady state ys , the closed-loop system is

stable, and constraints are not active at steady state, then there is zero

offset in the controlled variables, that is

Hys � rsp
The proof of this lemma is given in Pannocchia and Rawlings (2003).

It may seem surprising that the number of integrating disturbances
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must be equal to the number ofmeasurements used for feedback rather

than the number of controlled variables to guarantee offset-free con-

trol. To gain insight into the reason, consider the disturbance part

(bottom half) of the Kalman ®lter equations shown in Figure 1.6

Ãd� � Ãd� Ld
�
y �

h
C Cd

i"Ãx
Ãd

#�

Because of the integrator, the disturbance estimate cannot converge

until

Ld

�
y �

h
C Cd

i"Ãx
Ãd

#�
� 0

But notice this condition merely restricts the output prediction error

to lie in the nullspace of the matrix Ld, which is an nd � p matrix. If

we choose nd � nc < p, then the number of columns of Ld is greater

than the number of rows and Ld has a nonzero nullspace.8 In general,

we require the output prediction error to be zero to achieve zero offset

independently of the regulator tuning. For Ld to have only the zero

vector in its nullspace, we require nd � p. Since we also know nd � p
from Corollary 1.9, we conclude nd � p.

Notice also that Lemma 1.10 does not require that the plant output

be generated by the model. The theorem applies regardless of what

generates the plant output. If the plant is identical to the system plus

disturbance model assumed in the estimator, then the conclusion can

be strengthened. In the nominal case without measurement or process

noise (w � 0, v � 0), for a set of plant initial states, the closed-loop sys-

tem converges to a steady state and the feasible steady-state target is

achieved leading to zero offset in the controlled variables. Characteriz-

ing the set of initial states in the region of convergence, and stabilizing

the system when the plant and the model differ, are treated in Chap-

ters 3 and 5. We conclude the chapter with a nonlinear example that

demonstrates the use of Lemma 1.10.

Example 1.11: More measured outputs than inputs and zero offset

We consider a well-stirred chemical reactor depicted in Figure 1.7, as

in Pannocchia and Rawlings (2003). An irreversible, ®rst-order reac-

tion A -! B occurs in the liquid phase and the reactor temperature is

8This is another consequence of the fundamental theorem of linear algebra. The

result is depicted in Figure A.1.
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F0; T0; c0

Tc

r
F

h

T ; c

Figure 1.7: Schematic of the well-stirred reactor.

regulated with external cooling. Mass and energy balances lead to the

following nonlinear state space model

dc

dt
� F0�c0 � c�

�r 2h
� k0 exp

�
� E
RT

�
c

dT

dt
� F0�T0 � T�

�r 2h
� ��H
�Cp

k0 exp

�
� E
RT

�
c � 2U

r�Cp
�Tc � T�

dh

dt
� F0 � F
�r 2

The controlled variables are h, the level of the tank, and c, the molar

concentration of species A. The additional state variable is T , the re-

actor temperature; while the manipulated variables are Tc , the coolant

liquid temperature, and F , the outlet ¯owrate. Moreover, it is assumed

that the inlet ¯owrate acts as an unmeasured disturbance. The model

parameters in nominal conditions are reported in Table 1.1. The open-

loop stable steady-state operating conditions are the following

cs � 0:878kmol=m3 T s � 324:5K hs � 0:659m

T sc � 300K F s � 0:1m3=min

Using a sampling time of 1min, a linearized discrete state space model

is obtained and, assuming that all the states are measured, the state

space variables are

x �
264 c � c

s

T � T s
h� hs

375 u �
"
Tc � T sc
F � F s

#
y �

264 c � c
s

T � T s
h� hs

375 p � F0 � F s0



1.5 Tracking, Disturbances, and Zero Offset 55

Parameter Nominal value Units

F0 0.1 m3/min

T0 350 K

c0 1 kmol/m3

r 0.219 m

k0 7:2� 1010 min�1

E=R 8750 K

U 54.94 kJ/min�m2�K
� 1000 kg/m3

Cp 0.239 kJ/kg�K
�H �5� 104 kJ/kmol

Table 1.1: Parameters of the well-stirred reactor.

The corresponding linear model is

x�k� 1� � Ax�k�� Bu�k�� Bpp
y�k� � Cx�k�

in which

A �
2640:2681 �0:00338 �0:00728
9:703 0:3279 �25:44
0 0 1

375 C �
2641 0 0

0 1 0

0 0 1

375

B �
264�0:00537 0:1655

1:297 97:91

0 �6:637

375 Bp �
264�0:117569:74

6:637

375

(a) Since we have two inputs, Tc and F , we try to remove offset in

two controlled variables, c and h. Model the disturbance with two

integrating output disturbances on the two controlled variables.

Assume that the covariances of the state noises are zero except

for the two integrating states. Assume that the covariances of the

three measurements' noises are also zero.

Notice that although there are only two controlled variables, this

choice of two integrating disturbances does not follow the pre-

scription of Lemma 1.10 for zero offset.

Simulate the response of the controlled system after a 10% in-

crease in the inlet ¯owrate F0 at time t � 10min. Use the nonlin-
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ear differential equations for the plant model. Do you have steady

offset in any of the outputs? Which ones?

(b) Follow the prescription of Lemma 1.10 and choose a disturbance

model with three integrating modes. Can you choose three inte-

grating output disturbances for this plant? If so, prove it. If not,

state why not.

(c) Again choose a disturbance model with three integrating modes;

choose two integrating output disturbances on the two controlled

variables. Choose one integrating input disturbance on the outlet

¯owrate F . Is the augmented system detectable?

Simulate again the response of the controlled system after a 10%

increase in the inlet ¯owrate F0 at time t � 10min. Again use the

nonlinear differential equations for the plant model. Do you have

steady offset in any of the outputs? Which ones?

Compare and contrast the closed-loop performance for the design

with two integrating disturbances and the design with three inte-

grating disturbances. Which control system do you recommend

and why?

Solution

(a) Integrating disturbances are added to the two controlled variables

(®rst and third outputs) by choosing

Cd �
2641 0

0 0

0 1

375 Bd � 0

The results with two integrating disturbances are shown in Fig-

ures 1.8 and 1.9. Notice that despite adding integrating distur-

bances to the two controlled variables, c and h, both of these con-

trolled variables as well as the third output, T , all display nonzero

offset at steady state.

(b) A third integrating disturbance is added to the second output

giving

Cd �
2641 0 0

0 0 1

0 1 0

375 Bd � 0
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Figure 1.8: Three measured outputs versus time after a step change

in inlet ¯owrate at 10 minutes; nd � 2.
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Figure 1.9: Two manipulated inputs versus time after a step change

in inlet ¯owrate at 10 minutes; nd � 2.
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Figure 1.10: Threemeasured outputs versus time after a step change

in inlet ¯owrate at 10 minutes; nd � 3.

The augmented system is not detectable with this disturbance

model. The rank of
h
I�A �Bd
C Cd

i
is only 5 instead of 6. The problem

here is that the system level is itself an integrator, and we cannot

distinguish h from the integrating disturbance added to h.

(c) Next we try three integrating disturbances: two added to the two

controlled variables, and one added to the second manipulated

variable

Cd �
2641 0 0

0 0 0

0 1 0

375 Bd �
2640 0 0:1655

0 0 97:91

0 0 �6:637

375
The augmented system is detectable for this disturbance model.

The results for this choice of three integrating disturbances are

shown in Figures 1.10 and 1.11. Notice that we have zero offset in

the two controlled variables, c andh, and have successfully forced

the steady-state effect of the inlet ¯owrate disturbance entirely

into the second output, T .

Notice also that the dynamic behavior of all three outputs is supe-

rior to that achieved with the model using two integrating distur-

bances. The true disturbance, which is a step at the inlet ¯owrate,
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Figure 1.11: Twomanipulated inputs versus time after a step change

in inlet ¯owrate at 10 minutes; nd � 3.

is better represented by including the integrator in the outlet

¯owrate. With a more accurate disturbance model, better over-

all control is achieved. The controller uses smaller manipulated

variable action and also achieves better output variable behavior.

An added bonus is that steady offset is removed in the maximum

possible number of outputs. �

Further notation

G transfer function matrix

m mean of normally distributed random variable

T reactor temperature

ue input deviation variable

x;y; z spatial coordinates for a distributed system

xe state deviation variable
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1.6 Exercises

Exercise 1.1: State space form for chemical reaction model

Consider the following chemical reaction kinetics for a two-step series reaction

A
k1
-! B B

k2
-! C

We wish to follow the reaction in a constant volume, well-mixed, batch reactor. As

taught in the undergraduate chemical engineering curriculum, we proceed by writing

material balances for the three species giving

dcA
dt

� �r1 dcB
dt

� r1 � r2 dcC
dt

� r2

in which cj is the concentration of species j, and r1 and r2 are the rates (mol/(time�vol))
at which the two reactions occur. We then assume some rate law for the reaction

kinetics, such as

r1 � k1cA r2 � k2cB
We substitute the rate laws into the material balances and specify the starting concen-

trations to produce three differential equations for the three species concentrations.

(a) Write the linear state space model for the deterministic series chemical reaction

model. Assume we can measure the component A concentration. What are x,
y , A, B, C , and D for this model?

(b) Simulate this model with initial conditions and parameters given by

cA0 � 1 cB0 � cC0 � 0 k1 � 2 k2 � 1

Exercise 1.2: Distributed systems and time delay

We assume familiarity with the transfer function of a time delay from an undergraduate

systems course

y�s� � e��su�s�
Let's see the connection between the delay and the distributed systems, which give rise

to it. A simple physical example of a time delay is the delay caused by transport in a

¯owing system. Consider plug ¯ow in a tube depicted in Figure 1.12.

(a) Write down the equation of change for moles of component j for an arbitrary

volume element and show that

@cj

@t
� �r � �cjvj�� Rj

cj�L; t� � y�t�

z � 0 z � L
v

cj�0; t� � u�t�

Figure 1.12: Plug-¯ow reactor.
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in which cj is the molar concentration of component j, vj is the velocity of

component j, and Rj is the production rate of component j due to chemical

reaction.9

Plug ¯ow means the ¯uid velocity of all components is purely in the z direction,
and is independent of r and � and, we assume here, z

vj � v�z

(b) Assuming plug ¯ow and neglecting chemical reaction in the tube, show that the

equation of change reduces to

@cj

@t
� �v @cj

@z
(1.46)

This equation is known as a hyperbolic, ®rst-order partial differential equation.

Assume the boundary and initial conditions are

cj�z; t� � u�t� 0 � z t � 0 (1.47)

cj�z; t� � cj0�z� 0 � z � L t � 0 (1.48)

In other words, we are using the feed concentration as the manipulated variable,

u�t�, and the tube starts out with some initial concentration pro®le of compo-

nent j, cj0�z�.

(c) Show that the solution to (1.46) with these boundary conditions is

cj�z; t� �
(
u�t � z=v� vt > z
cj0�z � vt� vt < z

(1.49)

(d) If the reactor starts out empty of component j, show that the transfer function

between the outlet concentration, y � cj�L; t�, and the inlet concentration, cj�0;
t� � u�t�, is a time delay. What is the value of �?

Exercise 1.3: Pendulum in state space

Consider the pendulum suspended at the end of a rigid link depicted in Figure 1.13. Let

r and � denote the polar coordinates of the center of the pendulum, and let p � r�r be
the position vector of the pendulum, in which �r and �� are the unit vectors in polar

coordinates. We wish to determine a state space description of the system. We are

able to apply a torque T to the pendulum as our manipulated variable. The pendulum

has mass m, the only other external force acting on the pendulum is gravity, and we

neglect friction. The link provides force �t�r necessary to maintain the pendulum at

distance r � R from the axis of rotation, and we measure this force t.

(a) Provide expressions for the four partial derivatives for changes in the unit vec-

tors with r and �
@�r
@r

@�r
@�

@��
@r

@��
@�

(b) Use the chain rule to ®nd the velocity of the pendulum in terms of the time

derivatives of r and �. Do not simplify yet by assuming r is constant. We want

the general result.

9You will need the Gauss divergence theorem and 3D Leibniz formula to go from a

mass balance on a volume element to the equation of continuity.
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�

r

T

m

g

Figure 1.13: Pendulum with applied torque.

(c) Differentiate again to show that the acceleration of the pendulum is

Èp � �Èr � r Ç�2��r � �r È� � 2Çr Ç����

(d) Use a momentum balance on the pendulum mass (you may assume it is a point

mass) to determine both the force exerted by the link

t �mRÇ�2 �mg cos�
and an equation for the acceleration of the pendulum due to gravity and the

applied torque

mRÈ� � T=R �mg sin� � 0

(e) De®ne a state vector and give a state space description of your system. What is

the physical signi®cance of your state. Assume you measure the force exerted

by the link.

One answer is

dx1
dt

� x2
dx2
dt

� ��g=R� sinx1 �u
y �mRx22 �mg cosx1

in which u � T=�mR2�

Exercise 1.4: Time to Laplace domain

Take the Laplace transform of the following set of differential equations and ®nd the

transfer function, G�s�, connecting u�s� and y�s�, y � Gu
dx

dt
� Ax � Bu

y � Cx �Du (1.50)

For x 2 Rn, y 2 Rp , and u 2 Rm, what is the dimension of the G matrix? What

happens to the initial condition, x�0� � x0?
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Exercise 1.5: Converting between continuous and discrete time models

Given a prescribed u�t�, derive and check the solution to (1.50). Given a prescribed

u�k� sequence, what is the solution to the discrete time model

x�k� 1� � Aex�k�� Beu�k�
y�k� � Cex�k��Deu�k�

(a) Compute Ae ; Be; Ce , and De so that the two solutions agree at the sample times for

a zero-order hold input, i.e., y�k� � y�tk� for u�t� � u�k�; t 2 �tk; tk�1� in
which tk � k� for sample time �.

(b) Is your result valid for A singular? If not, how can you ®nd Ae ; Be; Ce , and De for

this case?

Exercise 1.6: Continuous to discrete time conversion for nonlinear models

Consider the autonomous nonlinear differential equation model

dx

dt
� f�x;u�

x�0� � x0 (1.51)

Given a zero-order hold on the input, let s�t;u;x0�;0 � t � �; be the solution to (1.51)

given initial condition x0 at time t � 0, and constant input u is applied for t in the

interval 0 � t � �. Consider also the nonlinear discrete time model

x�k� 1� � F�x�k�;u�k��
(a) What is the relationship between F and s so that the solution of the discrete

time model agrees at the sample times with the continuous time model with a

zero-order hold?

(b) Assume f is linear and apply this result to check the result of Exercise 1.5.

Exercise 1.7: Commuting functions of a matrix

Although matrix multiplication does not commute in general

AB � BA

multiplication of functions of the same matrix do commute. You may have used the

following fact in Exercise 1.5

A�1 exp�At� � exp�At�A�1 (1.52)

(a) Prove that (1.52) is true assuming A has distinct eigenvalues and can therefore

be represented as

A � Q�Q�1 � �

2666664
�1 0 � � � 0

0 �2 � � � 0

.

.

.
.
.
.

. . .
.
.
.

0 0 � � � �n

3777775
in which � is a diagonal matrix containing the eigenvalues of A, and Q is the

matrix of eigenvectors such that

Aqi � �iqi; i � 1; : : : ; n

in which qi is the ith column of matrix Q.
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(b) Prove the more general relationship

f�A�g�A� � g�A�f�A� (1.53)

in which f and g are any functions de®nable by Taylor series.

(c) Prove that (1.53) is true without assuming the eigenvalues are distinct.

Hint: use the Taylor series de®ning the functions and apply the Cayley-Hamilton

theorem (Horn and Johnson, 1985, pp. 86±87).

Exercise 1.8: Finite difference formula and approximating the exponential

Instead of computing the exact conversion of a continuous time to a discrete time

system as in Exercise 1.5, assume instead one simply approximates the time derivative

with a ®rst-order ®nite difference formula

dx

dt
� x�tk�1�� x�tk�

�

with step size equal to the sample time, �. For this approximation of the continuous

time system, compute Ae and Be so that the discrete time system agrees with the approx-

imate continuous time system at the sample times. Comparing these answers to the

exact solution, what approximation of eA� results from the ®nite difference approxi-

mation? When is this a good approximation of eA�?

Exercise 1.9: Mapping eigenvalues of continuous time systems to discrete
time systems

Consider the continuous time differential equation and discrete time difference equa-

tion

dx

dt
� Ax

x� � Aex
and the transformation

Ae � eA�
Consider the scalar A case.

(a) What A represents an integrator in continuous time? What is the corresponding

Ae value for the integrator in discrete time?

(b) What A give purely oscillatory solutions? What are the corresponding Ae?
(c) For what A is the solution of the ODE stable? Unstable? What are the corre-

sponding Ae?
(d) Sketch and label these A and Ae regions in two complex-plane diagrams.

Exercise 1.10: State space realization

De®ne a state vector and realize the following models as state space models by hand.

One should do a few by hand to understand what the Octave or MATLAB calls are doing.

Answer the following questions. What is the connection between the poles ofG and the

state space description? For what kinds of G�s� does one obtain a nonzero D matrix?

What is the order and gain of these systems? Is there a connection between order and

the numbers of inputs and outputs?
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(a) G�s� � 1

2s � 1

(b) G�s� � 1

�2s � 1��3s � 1�

(c) G�s� � 2s � 1

3s � 1

(d) y�k� 1� � y�k�� 2u�k�

(e) y�k � 1� � a1y�k� � a2y�k � 1� �
b1u�k�� b2u�k� 1�

Exercise 1.11: Minimal realization

Findminimal realizations of the state space models you found by hand in Exercise 1.10.

Use Octave or MATLAB for computing minimal realizations. Were any of your hand

realizations nonminimal?

Exercise 1.12: Partitioned matrix inversion lemma

Let matrix Z be partitioned into

Z �
"
B C
D E

#

and assume Z�1; B�1 and E�1 exist.

(a) Perform row elimination and show that

Z�1 �
"
B�1 � B�1C�E �DB�1C��1DB�1 �B�1C�E �DB�1C��1

��E �DB�1C��1DB�1 �E �DB�1C��1
#

Note that this result is still valid if E is singular.

(b) Perform column elimination and show that

Z�1 �
"

�B � CE�1D��1 ��B � CE�1D��1CE�1
�E�1D�B � CE�1D��1 E�1 � E�1D�B � CE�1D��1CE�1

#

Note that this result is still valid if B is singular.

(c) A host of other useful control-related inversion formulas follow from these re-

sults. Equate the (1,1) or (2,2) entries of Z�1 and derive the identity

�A� BCD��1 � A�1 �A�1B�DA�1B � C�1��1DA�1 (1.54)

A useful special case of this result is

�I �X�1��1 � I � �I �X��1

(d) Equate the (1,2) or (2,1) entries of Z�1 and derive the identity

�A� BCD��1BC � A�1B�DA�1B � C�1��1 (1.55)

Equations (1.54) and (1.55) prove especially useful in rearranging formulas in

least squares estimation.
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Exercise 1.13: Perturbation to an asymptotically stable linear system

Given the system

x� � Ax � Bu

If A is an asymptotically stable matrix, prove that if u�k�! 0, then x�k�! 0.

Exercise 1.14: Exponential stability of a perturbed linear system

Given the system

x� � Ax � Bu

If A is an asymptotically stable matrix, prove that if u�k� decreases exponentially to

zero, then x�k� decreases exponentially to zero.

Exercise 1.15: Are we going forward or backward today?

In the chapter we derived the solution to

min
w;x;y

f�w;x�� g�x;y�� h�y; z�

in which z is a ®xed parameter using forward dynamic programming (DP)

y0�z�

xe0�z� � x0�y0�z��

we 0
�z� � w0�x0�y0�z���

(a) Solve for optimal w as a function of z using backward DP.

(b) Is forward or backward DP more ef®cient if you want optimal w as a function

of z?

Exercise 1.16: Method of Lagrange multipliers

Consider the objective function V�x� � �1=2�x0Hx � h0x and optimization problem

min
x
V�x� (1.56)

subject to

Dx � d
in which H > 0, x 2 Rn, d 2 Rm,m < n, i.e., fewer constraints than decisions. Rather

than partially solving for x using the constraint and eliminating it, we make use of the

method of Lagrange multipliers for treating the equality constraints (Fletcher, 1987;

Nocedal and Wright, 2006).

In the method of Lagrange multipliers, we augment the objective function with the

constraints to form the Lagrangian function, L

L�x; �� � �1=2�x0Hx � h0x � �0�Dx � d�
in which � 2 Rm is the vector of Lagrange multipliers. The necessary and suf®cient

conditions for a global minimizer are that the partial derivatives of L with respect to x
and � vanish (Nocedal and Wright, 2006, p. 451), (Fletcher, 1987, p.198,236).
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(a) Show that the necessary and suf®cient conditions are equivalent to the matrix

equation "
H �D0
�D 0

#"
x
�

#
� �

"
h
d

#
(1.57)

The solution to (1.57) then provides the solution to the original problem (1.56).

(b) We note one other important feature of the Lagrange multipliers, their relation-

ship to the optimal cost of the purely quadratic case. For h � 0, the cost is given

by

V0 � �1=2��x0�0Hx0
Show that this can also be expressed in terms of �0 by the following

V0 � �1=2�d0�0

Exercise 1.17: Minimizing a constrained, quadratic function

Consider optimizing the positive de®nite quadratic function subject to a linear con-

straint

min
x
�1=2�x0Hx s.t. Ax � b

Using the method of Lagrange multipliers presented in Exercise 1.16, show that the

optimal solution, multiplier, and cost are given by

x0 � H�1A0�AH�1A0��1b
�0 � �AH�1A0��1b
V0 � �1=2�b0�AH�1A0��1b

Exercise 1.18: Minimizing a partitioned quadratic function

Consider the partitioned constrained minimization

min
x1;x2

"
x1
x2

#0 "
H1

H2

#"
x1
x2

#
subject to h

D I
i"x1
x2

#
� d

The solution to this optimization is required in two different forms, depending on

whether one is solving an estimation or regulation problem. Show that the solution

can be expressed in the following two forms if both H1 and H2 are full rank.

• Regulator form

V0�d� � d0�H2 �H2D�D
0H2D �H1�

�1D0H2�d

x01�d� � Ked Ke � �D0H2D �H1�
�1D0H2

x02�d� � �I �DKe �d
• Estimator form

V0�d� � d0�DH�11 D0 �H�12 ��1d

x01�d� � Led Le � H�11 D0�DH�11 D0 �H�12 ��1

x02�d� � �I �DLe�d
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Exercise 1.19: Stabilizability and controllability canonical forms

Consider the partitioned system"
x1
x2

#�
�
"
A11 A12

0 A22

#"
x1
x2

#
�
"
B1
0

#
u

with �A11; B1� controllable. This form is known as controllability canonical form.

(a) Show that the system is not controllable by checking the rank of the controlla-

bility matrix.

(b) Show that the modes x1 can be controlled from any x1�0� to any x1�n�with a se-
quence of inputsu�0�; : : : ; u�n�1�, but the modes x2 cannot be controlled from

any x2�0� to any x2�n�. The states x2 are termed the uncontrollable modes.

(c) If A22 is stable the system is termed stabilizable. Although not all modes can be

controlled, the uncontrollable modes are stable and decay to steady state.

The following lemma gives an equivalent condition for stabilizability.

Lemma 1.12 (Hautus lemma for stabilizability). A system is stabilizable if and

only if

rank
h
�I �A B

i
� n for all j�j � 1

Prove this lemma using Lemma 1.2 as the condition for controllability.

Exercise 1.20: Regulator stability, stabilizable systems, and semide®nite
state penalty

(a) Show that the in®nite horizon LQR is stabilizing for �A; B� stabilizable with R;
Q > 0.

(b) Show that the in®nite horizon LQR is stabilizing for �A; B� stabilizable and R > 0,

Q � 0, and �A;Q� detectable. Discuss what happens to the controller's stabiliz-

ing property if Q is not positive semide®nite or �A;Q� is not detectable.

Exercise 1.21: Time-varying linear quadratic problem

Consider the time-varying version of the LQ problem solved in the chapter. The system

model is

x�k� 1� � A�k�x�k�� B�k�u�k�
The objective function also contains time-varying penalties

min
u
V�x�0�;u� � 1

2

0@N�1X
k�0

�
x�k�0Q�k�x�k��u�k�0R�k�u�k��� x�N�0Q�N�x�N�

1A
subject to the model. Notice the penalty on the ®nal state is now simply Q�N� instead
of Pf .

Apply the DP argument to this problem and determine the optimal input sequence

and cost. Can this problem also be solved in closed form like the time-invariant case?
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Exercise 1.22: Steady-state Riccati equation

Generate a random A and B for a system model for whatever n�� 3� andm�� 3� you
wish. Choose a positive semide®niteQ and positive de®nite R of the appropriate sizes.

(a) Iterate the DARE by hand with Octave or MATLAB until � stops changing. Save

this result. Now call the MATLAB or Octave function to solve the steady-state

DARE. Do the solutions agree? Where in the complex plane are the eigenvalues

of A�BK? Increase the size ofQ relative to R. Where do the eigenvalues move?

(b) Repeat for a singular A matrix. What happens to the two solution techniques?

(c) Repeat for an unstable A matrix.

Exercise 1.23: Positive de®nite Riccati iteration

If ��k�;Q;R > 0 in (1.10), show that ��k� 1� > 0.

Hint: apply (1.54) to the term �B0��k�B � R��1.

Exercise 1.24: Existence and uniqueness of the solution to constrained least
squares

Consider the least squares problem subject to linear constraint

min
x
�1=2�x0Qx subject to Ax � b

in which x 2 Rn, b 2 Rp , Q 2 Rn�n, Q � 0, A 2 Rp�n. Show that this problem has a

solution for every b and the solution is unique if and only if

rank�A� � p rank

"
Q
A

#
� n

Exercise 1.25: Rate-of-change penalty

Consider the generalized LQR problem with the cross term between x�k� and u�k�

V�x�0�;u� � 1

2

N�1X
k�0

�
x�k�0Qx�k��u�k�0Ru�k�� 2x�k�0Mu�k�

���1=2�x�N�0Pfx�N�
(a) Solve this problem with backward DP and write out the Riccati iteration and

feedback gain.

(b) Control engineers often wish to tune a regulator by penalizing the rate of change

of the input rather than the absolute size of the input. Consider the additional

positive de®nite penalty matrix S and the modi®ed objective function

V�x�0�;u� � 1

2

N�1X
k�0

�
x�k�0Qx�k��u�k�0Ru�k���u�k�0S�u�k��

� �1=2�x�N�0Pfx�N�
in which �u�k� � u�k� � u�k � 1�. Show that you can augment the state to

include u�k� 1� via

xe�k� � " x�k�
u�k� 1�

#
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and reduce this new problem to the standard LQR with the cross term. What are

Ae , Be , Qe , Re , and Me for the augmented problem (Rao and Rawlings, 1999)?

Exercise 1.26: Existence, uniqueness and stability with the cross term

Consider the linear quadratic problem with system

x� � Ax � Bu (1.58)

and in®nite horizon cost function

V�x�0�;u� � �1=2�
1X
k�0

x�k�0Qx�k��u�k�0Ru�k�

The existence, uniqueness and stability conditions for this problem are: �A; B� stabi-
lizable, Q � 0, �A;Q� detectable, and R > 0. Consider the modi®ed objective function

with the cross term

V � �1=2�
1X
k�0

x�k�0Qx�k��u�k�0Ru�k�� 2x�k�0Mu�k� (1.59)

(a) Consider reparameterizing the input as

v�k� � u�k�� Tx�k� (1.60)

Choose T such that the cost function in x and v does not have a cross term,

and express the existence, uniqueness and stability conditions for the trans-

formed system. Goodwin and Sin (1984, p.251) discuss this procedure in the

state estimation problem with nonzero covariance between state and output

measurement noises.

(b) Translate and simplify these to obtain the existence, uniqueness and stability

conditions for the original system with cross term.

Exercise 1.27: Forecasting and variance increase or decrease

Given positive de®nite initial state variance P�0� and process disturbance variance Q,
the variance after forecasting one sample time was shown to be

P��1� � AP�0�A0 �Q

(a) If A is stable, is it true that AP�0�A0 < P�0�? If so, prove it. If not, provide a

counterexample.

(b) If A is unstable, is it true that AP�0�A0 > P�0�? If so, prove it. If not, provide a

counterexample.

(c) If themagnitudes of all the eigenvalues ofA are unstable, is it true thatAP�0�A0 >
P�0�? If so, prove it. If not, provide a counterexample.
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Exercise 1.28: Convergence of MHE with zero prior weighting

Show that the simplest form of MHE de®ned in (1.32) and (1.33) is also a convergent

estimator for an observable system. What restrictions on the horizon length N do you

require for this result to hold?

Hint: you can solve the MHE optimization problem by inspection when there is no

prior weighting of the data.

Exercise 1.29: Symmetry in regulation and estimation

In this exercise we display the symmetry of the backward DP recursion for regulation,

and the forward DP recursion for estimation. In the regulation problem we solve at

stage k

min
x;u

`�z;u�� V0
k �x� s.t. x � Az � Bu

In backward DP, x is the state at the current stage and z is the state at the previous

stage. The stage cost and cost to go are given by

`�z;u� � �1=2��z0Qz �u0Ru� V0
k �x� � �1=2�x0��k�x

and the optimal cost is V0
k�1�z� since z is the state at the previous stage.

In estimation we solve at stage k

min
x;w

`�z;w�� V0
k �x� s.t. z � Ax �w

In forward DP, x is the state at the current stage, z is the state at the next stage. The

stage cost and arrival cost are given by

`�z;w� � �1=2�� ��y�k� 1�� Cz��2R�1 �w0Q�1w
�

V0
k �x� � �1=2� jx � Ãx�k�j2P�k��1

and we wish to ®nd V0
k�1�z� in the estimation problem.

(a) In the estimation problem, take the z term outside the optimization and solve

min
x;w

1

2

�
w0Q�1w � �x � Ãx�k��0P�k��1�x � Ãx�k��

�
s.t. z � Ax �w

using the inverse form in Exercise 1.18, and show that the optimal cost is given

by

V0�z� � �1=2��z �AÃx�k��0�P��k� 1���1�z �AÃx�k��
P��k� 1� � AP�k�A0 �Q

Add the z term to this cost using the third part of Example 1.1 and show that

V0
k�1�z� � �1=2��z � Ãx�k� 1��0P�1�k� 1��z � Ãx�k� 1��

P�k� 1� � P��k� 1�� P��k� 1�C0�CP��k� 1�C0 � R��1CP��k� 1�

Ãx�k� 1� � AÃx�k�� L�k� 1��y�k� 1�� CAÃx�k��
L�k� 1� � P��k� 1�C0�CP��k� 1�C0 � R��1

(b) In the regulator problem, take the z term outside the optimization and solve the

remaining two-term problem using the regulator form of Exercise 1.18. Then
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add the z term and show that

V0
k�1�z� � �1=2�z0��k� 1�z

��k� 1� � Q�A0��k�A�A0��k�B�B0��k�B � R��1B0��k�A
u0�z� � K�k� 1�z

x0�z� � �A� BK�k� 1��z

K�k� 1� � ��B0��k�B � R��1B0��k�A

This symmetry can be developed further if we pose an output tracking problem rather

than zero state regulation problem in the regulator.

Exercise 1.30: Symmetry in the Riccati iteration

Show that the covariance before measurement P��k � 1� in estimation satis®es an

identical iteration to the cost to go ��k�1� in regulation under the change of variables

P� -! �, A -! A0, C -! B0.

Exercise 1.31: Detectability and observability canonical forms

Consider the partitioned system"
x1
x2

#�
�
"
A11 0

A21 A22

#"
x1
x2

#

y �
h
C1 0

i"x1
x2

#

with �A11; C1� observable. This form is known as observability canonical form.

(a) Show that the system is not observable by checking the rank of the observability

matrix.

(b) Show that the modes x1 can be uniquely determined from a sequence of mea-

surements, but the modes x2 cannot be uniquely determined from the measure-

ments. The states x2 are termed the unobservable modes.

(c) If A22 is stable the system is termed detectable. Although not all modes can be

observed, the unobservable modes are stable and decay to steady state.

The following lemma gives an equivalent condition for detectability.

Lemma 1.13 (Hautus lemma for detectability). A system is detectable if and only

if

rank

"
�I �A
C

#
� n for all j�j � 1

Prove this lemma using Lemma 1.4 as the condition for observability.

Exercise 1.32: Estimator stability and detectable systems

Show that the least squares estimator given in (1.27) is stable for �A;C� detectable with
Q > 0.
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Exercise 1.33: Estimator stability and semide®nite state noise penalty

We wish to show that the least squares estimator is stable for �A;C� detectable and

Q � 0, �A;Q� stabilizable.

(a) Because Q�1 is not de®ned in this problem, the objective function de®ned in

(1.26) requires modi®cation. Show that the objective function with semide®nite

Q � 0 can be converted into the following form

V�x�0�;w�T�� � 1

2

�
jx�0�� x�0�j2�P��0���1 �

T�1X
k�0

jw�k�j2
eQ�1

�
TX
k�0

��y�k�� Cx�k���2R�1 �
in which

x� � Ax �Gw Qe > 0

Find expressions for Qe and G in terms of the original semide®nite Q. How are

the dimension of Qe and G related to the rank of Q?

(b) What is the probabilistic interpretation of the state estimation problem with

semide®nite Q?

(c) Show that �A;Q� stabilizable implies �A;G� stabilizable in the converted form.

(d) Show that this estimator is stable for �A;C� detectable and �A;G� stabilizable

with Qe ; R > 0.

(e) Discuss what happens to the estimator's stability ifQ is not positive semide®nite

or �A;Q� is not stabilizable.

Exercise 1.34: Calculating mean and variance from data

We are sampling a real-valued scalar random variable x�k� 2 R at time k. Assume

the random variable comes from a distribution with mean x and variance P , and the

samples at different times are statistically independent.

A colleague has suggested the following formulas for estimating the mean and

variance from N samples

ÃxN � 1

N

NX
j�1

x�j� ÃPN � 1

N

NX
j�1

�x�j�� ÃxN�
2

(a) Prove that the estimate of the mean is unbiased for all N, i.e., show that for all

N
E�ÃxN� � x

(b) Prove that the estimate of the variance is not unbiased for any N, i.e., show that

for all N
E�ÃPN� � P

(c) Using the result above, provide an alternative formula for the variance estimate

that is unbiased for allN. How large doesN have to be before these two estimates

of P are within 1%?
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Exercise 1.35: Expected sum of squares

Given that a random variable x has meanm and covariance P , show that the expected

sum of squares is given by the formula (Selby, 1973, p.138)

E�x0Qx� �m0Qm� tr�QP�

The trace of a square matrix A, written tr�A�, is de®ned to be the sum of the diagonal

elements

tr�A� :�
X
i

Aii

Exercise 1.36: Normal distribution

Given a normal distribution with scalar parametersm and �

p��x� �
s

1

2��2
exp

"
�1

2

�
x �m
�

�2#
(1.61)

By direct calculation, show that

(a)

E��� �m
var��� � �2

(b) Show that the mean and the maximum likelihood are equal for the normal dis-

tribution. Draw a sketch of this result. The maximum likelihood estimate, Ãx, is
de®ned as

Ãx :� argmax
x
p��x�

in which arg returns the solution to the optimization problem.

Exercise 1.37: Conditional densities are positive de®nite

We show in Example A.44 that if � and � are jointly normally distributed as"
�
�

#
� N�m;P�

� N
 "

mx

my

#
;

"
Px Pxy
Pyx Py

#!
then the conditional density of � given � is also normal

��j�� � N�mxjy ; Pxjy�

in which the conditional mean is

mxjy �mx � PxyP�1y �y �my�

and the conditional covariance is

Pxjy � Px � PxyP�1y Pyx

Given that the joint density is well de®ned, prove the marginal densities and the condi-

tional densities also are well de®ned, i.e., given P > 0, prove Px > 0, Py > 0, Pxjy > 0,

Pyjx > 0.
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Exercise 1.38: Expectation and covariance under linear transformations

Consider the random variable x 2 Rn with density px and mean and covariance

E�x� �mx cov�x� � Px
Consider the random variable y 2 Rp de®ned by the linear transformation

y � Cx
(a) Show that the mean and covariance for y are given by

E�y� � Cmx cov�y� � CPxC0

Does this result hold for all C? If yes, prove it; if no, provide a counterexample.

(b) Apply this result to solve Exercise A.35.

Exercise 1.39: Normal distributions under linear transformations

Given the normally distributed random variable, � 2 Rn, consider the random variable,

� 2 Rn, obtained by the linear transformation

� � A�
in which A is a nonsingular matrix. Using the result on transforming probability densi-

ties, show that if � � N�m;P�, then � � N�Am;APA0�. This result basically says that

linear transformations of normal random variables are normal.

Exercise 1.40: More on normals and linear transformations

Consider a normally distributed random variable x 2 Rn, x � N�mx ; Px�. You showed

in Exercise 1.39 for C 2 Rn�n invertible, that the random variable y de®ned by the

linear transformation y � Cx is also normal and is distributed as

y � N�Cmx ; CPxC
0�

Does this result hold for all C? If yes, prove it; if no, provide a counterexample.

Exercise 1.41: Signal processing in the good old daysÐrecursive least squares

Imagine we are sent back in time to 1960 and the only computers available have ex-

tremely small memories. Say we have a large amount of data coming from a process

and we want to compute the least squares estimate of model parameters from these

data. Our immediate challenge is that we cannot load all of these data into memory to

make the standard least squares calculation.

Alternatively, go 150 years further back in time and consider the situation from

Gauss's perspective,

It occasionally happens that after we have completed all parts of an ex-

tended calculation on a sequence of observations, we learn of a new ob-

servation that we would like to include. In many cases we will not want to

have to redo the entire elimination but instead to ®nd the modi®cations

due to the new observation in the most reliable values of the unknowns

and in their weights.

C.F. Gauss, 1823

G.W. Stewart Translation, 1995, p. 191.
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Given the linear model

yi � X0i�
in which scalaryi is themeasurement at sample i, X0i is the independentmodel variable

(row vector, 1 � p) at sample i, and � is the parameter vector (p � 1) to be estimated

from these data. Given the weighted least squares objective and n measurements, we

wish to compute the usual estimate

Ã� � �X0X��1X0y (1.62)

in which

y �

26664
y1
.
.
.

yn

37775 X �

26664
X01
.
.
.

X0n

37775
We do not wish to store the large matrices X�n � p� and y�n � 1� required for this

calculation. Because we are planning to process the data one at a time, we ®rst modify

our usual least squares problem to deal with small n. For example, we wish to estimate

the parameters when n < p and the inverse in (1.62) does not exist. In such cases, we

may choose to regularize the problem by modifying the objective function as follows

���� � �� � ��0P�10 �� � ���
nX
i�1

�yi �X0i��2

in which � and P0 are chosen by the user. In Bayesian estimation, we call � and P0 the

prior information, and often assume that the prior density of � (withoutmeasurements)

is normal

� � N��; P0�
The solution to this modi®ed least squares estimation problem isb� � � � �X0X � P�10 ��1X0�y �X�� (1.63)

Devise a means to recursively estimate � so that:

1. We never store more than one measurement at a time in memory.

2. After processing all the measurements, we obtain the same least squares esti-

mate given in (1.63).

Exercise 1.42: Least squares parameter estimation and Bayesian estimation

Consider a model linear in the parameters

y � X� � e (1.64)

in which y 2 Rp is a vector of measurements, � 2 Rm is a vector of parameters,

X 2 Rp�m is a matrix of known constants, and e 2 Rp is a random variable modeling

the measurement error. The standard parameter estimation problem is to ®nd the best

estimate of � given the measurements y corrupted with measurement error e, which
we assume is distributed as

e � N�0; R�

(a) Consider the case in which the errors in the measurements are independently

and identically distributed with variance �2, R � �2I. For this case, the classic
least squares problem and solution are

min
�

��y �X���2 Ã� � �X0X��1 X0y
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Consider themeasurements to be sampled from (1.64) with true parameter value

�0. Show that using the least squares formula, the parameter estimate is dis-

tributed as
Ã� � N��0; PÃ�� PÃ� � �2

�
X0X

��1
(b) Now consider again the model of (1.64) and a Bayesian estimation problem. As-

sume a prior distribution for the random variable �

� � N��; P�
Compute the conditional density of � given measurement y , show that this

density is normal, and ®nd its mean and covariance

p�jy��jy� � n��;m;P�
Show that Bayesian estimation and least squares estimation give the same result

in the limit of an in®nite variance prior. In other words, if the covariance of the

prior is large compared to the covariance of the measurement error, show that

m � �X0X��1X0y P � PÃ�
(c) What (weighted) least squares minimization problem is solved for the general

measurement error covariance

e � N�0; R�
Derive the least squares estimate formula for this case.

(d) Again consider the measurements to be sampled from (1.64) with true param-

eter value �0. Show that the weighted least squares formula gives parameter

estimates that are distributed as

Ã� � N��0; PÃ��
and ®nd PÃ� for this case.

(e) Show again that Bayesian estimation and least squares estimation give the same

result in the limit of an in®nite variance prior.

Exercise 1.43: Least squares and minimum variance estimation

Consider again the model linear in the parameters and the least squares estimator from

Exercise 1.42

y � X� � e e � N�0; R�
Ã� �

�
X0R�1X

��1
X0R�1y

Show that the covariance of the least squares estimator is the smallest covariance of

all linear unbiased estimators.

Exercise 1.44: Two stages are not better than one

We often can decompose an estimation problem into stages. Consider the following

case in which we wish to estimate x from measurements of z, but we have the model

between x and an intermediate variable, y , and the model between y and z

y � Ax � e1 cov�e1� � Q1

z � By � e2 cov�e2� � Q2
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(a) Write down the optimal least squares problem to solve for Ãy given the z mea-

surements and the secondmodel. Given Ãy , write down the optimal least squares

problem for Ãx in terms of Ãy . Combine these two results together and write the

resulting estimate of Ãx givenmeasurements of z. Call this the two-stage estimate

of x.

(b) Combine the two models together into a single model and show that the rela-

tionship between z and x is

z � BAx � e3 cov�e3� � Q3

Express Q3 in terms of Q1;Q2 and the models A;B. What is the optimal least

squares estimate of Ãx given measurements of z and the one-stage model? Call

this the one-stage estimate of x.

(c) Are the one-stage and two-stage estimates of x the same? If yes, prove it. If

no, provide a counterexample. Do you have to make any assumptions about the

models A;B?

Exercise 1.45: Time-varying Kalman ®lter

Derive formulas for the conditional densities of x�k�jy�k � 1� and x�k�jy�k� for the
time-varying linear system

x�k� 1� � A�k�x�k��G�k�w�k�
y�k� � C�k�x�k�� v�k�

in which the initial state, state noise and measurement noise are independently dis-

tributed as

x�0� � N�x0;Q0� w�k� � N�0;Q� v�k� � N�0; R�

Exercise 1.46: More on conditional densities

In deriving the discrete time Kalman ®lter, we have pxjy�x�k�jy�k�� and we wish to

calculate recursively pxjy�x�k� 1�jy�k� 1�� after we collect the output measurement

at time k � 1. It is straightforward to calculate px;yjy�x�k � 1�;y�k � 1�jy�k�� from
our established results on normal densities and knowledge of pxjy�x�k�jy�k��, but
we still need to establish a formula for pushing the y�k � 1� to the other side of the

conditional density bar. Consider the following statement as a possible lemma to aid

in this operation.

pajb;c�ajb; c� �
pa;bjc�a; bjc�
pbjc�bjc�

If this statement is true, prove it. If it is false, give a counterexample.

Exercise 1.47: Other useful conditional densities

Using the de®nitions of marginal and conditional density, establish the following useful

conditional density relations

1. pAjB�ajb� �
R
pAjB;C�ajb; c�pCjB�cjb�dc

2. pAjB;C�ajb; c� � pCjA;B�cja;b�
pAjB�ajb�
pCjB�cjb�
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Exercise 1.48: Optimal ®ltering and deterministic least squares

Given the data sequence
�
y�0�; : : : ; y�k�

�
and the system model

x� � Ax �w
y � Cx � v

(a) Write down a least squares problem whose solution would provide a good state

estimate for x�k� in this situation. What probabilistic interpretation can you

assign to the estimate calculated from this least squares problem?

(b) Now consider the nonlinear model

x� � f�x��w
y � g�x�� v

What is the corresponding nonlinear least squares problem for estimating x�k�
in this situation? What probabilistic interpretation, if any, can you assign to this

estimate in the nonlinear model context?

(c) What is the motivation for changing from these least squares estimators to the

moving horizon estimators we discussed in the chapter?

Exercise 1.49: A nonlinear transformation and conditional density

Consider the following relationship between the random variable y , and x and v

y � f�x�� v
The author of a famous textbook wants us to believe that

pyjx�yjx� � pv�y � f�x��
Derive this result and state what additional assumptions on the random variables x
and v are required for this result to be correct.

Exercise 1.50: Some smoothing

One of the problems with asking you to derive the Kalman ®lter is that the derivation

is in so many textbooks that it is dif®cult to tell if you are thinking independently.

So here's a variation on the theme that should help you evaluate your level of under-

standing of these ideas. Let's calculate a smoothed rather than ®ltered estimate and

covariance. Here's the problem.

We have the usual setup with a prior on x�0�

x�0� � N�x�0�;Q0�

and we receive data from the following system

x�k� 1� � Ax�k��w�k�
y�k� � Cx�k�� v�k�

in which the random variables w�k� and v�k� are independent, identically distributed
normals, w�k� � N�0;Q�; v�k� � N�0; R�.

(a) Calculate the standard density for the ®ltering problem, px�0�jy�0��x�0�jy�0��.
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(b) Now calculate the density for the smoothing problem

px�0�jy�0�;y�1��x�0�jy�0�;y�1��
that is, not the usual px�1�jy�0�;y�1��x�1�jy�0�;y�1��.

Exercise 1.51: Alive on arrival

The following two optimization problems are helpful in understanding the arrival cost

decomposition in state estimation.

(a) Let V�x;y; z� be a positive, strictly convex function consisting of the sum of

two functions, one of which depends on both x and y , and the other of which

depends on y and z

V�x;y; z� � g�x;y�� h�y; z� V : Rm �Rn �Rp ! R�0

Consider the optimization problem

P1 : min
x;y;z

V�x;y; z�

The arrival cost decomposes this three-variable optimization problem into two,

smaller dimensional optimization problems. De®ne the ªarrival costº ge for this

problem as the solution to the following single-variable optimization problem

ge�y� �min
x
g�x;y�

and de®ne optimization problem P2 as follows

P2 : min
y;z

ge�y�� h�y; z�
Let �x0; y0; z0� denote the solution to P1 and �x0; y0; z0� denote the solution to

P2, in which

x0 � argmin
x
g�x;y0�

Prove that the two solutions are equal

�x0; y0; z0� � �x0; y0; z0�

(b) Repeat the previous part for the following optimization problems

V�x;y; z� � g�x�� h�y; z�
Here the y variables do not appear in g but restrict the x variables through a

linear constraint. The two optimization problems are

P1 : min
x;y;z

V�x;y; z� subject to Ex � y

P2 : min
y;z

ge�y�� h�y; z�
in which

ge�y� �min
x
g�x� subject to Ex � y
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Exercise 1.52: On-time arrival

Consider the deterministic, full information state estimation optimization problem

min
x�0�;w;v

1

2

�
jx�0�� x�0�j2�P��0���1 �

T�1X
i�0

jw�i�j2Q�1 � jv�i�j2R�1
�

(1.65)

subject to

x� � Ax �w
y � Cx � v (1.66)

in which the sequence of measurements y�T� are known values. Notice we assume the

noise-shaping matrix, G, is an identity matrix here. See Exercise 1.53 for the general

case. Using the result of the ®rst part of Exercise 1.51, show that this problem is

equivalent to the following problem

min
x�T�N�;w;v

V�T�N�x�T �N���
1

2

T�1X
i�T�N

jw�i�j2Q�1 � jv�i�j2R�1

subject to (1.66). The arrival cost is de®ned as

V�N �a� :� min
x�0�;w;v

1

2

�
jx�0�� x�0�j2�P��0���1 �

N�1X
i�0

jw�i�j2Q�1 � jv�i�j2R�1
�

subject to (1.66) and x�N� � a. Notice that any value of N, 0 � N � T , can be used to

split the cost function using the arrival cost.

Exercise 1.53: Arrival cost with noise-shaping matrix G

Consider the deterministic, full information state estimation optimization problem

min
x�0�;w;v

1

2

�
jx�0�� x�0�j2�P��0���1 �

T�1X
i�0

jw�i�j2Q�1 � jv�i�j2R�1
�

subject to

x� � Ax �Gw
y � Cx � v (1.67)

in which the sequence of measurements y are known values. Using the result of the

second part of Exercise 1.51, show that this problem also is equivalent to the following

problem

min
x�T�N�;w;v

V�T�N�x�T �N���
1

2

� T�1X
i�T�N

jw�i�j2Q�1 � jv�i�j2R�1
�

subject to (1.67). The arrival cost is de®ned for all k � 0 and a 2 Rn by

V�k �a� :� min
x�0�;w;v

1

2

�
jx�0�� x�0�j2�P��0���1 �

k�1X
i�0

jw�i�j2Q�1 � jv�i�j2R�1
�

subject to x�k� � a and the model (1.67). Notice that any value of N, 0 � N � T , can
be used to split the cost function using the arrival cost.



82 Getting Started with Model Predictive Control

Exercise 1.54: Where is the steady state?

Consider the two-input, two-output system

A �

26664
0:5 0 0 0

0 0:6 0 0

0 0 0:5 0

0 0 0 0:6

37775 B �

26664
0:5 0

0 0:4
0:25 0

0 0:6

37775 C �
"

1 1 0 0

0 0 1 1

#

(a) The output setpoint is ysp �
h
1 �1

i0
and the input setpoint is usp �

h
0 0

i0
.

Calculate the target triple �xs ; us ; ys�. Is the output setpoint feasible, i.e., does
ys � ysp?

(b) Assume only input oneu1 is available for control. Is the output setpoint feasible?

What is the target in this case using Qs � I?

(c) Assume both inputs are available for control but only the ®rst output has a

setpoint, y1t � 1. What is the solution to the target problem for Rs � I?

Exercise 1.55: Detectability of integrating disturbance models

(a) Prove Lemma 1.8; the augmented system is detectable if and only if the system

�A;C� is detectable and

rank

"
I �A �Bd
C Cd

#
� n�nd

(b) Prove Corollary 1.9; the augmented system is detectable only if nd � p.

Exercise 1.56: Unconstrained tracking problem

(a) For an unconstrained system, show that the following condition is suf®cient for

feasibility of the target problem for any rsp.

rank

"
I �A �B
HC 0

#
� n�nc (1.68)

(b) Show that (1.68) implies that the number of controlled variables without offset

is less than or equal to the number of manipulated variables and the number of

measurements, nc �m and nc � p.

(c) Show that (1.68) implies the rows of H are independent.

(d) Does (1.68) imply that the rows of C are independent? If so, prove it; if not,

provide a counterexample.

(e) By choosingH, how can one satisfy (1.68) if one has installed redundant sensors

so several rows of C are identical?

Exercise 1.57: Unconstrained tracking problem for stabilizable systems

If we restrict attention to stabilizable systems, the suf®cient condition of Exercise 1.56

becomes a necessary and suf®cient condition. Prove the following lemma.
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Lemma 1.14 (Stabilizable systems and feasible targets). Consider an unconstrained,

stabilizable system �A; B�. The target is feasible for any rsp if and only if

rank

"
I �A �B
HC 0

#
� n�nc

Exercise 1.58: Existence and uniqueness of the unconstrained target

Assume a system having p controlled variables z � Hx, with setpoints rsp, and m
manipulated variables u, with setpoints usp. Consider the steady-state target problem

min
x;u
�1=2��u�usp�

0R�u�usp� R > 0

subject to "
I �A �B
H 0

#"
x
u

#
�
"
0

rsp

#
Show that the steady-state solution �x;u� exists for any �rsp; usp� and is unique if

rank

"
I �A �B
H 0

#
� n� p rank

"
I �A
H

#
� n

Exercise 1.59: Choose a sample time

Consider the unstable continuous time system

dx

dt
� Ax � Bu y � Cx

in which

A �

26664
�0:281 0:935 0:035 0:008
0:047 �0:116 0:053 0:383
0:679 0:519 0:030 0:067
0:679 0:831 0:671 �0:083

37775 B �

26664
0:687
0:589
0:930
0:846

37775 C � I

Consider regulator tuning parameters and constraints

Q � diag�1;2;1;2� R � 1 N � 10 jxj �

26664
1

2

1

3

37775
(a) Compute the eigenvalues of A. Choose a sample time of � � 0:04 and simulate

the MPC regulator response given x�0� �
h
�0:9 �1:8 0:7 2

i0
until t � 20.

Use an ODE solver to simulate the continuous time plant response. Plot all states

and the input versus time.

Now add an input disturbance to the regulator so the control applied to the plant

is ud instead of u in which

ud�k� � �1� 0:1w1�u�k�� 0:1w2

and w1 and w2 are zero-mean, normally distributed random variables with unit

variance. Simulate the regulator's performance given this disturbance. Plot all

states and ud�k� versus time.
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u

d

ysp y
gc g

�

Figure 1.14: Feedback control system with output disturbance d,

and setpoint ysp.

(b) Repeat the simulations with and without disturbance for � � 0:4 and � � 2.

(c) Compare the simulations for the different sample times. What happens if the

sample time is too large? Choose an appropriate sample time for this system

and justify your choice.

Exercise 1.60: Disturbance models and offset

Consider the following two-input, three-output plant discussed in Example 1.11

x� � Ax � Bu� Bpp
y � Cx

in which

A �
2640:2681 �0:00338 �0:00728
9:703 0:3279 �25:44
0 0 1

375 C �
2641 0 0

0 1 0

0 0 1

375
B �

264�0:00537 0:1655
1:297 97:91
0 �6:637

375 Bp �
264�0:117569:74

6:637

375
The input disturbance p results from a reactor inlet ¯owrate disturbance.

(a) Since there are two inputs, choose two outputs in which to remove steady-state

offset. Build an output disturbance model with two integrators. Is your aug-

mented model detectable?

(b) Implement your controller using p � 0:01 as a step disturbance at k � 0. Do you

remove offset in your chosen outputs? Do you remove offset in any outputs?

(c) Can you ®nd any two-integrator disturbance model that removes offset in two

outputs? If so, which disturbance model do you use? If not, why not?

Exercise 1.61: MPC, PID, and time delay

Consider the following ®rst-order system with time delay shown in Figure 1.14

g�s� � k

�s � 1
e��s ; k � 1; � � 1; � � 5

Consider a unit step change in setpoint ysp, at t � 0.
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(a) Choose a reasonable sample time, �, and disturbance model, and simulate an

offset-free discrete time MPC controller for this setpoint change. List all of your

chosen parameters.

(b) Choose PID tuning parameters to achieve ªgood performanceº for this system.

List your PID tuning parameters. Compare the performances of the two con-

trollers.

Exercise 1.62: CSTR heat-transfer coef®cient

Your mission is to design the controller for the nonlinear CSTR model given in Ex-

ample 1.11. We wish to use a linear controller and estimator with three integrating

disturbances to remove offset in two controlled variables: temperature and level ; use

the nonlinear CSTR model as the plant.

(a) You are particularly concerned about disturbances to the heat-transfer rate (pa-

rameterU ) for this reactor. If changes toU are the primary disturbance, what dis-

turbancemodel do you recommend andwhat covariances do you recommend for

the three disturbances so that the disturbance state accounting for heat transfer

is used primarily to explain the output error in the state estimator? First do a

simulation with no measurement noise to test your estimator design. In the sim-

ulation let the reactor's heat-transfer coef®cient decrease (and increase) by 20%

at 10 minutes to test your control system design. Comment on the performance

of the control system.

(b) Now let's add some measurement noise to all three sensors. So we all work on

the same problem, choose the variance of the measurement error Rv to be

Rv � 10�3 diag �c2s ; T
2
s ; h

2
s �

in which �cs ; Ts ; hs� are the nominal steady states of the three measurements.

Is the performance from the previous part assuming no measurement noise ac-

ceptable? How do you adjust your estimator from the previous part to obtain

good performance? Rerun the simulation with measurement noise and your ad-

justed state estimator. Comment on the change in the performance of your new

design that accounts for the measurement noise.

(c) Recall that the offset lemma 1.10 is an either-or proposition, i.e., either the con-

troller removes steady offset in the controlled variables or the system is closed-

loop unstable. From closed-loop simulation, approximate the range of plant

U values for which the controller is stabilizing (with zero measurement noise).

From a stabilization perspective, which disturbance is worse, an increase or de-

crease in the plant's heat-transfer coef®cient?

Exercise 1.63: System identi®cation of the nonlinear CSTR

In many practical applications, it may not be convenient to express system dynamics

from ®rst principles. Hence, identifying a suitable model from data is a critical step

in the design of an MPC controller. Your ®nal mission is to obtain a 2-input, 3-output

process model for the nonlinear CSTR given in Example 1.11 using the System Identi-

®cation Toolbox in MATLAB. Relevant functions are provided.

(a) Begin ®rst by creating a dataset for identi®cation. Generate a pseudo-random,

binary signal (PRBS) for the inputs using idinput. Ensure you have generated
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uncorrelated signals for each input. Think about the amplitude of the PRBS to

use when collecting data from a nonlinear process keeping inmind that large per-

turbations may lead to undesirable phenomena such as reactor ignition. Inject

these generated input sequences into the nonlinear plant of Example 1.11 and

simulate the system by solving the nonlinear ODEs. Add measurement noise

to the simulation so that you have a realistic dataset for the ID and plot the

input-output data.

(b) Use the data to identify a third-order linear state space model by calling iddata

and ssest. Compare the step tests of your identi®ed model with those from

the linear model used in Example 1.11. Which is more accurate compared to the

true plant simulation?

(c) Using the code for Example 1.11 as a starting point, replace the linear model in

the MPC controller with your identi®ed model and recalculate Figures 1.10 and

1.11 from the example. Is your control system robust enough to obtain good

closed-loop control of the nonlinear plant using your linear model identi®ed

from data in the MPC controller? Do you maintain zero offset in the controlled

variables?
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2

Model Predictive ControlÐRegulation

2.1 Introduction

In Chapter 1 we investigated a special, but useful, form of model pre-

dictive control (MPC); an important feature of this form of MPC is that, if

the terminal cost is chosen to be the value function of in®nite horizon

unconstrained optimal control problem, there exists a set of initial

states for which MPC is actually optimal for the in®nite horizon con-

strained optimal control problem and therefore inherits its associated

advantages. Just as there are manymethods other than in®nite horizon

linear quadratic control for stabilizing linear systems, there are alterna-

tive forms of MPC that can stabilize linear and even nonlinear systems.

We explore these alternatives in the remainder of this chapter. But ®rst

we place MPC in a more general setting to facilitate comparison with

other control methods.

MPC is, as we have seen earlier, a form of control in which the control

action is obtained by solving online, at each sampling instant, a ®nite

horizon optimal control problem in which the initial state is the current

state of the plant. Optimization yields a ®nite control sequence, and

the ®rst control action in this sequence is applied to the plant. MPC

differs, therefore, from conventional control in which the control law

is precomputed of¯ine. But this is not an essential difference; MPC

implicitly implements a control law that can, in principle, be computed

of¯ine as we shall soon see. Speci®cally, if the current state of the

system being controlled is x, MPC obtains, by solving an open-loop

optimal control problem for this initial state, a speci®c control action

u to apply to the plant.

Dynamic programming (DP) may be used to solve a feedback version

of the same optimal control problem, however, yielding a receding hori-

zon control law ����. The important fact is that if x is the current state,

89
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the optimal control u obtained by MPC (by solving an open-loop opti-

mal control problem) satis®es u � ��x�; MPC computes the value ��x�

of the optimal receding horizon control law for the current state x,

while DP yields the control law ���� that can be used for any state. DP

would appear to be preferable since it provides a control law that can

be implemented simply (as a look-up table). However, obtaining a DP

solution is dif®cult, if not impossible, for most optimal control prob-

lems if the state dimension is reasonably high Ð unless the system is

linear, the cost quadratic and there are no control or state constraints.

The great advantage of MPC is that open-loop optimal control prob-

lems often can be solved rapidly enough, using standard mathematical

programming algorithms, to permit the use of MPC even though the

system being controlled is nonlinear, and hard constraints on states

and controls must be satis®ed. Thus MPC permits the application of

a DP solution, even though explicit determination of the optimal con-

trol law is intractable. MPC is an effective implementation of the DP

solution.

In this chapter we study MPC for the case when the state is known.

This case is particularly important, even though it rarely arises in prac-

tice, because important properties, such as stability and performance,

may be relatively easily established. The relative simplicity of this case

arises from the fact that if the state is known and if there are no dis-

turbances or model error, the problem is deterministic, i.e., there is no

uncertainty making feedback unnecessary in principle. As we pointed

out previously, for deterministic systems the MPC action for a given

state is identical to the receding horizon control law, determined using

DP, and evaluated at the given state. When the state is not known, it has

to be estimated and state estimation error, together with model error

and disturbances, makes the system uncertain in that future trajecto-

ries cannot be precisely predicted. The simple connection betweenMPC

and the DP solution is lost because there does not exist an open-loop

optimal control problem whose solution yields a control action that is

the same as that obtained by the DP solution. A practical consequence

is that special techniques are required to ensure robustness against

these various forms of uncertainty. So the results of this chapter hold

when there is no uncertainty. We prove, in particular, that the optimal

control problem that de®nes the model predictive control can always

be solved if the initial optimal control problem can be solved (recursive

feasibility), and that the optimal cost can always be reduced allowing

us to prove asymptotic or exponential stability of the target state. We
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refer to stability in the absence of uncertainty as nominal or inherent

stability.

When uncertainty is present, however, neither of these two asser-

tions is necessarily true; uncertainty may cause the state to wander

outside the region where the optimal control problem can be solved

and may lead to instability. Procedures for overcoming the problems

arising from uncertainty are presented in Chapters 3 and 5. In most

of the control algorithms presented in this chapter, the decrease in the

optimal cost, on which the proof of stability is founded, is based on

the assumption that the next state is exactly as predicted and that the

global solution to the optimal control problem can be computed. In the

suboptimal control algorithm presented in Chapter 6, where global op-

timality is not required, the decrease in the optimal cost is still based on

the assumption that the current state is exactly the state as predicted

at the previous time.

2.2 Model Predictive Control

As discussed brie¯y in Chapter 1, most nonlinear system descriptions

derived from physical arguments are continuous time models in the

form of nonlinear differential equations

dx

dt
� f�x;u�

For this class of systems, the control law with the best closed-loop

properties is the solution to the following in®nite horizon, constrained

optimal control problem. The cost is de®ned to be

V1�x;u���� �
Z1
0
`�x�t�;u�t��dt

in which x�t� and u�t� satisfy Çx � f�x;u�. The optimal control prob-

lem P1�x� is de®ned by

min
u���

V1�x;u����

subject to

Çx � f�x;u� x�0� � x0
�x�t�;u�t�� 2 Z for all t 2 R�0

If `��� is positive de®nite, the goal of the regulator is to steer the state

of the system to the origin.
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We denote the solution to this problem (when it exists) by u0
1��;x�

and the resultant optimal value function by V0
1�x�. The closed-loop

system under this optimal control law evolves as

dx�t�

dt
� f�x�t�;u0

1�t;x��

If f���, `��� and Vf ��� satisfy certain differentiability and growth as-

sumptions, and if the class of admissible controls is suf®ciently rich,

then a solution to P1�x� exists for all x and satis®es

ÇV0
1�x� � �`�x;u0

1�0;x��

Using this and upper and lower bounds on V0
1��� enables global asymp-

totic stability of the origin to be established.

Although the control law u0
1�0; �� provides excellent closed-loop

properties, there are several impediments to its use. A feedback, rather

than an open-loop, solution of the optimal control problem is desirable

because of uncertainty; solution of the optimal control problem P1�x�

yields the optimal control sequence u0
1�0;x� for the state x but does

not provide a control law. Dynamic programming may, in principle, be

employed, but is generally impractical if the state dimension and the

horizon are not small.

If we turn instead to an MPC approach in which we generate on-

line only the value of optimal control sequence u0
1��;x� for the cur-

rently measured value of x, rather than for all x, the problem remains

formidable for the following reasons. First, we are optimizing a time

function, u���, and functions are in®nite dimensional. Secondly, the

time interval of interest, �0;1�, is a semi-in®nite interval, which poses

other numerical challenges. Finally, the cost function V�x;u���� is usu-
ally not a convex function of u���, which presents signi®cant optimiza-

tion dif®culties, especially in an online setting. Even proving existence

of the optimal control in this general setting is a challenge. However,

see Pannocchia, Rawlings, Mayne, and Mancuso (2015) in which it is

shown how an in®nite horizon optimal control may be solved online if

the system is linear, the cost quadratic and the control but not the state

is constrained.

Our task in this chapter may therefore be viewed as restricting the

system and control parameterization tomake problemP1�x�more eas-

ily computable. We show how to pose various problems for which we

can establish existence of the optimal solution and asymptotic closed-

loop stability of the resulting controller. For these problems, we almost
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always replace the continuous time differential equation with a discrete

time difference equation. We often replace the semi-in®nite time inter-

val with a ®nite time interval and append a terminal region so that we

can approximate the cost to go for the semi-in®nite interval once the

system enters the terminal region. Although the solution of problem

P1�x� in its full generality is out of reach with today's computational

methods, its value lies in distinguishing what is desirable in the control

problem formulation and what is achievable with available computing

technology.

We develop here MPC for the control of constrained nonlinear time-

invariant systems. The nonlinear system is described by the nonlinear

difference equation

x� � f�x;u� f : X� U! X (2.1)

in which x 2 X � Rn is the current state, u 2 U � Rm, is the cur-

rent control, (sets X and U are assumed closed), and x� the successor

state; x� � f�x;u� is the discrete time analog of the continuous time

differential equation Çx � f�x;u�. The function f��� is assumed to be

continuous and to satisfy f�0;0� � 0; �0;0� is the desired equilibrium

pair. The subsequent analysis is easily extended to the case when the

desired equilibrium pair is �xs ; us� satisfying xs � f�xs ; us�.
We introduce here some notation that we employ in the sequel. The

set I denotes the set of integers, I�0 :� f0;1;2; : : :g and, for any two

integersm and n satisfyingm � n, Im:n :� fm;m�1; : : : ; ng. We refer

to the pair �x; i� as an event; an event �x; i� denotes that the state at

time i is x. We use u to denote the possibly in®nite control sequence

�u�k��k2I�0 � �u�0�;u�1�;u�2�; : : :�. In the context of MPC, u fre-

quently denotes the ®nite sequence uI0:N�1 � �u�0�;u�1�; : : : ; u�N � 1��

in whichN is the control horizon. For any integer j 2 I�0, we sometimes

employuj to denote the ®nite sequence
�
u�0�;u�1�; : : : ; u�j � 1�

�
. Sim-

ilarly x denotes the possibly in®nite state sequence �x�0�; x�1�; x�2�; : : :�

and xj the ®nite sequence
�
x�0�; x�1�; : : : ; x�j�

�
. When no confusion

can arise we often employ, for simplicity in notation, u in place of uN
and x in place of xN . Also for simplicity in notation, u, when used

in algebraic expressions, denotes the column vector �u�0�0; u�1�0; : : : ;

u�N � 1�0�0; similarly x in algebraic expressions denotes the column

vector �x�0�0; x�1�0; : : : ; x�N�0�0.

The solution of (2.1) at time k, if the initial state at time zero is x

and the control sequence is u, is denoted by ��k;x;u�; the solution at

time k depends only on u�0�;u�1�; : : : ; u�k�1�. Similarly, the solution
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of the system (2.1) at time k, if the initial state at time i is x and the

control sequence is u, is denoted by ��k; �x; i�;u�. Because the system

is time invariant, the solution does not depend on the initial time; if

the initial state is x at time i, the solution at time j � i is ��j� i;x;u�.
Thus the solution at time k if the initial event is �x; i� is identical to

the solution at time k � i if the initial event is �x;0�. For each k, the

function �x;u�, ��k;x;u� is continuous as we show next.

Proposition 2.1 (Continuity of system solution). Suppose the function

f��� is continuous. Then, for each integer k 2 I, the function �x;u� ,

��k;x;u� is continuous.

Proof.

Since ��1;x;u�0�� � f�x;u�0��, the function �x;u�0�� , ��1;x;

u�0�� is continuous. Suppose the function �x;uj�1� , ��j;x;uj�1�

is continuous and consider the function �x;uj�, ��j�1;x;uj�. Since

��j � 1;x;uj� � f���j;x;uj�1�;u�j��

in which f��� and ��j; � � are continuous and since ��j � 1; � � is the
composition of two continuous functions f��� and ��j; � �, it follows
that ��j � 1; � � is continuous. By induction ��k; � � is continuous for
any positive integer k. �

The system (2.1) is subject to hard constraints which may take the

form

�x�k�;u�k�� 2 Z for all k 2 I�0 (2.2)

in which Z � X�U is generally polyhedral, i.e., Z � f�x;u� j Fx�Eu �
eg for some F; E; e. For example, many problems have a rate constraint

ju�k��u�k� 1�j � c on the control. This constraint may equivalently

be expressed as ju�k�� z�k�j � c in which z is an extra state satisfying

z� � u so that z�k� � u�k� 1�. The constraint �x;u� 2 Z implies the

control constraint is possibly state-dependent, i.e., �x;u� 2 Z implies

that

u 2 U�x� :� fu 2 U j �x;u� 2 Zg
It also implies that the state must satisfy the constraint

x 2 fx 2 X j U�x� �;g

If there are no mixed constraints, then Z � X � U so the system con-

straints become x�k� 2 X and u�k� 2 U.
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We assume in this chapter that the state x is known; if the state

x is estimated, uncertainty (state estimation error) is introduced and

robust MPC, discussed in Chapter 3, is required.

The next ingredient of the optimal control problem is the cost func-

tion. Practical considerations normally require that the cost be de®ned

over a ®nite horizon N to ensure the resultant optimal control prob-

lem can be solved suf®ciently rapidly to permit effective control. We

consider initially the regulation problem in which the target state is the

origin. If x is the current state and i the current time, then the optimal

control problem may be posed as minimizing a cost de®ned over the

interval from time i to timeN�i. The optimal control problem PN�x; i�

at event �x; i� is the problem of minimizing the cost

i�N�1X
k�i

`�x�k�;u�k��� Vf �x�N � i��

with respect to the sequences x :� �x�i�; x�i� 1�; : : : ; x�i�N�� and
u :� �u�i�;u�i� 1�; : : : ; u�i�N � 1�� subject to the constraints that x

and u satisfy the difference equation (2.1), the initial condition x�i� �
x, and the state and control constraints (2.2). We assume that `���
is continuous and that `�0;0� � 0. The optimal control and state se-

quences, obtained by solving PN�x; i�, are functions of the initial event

�x; i�

u0�x; i� �
�
u0�i; �x; i��;u0�i� 1; �x; i��; : : : ; u0�i�N � 1; �x; i��

�
x0�x; i� �

�
x0�i; �x; i��; x0�i� 1; �x; i��; : : : ; x0�i�N; �x; i��

�
with x0�i; �x; i�� � x. In MPC, the ®rst control action u0�i; �x; i�� in the

optimal control sequence u0�x; i� is applied to the plant, i.e., u�i� �
u0�i; �x; i��. Because the system x� � f�x;u�, the stage cost `���, and
the terminal cost Vf ��� are all time invariant, however, the solution of

PN�x; i�, for any time i 2 I�0, is identical to the solution of PN�x;0� so

that

u0�x; i� � u0�x;0�

x0�x; i� � x0�x;0�

In particular, u0�i; �x; i�� � u0�0; �x;0��, i.e., the control u0�i; �x; i��

applied to the plant is equal to u0�0; �x;0��, the ®rst element in the

sequence u0�x;0�. Hence we may as well merely consider problem
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PN�x;0� which, since the initial time is irrelevant, we call PN�x�. Sim-

ilarly, for simplicity in notation, we replace u0�x;0� and x0�x;0� by,

respectively, u0�x� and x0�x�.

The optimal control problem PN�x�may then be expressed as min-

imization of
N�1X
k�0

`�x�k�;u�k��� Vf �x�N��

with respect to the decision variables �x;u� subject to the constraints

that the state and control sequences x and u satisfy the difference

equation (2.1), the initial condition x�0� � x, and the state, control

constraints (2.2). Here u denotes the control sequence
�
u�0�;u�1�; : : : ;

u�N � 1�
�
and x the state sequence �x�0�; x�1�; : : : ; x�N��. Retaining

the state sequence in the set of decision variables is discussed in Chap-

ters 6 and 8. For the purpose of analysis, however, it is preferable to

constrain the state sequence x a priori to be a solution of x� � f�x;u�
enabling us to express the problem in the equivalent form of mini-

mizing, with respect to the decision variable u, a cost that is purely

a function of the initial state x and the control sequence u. This for-

mulation is possible since the state sequence x may be expressed, via

the difference equation x� � f�x;u�, as a function of �x;u�. The cost

becomes VN�x;u� de®ned by

VN�x;u� :�
N�1X
k�0

`�x�k�;u�k��� Vf �x�N�� (2.3)

in which x�k� :� ��k;x;u� for all k 2 I0:N . Similarly the constraints

(2.2), together with an additional terminal constraint

x�N� 2 Xf � X
impose an implicit constraint on the control sequence of the form

u 2 UN�x� (2.4)

The control constraint set UN�x� is the set of control sequences u :�
�u�0�;u�1�; : : : ; u�N � 1�� satisfying the state and control constraints.

It is therefore de®ned by

UN�x� :� fu j �x;u� 2 ZNg (2.5)

in which the set ZN � X� UN is de®ned by

ZN :� ��x;u� j ���k;x;u�;u�k�� 2 Z;8k 2 I0:N�1;
��N;x;u� 2 Xf

	
(2.6)
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The optimal control problem PN�x�, is, therefore

PN�x� : V0
N�x� :�min

u
fVN�x;u� j u 2 UN�x�g (2.7)

Problem PN�x� is a parametric optimization problem in which the

decision variable is u, and both the cost and the constraint set depend

on the parameter x. The set ZN is the set of admissible �x;u�, i.e., the

set of �x;u� for which the constraints of PN�x� are satis®ed. Let XN

be the set of states in X for which PN�x� has a solution

XN :� fx 2 X j UN�x� �;g (2.8)

It follows from (2.5) and (2.8) that

XN � fx 2 X j 9u 2 UN such that �x;u� 2 ZNg
which is the orthogonal projection of ZN � X�UN onto X. The domain

of V0
N���, i.e., the set of states in X for which PN�x� has a solution, is

XN .

Not every optimization problem has a solution. For example, the

problem minfx j x 2 �0;1�g does not have a solution; inffx j x 2 �0;
1�g � 0 but x � 0 does not lie in the constraint set �0;1�. By Weier-

strass's theorem, however, an optimization problem does have a so-

lution if the cost is continuous (in the decision variable) and the con-

straint set compact (see Proposition A.7). This is the case for our prob-

lem as shown subsequently in Proposition 2.4. We assume, without

further comment, that the following two standing conditions are satis-

®ed in the sequel.

Assumption 2.2 (Continuity of system and cost). The functions f :

Z ! X, ` : Z ! R�0 and Vf : Xf ! R�0 are continuous, f�0;0� � 0,

`�0;0� � 0 and Vf �0� � 0.

In by far themajority of applications the set of controlsU is bounded.

Nevertheless, it is of theoretical interest to consider the case when U

is not bounded; e.g., when the optimal control problem has no con-

straints on the control. To analyze this case we employ an implicit

control constraint set ÅUc
N�x� de®ned as follows. Choose c � 0 and

de®ne
ÅUc
N�x� :� fu 2 UN�x� j VN�x;u� � cg

We also de®ne the feasible set ÅXc
N for the optimal control problem with

no constraints on the control by

ÅXc
N :� fx 2 X j ÅUc

N�x� �;g
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Assumption 2.3 (Properties of constraint sets). The set Z is closed and

the set Xf � X is compact. Each set contains the origin. If U is bounded

(hence compact), the set U�x� is compact for all x 2 X. If U is un-

bounded, the function u , VN�x;u� is coercive, i.e., VN�x;u� ! 1 as

juj ! 1 for all x 2 X).
It is implicitly assumed that the desired equilibrium pair is �Åx; Åu� �

�0;0� because the ®rst problem we tackle is regulation to the origin.

Proposition 2.4 (Existence of solution to optimal control problem). Sup-

pose Assumptions 2.2 and 2.3 hold. Then

(a) The function VN��� is continuous in ZN .
(b) For each x 2 XN (for each x 2 ÅXc

N , each c 2 R>0), the control

constraint set UN�x� ( ÅUc
N�x�) is compact.

(c) For each x 2 XN (for each ÅXc
N , each c 2 R>0) a solution to PN�x�

exists.

Proof.

(a) That �x;u� , VN�x;u� is continuous follows from continuity of

`��� and Vf ��� in Assumption 2.2, and the continuity of �x;u� ,

��j;x;u� for each j 2 I0:N�1, established in Proposition 2.1.

(b) The setUN�x� is de®ned by a ®nite set of inequalities each of which

has the form ��x;u� � 0 in which ���� is continuous. It follows that
UN�x� is closed. If U is bounded, so isUN�x�, andUN�x� is therefore

compact for all x 2 XN .

If insteadU is unbounded, the set fUc
N :� fu j VN�x;u� � cg for c 2 R>0

is closed for all c and x because VN��� is continuous; ÅUc
N�x� is the

intersection of this set withUN�x�, just shown to be closed. So ÅUc
N�x�

is the intersection of closed sets and is closed. To prove ÅUc
N�x� is

bounded for all c, suppose the contrary: there exists a c such that
ÅUc
N�x� is unbounded. Then there exists a sequence �ui�i2I�0 in ÅUc

N�x�

such that ui ! 1 as i ! 1. Because VN��� is coercive, VN�x;ui� ! 1
as i ! 1, a contradiction. Hence ÅUc

N�x� is closed and bounded and,

hence, compact.

(c) Since VN�x; � � is continuous andUN�x� ( ÅUc
N�x�) is compact, it fol-

lows from Weierstrass's theorem (Proposition A.7) a solution to PN�x�

exists for each x 2 XN ( ÅXc
N ). �

Although the function �x;u�, VN�x;u� is continuous, the function

x , V0
N�x� is not necessarily continuous; we discuss this possibility
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and its implications later. For each x 2 XN , the solution of PN�x� is

u0�x� � argmin
u
fVN�x;u� j u 2 UN�x�g

If u0�x� � �u0�0;x�;u0�1;x�; : : : ; u0�N � 1;x�
�
is unique for each x 2

XN , then u0 : X ! UN is a function; otherwise it is a set-valued func-

tion.1 In MPC, the control applied to the plant is the ®rst element

u0�0;x� of the optimal control sequence. At the next sampling instant,

the procedure is repeated for the successor state. Although MPC com-

putes u0�x� only for speci®c values of the state x, it could, in principle,

be used to compute u0�x� and, hence, u0�0;x� for every x for which

PN�x� is feasible, yielding the MPC control law �N��� de®ned by

�N�x� :� u0�0;x�; x 2 XN

MPC does not require determination of the control law �N���, a task that
is usually intractable when constraints or nonlinearities are present and

the state dimension is large; it is this fact that makes MPC so useful.

If, at a given state x, the solution of PN�x� is not unique, then

�N��� � u0�0; � � is set valued and the model predictive controller se-

lects one element from the set �N�x�.

Example 2.5: Linear quadratic MPC

Suppose the system is described by

x� � f�x;u� :� x �u

with initial state x. The stage cost and terminal cost are

`�x;u� :� �1=2��x2 �u2� Vf �x� :� �1=2�x2

The control constraint is

u 2 ��1;1�
and there are no state or terminal constraints. Suppose the horizon is

N � 2. Under the ®rst approach, the decision variables are u and x,

and the optimal control problem is minimization of

VN�x�0�; x�1�; x�2�;u�0�;u�1�� �
�1=2�

�
x�0�2 � x�1�2 � x�2�2 �u�0�2 �u�1�2

�
1A set-valued function ���� is a function whose value ��x� for each x in its domain

is a set.
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with respect to �x�0�; x�1�; x�2��, and �u�0�;u�1�� subject to the fol-

lowing constraints

x�0� � x x�1� � x�0��u�0� x�2� � x�1��u�1�
u�0� 2 ��1;1� u�1� 2 ��1;1�

The constraint u 2 ��1;1� is equivalent to two inequality constraints,

u � 1 and �u � 1. The ®rst three constraints are equality constraints

enforcing satisfaction of the difference equation.

In the second approach, the decision variable is merely u because

the ®rst three constraints are automatically enforced by requiring x to

be a solution of the difference equation. Hence, the optimal control

problem becomes minimization with respect to u � �u�0�;u�1�� of

VN�x;u� � �1=2�
�
x2 � �x �u�0��2 � �x �u�0��u�1��2�

u�0�2 �u�1�2�
� �3=2�x2 �

h
2x x

i
u� �1=2�u0Hu

in which

H �
"
3 1

1 2

#
subject to the constraint u 2 UN�x� where

UN�x� � fu j ju�k�j � 1 k � 0;1g

Because there are no state or terminal constraints, the set UN�x� �
UN for this example does not depend on the parameter x; often it

does. Both optimal control problems are quadratic programs.2 The

solution for x � 10 is u0�1; 10� � u0�2; 10� � �1 so the optimal state

trajectory is x0�0; 10� � 10, x0�1; 10� � 9 and x0�2; 10� � 8. The value

V0
N�10� � 124. By solving PN�x� for every x 2 ��10;10�, the optimal

control law �N��� on this set can be determined, and is shown in Figure

2.1(a). The implicit MPC control law is time invariant since the system

being controlled, the cost, and the constraints are all time invariant.

For our example, the controlled system (the system with MPC) satis®es

the difference equation

x� � x � �N�x� �N�x� � �sat�3x=5�
2A quadratic program is an optimization problem in which the cost is quadratic and

the constraint set is polyhedral, i.e., de®ned by linear inequalities.
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(a) Implicit MPC control law.
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(b) Trajectories of controlled system.

Figure 2.1: Example of MPC.

and the state and control trajectories for an initial state of x � 10 are

shown in Figure 2.1(b). It turns out that the origin is exponentially sta-

ble for this simple case; often, however, the terminal cost and terminal

constraint set have to be carefully chosen to ensure stability. �

Example 2.6: Closer inspection of linear quadratic MPC

We revisit the MPC problem discussed in Example 2.5. The objective

function is

VN�x;u� � �1=2�u0Hu� c�x�0u� d�x�
where c�x�0 � �2 1�x and d�x� � �3=2�x2. The objective function may

be written in the form

VN�x;u� � �1=2��u� a�x��0H�u� a�x��� e�x�

Expanding the second form shows the two forms are equal if

a�x� � �H�1c�x� � K1x K1 � ��1=5�
"
3

1

#

and

e�x�� �1=2�a�x�0Ha�x� � d�x�
SinceH is positive de®nite, a�x� is the unconstrained minimizer of the

objective function; indeed ruVN�x;a�x�� � 0 since

ruVN�x;u� � Hu� c�x�



102 Model Predictive ControlÐRegulation

�3

�2

�1

0

1

�4 �3 �2 �1 0 1

U2

a�x�

x � 0

x � 3
x � 5=3

x � 4:5

x � 2:25

u1

u0

Figure 2.2: Feasible region U2, elliptical cost contours and ellipse

center a�x�, and constrained minimizers for different

values of x.

The locus of a�x� for x � 0 is shown in Figure 2.2. Clearly the uncon-

strained minimizer a�x� � K1x is equal to the constrained minimizer

u0�x� for all x such that a�x� 2 U2 where U2 is the unit square illus-

trated in Figure 2.2; since a�x� � K1x, a�x� 2 U2 for all x 2 X1 � �0;
xc1� where xc1 � 5=3. For x > xc1, the unconstrained minimizer lies

outside U2 as shown in Figure 2.2 for x � 2:25, x � 3 and x � 5.

For such x, the constrained minimizer u0�x� is a point that lies on the

intersection of a level set of the objective function (which is an ellipse)

and the boundary of U2. For x 2 �xc1; xc2�, u0�x� lies on the left face

of the box U2 and for x � xc2 � 3, u0�x� remains at ��1;�1�, the
bottom left vertex of U2.

When u0�x� lies on the left face ofU2, the gradientruVN�x;u0�x��

of the objective function is normal to the left face of U2, i.e., the level

set of V0
N��� passing through u0�x� is tangential to the left face of U2.

The outward normal to U2 at a point on the left face is �e1 � ��1;0�
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so that at u � u0�x�

ruV�x;u
0�x��� ���e1� � 0

for some � > 0; this is a standard condition of optimality. Since u �
��1 v�0 for some v 2 ��1;1� and since ruV�x;u� � H�u � a�x�� �
Hu� c�x�, the condition of optimality is"

3 1

1 2

#"
�1
v

#
�
"
2

1

#
x �

"
�

0

#
�
"
0

0

#
or

� 3� v � 2x � � � 0

� 1� 2v � x � 0

which, when solved, yields v � �1=2���1=2�x and � � ��5=2���3=2�x.
Hence

u0�x� � b2 �K2x b2 �
"
�1
�1=2�

#
K2 �

"
0

��1=2�

#

for all x 2 X2 � �xc1; xc2� where xc2 � 3 since u0�x� 2 U2 for all x in

this range. For all x 2 X3 � �xc2 ;1�, u0�x� � ��1;�1�0. Summarizing

x 2 �0; �5=3�� =) u0�x� � K1x
x 2 ��5=3�;3� =) u0�x� � K2x � b2
x 2 �3;1� =) u0�x� � b3

in which

K1 �
"
��3=5�
��1=5�

#
K2 �

"
0

��1=2�

#
b2 �

"
�1
�1=2�

#
b3 �

"
�1
�1

#

The optimal control for x � 0 may be obtained by symmetry; u0��x� �
�u0�x� for all x � 0 so that

x 2 �0;��5=3�� =) u0�x� � �K1x
x 2 ���5=3�;�3� =) u0�x� � �K2x � b2
x 2 ��3;�1� =) u0�x� � �b3

It is easily checked that u0��� is continuous and satis®es the constraint

for all x 2 R. The MPC control law �N��� is the ®rst component of u0���
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and, therefore, is de®ned by

�N�x� � 1 x 2 ���5=3�;�1�
�N�x� � ��3=5�x x 2 ���5=3�; �5=3��
�N�x� � �1 x 2 ��5=3�;1�

i.e., �N�x� � �sat�3x=5�which is the saturating control law depicted in

Figure 2.1(a). The control law is piecewise af®ne and the value function

piecewise quadratic. The structure of the solution to constrained linear

quadratic optimal control problems is exploredmore fully in Chapter 7.

�

As we show in Chapter 3, continuity of the value function is desir-

able. Unfortunately, this is not true in general; the major dif®culty is in

establishing that the set-valued function UN��� has certain continuity

properties. Continuity of the value function V0
N��� and of the implicit

control law �N��� may be established for a few important cases, how-

ever, as is shown by the next result, which assumes satisfaction of our

standing assumptions: 2.2 and 2.3 so that the cost function VN��� is
continuous in �x;u�.

Theorem 2.7 (Continuity of value function and control law). Suppose

that Assumptions 2.2 and 2.3 (U bounded) hold.

(a) Suppose that there are no state constraints so that Z � X�U in which

X � Xf � Rn. Then the value function V0
N : XN ! R is continuous and

XN � Rn.

(b) Suppose f��� is linear (x� � Ax � Bu) and that the state-control

constraint set Z is polyhedral.3 Then the value function V0
N : XN ! R is

continuous.

(c) If, in addition, the solution u0�x� of PN�x� is unique at each x 2 XN ,

then the implicit MPC control law �N��� is continuous.

The proof of this theorem is given in Section C.3 of Appendix C.

The following example, due to Meadows, Henson, Eaton, and Rawlings

(1995), shows that there exist nonlinear examples where the value func-

tion and implicit control law are not continuous.

3A set Z is polyhedral if it may be de®ned as set of linear inequalities, i.e., if it may

be expressed in the form Z � fz j Mz �mg.
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Example 2.8: Discontinuous MPC control law

Consider the nonlinear system de®ned by

x�1 � x1 �u
x�2 � x2 �u3

The control horizon is N � 3 and the cost function V3��� is de®ned by

V3�x;u� :�
2X

k�0

`�x�k�;u�k��

and the stage cost `��� is de®ned by

`�x;u� :� jxj2 �u2

The constraint sets are X � R2, U � R, and Xf :� f0g, i.e., there are no
state and control constraints, and the terminal state must satisfy the

constraint x�3� � 0. Hence, although there are three control actions,

u�0�, u�1�, and u�2�, two must be employed to satisfy the terminal

constraint, leaving only one degree of freedom. Choosing u�0� to be

the free decision variable automatically constrains u�1� and u�2� to be

functions of the initial state x and the ®rst control action u�0�. Solving

the equation

x1�3� � x1 �u�0��u�1��u�2� � 0

x2�3� � x2 �u�0�3 �u�1�3 �u�2�3� 0

for u�1� and u�2� yields

u�1� � �x1=2�u�0�=2�
p
b

u�2� � �x1=2�u�0�=2�
p
b

in which

b � 3u�0�3 � 3u�0�2x1 � 3u�0�x2
1 � x3

1 � 4x2
12�u�0�� x1�

Clearly a real solution exists only if b is positive, i.e., if both the numer-

ator and denominator in the expression for b have the same sign. The

optimal control problem P3�x� is de®ned by

V0
3 �x� �min

u
fV3�x;u� j ��3;x;u� � 0g
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Figure 2.3: First element of control constraint set U3�x� (shaded)

and control law �3�x� (line) versus x � �cos���; sin����,
� 2 ���;�� on the unit circle for a nonlinear system with

terminal constraint.

and the implicit MPC control law is �3��� where �3�x� � u0�0;x�, the

®rst element in the minimizing sequence u0�x�. It can be shown, using

analysis presented later in this chapter, that the origin is asymptotically

stable for the controlled system x� � f�x; �N�x��. That this control

law is necessarily discontinuousmay be shown as follows. If the control

is strictly positive, any trajectory originating in the ®rst quadrant (x1;

x2 > 0) moves away from the origin. If the control is strictly negative,

any control originating in the third quadrant (x1; x2 < 0) also moves

away from the origin. But the control cannot be zero at any nonzero

point lying in the domain of attraction. If it were, this point would be a

®xed point for the controlled system, contradicting the fact that it lies

in the domain of attraction.

In fact, both the value function V0
3 ��� and the MPC control law �3���

are discontinuous. Figures 2.3 and 2.4 show how U3�x�, �3�x�, and

V0
3 �x� vary asx � �cos���; sin���� ranges over the unit circle. A further

conclusion that can be drawn from this example is that it is possible
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Figure 2.4: Optimal cost V 0
3 �x� versus x � �cos���; sin����, � 2

���;�� on the unit circle; the discontinuity in V 0
3 is

caused by the discontinuity inU3 as � crosses the dashed

line in Figure 2.3.

for the MPC control law to be discontinuous at points where the value

function is continuous. �

2.3 Dynamic Programming Solution

We examine next the DP solution of the optimal control problem PN�x�,

not because it provides a practical procedure but because of the insight

it provides. DP can rarely be used for constrained and/or nonlinear

control problems unless the state dimension n is small. MPC is best

regarded as a practical means of implementing the DP solution; for a

given state x it provides V0
N�x� and �N�x�, the value, respectively, of

the value function and control law at a point x. DP, on the other hand,

yields the value function V0
N��� and the implicit MPC control law �N���.

The optimal control problem PN�x� is de®ned, as before, by (2.7)

with the cost function VN��� de®ned by (2.3) and the constraints by

(2.4). DP yields an optimal policy �0 �
�
�00���; �01���; : : : ; �0N�1���

�
, i.e.,

a sequence of control laws �i : Xi ! U, i � 0;1; : : : ;N � 1. The domain

Xi of each control law will be de®ned later. The optimal controlled
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system is time varying and satis®es

x� � f�x; �0i �x��; i � 0;1; : : : ;N � 1

in contrast with the system using MPC, which is time invariant and

satis®es

x� � f�x; �N�x��; i � 0;1; : : : ;N � 1

with �N��� � �00���. The optimal control law at time i is �0i ���, but reced-
ing horizon control (RHC) uses the time-invariant control law �N��� �
�0��� obtained by assuming that at each time t, the terminal time or

horizon is t �N so that the horizon t �N recedes as t increases. One

consequence is that the time-invariant control law �N��� is not opti-

mal for the problem of controlling x� � f�x;u� over the ®xed interval

�0; T � in such a way as to minimize VN and satisfy the constraints.

For all j 2 I0:N�1, let Vj�x;u�, Uj�x�, Zj , Pj�x� (and V
0
j �x�) be

de®ned, respectively, by (2.3), (2.5), (2.6), and (2.7), with N replaced by

j. As shown in Section C.1 of Appendix C, DP solves not only PN�x�

for all x 2 XN , the domain of V0
N���, but also Pj�x� for all x 2 Xj , the

domain of V0
j ���, all j 2 I0:N�1. The DP equations are, for all x 2 Xj

V0
j �x� � min

u2U�x�
f`�x;u�� V0

j�1�f �x;u�� j f�x;u� 2 Xj�1g (2.9)

�j�x� � arg min
u2U�x�

f`�x;u�� V0
j�1�f �x;u�� j f�x;u� 2 Xj�1g (2.10)

with

Xj � fx 2 X j 9u 2 U�x� such that f�x;u� 2 Xj�1g (2.11)

for j � 1;2; : : : ;N (j is time to go), with terminal conditions

V0
0 �x� � Vf �x� 8x 2 X0 X0 � Xf

For each j, V0
j �x� is the optimal cost for problem Pj�x� if the current

state is x, current time is N � j, and the terminal time is N; Xj is the

domain of V0
j �x� and is also the set of states in X that can be steered

to the terminal set Xf in j steps by an admissible control sequence,

i.e., a control sequence that satis®es the control, state, and terminal

constraints. Hence, for each j

Xj � fx 2 X j Uj�x� �;g
DP yields much more than an optimal control sequence for a given

initial state; it yields an optimal feedback policy �0 or sequence of con-

trol laws where

�0 :� ��0���; �1���; : : : ; �N�1���� � ��N���; �N�1���; : : : ; �1����
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At event �x; i�, i.e., at state x at time i, the time to go is N � i and the

optimal control is

�0i �x� � �N�i�x�
i.e., �0i ��� is the optimal control law at time i. Consider an initial event

�x;0�, i.e., state x at time zero. If the terminal time (horizon) is N, the

optimal control for �x;0� is �N�x�. The successor state, at time 1, is

x� � f�x; �N�x��

At event �x�;1�, the time to go to the terminal set Xf is N � 1 and the

optimal control is �N�1�x�� � �N�1�f �x; �N�x���. For a given initial

event �x;0�, the optimal policy generates the optimal state and control

trajectories x0�x� and u0�x� that satisfy the difference equations

x�0� � x u�0� � �N�x� � �0�x� (2.12)

x�i� 1� � f�x�i�;u�i�� u�i� � �N�i�x�i�� � �i�x�i�� (2.13)

for i � 0;1; : : : ;N � 1. These state and control trajectories are iden-

tical to those obtained, as in MPC, by solving PN�x� directly for the

particular initial event �x;0� using a mathematical programming algo-

rithm. Dynamic programming, however, provides a solution for any

event �x; i� such that i 2 I0:N�1 and x 2 Xi.

Optimal control, in the classic sense of determining a control that

minimizes a cost over the interval �0; N� (so that the cost for k > N

is irrelevant), is generally time varying (at event �x; i�, i 2 I0:N , the

optimal control is �i�x� � �N�i�x�). Under fairly general conditions,

�i��� ! �1��� as N ! 1 where �1��� is the stationary in®nite horizon

optimal control law. MPC and RHC, on the other hand, employ the

time-invariant control �N�x� for all i 2 I�0. Thus the state and control

trajectories xmpc�x� and umpc�x� generated by MPC for an initial event

�x;0� satisfy the difference equations

x�0� � x u�0� � �N�x�
x�i� 1� � f�x�i�;u�i�� u�i� � �N�x�i��

and can be seen to differ in general from x0�x� and u0�x�, which satisfy

(2.12) and (2.13).

Before leaving this section, we obtain some properties of the solu-

tion to each partial problemPj�x�. For this, we require a few de®nitions

(Blanchini and Miani, 2008).

De®nition 2.9 (Positive and control invariant sets).
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(a) A set X � Rn is positive invariant for x� � f�x� if x 2 X implies

f�x� 2 X.
(b) A set X � Rn is control invariant for x� � f�x;u�, u 2 U, if, for all
x 2 X, there exists a u 2 U such that f�x;u� 2 X.

We recall from our standing assumptions 2.2 and 2.3 that f���, `���
and Vf ��� are continuous, that X and Xf are closed, U is compact and

that each of these sets contains the origin.

Proposition 2.10 (Existence of solutions to DP recursion). Suppose As-

sumptions 2.2 and 2.3 (U bounded) hold. Then

(a) For all j 2 I�0, the cost function Vj��� is continuous in Zj , and, for
each x 2 Xj , the control constraint setUj�x� is compact and a solution

u0�x� 2 Uj�x� to Pj�x� exists.

(b) If X0 :� Xf is control invariant for x� � f�x;u�, u 2 U�x� and

0 2 Xf , then, for each j 2 I�0, the set Xj is also control invariant,

Xj � Xj�1, and 0 2 Xj . In addition, the sets Xj and Xj�1 are positive

invariant for x� � f�x; �j�x�� for j 2 I�1.
(c) For all j 2 I�0, the set Xj is closed.

(d) If, in addition, Xf is compact and the function f�1���4 is bounded on

bounded sets (f�1�S� is bounded for every bounded set S 2 Rn), then,

for all j 2 I�0, Xj is compact.

Proof.

(a) This proof is almost identical to the proof of Proposition 2.4.

(b) By assumption, X0 � Xf � X is control invariant. By (2.11)

X1 � fx 2 X j 9u 2 U�x� such that f�x;u� 2 X0g

SinceX0 is control invariant for x� � f�x;u�;u 2 U, for every x 2 X0

there exist a u 2 U such that f�x;u� 2 X0 so that x 2 X1. Hence

X1 � X0. Since for every x 2 X1, there exists a u 2 U such that f�x;

u� 2 X0 � X1, it follows that X1 is control invariant for x� � f�x;u�,
u 2 U�x�. If for some integer j 2 I�0, Xj�1 is control invariant for

x� � f�x;u�, it follows by similar reasoning that Xj � Xj�1 and

that Xj is control invariant. By induction Xj is control invariant and

Xj � Xj�1 for all j > 0. Hence 0 2 Xj for all j 2 I�0. That Xj

is positive invariant for x� � f�x; �j�x�� follows from (2.10), which

4For any S � Rn, f�1�S� :� fz 2 Z j f�z� 2 Sg
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shows that �j��� steers every x 2 Xj intoXj�1 � Xj . SinceXj�1 � Xj ,

�j��� also steers every x 2 Xj�1 intoXj�1, soXj�1 is positive invariant

under control law �j��� as well.
(c) By Assumption 2.3, X0 � Xf is closed. Suppose, for some j 2 I�1,
that Xj�1 is closed. Then Zj :� f�x;u� 2 Z j f�x;u� 2 Xj�1g is closed
since f��� is continuous. To prove thatXj is closed, take any sequence

�xi�i2I�0 inXj that converges to, say, Åx. For each i, select a ui 2 U�xi�
such that zi � �xi; ui� 2 Zj ; this is possible since xi 2 Xj implies

xi 2 fX j Uj�x� � ;g. Since Uj�x� � U and U is bounded, by the

Bolzano-Weierstrass theorem there exists a subsequence, indexed by I,

such that ui ! Åu (and xi ! Åx) as i!1, i 2 I. The sequence �xi; ui� 2
Zj ; i 2 I converges, and, since Zj is closed, �Åx; Åu� 2 Zj . Therefore

f�Åx; Åu� 2 Xj�1 and Åx 2 Xj so that Xj is closed. By induction Xj is

closed for all j 2 I�0.
(d) Since Xf and U are bounded, so is Z1 � f�1�Xf � :� f�x;u� 2 Z j
f�x;u� 2 Xf g and its projection X1 onto R

n. Assume then, for some

j 2 I�0 that Zj�1 is bounded; its projection Xj�1 is also bounded.

Consequently, Zj � f�1�Xj�1� is also bounded and so is its projection

Xj . By induction, Xj is bounded, and hence, compact, for all j 2 I�0.
�

Part (d) of Proposition 2.10 requires that the function f�1��� is

bounded on bounded sets. This is a mild requirement if f��� is the dis-
crete time version of a continuous system as is almost always the case

in process control. If the continuous time system satis®es Çx � fc�x;u�
and if the sample time is �, then

f�x;u� � x �
Z
�

0
fc�x�s;x�;u�ds

in which x�s;x� is the solution of Çx � fc�x;u� at time s if x�0� � x
and u is the constant input in the interval �0;��. It is easily shown that

f�1��� is bounded on bounded sets if U is bounded and either f�x;

u� � Ax � Bu and A is nonsingular, or fc�x;u� is Lipschitz in x (see

Exercise 2.2).

The fact that XN is positive invariant for x� � f�x; �N�x�� can also

be established by observing thatXN is the set of states x in X for which

there exists a u that is feasible for PN�x�, i.e., for which there exists

a control u satisfying the control, state and terminal constraints. It is

shown in the next section that for every x 2 XN , there exists a feasi-

ble control sequence ue for PN�x�� (x� � f�x; �N�x�� is the successor
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state) provided that Xf is control invariant, i.e.,XN is positive invariant

for x� � f�x; �N�x�� if Xf is control invariant. An important practical

consequence is that if PN�x�0�� can be solved for the initial state x�0�,

then PN�x�i�� can be solved for any subsequent state x�i� of the con-

trolled system x� � f�x; �N�x��, a property that is sometimes called

recursive feasibility. Uncertainty, in the form of additive disturbances,

model error or state estimation error, may destroy this important prop-

erty; techniques to restore this property when uncertainty is present

are discussed in Chapter 3.

2.4 Stability

2.4.1 Introduction

The classical de®nition of stability was employed in the ®rst edition of

this text. This states the origin in Rn is globally asymptotically stable

(GAS) for x� � f�x� if the origin is locally stable and if the origin is

globally attractive. The origin is locally stable if, for all " > 0, there

exists a � > 0 such that jxj < � implies
����k;x��� < " for all k 2 I�0

(small perturbations of the initial state from the origin cause subse-

quent perturbations to be small). The origin is globally attractive for

x� � f�x� if ����k;x��� ! 0 as k ! 1 for all x 2 Rn. This de®ni-

tion of stability has been widely used and is equivalent to the recently

de®ned stronger de®nition given below if f��� is continuous but has

some disadvantages; there exist examples of systems that are asymp-

totically stable (AS) in the classical sense in which small perturbations

in the initial state from its initial value, not the origin, can cause sub-

sequent perturbations to be arbitrarily large. Hence we employ in this

section, as discussed more fully in Appendix B, a stronger de®nition of

asymptotic stability that avoids this undesirable behavior.

To establish stability we make use of Lyapunov theorems that are

de®ned in terms of the function classes K, K1 and KL. A function

belongs to classK if it is continuous, zero at zero, and strictly increas-

ing; a function belongs to class K1 if it is in class K and unbounded;

a function ���� belongs to classKL if it is continuous and if, for each

k � 0, ���; k� is a classK function and for each s � 0, ��s; �� is nonin-
creasing and ��s; i� converges to zero as i ! 1. We can now state the

stronger de®nition of stability.

De®nition 2.11 (Asymptotically stable and GAS). Suppose X is positive

invariant for x� � f�x�. The origin is AS for x� � f�x� in X if there
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exists aKL function ���� such that, for each x 2 X����i;x��� � ��jxj ; i� 8i 2 I�0
If X � Rn, the origin is GAS for x� � f�x�.

The set X is called a region of attraction. Energy in a passive elec-

trical or mechanical system provides a useful analogy to Lyapunov sta-

bility theory. In a lumped mechanical system, the total stored energy,

the sum of the potential and kinetic energy, is dissipated by friction

and decays to zero at which point the dynamic system is in equilib-

rium. Lyapunov theory follows a similar path; if a real-valued function

(a Lyapunov function) can be found that is positive and decreasing if

the state is not the origin, then the state converges to the origin.

De®nition 2.12 (Lyapunov function). Suppose that X is positive invari-

ant for x� � f�x�. A function V : Rn ! R�0 is said to be a Lyapunov

function in X for x� � f�x� if there exist functions �1; �2 2 K1 and a

continuous, positive de®nite function �3 such that for any x 2 X

V�x� � �1�jxj� (2.14)

V�x� � �2�jxj� (2.15)

V�f�x��� V�x� � ��3�jxj� (2.16)

We now employ the following stability theorem.

Theorem 2.13 (Lyapunov stability theorem). Suppose X � Rn is positive

invariant for x� � f�x�. If there exists a Lyapunov function in X for the

system x� � f�x�, then the origin is asymptotically stable in X for x� �
f�x�. If X � Rn, then the origin is globally asymptotically stable. If

�i�jxj� � ci jxja, a; ci 2 R>0, i � 1;2;3, then the origin is exponentially

stable.

A standard approach to establish stability is to employ the value

function of an in®nite horizon optimal control problem as a Lyapunov

function. This suggests the use of V0
N���, the value function for the ®-

nite horizon optimal control problem whose solution yields the model

predictive controller, as a Lyapunov function. It is simple to show, un-

der mild assumptions on `���, that V0
N��� has property (2.14) for all

x 2 XN . The value function V1��� for in®nite horizon optimal con-

trol problems does satisfy, under mild conditions, V0
1�f �x; �1�x��� �

V0
1�x� � `�x; �1�x�� thereby ensuring satisfaction of property (2.16).

Since, as is often pointed out, optimality does not imply stability, this
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property does not usually hold when the horizon is ®nite. One of the

main tasks of this chapter is show that if the ingredients Vf ���, `���,
and Xf of the ®nite horizon optimal control problem are chosen ap-

propriately, then V0
N�f �x; �N�x��� � V0

N�x� � `�x; �N�x�� for all x in

XN enabling property (2.16) to be obtained. Property (2.15), an upper

bound on the value function, is more dif®cult to establish but we also

show that appropriate ingredients that ensures satisfaction of property

(2.16) also ensures satisfaction of property (2.15).

We now address a point that we have glossed over. The solution

to an optimization problem is not necessarily unique. Thus u0�x� and

�N�x� may be set valued; any point in the set u0�x� is a solution of

PN�x�. Similarly x0�x� is set valued. Uniqueness may be obtained by

choosing that element in the set u0�x� that has least norm; and if the

minimum-norm solution is not unique, applying an arbitrary selection

map in the set of minimum-norm solutions. To avoid expressions such

as ªlet u be any element of the minimizing set u0�x�,º we shall, in

the sequel, use u0�x� to denote any sequence in the set of minimizing

sequences and use �N�x� to denote u0�0;x�, the ®rst element of this

sequence.

2.4.2 Stabilizing Conditions

To show that the value function V0
N��� is a valid Lyapunov function

for the closed-loop system x� � f�x; �N�x�� we have to show that

it satis®es (2.14), (2.15), and (2.16). We show below that V0
N��� is a

valid Lyapunov function if, in addition to Assumptions 2.2 and 2.3, the

following assumption is satis®ed.

Assumption 2.14 (Basic stability assumption). Vf ���, Xf and `��� have
the following properties:

(a) For all x 2 Xf , there exists a u (such that �x;u� 2 Z) satisfying
f�x;u� 2 Xf
Vf �f �x;u��� Vf �x� � �`�x;u�

(b) There existK1 functions �1��� and �f ��� satisfying
`�x;u� � �1�jxj� 8x 2 XN ;8u such that �x;u� 2 Z
Vf �x� � �f �jxj� 8x 2 Xf
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We now show that V0
N��� is a Lyapunov function satisfying (2.14),

(2.15), and (2.16) if Assumptions 2.2, 2.3, and 2.14 hold.

Lower bound for V0
N���. The lower-bound property (2.14) is easily

obtained. Since V0
N�x� � `�x; �N�x�� for all x 2 XN , the lower bound

(2.14) follows from Assumption 2.14(b) in which it is assumed that

there exists a K1 function �1��� such that `�x;u� � �1�jxj� for all
x 2 XN , for all u such that �x;u� 2 Z. This assumption is satis®ed by

the usual choice `�x;u� � �1=2��x0Qx �u0Ru� with Q and R positive

de®nite. Condition (2.14) is satis®ed.

Upper bound for V0
N���. If Xf contains the origin in its interior, the

upper bound property (2.15) can be established as follows. We show

below in Proposition 2.18 that, under Assumption 2.14, V0
j �x� � Vf �x�

for all x 2 Xf , all j 2 I�0. Also, under the same Assumption, there

exists a K1 function �f ��� such that Vf �x� � �f �jxj� for all x 2 Xf .
It follows that V0

N��� has the same upper bound �f �jxj� in Xf . We now

have to show that this bound onV0
N��� inXf can be extended to a similar

bound on V0
N��� in XN . We do this through two propositions. The ®rst

proposition proves that the value function V0
N��� is locally bounded.

Proposition 2.15 (The value function V0
N��� is locally bounded). Sup-

pose Assumptions 2.2 and 2.3 (U bounded) hold. Then V0
N��� is locally

bounded on XN .

Proof. Let X be an arbitrary compact subset of XN . The function VN :

Rn�RNm ! R�0 is continuous and therefore has an upper bound on the

compact set X �UN . SinceUN�x� � UN for all x 2 XN , V
0
N : XN ! R�0

has the same upper bound on X. Since X is arbitrary, V0
N��� is locally

bounded on XN . �

The second proposition shows the upper bound of V0
N��� in Xf im-

plies the existence of a similar upper bound in the larger set XN .

Proposition 2.16 (Extension of upper bound to XN ). Suppose Assump-

tions 2.2 and 2.3 (U bounded) hold and that Xf � X is control invariant

for x� � f�x;u�, u 2 U�x� and contains the origin in its interior. Sup-

pose also that there exists aK1 function ���� such that Vf �x� � ��jxj�
for all x 2 Xf . Then there exists aK1 function �2��� such that

V0
N�x� � �2�jxj� 8x 2 XN
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Proof. We have that 0 � V0
N�x� � Vf �x� � ��jxj� for x 2 Xf which

contains a neighborhood of zero (see also Proposition 2.18). Therefore

V0
N��� is continuous at zero. The set XN is closed, and V0

N��� is locally
bounded onXN . Therefore Proposition B.25 of Appendix B applies, and

the result is established. �

In situations where Xf does not have an interior, such as when Xf �
f0g, we cannot establish an upper bound for V0

N��� and resort to the

following assumption.

Assumption 2.17 (Weak controllability). There exists a K1 function

���� such that

V0
N�x� � ��jxj� 8x 2 XN

Assumption 2.17 is weaker than a controllability assumption. It

con®nes attention to those states that can be steered to Xf in N steps

and merely requires that the cost of doing so is not excessive.

Descent property for V0
N���. Let x be any state in XN at time zero.

Then

V0
N�x� � VN�x;u0�x��

in which

u0�x� �
�
u0�0;x�;u0�1;x�; : : : ; u0�N � 1;x�

�
is any minimizing control sequence. The resultant optimal state se-

quence is

x0�x� �
�
x0�0;x�;x0�1;x�; : : : ; x0�N;x�

�
in which x0�0;x� � x and x0�1;x� � x�. The successor state to x

at time zero is x� � f�x; �N�x�� � x0�1;x� at time 1 where �N�x� �
u0�0;x�, and

V0
N�x

�� � VN�x�;u0�x���
in which

u0�x�� �
�
u0�0;x��;u0�1;x��; : : : ; u0�N � 1;x��

�
It is dif®cult to compare V0

N�x� and V
0
N�x

�� directly, but

V0
N�x

�� � VN�x�;u0�x��� � VN�x�;ue�
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where ue is any feasible control sequence for PN�x��, i.e., any con-

trol sequence in UN�x�. To facilitate comparison of VN�x�;ue� with
V0
N�x� � VN�x;u0�x��, we choose

ue � �u0�1;x�; : : : ; u0�N � 1;x�;u
�

in which u 2 U still has to be chosen. Comparing ue with u0�x� shows

that xe, the state sequence due to control sequence ue, is
xe � �x0�1;x�;x0�2;x�; : : : ; x0�N;x�; f �x0�N;x�;u�

�
in which x0�1;x� � x� � f�x; �N�x��. Because x0 coincides with xe
and u��� coincides with ue for i � 1;2; : : : ;N � 1 (but not for i � N), a
simple calculation yields

VN�x
�;ue� � N�1X

j�1

`�x0�j;x�;u0�j;x���`�x0�N;x���Vf �f �x0�N;x�;u��

But

V0
N�x� � VN�x;u0�x��

� `�x; �N�x���
N�1X
j�1

`�x0�j;x�;u0�j;x��� Vf �x0�N;x��

so that

N�1X
j�1

`�x0�j;x�;u0�j;x�� � V0
N�x�� `�x; �N�x��� Vf �x0�N;x��

Hence

V0
N�x� � VN�x�;ue� � V0

N�x�� `�x; �N�x��� Vf �x0�N;x���
`�x0�N;x�;u�� Vf �f �x0�N;x�;u��

It follows that

V0
N�f �x; �N�x��� � V0

N�x�� `�x; �N�x�� (2.17)

for all x 2 X if the function Vf ��� and the set Xf have the property

that, for all x 2 Xf , there exists a u 2 U such that

�x;u� 2 Z; Vf �f �x;u�� � Vf �x�� `�x;u�; and f�x;u� 2 Xf (2.18)
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But this condition is satis®ed by the stabilizing condition, Assumption

2.14. Since `�x; �N�x�� � �1�jxj� for all x 2 X, V0
N��� has the desired

descent property (2.16).

To complete the proof that the value function satis®es (2.14), (2.15),

and (2.16), we have to prove the assertion, made in obtaining the upper

bound for V0
N���, that V0

j �x� � Vf �x� for all x 2 Xf , all j 2 I�0. This
assertion follows from the monotonicity property of the value function

V0
N���. This interesting result was ®rst obtained for the unconstrained

linear quadratic optimal control problem.

Proposition 2.18 (Monotonicity of the value function). Suppose that

Assumptions 2.2, 2.3 (U bounded), and 2.14 hold. Then

V0
j�1�x� � V0

j �x� 8x 2 Xj ; 8j 2 I�0
and

V0
j �x� � Vf �x� 8x 2 Xf ; 8j 2 I�0

Proof. From the DP recursion (2.9)

V0
1 �x� � min

u2U�x�
f`�x;u�� V0

0 �f �x;u�� j f�x;u� 2 X0g

But V0
0 ��� :� Vf ��� and X0 :� Xf . Also, by Assumption 2.14

min
u2U�x�

f`�x;u�� Vf �f �x;u�� j f�x;u� 2 Xf g � Vf �x� 8x 2 Xf

so that

V0
1 �x� � V0

0 �x� 8x 2 X0 � Xf
Next, suppose that for some j � 1

V0
j �x� � V0

j�1�x� 8x 2 Xj�1

Then, using the DP equation (2.9)

V0
j�1�x�� V0

j �x� � `�x; �j�1�x��� V0
j �f �x; �j�1�x���

� `�x; �j�x��� V0
j�1�f �x; �j�x��� 8x 2 Xj � Xj�1

Since �j�x� may not be optimal for Pj�1�x� for all x 2 Xj � Xj�1, we

have

V0
j�1�x�� V0

j �x� � `�x; �j�x��� V0
j �f �x; �j�x���

� `�x; �j�x��� V0
j�1�f �x; �j�x��� 8x 2 Xj
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Also, from (2.11), x 2 Xj implies f�x; �j�x�� 2 Xj�1 so that, by as-

sumption, V0
j �f �x; �j�x��� � V0

j�1�f �x; �j�x��� for all x 2 Xj . Hence

V0
j�1�x� � V0

j �x� 8x 2 Xj

By induction

V0
j�1�x� � V0

j �x� 8x 2 Xj ; 8j 2 I�0
Since the set sequence �Xj�I�0 has the nested property Xj � Xj�1 for

all j 2 I�0, it follows that V0
j �x� � Vf �x� for all x 2 Xf , all j 2 I�0. �

The monotonicity property Proposition 2.18 also holds even if U�x�

is not compact provided that the minimizer in the DP recursion always

exists; this is the case for the linear-quadratic problem.

The monotonicity property can also be used to establish the (previ-

ously established) descent property of V0
N��� by noting that

V0
N�x� � `�x; �N�x��� V0

N�1�f �x; �N�x���

� `�x; �N�x��� V0
N�f �x; �N�x����

�V0
N�1�f �x; �N�x���� V0

N�f �x; �N�x����

so that using the monotonicity property

V0
N�f �x; �N�x��� � V0

N�x�� `�x; �N�x���
�V0

N�f �x; �N�x���� V0
N�1�f �x; �N�x����

� V0
N�x�� `�x; �N�x�� 8x 2 XN

which is the desired descent property.

Since inequalities (2.14), (2.15), and (2.16) are all satis®ed we have

proved (for U bounded)

Theorem 2.19 (Asymptotic stability of the origin). Suppose Assump-

tions 2.2, 2.3, 2.14, and 2.17 are satis®ed. Then

(a) There existsK1 functions �1��� and �2��� such that for all x 2 XN

( ÅXc
N , for each c 2 R>0)

�1�jxj� � V0
N�x� � �2�jxj�

V0
N�f �x; �N�x���� V0

N�x� � ��1�jxj�

(b) The origin is asymptotically stable in XN ( ÅXc
N , for each c 2 R>0) for

x� � f�x; �N�x��.
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For the proof with U unbounded, note that the lower bound and de-

scent property remain satis®ed as before. For the upper bound, if Xf
contains the origin in its interior, we have that, since Vf ��� is continu-
ous, for each c > 0 there exists 0 < � � c, such that lev� Vf contains a

neighborhood of the origin and is a subset of both Xf and ÅXc
N . One can

then show that V0
N��� � Vf ��� for each N � 0 on this sublevel set, and

therefore V0
N��� is continuous at the origin so that again Proposition

B.25 applies, and Assumption 2.17 is satis®ed on ÅXc
N for each c 2 R>0.

As discussed above, Assumption 2.17 is immediate if the origin lies

in the interior of Xf . In other cases, e.g., when the stabilizing ingredi-

ent is the terminal equality constraint x�N� � 0 (Xf � f0g), Assump-

tion 2.17 is taken directly. See Proposition 2.38 for some additional

circumstances in which Assumption 2.17 is satis®ed.

2.4.3 Exponential Stability

Exponential stability is de®ned as follows.

De®nition 2.20 (Exponential stability). Suppose X � Rn is positive in-

variant for x� � f�x�. The origin is exponentially stable for x� � f�x�
in X if there exist c 2 R>0 and  2 �0;1� such that����i;x��� � c jxji
for all x 2 X, all i 2 I�0.
Theorem 2.21 (Lyapunov function and exponential stability). Suppose

X � Rn is positive invariant for x� � f�x�. If there exists a Lyapunov

function in X for the system x� � f�x� with �i��� � ci j�ja in which a;

ci 2 R>0 i � 1;2;3, then the origin is exponentially stable for x� � f�x�
in X.

The proof of this result is left as an exercise.

2.4.4 Controllability and Observability

We have not yet made any assumptions on controllability (stabilizabil-

ity) or observability (detectability) of the system (2.1) being controlled,

which may be puzzling since such assumptions are commonly required

in optimal control to, for example, establish existence of a solution to

the optimal control problem. The reasons for this omission are that

such assumptions are implicitly required, at least locally, for the basic

stability Assumption 2.14, and that we restrict attention to XN , the set

of states that can be steered to Xf in N steps satisfying all constraints.
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Stage cost `��� not positive de®nite. In the previous stability anal-

ysis we assume that the function �x;u� , `�x;u� is positive de®nite;

more precisely, we assume that there exists aK1 function �1��� such
that `�x;u� � �1�jxj� for all �x;u�. Often we assume that `��� is
quadratic, satisfying `�x;u� � �1=2��x0Qx � u0Ru� where Q and R

are positive de®nite. In this section we consider the case where the

stage cost is `�y;u� where y � h�x� and the function h��� is not nec-
essarily invertible. An example is the quadratic stage cost `�y;u� �
�1=2��y 0Qyy �u0Ru� where Qy and R are positive de®nite, y � Cx,
and C is not invertible; hence the stage cost is �1=2��x0Qx � u0Ru�
whereQ � C0QyC is merely positive semide®nite. Since now `��� does
not satisfy `�x;u� � �1�jxj� for all �x;u� 2 Z and someK1 function

�1���, we have to make an additional assumption in order to estab-

lish asymptotic stability of the origin for the closed-loop system. An

appropriate assumption is input/output-to-state-stability (IOSS), which

ensures the state goes to zero as the input and output go to zero. We

recall De®nition B.51, restated here.

De®nition 2.22 (Input/output-to-state stable (IOSS)). The system x� �
f�x;u�, y � h�x� is IOSS if there exist functions ���� 2 KL and 1���;
2��� 2 K such that for every initial state x 2 Rn, every control se-

quence u, and all i � 0

jx�i�j �maxf��jxj ; i�; 1�kuk0:i�1�; 2�kyk0:i�g

in which x�i� :� ��i;x;u� is the solution of x� � f�x;u� at time i

if the initial state is x and the input sequence is u; y�i� :� h�x�i�� is
the output, and kdka:b :�maxa�j�b

��d�j��� denotes the max norm of a

sequence.

Note that for linear systems, IOSS is equivalent to detectability of

�A;C� (see Exercise 4.5).

We assume as usual that Assumptions 2.2 and 2.3 are satis®ed, but

we replace Assumption 2.14 by the following.

Assumption 2.23 (Modi®ed basic stability assumption). Vf ���, Xf and

`��� have the following properties.

(a) For all x 2 Xf , there exists a u (such that �x;u� 2 Z) satisfying

Vf �f �x;u��� Vf �x� � �`�h�x�;u�; f �x;u� 2 Xf
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(b) There existK1 functions �1��� and �f ��� satisfying

`�y;u� � �1�
���y;u���� 8�y;u� 2 Rp �Rm

Vf �x� � �f �jxj� 8x 2 Xf

Note that in the modi®cation of Assumption 2.14 we have changed

only the lower-bound inequality for stage cost `�y;u�. With these as-

sumptions we can then establish asymptotic stability of the origin.

Theorem 2.24 (Asymptotic stability with stage cost `�y;u�). Suppose

Assumptions 2.2, 2.3, 2.17 and 2.23 are satis®ed, and the system x� �
f�x;u�;y � h�x� is IOSS. Then there exists a Lyapunov function in XN

( ÅXc
N , for each c 2 R>0) for the closed-loop system x� � f�x; �N�x��,

and the origin is asymptotically stable in XN ( ÅXc
N , for each c 2 R>0).

Proof. For the case of bounded U, Assumptions 2.2, 2.3, and 2.23(a)

guarantee the existence of the optimal solution of the MPC problem and

the positive invariance ofXN forx� � f�x; �N�x��, but the nonpositive
de®nite stage cost gives the following modi®ed inequalities

`�h�x�;u� � V0
N�x� � �2�jxj�

V0
N�f �x; �N�x���� V0

N�x� � �`�h�x�;u�

so V0
N��� is no longer a Lyapunov function for the closed-loop system.

Because the system is IOSS and `�y;u� � �1�
���y;u����, however, The-

orem B.53 in Appendix B provides that for any ��� 2 K1 there exists

an IOSS-Lyapunov function ���� for which the following holds for all

�x;u� 2 Z for which f�x;u� 2 X

1�jxj� � ��x� � 2�jxj�
��f �x;u�����x� � ���jxj�� �`�h�x�;u��

with 1; 2 2 K1 and continuous function � 2 PD. Note that these

inequalities certainly apply for u � �N�x� since �x; �N�x�� 2 Z and

f�x; �N�x�� 2 XN � X. Therefore we choose the linear K1 function

��� � ���, take V��� � V0
N��� � ���� as our candidate Lyapunov func-

tion, and obtain for all x 2 XN

�1�jxj� � V�x� � �2�jxj�
V�f�x; �N�x���� V�x� � ���jxj�
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with K1 functions �1��� :� 1��� and �2��� :� �2��� � 2���. From

De®nition 2.12, V��� is a Lyapunov function in XN for the system x� �
f�x; �N�x��. Therefore the origin is asymptotically stable in XN from

Theorem 2.13. Treat unbounded U as in the proof of Theorem 2.19. �

Note that we have here the appearance of a Lyapunov function that

is not the optimal value function of the MPC regulation problem. In

earlier MPC literature, observability rather than detectability was often

employed as the extra assumption required to establish asymptotic sta-

bility. Exercise 2.14 discusses that approach.

2.4.5 Time-Varying Systems

Most of the control problems discussed in this book are time invari-

ant. Time-varying problems do arise in practice, however, even if the

system being controlled is time invariant. One example occurs when

an observer or ®lter is used to estimate the state of the system being

controlled since bounds on the state estimation error are often time

varying. In the deterministic case, for example, state estimation er-

ror decays exponentially to zero. Another example occurs when the

desired equilibrium is not a state-control pair �xs ; us� but a periodic

trajectory. In this section, which may be omitted in the ®rst reading,

we show howMPCmay be employed for a class of time-varying systems.

The problem. The time-varying nonlinear system is described by

x� � f�x;u; i�
where x is the current state at time i, u the current control, and x� the

successor state at time i� 1. For each integer i, the function f��; i� is
assumed to be continuous. The solution of this system at time k � i
given that the initial state is x at time i is denoted by ��k;x;u; i�; the

solution now depends on both the time i and current time k rather than

merely on the difference k � i as in the time-invariant case. The cost

VN�x;u; i� also depends on time i and is de®ned by

VN�x;u; i� :�
i�N�1X
k�i

`�x�k�;u�k�; k�� Vf �x�i�N�; i�N�

in which x�k� :� ��k;x;u; i�, u � �u�i�;u�i� 1�; : : : ; u�i�N � 1��,

and the stage cost `��� and terminal cost Vf ��� are time varying. The

state and control constraints are also time varying

x�i� 2 X�i� u�i� 2 U�i�
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for all i. In addition, there is a time-varying terminal constraint

x�i�N� 2 Xf �i�N�
in which i is the current time. The time-varying optimal control prob-

lem at event �x; i� is PN�x; i� de®ned by

PN�x; i� : V0
N�x; i� �min

u
fVN�x;u; i� j u 2 UN�x; i�g

in which UN�x; i� is the set of control sequences u �
�
�u�i�;u�i� 1�;

: : : ; u�i�N�1�� satisfying the state, control and terminal constraints,

i.e.,

UN�x; i� :� fu j �x;u� 2 ZN�i�g
in which, for each i, ZN�i� � Rn �RNm is de®ned by

ZN�i� :�
�
�x;u� j u�k� 2 U�k�; ��k;x;u; i� 2 X�k�;8k 2 Ii:i�N�1;

��i�N;x;u; i� 2 Xf �i�N�
	

For each time i, the domain of V0
N��; i� is XN�i� where

XN�i� :� fx 2 X�i� j UN�x; i� �;g
� fx 2 X�i� j 9u such that �x;u� 2 ZN�i�g

which is the projection of ZN�i� onto X�i�. Our standing assumptions

(2.2 and 2.3) are replaced, in the time-varying case, by

Assumption 2.25 (Continuity of system and cost; time-varying case).

The functions �x;u� , f�x;u; i�, �x;u� , `�x;u; i� and x , Vf �x;

i� are continuous for all i 2 I�0. Also, for all i 2 I�0, f�0;0; i� � 0,

`�0;0; i� � 0 and Vf �0; i� � 0.

Assumption 2.26 (Properties of constraint sets; time-varying case). For

each i 2 I�0, X�i� and Xf �i� are closed, Xf �i� � X�i� and U�i� are

compact; the sets U�i�; i 2 I�0 are uniformly bounded by the compact

set ÅU. Each set contains the origin.

In making these assumptions we are implicitly assuming, as before,

that the desired setpoint has been shifted to the origin, but in this case,

it need not be constant in time. For example, letting Åx and Åu be the

original positional variables, we can consider a time-varying reference

trajectory �Åxr �i�; Åur �i�� by de®ning x�i� :� Åx�i� � Åxr �i� and u�i� :�
Åu�i� � Åur �i�. Depending on the application, Åxr �i� and Åur �i� could be

constant, periodic, or generally time varying. In any case, because of the

time-varying nature of the problem, we need to extend our de®nitions

of invariance and control invariance.
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De®nition 2.27 (Sequential positive invariance and sequential control

invariance).

(a) A sequence of sets �X�i��i�0 is sequentially positive invariant for

the system x� � f�x; i� if for any i � 0, x 2 X�i� implies f�x; i� 2
X�i� 1�.

(b) A sequence of sets �X�i��i�0 is sequentially control invariant for

the system x� � f�x;u; i� if for any i � 0 and x 2 X�i�, there exists
a u 2 U�i� such that x� � f�x;u; i� 2 X�i� 1�.

Let �X�i��i�0 be sequentially positive invariant. If x 2 X�i0� for
some i0 � 0, then ��i;x; i0� 2 X�i� for all i � i0.

The following results, which are analogs of the results for time-

invariant systems given previously, are stated without proof.

Proposition 2.28 (Continuous system solution; time-varying case). Sup-

pose Assumptions 2.25 and 2.26 are satis®ed. For each initial time i0 � 0

and ®nal time i � i0, the function �x;u�, ��i;x;u; i0� is continuous.
Proposition 2.29 (Existence of solution to optimal control problem;

time-varying case). Suppose Assumptions 2.25 and 2.26 are satis®ed.

Then for each time i 2 I�0
(a) The function �x;u�, VN�x;u; i� is continuous in ZN�i�.

(b) For each x 2 XN�i�, the control constraint set UN�x; i� is compact.

(c) For each x 2 XN�i�, a solution to PN�x; i� exists.

(d) XN�i� is closed and x � 0 2 XN�i�.

(e) If
�
Xf �i�

�
i2I�0

is sequentially control invariant for x� � f�x;u; i�,
then �XN�i��i2I�0 is sequentially control invariant for x� � f�x;u; i�
and sequentially positive invariant for x� � f�x; �N�x; i�; i�.
Stability. Our de®nitions of AS (asymptotic stability) and GAS (global

asymptotic stability) also require slightmodi®cation for the time-varying

case.

De®nition 2.30 (Asymptotically stable and GAS for time-varying sys-

tems). Suppose that the sequence �X�i��i�0 is sequentially positive in-

variant for x� � f�x; i�. The origin is asymptotically stable in the se-

quence �X�i��i�0 for x
� � f�x; i� if the following holds for all i � i0 �

0, and x 2 X�i0� ����i;x; i0��� � ��jxj ; i� i0� (2.19)
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in which � 2 KL and ��i;x; i0� is the solution to x� � f�x; i� at time

i � i0 with initial condition x at time i0 � 0. If X�i� � Rn, the origin is

globally asymptotically stable (GAS).

This de®nition is somewhat restrictive because
����i;x; i0��� depends

on i� i0 rather than on i.

De®nition 2.31 (Lyapunov function: time-varying, constrained case).

Let the sequence �X�i��i�0 be sequentially positive invariant, and let

V��; i� : X�i�! R�0 satisfy for all x 2 X�i�; i 2 I�0
�1�jxjA� � V�x; i� � �2�jxjA�

�V�x; i� � ��3�jxjA�
with �V�x; i� :� V�f�x; i�; i� 1�� V�x; i�, �1; �2; �3 2 K1. Then the

function V��; �� is a time-varying Lyapunov function in the sequence

�X�i��i�0 for x
� � f�x; i�.

This de®nition requires a single, time-invariant bound for each�j���,
j 2 f1;2;3g, which is not overly restrictive. For example, supposing

there is a sequence of lower bounds
�
�i1���

�
I�0

, it is necessary only

that the in®mum

�1��� :� inf
i2I�0

�i1���

is classK1. If the system is time invariant or periodic, this property is

satis®ed (as the inf becomes amin over a ®nite set), but it does preclude

bounds that become arbitrarily ¯at, such as �i1�s� � 1
i�1s

2. A similar

argument holds for j 2 f2;3g (using sup instead of inf for j � 2). We

can now state a stability de®nition that we employ in this chapter

Theorem 2.32 (Lyapunov theorem for asymptotic stability (time-vary-

ing, constrained)). Let the sequence �X�i���0 be sequentially positive

invariant for the system x� � f�x; i�, and V��; �� be a time-varying

Lyapunov function in the sequence �X�i���0 for x
� � f�x; i�. Then the

origin is asymptotically stable inX�i� at each time i � 0 forx� � f�x; i�.
The proof of this theorem is given in Appendix B (see Theorem B.24).

Model predictive control of time-varying systems. As before, the

receding horizon control law �N���, which is now time varying, is not

necessarily optimal or stabilizing. By choosing the time-varying ingre-

dients Vf ��� and Xf in the optimal control problem appropriately, how-

ever, stability can be ensured, as we now show. We replace the basic

stability assumption 2.14 by its time-varying extension.
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Assumption 2.33 (Basic stability assumption; time-varying case).

(a) For all i 2 I�0, all x 2 Xf �i�, there exists a u 2 U�i� such that

f�x;u; i� 2 Xf �i� 1�

Vf �f �x;u; i�; i� 1�� Vf �x; i� � �`�x;u; i�

(b) There existK1 functions �1��� and �f ��� satisfying

`�x;u; i� � �1�jxj� 8x 2 XN�i�;8u such that �x;u� 2 ZN�i�;8i 2 I�0
Vf �x; i� � �f �jxj�; 8x 2 Xf �i�;8i 2 I�0

As in the case of the time-varying Lyapunov function, requiring time-

invariant bounds is typically not restrictive. A direct consequence of

Assumption 2.33 is the descent property given in the following propo-

sition.

Proposition 2.34 (Optimal cost decrease; time-varying case). Suppose

Assumptions 2.25, 2.26, and 2.33 hold. Then

V0
N�f �x; �N�x; i�; i�; i� 1� � V0

N�x; i�� `�x; �N�x; i�; i� (2.20)

for all x 2 XN�i�, all i 2 I�0.

Proposition 2.35 (MPC cost is less than terminal cost). Suppose As-

sumptions 2.25, 2.26, and 2.33 hold. Then

V0
N�x; i� � Vf �x; i� 8x 2 Xf �i�; 8i 2 I�0

The proofs of Propositions 2.34 and 2.35 are left as Exercises 2.9

and 2.10.

Proposition 2.36 (Optimal value function properties; time-varying case).

Suppose Assumptions 2.25, 2.26, and 2.33 are satis®ed. Then there exist

twoK1 functions �1��� and �2��� such that, for all i 2 I�0

V0
N�x; i� � �1�jxj� 8x 2 XN�i�

V0
N�x; i� � �2�jxj� 8x 2 Xf �i�

V0
N�f �x; �N�x; i�; i� 1��� V0

N�x; i� � ��1�jxj� 8x 2 XN�i�
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We can deal with the obstacle posed by the fact that the upper bound

on V0
N��� holds only in Xf �i� in much the same way as we did previ-

ously for the time-invariant case. In general, we invoke the following

assumption.

Assumption 2.37 (Uniform weak controllability). There exists a K1

function ���� such that

V0
N�x; i� � ��jxj� 8x 2 XN�i�; 8i 2 I�0

It can be shown that Assumption 2.37 holds in a variety of other

circumstances as described in the following proposition.

Proposition 2.38 (Conditions for uniform weak controllability). Sup-

pose the functions f���, `���, and Vf ��� are uniformly bounded for all

i 2 I�0, i.e., on any compact set Z � Rn � ÅU, the set�
�f �x;u; i�; `�x;u; i�; Vf �x; i�� j �x;u� 2 Z; i 2 I�0

	
is bounded. Assumption 2.37 is satis®ed if any of the following conditions

holds:

(a) There exists a neighborhood of the origin X such that X � Xf �i� for
each i 2 I�0
(b) For i 2 I�0, the optimal value function V0

N�x; i� is uniformly contin-

uous in x at x � 0

(c) There exists a neighborhood of the origin X and a K function ����
such that V0

N�x; i� � ��jxj� for all i 2 I�0 and x 2 X \XN�i�

(d) The functions f��� and `��� are uniformly continuous at the origin

�x;u� � �0;0� for all i 2 I�0, and the system is stabilizable with small

inputs, i.e., there exists aK1 function ��� such that for all i 2 I�0 and
x 2 XN�i�, there exists u 2 UN�x; i� with juj � �jxj�.
Proof.

(a) Similar to Proposition 2.16, one can show that the optimal cost

V0
N�x; i� � Vf �x; i� � �2�jxj� for all x 2 X

Thus, condition (c) is implied.

(b) From uniform continuity, we know that for each " > 0, there exists

� > 0 such that

jxj � � implies V0
N�x; i� � " for all i 2 I�0
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recalling that V0
N��� is nonnegative and zero at the origin. By Rawlings

and Risbeck (2015, Proposition 13), this is equivalent to the existence

of aK function ��� de®ned on �0; b� (with b > 0) such that

V0
N�x; i� � �jxj� for all x 2 X

with X :� fx 2 Rn j jxj � bg a neighborhood of the origin. Thus,

condition (c) is also implied.

(c) First, we know that VN��� is uniformly bounded because it is the

®nite sum and composition of the uniformly bounded functions f���,
`���, and Vf ���. Thus, V0

N��� is also uniformly bounded, because

0 � V0
N�x; i� � VN�x;u; i� for all u 2 UN�x; i�

and VN��� is uniformly bounded. Next, because X is a neighborhood

of the origin, there exists b0 > 0 such that V0
N�x; i� � ��jxj� whenever

x 2 XN�i� and jxj � b0. Following Rawlings and Risbeck (2015, Propo-
sition 14), we choose any strictly increasing and unbounded sequence

�bk�
1
k�0 and de®ne

Bk�i� :� fx 2 XN�i� j jxj � bkg
We then compute a new sequence ��k�

1
k�0 as

�k :� k� sup
i2I�0

x2Bk�i�

V0
N�x; i�

We know that this sequence is well-de®ned because V0
N�x; i� is uni-

formly bounded for i 2 I�0 on
S
i2I�0 Bk�i�. We then de®ne

��s� :�

8>>><>>>:
�1
�b0�

�s� s 2 �0; b0�

�k�1 � ��k�2 � �k�1� s � bi
bi�1 � bi s 2 �bk; bk�1� for all k 2 I�0

which is aK1 function that satis®es

V0
N�x; i� � ��jxj� for all i 2 I�0

as desired.

(d) See Exercise 2.22. Note that the uniform continuity of f��� and `���
implies the existence ofK function upper bounds of the form��f�x;u; i��� � �fx�jxj���fu�juj�

`�x;u; i� � �`x�jxj���`u�juj�
for all i 2 I�0. �
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Assumption Title Page

2.2 Continuity of system and cost 97

2.3 Properties of constraint sets 98

2.14 Basic stability assumption 114

2.17 Weak controllability 116

Table 2.1: Stability assumptions; time-invariant case.

Hence, if Assumptions 2.25, 2.26, 2.33, and 2.37 hold it follows from

Proposition 2.36 that, for all i 2 I�0, all x 2 XN�i�

�1�jxj� � V0
N�x; i� � �2�jxj�

V0
N�f �x; �N�x; i�; i� 1��� V0

N�x; i� � ��1�jxj� (2.21)

so that, by De®nition 2.31, V0
N��� is a time-varying Lyapunov function

in the sequence �X�i��i�0 for x� � f�x; �N�x; i�; i�. It can be shown,

by a slight extension of the arguments employed in the time-invariant

case, that problem PN��� is recursively feasible and that �XN�i��i2I�0
is sequentially positive invariant for the system x� � f�x; �N�x; i�; i�.
The sequence �XN�i��i�0 in the time-varying case replaces the set XN

in the time-invariant case.

Theorem 2.39 (Asymptotic stability of the origin: time-varying MPC).

Suppose Assumptions 2.25, 2.26, 2.33, and 2.37 holds. Then,

(a) There exist K1 functions �1��� and �2��� such that, for all i 2 I�0
and all x 2 XN �i�, inequalities (2.21) are satis®ed.
(b) The origin is asymptotically stable in XN�i� at each time i � 0 for

the time-varying system x� � f�x; �N�x; i�; i�.
Proof.

(a) It follows from Assumptions 2.25, 2.26, 2.33, and 2.37 and Propo-

sition 2.36 that V0
N��� satis®es the inequalities (2.21).

(b) It follows from (a) and de®nition 2.31 that V0
N��� is a time-varying

Lyapunov function. It follows from Theorem 2.32 that the origin is

asymptotically stable in XN�i� at each time i � 0 for the time-varying

system x� � f�x; �N�x; i�; i�.
�
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Assumption Title Page

2.25 Continuity of system and cost 124

2.26 Properties of constraint sets 124

2.33 Basic stability assumption 127

2.37 Uniform weak controllability 128

Table 2.2: Stability assumptions; time-varying case.

2.5 Examples of MPC

We already have discussed the general principles underlying the design

of stabilizing model predictive controllers. The stabilizing conditions

on Xf , `���, and Vf ��� that guarantee stability can be implemented

in a variety of ways so that MPC can take many different forms. We

present themost useful forms of MPC for applications. These examples

also display the roles of the three main assumptions used to guarantee

closed-loop asymptotic stability. These assumptions are summarized

in Table 2.1 for the time-invariant case, and Table 2.2 for the time-

varying case. Referring back to these tables may prove helpful while

reading this section and comparing the various forms of MPC.

One question that is often asked is whether or not the terminal con-

straint is necessary. Since the conditions given previously are suf®-

cient, necessity cannot be claimed. We discuss this further later. It is

evident that the constraint arises because one often has a local, rather

than a global, control Lyapunov function (CLF) for the system being

controlled. In a few situations, a global CLF is available, in which case

a terminal constraint is not necessary.

All model predictive controllers determine the control action to be

applied to the system being controlled by solving, at each state, an op-

timal control problem that is usually constrained. If the constraints in

the optimal control problem include hard state constraints, then the

feasible region XN is a subset of Rn. The analysis given previously

shows that if the initial state x�0� lies in XN , so do all subsequent

states, a property known as recursive feasibility. It is always possible,

however, for unanticipated events to cause the state to become infea-

sible. In this case, the optimal control problem, as stated, cannot be

solved, and the controller fails. It is therefore desirable, if this does

not con¯ict with design aims, to employ soft state constraints in place

of hard constraints. Otherwise, any implementation of the algorithms
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described subsequently should be modi®ed to include a feature that

enables recovery from faults that cause infeasibility. One remedy is to

replace the hard constraints by soft constraints when the current state

is infeasible, thereby restoring feasibility, and to revert back to the hard

constraints as soon as they can be satis®ed at the current state.

In establishing stability of the examples of MPC presented below,

we make use of Theorem 2.19 (or Theorem 2.24) for time-invariant sys-

tems and Theorem 2.39 for time-varying systems. We must therefore

establish that Assumptions 2.2, 2.3, and 2.14 are satis®ed in the time-

invariant case and that Assumptions 2.25, 2.26, and 2.33 are satis®ed

in the time-varying case. We normally assume that 2.2, 2.3, and 2.14(b)

or 2.25, 2.26, and 2.33(b) are satis®ed, so our main task below in each

example is establishing satisfaction of the basic stability assumption

(cost decrease) 2.14(a) or 2.33(a).

2.5.1 The Unconstrained Linear Quadratic Regulator

Consider the linear, time-invariant model x� � Ax � Bu;y � Cx with

quadratic penalties on output and state `�y;u� � �1=2��y 0Qyy �
u0Ru� for both the ®nite and in®nite horizon cases. We ®rst consider

what the assumptions of Theorem 2.24 imply in this case, and compare

these assumptions to the standard LQR assumptions (listed in Exercise

1.20(b)).

Assumptions 2.2 is satis®ed for f�x;u� � Ax � Bu and `�x;u� �
�1=2��x0C0QyCx�u0Ru� for all A;B;C;Qy ; R. Assumption 2.3 is sat-

is®ed with Z � Rn � Rm and R > 0. Assumption 2.23 implies that

Qy > 0 as well. The system being IOSS implies that �A;C� is detectable

(see Exercise 4.5). We can choose Xf to be the stabilizable subspace

of �A; B� and Assumption 2.23(a) is satis®ed. The set XN contains the

system controllability information. The set XN is the stabilizable sub-

space of �A; B�, and we can satisfy Assumption 2.23(b) by choosing

Vf �x� � �1=2�x0�x in which � is the solution to the steady-state Ric-

cati equation for the stabilizable modes of �A; B�.

In particular, if �A; B� is stabilizable, then Vf ��� can be chosen to

be Vf �x� � �1=2�x0�x in which � is the solution to the steady-state

Riccati equation (1.18), which is positive de®nite. The terminal set can

be taken as any (arbitrarily large) sublevel set of the terminal penalty,

Xf � leva Vf , a > 0, so that any point in Rn is in Xf for large enough a.

We then have XN � Rn for all N 2 I0:1. The horizon N can be ®nite or

in®nite with this choice of Vf ��� and the control law is invariant with
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respect to the horizon length, �N�x� � Kx in which K is the steady-

state linear quadratic regulator gain given in (1.18). Theorem 2.24 then

gives that the origin of the closed-loop system x� � f�x; �N�x�� �
�A� BK�x is globally, asymptotically stable. This can be strengthened

to globally, exponentially stable because of the choice of quadratic stage

cost and form of the resulting Lyapunov function in Theorem 2.24.

The standard assumptions for the LQR with stage cost l�y;u� �
�1=2��y 0Qyy �u0Ru� are

Qy > 0 R > 0 �A;C� detectable �A; B� stabilizable

and we see that LQ theory establishes that the standard steady-state

LQR is covered by Theorem 2.24. Summarizing we have

Given the standard LQR problem, Assumptions 2.2, 2.3, and

2.23 are satis®ed and XN � Xf � Rn. It follows from The-

orems 2.24 and 2.21 that the origin is globally, exponen-

tially stable for the controlled system x� � Ax � B�N�x� �
�A� BK�x.

2.5.2 Unconstrained Linear Periodic Systems

In the special case where the system is time varying but periodic, a

global CLF can be determined as in the LQR case. Suppose the objective

function is

`�x;u; i� :� 1

2

�
x0Q�i�x �u0R�i�u�

with each Q�i� and R�i� positive de®nite. To start, choose a sequence

of linear control laws

�f �x; i� :� K�i�x
and let

AK�i� :� A�i�� B�i�K�i�
QK�i� :� Q�i��K�i�0R�i�K�i�

For integersm and n satisfyingm � n � 0, let

A�m;n� :� AK�m� 1�AK�m� 2� � � �AK�n� 1�AK�n�

Given these matrices, the closed-loop evolution of the system under

the terminal control law is

x�m� �A�m;n�x�n�
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for f�x;u; i� � f�x; �f �u; i�; i� � AK�i�x.
Suppose the periodic system �A�i�; B�i�� is stabilizable. It follows

that the control laws K�i� can be chosen so that each A�i � T ; i� is
stable. Such control laws can be found, e.g., by iterating the periodic

discrete algebraic Riccati equation or by solving the Riccati equation

for a larger, time-invariant system (see Exercise 2.23).

For a terminal cost, we require matrices P�i� that satisfy

AK�i�
0P�i� 1�AK�i��QK�i� � P�i�

Summing this relationship for i 2 I0:T�1 gives

A�T ;0�0P�T�A�T ;0��
T�1X
i�0

A�k;0�0Q�k�A�k;0� � P�0�

and by periodicity, P�T� � P�0�. Noting thatA�T ;0� is stable and the

summation is positive de®nite (recall that the ®rst term jA�0;0�j2Q�0� �
Q�0� is positive de®nite), there exists a unique solution to this equation,

and the remaining P�i� are determined by the recurrence relationship.

Thus, taking

Vf �x; i� � 1

2
x0P�i�x

we have, for u � �f �x; i� � K�i�x

Vf �f �x;u; i�; i� 1�� `�x;u; i� � 1

2
x0AK�i�

0P�i� 1�AK�i�x�
1

2
x0QK�i�x � 1

2
x0P�i�x � Vf �x; i�

as required. The terminal region can then be taken as Xf �i� � Rn.

Summarizing we have

If the periodic system is stabilizable, there exists a periodic

sequence of controller gains and terminal penalties such

that XN�i� � Xf �i� � Rn for all i � 0. The origin is glob-

ally asymptotically stable by Theorem 2.39, which can be

strengthened to globally exponentially stable due to the quad-

ratic stage cost. The functionVf ��; i� is a global, time-varying

CLF.
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2.5.3 Stable Linear Systems with Control Constraints

Usually, when constraints and/or nonlinearities are present, it is im-

possible to obtain a global CLF to serve as the terminal cost function

Vf ���. There are, however, a few special cases where this is possible,

such as the stable linear system.

The system to be controlled is x� � Ax � Bu where A is stable (its

eigenvalues lie strictly inside the unit circle) and the controlu is subject

to the constraintu 2 UwhereU is compact and contains the origin in its

interior. The stage cost is `�x;u� � �1=2��x0Qx�u0Ru� where Q and

R are positive de®nite. To establish stability of the systems under MPC,

we wish to obtain a global CLF to serve as the terminal cost function

Vf ���. This is usually dif®cult because any linear control law u � Kx,
say, transgresses the control constraint forx suf®ciently large. In other

words, it is usually impossible to ®nd a Vf ��� such that there exists a

u 2 U satisfying Vf �Ax � Bu� � Vf �x�� `�x;u� for all x in Rn. Since

A is stable, however, it is possible to obtain a Lyapunov function for

the autonomous system x� � Ax that is a suitable candidate for Vf ���;
in fact, for all Q > 0, there exists a P > 0 such that

A0PA�Q � P
Let Vf ��� be de®ned by

Vf �x� � �1=2�x0Px
With f���, `���, and Vf ��� de®ned thus, PN�x� is a parametric quadratic

problem if the constraint set U is polyhedral and global solutions may

be computed online. The terminal cost function Vf ��� satis®es
Vf �Ax�� �1=2�x0Qx � Vf �x� � �1=2�x0�A0PA�Q� P�x � 0

for all x 2 Xf :� Rn. We see that for all x 2 Xf , there exists au, namely

u � 0, such that Vf �Ax�Bu� � Vf �x��`�x;u�; `�x;u� � �1=2�x0Qx
when u � 0. Since there are no state or terminal constraints, XN � Rn.

It follows that there exist positive constants c1 and c2 such that

c1 jxj2 � V0
N�x� � c2 jxj2

V0
N�f �x; �N�x���� V0

N�x� � �c1 jxj2

for all x 2 XN � Rn. Summarizing, we have

Assumptions 2.2, 2.3, and 2.14 are satis®ed and XN � Xf �
Rn. It follows from Theorems 2.19 and 2.21 that the origin
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is globally, exponentially stable for the controlled system

x� � Ax � B�N�x�.
An extension of this approach for unstable A is used in Chapter 6.

2.5.4 Linear Systems with Control and State Constraints

We turn now to the consideration of systems with control and state

constraints. In this situation determination of a global CLF is usually

dif®cult if not impossible. Hence we show how local CLFs may be de-

termined together with an invariant region in which they are valid.

The system to be controlled is x� � Ax � Bu where A is not nec-

essarily stable, the control u is subject to the constraint u 2 U where

U is compact and contains the origin in its interior, and the state x

is subject to the constraint x 2 X where X is closed and contains the

origin in its interior. The stage cost is `�x;u� � �1=2��x0Qx � u0Ru�
where Q and R are positive de®nite. Because of the constraints, it is

dif®cult to obtain a global CLF. Hence we restrict ourselves to the more

modest goal of obtaining a local CLF and proceed as follows. If �A; B�

is stabilizable, the solution to the in®nite horizon unconstrained op-

timal control problem Puc1 �x� is known. The value function for this

problem is Vuc
1 �x� � �1=2�x0Px where P is the unique (in the class of

positive semide®nite matrices) solution to the discrete algebraic Riccati

equation

P � A0KPAK �QK

in which AK :� A � BK, QK :� Q � K0RK, and u � Kx, in which K is

de®ned by

K :� ��B0PB � R��1B0PA
is the optimal controller. The value function Vuc

1 ��� for the in®nite

horizon unconstrained optimal control problem Puc1 �x� satis®es

Vuc
1 �x� �min

u
f`�x;u�� Vuc

1 �Ax � Bu�g � `�x;Kx�� Vuc
1 �AKx�

It is known that P is positive de®nite. We de®ne the terminal cost Vf ���
by

Vf �x� :� Vuc
1 �x� � �1=2�x0Px

If X and U are polyhedral, problem PN�x� is a parametric quadratic pro-

gram that may be solved online using standard software. The terminal

cost function Vf ��� satis®es

Vf �AKx�� �1=2�x0QKx � Vf �x� � 0 8x 2 Rn
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The controlleru � Kx does not necessarily satisfy the control and state

constraints, however. The terminal constraint set Xf must be chosen

with this requirement in mind. We may choose Xf to be the maximal

invariant constraint admissible set for x� � AKx; this is the largest set
W with respect to inclusion5 satisfying: (a) W � fx 2 X j Kx 2 Ug, and
(b) x 2 W implies x�i� � AiKx 2 W for all i � 0. Thus Xf , de®ned this

way, is control invariant for x� � Ax � Bu, u 2 U. If the initial state

x of the system is in Xf , the controller u � Kx maintains the state

in Xf and satis®es the state and control constraints for all future time

(x�i� � AiKx 2 Xf � X and u�i� � Kx�i� 2 U for all i � 0). Hence,

with Vf ���, Xf , and `��� as de®ned previously, Assumptions 2.2, 2.3,

and 2.14 are satis®ed. Summarizing, we have

Assumptions 2.2, 2.3, and 2.14 are satis®ed, andXf contains

the origin in its interior. Hence, by Theorems 2.19 and 2.21,

the origin is exponentially stable in XN .

It is, of course, not necessary to choose K and Vf ��� as above. Any
K such that AK � A � BK is stable may be chosen, and P may be

obtained by solving the Lyapunov equation A0KPAK � QK � P . With

Vf �x� :� �1=2�x0Px and Xf the maximal constraint admissible set for

x� � AKx, the origin may be shown, as above, to be asymptotically

stable with a region of attraction XN for x� � Ax � B�N�x�, and ex-

ponentially stable with a region of attraction any sublevel set of V0
N���.

The optimal control problem is, again, a quadratic program. The ter-

minal set Xf may be chosen, as above, to be the maximal invariant

constraint admissible set for x� � AKx, or it may be chosen to be a

suitably small sublevel set of Vf ���; by suitably small, we mean small

enough to ensure Xf � X and KXf � U. The set Xf , if chosen this way,

is ellipsoidal, a subset of the maximal constraint admissible set, and

is positive invariant for x� � AKx. The disadvantage of this choice

is that PN�x� is no longer a quadratic program, though it remains a

convex program for which software exists.

The choice Vf ��� � Vuc
1 ��� results in an interesting property of the

closed-loop system x� � Ax � B�N�x�. Generally, the terminal con-

straint set Xf is not positive invariant for the controlled system x� �
Ax � B�N�x�. Thus, in solving PN�x� for an initial state x 2 Xf , the

ªpredictedº state sequence x0�x� � �
x0�0;x�;x0�1;x�; : : : ; x0�N;x�

�
starts and ends in Xf but does not necessarily remain in Xf . Thus

5W 2W is the largest set inW with respect to inclusion ifW 0 � W for anyW 0 2W .
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x0�0;x� � x 2 Xf and x0�N;x� 2 Xf , because of the terminal con-

straint in the optimal control problem, but, for any i 2 I1:N�1, x0�i;x�

may lie outside of Xf . In particular, x� � Ax � B�N�x� � x0�1;x�

may lie outside of Xf ; Xf is not necessarily positive invariant for the

controlled system x� � Ax � B�N�x�.
Consider now the problem P

uc
N �x� de®ned in the same way as PN�x�

except that all constraints are omitted so that UN�x� � RNm

P
uc
N �x� : Vuc

N �x� �min
u
VN�x;u�

in which VN��� is de®ned as previously by

VN�x;u� :�
N�1X
i�0

`�x�i�;u�i��� Vf �x�N��

with Vf ��� the value function for the in®nite horizon unconstrained

optimal control problem, i.e., Vf �x� :� Vuc
1 �x� � �1=2�x0Px. With

these de®nitions, it follows that

Vuc
N �x� � Vuc

1 �x� � Vf �x� � �1=2�x0Px
�ucN �x� � Kx; K � ��B0PB � R��1B0PA

for all x 2 Rn; u � Kx is the optimal controller for the unconstrained

in®nite horizon problem. But Xf is positive invariant for x� � AKx.
We now claim that with Vf ��� chosen to equal to Vuc

1 ���, the terminal

constraint setXf is positive invariant for x
� � Ax�B�N�x�. We do this

by showing that V0
N�x� � Vuc

N �x� � Vuc
1 �x� for all x 2 Xf , so that the

associated control laws are the same, i.e., �N�x� � Kx. First, because
P
uc
N �x� is identical with PN�x� except for the absence of all constraints,

we have

Vuc
N �x� � Vf �x� � V0

N�x� 8x 2 XN � Xf
Second, from Lemma 2.18

V0
N�x� � Vf �x� 8x 2 Xf

Hence V0
N�x� � Vuc

N �x� � Vf �x� for all x 2 Xf . That �N�x� � Kx for all

x 2 Xf follows from the uniqueness of the solutions to the problems

PN�x� and P
uc
N �x�. Summarizing, we have

If Vf ��� is chosen to be the value function for the uncon-

strained in®nite horizon optimal control problem, if u �
Kx is the associated controller, and if Xf is invariant for
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x� � AKx, then Xf is also positive invariant for the con-

trolled system x� � Ax � B�N�x�. Also �N�x� � Kx for all

x 2 Xf .

2.5.5 Constrained Nonlinear Systems

The system to be controlled is

x� � f�x;u�
in which f��� is assumed to be twice continuously differentiable. The

system is subject to state and control constraints

x 2 X u 2 U
in which X is closed and U is compact; each set contains the origin in

its interior. The cost function is de®ned by

VN�x;u� �
N�1X
i�0

`�x�i�;u�i��� Vf �x�N��

in which, for each i, x�i� :� ��i;x;u�, the solution of x� � f�x;u� at
time i if the initial state is x at time zero and the control is u. The stage

cost `��� is de®ned by

`�x;u� :� �1=2��jxj2Q � juj2R�
in which Q and R are positive de®nite. The optimal control problem

PN�x� is de®ned by

PN�x� : V0
N�x� �min

u
fVN�x;u� j u 2 UN�x�g

in whichUN�x� is de®ned by (2.5) and includes the terminal constraint

x�N� � ��N;x;u� 2 Xf (in addition to the state and control con-

straints).

Our ®rst task is to choose the ingredients Vf ��� and Xf of the op-

timal control problem to ensure asymptotic stability of the origin for

the controlled system. We obtain a terminal cost function Vf ��� and
a terminal constraint set Xf by linearization of the nonlinear system

x� � f�x;u� at the origin. Hence we assume f��� and `��� are twice

continuously differentiable so that Assumption 2.2 is satis®ed . Sup-

pose then that the linearized system is

x� � Ax � Bu
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where A :� fx�0;0� and B :� fu�0;0�. We assume that �A; B� is sta-

bilizable and we choose any controller u � Kx such that the origin is

globally exponentially stable for the system x� � AKx, AK :� A� BK,
i.e., such that AK is stable. Suppose also that the stage cost `��� is
de®ned by `�x;u� :� �1=2��jxj2Q � juj2R� where Q and R are positive

de®nite; hence `�x;Kx� � �1=2�x0QKx where QK :� �Q � K0RK�. Let
P be de®ned by the Lyapunov equation

A0KPAK � �QK � P

for some � > 1 The reason for the factor � will become apparent soon.

Since QK is positive de®nite and AK is stable, P is positive de®nite. Let

the terminal cost function Vf ��� be de®ned by

Vf �x� :� �1=2�x0Px

ClearlyVf ��� is a global CLF for the linear systemx� � Ax�Bu. Indeed,
it follows from its de®nition that Vf ��� satis®es

Vf �AKx�� ��=2�x0QKx � Vf �x� � 0 8x 2 Rn (2.22)

Consider now the nonlinear system x� � f�x;u� with linear control

u � Kx. The controlled system satis®es

x� � f�x;Kx�

We wish to show that Vf ��� is a local CLF for x� � f�x;u� in some

neighborhood of the origin; speci®cally, we wish to show there exists

an a 2 �0;1� such that

Vf �f �x;Kx��� �1=2�x0QKx � Vf �x� � 0 8x 2 leva Vf (2.23)

in which, for all a > 0, leva Vf :� fx j Vf �x� � ag is a sublevel set of

Vf . Since P is positive de®nite, leva Vf is an ellipsoid with the origin as

its center. Comparing inequality (2.23) with (2.22), we see that (2.23) is

satis®ed if

Vf �f �x;Kx��� Vf �AKx� � ��� � 1�=2�x0Qkx 8x 2 leva Vf (2.24)

Let e��� be de®ned as follows

e�x� :� f�x;Kx��AKx
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so that

Vf �f �x;Kx��� Vf �AKx� � �AKx�0Pe�x�� �1=2�e�x�0Pe�x� (2.25)

By de®nition, e�0� � f�0;0��AK0 � 0 and ex�x� � fx�x;Kx�� fu�x;
Kx�K �AK . It follows that ex�0� � 0. Since f��� is twice continuously
differentiable, for any � > 0, there exists a c� > 0 such that jexx�x�j �
c� for all x in �B. From Proposition A.11 in Appendix A

je�x�j �
�����e�0�� ex�0�x �

Z 1

0
�1� s�x0exx�sx�xds

�����
�
Z 1

0
�1� s�c� jxj2 ds � �1=2�c� jxj2

for all x in �B. From (2.25), we see that there exists an " 2 �0; �� such
that (2.24), and, hence, (2.23), is satis®ed for all x 2 "B. Because of

our choice of `���, there exists a c1 > 0 such that Vf �x� � `�x;Kx� �
c1 jxj2 for all x 2 Rn. It follows that x 2 leva Vf implies jxj � pa=c1.
We can choose a to satisfy

p
a=c1 � ". With this choice, x 2 leva Vf

implies jxj � " � �, which, in turn, implies (2.23) is satis®ed.

We conclude that there exists an a > 0 such that Vf ��� and Xf :�
leva Vf satisfy Assumptions 2.2 and 2.3. For each x 2 Xf there exists a

u � �f �x� :� Kx such that Vf �x;u� � Vf �x��`�x;u� since `�x;Kx� �
�1=2�x0QKx so that our assumption that `�x;u� � �1=2��x0Qx �
u0Ru� where Q and R are positive de®nite, and our de®nition of Vf ���
ensure the existence of positive constants c1, c2 and c3 such thatV

0
N�x� �

c1 jxj2 for all Rn, Vf �x� � c2 jxj2 and V0
N�f �x; �f �x��� � V0

N�x� �
c3 jxj2 for all x 2 Xf thereby satisfying Assumption 2.14. Finally, by

de®nition, the set Xf contains the origin in its interior. Summarizing,

we have

Assumptions 2.2, 2.3, and 2.14 are satis®ed, and Xf con-

tains the origin in its interior. In addition �1���, �2���, and
�3��� satisfy the hypotheses of Theorem 2.21. Hence, by

Theorems 2.19 and 2.21, the origin is exponentially stable

for x� � f�x; �N�x�� in XN .

Asymptotic stability of the origin in XN also may be established when

Xf :� f0g by assuming aK1 bound on V0
N��� as in Assumption 2.17.

2.5.6 Constrained Nonlinear Time-Varying Systems

AlthoughAssumption 2.33 (the basic stability assumption) for the time-

varying case suf®ces to ensure that V0
N��� has suf®cient cost decrease,



142 Model Predictive ControlÐRegulation

it can be asked if there exist a Vf ��� and Xf satisfying the hypotheses of
this assumption, as well as Assumption 2.37. We give a few examples

below.

Terminal equality constraint. Consider a linear time-varying system

described by x� � f�x�i�;u�i�; i� � A�i�x�i� � B�i�u�i� with `�x;u;
i� � �1=2��x0Q�i�x�i��u0R�i�u�. Clearly �Åx; Åu� � �0;0� is an equilib-

rium pair since f�0;0; i� � 0 for all i 2 I�0. The terminal constraint set

is Xf �i� � f0g for all i 2 I�0, and the cost can be taken as Vf �x; i� � 0.

Assumption 2.33(a) is clearly satis®ed. If, in addition, thematricesA�i�,

B�i�, Q�i�, and R�i� can be uniformly bounded from above, and the

system is stabilizable (with U containing a neighborhood of the origin),

then the weak controllability hypothesis implies that Assumption 2.37

is satis®ed as well.

If f��� is nonlinear, assumption 2.33(a) is satis®ed if f�0;0; i� � 0

for all i 2 I�0. Verifying Assumption 2.37 requires more work in the

nonlinear case, but weak controllability is often the easiest way. In

summary we have

Given the terminal equality constraint and Assumption 2.37,

Theorem 2.39 applies and the origin is asymptotically stable

inXN�i� at each time i � 0 for the time-varying system x� �
f�x; �N�x; i�; i�.

Periodic target tracking. If the target is a periodic reference signal

and the system is periodic with period T as in Limon, Alamo, de la

PeÄna, Zeilinger, Jones, and Pereira (2012), Falugi and Mayne (2013b),

and Rawlings and Risbeck (2017), it is possible, under certain condi-

tions, to obtain terminal ingredients that satisfy Assumptions 2.33(a)

and 2.37.

In the general case, terminal region synthesis is challenging. But

given suf®cient smoothness in the system model, we can proceed as

follows. First we subtract the periodic state and input references and

work in deviation variables so that the origin is again the target. As-

suming f��� is twice continuously differentiable in x and u at �0;0; i�,

we can linearize the system to determine

A�i� :� @f
@x
�0;0; i� B�i� :� @f

@u
�0;0; i�

Assuming the origin is in the interior of each X�i� (but not necessarily

each U�i�), we determine a subspace of unsaturated inputs ue such that

(i) u�i� � F�i�ue�i�, (ii) there exists � > 0 such that F�i�ue�i� 2 U�i�
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for all
��ue�� � �, and (iii) the reduced linear system �A�i�; B�i�F�i�� is

stabilizable. These conditions ensure that the reduced linear system is

locally unconstrained. Taking a positive de®nite stage cost

`�x;u; i� :� 1

2

�
x0Q�i�x �u0R�i�u�

we chose � > 1 and proceed as in the linear unconstrained case (Sec-

tion 2.5.2) using the reduced model �A�i�; B�i�F�i�� and adjusted cost

matrices �Q�i� and �R�i�. We thus have the relationship

Vf �A�i�x � B�i�u; i� 1� � Vf �x; i�� �`�x;u; i�

with u � �f �x; i� :� K�i�x and Vf �x; i� :� �1=2�x0P�i�x. Two issues

remain: ®rst, it is unlikely that K�i�x 2 U�i� for all x and i; and second,

the cost decrease holds only for the (approximate) linearized system.

To address the ®rst issue, we start by de®ning the set

X�i� :� fx 2 X�i� j �f �x; i� 2 U�i� and f�x; �f �u; i�; i� 2 X�i� 1�g

on which �f ��� is valid. We require Xf �i� � X�i� for all i 2 I�0. By

assumption, X�i� contains a neighborhood of the origin, and so we can

determine constants a�i� > 0 suf®ciently small such that

leva�i� Vf ��; i� � X�i� i � 0

For the second issue, we can appeal to Taylor's theorem as in Sec-

tion 2.5.5 to ®nd constants b�i� 2 �0; a�i�� such that

Vf �f �x;u; i�; i� 1�� Vf �A�i�x � B�i�u; i� 1� � �� � 1�`�x;u; i�

for all x 2 levb�i� Vf ��; i� and i 2 I�0. That is, the approximation error

of the linear system is suf®ciently small. Thus, adding this inequality

to the approximate cost decrease condition, we recover

Vf �f �x;u; i�; i� 1�� Vf �x; i� � �`�x;u; i�

on terminal regions Xf �i� � levb�i� Vf ��; i�. That these terminal regions

are positive invariant follows from the cost decrease condition. Note

also that these sets Xf �i� contain the origin in their interiors, and thus

Assumption 2.37 is satis®ed. Summarizing we have

Given suf®cient smoothness in f�x;u; i�, terminal region

synthesis can be accomplished for tracking a periodic refer-

ence. Then the assumptions of Theorem 2.39 are satis®ed,
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and the origin (in deviation variables; hence, the periodic

reference in the original variables) is asymptotically stable

in XN�i� at each time i � 0 for the time-varying system

x� � f�x; �N�x; i�; i�.

2.6 Is a Terminal Constraint Set Xf Necessary?

While addition of a terminal cost Vf ��� does not materially affect the

optimal control problem, addition of a terminal constraint x�N� 2 Xf ,
which is a state constraint, may have a signi®cant effect. In particular,

problems with only control constraints are usually easier to solve. So

if state constraints are not present or if they are handled by penalty

functions (soft constraints), it is highly desirable to avoid the addition

of a terminal constraint. Moreover, it is possible to establish continuity

of the value function for a range of optimal control problems if there

are no state constraints; continuity of the value function ensures a de-

gree of robustness (see Chapter 3). It is therefore natural to ask if the

terminal constraint can be omitted without affecting stability.

A possible procedure is merely to omit the terminal constraint and

to require that the initial state lies in a subset of XN that is suf®ciently

small. We examine this alternative here and assume that Vf ���, Xf and

`��� satisfy Assumptions 2.2, 2.3, and 2.14, and thatXf :� fx j Vf �x� �
ag for some a > 0.

We assume, as in the examples of MPC discussed in Section 2.5, that

the terminal cost function Vf ���, the constraint set Xf , and the stage

cost `��� for the optimal control problem PN�x� are chosen to satisfy

Assumptions 2.2, 2.3, and 2.14 so that there exists a local control law

�f : Xf ! U such that Xf � fx 2 X j �f �x� 2 Ug is positive invariant

forx� � f�x; �f �x�� and Vf �f �x; �f �x����`�x; �f �x�� � Vf �x� for all
x 2 Xf . We assume that the function Vf ��� is de®ned on X even though

it possesses the property Vf �f �x; �f �x���� `�x; �f �x�� � Vf �x� only
in Xf . In many cases, even if the system being controlled is nonlinear,

Vf ��� is quadratic and positive de®nite, and �f ��� is linear. The set Xf
may be chosen to be a sublevel set of Vf ��� so that Xf � W�a� :� fx j
Vf �x� � ag for some a > 0. We discuss in the sequel a modi®ed form

of the optimal control problem PN�x� in which the terminal cost Vf ���
is replaced by �Vf ��� and the terminal constraint Xf is omitted, and

show that if � is suf®ciently large the solution of the modi®ed optimal

control problem is such that the optimal terminal state nevertheless

lies in Xf so that terminal constraint is implicitly satis®ed.
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For all� � 1, letP
�
N�x� denote themodi®ed optimal control problem

de®ned by
ÃV
�
N�x� �min

u
fV�N�x;u� j u 2 ÃUN�x�g

in which the cost function to be minimized is now

V
�
N�x;u� :�

N�1X
i�0

`�x�i�;u�i��� �Vf �x�N��

in which, for all i, x�i� � ��i;x;u�, the solution at time i of x� � f�x;
u� when the initial state is x and the control sequence is u. The control

constraint set ÃUN�x� ensures satisfaction of the state and control con-

straints, but not the terminal constraint, and is de®ned by

ÃUN�x� :� fu j �x�i�;u�i�� 2 Z; i 2 I0:N�1; x�N� 2 Xg
The cost function V

�
N��� with � � 1 is identical to the cost function

VN��� employed in the standard problem PN considered previously.

Let ÃXN :� fx 2 X j ÃUN�x� �;g denote the domain of ÃV
�
N���; let u��x�

denote the solution of P
�
N�x�; and let x��x� denote the associated op-

timal state trajectory. Thus

u��x� �
�
u��0;x�;u��1;x�; : : : ; u��N � 1;x�

�
x��x� �

�
x��0;x�;x��1;x�; : : : ; x��N;x�

�
where x��i;x� :� ��i;x;u��x�� for all i. The implicit MPC control law

is �
�
N��� where ��N�x� :� u��0;x�. Neither ÃUN�x� nor ÃXN depend on

the parameter �. It can be shown (Exercise 2.11) that the pair ��Vf ���;
Xf � satis®es Assumptions 2.2±2.14 if � � 1, since these assumptions

are satis®ed by the pair �Vf ���;Xf �. The absence of the terminal con-

straint x�N� 2 Xf in problem P
�
N�x�, which is otherwise the same as

the normal optimal control problem PN�x� when � � 1, ensures that
ÃV1
N�x� � V0

N�x� for all x 2 XN and that XN � ÃXN where V0
N��� is the

value function for PN�x� and XN is the domain of V0
N���.

Problem P
�
N�x� and the associated MPC control law �

�
N��� are de-

®ned below. Suppose u��x� is optimal for the terminally unconstrained

problem P
�
N�x�, � � 1, and that x��x� is the associated optimal state

trajectory.

That the origin is asymptotically stable for x� � f�x; ��N�x�� and
each � � 1, with a region of attraction that depends on the parameter

� is established by Limon, Alamo, Salas, and Camacho (2006) via the

following results.
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Lemma 2.40 (Entering the terminal region). Suppose u��x� is optimal

for the terminally unconstrained problem P
�
N�x�, with � � 1, and that

x��x� is the associated optimal state trajectory. If x��N;x� � Xf , then

x��i;x� � Xf for all i 2 I0:N�1.
Proof. Since, as shown in Exercise 2.11, �Vf �x� � �Vf �f �x; �f �x����
`�x; �f �x�� and f�x; �f �x�� 2 Xf for all x 2 Xf , all � � 1, it follows

that for all x 2 Xf and all i 2 I0:N�1

�Vf �x� �
N�1X
j�i

`�xf �j;x; i�;uf �j;x; i��� �Vf �xf �N;x; i�� � ÃV
�
N�i�x�

in which xf �j;x; i� is the solution of x� � f�x; �f �x�� at time j if the

initial state is x at time i, uf �j;x; i� � �f �xf �j;x; i��, and �f ��� is the
local control law that satis®es the stability assumptions. The second

inequality follows from the fact that the control sequence
�
uf �j;x; i�

�
,

j 2 Ii:N�1 is feasible forP�N�x� ifx 2 Xf . Suppose contrary to what is to
be proved, that there exists a i 2 I0:N�1 such that x��i;x� 2 Xf . By the
principle of optimality, the control sequence

�
u��i;x�;u��i�1;x�; : : : ;

u��N � 1;x�
�
is optimal for P

�
N�i�x

��i;x��. Hence

�Vf �x
��i;x�� � ÃV

�
N�i�x

��i;x�� � �Vf �x��N;x�� > �a

since x��N;x� � Xf contradicting the fact that x��i;x� 2 Xf . This

proves the lemma. �

For all � � 1, let the set �
�
N be de®ned by

�
�
N :� fx j ÃV�N�x� � Nd� �ag

We assume in the sequel that there exists a d > 0 such `�x;u� � d for

all x 2 X nXf and all u 2 U. The following result is due to Limon et al.

(2006).

Theorem 2.41 (MPC stability; no terminal constraint). The origin is

asymptotically or exponentially stable for the closed-loop system x� �
f�x; �

�
N�x�� with a region of attraction �

�
N . The set �

�
N is positive invari-

ant for x� � f�x; ��N�x��.
Proof. From the Lemma, x��N;x� � Xf implies x��i;x� � Xf for all

i 2 I0:N . This, in turn, implies

ÃV
�
N�x� > Nd� �a
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so that x � �
�
N . Hence x 2 �

�
N implies x��N;x� 2 Xf . It then follows,

since �Vf ��� and Xf satisfy Assumptions 2.2 and 2.3, that the origin

is asymptotically or exponentially stable for x� � f�x; ��N�x�� with a

region of attraction �
�
N . It also follows that x 2 ��N�x� implies

ÃV
�
N�x

��1;x�� � ÃV
�
N�x�� `�x; ��N�x�� � ÃV

�
N�x� � Nd� �a

so that x��1;x� � f�x; ��N�x�� 2 ��N . Hence ��N is positive invariant for

x� � f�x; ��N�x��. �

Limon et al. (2006) then proceed to show that �
�
N increases with �

or, more precisely, that �1 � �2 implies that �
�1
N � ��2N . They also show

that for any x steerable to the interior of Xf by a feasible control, there

exists a � such that x 2 ��N . We refer to requiring the initial state x to

lie in �
�
N as an implicit terminal constraint.

If it is desired that the feasible sets for Pi�x� be nested (Xi � Xi�1,

i � 1;2; : : : N�1) (thereby ensuring recursive feasibility), it is necessary,
as shown in Mayne (2013), that PN�x� includes a terminal constraint

that is control invariant.

2.7 Suboptimal MPC

Overview. There is a signi®cant practical problem that we have not

yet addressed, namely that if the optimal control problemPN�x� solved

online is not convex, which is usually the case when the system is non-

linear, the global minimum of VN�x;u� in UN�x� cannot usually be

determined. Since we assume, in the stability theory given previously,

that the global minimum is achieved, we have to consider the impact of

this unpalatable fact. It is possible, as shown in Scokaert, Mayne, and

Rawlings (1999); Pannocchia, Rawlings, and Wright (2011) to achieve

stability without requiring globally optimal solutions of PN�x�. The

basic idea behind the suboptimal model predictive controller is sim-

ple. Suppose the current state is x and that u � �
u�0�;u�1�; : : : ;

u�N � 1�
� 2 UN�x� is a feasible control sequence for PN�x�. The

®rst element u�0� of u is applied to the system x� � f�x;u�; let �N�x;
u� denote this control. In the absence of uncertainty, the next state is

equal to the predicted state x� � f�x;u�0��.
Consider the control sequence ue de®ned by

ue � �u�1�;u�2�; : : : ; u�N � 1�; �f �x�N��
�

(2.26)
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in which x�N� � ��N;x;u� and �f ��� is a local control law with the

property that u � �f �x� satis®es Assumption 2.2 for all x 2 Xf . The
existence of such a �f ���, which is often of the form �f �x� � Kx, is
implied by Assumption 2.2. Then, since x�N� 2 Xf and since the sta-

bilizing conditions 2.14 are satis®ed, the control sequence ue 2 UN�x�

satis®es

VN�x
�;ue� � VN�x;u�� `�x;u�0�� � VN�x;u���1�jxj� (2.27)

with x� :� f�x;u�0��.
No optimization is required to get the cost reduction `�x;u�0��

given by (2.27); in practice the control sequence ue can be improved

by several iterations of an optimization algorithm. Inequality (2.27) is

reminiscent of the inequality V0
N�x

�� � V0
N�x���1�jxj� that provides

the basis for establishing asymptotic stability of the origin for the con-

trolled systems previously analyzed. This suggests that the simple al-

gorithm described previously, which places very low demands on the

online optimization algorithm, may also ensure asymptotic stability of

the origin.

This is almost true. The obstacle to applying standard Lyapunov

theory is that there is no obvious Lyapunov function V : Rn ! R�0

because, at each state x�, there exist many control sequences u� satis-

fying VN�x�;u�� � VN�x;u���1�jxj�. The function �x;u�, VN�x;u�
is not a function of x only and may have many different values for each

x; therefore it cannot play the role of the function V0
N�x� used previ-

ously. Moreover, the controller can generate, for a given initial state,

many different trajectories, all of which have to be considered. We

address these issues next following the recent development in Allan,

Bates, Risbeck, and Rawlings (2017).

A key step is to consider suboptimal MPC as an evolution of an

extended state consisting of the state and warm-start pair. Given a

feasible warm start, optimization algorithms can produce an improved

feasible sequence or, failing even that, simply return the warm start.

The ®rst input is injected and a new warm start can generated from

the returned control sequence and terminal control law.

Warm start. An admissible warm start ue, must steer the current state

x to the terminal region subject to the input constraints, i.e., ue 2
UN�x�. It also must satisfy VN�x;ue� � Vf �x� if x 2 Xf , which en-

sures that jxj ! 0 implies juj ! 0. These two conditions de®ne the set

of admissible warm starts

Ue N�x� :� �ue 2 UN�x� j VN�x;ue� � Vf �x� if x 2 Xf 	 (2.28)
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When x 2 Xf and ue 2 UN�x� but VN�x;ue� > Vf �x�, an admissible

warm start uef �x� can be recovered using the terminal control law.

Proposition 2.42 (Admissible warm start in Xf ). For any x 2 Xf , the

following warm start is feasible

uef �x� :� ��f �x�; �f �f �x; �f �x���; : : : � 2 Ue N�x�
The proof of this proposition is discussed in Exercise 2.24.

We de®ne the set of admissible control sequences ÏUN�x;ue� as those
feasible control sequences u that result in a lower cost than the warm

start; the suboptimal control law is the set of ®rst elements of admis-

sible control sequences

ÏUN�x;ue� � �u j u 2 Ue N�x�; VN�x;u� � VN�x;ue�	
�N�x;ue� � �u�0� j u 2 ÏUN�x;ue�	

From its de®nition, the suboptimal control law is a function of both the

state x and the warm start ue 2 Ue N�x�.
To complete the algorithm we require a successor warm start for

the successor state x� � f�x;u�0��. First de®ning

uew�x;u� :� �u�1�;u�2�; : : : ; u�N � 1�; �f ���N;x;u��
�

we choose the successor warm start ue� 2 Ue N�x�� as follows
ue� :�

8>><>>:
uef �x�� if x� 2 Xf and

VN�x
�;uef �x��� � VN�x�;uew�x;u��

uew�x;u� else

(2.29)

This mapping in (2.29) is denoted ue� � ��x;u�, and Proposition 2.42

ensures that the warm start generated by ��x;u� is admissible for x�.

We have the following algorithm for suboptimal MPC.

Algorithm 2.43 (Suboptimal MPC). First, choose Xf and Vf ��� satisfy-
ing Assumption 2.14 and obtain the initial state x 2 XN and any initial

warm start ue 2 Ue N�x�. Then repeat

1. Obtain current measurement of state x.

2. Compute any input u 2 ÏUN�x;ue�.
3. Inject the ®rst element of the input sequence u.

4. Compute the next warm start ue� � ��x;u�.
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Because the control law �N�x;ue� is a function of the warm start ue
as well as the state x, we extend the meaning of state to include the

warm start.

2.7.1 Extended State

In Algorithm 2.43 we begin with a state and warm-start pair and pro-

ceed from this pair to the next at the start of each time step. We denote

this extended state as z :� �x;ue� for x 2 XN and ue 2 Ue N�x�. The ex-
tended state evolves according to

z� 2 H�z� :� ��x�;ue�� j x� � f�x;u�0��;
ue� � ��x;u�; u 2 ÏUN�z�

	
(2.30)

in which u�0� is the ®rst element of u. We denote by  �k;z� any so-

lution of (2.30) with initial extended state z and denote by ��k;z� the

accompanying x trajectory. We restrict ZN to the set of z for which

ue 2 Ue N�x�.
ZeN :� ��x;ue� j x 2 XN and ue 2 Ue N�x�	

To directly link the asymptotic behavior of z with that of x, the follow-

ing proposition is necessary.

Proposition 2.44 (Linking warm start and state). There exists a function

�r ��� 2 K1 such that
��ue�� � �r �jxj� for any �x;ue� 2 ZeN .

A proof is given in (Allan et al., 2017, Proposition 10).

2.7.2 Asymptotic Stability of Difference Inclusions

Because the extended state evolves as the difference inclusion (2.30),

we present the following de®nitions of asymptotic stability and the

associated Lyapunov functions. Consider the difference inclusion z� 2
H�z�, such that H�0� � f0g.

De®nition 2.45 (Asymptotic stability (difference inclusion)). We say the

origin of the difference inclusion z� 2 H�z� is asymptotically stable in

a positive invariant set Z if there exists a function ���� 2 KL such that

for any z 2 Z and for all k 2 I�0, all solutions  �k;z� satisfy

j �k;z�j � ��jzj ; k�
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De®nition 2.46 (Lyapunov function (difference inclusion)). V��� is a

Lyapunov function in the positive invariant set Z for the difference

inclusion z� 2 H�z� if there exist functions �1���;�2���;�3��� 2 K1

such that for all z 2 Z
�1�jzj� � V�z� � �2�jzj� (2.31)

sup
z�2H�z�

V�z�� � V�z���3�jzj� (2.32)

Although V��� is not required to be continuous everywhere, (2.31)

implies that it is continuous at the origin.

Proposition 2.47 (Asymptotic stability (difference inclusion)). If the set

Z contains the origin, is positive invariant for the difference inclusion

z� 2 H�z�, H�0� � f0g, and it admits a Lyapunov function V��� in Z,
then the origin is asymptotically stable in Z.

A proof of this proposition is given in (Allan et al., 2017, Proposition

13); it is similar to the proof of Theorem B.15 in Appendix B.

Theorem 2.48 (Asymptotic stability of suboptimal MPC). Suppose As-

sumptions 2.2, 2.3, and 2.14 are satis®ed, and that `�x;u� � �`�j�x;u�j�
for all �x;u� 2 Z, and Xf � levb Vf � fx 2 Rn j Vf �x� � bg, for some

b > 0. Then the function VN�z� is a Lyapunov function in the set ZeN
for the closed-loop system (2.30) under Algorithm 2.43. Therefore the

origin is asymptotically stable in ZeN .
Proof. First we show that VN�z� is a Lyapunov function for (2.30) on

the positive invariant set ZeN . Because u 2 ÏUN�z� and, by construction,

ue� 2 Ue N�x��, we have that z� 2 ZeN , so that ZeN is positive invariant.

From the de®nition of the control law and the warm start, we have that

for all z 2 ZeN
VN�z� � VN�x;u� �

N�1X
i�0

`�x�i�;u�i�� �
N�1X
i�0

�`�j�x�i�;u�i��j�

Next we use (B.1) from Appendix B and the triangle inequality to obtain

N�1X
i�0

�`�j�x�i�;u�i��j� � �`
�
1

N

N�1X
i�0

j�x�i�;u�i��j
�
� �`

� j�x;u�j =N�
Finally using the `p-norm property that for all vectors a;b, j�a; b�j �
jbj, and noting that x�0� � x, so we have that

�`
� j�x;u�j =N� � �`� j�x;u�j =N� :� �1

� j�x;u�j � � �1�z�
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with �1 2 K1. So we have established the lower bound VN�z� � �1�z�

for all z 2 ZeN .
Because of Assumptions 2.2 and 2.3, the set ZN is closed as shown

in Proposition 2.10(c). The cost function VN�z� is continuous on ZN ,
which includes z � 0, so from Proposition B.25 we conclude that there

exists �2��� 2 K1 such that VN�z� � �2�jzj� for all z 2 ZeN � ZN , and
the upper-bound condition of De®nition 6.2 is satis®ed.

As in standard MPC analysis, we have for all z 2 ZeN that

VN�z
�� � VN�x;u�� `�x;u�0�� � VN�x;u���`�jx;u�0�j�

Because ue 2 Ue N�x�, from Proposition 2.44 we have that���x;ue��� � jxj � ��ue�� � jxj ��r �jxj� :� �r 0�jxj� � �r 0�j�x;u�0��j�
Therefore, �` ���1r 0 �

���x;ue���� � �`�j�x;u�0��j�. De®ning �3��� :� �` �
��1r 0 ��� and because VN�x;u� � VN�x;ue�, we have that

VN�z
�� � VN�x;ue���3�jzj� � VN�z���3�jzj�

for all z 2 ZeN and z� 2 H�z�. We conclude that VN�z� is a Lyapunov

function for (2.30) in ZeN . Asymptotic stability follows directly from

Proposition 2.47. �

From this result, a bound on just x�k� rather than z�k� � �x�k�;
ue�k�� can also be derived. First we have that for all k � 0 and z 2 ZeN

jz�k;z�j � ��jzj ; k� � �����x;ue��� ; k� � ��jxj � ��ue�� ; k�
From Proposition 2.44 we then have that

��jxj � ��ue�� ; k� � ��jxj ��r �jxj�; k� :� �e�jxj ; k�
with �e��� 2 KL. Combining these we have that

jz�k;z�j � ���x�k;z�;ue�k;z���� � jx�k;z�j � ��ue�k;z��� � �e�jxj ; k�
which implies jx�k;z�j � �e�jxj ; k�. So we have a bound on the evolu-

tion of x�k� depending on only the x initial condition. Note that the

evolution of x�k� depends on the initial condition of z � �x;ue�, so it

depends on initial warm start ue as well as initial x. We cannot ignore

this dependence, which is why we had to analyze the extended state in

the ®rst place. For the same reason we also cannot de®ne the invariant

set in which the x�k� evolution takes place without referring to ZeN .
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2.8 Economic Model Predictive Control

Many applications of control are naturally posed as tracking problems.

Vehicle guidance, robotic motion guidance, and low-level objectives

such as maintaining pressures, temperatures, levels, and ¯ows in in-

dustrial processes are typical examples. MPC can certainly provide

feedback control designs with excellent tracking performance for chal-

lenging multivariable, constrained, and nonlinear systems as we have

explored thus far in the text. But feedback control derived from re-

peated online optimization of a process model enables other, higher-

level goals to be addressed as well. In this section we explore using

MPC for optimizing economic performance of a process rather than a

simple tracking objective. As before, we assume the system dynamics

are described by the model

x� � f�x;u�

But here the stage cost is some general function `�x;u� that measures

economic performance of the process. The stage cost is not positive

de®nite with respect to some target equilibrium point of the model as

in a tracking problem. We set up the usual MPC objective function as a

sum of stage costs over some future prediction horizon

VN�x;u� �
N�1X
k�0

`�x�k�;u�k��� Vf �x�N��

subject to the system model with x�0� � x, the initial condition. As

before, we consider constraints on the states and inputs, �x;u� 2 Z.

So the only signi®cant change in the MPC problem has been the rede®-

nition of the stage cost `�x;u� to re¯ect the economics of the process.

The terminal penalty Vf �x�may be changed for the same reason. Typ-

ical stage-cost functions would be composed of a sum of prices of the

raw materials and utilities, and the values of the products being man-

ufactured.

We can also de®ne the best steady-state solution of the system from

the economic perspective. This optimal steady-state pair �xs ; us� is

de®ned as the solution to the optimization problem Ps

�xs ; us� :� arg min
�x;u�2Z

f`�x;u� j x � f�x;u�g

The standard industrial approach to addressing economic performance

is to calculate this best economic steady state (often on a slower time
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scale than the process sample time), and then design an MPC controller

with a different, tracking stage cost to reject disturbances and track this

steady state. In this approach, a typical tracking stage cost would be the

types considered thus far, e.g., `t�x;u� � �1=2��jx � xsj2Q�ju�usj2R�.
In economic MPC, we instead use the same economic stage cost di-

rectly in the dynamic MPC problem. Some relevant questions to be

addressed with this change in design philosophy are: (i) how much

economic performance improvement is possible, and (ii) how differ-

ent is the closed-loop dynamic behavior. For example, we are not even

guaranteed for a nonlinear system that operating at the steady state is

the best possible dynamic behavior of the closed-loop system.

As an introduction to the topic, we next set up the simplest version

of an economic MPC problem, in which we use a terminal constraint. In

the Notes section, we comment on what generalizations are available in

the literature. We now modify the basic assumptions given previously.

Assumption 2.49 (Continuity of system and cost). The functions f :

Z ! Rn and ` : Z ! R�0 are continuous. Vf ��� � 0. There exists at

least one point �xs ; us� 2 Z satisfying xs � f�xs ; us�.

Assumption 2.50 (Properties of constraint sets). The set Z is closed. If

there are control constraints, the set U�x� is compact and is uniformly

bounded in X.

Assumption 2.51 (Cost lower bound).

(a) The terminal set is a single point, Xf � fxsg.
(b) The stage cost `�x;u� is lower bounded for �x;u� 2 Z.

Note that since we are using a terminal equality constraint, we do

not require the terminal penalty Vf ���, so it is set to zero. For clarity

in this discussion, we do not assume that �xs ; us� has been shifted to

the origin. The biggest change is that we do not assume here that the

stage cost `�x;u� is positive de®nite with respect to the optimal steady

state, only that it is lower bounded.

Note that the set of steady states, Zs :� f�x;u� 2 Z j x � f�x;u�g,
is nonempty due to Assumption 2.49. It is closed because Z is closed

(Assumption 2.50) and f��� is continuous. But it may not be bounded

so we are not guaranteed that the solution to Ps exists. So we consider

�xs ; us� to be any element of Zs . We may want to choose �xs ; us� to be

an element of the solution to Ps , when it exists, but this is not necessary

to the subsequent development.
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The economic optimal control problem PN�x�, is the same as in (2.7)

PN�x� : V0
N�x� :�min

u
fVN�x;u� j u 2 UN�x�g

Due to Assumptions 2.49 and 2.50, Proposition 2.4 holds, and the so-

lution to the optimal control problem exists. The control law, �N��� is
therefore well de®ned; if it is not unique, we consider as before a ®xed

selection map, and the closed-loop system is again given by

x� � f�x; �N�x�� (2.33)

2.8.1 Asymptotic Average Performance

We already have enough structure in this simple problem to establish

that the average cost of economic MPC is better, i.e., not worse, than

any steady-state performance `�xs ; us�.

Proposition 2.52 (Asymptotic average performance). Let Assumptions

2.49, 2.50, and 2.51 hold. Then for every x 2 XN , the following holds

limsup
t!1

t�1X
k�0

`�x�k�;u�k��

t
� `�xs ; us�

in which x�k� is the closed-loop solution to (2.33) with initial condition

x, and u�k� � �N�x�k��.
Proof. Because of the terminal constraint, we have that

V0
N

�
f�x; �N�x��

� � V0
N�x�� `�x; �N�x��� `�xs ; us� (2.34)

Performing a sum on this inequality gives

t�1X
k�0

`�x�k�;u�k��

t
� `�xs ; us�� �1=t��V0

N�x�0��� V0
N�x�t���

The left-hand side may not have a limit, so we take limsup of both

sides. Note that from Assumption 2.51(b), `�x;u� is lower bounded

for �x;u� 2 Z, hence so is VN�x;u� for �x;u� 2 Z, and V0
N�x� for

x 2 XN . Denote this bound by M . Then limt!1��1=t�V0
N�x�t�� �

limt!1�M=t � 0 and we have that

limsup
t!1

t�1X
k�0

`�x�k�;u�k��

t
� `�xs ; us� �
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This result does not imply that the economic MPC controller stabi-

lizes the steady state �xs ; us�, only that the average closed-loop per-

formance is better than the best steady-state performance. There are

many examples of nonlinear systems for which the time-average of an

oscillation is better than the steady state. For such systems, we would

expect an optimizing controller to destabilize even a stable steady state

to obtain the performance improvement offered by cycling the system.

Note also that the appearance in (2.34) of the term �`�x; �N�x���
`�xs ; us�, which is sign indeterminate, destroys the cost decrease prop-

erty of V0
N��� so it no longer can serve as a Lyapunov function in a

closed-loop stability argument. We next examine the stability question.

2.8.2 Dissipativity and Asymptotic Stability

The idea of dissipativity proves insightful in understanding when eco-

nomic MPC is stabilizing (Angeli, Amrit, and Rawlings, 2012). The basic

idea is motivated by considering a thermodynamic system, mechanical

energy, and work. Imagine we supply mechanical energy to a system

by performing work on the system at some rate. We denote the me-

chanical energy as a storage function, i.e., as the way in which the work

performed on the system is stored by the system. If the system has

no dissipation, then the rate of change in storage function (mechanical

energy) is equal to the supply rate (work). However, if the system also

dissipates mechanical energy into heat, through friction for example,

then the change in the storage function is strictly less than the work

supplied. Wemake this physical idea precise in the following de®nition.

De®nition 2.53 (Dissipativity). The system x� � f�x;u� is dissipative
with respect to supply rate s : Z ! R if there exists a storage function

� : X! R such that for all �x;u� 2 Z
��f�x;u��� ��x� � s�x;u� (2.35)

The system is strictly dissipative with respect to supply rate s and

steady-state xs if there exists ���� 2 K1 such that for all �x;u� 2 Z
��f�x;u��� ��x� � s�x;u����jx � xsj� (2.36)

Note that we do not assume that ���� is continuous, and we de®ne

strict dissipativity with ���� aK1 function. In other literature, ���� is
sometimes assumed to be a continuous, positive de®nite function.

We require one technical assumption; its usefulness will be apparent

shortly.
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Assumption 2.54 (Continuity at the steady state). The function V0
N����

���� : XN ! R is continuous at xs .

The following assumption is then suf®cient to guarantee that eco-

nomic MPC is stabilizing.

Assumption 2.55 (Strict dissipativity). The system x� � f�x;u� is

strictly dissipative with supply rate

s�x;u� � `�x;u�� `�xs ; us�

Theorem 2.56 (Asymptotic stability of economic MPC). Let Assump-

tions 2.49, 2.50, 2.51, 2.54, and 2.55 hold. Then xs is asymptotically

stable in XN for the closed-loop system x� � f�x; �N�x��.

Proof. We know that V0
N��� is not a Lyapunov function for the given

stage cost `���, so our task is to construct one. We ®rst introduce a

rotated stage cost as follows (Diehl, Amrit, and Rawlings, 2011)

è�x;u� � `�x;u�� `�xs ; us�� ��x�� ��f�x;u��
Note from (2.36) and Assumption 2.55 that this stage cost then satis®es

for all �x;u� 2 Z
è�x;u� � ��jx � xsj� è�xs ; us� � 0 (2.37)

and we have the kind of stage cost required for a Lyapunov function.

Next de®ne an N-stage sum of this new stage cost as VeN�x;u� :�PN�1
k�0

è�x�k�;u�k�� and perform the sum to obtain

VeN�x;u� � �N�1X
k�0

`�x�k�;u�k��

�
�N`�xs ; us�� ��x�� ��xs�

� VN�x;u��N`�xs ; us�� ��x�� ��xs� (2.38)

Notice that VeN��� and VN��� differ only by constant terms involving the

steady state, �xs ; us�, and the initial condition, x. Therefore because

the optimization of VN�x;u� over u has a solution, so does the opti-

mization of VeN�x;u�, and they are the same solution, giving the same

control law �N�x�.

Because of the terminal constraint, we know that XN is positive

invariant for the closed-loop system. Next we verify that Ve 0N�x� is a
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Lyapunov function for the closed-loop system. Since è�x;u� is non-

negative, we have from (2.37) and the de®nition of VeN as a sum of

stage costs, that

Ve 0N�x� � ��jx � xsj�
for all x 2 XN , and we have established the required lower bound. The

cost difference can be calculated to establish the required cost decrease

Ve 0N�f �x; �N�x��� � Ve 0N�x�� è�x; �N�x�� � Ve 0N�x����jx � xsj�
for all x 2 XN . The remaining step is to verify the upper-bounding in-

equality. From Assumption 2.54 and (2.38), we know that Ve 0N��� is also
continuous at xs . Therefore, from Proposition 2.38, we have existence

of �2��� 2 K1 such that for all x 2 XN

Ve 0N�x� � �2�jx � xsj�

We have established the three inequalities and Ve 0N��� is therefore a Lya-
punov function in XN for the system x� � f�x; �N�x�� and xs . Theo-
rem 2.13 then establishes that xs is asymptotically stable inXN for the

closed-loop system. �

These stability results can also be extended to time-varying and pe-

riodic systems.

Example 2.57: Economic MPC versus tracking MPC

Consider the linear system

f�x;u� � Ax � Bu A �
"
1=2 1

0 3=4

#
B �

"
0

1

#

with economic cost function

`econ�x;u� � q0x � r 0u q �
"
�2
2

#
r � �10

and sets X � ��10;10�2, U � ��1;1�. The economically optimal steady

state is xs � �8;4�, us � 1. We compare economic MPC to tracking MPC

with

`track�x;u� � jx � xsj210I � ju�usj2I
Figure 2.5 shows a phase plot of the closed-loop evolution starting from

x � ��8;8�. Both controllers use the terminal constraint Xf � fxsg.
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Figure 2.5: Closed-loop economic MPC versus tracking MPC starting

at x � ��8;8� with optimal steady state �8;4�. Both con-

trollers asymptotically stabilize the steady state. Dashed

contours show cost functions for each controller.

While tracking MPC travels directly to the setpoint, economic MPC takes

a detour to achieve lower economic costs.

To prove that the economic MPC controller is stabilizing, we ®nd a

storage function. As a candidate storage function, we take

��x� � �0�x � xs�� �x � xs�0M�x � xs�
which gives the rotated cost function

è�x;u� � `econ�x;u�� ��x�� ��f�x;u��
To start, we take � � �4;8� from the Lagrange multiplier of the

steady-state problem. With M � 0, è��� is nonnegative but not posi-

tive de®nite, indicating that the system is dissipative but not strictly

dissipative. To achieve strict dissipativity, we choose M such that

M �A0MA � 0:01I. Although the resulting è��� function is nonconvex,
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Figure 2.6: Closed-loop evolution under economic MPC. The rotated

cost function Ve 0 is a Lyapunov function for the system.

it is nevertheless positive de®nite on Z, indicating strict dissipativity.

To illustrate, we simulate a variety of initial conditions in Figure 2.6.

Plotting the rotated cost function Ve 0���, we see that it is indeed a Lya-

punov function for the system. �

2.9 Discrete Actuators

Discrete-valued actuators appear in nearly all large-scale industrial pro-

cesses. These obviously include the on/off equipment switches. But,

as discussed in Chapter 1, processes are often designed with multiple

similar units such as furnaces, heaters, chillers, compressors, etc., op-

erating in parallel. In these designs, an important aspect of the control

problem is to choose how many and which of these several possible

units to employ while the total feed ¯owrate to the process varies.

In industrial practice, these discrete decisions are usually removed

from the MPC control layer and instead made at a different layer of
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the automation system using heuristics or other logical rules. If dis-

crete inputs are chosen optimally, however, process performance can

be greatly improved, and thus we would like to treat discrete decisions

directly in MPC theory.

There are two basic issues brought about by including the discrete

actuators in the control decision u. The ®rst is theoretical: how much

does the established MPC theory have to change to accommodate this

class of decision variables? The second is computational: is it practical

to solve the modi®ed MPC optimal control problem in the available

sample time? We address the theory question here, and ®nd that the

required changes to the existing theory are surprisingly minimal. The

computational question is being addressed by the rapid development

of mixed-integer solvers. It is dif®cult to predict what limits might

emerge to slow this progress, but current mixed-integer solvers are

already capable of addressing a not uninteresting class of industrial

applications.

Figure 1.2 provides a representative picture of the main issue. From

this perspective, if we embed the discrete decisions in the ®eld of reals,

we are merely changing the feasible region U, from a simply connected

set with an interior when describing only continuous actuators, to a dis-

connected set thatmay not have an interior when describingmixed con-

tinuous/discrete actuators. So one theoretical approach to the problem

is to adjust the MPC theory to accommodate these types of U regions.

A careful reading of the assumptionsmade for the results presented

thus far reveals that we have little work to do. We have not assumed

that the equilibrium of interest lies in the interior of U, or even that U

has an interior. The main assumption about U are Assumption 2.3 for

the time-invariant case, Assumption 2.26 for the time-varying case, and

Assumption 2.50 for the economic MPC problem. Themain restrictions

are that U is closed, and sometimes compact, so that the optimization

of VN�x;u� over u has a solution. All of these assumptions admit U

regions corresponding to discrete variables. The ®rst conclusion is that

the results governing nominal closed-loop stability for various forms

of MPC all pass through. These include Theorem 2.19 (time-invariant

case), Theorem 2.39 (time-varying case), Theorem 2.24 (`�y;u� stage

cost), and Theorem 2.56 (economic MPC).

That does not mean that nothing has changed. The admissible re-

gion XN in which the system is stabilized may change markedly, for

example. Proposition 2.10 also passes through in the discrete-actuator

case, so we know that the admissible sets are still nested, Xj � Xj�1
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for all j � 0. But it is not unusual for systems with even linear dy-

namics to have disconnected admissible regions, which is not possible

for linear systems with only continuous actuators and convex U. When

tracking a constant setpoint, the design of terminal regions and penal-

ties must account for the fact that the discrete actuators usually remain

at ®xed values in a small neighborhood of the steady state of interest,

and can be used only for rejecting larger disturbances and enhancing

transient performance back to the steady state. Fine control about the

steady state must be accomplished by the continuous actuators that

are unconstrained in a neighborhood of the steady state. But this is

the same issue that is faced when some subset of the continuous ac-

tuators are saturated at the steady state of interest (Rao and Rawlings,

1999), which is a routine situation in process control problems. We

conclude the chapter with an example illustrating these issues.

Example 2.58: MPC with mixed continuous/discrete actuators

Consider a constant-volume tank that needs to be cooled. The system is

diagrammed in Figure 2.7. The two cooling units operate such that they

can be either on or off, and if on, the heat duty must be between ÇQmin

and ÇQmax. After nondimensionalizing, the system evolves according to

dT1
dt

� ���T1 � T0�� �1�T1 � T2�
dT2
dt

� ��2�T2 � T1�� � ÇQ

with � � 2 and � � �1 � �2 � 1. The system states are �T1; T2�, and

the inputs are � ÇQ;nq� with

U �
n
� ÇQ;nq� 2 R� f0;1;2g j nq ÇQmin � ÇQ � nq ÇQmax

o
in which ÇQ is the total cooling duty and nq chooses the number of

cooling units that are on at the given time. For T0 � 40 and ÇQmax � 10,

we wish to control the system to the steady state xs � �35;25�, us �
�10;1�, using costs Q � I and R � 10�3I. The system is discretized

with � � 0:25.

To start, we choose a terminal region and control law. Assuming
ÇQmin > 0, both components of u are at constraints at the steady state,

and thus we cannot use them in a linear terminal control law. The

system is stable for �f �x� � us , however, and a valid terminal cost

is Vf �x� � �x � xs�0P�x � xs� with P satisfying A0PA � P � Q. As

a terminal set we take Xf � fx j Vf �x� � 1g, although any level set
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cooler
ÇQ

tank

T3

T2
T1

T0

Figure 2.7: Diagram of tank/cooler system. Each cooling unit can be

either on or off, and if on, it must be between its (possibly

nonzero) minimum and maximum capacities.

would suf®ce. With this terminal region, Figure 2.8 shows the feasible

sets for ÇQmin � 0 and ÇQmin � 9. Note that for ÇQmin > 0, the projection

of U onto the total heat duty ÇQ is a disconnected set of possible heat

duties, leading to disconnected sets XN for N � 5. (The sets XN for

N � 6 are connected.)

To control the system, we solve the standard MPC problem with

horizon N � 8. Figure 2.9 shows a phase portrait of closed-loop evolu-

tion for various initial conditions with ÇQmin � 9. Each evaluation of the

control law requires solving a mixed-integer, quadratically constrained

QP (with the quadratic constraint due to the terminal region). In gen-

eral, the controller chooses u2 � 1 near the setpoint and u2 2 f0;2g
far from it, although this behavior is not global. Despite the discon-

nected nature of U, all initial conditions are driven asymptotically to

the setpoint. �

2.10 Concluding Comments

MPC is an implementation, for practical reasons, of receding horizon

control (RHC), in which of¯ine determination of the RHC law �N��� is
replaced by online determination of its value �N�x�, the control action,

at each state x encountered during its operation. Because the optimal
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Figure 2.8: Feasible sets XN for two values of ÇQmin. Note that for
ÇQmin � 9 (right-hand side), XN for N � 4 are discon-

nected sets.

control problem that de®nes the control is a ®nite horizon problem, nei-

ther stability nor optimality of the cost function is necessarily achieved

by a receding horizon or model predictive controller.

This chapter shows how stability may be achieved by adding a ter-

minal cost function and a terminal constraint to the optimal control

problem. Adding a terminal cost function adds little or no complexity

to the optimal control problem that has to be solved online, and usu-

ally improves performance. Indeed, the in®nite horizon value function

V0
1��� for the constrained problem would be an ideal choice for the ter-

minal penalty because the value function V0
N��� for the online optimal

control problemwould then be equal to V0
1���, and the controller would

inherit the performance advantages of the in®nite horizon controller.

In addition, the actual trajectories of the controlled system would be

precisely equal, in the absence of uncertainty, to those predicted by

the online optimizer. Of course, if we knew V0
1���, the optimal in®nite

horizon controller �1��� could be determined and there would be no

reason to employ MPC.

The in®nite horizon cost V0
1��� is known globally only for special
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Figure 2.9: Phase portrait for closed-loop evolution of cooler system

with ÇQmin � 9. Line colors show value of discrete actuator

u2.

cases, however, such as the linear quadratic (LQ) unconstrained prob-

lem. For more general problems in which constraints and/or nonlin-

earity are present, its valueÐor approximate valueÐin a neighborhood

of the setpoint can usually be obtained and the use of this local con-

trol Lyapunov function (CLF) should, in general, enhance performance.

Adding a terminal cost appears to be generally advantageous.

The reason for the terminal constraint is precisely the fact that the

terminal penalty is usually merely a local CLF de®ned in the set Xf ; to

bene®t from the terminal cost, the terminal state must be constrained

to lie inXf . Unlike the addition of a terminal penalty, however, addition

of a terminal constraint may increase complexity of the optimal con-

trol problem considerably. Because ef®cient programs exist for solving

quadratic programs (QPs), in which the cost function to beminimized is

quadratic and the constraints polyhedral, there is an argument for us-

ing polyhedral constraints. Indeed, a potential terminal constraint set

for the constrained LQ optimal control problem is the maximal con-
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straint admissible set, which is polyhedral. This set is complex, how-

ever, i.e., de®ned by many linear inequalities, and would appear to be

unsuitable for the complex control problems routinely encountered in

industry.

A terminal constraint set that is considerably simpler is a suitable

sublevel set of the terminal penalty, which is often a simple positive

de®nite quadratic function resulting in a convex terminal constraint

set. A disadvantage is that the terminal constraint set is now ellipsoidal

rather than polytopic, and conventional QPs cannot be employed for the

LQ constrained optimal control problem. This does not appear to be

a serious disadvantage, however, because the optimal control problem

remains convex, so interior point methods may be readily employed.

In the nonlinear case, adding an ellipsoidal terminal constraint set

does not appreciably affect the complexity of the optimal control prob-

lem. A more serious problem, when the system is nonlinear, is that the

optimal control problem is then usually nonconvex so that global solu-

tions, on which many theoretical results are predicated, are usually too

dif®cult to obtain. A method for dealing with this dif®culty, which also

has the advantage of reducing online complexity, is suboptimal MPC,

described in this chapter and also in Chapter 6.

The current chapter also presents some results that contribute to

an understanding of the subject but do not provide practical tools. For

example, it is useful to know that the domain of attraction for many

of the controllers described here is XN , the set of initial states con-

trollable to the terminal constraint set, but this set cannot usually be

computed. The set is, in principle, computable using the dynamic pro-

gramming (DP) equations presented in this chapter, and may be com-

puted if the system is linear and the constraints, including the terminal

constraint, are polyhedral, provided that the state dimension and the

horizon length are suitably smallÐconsiderably smaller than in prob-

lems routinely encountered in industry. In the nonlinear case, this set

cannot usually be computed. Computation dif®culties are not resolved

if XN is replaced by a suitable sublevel set of the value function V0
N���.

Hence, in practice, both for linear and nonlinear MPC, this set has to be

estimated by simulation.

2.11 Notes

MPC has an unusually rich history, making it impossible to summarize

here the many contributions that have been made. Here we restrict
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attention to a subset of this literature that is closely related to the ap-

proach adopted in this book. A fuller picture is presented in the review

paper (Mayne, Rawlings, Rao, and Scokaert, 2000).

The success of conventional MPC derives from the fact that for de-

terministic problems (no uncertainty), feedback is not required so the

solution to the open-loop optimal control problem solved online for a

particular initial state is the same as that obtained by solving the feed-

back problem using DP, for example. Lee and Markus (1967) pointed

out the possibility of MPC in their book on optimal control.

One technique for obtaining a feedback controller synthe-

sis is to measure the current control process state and then

compute very rapidly the open-loop control function. The

®rst portion of this function is then used during a short time

interval after which a newmeasurement of the process state

is made and a new open-loop control function is computed

for this new measurement. The procedure is then repeated.

Even earlier, Propoi (1963) proposed a form of MPC utilizing linear

programming, for the control of linear systems with hard constraints

on the control. A big surge in interest in MPC occurred when Richalet,

Rault, Testud, and Papon (1978b) advocated its use for process con-

trol. A whole series of papers, such as (Richalet, Rault, Testud, and

Papon, 1978a), (Cutler and Ramaker, 1980), (Prett and Gillette, 1980),

(GarcÂõa and Morshedi, 1986), and (Marquis and Broustail, 1988) helped

cement its popularity in the process control industries, and MPC soon

became the most useful method in modern control technology for con-

trol problems with hard constraintsÐwith thousands of applications

to its credit.

The basic question of stability, an important issue since optimizing

a ®nite horizon cost does not necessarily yield a stabilizing control,

was not resolved in this early literature. Early academic research in

MPC, reviewed in GarcÂõa, Prett, and Morari (1989), did not employ Lya-

punov theory and therefore restricted attention to control of uncon-

strained linear systems, studying the effect of control and cost hori-

zons on stability. Similar studies appeared in the literature on gener-

alized predictive control (GPC) (Ydstie, 1984; Peterka, 1984; De Keyser

and Van Cauwenberghe, 1985; Clarke, Mohtadi, and Tuffs, 1987) that

arose to address de®ciencies in minimum variance control. Inter-

estingly enough, earlier research on RHC (Kleinman, 1970; Thomas,

1975; Kwon and Pearson, 1977) had shown indirectly that the impo-
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sition of a terminal equality constraint in the ®nite horizon optimal

control problem ensured closed-loop stability for linear unconstrained

systems. That a terminal equality constraint had an equally bene®-

cial effect for constrained nonlinear discrete time systems was shown

by Keerthi and Gilbert (1988) and for constrained nonlinear continu-

ous time systems by Chen and Shaw (1982) and Mayne and Michalska

(1990). In each of these papers, Lyapunov stability theory was em-

ployed in contrast to the then current literature on MPC and GPC.

The next advance showed that incorporation of a suitable termi-

nal cost and terminal constraint in the ®nite horizon optimal control

problem ensured closed-loop stability; the terminal constraint set is

required to be control invariant, and the terminal cost function is re-

quired to be a local CLF. Perhaps the earliest proposal in this direction

is the brief paper by Sznaier and Damborg (1987) for linear systems

with polytopic constraints; in this prescient paper the terminal cost is

chosen to be the value function for the unconstrained in®nite horizon

optimal control problem, and the terminal constraint set is the maxi-

mal constraint admissible set (Gilbert and Tan, 1991) for the optimal

controlled system.6 A suitable terminal cost and terminal constraint

set for constrained nonlinear continuous time systems was proposed

in Michalska and Mayne (1993) in the context of dual-mode MPC. In

a paper that has had considerable impact, Chen and AllgÈower (1998)

showed that similar ingredients may be employed to stabilize con-

strained nonlinear continuous time systems when conventional MPC

is employed. Related results were obtained by Parisini and Zoppoli

(1995), and De Nicolao, Magni, and Scattolini (1996).

Stability proofs for the form of MPC proposed, but not analyzed,

in Sznaier and Damborg (1987) were ®nally provided by Chmielewski

and Manousiouthakis (1996) and Scokaert and Rawlings (1998). These

papers also showed that optimal control for the in®nite horizon con-

strained optimal control problem for a speci®ed initial state is achieved

if the horizon is chosen suf®ciently long. A terminal constraint is not

required if a global, rather than a local, CLF is available for use as a

terminal cost function. Thus, for the case when the system being con-

trolled is linear and stable, and subject to a convex control constraint,

Rawlings and Muske (1993) showed, in a paper that raised consider-

able interest, that closed-loop stability may be obtained if the terminal

6If the optimal in®nite horizon controlled system is described by x� � AKx and if

the constraints are u 2 U and x 2 X, then the maximal constraint admissible set is

fx j AiKx 2 X; KAiKx 2 U 8i 2 I�0g.
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constraint is omitted and the in®nite horizon cost using zero control is

employed as the terminal cost. The resultant terminal cost is a global

CLF.

The basic principles ensuring closed-loop stability in these andmany

other papers including (De Nicolao, Magni, and Scattolini, 1998), and

(Mayne, 2000) were distilled and formulated as ªstability axiomsº in

the review paper (Mayne et al., 2000); they appear as Assumptions 2.2,

2.3, and 2.14 in this chapter. These assumptions provide suf®cient

conditions for closed-loop stability for a given horizon. There is an al-

ternative literature that shows that closed-loop stability may often be

achieved if the horizon is chosen to be suf®ciently long. Contributions

in this direction include (Primbs and NevistiÂc, 2000), (Jadbabaie, Yu,

and Hauser, 2001), as well as (Parisini and Zoppoli, 1995; Chmielewski

andManousiouthakis, 1996; Scokaert and Rawlings, 1998) alreadymen-

tioned. An advantage of this approach is that it avoids addition of an

explicit terminal constraint, although this may be avoided by alterna-

tive means as shown in Section 2.6. A signi®cant development of this

approach (GrÈune and Pannek, 2017) gives a comprehensive investiga-

tion and extension of the conditions that ensure recursive feasibility

and stability of MPC that does not have a terminal constraint. On the

other hand, it has been shown (Mayne, 2013) that an explicit or implicit

terminal constraint is necessary if positive invariance and the nested

propertyXj�1 � Xj , j 2 I�0 of the feasible sets are required; the nested
property ensures recursive feasibility.

Recently several researchers (Limon, Alvarado, Alamo, and Cama-

cho, 2008, 2010; Fagiano and Teel, 2012; Falugi and Mayne, 2013a;

MÈuller and AllgÈower, 2014; Mayne and Falugi, 2016) have shown how

to extend the region of attraction XN , and how to solve the related

problem of tracking a randomly varying referenceÐthereby alleviating

the disadvantage caused by the reduction in the region of attraction

due to the imposition of a terminal constraint. Attention has also been

given to the problem of tracking a periodic reference using model pre-

dictive control (Limon et al., 2012; Falugi and Mayne, 2013b; Rawlings

and Risbeck, 2017).

Regarding the analysis of nonpositive stage costs in Section 2.4.4,

Grimm, Messina, Tuna, and Teel (2005) use a storage function like ����
to compensate for a semide®nite stage cost. Cai and Teel (2008) give a

discrete time converse theorem for IOSS for all Rn. Allan and Rawlings

(2018) give a converse theorem for IOSS on closed positive invariant

sets and provide a lemma for changing the supply rate function.
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Suboptimal MPC based on a warm start was proposed and analyzed

by Scokaert et al. (1999). Pannocchia et al. (2011) establish that this

form of suboptimal MPC is robustly stable for systems without state

constraints if the terminal constraint is replaced with an enlarged ter-

minal penalty. As noted by Yu, Reble, Chen, and AllgÈower (2014), how-

ever, the assumptions used for these results are strong enough to im-

ply that the optimal value function is continuous. Allan et al. (2017)

establish robustness for systems with discontinuous feedback and dis-

continuous optimal value function.

Lazar and Heemels (2009) analyze robustness of suboptimal MPC

with respect to state disturbances under the condition that the sub-

optimal controller is able to ®nd a solution within a speci®c degree

of suboptimality from the global solution. Roset, Heemels, Lazar, and

Nijmeijer (2008), show how to extend the analysis to treat measure-

ment disturbances as well as state disturbances. Because this type of

suboptimal MPC is de®ned in terms of the globally optimal cost, its

implementation requires, in principle, global solvers.

Economic MPC was introduced in Rawlings and Amrit (2009), but

designing process controllers other than MPC to optimize process eco-

nomics has been a part of industrial practice for a long time. When

using an economic (as opposed to tracking) stage cost, cost inequali-

ties and conditions for asymptotic stability have been established for

time-invariant systems with a steady state (Diehl et al., 2011; Amrit,

Rawlings, and Angeli, 2011; Angeli et al., 2012; Ellis, Durand, and Chris-

to®des, 2014). Such results have been extended in Zanon, Gros, and

Diehl (2013) to the time-varying periodic case under the assumptions

of a linear storage function and Lipschitz continuity of the model and

stage cost; Rawlings and Risbeck (2017) require only continuity of the

model and stage cost, and allow a more general form for the storage

function.

For the case of a time-invariant system with optimal periodic opera-

tion, convergence to the optimal periodic solution can be shown using

similar notions of dissipativity (MÈuller and GrÈune, 2015); but this case is

different than the case treated by Rawlings and Risbeck (2017) because

clock time does not appear. In MÈuller, Angeli, and AllgÈower (2015),

the authors establish the interesting result that a certain dissipativ-

ity condition is also necessary for asymptotic stability. For periodic

processes, stability has been investigated by converting to deviation

variables (Huang, Harinath, and Biegler, 2011; Rawlings and Risbeck,

2017).
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Various results on stability of MPC with discrete actuators have ap-

peared in the literature. In Bemporad and Morari (1999), convergence

to the origin is shown for mixed-logical-dynamical systems based on

certain positive de®nite restrictions on the stage cost, although Lya-

punov stability is not explicitly shown. For piecewise af®ne systems,

Baotic, Christophersen, and Morari (2006) establish asymptotic sta-

bility for an in®nite horizon control law via Lyapunov function argu-

ments. In Di Cairano, Heemels, Lazar, and Bemporad (2014), a hybrid

Lyapunov function is directly embedded within the optimal control

problem, enforcing cost decrease as a hard constraint and ensuring

closed-loop asymptotic stability. Alternatively, practical stability (i.e.,

boundedness) can often be shown by treating discretization of inputs

as a disturbance and deriving error bounds with respect to the relaxed

continuous-actuator system (Quevedo, Goodwin, and De DonÂa, 2004;

Aguilera and Quevedo, 2013; Kobayshi, Shein, and Hiraishi, 2014). Fi-

nally, Picasso, Pancanti, Bemporad, and Bicchi (2003) shows asymptotic

stability for open-loop stable linear systems with only practical stabil-

ity for open-loop unstable systems. All of these results are concerned

with stability of a steady state.

The approach presented in this chapter, which shows that current

MPC asymptotic stability theorems based on Lyapunov functions also

cover general nonlinear systems with mixed continuous/discrete actu-

ators, was developed by Rawlings and Risbeck (2017).
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2.12 Exercises

Exercise 2.1: Discontinuous MPC

In Example 2.8, compute U3�x�, V
0
3 �x�, and �3�x� at a few points on the unit circle.

Exercise 2.2: Boundedness of discrete time model

Consider the continuous time differential equation Çx � fc�x;u�, and its discrete time

counterpart x� � f�x;u�. Suppose that fc��� is continuous, and there exists a positive

constant c such that��fc�x0; u�� fc�x;u��� � c ��x0 � x�� 8x;x0 2 R
n; u 2 U

Show that f��� is bounded on bounded sets. Moreover, if U is bounded, show that

f�1��� is bounded on bounded sets.

Exercise 2.3: Destabilization with state constraints

Consider a state feedback regulation problem with the origin as the setpoint (Muske

and Rawlings, 1993). Let the system be

A �
"

4=3 �2=3
1 0

#
B �

"
1

0

#
C � ��2=3 1�

and the controller objective function tuning matrices be

Q � I R � I N � 5

(a) Plot the unconstrained regulator performance starting from initial condition

x�0� �
h
3 3

i0
.

(b) Add the output constraint y�k� � 0:5. Plot the response of the constrained

regulator (both input and output). Is this regulator stabilizing? Can you modify

the tuning parameters Q;R to affect stability as in Section 1.3.4?

(c) Change the output constraint to y�k� � 1 � �; � > 0. Plot the closed-loop re-

sponse for a variety of �. Are any of these regulators destabilizing?

(d) Set the output constraint back to y�k� � 0:5 and add the terminal constraint

x�N� � 0. What is the solution to the regulator problem in this case? Increase

the horizon N. Does this problem eventually go away?

Exercise 2.4: Computing the projection of Z onto XN

Given a polytope

Z :� f�x;u� 2 R
n �Rm j Gx �Hu �  g

write an Octave or MATLAB program to determine X, the projection of Z onto Rn

X � fx 2 R
n j 9u 2 R

m such that �x;u� 2 Zg
Use algorithms 3.1 and 3.2 in Keerthi and Gilbert (1987).

To check your program, consider a system

x� �
"
1 1

0 1

#
x �

"
0

1

#
u
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subject to the constraints X � fx j x1 � 2g and U � fu j �1 � u � 1g. Consider the
MPC problem with N � 2, u � �u�0�;u�1��, and the set Z given by

Z � f�x;u� j x;��1;x;u�;��2;x;u� 2 X and u�0�;u�1� 2 Ug
Verify that the set

X2 :� fx 2 R
2 j 9u 2 R

2 such that �x;u� 2 Zg
is given by

X2 � fx 2 R
2 j Px � pg P �

2641 0

1 1

1 2

375 p �
26422
3

375
Exercise 2.5: Computing the maximal output admissible set

Write an Octave or MATLAB program to determine the maximal constraint admissible

set for the system x� � Fx;y � Hx subject to the hard constraint y 2 Y in which

Y � fy j Ey � eg. Use algorithm 3.2 in Gilbert and Tan (1991).

To check your program, verify for the system

F �
"
0:9 1

0 0:09

#
H �

h
1 1

i
subject to the constraint Y � fy j �1 � y � 1g, and that the maximal output admissi-

ble set is given by

O1 � fx 2 R
2 j Ax � bg A �

266666664

1 1

�1 �1
0:9 1:09
�0:9 �1:09
0:81 0:9981
�0:81 �0:9981

377777775 b �

266666664

1

1

1

1

1

1

377777775
Show that t�, the smallest integer t such that Ot � O1 satis®es t� � 2.

What happens to t� as F22 increases and approaches one? What do you conclude

for the case F22 � 1?

Exercise 2.6: Terminal constraint and region of attraction

Consider the system

x� � Ax � Bu
subject to the constraints

x 2 X u 2 U

in which

A �
"
2 1

0 2

#
B �

"
1 0

0 1

#
X � fx 2 R

2 j x1 � 5g U � fu 2 R
2 j �1 � u � 1g

and 1 2 R2 is a vector of ones. The MPC cost function is

VN�x;u� �
N�1X
i�0

`�x�i�;u�i��� Vf �x�N��

in which

`�x;u� � �1=2�� jxj2Q � juj2 � Q �
"
� 0

0 �

#
and Vf ��� is the terminal penalty on the ®nal state.
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Figure 2.10: Region of attraction (shaded region) for constrained

MPC controller of Exercise 2.6.

(a) Implement unconstrained MPC with no terminal cost (Vf ��� � 0) for a few values

of �. Choose a value of � for which the resultant closed loop is unstable. Try

N � 3.

(b) Implement constrained MPC with no terminal cost or terminal constraint for the

value of � obtained in the previous part. Is the resultant closed loop stable or

unstable?

(c) Implement constrained MPC with terminal equality constraint x�N� � 0 for the

same value of �. Find the region of attraction for the constrained MPC controller

using the projection algorithm from Exercise 2.4. The result should resemble

Figure 2.10.

Exercise 2.7: In®nite horizon cost to go as terminal penalty

Consider the system

x� � Ax � Bu
subject to the constraints

x 2 X u 2 U

in which

A �
"
2 1

0 2

#
B �

"
1 0

0 1

#
and

X � fx 2 R
2 j �5 � x1 � 5g U � fu 2 R

2j � 1 � u � 1g



2.12 Exercises 175

�3

�2

�1

0

1

2

3

�3 �2 �1 0 1 2 3

x2

x1

Figure 2.11: The region Xf , in which the unconstrained LQR control

law is feasible for Exercise 2.7.

The cost is

VN�x;u� :�
N�1X
i�0

`�x�i�;u�i��� Vf �x�N��

in which

`�x;u� � �1=2��jxj2Q � juj2� Q �
"
� 0

0 �

#
and Vf ��� is the terminal penalty on the ®nal state and 1 2 R2 is a vector of all ones.

Use � � 10�5 and N � 3 and terminal cost Vf �x� � �1=2�x0�x where � is the solution

to the steady-state Riccati equation.

(a) Compute the in®nite horizon optimal cost and control law for the unconstrained

system.

(b) Find the region Xf , the maximal constraint admissible set using the algorithm in

Exercise 2.5 for the system x� � �A�BK�x with constraints x 2 X and Kx 2 U.

You should obtain the region shown in Figure 2.11.

(c) Add a terminal constraint x�N� 2 Xf and implement constrained MPC. FindXN ,

the region of attraction for the MPC problem with Vf ��� as the terminal cost and

x�N� 2 Xf as the terminal constraint. Contrast it with the region of attraction

for the MPC problem in Exercise 2.6 with a terminal constraint x�N� � 0.

(d) Estimate ÅXN , the set of initial states for which the MPC control sequence for

horizon N is equal to the MPC control sequence for an in®nite horizon.

Hint: x 2 ÅXN if x0�N;x� 2 int�Xf �. Why?
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Exercise 2.8: Terminal penalty with and without terminal constraint

Consider the system

x� � Ax � Bu
subject to the constraints

x 2 X u 2 U

in which

A �
"
2 1

0 2

#
B �

"
1 0

0 1

#
and

X � fx 2 R
2 j �15 � x1 � 15g U � fu 2 R

2j � 5 � 1 � u � 5 � 1g
The cost is

VN�x;u� �
N�1X
i�0

`�x�i�;u�i��� Vf �x�N��

in which

`�x;u� � �1=2��jxj2Q � juj�2 Q �
"
� 0

0 �

#
Vf ��� is the terminal penalty on the ®nal state, and 1 2 R2 is a vector of ones.

Use � � 10�5 and N � 3 and terminal cost Vf �x� � �1=2�x0�x where Vf ��� is the
in®nite horizon optimal cost for the unconstrained problem.

(a) Add a terminal constraint x�N� 2 Xf , in which Xf is the maximal constraint

admissible set for the system x� � �A � BK�x and K is the optimal controller

gain for the unconstrained problem. Using the code developed in Exercise 2.7,

estimate XN , the region of attraction for the MPC problem with this terminal

constraint and terminal cost. Also estimate ÅXN , the region for which the MPC

control sequence for horizon N is equal to the MPC control sequence for in®nite

horizon. Your results should resemble Figure 2.12.

(b) Remove the terminal constraint and estimate the domain of attraction ÃXN (by

simulation). Compare this ÃXN with XN and ÅXN obtained previously.

(c) Change the terminal cost to Vf �x� � �3=2�x0�x and repeat the previous part.

Exercise 2.9: Decreasing property for the time-varying case

Consider the time-varying optimal control problem speci®ed in 2.4.5. Suppose that

Vf ��� and Xf satisfy the basic stability assumption, Assumption 2.33 Prove that the

value function V0
N��� has the decreasing property

V0
N��x; i�

�� � V0
N�x; i�� `�x; i; �N�x; i��

for all �x; i� 2 XI.

Exercise 2.10: Terminal cost bound for the time-varying case

Refer to Section 2.4.5. Prove that the value function V0
N��� satis®es

V0
N�x; i� � Vf �x; i�N� 8�x; i� 2 Xf �i�N�� I�0
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Figure 2.12: The region of attraction for terminal constraint x�N� 2
Xf and terminal penalty Vf �x� � �1=2�x0�x and the

estimate of ÅXN for Exercise 2.8.

Exercise 2.11: Modi®cation of terminal cost

Refer to Section 2.6. Show that the pair ��Vf ���;Xf � satis®es Assumption 2.14 if

�Vf ���;Xf � satis®es this assumptions, � � 1, and `��� satis®es Assumption 2.2.

Exercise 2.12: A Lyapunov theorem for asymptotic stability

Prove the asymptotic stability result for Lyapunov functions.

Theorem 2.59 (Lyapunov theorem for asymptotic stability). Given the dynamic system

x� � f�x� 0 � f�0�
The origin is asymptotically stable if there existK functions �, �, , and r > 0 such that

Lyapunov function V satis®es for x 2 rB
��jxj� � V�x� � ��jxj�
V�f�x��� V�x� � ��jxj�

Exercise 2.13: An MPC stability result

Given the following nonlinear model and objective function

x� � f�x;u�; 0 � f�0;0�
x�0� � x

VN�x;u� �
N�1X
k�0

`�x�k�;u�k��
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Consider the terminal constraint MPC regulator

min
u
VN�x;u�

subject to

x� � f�x;u� x�0� � x x�N� � 0

and denote the ®rst move in the optimal control sequence as u0�x�. Given the closed-

loop system

x� � f�x;u0�x��

(a) Prove that the origin is asymptotically stable for the closed-loop system. State

the cost function assumption and controllability assumption required so that

the control problem is feasible for some set of de®ned initial conditions.

(b) What assumptions about the cost function `�x;u� are required to strengthen the
controller so that the origin is exponentially stable for the closed-loop system?

How does the controllability assumption change for this case?

Exercise 2.14: Stability using observability instead of IOSS

Assume that the system x� � f�x;u�, y � h�x� is `-observable, i.e., there exists a

� 2 K and an integer No � 1 such that

No�1X
j�0

`�y�i�;u�i�� � ��jxj�

for all x and all u; here x�i� :� ��i;x;u� and y�i� :� h�x�i��. Prove the result given in

Section 2.4.4 that the origin is asymptotically stable for the closed-loop system x� �
f�x; �N�x�� using the assumption that x� � f�x;u�, y � h�x� is `-observable rather
than IOSS. Assume that N � No.

Exercise 2.15: Input/output-to-state stability (IOSS) and convergence

Proposition 2.60 (Convergence of state under IOSS). Assume that the system x� � f�x;
u�, y � h�x� is IOSS and that u�i� ! 0 and y�i� ! 0 as i ! 1. Then x�i� � ��i;x;
u�! 0 as i!1 for any initial state x.

Prove Proposition 2.60. Hint: consider the solution at time k� l using the state at

time k as the initial state.

Exercise 2.16: Equality for quadratic functions

Prove the following result which is useful for analyzing the unreachable setpoint prob-

lem.

Lemma 2.61 (An equality for quadratic functions). Let X be a nonempty compact sub-

set of Rn, and let `��� be a strictly convex quadratic function on X de®ned by `�x� :�
�1=2�x0Qx � q0x � c; Q > 0: Consider a sequence �x�i��i2I1:P with mean ÅxP :�
�1=P�

PP
i�1 x�i�: Then the following holds

PX
i�1

`�x�i�� � �1=2�
PX
i�1

jx�i�� ÅxP j2Q � P`�ÅxP �
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It follows from this lemma that `�ÅxP � � �1=P�
PP
i�1 `�x�i��, which is Jensen's

inequality for the special case of a quadratic function.

Exercise 2.17: Unreachable setpoint MPC and evolution in a compact set

Prove the following lemma, which is useful for analyzing the stability of MPC with an

unreachable setpoint.

Lemma 2.62 (Evolution in a compact set). Suppose x�0� � x lies in the set XN . Then

the state trajectory �x�i�� where, for each i, x�i� � �f �i;x� of the controlled system

x� � f�x� evolves in a compact set.

Exercise 2.18: MPC and multivariable, constrained systems

Consider a two-input, two-output process with the following transfer function

G�s� �

26664
2

10s � 1

2

s � 1
1

s � 1
� 4

s � 1

37775

(a) Consider a unit setpoint change in the ®rst output. Choose a reasonable sample

time, �. Simulate the behavior of an offset-free discrete time MPC controller

with Q � I; S � I and large N.

(b) Add the constraint �1 � u�k� � 1 and simulate the response.

(c) Add the constraint �0:1 � �u=� � 0:1 and simulate the response.

(d) Add signi®cant noise to both output measurements (make the standard devia-

tion in each output about 0.1). Retune the MPC controller to obtain good perfor-

mance. Describe which controller parameters you changed and why.

Exercise 2.19: LQR versus LAR

We are now all experts on the linear quadratic regulator (LQR), which employs a linear

model and quadratic performance measure. Let's consider the case of a linear model

but absolute value performance measure, which we call the linear absolute regulator

(LAR)7

min
u

N�1X
k�0

�
q jx�k�j � r ju�k�j�� q�N� jx�N�j

For simplicity consider the following one-step controller, in which u and x are scalars

min
u�0�

V�x�0�;u�0�� � jx�1�j � ju�0�j

subject to

x�1� � Ax�0�� Bu�0�
Draw a sketch of x�1� versus u�0� (recall x�0� is a known parameter) and show

the x-axis and y-axis intercepts on your plot. Now draw a sketch of V�x�0�;u�0��
versus u�0� in order to see what kind of optimization problem you are solving. You

7Laplace would love us for making this choice, but Gauss would not be happy.
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may want to plot both terms in the objective function individually and then add them

together to make your V plot. Label on your plot the places where the cost function V
suffers discontinuities in slope. Where is the solution in your sketch? Does it exist for

all A;B;x�0�? Is it unique for all A;B;x�0�?
The motivation for this problem is to change the quadratic program (QP) of the

LQR to a linear program (LP) in the LAR, because the computational burden for LPs is

often smaller than QPs. The absolute value terms can be converted into linear terms

with the introduction of slack variables.

Exercise 2.20: Unreachable setpoints in constrained versus unconstrained
linear systems

Consider the linear system with input constraint

x� � Ax � Bu u 2 U

We examine here both unconstrained systems in which U � Rm and constrained sys-

tems in which U � Rm is a convex polyhedron. Consider the stage cost de®ned in terms

of setpoints for state and input xsp, usp

`�x;u� � �1=2�� ���x � xsp���2Q � ���u�usp

���2
R

�
in which we assume for simplicity that Q;R > 0. For the setpoint to be unreachable in

an unconstrained problem, the setpoint must be inconsistent, i.e., not a steady state of

the system, or

xsp � Axsp � Busp

Consider also using the stage cost centered at the optimal steady state �xs ; us�

`s�x;u� � �1=2�
� jx � xs j2Q � ju�us j2R �

The optimal steady state satis®es

�xs ; us� � argmin
x;u

`�x;u�

subject to h
I �A �B

i"x
u

#
� 0 u 2 U

Figure 2.13 depicts an inconsistent setpoint, and the optimal steady state for uncon-

strained and constrained systems.

(a) For unconstrained systems, show that optimizing the cost functionwith terminal

constraint

V�x;u� :�
N�1X
k�0

`�x�k�;u�k��

subject to

x� � Ax � Bu x�0� � x x�N� � xs
gives the same solution as optimizing the cost function

Vs�x;u� :�
N�1X
k�0

`s�x�k�;u�k��

subject to the same model constraint, initial condition, and terminal constraint.

Therefore, there is no reason to consider the unreachable setpoint problem fur-

ther for an unconstrained linear system. Shifting the stage cost from `�x;u� to
`s�x;u� provides identical control behavior and is simpler to analyze.
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`�x;u� � const

unconstrained

unreachable

`s �x;u� � const

�xs
;us

�

�xs
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�

�xsp;usp�

`s �x;u� � const

constrained

steady-state line

U

x

u

Figure 2.13: Inconsistent setpoint �xsp; usp�, unreachable stage cost

`�x;u�, and optimal steady states �xs ; us�, and stage

costs `s�x;u� for constrained and unconstrained sys-

tems.

Hint. First de®ne a third stage cost l�x;u� � `�x;u���0��I�A�x�
Bu�, and show, for any �, optimizing with l�x;u� as stage cost is

the same as optimizing using `�x;u� as stage cost. Then set � �
�s , the optimal Lagrange multiplier of the steady-state optimization

problem.

(b) For constrained systems, provide a simple example that shows optimizing the

cost function V�x;u� subject to

x� � Ax � Bu x�0� � x x�N� � xs u�k� 2 U for all k 2 I0:N�1

does not give the same solution as optimizing the cost function Vs�x;u� sub-
ject to the same constraints. For constrained linear systems, these problems

are different and optimizing the unreachable stage cost provides a new design

opportunity.

Exercise 2.21: Filing for patent

An excited graduate student shows up at your of®ce. He begins, ªLook, I have discov-

ered a great money-making scheme using MPC.º You ask him to tell you about it. ªWell,º

he says, ªyou told us in class that the optimal steady state is asymptotically stable even

if you use the stage cost measuring distance from the unreachable setpoint, right?º You

reply, ªYes, that's what I said.º He continues, ªOK, well look at this little sketch I drew,º

and he shows you a picture like Figure 2.14. ªSo imagine I use the in®nite horizon cost

function so the open-loop and closed-loop trajectories are identical. If the best steady

state is asymptotically stable, then the stage cost asymptotically approaches `�xs ; us�,
right?º You reply, ªI guess that looks right.º He then says, ªOK, well if I look at the

optimal cost using state x at time k and state x� at time k � 1, by the principle of

optimality I get the usual cost decreaseº

V0�x�� � V0�x�� `�x;u0�x�� (2.39)
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V0�x�

V0�x��

k� 1k k� 2 k� 3 k� 4 k� 5 k� 6

`�x;u0�x��

`�xs ; us�

k� 7

0

`

Figure 2.14: Stage cost versus time for the case of unreachable set-

point. The cost V 0�x�k�� is the area under the curve to

the right of time k.

You interrupt, ªWait, these V0��� costs are not bounded in this case!º Unfazed, the

student replies, ªYeah, I realize that, but this sketch is basically correct regardless.

Say we just make the horizon really long; then the costs are all ®nite and this equation

becomes closer and closer to being true as wemake the horizon longer and longer.º You

start to feel a little queasy at this point. The student continues, ªOK, so if this inequality

basically holds, V0�x�k�� is decreasing with k along the closed-loop trajectory, it is

bounded below for all k, it converges, and, therefore, `�x�k�;u0�x�k��� goes to zero

as k goes to1.º You de®nitely don't like where this is heading, and the student ®nishes

with, ªBut `�x;u� � 0 implies x � xsp and u � usp, and the setpoint is supposed to

be unreachable. But I have proven that in®nite horizon MPC can reach an unreachable

setpoint. We should patent this!º

How do you respond to this student? Here are some issues to consider.

1. Does the principle of optimality break down in the unreachable setpoint case?

2. Are the open-loop and closed-loop trajectories identical in the limit of an in®nite

horizon controller with an unreachable setpoint?

3. Does inequality (2.39) hold as N !1? If so, how can you put it on solid footing?

If not, why not, and with what do you replace it?

4. Do you ®le for patent?

Exercise 2.22: Stabilizable with small controls

Consider a time-varying system x�i � 1� � f�x;u; i� with stage cost `�x;u; i� and
terminal cost Vf �x; i� satisfying Assumptions 2.25, 2.26, and 2.33. Suppose further

that functions f��� and `��� are uniformly bounded byK1 functions �f and �`, i.e.,��f�x;u; i��� � �fx�jxj���fu�juj�
`�x;u; i� � �`x�jxj���`u�juj�

for all i 2 I�0. Prove that if there exists a K1 function ��� such that for each x 2
XN�i�, there exists u 2 UN�x; i� with juj � �jxj�, then there exists a K1 function

���� such that

V0�x; i� � ��jxj�
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for all i 2 I�0 and x 2 XN�i�.

Hint: the following inequality may prove useful: for anyK1 function � (see (B.1))

��s1 � s2 � � � � � sN� � ��Ns1����Ns2�� � � � ���NsN�

Exercise 2.23: Power lifting

Consider a stabilizable T -periodic linear system

x�i� 1� � A�i�x�i�� B�i�u�i�
with positive de®nite stage cost

`�x;u; i� :� 1

2

�
x0Q�i�x �u0R�i�u�

Suppose there exist periodic control laws K�i� and cost matrices P�i� satisfying the

periodic Riccati equation

P�i� � Q�i��A�i�0P�i� 1� �A�i�� B�i�K�i��
K�i� � � �B�i�0P�i� 1�B�i�� R�i���1 B�i�0P�i� 1�A�i�

Show that the control law K :� diag�K�0�; : : : ; K�T � 1�� and cost P :� diag�P�0�; : : : ;
P�T � 1�� satisfy the Riccati equation for the time-invariant lifted system

A :�

266666664

0 0 � � � 0 A�T � 1�
A�0� 0 � � � 0 0

0 A�1� � � � 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 � � � A�T � 2� 0

377777775

B :�

266666664

0 0 � � � 0 B�T � 1�
B�0� 0 � � � 0 0

0 B�1� � � � 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 � � � B�T � 2� 0

377777775
Q :� diag�Q�0�; : : : ;Q�T � 1��

R :� diag�R�0�; : : : ; R�T � 1��

By uniqueness of solutions to the Riccati equation, this system can be used to synthe-

size control laws for periodic systems.

Exercise 2.24: Feasible warm start in Xf

Establish Proposition 2.42, which states that for any x 2 Xf , the following warm start

is feasible

uef �x� :� ��f �x�; �f �f �x; �f �x���; : : : � 2 Ue N�x�
Recall that a warm start ue is a member of Ue N�x� if all elements of the sequence of

controls are members of U, the state trajectory ��k;x;ue� terminates in Xf , and VN�x;

ue� is less than Vf �x�.
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Exercise 2.25: The geometry of cost rotation

Let's examine the rotated cost function in the simplest possible setting to understand

what ªrotationº means in this context. Consider the discrete time dynamic model and

strictly convex quadratic cost function

x� � f�x;u� `�x;u� � �1=2����x � xsp��2Q � ��u�usp

��2
R

�
with x 2 Rn, u 2 Rm, ` : Rn � Rm ! R�0, Q 2 Rn�n; R 2 Rm�m with Q;R > 0.

We de®ne the feasible control region as u 2 U for some nonempty set U. We wish to

illustrate the ideas with the following simple linear system

f�x;u� � Ax � Bu A � 1=2 B � 1=2

subject to polyhedral constraint

U � fu j �1 � u � 1g
We choose an unreachable setpoint that is not a steady state, and cost matrices as

follows

�usp; xsp� � �2;3� Q � R � 2

The optimal steady state �us ; xs� is given by the solution to the following optimization

�us ; xs� � argmin
u;x

f`�x;u� j u 2 U; x � f�x;u�g (2.40)

(a) Solve this quadratic program and show that the solution is �xs ; us� � �1;1�.
What is the Lagrange multiplier for the equality constraint?

(b) Next we de®ne the rotated cost function following Diehl et al. (2011)

è�x;u� � `�x;u�� �0�x � f�x;u��� `�xs ; us�
Plot the contour of zero rotated cost è�x;u� � 0 for three � values, � � 0;�8;
�12. Compare your contours to those shown in Figure 2.15.

Notice that as you decrease �, you rotate (and enlarge) the zero cost contour of

`�x;u� about the point �xs ; us�, hence the name rotated stage cost.

(c) Notice that the original cost function, which corresponds to � � 0, has negative

cost values (interior of the circle) that are in the feasible region. The zero contour

for � � �8 has become tangent to the feasible region, so the cost is nonnegative

in the feasible region. But for � � �12, the zero contour has been over rotated

so that it again has negative values in the feasible region.

How does the value � � �8 compare to the Lagrange multiplier of the optimal

steady-state problem?

(d) Explain why MPC based on the rotated stage cost is a Lyapunov function for the

closed-loop system.

Exercise 2.26: Strong duality implies dissipativity

Consider again the steady-state economic problem Ps for the optimal steady state �xs ;
us�

`�xs ; us� :� min
�x;u�2Z

f`�x;u� j x � f�x;u�g
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Figure 2.15: Rotated cost-function contour è�x;u� � 0 (circles) for

� � 0;�8;�12. Shaded region shows feasible region

where è�x;u� < 0.

Form the Lagrangian and show that the solution is given also by

`�xs ; us� � min
�x;u�2Z

max
�
`�x;u�� �0�x � f�x;u��

Switching the order of min and max gives

min
�x;u�2Z

max
�
`�x;u�� �0�x � f�x;u�� �max

�
min

�x;u�2Z
`�x;u�� �0�x � f�x;u��

due to weak duality. The strong duality assumption states that equality is achieved in

this inequality above, so that

`�xs ; us� �max
�

min
�x;u�2Z

`�x;u�� �0�x � f�x;u��

Let �s denote the optimal Lagrange multiplier in this problem. (For a brief review of

these concepts, see also Exercises C.4, C.5, and C.6 in Appendix C.)

Show that the strong duality assumption implies that the system x� � f�x;u� is
dissipative with respect to the supply rate s�x;u� � `�x;u�� `�xs ; us�.
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3

Robust and Stochastic Model Predictive

Control

3.1 Introduction

3.1.1 Types of Uncertainty

Robust and stochastic control concern control of systems that are un-

certain in some sense so that predicted behavior based on a nominal

model is not identical to actual behavior. Uncertainty may arise in dif-

ferent ways. The system may have an additive disturbance that is un-

known, the state of the system may not be perfectly known, or the

model of the system that is used to determine control may be inaccu-

rate.

A systemwith additive disturbance satis®es the following difference

equation

x� � f�x;u;w�

If the disturbancew in constrained optimal control problems is bounded

it is often possible to design a model predictive controller that ensures

the state and control constraints are satis®ed for all possible distur-

bance sequences (robust MPC). If the disturbance w is unbounded, it

is impossible to ensure that the usual state and control constraints are

satis®ed for all disturbance sequences. Themodel predictive controller

is then designed to ensure that the constraints are satis®ed on average

or, more usually, with a prespeci®ed probability (stochastic MPC).

The situation in which the state is not perfectly measured may be

treated in several ways. For example, inherent robustness is often stud-

ied using the model x� � f�x � e;u;w� where e denotes the error in
measuring the state. In the stochastic optimal control literature, where
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the measured output is y � Cx � v and the disturbance w and mea-

surement noise v are usually assumed to be Gaussian white noise pro-

cesses, the state or hyperstate of the optimal control problem is the

conditional density of the state x at time k given prior measurements�
y�0�;y�1�; : : : ; y�k� 1�

�
. Because this density usually is dif®cult to

compute and use, except in the linear case when it is provided by the

Kalman ®lter, a suboptimal procedure often is adopted. In this subop-

timal approach, the state x is replaced by its estimate Ãx in a control law

determined under the assumption that the state is accessible. This pro-

cedure is usually referred to as certainty equivalence, a term that was

originally employed for the linear quadratic Gaussian (LQG) or similar

cases when this procedure did not result in loss of optimality. When

f��� is linear, the evolution of the state estimate Ãx may be expressed

by a difference equation

Ãx� � g�Ãx;u�� �

in which � is the innovation process. In controlling Ãx, we should ensure

that the actual state x, which lies in a bounded, possibly time-varying

set if the innovation process is bounded, satis®es the constraints of

the optimal control problem certainly (robust MPC). If the innovation

process is not bounded, the constraints should be satis®ed with a pre-

speci®ed probability (stochastic MPC).

A system that has parametric uncertainty may be modeled as

x� � f�x;u; ��

in which � represents parameters of the system that are known only

to the extent that they belong to a compact set �. A much-studied

example is

x� � Ax � Bu
in which � :� �A; B� may take any value in � :� cof�Ai; Bi� j i 2 Ig
where I � f1;2; : : : ; Ig, say, is an index set.

Finally the system descriptionmay not include all the dynamics. For

example, fast dynamics may be ignored to simplify the system descrip-

tion, or a system described by a partial differential equation may be

modeled by an ordinary differential equation (ODE).

It is possible, of course, for all these types of uncertainty to occur in

a single application. In this chapter we focus on the effect of additive

disturbance. Output MPCÐin which the controller employs an estimate

of the state, rather than the state itselfÐis discussed in Chapter 5.
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3.1.2 Feedback Versus Open-Loop Control

It is well known that feedback is required only when uncertainty is

present; in the absence of uncertainty, feedback control and open-loop

control are equivalent. Indeed, when uncertainty is not present, as for

the systems studied in Chapter 2, the optimal control for a given initial

state may be computed using either dynamic programming (DP) that

provides an optimal control policy or sequence of feedback control

laws, or an open-loop optimal control that merely provides a sequence

of control actions. A simple example illustrates this fact. Consider the

deterministic linear dynamic system de®ned by

x� � x �u

The optimal control problem, with horizon N � 3, is

P3�x� : V0
3 �x� �min

u3
V3�x;u�

in which u � �u�0�;u�1�;u�2��

V3�x;u� :� �1=2�
2X
i�0

��x�i�2 �u�i�2��� �1=2�x�3�2

in which, for each i, x�i� � ��i;x;u� � x � u�0� � u�1� � : : : � u�i �
1�, the solution of the difference equation x� � x � u at time i if

the initial state is x�0� � x and the control (input) sequence is u �
�u�0�;u�1�;u�2��; in matrix operations u is taken to be the column

vector �u�0�;u�1�;u�2��0. Thus

V3�x;u� � �1=2�
�
x2 � �x �u�0��2 � �x �u�0��u�1��2�

�x �u�0��u�1��u�2��2 �u�0�2 �u�1�2 �u�2�2�
� �3=2�x2 � x

h
3 2 1

i
u� �1=2�u0P3u

in which

P3 �
264 4 2 1

2 3 1

1 1 2

375
Therefore, the vector form of the optimal open-loop control sequence

for an initial state of x is

u0�x� � �P�13

h
3 2 1

i0
x � �

h
0:615 0:231 0:077

i0
x
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and the optimal control and state sequences are

u0�x� � ��0:615x;�0:231x;�0:077x�
x0�x� � �x;0:385x;0:154x;0:077x�

To compute the optimal feedback control, we use the DP recursions

V0
i �x� �min

u2R
fx2=2�u2=2� V0

i�1�x �u�g
�0i �x� � argmin

u2R
fx2=2�u2=2� V0

i�1�x �u�g

with boundary condition

V0
0 �x� � �1=2�x2

This procedure gives the value function V0
i ��� and the optimal control

law �0i ��� at each i where the subscript i denotes time to go. Solving

the DP recursion, for all x 2 R, all i 2 f1;2;3g, yields
V0
1 �x� � �3=4�x2 �01�x� � ��1=2�x
V0
2 �x� � �4=5�x2 �02�x� � ��3=5�x
V0
3 �x� � �21=26�x2 �03�x� � ��8=13�x

Starting at state x at time zero, and applying the optimal control laws

iteratively to the deterministic system x� � x�u (recalling that at time

i the optimal control law is �03�i��� since, at time i, 3� i is the time to

go) yields

x0�0� � x u0�0� � ��8=13�x
x0�1� � �5=13�x u0�1� � ��3=13�x
x0�2� � �2=13�x u0�2� � ��1=13�x

x0�3;x� � �1=13�x
so that the optimal control and state sequences are, respectively,

u0�x� � ���8=13�x;��3=13�x;��1=13�x�
x0�x� � �x; �5=13�x; �2=13�x; �1=13�x�

which are identical with the optimal open-loop values computed above.

Consider next an uncertain version of the dynamic system in which

uncertainty takes the simple form of an additive disturbance w; the

system is de®ned by

x� � x �u�w
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in which the only knowledge of w is that it lies in the compact set

W :� ��1;1�. Let ��i;x;u;w� denote the solution of this system at

time i if the initial state is x at time zero, and the input and distur-

bance sequences are, respectively, u and w :� �w�0�;w�1�;w�2��. The
cost now depends on the disturbance sequenceÐbut it also depends, in

contrast to the deterministic problem discussed above, on whether the

control is open-loop or feedback. To discuss the latter case, we de®ne

a feedback policy � to be a sequence of control laws

� :� ��0���; �1���; �2����

in which �i : R! R, i � 0;1;2; under policy �, if the state at time i is x,

the control is �i�x�. LetM denote the class of admissible policies, for

example, those policies for which each control law �i��� is continuous.
Then, ��i;x;�;w� denotes the solution at time i 2 f0;1;2;3g of the
following difference equation

x�i� 1� � x�i�� �i�x�i���w�i� x�0� � x

An open-loop control sequence u � �u�0�;u�1�;u�2�� is then merely a

degenerate policy � � ��0���; �1���; �2���� where each control law �i���
satis®es

�i�x� � u�i�
for all x 2 R and all i 2 f0;1;2g. The cost V3��� may now be de®ned

V3�x;�;w� :� �1=2�
2X
i�0

��x�i�2 �u�i�2��� �1=2�x�3�2

where, now, x�i� � ��i;x;�;w� and u�i� � �i�x�i��. Since the distur-
bance is unpredictable, the value ofw is not known at time zero, so the

optimal control problem must ªeliminateº it in some meaningful way

so that the solution �0�x� does not depend on w. To eliminate w, the

optimal control problem P�3 �x� is de®ned by

P�3 �x� : V0
3 �x� :� inf

�2M
J3�x;��

in which the cost J3��� is de®ned in such a way that it does not depend

on w; inf is used rather than min in this de®nition since the minimum

may not exist. The most popular choice for J3��� in the MPC literature

is

J3�x;�� :� max
w2W

V3�x;�;w�
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Figure 3.1: Open-loop and feedback trajectories.

in which the disturbance w is assumed to lie in W a bounded class

of admissible disturbance sequences. Alternatively, if the disturbance

sequence is random, the cost J3��� may be chosen to be

J3�x;�� :� EV3�x;�;w�

in which E denotes ªexpectationº or average, over random disturbance

sequences. For our purpose here, we adopt the simple cost

J3�x;�� :� V3�x;�;0�

in which 0 :� �0;0;0� is the zero disturbance sequence. In this case,

J3�x;�� is the nominal cost, i.e., the cost associated with the nominal

system x� � x�u in which the disturbance is neglected. With this cost

function, the solution to P�3 �x� is the DP solution, obtained previously,

to the deterministic nominal optimal control problem.

We now compare two solutions to P3�x�: the open-loop solution

in which M is restricted to be the set of control sequences, and the

feedback solution in whichM is the class of admissible policies. The

solution to the ®rst problem is the solution to the deterministic prob-

lem discussed previously; the optimal control sequence is

u0�x� � ���8=13�x;��3=13�x;��1=13�x�

in which x is the initial state at time zero. The solution to the second

problem is the sequence of control laws determined previously, also for
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the deterministic problem, using dynamic programming; the optimal

policy is �0 �
�
�00���; �01���; �2���

�
where the control laws (functions)

�i���, i � 0;1;2, are de®ned by

�00�x� :� �03�x� � ��8=13�x 8x 2 R
�01�x� :� �02�x� � ��3=5�x 8x 2 R
�02�x� :� �01�x� � ��1=2�x 8x 2 R

The two solutions, u0��� and �0, when applied to the uncertain system

x� � x �u�w, do not yield the same trajectories for all disturbance

sequences. This is illustrated in Figure 3.1 for the three disturbance

sequences, w0 :� �0;0;0�, w1 :� �1;1;1�, and w2 :� ��1;�1;�1�; and
initial state x � 1 for which the corresponding state trajectories, de-

noted x0, x1, and x2, are

Open-loop solution.

x0 � �1; �5=13�; �2=13�; �1=13��
x1 � �1; �18=13�; �28=13�; �40=13��
x2 � �1;��8=13�;��24=13�;��38=13��

Feedback solution.

x0 � �1; �5=13�; �2=13�; �1=13��
x1 � �1; �18=13�; �101=65�; �231=130��
x2 � �1;��8=13�;��81=65�;��211=130��

Even for the short horizon of 3, the superiority of the feedback so-

lution can be seen although the feedback was designed for the de-

terministic (nominal) system and therefore did not take the distur-

bance into account. For the open-loop solution
��x2�3�� x1�3�

�� �
6, whereas for the feedback case

��x2�3�� x1�3�
�� � 3:4; the open-

loop solution does not restrain the spread of the trajectories result-

ing from the disturbance w. If the horizon length is N, for the open-

loop solution,
��x2�N�� x1�N�

�� � 2N, whereas for the feedback case��x2�N�� x1�N�
��! 3:24 as N !1. The obvious and well-known con-

clusion is that feedback control is superior to open-loop control when

uncertainty is present. Feedback control requires determination of a

control policy, however, which is a dif®cult task if nonlinearity and/or

constraints are features of the optimal control problem.
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3.1.3 Robust and Stochastic MPC

An important feature of conventional, or deterministic, MPC discussed

in Chapter 2 is that the solution of the open-loop optimal control prob-

lem solved online is identical to that obtained by DP for the given ini-

tial state. When uncertainty is present and the state is known or ob-

servations of the state are available, feedback control is superior to

open-loop control. The optimal control problem solved online must,

therefore, permit feedback in order for its solution to coincide with

the DP solution. In robust and stochastic MPC, the decision variable

is �, a sequence of control laws, rather than u, a sequence of control

actions. MPC in which the decision variable is a policy has been termed

feedback MPC to distinguish it from conventional MPC. Both forms of

MPC naturally provide feedback control since the control that is imple-

mented depends on the current state x in both cases. But the control

that is applied depends on whether the optimal control problem solved

is open loop, in which case the decision variable is a control sequence,

or feedback, in which case the decision variable is a feedback policy.

In feedback MPC the solution to the optimal control problem P�N�x�

is the policy �0�x� �
�
�00��;x�; �01��;x�; : : : ; �0N�1��;x�

�
. The constitu-

ent control laws are restrictions of those determined by DP and there-

fore depend on the initial state x as implied by the notation. Thus, only

the value u0�x� � �0�x;x� of the control law �0��;x� at the initial state
x need be determined, while successive laws need only be determined

over a limited subset of the state space. In the example illustrated in

Figure 3.1, �0��;x� need be determined only at the point x � 1, �1��;x�
need only be determined in the subset ��8=13;18=13�, and �2��;x� in
the subset ��81=65;101=65�, whereas in the DP solution these control

laws are de®ned over the in®nite interval ��1;1�.
While feedback MPC is superior in the presence of uncertainty, the

associated optimal control problem is vastly more complex than the

optimal control problem employed in deterministic MPC. The decision

variable �, being a sequence of control laws, is in®nite dimensional;

each law or function requires, in general, an in®nite dimensional grid

to specify it. The complexity is comparable to solving the DP equation,

so that MPC, which in the deterministic case replaces DP with a solvable

open-loop optimization problem, is not easily solved when uncertainty

is present. Hence much research effort has been devoted to forms of

feedback MPC that sacri®ce optimality for simplicity. As in the early

days of adaptive control, many different proposals have been made.



3.1 Introduction 201

These proposals for robust MPC are all simpler to implement than the

optimal solution provided by DP.

At the current stage of research it is perhaps premature to select

a particular approach; we have, nevertheless, selected one approach,

tube-based MPC that we describe here and in Chapter 5. There is a good

reason for our choice. It is well known that standard mathematical op-

timization algorithms may be used to obtain an optimal open-loop con-

trol sequence for an optimal control problem. What is perhaps less well

known is that there exist algorithms, the second variation algorithms,

that provide not only an optimal control sequence but also a local time-

varying feedback law of the form u�k� � Åu�k�� K�k��x�k�� Åx�k�� in

which �Åu�k�� is the optimal open-loop control sequence and �Åx�k�� the

corresponding optimal open-loop state sequence. This policy provides

feedback control for states x�k� close to the nominal states Åx�k�.

The second variation algorithms are perhaps too complex for rou-

tine use in MPC because they require computation of the second deriva-

tives with respect to �x;u� of f��� and `���. When the system is linear,

the cost quadratic, and the disturbance additive, however, the opti-

mal control law for the unconstrained in®nite horizon case is u � Kx.
This result may be expressed as a time-varying control law u�k� �
Åu�k��K�x�k�� Åx�k�� in which the state and control sequences �Åx�k��

and �Åu�k�� satisfy the nominal difference equations Åx� � AÅx � BÅu,
Åu � Kz, i.e., the sequences �Åx�k�� and �Åu�k�� are optimal open-loop

solutions for zero disturbance and some initial state. The time-varying

control law u�k� � Åu�k� � K�x�k� � Åx�k�� is clearly optimal in the

unconstrained case; it remains optimal for the constrained case in the

neighborhood of the nominal trajectory �Åx�k�� if �Åx�k�� and �Åu�k�� lie

in the interior of their respective constraint sets.

These comments suggest that a time-varying policy of the formu�x;

k� � Åu�k� � K�x � Åx�k�� might be adequate, at least when f��� is
linear. The nominal control and state sequences, �Åu�k�� and �Åx�k��,

respectively, can be determined by solving a standard open-loop op-

timal control problem of the form usually employed in MPC, and the

feedback matrix K can be determined of¯ine. We show that this form

of robust MPC has the same order of online complexity as that conven-

tionally used for deterministic systems. It requires a modi®ed form of

the online optimal control problem in which the constraints are simply

tightened to allow for disturbances, thereby constraining the trajecto-

ries of the uncertain system to lie in a tube centered on the nominal

trajectories. Of¯ine computations are required to determine the mod-
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i®ed constraints and the feedback matrix K. We also present, in the

last section of this chapter, a modi®cation of this tube-based proce-

dure for nonlinear systems for which a nonlinear local feedback policy

is required.

A word of caution is necessary. Just as nominal model predictive

controllers presented in Chapter 2 may fail in the presence of uncer-

tainty, the controllers presented in this chapter may fail if the actual

uncertainty does not satisfy our assumptions. In robust MPC this may

occur when the disturbance that we assume to be bounded exceeds the

assumed bounds; the controlled systems are robust only to the speci-

®ed uncertainties. As always, online fault diagnosis and safe recovery

procedures may be required to protect the system from unanticipated

events.

3.1.4 Tubes

The approach that we adopt is motivated by the following observation.

Both open-loop and feedback control generate, in the presence of un-

certainty, a bundle or tube of trajectories, each trajectory in the bundle

or tube corresponding to a particular realization of the uncertainty.

In Figure 3.1(a), the tube corresponding to u � u0�x� and initial state

x � 1, is �X0; X1; X2; X3� where X0 � f1g; for each i, Xi � f��i;x;
u;w� j w 2 Wg, the set of states at time i generated by all possible

realizations of the disturbance sequence. In robust MPC the state con-

straints must be satis®ed by every trajectory in the tube. In stochastic

MPC the tube has the property that state sequences lie within this tube

with a prespeci®ed probability.

Control of uncertain systems is best viewed as control of tubes

rather than trajectories; the designer chooses, for each initial state,

a tube in which all realizations of the state trajectory are controlled to

lie (robust MPC), or in which the realizations lie with a given probabil-

ity (stochastic MPC). By suitable choice of the tube, satisfaction of state

and control constraints may be guaranteed for every realization of the

disturbance sequence, or guaranteed with a given probability.

Determination of a suitable tube �X0; X1; : : :� corresponding to a

given initial state x and policy � is dif®cult even for linear systems,

however, and even more dif®cult for nonlinear systems. Hence, in the

sequel, we show for robust MPC how simple tubes that bound all real-

izations of the state trajectory may be constructed. For example, for

linear systems with convex constraints, a tube �X0; X1; : : : ; � may be

designed to bound all realizations of the state trajectory; for each i,
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Xi � fÅx�i�g�S, Åx�i� is the state at time i of a deterministic system, Xi
is a polytope, and S is a positive invariant set. This construction per-

mits robust model predictive controllers to be designed with not much

more computation online than that required for deterministic systems.

The stochastic MPC controllers are designed to satisfy constraints with

a given probability.

3.1.5 Difference Inclusion Description of Uncertain Systems

Here we introduce some notation that will be useful in the sequel. A

deterministic discrete time system is usually described by a difference

equation

x� � f�x;u� (3.1)

We use��k;x; i;u� to denote the solution of (3.1) at time kwhen the ini-

tial state at time i is x and the control sequence is u � �u�0�;u�1�; : : :�;
if the initial time i � 0, we write ��k;x;u� in place of ��k; �x;0�;u�.

Similarly, an uncertain systemmay be described by the difference equa-

tion

x� � f�x;u;w� (3.2)

in which the variable w that represents the uncertainty takes values

in a speci®ed set W. We use ��k;x; i;u;w� to denote the solution

of (3.2) when the initial state at time i is x and the control and dis-

turbance sequences are, respectively, u � �u�0�;u�1�; : : :� and w �
�w�0�;w�1�; : : :�. The uncertain system may alternatively be described

by a difference inclusion of the form

x� 2 F�x;u�
in which F��� is a set-valued map. We use the notation F : Rn �Rm �

Rn or1 F : Rn � Rm ! 2R
n
to denote a function that maps points in

Rn � Rm into subsets of Rn. If the uncertain system is described by

(3.2), then

F�x;u� � f�x;u;W� :� ff�x;u;w� j w 2Wg
If x is the current state, and u the current control, the successor state

x� lies anywhere in the set F�x;u�. When the control policy � :�
��0���; �1���; : : :� is employed, the state evolves according to

x� 2 F�x; �k�x��; k� � k� 1 (3.3)

1For any set X, 2X denotes the set of all subsets of X.
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in which x is the current state, k the current time, and x� the successor

state at time k� � k�1. The system described by (3.3) does not have a

single solution for a given initial state; it has a solution for each possible

realizationw of the disturbance sequence. We use S�x; i� to denote the

set of solutions of (3.3) if the initial state is x at time i. If ����� 2 S�x;
i� then

���t� � ��t;x; i;�;w�
for some admissible disturbance sequence w in which ��t;x; i;�;w�

denotes the solution at time t of

x� � f�x; �k�x�;w�

when the initial state is x at time i and the disturbance sequence is

w. The policy � is de®ned, as before, to be the sequence of control

laws ��0���; �1���; : : : ; �N�1����. The tube X � �X0; X1; : : :�, discussed in

Section 3.5, generated when policy � is employed, satis®es

Xk�1 � F�Xk; �k���� :� f�Xk; �k�x�;W�

3.2 Nominal (Inherent) Robustness

3.2.1 Introduction

Because feedback MPC is complex, it is natural to inquire if nominal

MPC, i.e., MPC based on the nominal system ignoring uncertainty, is

suf®ciently robust to uncertainty. Before proceeding with a detailed

analysis, a few comments may be helpful.

MPC uses, as a Lyapunov function, the value function of a paramet-

ric optimal control problem. Often the value function is continuous,

but this is not necessarily the case, especially if state and/or terminal

constraints are present. It is also possible for the value function to be

continuous but the associated control law to be discontinuous; this can

happen, for example, if the minimizing control is not unique.

It is important to realize that a control law may be stabilizing but

not robustly stabilizing; arbitrary perturbations, no matter how small,

can destabilize the system. This point is illustrated in Teel (2004) with

the following discontinuous autonomous system (n � 2, x � �x1; x2�)

x� � f�x� f�x� �
8<:�0; jxj� x1 � 0

�0;0� otherwise
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If the initial state is x � �1;1�, then��1;x� � �0;p2� and��2;x� � �0;
0�, with similar behavior for other initial states. In fact, all solutions

satisfy

��k;x� � ��jxj ; k�
in which ����, de®ned by

��jxj ; k� :� 2�1=2�k jxj

is a KL function, so that the origin is globally asymptotically stable

(GAS). Consider now a perturbed system satisfying

x� �
"

�

jxj � �

#

in which � > 0 is a constant perturbation that causes x1 to remain

strictly positive. If the initial state is x � "�1;1�, then x1�k� � � for

k � 1, and x2�k� > "
p
2 � k� ! 1 as k ! 1, no matter how small �

and " are. Hence the origin is unstable in the presence of an arbitrarily

small perturbation; global asymptotic stability is not a robust property

of this system.

This example may appear contrived but, as Teel (2004) points out,

a similar phenomenon can arise in receding horizon optimal control of

a continuous system. Consider the following system

x� �
"
x1�1�u�
jxju

#

in which the control u is constrained to lie in the set U � ��1;1�. Sup-
pose we choose a horizon length N � 2 and choose Xf to be the origin.

If x1 � 0, the only feasible control sequence steering x to 0 in two

steps is u � f1;0g; the resulting state sequence is �x; �0; jxj�; �0;0��.
Since there is only one feasible control sequence, it is also optimal, and

�2�x� � 1 for all x such that x1 � 0. If x1 � 0, then the only optimal

control sequence is u � �0;0� and �2�x� � 0. The resultant closed-loop

system satis®es

x� � f�x� :�
"
x1�1� �2�x��
jxj�2�x�

#

in which �2�x� � 1 if x1 � 0, and �2�x� � 0 otherwise. Thus

f�x� �
8<:�0; jxj� x1 � 0

�0;0� otherwise
(3.4)
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The system x� � f�x� is the discontinuous system analyzed previ-

ously. Thus, receding horizon optimal control of a continuous system

has resulted in a discontinuous system that is globally asymptotically

stable (GAS) but has no robustness.

3.2.2 Difference Inclusion Description of Discontinuous Systems

Consider a system

x� � f�x�
in which f��� is not continuous. An example of such a system occurred

in the previous subsection where f��� satis®es (3.4). Solutions of this
system are very sensitive to the value of x1. An in®nitesimal change

in x1 at time zero, say, from 0 can cause a substantial change in the

subsequent trajectory resulting, in this example, in a loss of robustness.

To design a robust system, one must take into account, in the design

process, the system's extreme sensitivity to variations in state. This

can be done by regularizing the system (Teel, 2004). If f��� is locally
bounded,2 the regularization x� � f�x� is de®ned to be

x� 2 F�x� :�
\
�>0

f�fxg � �B�

in which B is the closed unit ball so that fxg � � ÅB � fz j jz � xj � �g
and A denotes the closure of set A. At points where f��� is continuous,
F�x� � ff�x�g, i.e., F�x� is the single point f�x�. If f��� is piecewise
continuous, e.g., if f�x� � x if x < 1 and f�x� � 2x if x � 1, then

F�x� � flimxi!x f�xi�g, the set of all limits of f�xi� as xi ! x. For

our example immediately above, F�x� � fxg if x < 1 and F�x� � f2xg
if x > 1. When x � 1, the limit of f�xi� as xi ! 1 from below is 1 and

the limit of f�xi� as x ! 1 from above is 2, so that F�1� � f1;2g. The
regularization of x� � f�x� where f��� is de®ned in (3.4) is x� 2 F�x�
where F��� is de®ned by

F�x� �
("

0

jxj

#)
x1 � 0 (3.5)

F�x� �
("

0

jxj

#
;

"
0

0

#)
x1 � 0 (3.6)

2A function f : Rp ! Rn is locally bounded if, for every x 2 Rp , there exists a

neighborhoodN of x and a c > 0 such that
��f�z��� � c for all z 2N .
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If the initial state is x � �1;1�, as before, then the difference inclusion

generates the following tube

X0 �
("

1

1

#)
; X1 �

("
0p
2

#)
; X2 �

("
0p
2

#
;

"
0

0

#)
; : : :

with Xk � X2 for all k � 2. The set Xk of possible states clearly does

not converge to the origin even though the trajectory generated by the

original system does.

3.2.3 When Is Nominal MPC Robust?

The discussion in Section 2.4.1 shows that nominal MPC is not nec-

essarily robust. It is therefore natural to ask under what conditions

nominal MPC is robust. To answer this, we have to de®ne robustness

precisely. In Appendix B, we de®ne robust stability, and robust asymp-

totic stability, of a set. We employ this concept later in this chapter in

the design of robust model predictive controllers that for a given ini-

tial state in the region of attraction, steer every realization of the state

trajectory to this set. Here, however, we address a slightly different

question: when is nominal MPC that steers every trajectory in the re-

gion of attraction to the origin robust? Obviously, the disturbance will

preclude the controller from steering the state of the perturbed system

to the origin; the best that can be hoped for is that the controller will

steer the state to some small neighborhood of the origin. Let the nom-

inal (controlled) system be described by x� � f�x� in which f��� is
not necessarily continuous, and let the perturbed system be described

by x� � f�x � e� �w. Also let S��x� denote the set of solutions for

the perturbed system with initial state x and perturbation sequences

e :� �e�0�; e�1�; e�2�; : : :� and w :� �w�0�;w�1�;w�2�; : : :� satisfying
maxfkek ;kwkg � � where, for any sequence �, k�k denotes the sup

norm, supk�0 j��k�j. The de®nition of robustness that we employ is

(Teel, 2004)

De®nition 3.1 (Robust global asymptotic stability). LetA be compact,

and let d�x;A� :� minafja� xj j a 2 Ag, and jxjA :� d�x;A�. The
setA is robustly globally asymptotically stable (RGAS) for x� � f�x� if
there exists a classKL function ���� such that for each " > 0 and each

compact set C , there exists a � > 0 such that for each x 2 C and each

� 2 S��x�, there holds
����k;x���A � ��jxjA ; k�� " for all k 2 I�0.

Taking the set A to be the origin (A � f0g) so that jxjA � jxj, we
see that if the origin is robustly asymptotically stable for x� � f�x�,
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then, for each " > 0, there exists a � > 0 such that every trajectory of the

perturbed systemx� � f�x�e��w withmaxfkek ;kwkg � � converges
to "B (B is the closed unit ball); this is the attractivity property. Also,

if the initial state x satis®es jxj � ��1�";0�, then ����k;x��� � ����1�";
0�;0�� " � 2" for all k 2 I�0 and for all � 2 S�, which is the Lyapunov

stability property. Here the function ��1��;0� is the inverse of the func-
tion � , ���;0�.

We return to the question: under what conditions is asymptotic

stability robust? We ®rst de®ne a slight extension to the de®nition of

a Lyapunov function given in Chapter 2: A function V : Rn ! R�0 is

de®ned to be a Lyapunov function for x� � f�x� in X and setA if there

exist functions �i 2 K1, i � 1;2 and a continuous, positive de®nite

function �3��� such that, for any x 2 X
�1�jxjA� � V�x� � �2�jxjA�
V�f�x�� � V�x���3�jxjA�

in which jxjA is de®ned to be distanced�x;A� ofx from the setA. The

following important result (Teel, 2004; Kellett and Teel, 2004) answers

the important question, ªWhen is asymptotic stability robust?º

Theorem3.2 (Lyapunov function and RGAS). SupposeA is compact and

that f��� is locally bounded.3 The set A is RGAS for the system x� �
f�x� if and only if the system admits a continuous global Lyapunov

function forA.

This result proves the existence of a � > 0 that speci®es the per-

mitted magnitude of the perturbations, but does not give a value for

�. Robustness against perturbations of a speci®ed magnitude may be

required in practice; in the following section we show how to achieve

this aim if it is possible.

InMPC, the value function of the ®nite horizon optimal control prob-

lem that is solved online is used as a Lyapunov function. In certain

cases, such as linear systems with polyhedral constraints, the value

function is known to be continuous; see Proposition 7.13. Theorem 3.2,

suitably modi®ed because the region of attraction is not global, then

shows that asymptotic stability is robust, i.e., that asymptotic stability

is not destroyed by small perturbations.

Theorem 3.2 characterizes robust stability of the setA for the sys-

tem x� � f�x� in the sense that it shows robust stability is equivalent

3A function f : X ! Y is locally bounded if, for every x 2 X, there exists a neigh-

borhoodN of x such that the set f�N � in Y is bounded.
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to the existence of a continuous global Lyapunov function for the sys-

tem. It also is possible to characterize robustness of x� � f�x� by
global asymptotic stability of its regularization x� 2 F�x�. It is shown
in Appendix B that for the system x� 2 F�x�, the setA is GAS if there

exists aKL function ���� such that for each x 2 Rn and each solution

���� 2 S�x� of x� 2 F�x� with initial state x,��k� � ��jxjA ; k� for all
k 2 I�0. The following alternative characterization of robust stability

ofA for the system x� � f�x� appears in (Teel, 2004).

Theorem 3.3 (Robust global asymptotic stability and regularization).

Suppose A is compact and that f��� is locally bounded. The set A is

RGAS for the system x� � f�x� if and only if the set A is GAS for

x� 2 F�x�, the regularization of x� � f�x�.

We saw previously that for f��� and F��� de®ned respectively in

(3.4) and (3.6), the origin is not globally asymptotically stable for the

regularization x� 2 F�x� of x� � f�x� since not every solution of

x� 2 F�x� converges to the origin. Hence the origin is not RGAS for

this system.

3.2.4 Robustness of Nominal MPC

If the origin is asymptotically stable for the nominal version of an un-

certain system, it is sometimes possible to establish that there exists a

set A that is asymptotically stable for the uncertain system. We con-

sider the uncertain system described by

x� � f�x;u;w� (3.7)

in which w is a bounded additive disturbance and f��� is continuous.
The system is subject to the state and control constraints

x�i� 2 X u�i� 2 U 8i 2 I�0

The set X is closed and the set U is compact. Each set contains the

origin in its interior. The disturbance w may take any value in the set

W. As before, u denotes the control sequence �u�0�;u�1�; : : :� and w

the disturbance sequence �w�0�;w�1�; : : :�; ��i;x;u;w� denotes the

solution of (3.7) at time i if the initial state is x, and the control and

disturbance sequences are, respectively, u and w. The nominal system

is described by

x� � Åf�x;u� :� f�x;u;0� (3.8)
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and Å��i;x;u� denotes the solution of the nominal system (3.8) at time

i if the initial state is x and the control sequence is u. The nominal

control problem, de®ned subsequently, includes, for reasons discussed

in Chapter 2, a terminal constraint

x�N� 2 Xf
The nominal optimal control problem is

PN�x� : V0
N�x� �min

u
fVN�x;u� j u 2 UN�x�g

u0�x� � argmin
u
fVN�x;u� j u 2 UN�x�g

in which u0 �
�
u0
0�x�;u

0
1�x�; : : : ; u

0
N�1�x�

�
and the nominal cost VN���

is de®ned by

VN�x;u� :�
N�1X
i�0

`�x�i�;u�i��� Vf �x�N�� (3.9)

In (3.9) and (3.10), x�i� :� Å��i;x;u�, the state of the nominal system

at time i, for all i 2 I0:N�1 � f0;1;2; : : : ;N � 1g. The set of admissible

control sequences UN�x� is de®ned by

UN�x� :� fu j u�i� 2 U; Å��i : x;u� 2 X 8i 2 I0:N�1; x�N� 2 Xf � Xg
(3.10)

which is the set of control sequences such that the nominal system

satis®es the nominal control, state, and terminal constraints when the

initial state at time zero is x. Thus,UN�x� is the set of feasible controls

for the nominal optimal control problem PN�x�. The set XN � Rn,

de®ned by

XN :� fx 2 Rn j UN�x� �;g
is the domain of the value function V0

N���, i.e., the set of x 2 X for

which PN�x� has a solution; XN is also the domain of the minimizer

u0�x�. The value of the nominal control at state x is u0�0;x�, the ®rst

control in the sequence u0�x�. Hence the implicit nominal MPC control

law is �N : XN ! U de®ned by

�N�x� � u0�0;x�

We assume, as before, that `��� and Vf ��� are de®ned by

`�x;u� :� �1=2��x0Qx �u0Ru� Vf �x� :� �1=2�x0Pfx
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in which Q, R, and Pf are all positive de®nite. We also assume that

Vf ��� and Xf :� fx j Vf �x� � cf g for some cf > 0 satisfy the standard

stability assumption that, for all x 2 Xf , there exists a u � �f �x� 2 U
such that Vf � Åf�x;u�� � Vf �x� � `�x;u� and Åf�x;u� 2 Xf . Because

Vf ��� is quadratic, there exist positive constants c
f
1 and c

f
2 such that

c
f
1 jxj2 � Vf �x� � cf2 jxj2 and Vf � Åf�x; �f �x��� � Vf �x�� cf1 jxj2.
Under these assumptions, as shown in Chapter 2, there exist posi-

tive constants c1 and c2, c2 > c1, satisfying

c1 jxj2 � V0
N�x� � c2 jxj2 (3.11)

V0
N�

Åf�x; �N�x��� � V0
N�x�� c1 jxj2 (3.12)

for all x 2 XN . It then follows that

V0
N�x

�� � V0
N�x�

for all x 2 ÅXN with x� :� Åf�x; �N�x�� and  � �1 � c1=c2� 2 �0;
1�. Hence, ÅV0

N�x�i�� decays exponentially to zero as i ! 1; moreover,

V0
N�x�i�� � iV0

N�x�0�� for all i 2 I�0. From (3.11), the origin is expo-

nentially stable, with a region of attraction ÅXN for the nominal system

under MPC.

We now examine the consequences of applying the nominal model

predictive controller �N��� to the uncertain system (3.7). The controlled

uncertain system satis®es the difference equation

x� � f�x; �N�x�;w� (3.13)

in which w can take any value in W. It is obvious that the state x�i�

of the controlled system (3.13) cannot tend to the origin as i ! 1;
the best that can be hoped for is that x�i� tends to and remains in

some neighborhood Rb of the origin. We shall establish this, if the

disturbance w is suf®ciently small, using the value function V0
N��� of

the nominal optimal control problem as a Lyapunov function for the

controlled uncertain system (3.13).

To analyze the effect of the disturbance w we employ the follow-

ing useful technical result (Allan, Bates, Risbeck, and Rawlings, 2017,

Proposition 20).

Proposition 3.4 (Bound for continuous functions). Let C � D � Rn with

C compact andD closed. If f��� is continuous, there exists an���� 2 K1

such that, for all x 2 C and y 2 D, we have that jf�x� � f�y�j �
��jx �yj�.
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Since XN is not necessarily robustly positive invariant (see De®ni-

tion 3.6) for the uncertain system x� � f�x; �N�x�;w�, we replace it

by a subset, Rc :� levc V
0
N=fx j V0

N�x� � cg, the largest sublevel set of
V0
N��� contained in XN . Let Rb denote levb V

0
N �fx j V0

N�x� � bg, the
smallest sublevel set containing Xf . Because V

0
N��� is lower semicon-

tinuous (see Appendix A.11) and V0
N�x� � c1 jxj2, both Rb and Rc are

compact. We show below, if W is suf®ciently small, then Rb and Rc are

robustly positive invariant for the uncertain system x� � f�x; �N�x�;
w�, w 2 W and every trajectory of x� � f�x; �N�x�;w�, commencing

at a state x 2 Rc , converges to Rb and thereafter remains in this set.

Satisfaction of the terminal constraint. Our ®rst task is to show that

the terminal constraint x�N� 2 Xf is satis®ed by the uncertain system

if W is suf®ciently small. Let u��x� :�
�
u0
1�x�;u

0
2�x�; : : : ; u

0
N�1�x�

�
and let ue�x� :� �u��x�; �f �x0�N;x��

�
. Since V�f ��� de®ned by

V�f �x;u� :� Vf � Å��N;x;u��
is continuous, it follows from Proposition 3.4 that there exists a K1

function �a��� such that���V�f �x�;u�� V�f �Åx�;u���� � �a���x� � Åx�
���

for all �Åx�;u� 2 Rc �UN and all �x�;u� 2 f�Rc ;U;W��UN . This result
holds, in particular, for Åx� :� f�x; �N�x�;0�, x� :� f�x; �N�x�;w� and
u � ue�x�with x 2 Rc . As shown in Chapter 2, x0�N; Åx�� 2 Xf ; we wish
to show x0�N;x�� 2 Xf .

Since V�f �Åx
�;ue�x�� � Vf �f �x0�N;x�; �f �x

0�N;x���� � f cf and

since V�f �x
�;ue�x�� � V�f �Åx

�;ue�x�� � �a�jx� � Åx�j� it follows that

Vf �x
0�N;x�� � Vf �x0�N; Åx�����a�jx� � Åx�j� � f cf��a�jx� � Åx�j�.

Hence, x0�N;x� 2 Xf implies x0�N;x�� 2 Xf if �a�jx� � Åx�j� �
�1� f �cf .
Robust positive invariance of Rc for the controlled uncertain sys-

tem. Suppose x 2 Rc . Since VN��� is continuous, it follows from

Proposition 3.4 that there exists aK1 function �b��� such that��VN�x�;u�� VN�Åx�;u��� � �b���x� � Åx�
���

for all �x�;u� 2 f�Rc ;U;W� � UN , all �Åx�;u� 2 Rc � UN . This result

holds in particular for x� � f�x; �N�x�;w�, Åx� � f�x; �N�x�;0� and
u � ue�x� with x 2 Rc . Hence, if x 2 Rc

VN�x
�;ue� � VN�Åx�;ue�x����b���x� � Åx�

���
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Since VN�x�;ue� � V0
N�x�� c1 jxj2 and, since the control ue�x�, x 2 Rc

satis®es both the control and terminal constraints if �a�jx� � Åx�j� �
�1� f �cf , it follows that

V0
N�x

�� � VN�x�;ue� � V0
N�x�� c1 jxj2 ��b�

��x� � Åx�
���

so that

V0
N�x

�� � V0
N�x���b�

��x� � Åx�
���

Hence x 2 Rc implies x� � f�x; �N�x�;w� 2 Rc for all w 2 W if

�a�jx� � Åx�j� � �1� f �cf and �b�jx� � Åx�j� � �1� �c.
Robust positive invariance of Rb for the controlled uncertain sys-

tem. Similarly, x 2 Rb implies x� � f�x; �N�x�;w� 2 Rb for all

w 2W if �a�jx� � Åx�j� � �1� f �cf and �b�jx� � Åx�j� � �1� �b.
Descent property of V0

N��� in Rc n Rb. Suppose that x 2 Rc n Rb and

that �a�jx� � Åx�j� � �1� f �cf . Then because ue 2 UN�x��, we have

that PN�x�� is feasible and thus V0
N�x

�� is well de®ned. As above,

we have that V0
N�x

�� � V0
N�x� � �b�jx� � Åx�j�. Let � 2 �;1�. If

�b�jx� � Åx�j� � �� � �b, we have that

V0
N�x

�� � V0
N�x�� �� � �b

< V0
N�x�� �� � �V0

N�x�

� �V0
N�x�

because V0
N�x� > b.

Summary. These conditions can be simpli®ed if we assume that f���
is uniformly Lipschitz continuous in w with Lipschitz constant L so

that
��f�x��N�x�;w�� f�x; �N�x�;0��� � L jwj for all �x;u� 2 Rc �U.

The function f��� has this property with L � 1 if f�x;u;w� � f 0�x;
u��w. Under this assumption, the four conditions become

1. �a�jLwj� � �1� f �cf
2. �a�jLwj� � �1� �c
3. �b�jLwj � �1� �c
4. �b�jLwj� � �� � �b

Let �� denote the largest � such that all four conditions are satis®ed if

w 2W with jWj � �.4 Condition 3 can be satis®ed if b � ��=�1� �.
4jWj :�maxwfjwj j w 2Wg
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XN

Rc x

Rb

Figure 3.2: The sets XN , Rb, and Rc .

Proposition 3.5 (Robustness of nominal MPC). Suppose all assumptions

in Section 3.2.4 are satis®ed and that jWj � �� and c > b. Then, any ini-

tial state x 2 Rc of the controlled system x� � f�x; �N�x�;w� is steered
to the set Rb in ®nite time for all admissible disturbance sequences w

satisfying w�i� 2 W for all i 2 I�0. Thereafter, the state remains in Rb
for all admissible disturbance sequences.

Figure 3.2 illustrates this result.

3.3 Min-MaxOptimal Control: Dynamic Programming So-

lution

3.3.1 Introduction

In this section we show how robust control of an uncertain system may

be achieved using dynamic programming (DP). Our purpose here is to

use DP to gain insight. The results we obtain here are not of practical

use for complex systems, but reveal the nature of the problem and

show what the ideal optimal control problem solved online should be.

In Section 3.2 we examined the inherent robustness of an asymp-

totically stable system. If uncertainty is present, and it always is, it is

preferable to design the controller to be robust, i.e., able to cope with

some uncertainty. In this section we discuss the design of a robust
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controller for the system

x� � f�x;u;w� (3.14)

in which a bounded disturbance input w models the uncertainty. The

disturbance is assumed to satisfy w 2 W where W is compact convex,

and contains the origin in its interior. The controlled system is required

to satisfy the same state and control constraints as above, namely �x;

u� 2 Z as well as a terminal constraint x�N� 2 Xf . The constraint �x;
u� 2 Z may be expressed equivalently as x 2 X and u 2 U�x� in which

X � fx j 9 u such that �x;u� 2 Zg and U�x� � fu j 9 x such that �x;

u� 2 Zg. Because of the disturbance, superior control may be achieved

by employing feedback, in the form of a control policy, i.e., a sequence

of control laws rather than employing open-loop control in the form of

a sequence of control actions. Each control law is a function that maps

states into control actions; if the control law at time i is �i���, then
the system at time i satis®es x�i � 1� � f�x�i�; �i�x�i���. Because of
uncertainty, feedback and open-loop control for a given initial state are

not equivalent.

The solution at time k of (3.14) with control and disturbance se-

quences u � �u�0�; : : : ; u�N � 1�� and w � �w�0�; : : : ;w�N � 1�� if the

initial state is x at time 0 is ��k;x;u;w�. Similarly, the solution at

time k due to feedback policy � � ��0���; : : : ; �N�1���� and disturbance

sequence w is denoted by ��k;x;�;w�. As discussed previously, the

cost may be taken to be that of the nominal trajectory, or the average,

or maximum taken over all possible realizations of the disturbance se-

quence. Here we employ, as is common in the literature, the maximum

over all realizations of the disturbance sequencew, and de®ne the cost

due to policy � with initial state x to be

VN�x;�� :�max
w
fJN�x;�;w� j w 2Wg (3.15)

in whichW � WN is the set of admissible disturbance sequences, and

JN�x;�;w� is the cost due to an individual realization w of the distur-

bance process and is de®ned by

JN�x;�;w� :�
N�1X
i�0

`�x�i�;u�i�;w�i��� Vf �x�N�� (3.16)

inwhich� � ��0���; �1���; : : : ; �N�1����, x�i� � ��i;x;�;w�, andu�i� �
�i�x�i��. Let M�x� denote the set of feedback policies � that for a
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given initial state x satisfy: the state and control constraints, and the

terminal constraint for every admissible disturbance sequencew 2W .

The ®rst control law �0��� in � may be replaced by a control action

u0 � �0�x� to simplify optimization, since the initial state x is known

whereas future states are uncertain. The set of admissible control poli-

ciesM�x� is de®ned by

M�x� :� �� j�0�x� 2 U�x�; ��i;x;�;w� 2 X; �i���i;x;�;w�� 2 U�x�
8i 2 I0:N�1; ��N;x;�;w� 2 Xf 8w 2W

	
The robust optimal control problem is

PN�x� : inf
�
fVN�x;�� j � 2M�x�g (3.17)

The solution to PN�x�, if it exists, is the policy �0�x�

�0�x� �
�
�00��;x�; �01��;x�; : : : ; �0N�1��; x�

�
and the value function is V0

N�x� � VN�x;�0�x��.
Dynamic programming solves problem PN�x� with horizon N for

all x such that the problem is feasible, yielding the optimal control

policy�0��� � ��0���; : : : ; �N�1���� for the optimal control problemwith

horizon N. In doing so, it also solves, for each i 2 I1:N , problem Pi�x�

yielding the optimal control policy for the problem with horizon i.

3.3.2 Properties of the Dynamic Programming Solution

As for deterministic optimal control, the value function and implicit

control law may, in principle, be obtained by DP. But DP is, in most

cases, impossible to use because of its large computational demands.

There are, of course, important exceptions such as H2 and H1 opti-

mal control for unconstrained linear systems with quadratic cost func-

tions. DP also can be used for low dimensional constrained optimal

control problems when the system is linear, the constraints are af®ne,

and the cost is af®ne or quadratic. Even when DP is computationally

prohibitive, however, it remains a useful tool because of the insight

it provides. Because of the cost de®nition, min-max DP is required.

For each i 2 f0;1; : : : ;Ng, let V0
i ��� and �i��� denote, respectively, the

partial value function and the optimal solution to the optimal control

problem Pi de®ned by (3.17) with i replacing N. The DP recursion
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equations for computing these functions are

V0
i �x� � min

u2U�x�
max
w2W

f`�x;u;w�� V0
i�1�f �x;u;w�� j f�x;u;W� � Xi�1g

�i�x� � arg min
u2U�x�

max
w2W

f`�x;u;w�� V0
i�1�f �x;u;W�� j f�x;u;W� � Xi�1g

Xi � fx 2 X j 9 u 2 U�x� such that f�x;u;W� � Xi�1g

with boundary conditions

V0
0 �x� � Vf �x� X0 � Xf

In these equations, the subscript i denotes time to go so that �i��� :�
�N�i��� (equivalently �i��� :� �N�i���). In particular, �N��� � �0���. For
each i, Xi is the domain of V0

i ��� (and �i���) and is therefore the set of

states x for which a solution to problem Pi�x� exists. Thus Xi is the

set of states that can be robustly steered by state feedback, i.e., by a

policy � 2 M�x�, to Xf in i steps or less satisfying all constraints for

all disturbance sequences. It follows from these de®nitions that

V0
i �x� �max

w2W
f`�x; �i�x�;w�� V0

i�1�f �x; �i�x�;w��g (3.18)

as discussed in Exercise 3.1.

As in the deterministic case studied in Chapter 2, we are interested

in obtaining conditions that ensure that the optimal ®nite horizon con-

trol law �00��� is stabilizing. To do this we replace the stabilizing As-

sumption 2.14 in Section 2.4.2 of Chapter 2 by conditions appropriate

to the robust control problem. The presence of a disturbance requires

us to generalize some earlier de®nitions; we therefore de®ne the terms

robustly control invariant and robustly positive invariant that general-

ize our previous de®nitions of control invariant and positive invariant

respectively.

De®nition 3.6 (Robust control invariance). A set X � Rn is robustly

control invariant for x� � f�x;u;w�, w 2W if, for every x 2 X, there
exists a u 2 U�x� such that f�x;u;W� � X.

De®nition 3.7 (Robust positive invariance). A set X is robustly positive

invariant for x� � f�x;w�, w 2W if, for every x 2 X, f�x;W� � X.
As in Chapter 2, stabilizing conditions are imposed on the ingredi-

ents `���; Vf ���, and Xf of the optimal control problem to ensure that

the resultant controlled system has desirable stability properties; the
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solution to a ®nite horizon optimal control problem does not necessar-

ily ensure stability. Our new assumption is a robust generalization of

the stabilizing Assumption 2.2 employed in Chapter 2.

Assumption 3.8 (Basic stability assumption; robust case).

(a) For all x 2 Xf there exists a u � �f �x� 2 U�x� such that

Vf �f �x;u;0�� � Vf �x�� `�x;u;0� and f�x;u;w� 2 Xf 8w 2W

(b) Xf � X
(c) There existK1 functions �1��� and �f ��� satisfying

`�x;u;w� � �1�jxj� 8�x;w� 2 Rn �W 8u such that �x;u� 2 Z
Vf �x� � �f �jxj�; 8x 2 Xf

Assumption 3.8(a) replaces the unrealistic assumption in the ®rst

edition that, for each x 2 Xf , there exists a u 2 U such that, for all

w 2 W, Vf �f �x;u;w�� � Vf �x�� `�x;u;w� and f�x;u;w� 2 Xf . Let
� 2 R�0 be de®ned by

� :� max
�x;w�2Xf�W

fVf �f �x; �f �x�;w��� Vf �x�� `�x; �f �x�;w�g

so that, if Assumption 3.8 holds

Vf �f �x; �f �x�;w�� � Vf �x��`�x;u;w���8�x;w� 2 Xf �W (3.19)

If � � 0, the controller �f ��� can steer any x 2 Xf to the origin despite

the disturbance.

Theorem 3.9 (Recursive feasibility of control policies). Suppose As-

sumption 3.8 holds. Then

(a) XN � XN�1 � : : : � X1 � X0 � Xf
(b) Xi is robustly control invariant for x� � f�x;u;w� 8i 2 I0:N
(c) Xi is robustly positive invariant for x� � f�x; �i�x�;w�; 8i 2 I0:N
(d) �V0

i�1 � V0
i ��x� � maxw2Wf�V0

i � V0
i�1��f �x; �i�x�;w��g 8x 2 Xi;

8i 2 I1:N�1. Also V0
i �x� � V0

i�1�x� � � 8x 2 Xi�1; 8i 2 f1; : : : ;Ng
and V0

i �x� � Vf �x�� i� 8 x 2 Xf , 8i 2 I1:N
(e) For any x 2 XN ,

�
�N�x�; �N�1���; : : : ; �1���; �f ���

�
is a feasible pol-

icy for PN�1�x�, and, for any x 2 XN�1,
�
�N�1�x�; �N�2���; : : : ; �1���;

�f ���
�
is a feasible policy for PN�x�.
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Proof.

(a)±(c) Suppose, for some i, Xi is robust control invariant so that any

point x 2 Xi can be robustly steered into Xi. By construction, Xi�1

is the set of all points x that can be robustly steered into Xi. Also

Xi�1 � Xi so that Xi�1 is robust control invariant. But X0 � Xf is

robust control invariant. Both (a) and (b) follow by induction. Part (c)

follows from (b).

(d) From (3.18) we have

�V0
i�1 � V0

i ��x� �max
w2W

f`�x; �i�1�x�;w�� V0
i �f �x; �i�1�x�;w��g

�max
w2W

f`�x; �i�x�;w�� V0
i�1�f �x; �i�x�;w��g

�max
w2W

f`�x; �i�x�;w�� V0
i �f �x; �i�x�;w��g

�max
w2W

f`�x; �i�x�;w�� V0
i�1�f �x; �i�x�;w��g

for all x 2 Xi since �i���may not be optimal for problem Pi�1�x�. We

now use the fact that maxwfa�w�g �maxwfb�w�g � maxwfa�w� �
b�w�g, which is discussed in Exercise 3.2, to obtain

�V0
i�1 � V0

i ��x� �max
w2W

f�V0
i � V0

i�1��f �x; �i�x�;w��g

for all x 2 Xi. Also, for all x 2 X0 � Xf

�V0
1 � V0

0 ��x� �max
w2W

f`�x; �1�x�;w�� Vf �f �x; �1�x�;w��� Vf �x�g � �

in which the last inequality follows fromAssumption 3.8. By induction,

V0
i �x� � V0

i�1�x� � � 8x 2 Xi�1; 8i 2 f1; : : : ;Ng. It follows that

V0
i �x� � Vf �x�� i� for all x 2 Xf , all i 2 f1; : : : ;Ng.

(e) Suppose x 2 XN . Then �0�x� � ��N�x�; �N�1���; : : : ; �1���� is a

feasible and optimal policy for problem PN�x�, and steers every tra-

jectory emanating from x into X0 � Xf in N time steps. Because Xf is

robustly positive invariant for x� � f�x; �f �x�;w�, w 2 W, the pol-

icy
�
�N�x�; �N�1���; : : : ; �1���; �f ���

�
is feasible for problem PN�1�x�.

Similarly, the policy ��N�1�x�; �N�2���; : : : ; �1���� is feasible and opti-

mal for problem PN�1�x�, and steers every trajectory emanating from

x 2 XN�1 into X0 � Xf in N � 1 time steps. Therefore the pol-

icy
�
�N�1�x�; �N�2���; : : : ; �1���; �f ���

�
is feasible for PN�x� for any

x 2 XN�1. �
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3.4 Robust Min-Max MPC

Because use of dynamic programming (DP) is usually prohibitive, ob-

taining an alternative, robust min-max model predictive control, is de-

sirable. We present here an analysis that uses the improved stability

condition Assumption 3.8. The system to be controlled is de®ned in

(3.14) and the cost function VN��� in (3.15) and (3.16). The decision

variable, which, in DP, is a sequence � � ��0���; �1���; : : : ; �N�1����
of control laws, each of which is an arbitrary function of the state

x, is too complex for online optimization; so, we replace � by the

simpler object ��v� :� ����; v0�; ���; v1�; : : : ���; vN�1�� in which v �
�v0; v1; : : : ; vN�1� is a sequence of parameters with ���� parameterized

by vi, i 2 I0:N�1.
A simple parameterization is ��v� � v � �v0; v1; : : : ; vN�1�, a se-

quence of control actions rather than control laws. The decision vari-

able v in this case is similar to the control sequence u used in deter-

ministic MPC, and is simple enough for implementation; the disadvan-

tage is that feedback is not allowed in the optimal control problem

PN�x�. Hence the predicted trajectories may diverge considerably. An

equally simple parameterization that has proved to be useful when the

system being controlled is linear and time invariant is ��v� � ��� � ;
v0� : : : ; �� � ; vN�1�� in which, for each i, ��x;vi� :� vi � Kx; if f�x;
u;w� � Ax � Bu �w, K is chosen so that AK :� A � BK is Hurwitz.

More generally, ��x;vi� :�
P
j2J v

j
i �j�x� � hvi; ��x�i, ��x� :� ��1�x�;

�2�x�; : : : ; �J�x��. Hence the policy sequence ��v� is parameterized by

the vector sequence v � �v0; v1; : : : ; vN�1�. Choosing appropriate basis
functions �j���, j 2 J, is not simple. The decision variable is the vector

sequence v.

With this parameterization, the optimal control problem PN�x� be-

comes

PN�x� : V0
N�x� �min

v
fVN�x;��v�� j v 2 VN�x�g

in which

VN�x;��v�� :�max
w
fJN�x;��v�;w� j w 2WNg

JN�x;��v�;w� :�
N�1X
i�0

`�x�i�;u�i�;w�i��� Vf �x�N��

VN�x� :� fv j �x�i�;u�i�� 2 Z; 8i 2 I0:N�1; x�N� 2 Xf ; 8w 2WNg
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with x�i� :� ��i;x;��v�;w� and u�i� � ��x�i�; vi�; ��i;x;��v�;w�
denotes the solution at time i of x�i � 1� � f�x�i�;u�i�;w�i�� with
x�0� � x, u�i� � ��x�i�; vi� for all i 2 I0:N�1, and disturbance se-

quence w. Let v0�x� denote the minimizing value of the decision vari-

able v, �0�x� :� ��v0�x�� the corresponding optimal control policy,

and let V0
N�x� :� VN�x;�0�x�� denote the value function. We implic-

itly assume that a solution to PN�x� exists for all x 2 XN�x� :� fx j
VN�x� � ;g and that XN is not empty. The MPC action at state x

is �00�x� � ��x;v0
0�x��, with v

0
0�x� the ®rst element of the optimal

decision variable sequence v0�x�. The implicit MPC law is �00���. To

complete the problem de®nition, we assume that Vf ��� and `��� sat-
isfy Assumption 3.8.

It follows fromAssumption 3.8 that there exists aK1 function�1���
such that V0

N�x� � �1�jxj� for all x 2 XN , the domain of V0
N���. Deter-

mination of an upper bound for V0
N��� is dif®cult, so we assume that

there exists a K1 function �2��� such that V0
N�x� � �2�jxj� for all

x 2 XN . We now consider the descent condition, i.e., we determine an

upper bound for V0
N�x

���V0
N�x� as well as a warm start for obtaining,

via optimization, the optimal decision sequence v0�x�� given v0�x�.

Suppose that, at state x, the value function V0
N�x� and the optimal

decision sequence v0�x� have been determined, as well as the control

action �00�x�. The subsequent state is x� � f�x; �00�x�;w0�, with w0

the value of the additive disturbance (w�t� if the current time is t). Let

���x� :� �01:N�1�x� �
�
�� � ; v0

1�x��; �� � ; v0
2�x��; : : : ; �� � ; v0

N�1�x��
�

denote �0�x� with its ®rst element �� � ; v0
0�x�� removed; ���x� is a

sequence of N � 1 control laws. In addition let ue�x� be de®ned by

ue�x� :� ����x�; �f ����
ue�x� is a sequence of N control laws.

For any sequence z let za:b denote the subsequence
�
z�a�; z�a�1�;

: : : ; z�b�
�
; as above, z :� z0:N�1. Because x 2 XN is feasible for the opti-

mal control problem PN�x�, every random trajectory with disturbance

sequence w � w0:N�1 2WN emanating from x 2 XN under the control

policy �0�x� reaches the terminal state xN � ��N;x;�0�x�;w� 2 Xf

in N steps. Since w�0� is the ®rst element of w, w � �w�0�;w1:N�1�.

Hence the random trajectory with control sequence �01:N�1�x� and dis-

turbance sequence w1:N�1 emanating from x� � f�x; �00�x�;w�0��

reaches xN 2 Xf in N � 1 steps. Clearly

JN�1�x
�;�01:N�1�x�;w1:N�1� � JN�x;�0�x�;w�� `�x; �00�x�;w0�
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By Assumption 3.8, `�x; �00�x�;w�0�� � `�x; �N�x�;w�0�� � �1�jxj�
and

JN�1�x
�;�01:N�1�x�;w1:N�1� � JN�x;�0�x�;w���1�jxj�

The policy sequence �e�x�, which appends �f ��� to �01:N�1�x�, steers

x� to xN in N � 1 steps and then steers xN 2 Xf to x�N � 1� � f�xN ;
�f �xN�;wN� that lies in the interior of Xf . Using Assumption 3.8, we

obtain

JN�x
�;�e�x�;w1:N� � JN�x;�0�x�;w���1�jxj�� �

Using this inequality with w0:N � �w�0�;w0�x���5 so that w1:N �
w0�x�� and w � w0:N�1 �

�
w�0�;w0

0:N�2�x
��
�
yields

V0
N�x

�� � JN�x�;�0�x��;w0�x��� � JN�x�;�e�x�;w0�x���

� JN�x;�0�x�; �w�0�;w0
0:N�2�x

�����1�jxj�� �
� V0

N�x���1�jxj�� �

The last inequality follows from the fact that the disturbance sequence�
w�0�;w0

0:N�2�x
��
�
does not necessarily maximize w , JN�x;�0�x�;

w�.

Assume now that `��� is quadratic and positive de®nite so that

�1�jxj� � c1 jxj2. Assume also that V0
N�x� � c2 jxj2 so that for all

x 2 XN

V0
N�x

�� � V0
N�x�� �

with  � 1 � c1=c2 2 �0;1�. Let " > 0. It follows that for all x 2 XN

such that V0
N�x� � c :� ��� "�=�1� �

V0
N�x

�� � V0
N�x�� � � V0

N�x�� �1� �c � � � V0
N�x�� "

since V0
N�x� � c and, by de®nition, �1��c � �� ". Secondly, if x lies

in levc V
0
N , then

V0
N�x

�� � c � � � c � "

since V0
N�x� � c and, by de®nition, c � c � �� ". Hence x 2 levc V

0
N

implies x� 2 f�x; �00�x�;W� � levc V
0
N .

5w0�x�� :� argmaxw2WN JN�x�;�0�x��;w�.
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Summary. If � < �1 � �c (c > �=�1 � �) and levc V
0
N � XN , every

initial state x 2 XN of the closed-loop system x� � f�x; �00�x�;w�
is steered to the sublevel set levc V

0
N in ®nite time for all disturbance

sequences w satisfying w�i� 2 W, all i � 0, and thereafter remains

in this set; the set levc V
0
N is positive invariant for x� � f�x; �00�x�;

w�, w 2 W. The policy sequence ue�x�, easily obtained from �0�x�, is

feasible for PN�x�� and is a suitable warm start for computing �0�x��.

3.5 Tube-Based Robust MPC

3.5.1 Introduction

It was shown in Section 3.4 that it is possible to control an uncertain

system robustly using a version of MPC that requires solving online an

optimal control problem of minimizing a cost subject to satisfaction

of state and control constraints for all possible disturbance sequences.

For MPC with horizon N and qx state constraints, the number of state

constraints in the optimal control problem is Nqx . Since the state con-

straints should be satis®ed for all disturbance sequences, the number

of state constraints for the uncertain case isMNqx , withM equal to the

number of disturbance sequences. For linear MPC,M can be as small as

VN with V equal to the number of vertices of W with W polytopic. For

nonlinear MPC, Monte Carlo optimization must be employed, in which

case M can easily be several thousand to achieve constraint satisfac-

tion with high probability. The number of constraints MNqx can thus

exceed 106 in process control applications.

It is therefore desirable to ®nd approaches for which the online com-

putational requirement is more modest. We describe, in this section,

a tube-based approach. We show that all trajectories of the uncertain

system lie in a bounded neighborhood of a nominal trajectory. This

bounded neighborhood is called a tube. Determination of the tube en-

ables satisfaction of the constraints by the uncertain system for all

disturbance sequences to be obtained by ensuring that the nominal

trajectory satis®es suitably tightened constraints. If the nominal tra-

jectory satis®es the tightened constraints, every random trajectory in

the associated tube satis®es the original constraints. Computation of

the tightened constraints may be computationally expensive but can

be done of¯ine; the online computational requirements are similar to

those for nominal MPC.

To describe tube-based MPC, we use some concepts in set algebra.

Given two subsets A and B of Rn, we de®ne set addition, set subtrac-
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tion (sometimes called Minkowski or Pontryagin set subtraction), set

multiplication, and Hausdorff distance between two sets as follows.

De®nition 3.10 (Set algebra and Hausdorff distance).

(a) Set addition: A� B :� fa� b j a 2 A;b 2 Bg
(b) Set subtraction: A	 B :� fx 2 Rn j fxg � B � Ag
(c) Set multiplication: Let K 2 Rm�n; then KA :� fKa j a 2 Ag
(d) The Hausdorff distance dH��� between two subsets A and B of Rn

is de®ned by

dH�A; B� :�maxfsup
a2A

d�a; B�; sup
b2B

d�b;A�g

in which d�x; S� denotes the distance of a point x 2 Rn from a set

S � Rn and is de®ned by

d�x; S� :� inf
y
fd�x;y� j y 2 Sg d�x;y� :� ��x �y��

In these de®nitions, fxg denotes the set consisting of a single point
x, and fxg � B therefore denotes the set fx � b j b 2 Bg; the set A	 B
is the largest set C such that B � C � A. A sequence �x�i�� is said to

converge to a set S if d�x�i�; S� ! 0 as i ! 1. If dH�A; B� � ", then
the distance of every point a 2 A from B is less than or equal to ", and

that the distance of every point b 2 B from A is less than or equal to

". We say that the sequence of sets �A�i�� converges, in the Hausdorff

metric, to the set B if dH�A�i�; B�! 0 as i!1.
Our ®rst task is to generate an outer-bounding tube. An excellent

background for the following discussion is provided in Kolmanovsky

and Gilbert (1998).

3.5.2 Outer-Bounding Tube for a Linear System with Additive Dis-

turbance

Consider the following linear system

x� � Ax � Bu�w

in which w 2W, a compact convex subset of Rn containing the origin.

We assume that W contains the origin in its interior. Let ��i;x;u;w�

denote the solution of x� � Ax�Bu�w at time i if the initial state at
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time zero is x, and the control and disturbance sequences are, respec-

tively, u and w.

Let the nominal system be described by

Åx� � AÅx � BÅu

and let Å��i; Åx;u� denote the solution of Åx� � AÅx � BÅu at time i if the

initial state at time zero is Åx. Then e :� x�Åx, the deviation of the actual
state x from the nominal state Åx, satis®es the difference equation

e� � Ae�w

so that

e�i� � Aie�0��
i�1X
j�0

Ajw�j�

in which e�0� � x�0�� Åx�0�. If e�0� � 0, then e�i� 2 S�i� where the set
S�i� is de®ned by

S�i� :�
i�1X
j�0

AjW �W�AW� � � � �Ai�1W

in which
P

and � denote set addition. It follows from our assumptions

on W that S�i� contains the origin in its interior for all i � n.
We ®rst consider the tube X�x;u� generated by the open-loop con-

trol sequence u when x�0� � Åx�0� � x, and e�0� � 0. It is easily seen

that X�x;u� � �X�0;x�;X�1;x;u�; : : : ; X�N;x;u�� with

X�i;x� :� fÅx�i�g � S�i�

and Åx�i� � Å��i;x;u�, the state at time i of the nominal system, is

the center of the tube. So it is relatively easy to obtain the exact tube

generated by an open-loop control if the system is linear and has a

bounded additive disturbance, provided that one can compute the sets

S�i�.

If A is stable, then, as shown in Kolmanovsky and Gilbert (1998),

S�1� :�P1
j�0A

jW exists and is positive invariant for x� � Ax�w, i.e.,

x 2 S�1� implies that Ax�w 2 S�1� for all w 2W; also S�i�! S�1�
in the Hausdorff metric as i ! 1. The set S�1� is known to be the

minimal robust positive invariant set6 for x� � Ax �w, w 2 W. Also

6Every other robust positive invariant set X satis®es X � S1.
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S�i� � S�i � 1� � S�1� for all i 2 I�0 so that the tube ÃX�x;u� de®ned

by
ÃX�x;u� :�

�
ÃX�0;x�; ÃX�1;x;u�; : : : ; ÃX�N;x;u�

�
in which

ÃX�0;x� � fxg � S�1� ÃX�i;x;u� � fÅx�i�g � S�1�

is an outer-bounding tube with constant ªcross sectionº S�1� for the
exact tubeX�x;u� (X�i;x;u� � ÃX�i;x;u� for all i 2 I�0). It is sometimes

more convenient to use the constant cross-section outer-bounding tube
ÃX�x;u� in place of the exact tube X�x;u�. If we restrict attention to

the interval �0; N� as we do in computing the MPC action, then replac-

ing S�1� by S�N� yields a less conservative, constrained cross-section,

outer-bounding tube for the interval �0; N�.

Use of the exact tube X�x;u� and the outer-bounding tube ÃX�x;u�

may be limited for reasons discussed earlierÐthe sets S�i� may be un-

necessarily large simply because an open-loop control sequence rather

than a feedback policy was employed to generate the tube. For example,

ifW � ��1;1� and x� � x�u�w, then S�i� � �i�1�W increases with-

out bound as time i increases. We must introduce feedback to contain

the size of S�i�, but wish to do so in a simple way because optimizing

over arbitrary policies is prohibitive. The feedback policy we propose

is

u � Åu�K�x � Åx�

in which x is the current state of the system x� � Ax�Bu�w, Åx is the

current state of a nominal system de®ned below, and Åu is the current

input to the nominal system. With this feedback policy, the state x

satis®es the difference equation

x� � Ax � BÅu� BKe�w

in which e :� x� Åx is the deviation of the actual state from the nominal

state. The nominal system corresponding to the uncertain system x� �
Ax � BÅu� BKe�w is

Åx� � AÅx � BÅu
The deviation e � x � Åx now satis®es the difference equation

e� � AKe�w AK :� A� BK

which is the same equation used previously except that A, which is

possibly unstable, is replaced by AK , which is stable by design. If K is
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chosen so that AK is stable, then the corresponding uncertainty sets

SK�i� de®ned by

SK�i� :�
i�1X
j�0

A
j
KW

can be expected to be smaller than the original uncertainty sets S�i�,

i 2 I�0, considerably smaller if A is unstable and i is large. Our as-

sumptions on W imply that SK�i�, like S�i�, contains the origin in its

interior for each i. Since AK is stable, the set SK�1� :�
P1
j�0A

j
KW ex-

ists and is positive invariant for e� � AKe �w. Also, SK�i� ! SK�1�
in the Hausdorff metric as i!1. Since K is ®xed, the feedback policy

u � Åu � K�x � Åx� is simply parameterized by the open-loop control

sequence Åu. If x�0� � Åx�0� � x, the tube generated by the feedback

policyu � Åu�K�x�Åx� is X�x; Åu� � �X�0;x�;X�1;x; Åu�; : : : ; X�N;x; Åu��
in which

X�0;x� � fxg X�i;x; Åu� :� fÅx�i�g � SK�i�

and Åx�i� is the solution of the nominal system Åx� � AÅx � BÅu at

time i if the initial state Åx�0� � x, and the control sequence is Åu.

For given initial state x and control sequence Åu, the solution of x� �
Ax�B�Åu�Ke��w lies in the tube X�x; Åu� for every admissible distur-

bance sequence w. As before, SK�i� may be replaced by SK�1� to get

an outer-bounding tube. If attention is con®ned to the interval �0; N�,

SK�i� may be replaced by SK�N� to obtain a less conservative outer-

bounding tube. If we consider again our previous example, W � ��1;
1� and x� � x � u � w, and choose K � ��1=2�, then AK � 1=2,

SK�i� � �1� 0:5� : : :� 0:5i�1�W � 2W, and SK�1� � 2W � ��2;2�. In
contrast, S�i�! ��1;1� as i!1.

In the preceding discussion, we required x�0� � Åx�0� so that e�0� �
0 in order to ensure e�i� 2 S�i� or e�i� 2 SK�i�. When AK is stable,

however, it is possible to relax this restriction. This follows from the

previous statement that SK�1� exists and is robustly positive invariant

for e� � AKe � w, i.e., e 2 SK�1� implies e� 2 SK�1� for all e� 2
fAKeg �W. Hence, if e�0� 2 SK�1�, then e�i� 2 SK�1� for all i 2 I�0,
all w 2Wi.

In tube-based MPC, we ensure that Åx�i� ! 0 as i ! 1, so that x�i�,

which lies in the sequence of sets �fÅx�i�g� SK�i��0:1, converges to the

set SK�1� as i ! 1. Figure 3.3 illustrates this result (S :� SK�1�).
Even though SK�1� is dif®cult to compute, this is a useful theoretical

property of the controlled system.
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x trajectory
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Figure 3.3: Outer-bounding tube X�Åx; Åu�; Xi � fÅx�i�g � SK�1�.

The controller is required to ensure that state-control constraint

�x;u� 2 Z is not transgressed. Let ÅZ be de®ned by

ÅZ :� Z	 �SK�1��KSK�1��
since it follows from the de®nition of the set operation 	 that ÅZ �
�SK�1��KSK�1�� � Z. In the simple case when Z � X� U

ÅZ � ÅX� ÅU ÅX � X	 SK�1� ÅU � U	KSK�1�
Computation of the set SK�1�Ðwhich is known to be dif®cultÐis not

required, as we show later. It follows from the preceding discussion

that if the nominal state and control trajectories Åx and Åu satisfy the

tightened constraint �Åx�i�; Åu�i�� 2 ÃZ � ÅZ for all i 2 I0:N�1, the state

and control trajectories x and u of the uncertain system then satisfy

the original constraints �x�i�;u�i�� 2 Z for all i 2 I0:N�1. This is the

basis for tube-based robust MPC discussed next.

3.5.3 Tube-BasedMPC of Linear Systemswith Additive Disturbances

The tube-based controller has two components: (i) a nominal state-

control trajectory �Åx�i�; Åu�i��i2I�0 that commences at the initial state

x and that satis®es the tightened constraint, and (ii) a feedback con-

troller u � Åu � K�x � Åx� that attempts to steer the uncertain state-

control trajectory to the nominal trajectory. The nominal state-control



3.5 Tube-Based Robust MPC 229

trajectory may be generated at the initial time or generated sequen-

tially using standard MPC for deterministic systems. The latter gives

more ¯exibility to cope with changing conditions, such as changing

setpoint. Assume, then, that a controller Åu � Å�N�Åx� for the nominal

system Åx� � AÅx � BÅu has been determined using results in Chapter 2

by solving the standard optimal control problem of the form

ÅPN�Åx� : ÅV0
N�Åx� �min

Åu
fÅVN�Åx; Åu� j Åu 2 ÅUN�Åx�g

ÅVN�Åx; Åu� �
N�1X
i�0

`�Åx�i�; Åu�i��� Vf �Åx�N��

ÅUN�Åx� � fÅu j �Åx�i�; Åu�i�� 2 ÅZ; i 2 I0:N�1; Åx�N� 2 Xf g
in which Åx�i� � Å��i;x; Åu�. Under usual conditions, the origin is asymp-

totically stable for the controlled nominal system described by

Åx� � AÅx � BÅ�N�Åx�
and the controlled system satis®es the constraint �Åx�i�; Åu�i�� 2 ÅZ for

all i 2 I�0. Let ÅXN denote the set fÅx j ÅUN�Åx� � ;g. Of course, deter-
mination of the control Å�N�Åx� requires solving online the constrained

optimal control problem PN�Åx�.

The feedback controller, given the state x of the system being con-

trolled, and the state Åx of the nominal system, generates the control

u � Å�N�Åx��K�x� Åx�. The composite system with state �x; Åx� satis®es

x� � Ax � BÅ�N�Åx�� BK�x � Åx��w
Åx� � AÅx � BÅ�N�Åx�

The system with state �e; Åx�, e :� x � Åx, satis®es a simpler difference

equation

e� � AKe�w
Åx� � AÅx � BÅ�N�Åx�

The two states �x; Åx� and �e; Åx� are related by"
e

Åx

#
� T

"
x

Åx

#
T :�

"
I �I
0 I

#
Since T is invertible, the two systems with states �x; Åx� and �e; Åx� are

equivalent. Hence, to establish robust stability it suf®ces to consider

the simpler system with state �e; Åx�. First, we de®ne robustly asymp-

totically stable (RAS).
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De®nition 3.11 (Robust asymptotic stability of a set). Suppose the sets

S1 and S2, S2 � S1, are robustly positive invariant for the system z� �
f�z;w�,w 2W. The set S2 is RAS for z� � f�z;w� in S1 if there exists
aKL function ���� such that every solution�� � ;z;w� of z� � f�z;w�
with initial state z 2 S1 and any disturbance sequencew 2W1 satis®es����i;z;w���S2 � ��jzjS2 ; i� 8i 2 I�0
In this de®nition, jzjS :� d�z; S�, the distance of z from set S.

We now assume that Å�N��� and ÅZ have been determined to ensure

the origin is asymptotically stable in a positive invariant set ÅX for the

controlled nominal system Åx� � AÅx�BÅ�N�Åx�. Under this assumption

we have

Proposition 3.12 (Robust asymptotic stability of tube-based MPC for

linear systems). The set SK�1� � f0g is RAS for the composite system

�e� � AKe�w; Åx� � AÅx�BÅ�N�Åx�� in the positive invariant set SK�1��
ÅXN .

Proof. Because the origin is asymptotically stable for Åx� � AÅx�BÅ�N�Åx�,
there exists aKL function ���� such that every solution Å�� � ; Åx� of the
controlled nominal system with initial state Åx 2 ÅXN satis®es��� Å��i; Åx���� � ��jÅxj ; i� 8i 2 I�0
Since e�0� 2 SK�1� implies e�i� 2 SK�1� for all i 2 I�0, it follows that����e�i�; Å��i; Åx�����

SK�1��f0g
� je�i�jSK�1� �

��� Å��i; Åx���� � ��jÅxj ; i�
Hence the set SK�1� � f0g is RAS in SK�1� � ÅXN for the composite

system �e� � AKe�w; Åx� � AÅx � BÅ�N�Åx��. �

It might be of interest to note that (see Exercise 3.4)

dH�f Å��i; Åx�g � SK�1�; SK�1�� �
��� Å��i; Åx���� � ��jÅxj ; i�

for every solution Å���� of the nominal system with initial state Åx 2 XN .

Finally we show how suitable tightened constraints may be deter-

mined. It was shown above that the nominal system should satisfy

the tightened constraint �Åx; Åu� 2 ÅZ � Z 	 �SK�1�;KSK�1��. Since

SK�1� is dif®cult to compute and use, impossible for many process

control applications, we present an alternative. Suppose Z is polytopic

and is described by a set of scalar inequalities of the form c0z � d
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(c0xx � c0uu � d). We show next how each constraint of this form may

be tightened so that satisfaction of the tightened constraint by the nom-

inal system ensures satisfaction of original constraint by the uncertain

system. For all j 2 I�0, let

�j :�max
e
fc0�e;Ke� j e 2 SK�j�g �max

w
f
j�1X
i�0

c0�I; K�AiKwi j w 2W0:j�1g

in which c0�e;Ke� � c0xe�c0uKe and c0�I; K�AiKwi � c0xAiKwi�c0uKAiKwi.

Satisfaction of the constraint c0Åz � d� �1 by the nominal system en-

sures satisfaction of c0z � d, z � Åz � �e;Ke�, by the uncertain system;

however, computation of �1 is impractical so we adopt the approach

in (RakoviÂc, Kerrigan, Kouramas, and Mayne, 2005a). Because AK is

Hurwitz, for all � 2 �0;1� there exists a ®nite integer N such that

ANKW � �W and KANKW � �KW. It follows that

�1 � �N ���1
so that

�1 � �1����1�N
Hence, satisfaction of the tightened constraint c0Åz � d � �1 � ���1�N
by the nominal system ensures that the uncertain system satis®es the

original constraint c0z � d. The tightened constraint set ÅZ is de®ned

by these modi®ed constraints.

Example 3.13: Calculation of tightened constraints

Consider the system

x� �
"
1 1

0 1

#
�
"
0

1

#
�w

with W :� fw j jwj1 � 0:1g, Z :� f�x;u� j jxj1 � 1; juj � 1g, and
nominal control law K :�

h
�0:4 �1:2

i
. For increasing values of N, we

calculate � such that ANKW � �W and KANKW � �KW.

Because W is a box, it is suf®cient to check only its vertices, i.e., the

four elements w 2 W :� f�0:1;0:1g2. Thus, we have

� �max

0@maxw2W

���ANKw���1
maxw2W jwj1

;
maxw2W

���KANKw���1
maxw2W jKwj1

1A
These values are shown in Figure 3.4. From here, we see that N � 3

is necessary for the approximation to hold. With the values of �, the
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Figure 3.4: Minimum feasible � for varying N. Note that we require

� 2 �0;1�.

tightened constraint sets ÅZ can then be computed as above. Once again,

because of the structure of W, we need only check the vertices. Due to

the symmetry of the system, each set is of the form

ÅZ � f�x;u� j jx1j � �1; jx2j � �2; juj � �g

The bounds �1, �2, and � are shown in Figure 3.5. Note that while

N � 3 gives a feasible value of �, we require at least N � 4 for ÅZ to be

nonempty. �

Time-varying constraint set ÅZ�i�. The tube-based model predictive

controller is conservative in that the feasible set for ÅPN�Åx� is unneces-

sarily small due to use of a constant constraint set ÅZ � Z 	 �SK�1� �
KSK�1��. This reduces the region of attraction ÅXN , the set of states

for which ÅPN�Åx� is feasible. Tube-based model predictive control can

be made less conservative by using time-varying constraint set ÅZ�i� �
Z 	 �SK�i� � KSk�i��, i 2 I0:N�1 for the initial optimal control prob-

lem that generates the control sequence u0�Åx�. The control applied
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Figure 3.5: Bounds on tightened constraint set ÅZ for varying N.

Bounds are jx1j � �1, jx2j � �2, and juj � �.

to the uncertain system is Åu�i� � Ke�k�; the in®nite sequence Åu is

constructed as follows. The sequence �Åu�0�; Åu�1�; : : : ; Åu�N � 1�� is set

equal to Åu0�Åx�, the solution of the nominal optimal control problem at

the initial state Åx, with time-varying constraint sets ÅZ�i� and terminal

constraint set ÅX�f �. The associated state sequence is �Åx�0�; Åx�1�; : : : ;

Åx�N�� with Åx�N� 2 ÅXf . For i 2 I�N , Åu�i� and Åx�i� are obtained as the

solution at time i of

Åx� � AÅx � B�f �Åx�; u � �f �Åx�

with initial state Åx�N� at time N. We now assume that ÅXf satis®es
ÅXf�SK�1� � X. Since Åx�N� 2 ÅXf it follows that Åx�i� 2 ÅXf andx�i� 2 X
for all i 2 I�N . Also, for all i 2 I0:N�1, Åx�i� 2 ÅX�i� � X 	 SK�i� and
e�i� 2 Sk�i� so that x�i� � Åx�i� � e�i� 2 X. Hence x�i� 2 X for all

i 2 I�0. Since Åx�i�! 0, the state x�i� of the uncertain system tends to

SK�1� as i ! 1. Since ÅZ�i� � ÅZ, the region of attraction is larger than

that for tube-based MPC using a constant constraint set.
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3.5.4 Improved Tube-Based MPC of Linear Systems with Additive

Disturbances

In this section we describe a version of the tube-based model predictive

controller that has pleasing theoretical properties. We omitted, in the

previous section, to make use of an additional degree of freedom avail-

able to the controller, namely the ability to change the state Åx of the

nominal system. In Chisci, Rossiter, and Zappa (2001), Åx is set equal to

x, the current state of the uncertain system, but there is no guarantee

that an initial state x is superior to Åx in the sense of enhancing conver-

gence to the origin of the nominal trajectory. To achieve more rapid

convergence, we propose that an improved tube center Åx� is chosen

by minimizing the value function ÅV0
N��� of the nominal optimal control

problem. It is necessary that the current state x remains in the tube

with new center Åx�. To achieve this, at state �x; Åx�, a new optimal con-

trol problem ÅP�N�x�, is solved online, to determine an improved center

Åx� and, simultaneously the subsequent center Åx�. We assume, for sim-

plicity, that Z � X�U and ÅZ � ÅX� ÅU. The new optimal control problem

P�N�x� that replaces ÅPN�Åx� is de®ned by

P�N�x� : ÅV�N �x� �min
z
fÅV0

N�z� j x 2 fzg � SK�1�; z 2 ÅXg
�min

z;Åu
fÅVN�z; Åu� j Åu 2 ÅUN�z�; x 2 fzg � SK�1�; z 2 ÅXg

The solution to problem P�N�x� is �Åx
��x�; Åu��x��. The constraint x 2

fzg�SK�1� ensures that the current statex lies in fÅx��x�g�SK�1�, the
®rst element of the ªnew tube.º The argument of P�N�x� is x because of

the constraint x 2 fzg � SK�1�; the solution to the problem generates

both the improved current nominal state Åx��x� as well as its successor

Åx�. If �x; Åx� satis®es Åx 2 ÅXN and x 2 fÅxg � SK�1�, then �Åx;ue�Åx�� is
a warm start for P�N�x�; here ue�Åx� is a warm start for ÅPN�Åx�. The

successor nominal state is

Åx� � �Åx��x��� � AÅx��x�� BÅ�N�Åx��x��

in which, as usual, Å�N�Åx��x�� is the ®rst element in the control se-

quence Åu��x�. It follows that

ÅV�N �x� � ÅV0
N�Åx

��x�� � ÅV0
N�Åx�; Åu��x� � Åu0�Åx��x��

The control applied to the uncertain system at state x is

Å��N�x� :� Å�N�Åx
��x���K�x � Åx��x��
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so the closed-loop uncertain system satis®es

x� � Ax � BÅ�N�Åx��x���K�x � Åx��x���w
and e � x � Åx��x� satis®es

e� � x� � �Åx��x��� � Ae� BKe�w � AKe�w
as before so that if e 2 SK�1�, then e� 2 SK�1�; hence x 2 fÅx��x�g �
SK�1� implies x� 2 f�Åx��x���g � SK�1�.

Suppose then that Åx 2 ÅXN � ÅX and x 2 fÅxg � SK�1� so that x 2 X.
If the usual assumptions for the nominal optimal control problem ÅPN
are satis®ed and `��� is quadratic and positive de®nite it follows that

ÅV�N �x� � ÅV0
N�Åx

��x�� � c1
��Åx��x���2

ÅV�N �x� � ÅV0
N�Åx

��x�� � c2
��Åx��x���2

ÅV�N �x
�� � ÅV0

N�Åx
��x��� � ÅV0

N��Åx
��x���� � ÅV0

N�Åx
��x��� c1

��Åx��x���2
The last inequality follows from the fact that Åx� � �Åx��x��� � AÅx��x��
BÅ��N�Åx

��x�� and the descent property of the solution to ÅP0N�Åx
��x��.

Proposition 3.14 (Recursive feasibility of tube-based MPC). Suppose

that at time zero, �x; Åx� 2 �fÅxg � SK�1�� � ÅXN . Then, Problem ÅP�N is

recursively feasible: �x; Åx� 2 �fÅxg�SK�1��� ÅXN implies �x; Åx�� � �x�;
Åx�� 2 �fÅx�g � SK�1��� ÅXN .

Proof. Suppose that �x; Åx� satis®es x 2 fÅxg�SK�1� and Åx 2 ÅXN . From

the de®nition of ÅP�N , any solution satis®es the tightened constraints so

that Åx��x� 2 ÅXN . The terminal conditions ensure, by the usual argu-

ment, that the successor state Åx��x�� also lies in ÅXN . The condition

x 2 fzg � SK�1� in P�N�x� then implies that x 2 fÅx��x�g � SK�1� so
that x� 2 fÅx�g � SK�1� (e� 2 SK�1�). �

Proposition 3.15 (Robust exponential stability of improved tube-based

MPC). The set SK�1� is robustly exponentially stable in ÅXN � SK�1� for
the system x� � Ax � B�Å�N�Åx��x���K�x � Åx��x��

��w.

Proof. It follows from the upper and lower bounds on ÅV0
N�x

��x��, and

the descent property listed above that

ÅV0
N�x

��x��� � ÅV0
N�x

��x��

with  � �1 � c1=c2� 2 �0;1�. Hence, if x�i� denotes the solution at

time i of x� � Ax�B�Å�N�Åx��x���K�x�x��x����w, ÅV0
N�Åx

��x�i���
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decays exponentially fast to zero. It then follows from the upper bound

on ÅV0
N�Åx

��x�� thatx��x�i�� also decays exponentially to zero. Because

x�i� 2 fÅx��x�i��g for all i 2 I�0, it follows, similarly to the proof of

Proposition 3.12, that the set SK�1� is robustly exponentially stable in
ÅXN � SK�1� for the system x� � Ax � BÅ�N�Åx��x���K�x � Åx��x���
w. �

3.6 Tube-Based MPC of Nonlinear Systems

Satisfactory control in the presence of uncertainty requires feedback.

As shown in Section 3.5, MPC of uncertain systems ideally requires

optimization over control policies rather than control sequences, re-

sulting in an optimal control problem that is often impossibly com-

plex. Practicality demands simpli®cation. Hence, in tube-based MPC

of constrained linear systems we replace the general control policy

� � ��0���; �1���; : : : ; �N�1����, in which each element �i��� is an arbi-

trary function, by the simpler policy � in which each element has the

simple form �i�x� � Åu�i��K�x� Åx�i��; Åu�i� and Åx�i�, the control and

state of the nominal system at time i, are determined using conven-

tional MPC.

The feedback gain K, which de®nes the local control law, is de-

termined of¯ine; it can be chosen so that all possible trajectories of

the uncertain system lie in a tube centered on the nominal trajectory

�Åx�0�; Åx�1�; : : :�. The ªcross sectionº of the tube is a constant set SK�1�
so that every possible state of the uncertain system at time i lies in the

set fÅx�i�g � SK�1�. This enables the nominal trajectory to be deter-

mined using MPC, to ensure that all possible trajectories of the un-

certain system satisfy the state and control constraints, and that all

trajectories converge to an invariant set centered on the origin.

It would be desirable to extend this methodology to the control

of constrained nonlinear systems, but we face some formidable chal-

lenges. It is possible to de®ne a nominal system and, as shown in Chap-

ter 2, to determine, using MPC with ªtightenedº constraints, a nominal

trajectory that can serve as the center of a tube. But it seems to be

prohibitively dif®cult to determine a local control law that steers all

trajectories of the uncertain system toward the nominal trajectory, and

of a set centered on the nominal trajectory in which these trajectories

can be guaranteed to lie.

We can overcome these dif®culties by ®rst generating a nominal

trajectoryÐeither by MPC as in the linear case or by a single solution
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of an optimal control problemÐand then using MPC to steer the state

of the uncertain system toward the nominal trajectory Åx���. The lat-

ter MPC controller replaces the linear controller u � Åu � K�x � Åx�

employed in the linear case, and thereby avoids the dif®culty of de-

termining a local nonlinear version of this linear controller. The value

function �x; i�, V0
N�x; i� of the optimal control problem that is used to

determine the MPC controller is time varying and has the property that

V0
N�Åx�i�; i� � 0 for all i. The tube is now a sequence of sublevel sets�
levc V

0
N��; i�

�
i2I�0

and therefore, unlike the linear case, has a varying

cross section. We show that if the initial state x�0� lies in levc V
0
N��;0�,

then subsequent states x�i� of the controlled system lie in levc V
0
N��; i�

for all i 2 I�0.
The system to be controlled is described by a nonlinear difference

equation

x� � f�x;u;w� (3.20)

in which the disturbance w is assumed to lie in the compact set W

that contains the origin. The state x and the control u are required to

satisfy the constraints

x 2 X u 2 U
Both X and U are assumed to be compact and to contain the origin in

their interiors. The solution of (3.20) at time i, if the initial state at time

zero is x0 and the control is generated by policy �, is ��i;x0;�;w�, in

which w denotes, as usual, the disturbance sequence �w�0�;w�1�; : : :�.

Similarly, ��i;x0; �;w� denotes the solution of (3.20) at time i, if the

initial state at time zero is x0 and the control is generated by a time-

invariant control law ����.
The nominal system is obtained by neglecting the disturbance w

and is therefore described by

Åx� � Åf�Åx; Åu� :� f�Åx; Åu;0�

Its solution at time i, if its initial state is Åx0, is denoted by Å��i; Åx0;

Åu�, in which Åu :� �Åu�0�; Åu�1�; : : :� is the nominal control sequence. The

deviation between the actual and nominal state is e :� x�Åx and satis®es

e� � f�x;u;w�� f�Åx; Åu;0� � f�x;u;w�� Åf�Åx; Åu�

Because f��� is nonlinear, this difference equation cannot be simpli®ed

as in the linear case when e� is independent of x and Åx, and depends

only on their difference e and w.
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3.6.1 The Nominal Trajectory

The nominal trajectory is a feasible trajectory for the nominal system

that is suf®ciently far from the boundaries of the original constraints

to enable the model predictive controller for the uncertain system to

satisfy these constraints. It is generated by the solution to a nominal

optimal control problem ÅPN�Åx� in which Åx is the state of the nomi-

nal system. The cost function ÅVN��� for the nominal optimal control

problem is de®ned by

ÅVN�Åx; Åu� :�
N�1X
i�0

`�Åx�i�; Åu�i�� (3.21)

in which Åx�i� � Å��i; Åx; Åu� and Åx is the initial state. The function `���
is de®ned by

`�Åx; Åu� :� �1=2�� jÅxj2Q � jÅuj2R �
in which Q and R are positive de®nite, jÅxj2Q :� ÅxTQÅx, and jÅuj2R :�
ÅuTRÅu. We impose the following state and control constraints on the

nominal system

Åx 2 ÅX Åu 2 ÅU

in which ÅX � X and ÅU � U. The choice of ÅX and ÅU is more dif®cult

than in the linear case because it is dif®cult to bound the deviation

e � x � Åx of the state x of the uncertain system from the state Åx

of the nominal system; this is discussed below. The optimal nominal

trajectories Åu0 and Åx0 are determined by minimizing ÅVN�Åx0; Åu� subject

to: Åx0 � x0, the state and control constraints speci®ed above, and

the terminal constraint Åx�N� � 0 (we omit the initial state Åx0 � x0 in

Åu0 and Åx0 to simplify notation). The state and control of the nominal

system satisfy Åx�i� � 0 and Åu�i� � 0 for all i � N. This simpli®es both

analysis and implementation in that the control reverts to conventional

MPC for all i � N.

3.6.2 Model Predictive Controller

The purpose of the model predictive controller is to maintain the state

of the uncertain system x� � f�x;u;w� close to the trajectory of the

nominal system. This controller replaces the controller u � v �K�x�
Åx� employed in the linear case. Given the current state/time �x; t� of

the uncertain system, we determine a control sequence that minimizes

with respect to the control sequence u, the cost over a horizon N of
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the deviation between the state and control of the nominal system,

with initial state x and control sequence u, and the state and control

of the nominal system, with initial state Åx0�t� and control sequence

Åu0t :� �
Åu0�t�; Åu0�t � 1�; : : : ; Åu0�t �N � 1�

�
. The cost VN�x; t;u� that

measures the distance between these two trajectories is de®ned by

VN�x; t;u� :�
N�1X
i�0

`
�
�x�i�� Åx0�t � i��; �u�i�� Åu0�t � i���� Vf �x�N��

(3.22)

in which x�i� � Å��i;x;u�. The optimal control problem solved online

is de®ned by

PN�x; t� : V0
N�x; t� �min

u
fVN�x; t;u� j u 2 UNg

The only constraint in PN�x; t� is the control constraint. The con-

trol applied to the uncertain system is �N�x; t�, the ®rst element of

u0�x; t� � �
u0�0;x; t�;u0�1;x; t�; : : : ; u0�N � 1;x; t�

�
, the optimizing

control sequence. The associated optimal state sequence is x0�x; t� ��
x0�0;x; t�; : : : ; x0�1;x; t�; : : : ; x0�N � 1;x; t�

�
. The terminal penalty

Vf ���, and the functions Åf��� and `��� are assumed to satisfy the usual

assumptions 2.2, 2.3, and 2.14 for the nominal system Åx� � Åf�Åx; Åu�.

In addition, f : x , f�x; t;u� is assumed to be Lipschitz continuous

for all x 2 Rn, uniformly in �t;u� 2 I0:N �U, and `��� is assumed to be

quadratic and positive de®nite. Also, the linearization of Åf��� at �0;0�
is assumed to be stabilizable.

We ®rst address the problem that PN��� has no terminal constraint.

The function V 0f ��� and associated controller �f ��� is chosen, as in Sec-

tion 2.5.5, to be a local Lyapunov function for the nominal system

Åx� � Åf�Åx; Åu�. The terminal cost Vf ��� is set equal to �V 0f ��� with �
chosen as shown in the following proposition. The associated terminal

constraint Xf :� fx j V 0f �x� � �g for some� > 0 is not employed in the

optimal control problem, but is needed for analysis. For any state se-

quence Åx let Xc�Åx� denote the tube (sequence of sets) �X
c
0�Åx�;X

c
1�Åx�; : : :�

in which the ith element of the sequence is Xc
i �Åx� :� fx j V0

N�x; i� � cg.
The tube Xd�Åx� is similarly de®ned.

Proposition 3.16 (Implicit satisfaction of terminal constraint). For all

c > 0 there exists a �c :� c=� such that, for any i 2 I�0 and any

x 2 Xc
i �Åx

0�, the terminal state x0�N;x0; i� lies in Xf if � � �c .
Proof. Since x 2 Xc

i �Åx
0� implies V0

N�x; i� � c, we know Vf �x
0�N;x;

i�� � �V 0f �x0�N;x; i�� � c so that x0�N;x0; i� 2 Xf if � � �c . �
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Proposition 3.16 shows that the constraint that the terminal state

lies in Xf is implicitly satis®ed if � � �c and the initial state lies in

Xc
i �Åx

0� for any i 2 I�0. The next Proposition establishes important

properties of the value function V0
N���.

Proposition 3.17 (Properties of the value function). Suppose � � �c .
There exist constants c1 > 0 and c2 > 0 such that

(a) V0
N�x; t� � c1

��x � Åx0�t�
��2 8�x; t� 2 Rn � I�0

(b) V0
N�x; t� � c2

��x � Åx0�t�
��2 8�x; t� 2 Rn � I�0

(c) V0
N��x; t�

�� � V0
N�x; t�� c1

��x � Åx0�t�
��2 8�x; t� 2 Xc

i �Åx
0�� I�0

in which �x; t�� � �x�; t�� � � Åf�x; �N�x; t��; t � 1�.

It should be recalled that Åx0�t� � 0 and Åu0�t� � 0 for all t � N; the
controller reverts to conventional MPC for t � N.
Proof.

(a) This follows from the fact that V0
N�x; t� � `�x � Åx0�t�;u � Åu0�t��

so that, by the assumptions on `���, V0
N�x; t� � c1

��x � Åx0�t�
��2 for all

�x; t� 2 Rn � I�0.
(b) We have that V0

N�x; t� � VN�x;u0�x; t�� � VN�x; Åu0t � with

VN�x; Åu
0
t � �

N�1X
i�0

`�x0�i;x; t�� Åx0�t � i�;0��

Vf �x
0�N;x; t�� Åx0�t �N��

and Åu0t :�
�
Åu0�t�; Åu0�t � 1�; Åu0�t � 2�; : : :

�
. Lipschitz continuity of f���

in x gives
��� Å��i;x; Åu0t �� Åx0�i� t�

��� � Li ��x � Åx0�t�
��. Since `��� and

Vf ��� are quadratic, it follows that V0
N�x; t� � c2

��x � Åx0�t�
��2 for all

�x; t� 2 Rn � I�0, for some c2 > 0.

(c) It follows from Proposition 3.16 that the terminal state x0�N;x;

t� 2 Xf so that the usual stabilizing condition is satis®ed and

V0
N��x; t�

�� � V0
N�x; t�� `�x; �N�x; t��

The desired result follows from the lower bound on `���. �

It follows that the origin is asymptotically stable in the tube Xc�Åx0�

for the time-varying nominal system �x; i�� � Åf�x; �N�x; i��. How-

ever, our main interest is the behavior of the uncertain system with the
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controller �N���. Before proceeding, we note that the tube Xc�Åx0� is a
ªlargeº neighborhood of Åx0 in the sense that any state/time �x; i� in

this set can be controlled to Xf in N � i steps by a control subject only
to the control constraint. We wish to determine, if possible, a ªsmallº

neighborhood Xd�Åx� of Åx0, d < c, in which the trajectories of the un-

certain system are contained by the controller �N���. The size of these
neighborhoods, however, are dictated by the size of the disturbance set

W as we show next.

Proposition 3.18 (Neighborhoods of the uncertain system). Suppose

� � �c .
(a) V0

N��x; t�
�� � V0

N�x; t� for all �x; t� 2 Xd
t �Åx

0�� I�0, with �x; t�� �
�x�; t�� � �f �x; �N�x; t�;0�; t � 1� and  :� 1� c1=c2 2 �0;1�.
(b) x , V0

N� � ; t� is Lipschitz continuous with Lipschitz constant c3 > 0

in the compact set Xc
t �Åx

0� � fx j V0
N�x; t� � cg for all t 2 I0:N .

(c) V0
N�f �x; �N�x; t�;w�; t � 1� � V0

N�x; t� � c3 jwj for all �x; t� 2
�Xc

i �Åx
0��W�� I�0.

Proof.

(a) This inequality follows directly from Proposition 3.17.

(b) This follows, as shown in Theorem C.29 in Appendix C, from the

fact that x , V0
N�x; t� is Lipschitz continuous on bounded sets for

each t 2 I0:N , since VN��� is Lipschitz continuous on bounded sets

and u lies in the compact set UN .

(c) The ®nal inequality follows from (a), (b), and Proposition 3.17. �

Proposition 3.19 (Robust positive invariance of tube-based MPC for

nonlinear systems).

(a) Suppose � � �c and V0
N�x; t� � d < c (x 2 Xd

t �Åx
0�), then V0

N�x;

t�� � d (x 2 Xd
t�1�Åx

0�) with �x; t�� � �x�; t�� � �f �x; �N�x; t�;w�;
t � 1� if d � �c3=�1� �� jWj, jWj :�maxwfjwj j w 2Wg.
(b) Suppose " > 0. Then V0

N��x; t�
�� � V0

N�x; t� � " if V0
N�x� � d" :�

�c3=�1� ��W� ".

Proof.

(a) It follows from Proposition 3.17 that

V0
N�f �x; �N�x; t�;w�; t � 1� � d� c3 jwj
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If d � �c3=�1� �� jWj, then

V0
N�f �x; �N�x; t�;w�; t�1� � ��c3�=�1���c3� jWj � �c3=�1��� jWj

(b) V0
N�f �x; �N�x; t�;w� � V0

N�x��" if V0
N�x��c3W � V0

N�x��", i.e.,
if V0

N�x� � �c3=�1� ��W� ". �

These results show thatÐprovided the inequalities c � �c3=�1 �
�� jWj and d � �c3=�1 � �� jWj are satis®edÐthe tubes Xc�Åx0� and

Xd�Åx0� are robustly positive invariant for �x; t�� � �f �x; �N�x; t��;

t � 1�, w 2 W in the sense that if x 2 Xc
t �Åx

0� (x 2 Xd
t �Åx

0�), then

x� 2 Xc
t�1�Åx

0� (x� 2 Xd
t�1�Åx

0�). The tubes Xc�Åx0� and Xd�Åx0� may

be regarded as analogs of the sublevel sets levc V
0
N��� and levd V

0
N���

for time-invariant systems controlled by conventional MPC. If d � d"
and c is large (which implies � � c=� is large), are such that tube

Xd�Åx0� � Xc�Åx0�, then any trajectory commencing at x 2 Xc
t �Åx

0� con-

verges to the tube Xd�Åx0� in ®nite time and thereafter remains in the

tube Xd�Åx0�. It follows that dH�X
d
i �Åx

0�;Xc
N�Åx

0� becomes zero when i

exceeds some ®nite time not less than N.

3.6.3 Choosing the Nominal Constraint Sets ÅU and ÅX

The ®rst task is to choose d as small as possible given the constraint

d � d", and to choose c large. If the initial state x0 lies in Xc
0�Åx

0�

(this can be ensured by setting Åx0 � x0), then all state trajectories of

the uncertain system lie in the tube Xc�Åx0� and converge to the tube

Xd�Åx0�. As d ! 0, the tube Xd�Åx0� shrinks to the nominal trajectory

Åx0. If d is suf®ciently small, and if ÅX is a suf®ciently small subset of X,

all state trajectories of the uncertain system lie in the state constraint

set X. This is, of course, a consequence of the fact that the nominal

trajectory Åx0 lies in the tightened constraint set ÅX.

The set ÅU is chosen next. Since U is often a box constraint, a simple

choice would be ÅU � �U with � 2 �0;1�. This choice determines how

much control is devoted to controlling Åx0 to 0, and howmuch to reduce

the effect of the disturbance w. It is possible to change this choice

online.

The main task is to choose ÅX. This can be done as follows. Assume

that X is de®ned by a set of inequalities of the form gi�x� � hi, i 2 I1:J .
Then ÅX may be de®ned by the set of ªtightenedº inequalities gi�x� �
�ihi, i 2 I1:J , in which each �i 2 �0;1�. Let � :� ��1; �2; : : : ; �J�. Then

the ªdesign parameterº � is chosen to satisfy the constraint that the

state trajectory of the controlled uncertain system lies in X for all x0 2
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X0 (the set of potential initial states), and all disturbance sequences

w 2 WN . This is a complex semi-in®nite optimization problem, but

can be solved of¯ine using recent results in Monte Carlo optimization

that show the constraints can be satis®ed with ªpractical certainty,º i.e.,

with probability exceeding 1 � �, � � 1, using a manageable number

of random samples of w.

Example 3.20: Robust control of an exothermic reaction

Consider the control of a continuous-stirred-tank reactor. We use a

model derived in Hicks and Ray (1971) and modi®ed by Kameswaran

and Biegler (2006). The reactor is described by the second-order differ-

ential equation

Çx1 � �1=���1� x1�� kx1 exp��M=x2�
Çx2 � �1=���xf � x2�� kx1 exp��M=x2���u�x2 � xc��w

in which x1 is the product concentration, x2 is the temperature, and

u is the coolant ¯owrate. The model parameters are � � 20, k � 300,

M � 5, xf � 0:3947, xc � 0:3816, and � � 0:117. The state, control,

and disturbance constraint sets are

X � fx 2 R2 j x1 2 �0;2�; x2 2 �0;2�g
U � fu 2 R j u 2 �0;2�g
W � fw 2 R j w 2 ��0:001;0:001�g

The controller is required to steer the system from a locally stable

steady state x�0� � �0:9831;0:3918� at time zero, to a locally unsta-

ble steady state ze � �0:2632;0:6519�. Because the desired terminal

state is ze rather than the origin, the stage cost `�z; v� is replaced by

`�z � ze; v � ve� where `�z; v� :� �1=2��jzj2 � v2� and �ze; ve� is an

equilibrium pair satisfying ze � f�ze; ve�; the terminal constraint set

Zf is chosen to be fzeg. The constraint sets for the nominal control

problem are Z � X and V � �0:02;2�. Since the state constraints are

not activated, there is no need to tighten X. The disturbance is cho-

sen to be w�t� � A sin�!t� where A and! are independent uniformly

distributed random variables, taking values in the sets �0;0:001� and

�0;1�, respectively. The horizon length is N � 40 and the sample time

is � � 3 giving a horizon time of 120. The model predictive controller

uses `a�x;u� � �1=2��jxj2 � u2�, and the same horizon and sample

time.
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Figure 3.6: Comparison of 100 realizations of standard and tube-

based MPC for the chemical reactor example.

For comparison, the performance of a standard MPC controller, us-

ing the same stage cost and the same terminal constraint set as that

employed in the central-path controller, is simulated. Figure 3.6 (left)

illustrates the performance of standard MPC, and Figure 3.6 (right) the

performance of tube-based MPC for 100 realizations of the disturbance

sequence. Tube-based MPC, as expected, has a smaller spread of state

trajectories than is the case for standard MPC. Because each controller

has the same stage cost and terminal constraint, the spread of trajec-

tories in the steady-state phase is the same for the two controllers. Be-

cause the control constraint set for the central-path controller is tighter

than that for the standard controller, the tube-based controller is some-

what slower than the standard controller.

The model predictive controller may be tuned to reduce more effec-

tively the spread of trajectories due to the external disturbance. The

main purpose of the central-path controller is to steer the system from

one equilibrium state to another, while the purpose of the ancillary

model predictive controller is to reduce the effect of the disturbance.

These different objectives may require different stage costs.
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Figure 3.7: Comparison of standard and tube-based MPC with an ag-

gressive model predictive controller.

The next simulation compares the performance of the standard and

tube-based MPC when a more ªaggressiveº stage cost is employed for

the model predictive controller. Figure 3.7 shows the performance of

these two controllers when the central-path and standard MPC con-

troller employ `�z � ze; v � ve� with `�z; v� :� �1=2� jzj2 � 5v2, and

the ancillary model predictive controller employs `a�x;u� � 50 jxj2 �
�1=20�u2. The tube-based MPC controller reduces the spread of the

trajectories during both the transient and the steady-state phases.

It is also possible to tune the sample time of the ancillary model

predictive controller. This feature may be useful when the disturbance

frequency lies outside the pass band of the central-path controller. Fig-

ure 3.8 shows how concentration varies with time when the disturbance

is w�t� � 0:002 sin�0:4t�, the sample time of the central-path con-

troller is 12, whereas the sample time of the ancillary model predictive

controller is 12 (left ®gure) and 8 (right ®gure). The central-path con-

troller employs `�z � ze; v � ve� where `�z; v� :� �1=2��jzj2 � v2�,

and the model predictive controller employs the same stage cost `a�x;
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Figure 3.8: Concentration versus time for the ancillary model predic-

tive controller with sample time � � 12 (left) and � � 8

(right).

u� � `�x;u�. The model predictive controller with the smaller sample

time is more effective in rejecting the disturbance. �

3.7 Stochastic MPC

3.7.1 Introduction

In stochastic MPC, as in robust MPC, the system to be controlled is

usually described by x� � f�x;u;w�, in which the disturbance w

is a random variable that is assumed to take values in W. The con-

straint set W is not necessarily assumed to be bounded as it is in

robust MPC, although, to date, implementable versions appear to re-

quire boundedness of W. The decision variable � is usually assumed,

as in robust MPC, to be a policy � � ��0���; �1���; : : : ; �N�1���� (a se-

quence of control laws) in order to contain the spread of trajectories

that may result in a high cost and constraint violation. The functions
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�i��� are usually parameterized to simplify optimization. A parameter-

ization that is widely used when the system being controlled is linear

is �i�x� � Kx � vi, in which case the decision variable is simply the

sequence v � �v0; v1; : : : ; vN�1�. Let ��i;x;�;w� denote the solution

of x� � f�x;u;w� at time i if the initial state at time zero is x, the

control at �x; i� is �i�x�, and the disturbance sequence is w.

The cost that is minimized online is usually de®ned to be

VN�x;�� � Ejx�JN�x;�;w��

JN�x;u;w� �
N�1X
i�0

`�x�i�; �i�x�i��� Vf ���N;x;�;w��

in which Ejx��� � E�� j x�0� � x��, E��� is the expectation under the

probability measure of the underlying probability space, and x�i� �
��i;x;�;w�. For simplicity, the nominal cost VN�x;�� � Ejx�JN�x;
�;0�� is sometimes employed; here 0 is de®ned to be the sequence

�0;0; : : : ;0�.

We consider brie¯y below three versions of MPC associated with

three versions of the optimal control problem PN�x� solved online. In

the ®rst version there are no constraints, permitting the disturbance to

be unbounded. In the second version the hard constraints x 2 X, u 2 U
and the terminal constraint x�N� 2 Xf are required to be satis®ed.

While satisfaction of the constraint x 2 X almost surely is desirable,

this constraint is often regarded as too conservative. The third ver-

sion, therefore, replaces the hard constraint x 2 X by the probabilistic

(chance) constraint of the form

Prjx�x�i� 2 X� � 1� "
for some suitably small " 2 �0;1�. Some papers propose treating the

hard control constraint u 2 U similarly. This approach is not appro-

priate for process control since hard actuator constraints have to be

satis®ed; a valve cannot be more than fully open or less than fully

closed. In a similar vein, softening of the terminal constraint may re-

sult in instability. Hence, the constraints in the third version on the

system being controlled take the form

Prjx�x�i� 2 X� � 1� "
u�i� 2 U

for all i 2 I0:N . Pr��� denotes the probability measure of the underlying

probability space and Prjx��� the probability measure conditional on

x�0� � x. Also x�i� :� ��i;x;�;w� and u�i� � �i�x�i��.
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Let �N�x� denote the set of parameterized policies that satisfy the

constraints appropriate to the version being considered and the initial

state is x. The optimal control problem PN�x� that is solved online can

now be de®ned by

PN�x� : V0
N�x� � min

�2�N�x�
VN�x;��

subject to the constraints de®ned above as well as the hard terminal

stability constraint x�N� 2 Xf . The solution to this problem, if it ex-

ists, is �0�x� � ��00�x�; �01�x�; : : : ; �0N�1�x��. The control applied to the

uncertain system at state x is �N�x� :� �00�x�.

3.7.2 Stability of Stochastic MPC

Because the optimal control problem solved online has a ®nite hori-

zon the resultant control law is not necessarily stabilizing. Stabiliz-

ing conditions involving the addition of a terminal cost and a terminal

constraint set have been developed for deterministic and robust MPC

but, as pointed out in Chatterjee and Lygeros (2015), no approaches to

stochastic MPC prior to 2015 dealt ªdirectly with stability under reced-

ing horizon control as a standalone and fundamental problem.º

Version 1. Amajor contribution to stability and performance of stoch-

astic MPC in the absence of hard constraints is given in the paper by

Chatterjee and Lygeros that is the ®rst paper proposing ªstandaloneº

stability conditions for unconstrained stochastic MPC. The problem

considered in this paper is as stated above except that there are no

constraints (X � Xf � Rn, U � Rm) and the random disturbance w is

merely assumed to take values in a measurable setW that is not neces-

sarily bounded. The stabilizing assumption in Chatterjee and Lygeros

(2015) is

Assumption 3.21 (Stabilizing conditions, stochastic MPC: Version 1).

There exists a measurable control law �f ��� : Rn ! Rm a number b

and a bounded measurable set K such that

E�Vf �f �x; �f �x�;w�� � Vf �x�� `�x; �f �x�� 8x � K
sup
x2K
fE�Vf �f �x; �f �x�;w���� �Vf �x�� `�x; �f �x���g � b

Under the basic assumptions that (i) the cost VN�x;�� is ®nite for

all x 2 Rn and all � 2 �N�x�; (ii) for all x 2 Rn, there exists a solution
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�0�x� that solves PN�x�; and (iii) the stage cost `��� satis®es some

modest conditions, it is shown in (Chatterjee and Lygeros, 2015) that,

if Assumption 3.21 holds, then, for all x 2 Rn

Ejx�V0
N�x

��� � V0
N�x�� `�x; �N�x��� b

Chatterjee and Lygeros then show that V0
N��� satis®es the geometric

drift condition Ejx�V0
N�x

��� � V0
N�x� � `�x; �N�x�� outside of some

compact subset of Rn, and that the sequence �Ejx�V0
N�x�t����t2I�0 is

bounded.

Version 2. While the results in Chatterjee and Lygeros (2015) hold for

situations in which the disturbance is not restricted to lie in a compact

set, they do require the absence of hard state constraints. In addi-

tion, determination of a function satisfying Assumption 3.21 is dif®-

cult. Stabilizing conditions suitable for version 2 of stochastic MPC (all

constraints are hard and W is compact) are given in Mayne and Falugi

(2019).

Assumption 3.22 (Stabilizing conditions, stochastic MPC: Version 2).

Vf ���, Xf and `��� have the following properties.

(a) For all x 2 Xf there exists a u � �f �x� 2 U such that Vf �f �x;

�f �x�;0�� � Vf �x�� `�x; �f �x�� and f�x; �f �x�;w� 2 Xf ; 8w 2W
(b) There exists a � 2 �0;1� such that for all x 2 Xf

Ejx�Vf �f �x; �f �x�;w��� � Vf �x�� `�x; �f �x��� �

(c) Xf � X, W is compact.

(d) There exist constants c2 > c1 > 0 and a > 0 such that

`�x;u� � c1jxja; 8x 2 X; 8u 2 U
V0
N�x� � c2jxja; 8x such that �N�x� �;

If this assumption is satis®ed, it follows (Mayne and Falugi, 2019)

that, for x such that �N�x� is not empty, the optimal control problem

PN�x� is recursively feasible and

Ejx�V0
N�x

��� � V0
N�x�� `�x; �N�x��� � (3.23)

which is a modi®ed descent property. Consider now an in®nite random

sequence �x�i��i2I�0 generated by the control algorithm and stochastic

system.
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Proposition 3.23 (Expected cost bound). If Assumption 3.22 holds, then

there exists � 2 �0;1� such that the closed-loop trajectory x�k� satis®es

Ejx�V0
N�x�k��� � �kV0

N�x�� �=�1� ��
for all k 2 I�0 and x 2 X such that �N�x� �; and x�0� � x.
Proof. We proceed as in the deterministic case to obtain

Ejx�V0
N�x

��� � VN�x�� c1jxja � �
� VN�x�� �c1=c2�VN�x�� �
� �VN�x�� �

with � � 1�c1=c2. Then Ejx�0��V0
N�x�1��� � �V0

N�x�0���� and, by law
of iterated expectation,Ejx�0��V0

N�x�k��� � Ejx�0��Ejx�k�1��V0
N�x�k����.

By iterating we obtain our stability condition

Ejx�0��V0
N�x�k��� � �kVN�x�� �=�1� ��

and the proof is complete. �

Remark. Version 1 is applicable to model predictive control of sys-

tems that have unbounded disturbances but do not have hard state

and control constraints. Moreover it requires determination of a global

Lyapunov-like function Vf ��� de®ned in Assumption 3.21. Version 2

requires compactness of W since it is applicable to model predictive

control of systems that requires solution of a complex optimal control

problem in which hard constraints have to be satis®ed for all permitted

disturbance sequences.

We turn next to an implementable version of stochastic MPC.

3.7.3 Tube-based stochastic MPC

To date, it appears that all implementable versions of stochastic MPC

assume boundedness of the disturbance since, otherwise, it is dif®cult,

if not impossible, to satisfy hard constraints. Even if the disturbance is

bounded, however, satisfaction of hard constraints for all disturbance

sequences is not simple. The tube-based approach, introduced in Chisci

et al. (2001); Mayne and Langson (2001) appears to be the most prac-

tical method for handling hard constraints. The reason for this is the

state and control of the uncertain system are forced to satisfy hard con-

straints merely by requiring the state and control of the nominal, deter-

ministic, system to satisfy tighter versions of the same constraintsÐa
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much simpler problem than forcing satisfaction of the constraints for

all disturbance sequences using optimization. We present below a sim-

ilar simple approach to stochastic MPC, the major difference from ro-

bustMPC being aminormodi®cation required to tighten the constraints

to permit a small probability of nonsatisfaction.

Control strategy. We present a control strategy that ensures stability

in the sense that under reasonable assumptions the state converges to

the optimal solution of the unconstrained linear system. The uncertain

system to be controlled is described by

x� � Ax � Bu�w
and is subject to the constraints x 2 X and u 2 U; X is closed, U is com-

pact, and each set contains the origin in its interior. The disturbance

w is a stationary random process and is assumed to lie in the compact

set W that contains the origin in its interior. The nominal system and

error are described by

Åx� � AÅx � BÅu e :� x � Åx

Given state x at time t, we denote the solution of the nominal system

by Åx�i� for given controls Åu�i�, i 2 I0:N�1 where the initial state of the
nominal system is Åx�0� � x. As in robust tube-based MPC, we employ

the control policy � � ��0���; �1���; : : : ; �N�1���� in which for each i,

�i��� is de®ned for all x by

�i�x� :� Åu�i��K�x � Åx�i��

so that u�i� � �i�x�i�� � Åu�i� � K�x�i� � Åx�i��. The �x; e� pair then

evolve as

x� � Ax � BÅu� BKe�w e� � AKe�w AK :� A� BK
The feedback matrix K is chosen so that AK is Hurwitz. For practical

reasons we assume thatw and, hence, e are bounded. Ifw is an in®nite

sequence of independent, identically distributed, zero-mean random

variables, then an optimal K may be obtained from the solution to the

unconstrained problem

min lim
N!1

Ejx�1=N�
N�1X
i�0

`�x�i�;u�i��

in which `�x;u� � �1=2��x0Qx � u0Ru� with both Q and R positive

de®nite. Then K � ��R � B0PB��1B0PA, with P the solution of the
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matrix Riccati equation P � Q�A0P�R�B0PB��1PA; �1=2�x0Px is the

minimum cost for the deterministic problem in which the disturbance

w is identically zero.

Stochastic MPC differs from robust MPC in the de®nition of the con-

trol objective and in softening of the constraints that now take the form

Prjx�x�i� 2 X� � 1� "; i 2 I�0N
u�i� 2 U; i 2 I�0

in which x�i� � ��i;x;�;w�. The control u�i� applied to the system

at time i is

u�i� � Åu�i��K�x � Åx�i�� 8x
With this control policy, e�i� :� x�i�� Åx�i� is the solution at time i of

the difference equation

e� � AKe�w; e�0� � 0

As shown earlier e�i� 2 SK�i� :�
Pi�1
j�0A

j
KW for all i. Because AK is Hur-

witz, e�t� converges to a stationary process e1 as t ! 1. To achieve

robustness of stochastic MPC we adopt a policy similar to that em-

ployed in robust MPC. For each i, the control constraints are tightened

by determining, for each i, a set ÅU�i� that ensures Åu�Ke�i� 2 U for all

Åu 2 ÅU�i�. The state constraints are tightened by determining, for each

i, a set ÅX�i� that ensures Pr�bx � e�i� 2 X� � 1� " for all Åx 2 ÅX�i�.

A model predictive controller is employed to steer the state and

control of the nominal system, subject to the tightened constraints, to

the origin. Since x�t� � Åx�t�� e�t� and Åu�t� � Åu�t��Ke�t� it follows
that x�t� converges to e1 and u�t� converges to Ke1 as t !1.

To implement this control it seems, at ®rst sight, that we have to

determine the tightened constraints for all i 2 I�0. We propose two

practical alternatives. The ®rst, which is similar to that employed for

robust MPC, is determination of constant constraint sets ÅU1 and ÅX1
satisfying, respectively, ÅU1 � KSK�1� � U and PfÅx � e1 2 Xg � 1� "
for all Åx 2 ÅX1. At each time i, when the composite state is �x�i�; Åx�i��,

a standard nominal optimal control problem ÅPN�Åx�i�� with constraints

Åx 2 ÅX1, Åu 2 ÅU1 and the usual terminal constraint is solved. If standard

stability conditions are satis®ed, Åx�i� and Åu�i� converge to zero while

satisfying the tightened constraints Åu 2 ÅU1 and Åx 2 ÅX1 as i!1. The
control applied to the system at time i is u�i� � Åu�i��K�x�i�� Åx�i��.

This procedure is conservative in that the constraints are tighter than

necessary.
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A better, albeit more complex, alternative is to solve, at time zero,

a standard nominal optimal control problem ÅPN�Åx� with a sequence

of tightened control constraints �ÅU�0�; ÅU�1�; : : : ; ÅU�N � 1�� and state

constraints �ÅX�1�; ÅX�2�; : : : ; ÅX�N � 1�;Xf � speci®ed below; the solution

to this problem yields the nominal control and state sequences �Åu0�0�;

Åu0�1�; Åu0�N�1�� and �Åx0�1�; Åx0�2�; : : : ; Åx0�N�� satisfying Åu0�i� 2 ÅU�i�,

Åx0�i� 2 ÅX�i�, and Åx0�N� 2 Xf . At time i � N and thereafter the control

Åu�i� is set equal to �f �Åx�i�� so that Åx�i � 1� � AÅx�i� � B�f �Åx�i��.
If the usual stability conditions are satis®ed, the nominal state Åx�i�

remains in Xf for all i � N. The procedure therefore yields a control

sequence consisting of the sequence �Åu0�0�; Åu0�1�; : : : ; Åu0
N�1� followed

by the in®nite control sequence ��f �Åx�N�; �f �Åx�N�1�; : : :�. Moreover,
the control law �f ��� ensures that Åu�i�! 0 and Åx�i�! 0 as i!1. To
implement this procedure we require an additional assumption.

Assumption 3.24 (Robust terminal set condition). The terminal set sat-

is®es Xf � SK�1� � X.

Both procedures ensure that x�t� converges to the zero mean sta-

tionary process e1 to which e�t� converges, and that u�t� converges to

Ke1 as t !1.
Determination of tightened constraints. The tightened control con-

straints must satisfy ÅU�i� � KSK�i� � U or, equivalently, ÅU�i� � U 	
KSK�i� for all i 2 I0:N�1. Provided we are able to tractably calculate

SK�i� for any i 2 I0:N�1, we may simply de®ne ÅU�i� :� U 	 KSK�i�. Al-
ternatively, we may use any conservative estimate SeK�i� � SK�i� and
de®ne ÅU�i� :� U	KSeK�i�. For example, we may choose SeK�i� � SK�1�
and thereby de®ne ÅU�i� � ÅU1 for all i 2 I�0.

We now consider determination, for any i 2 I0:N�1, of the state

constraint set ÅX�i� that satis®es Pr�Åx�e�i� 2 X� � 1�" for all Åx 2 ÅX�i�.

This is a stochastic optimization problem, a ®eld in which, fortunately,

there has been considerable recent progress. Tempo, Cala®ore, and

Dabbene (2013) give an excellent exposition of this subject.

Suppose X is de®ned by a single constraint of the form fx j c0x �
dg. For each i 2 I0:N�1, we wish to determine a tighter constraint c0Åx �
Åd :� d � f , f 2 �0; d�, such that c0Åx�i� � Åd implies c0x�i� � c0Åx�i� �
c0e�i� � dwith probability not less than 1�". To achieve this objective,
we solve the stochastic problem P de®ned by

min
f2�0;d�

ff j Pr�c0e�i� � f� � 1� "g
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with " chosen to be suitably small; c0e � f and c0Åx � d�f imply c0x �
d. In Cala®ore and Campi (2006), the complex probability constrained

problem P is replaced by a scenario convex optimization problem Ps

de®ned by

min
f2�0;d�

ff j c0e�i;wj� � f ; 8j 2 I1:Mg (3.24)

Here wj denotes the jth sample of the ®nite sequence fw�0�;w�1�;
w�2�; : : : ;w�i�1�g and e�i� is replaced by e�i;wj� to denote its depen-

dence on the random sequence wj .

It is shown in Cala®ore and Campi (2006) and Tempo et al. (2013)

that given �"; ��, there exists a relatively modest number of samples

M��"; �� such that if M � M�, one of the following two conditions

hold. For each i 2 I0:N�1, either problem Ps is infeasible, in which case

the robust control problem is infeasible; or its solution f 0�i� satis®es

Pr�c0e�i� � f 0�i�� � 1� "
with probability 1� � (i.e., with practical certainty if � is chosen suf®-

ciently small). The tightened state constraint set is ÅX�i� � fx j c0x �
d�f 0�i�g � X. Note that ÅX1 � ÅX�i�, i.e., using ÅX�i� is less conservative

than ÅX1. Tempo et al. (2013) give the value

M��"; �� � 2

"

 
log

 
1

�

!
�n�

!
(3.25)

If X :� fx j Cx � dg in which d 2 Rp, we apply the procedure above

to each row c0kx � dk of the constraint yielding f 0K�i� satisfying
Pr�c0ke�i� � f 0k �i�� � 1� "k

for each k � 1; : : : ; p if the associated scenario problem is feasible. The

probability that x�i� 2 X�i� is not less than 1� " with " �Pp
j�1 "k.

Example 3.25: Constraint tightening via sampling

Consider the scalar system x� � x�u�w, with X � U � ��1;1� andw
uniformly distributed in W � ��1=2;1=2�. Using costs Q � 1=2, R � 1,

the LQR gain is K � 1=2, which gives AK � 1=2, and thus

SK�i� :�
i�1X
j�0

A
j
KW � ���1� 2�i�;1� 2�i�

for all i 2 I�0. Tightening the set U, we have

ÅU�i� :� U	KSK�i� � �1=2����1� 2�i�;1� 2�i�
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Figure 3.9: Observed probability "test of constraint violation for i �
10. Distribution is based on 500 trials for each value of

". Dashed line shows the outcome predicted by formula

(3.25), i.e., "test � ".

for all i 2 I�0. Note that the ®rst control constraint does not need to be

tightened at all, ÅU�0� � U, and all subsequent control constraints are

less conservative than ÅU1 � ��1=2;1=2�.
To compute the tightened sets ÅX�i�, we apply the sampling pro-

cedure for each i 2 I0:N�1. For various values of ", we compute the

number of samples M � M��"; �� using (3.25) with � � 0:01. Then,

we choose M samples of w and solve (3.24) for f 0�i�. To evaluate the

actual probability of constraint violation, we then test the constraint vi-

olation using Mtest � 106 different samples wtest. That is, we compute

"test :� Pr
�
c0e�i;w

j
test� > f

0�i�; 8j 2 I1:Mtest

�
for each i 2 I0:N�1. Note that since "test is now a random variable de-

pending on the particularM samples chosen, we repeat the process 500

times for each value of M . The distribution of "test for i � 10 is shown

in Figure 3.9. Notice that the formula (3.25) is slightly conservative,

i.e., the observed probability "test is half of the chosen probability " for

99% of samples (with probability 1��). This gap holds throughout the
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entire range of the test. �

Evaluation. How does tube-based MPC compare with other methods?

We discuss here two aspects: constraint handling and performance.

Traditional MPC handles constraints by solving online a ®nite hori-

zon optimal control problem that involves minimization of a cost sub-

ject to control and state constraints for every realization of the distur-

bance process, a computationally expensive requirement. Tube-based

MPC for linear systems appears to be the only method for avoiding this

online expense but can only be employed for linear systems.

Tube-based MPC takes two different forms. One, introduced in

Chisci et al. (2001), solves an online optimal control problem PN�x�

at the current state x and uses a tube to determine the set of all pos-

sible trajectories emanating from the current state x; the motive is to

minimize the cost at each current state. The second form, introduced

in Mayne and Langson (2001), solves a nominal optimal control prob-

lem PN�x�0�� at the initial state x�0� and uses a single tube emanating

from x�0�. The ®rst form is closer to traditional MPC and attempts

to minimize the cost of the particular trajectory generated by the con-

troller as in deterministic MPC. The second form, on the other hand,

minimizes the average cost over all trajectories emanating from the

initial state x�0� as in classical stochastic control in which controllers

are developed of¯ine.

While the ®rst approach is closer to traditional MPC, its implemen-

tation is more dif®cult for the following reason: at each state x the suc-

cessor state x� does not lie on the optimal trajectory emanating from

x due to the disturbance w; recursive feasibility is therefore lost. Al-

gorithmic modi®cations that are fairly complex have to be introduced;

see, for example, Kouvaritakis and Cannon (2016); Lorenzen, Dabbene,

Tempo, and AllgÈower (2016). These modi®cations increase computa-

tional expense and their effect on performance has not yet been stud-

ied.

The big advantage of the second approach is its simplicity; it is no

more dif®cult to implement than traditional MPC, requiring only the

determination of a nominal trajectory that converges to the origin. It

is also possible to get an indication of its performance. If there are no

constraints, if the horizon of the optimal control problem is in®nite,

and if �w�i��i2I�0 is a sequence of independent, identically distributed

random variables, then the optimal controller gain isu � K�x� for both
the stochastic and nominal systems. Thus, at composite state �x; Åx�,
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the optimal control for the stochastic system at state x is u0 � Kx and

the optimal control for the nominal system at state Åx is Åu0 � KÅx. The
controlu determined by the control algorithm isu � Åu0�K�x0� Åx0� �
KÅx0�Kx0�KÅx0 � Kx0 and is therefore optimal. Next, if we accept that

the control u is paramaterized by u � Åu�K�x� Åx� so that the decision

variable is Åu, then, since x � Åx � e and u � Åu � Ke, the performance

index for the parameterized stochastic system is

VN�x�0�; Åu� � Ejx�0�
24N�1X
i�0

`�x�i�;u�i��� Vf �x�N��
35

�
N�1X
i�0

`�Åx�i�; Åu�i��� Vf �Åx�N��� c

� ÅVN�Åx�0�; Åu�� c

in which ÅVN is the performance index for the nominal system

c � E
24N�1X
i�0

`�e�i�;Ke�i��� Vf �e�N��
35

and `��� and Vf ��� are quadratic functions. If, in addition, the system

being controlled satis®es its control and probabilistic constraints if and

only if the nominal system satis®es its tightened constraints, then the

solution Åu0�x�0�� of the nominal optimal control problem ÅPN�x�0��

is also the solution of the parameterized stochastic optimal control

problem PN�x�0��.

3.8 Notes

Robust MPC. There is now a considerable volume of research on ro-

bust MPC; for a review of the literature up to 2000 see Mayne, Rawlings,

Rao, and Scokaert (2000). Early literature examines robustness of nomi-

nal MPC under perturbations in Scokaert, Rawlings, andMeadows (1997);

and robustness undermodel uncertainty in DeNicolao, Magni, and Scat-

tolini (1996) and Magni and Sepulchre (1997). Suf®cient conditions

for robust stability of nominal MPC with modeling error are provided

in Santos and Biegler (1999). Teel (2004) provides an excellent dis-

cussion of the interplay between nominal robustness and continuity

of the Lyapunov function, and also presents some illuminating exam-

ples of nonrobust MPC. Robustness of the MPC controller described in
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Chen and AllgÈower (1998), when employed to control a system with-

out state constraints, is established in Yu, Reble, Chen, and AllgÈower

(2011). The theory of inherent robustness is usefully extended in Pan-

nocchia, Rawlings, and Wright (2011); Allan et al. (2017); and applied

to optimal and suboptimal MPC.

Many papers propose solving online an optimal control problem

in which the decision variable is a sequence of control actions that

takes into account future disturbances. Thus, it is shown in Limon,
ÂAlamo, and Camacho (2002) that it is possible to determine a sequence

of constraints sets that become tighter with time, and that ensure the

state constraint is not transgressed if the control sequence satis®es

these tightened constraints. This procedure was extended in Grimm,

Messina, Tuna, and Teel (2007), who do not require the value function

to be continuous and do not require the terminal cost to be a control

Lyapunov function.

Predicted trajectories when the decision variable is a control se-

quence can diverge considerably with time, making satisfaction of state

and terminal constraints dif®cult or even impossible. This has moti-

vated the introduction of ªfeedbackº MPC, in which the decision vari-

able is a policy (sequence of control laws) rather than a sequence of

control actions (Mayne, 1995; Kothare, Balakrishnan, and Morari, 1996;

Mayne, 1997; Lee and Yu, 1997; Scokaert and Mayne, 1998). If arbitrary

control laws are admissible, the implicit MPC control law is identical

to that obtained by dynamic programming; see Section 3.1.3 and pa-

pers such as Magni, De Nicolao, Scattolini, and AllgÈower (2003), where

a H1 MPC control law is obtained. But such results are conceptual be-

cause the decision variable is in®nite dimensional. Hence practical con-

trollers employ suboptimal policies that are ®nitely parameterizedÐan

extreme example being nominal MPC. A widely used parameterization

is u � v � Kx, particularly when the system being controlled is lin-

ear; this parameterization was ®rst proposed in Rossiter, Kouvaritakis,

and Rice (1998). The matrix K is chosen to stabilize the unconstrained

linear system, and the decision variable is the sequence �v�i��0:N�1.

The robust suboptimal controllers discussed in this chapter employ

the concept of tubes introduced in the pioneering papers by Bertsekas

and Rhodes (1971a,b), and developed for continuous time systems by

Aubin (1991) and Khurzhanski and Valyi (1997). In robust MPC, local

feedback is employed to con®ne all trajectories resulting from the ran-

dom disturbance to lie in a tube that surrounds a nominal trajectory

chosen to ensure the whole tube satis®es the state and control con-
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straints. Robustly positive invariant sets are employed to construct

the tubes as shown in (Chisci et al., 2001) and (Mayne and Langson,

2001). Useful references are the surveys by Blanchini (1999), and Kol-

manovsky and Gilbert (1995), as well as the recent book by Blanchini

and Miani (2008). Kolmanovsky and Gilbert (1995) provide extensive

coverage of the theory and computation of minimal and maximal ro-

bust (disturbance) invariant sets.

The computation of approximations to robust invariant sets that are

themselves invariant is discussed in a series of papers by RakoviÂc and

colleagues (RakoviÂc, Kerrigan, Kouramas, and Mayne, 2003; RakoviÂc

et al., 2005a; RakoviÂc, Mayne, Kerrigan, and Kouramas, 2005b; Koura-

mas, RakoviÂc, Kerrigan, Allwright, and Mayne, 2005). The tube-based

controllers described above are based on the papers (Langson, Chrys-

sochoos, RakoviÂc, and Mayne, 2004; Mayne, SerÂon, and RakoviÂc, 2005).

Construction of robust invariant sets is restricted to systems of rela-

tively low dimension, and is avoided in Section 3.6.3 by employing op-

timization directly to determine tightened constraints. A tube-based

controller for nonlinear systems is presented in Mayne, Kerrigan, van

Wyk, and Falugi (2011).

Because robust MPC is still an active area of research, other meth-

ods for achieving robustness have been proposed. Diehl, Bock, and

Kostina (2006) simplify the robust nonlinear MPC problem by using

linearization, also employed in (Nagy and Braatz, 2004), and present

some ef®cient numerical procedures to determine an approximately

optimal control sequence. Goulart, Kerrigan, and Maciejowski (2006)

propose a control that is an af®ne function of current and past states;

the decision variables are the associated parameters. This method sub-

sumes the tube-based controllers described in this chapter, and has the

advantage that a separate nominal trajectory is not required. A disad-

vantage is the increased complexity of the decision variable, although

an ef®cient computational procedure that reduces computational time

per iteration from O�N6� to O�N3� has been developed in Goulart, Ker-

rigan, and Ralph (2008). Interesting extensions to tube-based MPC are

presented in RakoviÂc (2012), and RakoviÂc, Kouvaritakis, Cannon, Panos,

and Findeisen (2012). The introduction of a novel parameterization by

RakoviÂc (2012) enables him to establish that the solution obtained is

equivalent to dynamic programming in at least three cases.

Considerable attention has recently been given to input-to-state sta-

bility of uncertain systems. Thus Limon, Alamo, Raimondo, de la PeÄna,

Bravo, and Camacho (2008) present the theory of input-to-state sta-
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bility as a unifying framework for robust MPC, generalizes the tube-

based MPC described in (Langson et al., 2004), and extends existing

results on min-max MPC. Another example of research in this vein is

the paper by Lazar, de la PeÄna, Heemels, and Alamo (2008) that utilizes

input-to-state practical stability to establish robust stability of feedback

min-max MPC. A different approach is described by Angeli, Casavola,

FranÁze, and Mosca (2008) where it is shown how to construct, for each

time i, an ellipsoidal inner approximation Ei to the set Ti of states that
can be robustly steered in i steps to a robust control invariant set T .

All that is required from the online controller is the determination of

the minimum i such that the current state x lies in Ei and a control

that steers x 2 Ei into the set Ei�1 � Ei.
Stochastic MPC. Interest in stochastic MPC has increased consider-

ably. An excellent theoretical foundation is provided in Chatterjee and

Lygeros (2015). Most papers address the stochastic constrained linear

problem and propose that the online optimal control problem PN�x�

(x is the current state) minimizes a suitable objective function sub-

ject to satisfaction of state constraints with a speci®ed probability as

discussed above. If time-invariant probabilistic state constraints are

employed, a major dif®culty with this approach, as pointed out in Kou-

varitakis, Cannon, RakoviÂc, and Cheng (2010) in the context of stoch-

astic MPC for constrained linear systems, is that recursive feasibility is

lost unless further measures are taken. It is assumed in this paper, as

well as in a later paper Lorenzen et al. (2016), that the disturbance is

bounded, enabling a combination of stochastic and hard constraints to

be employed.

In contrast to these papers, which employ the control policy pa-

rameterization u � Kx � v , Chatterjee, Hokayem, and Lygeros (2011)

employ the parameterization, ®rst proposed in Goulart et al. (2006), in

which the control law is an af®ne function of ®nite number of past dis-

turbances. This parameterization, although not parsimonious, results

in a convex optimal control problem, which is advantageous. Recur-

sive feasibility is easily achieved in the tube-based controller proposed

above, since it requires online solution of PN�Åx� rather than PN�x�.

Tube-based MPC is well suited to handle hard constraints via con-

straint tightening Michalska and Mayne (1993); Chisci et al. (2001);

Mayne and Langson (2001) and many subsequent papers. It has more

recently been used for stochastic MPC in Lorenzen et al. (2016); Mayne

(2016).

Another dif®culty that arises in stochasticMPC, as pointed out above,
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is determination of suitable terminal conditions. It is impossible, for

example, to obtain a terminal cost Vf ��� and local controller �f ��� such
that Vf �x

�� < Vf �x� for allx 2 Xf , x 6� 0, and allx� � f�x; �f �x�;w�.
For this reason, Chatterjee and Lygeros (2015) propose that it should

be possible to decrease Vf �x� outside of the terminal constraint set Xf ,

but that Vf �x� should be permitted to increase by a bounded amount

inside Xf . The terminal ingredients, Vf ��� and Xf , that we propose for
robust MPC in Assumption 3.8 have this property a difference being

that Chatterjee and Lygeros (2015) require Vf ��� to be a global (stoch-

astic) Lyapunov function.

In most proposals, PN�x� is a stochastic optimization problem, an

area of study in which there have been recent signi®cant advances dis-

cussed brie¯y above. Despite this, the computational requirements for

solving stochastic optimization problems online seems excessive for

process control applications. It is therefore desirable that as much

computation as possible is done of¯ine as proposed in Kouvaritakis

et al. (2010); Lorenzen et al. (2016); Mayne (2016); and above. In these

papers, of¯ine optimization is employed to choose tightened constraints

that, if satis®ed by the nominal system, ensure that the original con-

straints are satis®ed by the uncertain system. It also is desirable, in

process control applications, to avoid computation of polytopic sets,

as in Section 3.6.3, since they cannot be reliably computed for complex

systems.

Robustness against unstructured uncertainty has been considered

in Lùvaas, SerÂon, and Goodwin (2008); Falugi and Mayne (2011).
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3.9 Exercises

Exercise 3.1: Removing the outer min in a min-max problem

Show that V0
i : Xi ! R and �i : Xi ! U de®ned by

V0
i �x� �min

u2U
max
w2W

f`�x;u;w�� V0
i�1�f �x;u;w�� j f�x;u;W� � Xi�1g

�i�x� � argmin
u2U

max
w2W

f`�x;u;w�� V0
i�1�f �x;u;w�� j f�x;u;W� � Xi�1g

Xi � fx 2 X j 9u 2 U such that f�x;u;W� � Xi�1g
satisfy

V0
i �x� � max

w2W
f`�x; �i�x�;w�� V0

i�1�f �x; �i�x�;w��g

Exercise 3.2: Maximizing a difference

Prove the claim used in the proof of Theorem 3.9 that

max
w
fa�w�g �max

w
fb�w�g �max

w
fa�w�� b�w�g

Also show the following minimization version

min
w
fa�w�g �min

w
fb�w�g �min

w
fa�w�� b�w�g

Exercise 3.3: Equivalent constraints

Assuming that S is a polytope and, therefore, de®ned by linear inequalities, show that

the constraint x 2 fzg � S (on z for given x) may be expressed as Bz � b � Bx, i.e., z
must lie in a polytope. If S is symmetric (x 2 S implies �x 2 S), show that x 2 fzg�S
is equivalent to z 2 fxg � S.

Exercise 3.4: Hausdorff distance between translated sets

Prove that the Hausdorff distance between two sets fxg � S and fyg � S, where S is a

compact subset of Rn and x and y are points in Rn, is
��x �y��.

Exercise 3.5: Exponential convergence of X�i�

Complement the proof of Proposition 3.12 by proving the sequence of sets �X�i��0:1,
X�i� :� fÅx�i�g � SK�1�, converges exponentially fast to the set SK�1� as i!1 if Åx�i�
converges exponentially fast to 0 as i!1.

Exercise 3.6: Simulating a robust MPC controller

This exercise explores robust MPC for linear systems with an additive bounded distur-

bance

x� � Ax � Bu�w
The ®rst task, using the tube-based controller described in Section 3.5.3 is to determine

state and control constraint sets Z and V such that if the nominal system z� � Az�Bv
satis®es z 2 Z and v 2 V, then the actual system x� � Ax � Bu � w with u �
v � K�x � z� where K is such that A � BK is strictly stable, satis®es the constraints

x 2 X and u 2 U.
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Figure 3.10: Closed-loop robust MPC state evolution with uniformly

distributed jwj � 0:1 from four different x0.

(a) To get started, consider the scalar system

x� � x �u�w
with constraint sets X � fx j x � 2g, U � fu j juj � 1g, and W � fw j jwj �
0:1g. Choose K � ��1=2� so that AK � 1=2. Determine Z and V so that if the

nominal system z� � z � v satis®es z 2 Z and v 2 V, the uncertain system

x� � Ax � Bu�w, u � v �K�x � z� satis®es x 2 X, u 2 U.

(b) Repeat part (a) for the following uncertain system

x� �
"
1 1

0 1

#
x �

"
0

1

#
u�w

with the constraint sets X � fx 2 R2 j x1 � 2g, U � fu 2 R j juj � 1g and
W � ��0:1;0:1�. Choose K �

h
�0:4 �1:2

i
.

(c) Determine a model predictive controller for the nominal system and constraint

sets Z and V used in (b).

(d) Implement robust MPC for the uncertain system and simulate the closed-loop

system for a few initial states and a few disturbance sequences for each initial

state. The phase plot for initial states ��1;�1�, �1;1�, �1;0�, and �0;1� should
resemble Figure 3.10.
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4

State Estimation

4.1 Introduction

We now turn to the general problem of estimating the state of a noisy

dynamic system given noisy measurements. We assume that the sys-

tem generating the measurements is given by

x� � f�x;w�
y � h�x�� v (4.1)

with the state x 2 X � Rn, measurement y 2 Y � Rp, process dis-

turbance, w 2 W � Rg , measurement disturbance, v 2 V � Rp, and

system initial state, x�0� 2 X. One of our main purposes is to provide

a state estimate to the MPC regulator as part of a feedback control sys-

tem, in which case the model changes to x� � f�x;u;w� with both

process disturbance w and control input u. But state estimation is a

general technique that is often used in monitoring applications without

any feedback control. So for simplicity of presentation, we start with

state estimation as an independent subject and neglect the control in-

put u as part of the system model as in (4.1).

Finally, in Section 4.5, we brie¯y treat the problem of combined MHE

estimation and MPC regulation. In Chapter 5, we discuss the combined

use of MHE and MPC in more detail.

4.2 Full Information Estimation

Of the estimators considered in this chapter, full information estima-

tion will prove to have the best theoretical properties in terms of stabil-

ity and optimality. Unfortunately, it will also prove to be computation-

ally intractable except for the simplest cases, such as a linear system

model. Its value therefore lies in clearly de®ning what is desirable in a

269
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System Decision Optimal

variable variable decision

state x � Ãx

process disturbance w ! Ãw

measured output y � Ãy

measurement disturbance v � Ãv

Table 4.1: System and state estimator variables.

state estimator. One method for practical estimator design therefore

is to come as close as possible to the properties of full information es-

timation (FIE) while maintaining a tractable online computation. This

design philosophy leads directly to moving horizon estimation (MHE).

First we de®ne some notation necessary to distinguish the system

variables from the estimator variables. We have already introduced the

system variables �x;w;y;v�. In the estimator optimization problem,

these have corresponding decision variables, which we denote ��;!;�;

��. The optimal decision variables are denoted �Ãx; Ãw; Ãy; Ãv�, and these

optimal decisions are the estimates provided by the state estimator.

This notation is summarized in Table 4.1. Next we summarize the re-

lationships between these variables

x� � f�x;w� y � h�x�� v
�� � f��;!� y � h���� �
Ãx� � f�Ãx; Ãw� y � h�Ãx�� Ãv

Notice that it is always the system measurement y that appears in the

second column of equations. We also can de®ne the decision variable

output, � � h���, but notice that � measures the ®tting error, � �
y � h���, and we must use the system measurement y and not � in

this relationship. Therefore, we do not satisfy a relationship like � �
h���� � , but rather

y � h���� � � � h���
y � h�Ãx�� Ãv Ãy � h�Ãx�

We begin with a reasonably general de®nition of the full information

estimator that produces an estimator that is stable, which we also shall
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de®ne subsequently. The full information objective function is

VT ���0�;!� � `x
�
��0�� x0

�� T�1X
i�0

`�!�i�; ��i�� (4.2)

subject to

�� � f��;!� y � h���� �
in which T is the current time,y�i� is themeasurement at time i, andx0

is the prior estimate of the initial state.1 Occasionally we shall consider

input disturbances to an explicitly given nominal input. If we denote

this nominal input trajectory asw, then we adjust the model constraint

to �� � f��;w�!�, so that!measures the difference from the nom-

inal model's input. We recover the standard problem by setting w � 0.

Because � � y � h��� is the error in ®tting the measurement y , `�!;

�� penalizes the model disturbance and the ®tting error. These are the

two error sources we reconcile in all state estimation problems.

The full information estimator is then de®ned as the solution to

PT �x0;w0:k�1;y0:k�1� :� min
��0�;!

VT ���0�;!� (4.3)

and we use the notation PT �x0;y0:k�1� for the usual case when the

nominal input is w � 0. The solution to the optimization exists for all

T 2 I�0 because VT ��� is continuous, due to the continuity of f��� and
h���, and because VT ��� is an unbounded function of its arguments, as

will be clear after stage costs `x��� and `��� are de®ned. We denote the

solution as Ãx�0jT�, Ãw�ijT�;0 � i � T � 1, T � 1, and the optimal cost

as V0
T . We also use Ãx�T� :� Ãx�T jT� to simplify the notation.

We require a de®nition of state estimation general enough to include

this optimization approach. Attempting to express the state estimate

as a ®nite dimensional dynamical system, as we do with the Kalman

®lter for linear systems, is not suf®cient here. Instead we consider the

state estimate at any time k 2 I�0 to be a function of the prior x0,

nominal input (if nonzero), w0:T�1, and the measurement y0:T�1.

De®nition 4.1 (State Estimator). A state estimator is a sequence of func-

tions �	T �T�0 de®ned 	T : X �WT � YT ! X for all T 2 I�0, and the

1Notice that we have dropped the ®nal measurement y�T� compared to the problem

considered in Chapter 1 to formulate the prediction form rather than the ®ltering form

of the state estimation problem. So what we denote here as Ãx�T jT� would be Ãx��T�
in the notation of Chapter 1. This change is purely for notational convenience, and all

results developed in this chapter also can be expressed in the ®ltering form of MHE.
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state estimate at time T is denoted

Ãx�T� � 	T �x0;w0:T�1;y0:T�1�

If the nominal input sequence is w � 0, as is usually the case, then we

drop the second argument and write simply

Ãx�T� � 	T �x0;y0:T�1�

In the full information estimator, the function 	��� denotes the ®-

nal element of the state trajectory in the solution to (4.3). One impor-

tant characteristic of optimization-based estimation worth bearing in

mind as we progress is that Ãx�T� � 	T �x0;y0:T�1� does not imply that

Ãx�T � 1� � 	1�Ãx�T�;yT �, even though y0:T :� �y0:T�1; yT �. In (non-

linear) full information estimation, we have no convenient means to

move from Ãx�T� to Ãx�T � 1�, and must instead recompute the entire

optimal trajectory with 	T�1�x0;y0:T �. As we shall see subsequently,

this confers some desirable properties on the estimator, but renders

its online computation intractable since the size of the optimization

problem increases with time.

Next we require a de®nition of robust stability suitable for state

estimation in this general form. The standard attempt2 would be to

use the following type of bound in the de®nition of robust stability

jx�k�� Ãx�k�j � �x�jx�0�� x0j ; k��
w�kwk0:k�1�� v�kvk0:k�1� (4.4)

for all k 2 I�0 with �x��� 2 KL and w���; v��� 2 K. But, for the gen-

eral class of estimators under consideration here, an inequality of this

type does not ensure that the estimate error converges to zero when

the disturbances converge to zero. To ensure this desirable property

we strengthen the de®nition of estimator stability to the following.

De®nition 4.2 (Robustly globally asymptotically stable estimation). A

state estimator �	k�k�0 is robustly globally asymptotically stable (RGAS)

if there existKL-functions �x; �w ; �v such that

jx�k�� Ãx�k�j � �x�jx�0�� x0j ; k�� max
j2I0:k�1

�w�
��w�j��� ; k� j � 1�

� max
j2I0:k�1

�v�
��v�j��� ; k� j � 1� (4.5)

for all k 2 I�0, x�0�; x0 2 X, and w 2W, v 2 V.
2See the previous printings of this chapter, for example.
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We have chosen the convolution maximization form for the stability

de®nition, where the notation a�b denotes max�a; b� for a;b 2 R. We

choose to maximize on time index j rather than sum on j since we do

not know a priori that the KL-functions �w ; �v decrease suf®ciently

quickly to ensure that the sums converge as k!1.
We can then readily establish the following convergence result (Al-

lan and Rawlings, 2020, Proposition 3.11)

Proposition 4.3 (RGAS plus convergent disturbances imply convergent

estimates). If an estimator is RGAS and ��w�k�; v�k���k�0 converges to

zero, then the estimate error converges to zero.

The proof of this proposition is discussed in Exercise 4.13.

Example 4.4: The Kalman ®lter of a linear system is RGAS

Show that the steady-state Kalman ®lter (predictor) of a detectable, sta-

bilizable linear system

x� � Ax �Gw y � Cx � v

is RGAS and satis®es both (4.5) as well as (4.4).

Solution

For �A;C� detectable and �A;G� stabilizable, the steady-state Kalman

predictor is nominally exponentially stable as discussed in Exercise

4.17. The steady-state estimator takes the form

Ãx� � AÃx � L�y � C Ãx� Ãx�0� � x0

where L satis®es a steady-state Riccati equation and AL :� �A� LC� is
a stable matrix. Subtracting the estimator from the system gives

�x � Ãx�� � AL�x � Ãx��Gw � Lv

Solving this linear system gives

x�k�� Ãx�k� � AkL�x�0�� x0��
k�1X
j�0

A
k�j�1
L �Gw�j�� Lv�j��

Since AL is stable, we have the bound (Horn and Johnson, 1985, p.299)

jAiLj � c�i in which max
��eig�AL��� < � < 1. Taking norms and using
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this bound gives for all k � 0

jx�k�� Ãx�k�j � c�k jx�0�� x0j�

c
k�1X
j�0

� jGj��w�j���� jLj��v�j��� ��k�j�1 (4.6)

Taking the largest disturbance terms outside and performing the sum

then gives

jx�k�� Ãx�k�j � c�k jx�0�� x0j � c

1� �
� jGj kwk0:k�1 � jLj kvk0:k�1 �

So we have that (4.4) is satis®ed after de®ning �x�r ; k� :� cr�k, which
is an exponential KL-function, and w�r� :� �c jGj =�1 � ��� r and

v�r� :� �c jLj =�1� ��� r , which are linearK-functions.

To obtain the stronger convolution maximization form, ®rst note

that for 0 � � < 1 and z�j� > 0

k�1X
j�0

z�j��k�j�1 �
k�1X
j�0

�
z�j���k�j�1�=2

�
��k�j�1�=2 �

1

1�p� max
j2I0:k�1

z�j���k�j�1�=2

Using this result in (4.6) and letting � :� p� > � so that 0 � � < 1, we

have that

jx�k�� Ãx�k�j � c�k jx�0�� x0j�c jGj =�1��� max
j2I0:k�1

��w�j����k�j�1�
c jLj =�1� �� max

j2I0:k�1

��v�j����k�j�1
Finally, using Exercise 4.6(d), we convert the sum to maximization and

satisfy (4.5) with

�x�r ; k� :� 3cr �k �w�r ; k� :� 3c jGj =�1� ��r �k
�v�r ; k� :� 3c jLj =�1� ��r �k

and the steady-state Kalman predictor is RGAS, and theKL-functions
�x; �w ; �v are of exponential form. �

The next order of business is to decide what class of systems to con-

sider if the goal is to obtain a stable state estimator. A standard choice
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in most nonlinear estimation literature is to assume system observabil-

ity. The drawback with this choice is that it is overly restrictive, even for

linear systems. As discussed in Chapter 1, for linear systemswe require

only detectability for stable estimation (Exercise 1.33). We therefore

start instead with an assumption of detectability that is appropriate

for nonlinear systems, called incremental input/output-to-state stabil-

ity (i-IOSS) Sontag and Wang (1997). This de®nition is an incremen-

tal property in which we compare two trajectories starting at different

initial conditions x1; x2 2 X and experiencing different disturbance se-

quences,w1;w2 2W1. We use x�k;x;w� to denote the solution to (4.1)

for initial condition x and disturbance sequence w. To compress the

notation, we de®ne the incremental differences in state �x�k� :� x�k;
x1;w1� � x�k;x2;w2�, input difference �w�k� :� w1�k� �w2�k�, and

output �y�k� :� h�x�k;x1;w1�� � h�x�k;x2;w2��. For convenience,

we choose a detectability assumption that is similar in structure to our

choice of stability de®nition.

De®nition 4.5 (i-IOSS). The system x� � f�x;w�;y � h�x� is in-

crementally input/output-to-state stable (i-IOSS) if there exist functions

�x���; �w���; �v��� 2 KL such that

j�x�k�j � �x�j�x�0�j ; k�� max
j2I0:k�1

�w�
���w�j��� ; k� j � 1�

� max
j2I0:k�1

�v�
���y�j��� ; k� j � 1� (4.7)

for all k 2 I�0, all initial states x1; x2 2 X, and all disturbance se-

quences w1;w2 2W1.

In previous versions of the text we used the more traditional de®-

nition of i-IOSS that has a single KL-function �x and two asymptotic

gainK-functions w ; v and the following bound in place of (4.7)

j�x�k�j � �x�j�x�0�j ; k�� w�j�wj�� v�j�yj� (4.8)

It is straightforward to show that the bound in (4.7) implies the bound

in (4.8). Although it is not straightforward, Allan, Rawlings, and Teel

(2020, Proposition 4) show that the bound in (4.8) also implies the one

in (4.7). Therefore the choice of the form of the bound in De®nition 4.5

is indeed one of convenience, as we shall see in the proof of the next

proposition.

System properties such as i-IOSS are generically dif®cult to check

for a given nonlinear application of interest. It is therefore important
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to ask whether the assumption is overly restrictive. We show that it is

not overly restrictive if the goal is to build an RGAS estimator for the

system (Allan et al., 2020, Proposition 5).

Proposition 4.6 (RGAS estimator implies i-IOSS). If a system admits an

RGAS estimator �	k�k�0, then the system is i-IOSS.

Proof. Consider two initial conditions denoted x1;0 and x2;0, two input

sequences w1 and w2 generating from (4.1) two corresponding state

trajectories x1 and x2. Now consider input and output disturbance se-

quences we 1�j� � w1�j��w2�j�, and v1�j� � h�x2�j��� h�x1�j�� for
j 2 I�0. Let the system generating the measurements for state estima-

tion be x�k� � x�k;x1;0;w2�we 1�;y � h�x��v1. Note that the system
generating the measurements has initial condition x1;0, nominal input,

w � w2, but disturbed or actual inputw1 sincew2�we 1 � w1; so we have

that x�k� � x1�k� for k 2 I�0. The output measurements are exactly

h�x2� because of the output disturbance. The state estimator is there-

fore based on nominal input w � w2 and output measurement h�x2�.

Let the state estimator then havex2;0 as its prior. The information given

to the estimator is then consistent, and it produces Ãx�k� � 	k�x2;0;w2;

h�x2�� � x2�k� for k 2 I�0. If the estimator is RGAS, then (4.5) gives

for this system and estimator

jx1�k�� x2�k�j � �x�
��x1;0 � x2;0�� ; k�

� max
j2I0:k�1

�w�
��we 1�j�

�� ; k� j � 1�� max
j2I0:k�1

�v�
��v1�j��� ; k� j � 1�

and substituting the de®ned disturbances

jx1�k�� x2�k�j � �x�
��x1;0 � x2;0�� ; k�

� max
j2I0:k�1

�w�
��w1�j��w2�j�

�� ; k� j � 1�

� max
j2I0:k�1

�v�
��h�x1�j��� h�x2�j���� ; k� j � 1�

for all k 2 I�0. Note that sincex1;0; x2;0;w1;w2 are arbitrary, the system

is i-IOSS. �

Sontag and Wang (1997, Proposition 23) derived an earlier result of

this style but restricted to estimators in the class of observers evolving

in the same state space as x with output injection.

We shall ®nd an i-IOSS Lyapunov function useful to establish the

estimator's stability. We have the following de®nition.
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De®nition 4.7 (i-IOSS Lyapunov function). A function � : X� X ! R�0

is an i-IOSS Lyapunov function for the system (4.1) if there exist K1-

functions �1; �2; �3 andK-functions �w ; �v such that

�1�jx1 � x2j� � ��x1; x2� � �2�jx1 � x2j� (4.9)

��f �x1;w1�; f �x2;w2�� � ��x1; x2���3�jx1 � x2j�
� �w�jw1 �w2j� (4.10)

� �v�jh�x1�� h�x2�j�

for all x1; x2 2 X and w1;w2 2W.

The following converse theorem establishes that a system is i-IOSS

if and only if the system admits an i-IOSS Lyapunov function.

Theorem 4.8 (i-IOSS and Lyapunov function equivalence). A system

(4.1) is i-IOSS if and only if it admits an i-IOSS Lyapunov function.

The proof that an i-IOSS Lyapunov function implies i-IOSS is pro-

vided in (Allan and Rawlings, 2019, Proposition 5, Remark 6). The con-

verse implication is more involved and is provided in (Allan et al., 2020,

Theorem 8).

The last element that we require is system stabilizability. Most of

the literature on FIE and MHE has not stressed this requirement and

sometimes tacitly assumes an unnecessarily strong form of it by ex-

pressing the system as x� � f�x��w, but we obtain sharper conclu-

sions by addressing it. We take the following de®nition of stabilizabil-

ity.

De®nition 4.9 (Incremental Stabilizability with respect to stage cost

L���). A nonlinear system x� � f�x;u� is said to be incrementally

stabilizable with respect to stage cost L��� if there exists K-function

� such that for every two initial conditions x1; x2 2 X and control

sequence w1 2 W1, another control sequence w2 2 W1 exists such

that
1X
k�0

L�x1�k�; x2�k�;w1�k�;w2�k�� � ��jx1 � x2j�

With all of the basic concepts introduced, we can state our working

assumptions for the full-information state estimation problem.

Assumption 4.10 (Continuity). The functions f���,h���, `x���, and `���
are continuous, `x�0� � 0, and `�0;0� � 0. The setsX andW are closed.
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Assumption 4.11 (Positive-de®nite stage cost). The stage cost `��� sat-
is®es

�w�j!j�� �v�j�j� � `�!;�� � �w�j!j�� �v�j�j�
for all ! 2 W; � 2 V for someK1-functions �w and �v , and theK1-

functions �w and �v come from (4.10) of the i-IOSS Lyapunov function.

Furthermore, we have that

�x�j� � x0j� � `x�� � x0� � �x�j� � x0j�

for all �;x0 2 X for someK1-functions �x and �x .

Assumption 4.12 (Stabilizability). The system (4.1) is stabilizable with

respect to the stage cost L�x1; x2;w1;w2� :� `�w2�w1; h�x1��h�x2��.
Assumption 4.13 (Detectability). The system (4.1) is i-IOSS.

Remark.

(a) Assumptions 4.10 and 4.11 guarantee that a solution to (4.3) exists

for all ®nite T � 0 (Rawlings and Ji, 2012).

(b) From Theorem 4.8, Assumption 4.13 implies the existence of an

i-IOSS Lyapunov function satisfying (4.9)±(4.10).

(c) Notice that the stage cost is chosen to be compatible with the sys-

tem's detectability properties in Assumption 4.11.

(d) A similar case can be made in regulation that one must choose the

regulator's stage cost to be compatible with the system's stabilizabil-

ity properties. We did not emphasize this issue in Chapter 2, and in-

stead allowed the stage cost to affect the MPC regulator's feasibility set

XN . The consequence of choosing the stage cost inappropriately in the

zero-state MPC regulator would therefore be a catastrophic reduction

in the size of the feasibility set, with the worst case being XN � f0g.
(e) If we strengthen the detectability property to exponential detectabil-

ity, then the stage cost restriction is relaxed. For example, any positive

de®nite quadratic stage cost is compatible with exponential detectabil-

ity as discussed in Exercise 4.12.

(f) The stage cost also is chosen to be compatible with the system's

stabilizability properties in Assumption 4.12.

(g) It is not strictly necessary to assume the upper bounds in Assump-

tion 4.11. From Assumption 4.10, `��� and `x��� are continuous and
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therefore have upper-bounding K1-functions (Rawlings and Risbeck,

2015, Proposition 19). But it is helpful to name these upper-bounding

functions here.

4.2.1 Nominal Estimator Stability

In this section we setw � 0, v � 0, and estimator stability in De®nition

4.2 reduces to existence of aKL-function �x such that for all k 2 I�0,
x�0�; x0 2 X

jx�k�� Ãx�k�j � �x�jx�0�� x0j ; k� (4.11)

We refer to this property as ªnominalº stability. Since the main pur-

pose of state estimation is to deal with nonzero disturbances w;v ,

one may wonder why we should bother analyzing nominal stability in

the ®rst place. The motivation is to illustrate in this simple setting

a new analysis tool, termed a Q-function.3 This function takes the

place of a Lyapunov function in our estimator stability analysis. It has

the characteristics that we expect of a Lyapunov function, but it has

some additional features: two time arguments instead of one, and an

extra inequality involving the estimator's prior and the system's ini-

tial condition. The extra complexity seems to be required by the fact

that, unlike the zero-state regulator, the evolution of the estimate er-

ror cannot be expressed as a simple dynamical system. We introduce

theQ-function in this setting where the stability arguments can be pre-

sented in their entirety. We closely follow the development in Allan and

Rawlings (2019) in this section. Then the same tools introduced in this

section can be used in the next section to treat bounded disturbances

w;v , which is the case of most interest. The arguments for that case

become signi®cantly longer and more detailed, so we will have to be

content to state the main results and point to the appropriate refer-

ences for the proofs. The results in that section mainly follow Allan

and Rawlings (2020); Allan (2020).

First we consider the estimation problem (4.3) on the in®nite hori-

zon, i.e., in the limit T ! 1. For the zero disturbance case, the choice

��0� � x�0�, and !�j� � 0 for all j 2 I0:T�1 is feasible and gives cost

`x�x�0� � x0�, which is independent of T . So we have the following

upper bound for the optimal FIE cost for all T 2 I�0

V0
T �x�0�� � `x�x�0�� x0�

3Allan and Rawlings (2019, 2020) introduce the name Q-function to commemorate

the seminal contributions of David Q. Mayne to control and estimation theory.
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and from (Keerthi and Gilbert, 1985, Theorem 2), a solution to the in-

®nite horizon problem exists. If we consider the solution of a k-stage

problem, optimality of the in®nite horizon problem gives

V0
1 � V0

k �min
!k:1

1X
i�k

`�!�i�; ��i�� (4.12)

subject to

�� � f��;!� y � h���� � ��k� � Ãx�kjk�

The stabilizability assumption then provides an upper bound for the

minimization in (4.12) as follows. In the sum, the system generating

the data starts at x�k� and experiences zero input disturbance. The

estimator starts at Ãx�kjk� and optimizes the input sequence to ®t the

data. The de®nition of stabilizability and Assumption 4.12 gives

1X
i�k

L�x�i�; ��i�;0;!�i�� � ��jx�k�� Ãx�kjk�j�

for L�x�i�; ��i�;0;!�i�� � `�!�i�;y�i��h���i��� � `�!�i�; ��i��. Us-
ing this bound in (4.12) then gives

V0
1 � V0

k ���jx�k�� Ãx�kjk�j�

In previous versions of FIE analysis, we made use of the fact that the

optimal solution of the estimation problem at time k�1 gives feasible,

but possibly suboptimal decision variables at time k. That argument

leads to the inequality

V0
k � V0

k�1 � `� Ãw�kjk� 1�; Ãv�kjk� 1�� (4.13)

which shows that the sequence
�
V0
k

�
k�0

is nondecreasing. Since it is

bounded above by `x�x�0� � x0�, it converges, and that implies that

`� Ãw�kjk�1�; Ãv�kjk�1��! 0 as k!1. The problemwith this approach

is that it compares two different trajectories, and does not generalize

well to the bounded disturbance case where the in®nite horizon prob-

lem is not bounded above. So we change course from previous analysis

and consider instead a single trajectory, but different times within the

trajectory by introducing partial sums

V0�jjk� � `x
�
Ãx�0jk�� x0

�� j�1X
i�0

`�Ãx�ijk�; Ãv�ijk��
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with j � k 2 I�0. Changing j rather than k is then straightforward

V0�jjk� � V0�j � 1jk�� `� Ãw�jjk�; Ãv�jjk�� (4.14)

Note that we have an equality here, not even an inequality as arises in

(4.13) when comparing optimal costs at k and k� 1.

The Q-function. We now modify the optimal cost of the estimation

problem to create something that operates similarly to a Lyapunov

function in this context. First we ¯ip the function so that it decreases

rather than increases with k. We de®ne Y�jjk�
Y�jjk� :� V0

1 � V0�j j k�
for j � k 2 I�0. We know that V0�jjk� � V0�kjk� � V0

1 for all j � k
because the objective function is a sum of positive stage costs. We can

also deduce that

V0
1 � V0�jjk������x�j�� Ãx�jjk����

for all j � k using the same argument as we used above with j � k.
These give the corresponding bounds for the ¯ipped function Y���

0 � Y�jjk� � ����x�j�� Ãx�jjk����
for all j � k. Substituting (4.14) into the de®nition of Y��� then gives a

cost decrease equality

Y�j � 1jk� � Y�jjk�� `� Ãw�jjk�; Ãv�jjk��
for j � k� 1.

The last step is to use the i-IOSS Lyapunov function implied by the

detectability Assumption 4.13. Applying (4.9)±(4.10) to the values x�j�

and Ãx�jjk� gives
�1�

��x�j�� Ãx�jjk���� � ��x�j�; Ãx�jjk�� � �2�
��x�j�� Ãx�jjk����

��x�j � 1�; Ãx�j � 1jk�� � ��x�j�; Ãx�jjk����3�
��x�j�� Ãx�jjk����

� �w�
�� Ãw�jjk����� �v���Ã��jjk����

for all j � k. We de®ne the Q-function as the sum of ���� and Y���
Q�jjk� :� Y�jjk����x�j�; Ãx�jjk��

Substituting the bounds on Y��� and ���� into this de®nition gives pos-

itive upper and lower bounds on Q���
�1�

��x�j�� Ãx�jjk���� � Q�jjk� � �2�
��x�j�� Ãx�jjk����
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withK1-function �2 :� ���2, and the following descent condition

Q�j � 1jk� � Q�jjk���3�
��x�j�� Ãx�jjk����

� �w�
�� Ãw�jjk����� �v���Ã��jjk����� `� Ãw�jjk�; Ãv�jjk��

� Q�jjk���3�
��x�j�� Ãx�jjk����

where we used Assumption 4.11 to achieve the ®nal inequality. Note

that choosing an appropriate stage cost in estimation is what allows

the decrease in cost due to optimization to overcome the effect of the

positive supply rate in the i-IOSS Lyapunov function.

The inequalities established for Q�jjk� make it well suited for sta-

bility analysis except for one remaining issue, which we resolve next.

The upper bound at j � 0 gives

Q�0jk� � �2�jx�0�� Ãx�0jk�j� (4.15)

But to achieve nominal stability in (4.11) we require a bound that de-

pends on the distance of the initial state from the prior x0, not the

estimated initial state at time k, Ãx�0jk�. So we create that bound next.

Note from Assumption 4.11 and the previous discussion of the in®nite

horizon problem

�x�jÃx�0jk�� x0j� � `x�Ãx�0jk�� x0� � V0
k � V0

1 � `x�x�0�� x0�

for all k 2 I�0, and x�0�; x0 2 X. From Assumption 4.11, we also have

the upper bound

`x�x�0�� x0� � �x�jx�0�� x0j�
Combining these gives

jÃx�0jk�� x0j � ��1x

�
�x�jx�0�� x0j�

�
Using the triangle inequality and this result gives

jÃx�0jk�� x�0�j � jÃx�0jk�� x0j � jx�0�� x0j � � 0�jx�0�� x0j�
with � 0��� :� ��� � ��1x ��x����. Substituting this result in (4.15) then

gives the desired bound

Q�0jk� � �0�jx�0�� x0j�
withK1-function �0 :� �2 � � 0.

Summarizing, we have established that FIE provides a Q-function

that meets the following de®nition.
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De®nition 4.14 (Q-function for estimation). A function Q�jjk� is a Q-
function for some state estimator if there exist K1-functions �0; �1;

�2; �3 such that

Q�0jk� � �0�jx�0�� x0j� (4.16)

�1�
��x�j�� Ãx�jjk���� � Q�jjk� � �2���x�j�� Ãx�jjk���� (4.17)

Q�j � 1jk� � Q�jjk�� �3�
��x�j�� Ãx�jjk���� (4.18)

for all j � k 2 I�0 for (4.16) and (4.17) and j � k� 1 2 I�0 for (4.18).
Next we establish a Q-function theorem for nominal stability (Allan

and Rawlings, 2019, Theorem 14).

Theorem 4.15 (Q-function theorem for global asymptotic stability). If

a state estimator admits a Q-function, then it is globally asymptotically

stable (GAS).

Proof. First combine (4.17) and (4.18) to obtain

Q�j � 1jk� � Q�jjk�� �3���12 �Q�jjk���
Next use the same standard construction shown in Appendix B, Theo-

rem B.15, to obtain aK1-function � satisfying ��s� < s for s > 0 and

��s� � s � �3���12 �s��, which gives

Q�j � 1jk� � ��Q�jjk��
Applying this result recursively starting at j � 0 gives

Q�jjk� � � j�Q�0jk��
Combining this with (4.16) and (4.17) then gives for all j � k��x�j�� Ãx�jjk��� � ��11 �� j��0�jx�0�� x0j���

:� �x�jx�0�� x0j ; j�
Note that �x��� 2 KL, and on choosing j � k, we have that

jx�k�� Ãx�kjk�j � �x�jx�0�� x0j ; k�
for all k 2 I�0, and the state estimator is GAS. �

So applying this theorem establishes that FIE is globally asymptot-

ically stable for the case of zero input and output disturbances. We

summarize the result in the following theorem.

Theorem 4.16 (Stability of full information estimation). Let Assump-

tions 4.10±4.13 hold. Then full information estimation is GAS.
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4.2.2 Robust Estimator Stability

The reason for increasing the abstraction level in the current presen-

tation is not to handle nominal stability. That simple problem can be

addressed with simple tools. The point is to address ®nally FIE with

bounded disturbances. We are now in a good position to accomplish

that. Let's ®rst recall what we concluded about the steady-state Kalman

®lter (predictor) with bounded disturbances. We showed in Example 4.4

that the Kalman predictor is RGAS and that the estimate error satis®es

(4.5). So that result represents the gold standard of FIE for a nonlinear

system with bounded disturbances. We'll see next how close we can

come to the same conclusion for nonlinear systems.

The system continuity and detectability conditions from the nom-

inal case are unchanged when treating the bounded disturbance case.

But the stage cost and stabilizability assumptions require modi®cation.

We state the new conditions next.

Assumption 4.17 (Stage cost under disturbances). The stage cost `���
satis®es

�w�2 j!j�� �v�2 j�j� � `�!;�� � �w�j!j�� �v�j�j�

for all! 2W; � 2 V, for someK1-functions �w and �v , and theK1-

functions �w and �v come from (4.10) of the i-IOSS Lyapunov function.

Furthermore, we have that

�2�2 j� � x0j� � `x�� � x0� � �x�j� � x0j�

for all �;x0 2 X, for some K1-function �x , and the K1-function �2

comes from (4.9) of the i-IOSS Lyapunov function.

Assumption 4.18 (Stabilizability under disturbances). There existsK-

function  such that for every ®nite sequencesw 2Wk and v 2 Vk and

any �;x 2 X, there exists! 2W1 such that the following holds for all

k � 0
1X
i�0

`�!�j�; ��j�� � ��j� � xj��
kX
i�0

�jw�i�; v�i�j�

in which

�� � f��;!� y � h���� �

x� �
8<:f�x;w� for i 2 I0:k�1
f�x;0� for i 2 Ik:1

y �
8<:h�x�� v for i 2 I0:k�1
h�x� for i 2 Ik:1



4.2 Full Information Estimation 285

Remark.

(a) Note the introduction of the factor of two in the lower bound of

`��� in Assumption 4.17 compared to the nominal case, Assumption

4.11.

(b) Note the new compatibility restriction on the lower bound for `x���
in Assumption 4.17 compared to the nominal case, Assumption 4.11.

(c) In the stabilizability assumption note that the upper bound on the

in®nite horizon cost grows linearly with time for the case of bounded

disturbances. It is anticipated that the full-information optimal cost

also increases without bound for this bounded disturbance case. The

divergence of the optimal cost presents one of the primary challenges

in the estimator stability analysis.

It also will prove insightful to break out a stronger case of detectabil-

ity, termed exponential detectability, de®ned as follows.

De®nition 4.19 (Exponentially i-IOSS). The system x� � f�x;w�;y �
h�x� is exponentially incrementally input/output-to-state stable (expo-

nentially i-IOSS) if there exist 0 � � < 1 and positive constants bx;

bw ; bv such that for all k 2 I�0, all initial states x1; x2 2 X, and all

disturbance sequences w1;w2 2W1

jx1�k�� x2�k�j � bx jx1 � x2j�k � max
j2I0:k�1

bw
���w�j����k�j�1

� max
j2I0:k�1

bv
���y�j����k�j�1 (4.19)

where x1�k� � x�k;x1;w1�; x2�k� � x�k;x2;w2�, �w�k� � w1�k� �
w2�k�, and �y�k� � h�x1�k��� h�x2�k��.

Note that we have restricted the KL-functions of (asymptotic) de-

tectability to an exponential form. We shall see subsequently that this

stronger form of detectability makes the analysis of moving horizon es-

timation particularly straightforward. Note also that detectable linear

systems satisfy this property.

Whenwe assume exponential detectability, we also achieve a stronger

form of stability, termed robust global exponential stability, de®ned in

convolution maximization form as follows.

De®nition 4.20 (Robustly globally exponentially stable estimation). A

state estimator �	k�k�0 is robustly globally exponentially stable (RGES)



286 State Estimation

if there exist 0 � � < 1 and positive constants ax; aw ; av such that

jx�k�� Ãx�k�j � ax jx�0�� x0j�k � max
j2I0:k�1

aw
��w�j����k�j�1

� max
j2I0:k�1

av
��v�j����k�j�1 (4.20)

for all k 2 I�0, x�0�; x0 2 X, and w 2W, v 2 V.
It is often convenient to compress the notation and combine the

disturbances as d�j� :� �w�j�; v�j��; j 2 I�0 with D :� W�V, and use

the following equivalent de®nition of RGES.

Proposition 4.21 (Equivalent de®nition of RGES). A state estimator �	k�k�0
is robustly globally exponentially stable (RGES) if there exist 0 � � < 1

and positive constant ad such that

jx�k�� Ãx�k�j � ax jx�0�� x0j�k � max
j2I0:k�1

ad
��d�j����k�j�1 (4.21)

for all k 2 I�0, x�0�; x0 2 X, and d 2 D.
Proof of this proposition is discussed in Exercise 4.20.

Next we strengthen the asymptotic Assumptions 4.11±4.13 to their

exponential versions.

Assumption 4.22 (Power-law bounds for stage costs). There exist pos-

itive constants c`; cx; c`; cx and � � 1 such that

c` j�!;��j� � `�!;�� � c` j�!;��j�
cx j� � x0j� � `x�� � x0� � cx j� � x0j�

for all ! 2W; � 2 V, and �;x0 2 X.
Assumption 4.23 (Exponential stabilizability). The system (4.1) is expo-

nentially incrementally stabilizable, i.e., there exists positive constant

c > 0 such that for every two initial conditions x1; x2 2 X and input

sequence !1 2W1, there exists !2 2W1 such that

1X
k�0

`�!2�k��!1�k�;h�x1�k��� h�x2�k��� � c jx1 � x2j�

where � � 1 comes from Assumption 4.22.

Assumption 4.24 (Exponential detectability). The system (4.1) is expo-

nentially i-IOSS.
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We then have the following result for robust stability of FIE under

disturbances.

Theorem 4.25 (Robust stability of full information estimation).

(a) Let Assumptions 4.10, 4.13, 4.17, and 4.18 hold. Then full informa-

tion estimation is RGAS.

(b) Let Assumptions 4.10 and 4.22±4.24 hold. Then full information

estimation is RGES.

The proof for RGES is given in (Allan and Rawlings, 2020, Theorem

3.15). The considerablymore involved proof for RGAS is given in (Allan,

2020, Theorem 5.18).

Theorem 4.25 is a reasonable resting place for the theory of full

information estimation. We can ®nally handle bounded disturbances

in a fairly clean theoretical development with reasonable assumptions

on the system's detectability and stabilizability. If one is willing to

strengthen the detectability assumption to exponential detectability as

in Theorem 4.25(b), the theoretical development is reasonably com-

pact, and can be easily extended to MHE as we show subsequently.

Moreover, by strengthening the de®nitions of RGAS and RGES using

the convolution maximization form, we have the desirable and antici-

pated consequence that stability implies convergence of estimate error

given convergence of disturbances.

4.2.3 InterludeÐLinear System Review

Given the many structural similarities between estimation and regu-

lation, the reader may wonder why the stability analysis of the full

information estimator presented in the previous sections looks rather

different than the zero-state regulator stability analysis presented in

Chapter 2.

State Estimation as Optimal Control of Estimate Error

To provide some insight into essential differences, as well as similari-

ties, between estimation and regulation, consider again the estimation

problem in the simplest possible setting with a linear time-invariant

model and Gaussian noise

x� � Ax �Gw w � N�0;Q�
y � Cx � v v � N�0; R� (4.22)
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and random initial state x�0� � N�x0; P��0��. In FIE, we de®ne the

objective function

VT ���0�;!� � 1

2

�
j��0�� x0j2�P��0���1 �

T�1X
i�0

j!�i�j2Q�1 � j��i�j2R�1
�

subject to �� � A� � G!, y � C� � � . Denote the solution to this

optimization as

�Ãx�0jT�; bwT � � arg min
��0�;!

VT ���0�;!�

and the trajectory of state estimates comes from themodel Ãx�i�1jT� �
AÃx�ijT��G Ãw�ijT�. We de®ne estimate error as xe�ijT� � x�i�� Ãx�ijT�
for 0 � i � T � 1, T � 1.

The simplest stability question is nominal stability, i.e., if noise-free

data are provided to the estimator, �w�i�; v�i�� � 0 for all i � 0 in

(4.22), is the estimate error asymptotically stable as T ! 1 for all x0?

We next make this statement precise. First we note that the noise-free

measurement satis®es y�i� � C Ãx�ijT� � Cxe�ijT�;0 � i � T and the

initial condition term can be written in estimate error as Ãx�0��x�0� �
��xe�0� � a� in which a � x�0� � x0. For the noise-free measurement

we can therefore rewrite the cost function as

VT �a;xe�0�;w� � 1

2

���xe�0�� a��2�P��0���1 � T�1X
i�0

��Cxe�i���2R�1 � jw�i�j2Q�1 �
(4.23)

in which we list explicitly the dependence of the cost function on pa-

rameter a. For estimation we solve

min
xe �0�;wVT �a;xe�0�;w� (4.24)

subject to xe� � Axe � Gw. Now consider problem (4.24) as an opti-

mal control problem (OCP) using w as the manipulated variable and

minimizing an objective that measures size of estimate error xe and

controlw. We denote the optimal solution as xe0�0;a� andw0�a�. Sub-

stituting these into the model equation gives optimal estimate error

xe0�jjT ;a�;0 � j � T ;0 � T . Parameter a denotes how far x�0�, the

system's initial state generating themeasurement, is fromx0, the prior.

If we are lucky and a � 0, the optimal solution is �xe0;w0� � 0, and we

achieve zero cost in V0
T and zero estimate error xe�jjT� at all time in
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the trajectory 0 � j � T for all time T � 1. The stability analysis in

estimation is to show that the origin for xe is asymptotically stable. In

other words, we wish to show there exists a KL function � such that���xe0�T ;a���� � ��jaj ; T � for all T 2 I�0.
We note the following differences between standard regulation and

the estimation problem (4.24). First we see that (4.24) is slightly non-

standard because it contains an extra decision variable, the initial state,

and an extra term in the cost function, (4.23). Indeed, without this extra

term, the regulator could choose xe�0� � 0 to zero the estimate error

immediately, choose w � 0, and achieve zero cost in V0
T �a� for all a.

The nonstandard regulator allows xe�0� to be manipulated as a decision

variable, but penalizes its distance from a. Next we look at the stability

question.

The stability analysis is to show there exists KL function � such that���xe0�T ;a���� � ��jaj ; T � for all T 2 I�0. Here convergence is a question
about the terminal state in a sequence of different OCPs with increasing

horizon length T . That is also not the standard regulator convergence

question, which asks how the state trajectory evolves using the optimal

control law. In standard regulation, we inject the optimal ®rst input

and ask whether we are successfully moving the system to the origin

as time increases. In estimation, we do not inject anything into the

system; we are provided more information as time increases and ask

whether our explanation of the data is improving (terminal estimate

error is decreasing) as time increases.

Because stability is framed around the behavior of the terminal

state, we would not choose backward dynamic programming (DP) to

solve (4.24), as in standard regulation. We do not seek the optimal ®rst

control move as a function of a known initial state. Rather we seek

the optimal terminal state xe0�T ;a� as a function of the parameter a

appearing in the cost function. This problem is better handled by for-

ward DP as discussed in Sections 1.3.2 and 1.4.3 of Chapter 1 when

solving the full information state estimation problem. Exercise 4.16

discusses how to solve (4.24); we obtain the following recursion for the

optimal terminal state

xe0�k� 1;a� � �A� Le�k�C� xe0�k;a� (4.25)

for k � 0. The initial condition for the recursion is xe0�0;a� � a. The
time-varying gains Le�k� and associated cost matrices P��k� required
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are

P��k� 1� � GQG0 �AP��k�A0
�AP��k�C0�CP��k�C0 � R��1CP��k�A0 (4.26)

Le�k� � AP��k�C0�CP��k�C0 � R��1 (4.27)

in which P��0� is speci®ed in the problem. As expected, these are

the standard estimator recursions developed in Chapter 1. Jazwin-

ski (1970, Theorem 7.4) follows an argument introduced by Deyst and

Price (1968), assumes controllability and observability, and tries to es-

tablish stability for this more restrictive case by showing that V�k;

xe� :� �1=2�xe 0P�k��1xe is a Lyapunov function for (4.25). Notice that

this Lyapunov function candidate is not the optimal cost of (4.24) as

in a standard regulation problem. The optimal cost of (4.24), V0
T �a�,

is an increasing function of T rather than a decreasing function of T

as required for a Lyapunov function. Although one can ®nd Lyapunov

functions valid for estimation, they do not have the same simple con-

nection to optimal cost functions as in standard regulation problems,

even in the linear, unconstrained case. Stability arguments based in-

stead on properties of V0
T �a� are simpler and more easily adapted to

cover new situations arising in research problems.

Duality of Linear Estimation and Regulation

For linear systems, the estimate error xe in FIE and state x in regulation

to the origin display an interesting duality that we summarize brie¯y

here. Consider the following steady-state estimation and in®nite hori-

zon regulation problems.

Estimator problem.

x�k� 1� � Ax�k��Gw�k�
y�k� � Cx�k�� v�k�

R > 0 Q > 0 �A;C� detectable �A;G� stabilizable

xe�k� 1� �
�
A� LeC�xe�k�

Regulator problem.

x�k� 1� � Ax�k�� Bu�k�
y�k� � Cx�k�
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Regulator Estimator

A A0

B C0

C G0

k l � N � k
��k� P��l�

��k� 1� P��l� 1�

� P�

Q Q

R R

Pf P��0�

K �Le0
A� BK �A� LeC�0
x xe 0

Regulator Estimator

R > 0; Q > 0 R > 0; Q > 0

�A; B� stabilizable �A;C� detectable

�A;C� detectable �A;G� stabilizable

Table 4.2: Duality variables and stability conditions for linear quad-

ratic regulation and least squares estimation.

R > 0 Q > 0 �A; B� stabilizable �A;C� detectable

x�k� 1� � �A� BK�x�k�
In Appendix A, we derive the dual dynamic system following the ap-

proach in Callier and Desoer (1991), and obtain the duality variables in

regulation and estimation listed in Table 4.2.

We also have the following result connecting controllability of the

original system and observability of the dual system.

Lemma 4.26 (Duality of controllability and observability). �A; B� is con-

trollable (stabilizable) if and only if �A0; B0� is observable (detectable).

This result can be established directly using the Hautus lemma and

is left as an exercise. This lemma and the duality variables allow us to

translate stability conditions for in®nite horizon regulation problems

into stability conditions for FIE problems, and vice versa. For example,

the following is a basic theorem covering convergence of Riccati equa-

tions in the form that is useful in establishing exponential stability of

regulation as discussed in Chapter 1.

Theorem 4.27 (Riccati iteration and regulator stability). Given �A; B�

stabilizable, �A;C� detectable, Q > 0, R > 0, Pf � 0, and the discrete
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Riccati equation

��k� 1� � C0QC �A0��k�A�
A0��k�B�B0��k�B � R��1B0��k�A; k � N; : : : ;1

��N� � Pf
Then

(a) There exists � � 0 such that for every Pf � 0

lim
k!�1

��k� � �

and � is the unique solution of the steady-state Riccati equation

� � C0QC �A0�A�A0�B�B0�B � R��1B0�A
among the class of positive semide®nite matrices.

(b) The matrix A� BK, in which

K � ��B0�B � R��1B0�A
is a stable matrix.

Bertsekas (1987, pp.59±64) provides a proof for a slightly different

version of this theorem. Exercise 4.17 explores translating this theorem

into the form that is useful for establishing exponential convergence

of FIE.

4.3 Moving Horizon Estimation

As displayed in Figure 1.5 of Chapter 1, in MHE we consider only the

N most recent measurements, yN�T� �
�
y�T � N�;y�T � N � 1�; : : : ;

y�T � 1�
�
. For T > N, the MHE objective function is given by

ÃVT ���T �N�;!� � �T�N���T �N���
T�1X

i�T�N

`�!�i�; ��i��

subject to �� � f��;!�, y � h����� . The MHE problem is de®ned to

be bPT �xT�N ;yN�T�� :� min
��T�N�;!

ÃVT ���T �N�;!� (4.28)

in which ! � �!�T �N�; : : : ;!�T � 1��. The designer chooses the

prior weighting �k��� for k > 0. Until the data horizon is full, i.e.,

for times T � N, we generally de®ne the MHE problem to be the full

information problem.
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4.3.1 Zero Prior Weighting

Here we discount the early data completely and choose �i��� � 0 for

all i � 0. Because it discounts the past data completely, this form of

MHE must be able to asymptotically reconstruct the state using only

the most recent N measurements. The ®rst issue is establishing exis-

tence of the solution. Unlike the full information problem, in which the

positive de®nite initial penalty guarantees that the optimization takes

place over a bounded (compact) set, here there is zero initial penalty.

So we must restrict the system further than i-IOSS to ensure solution

existence. We show next that observability is suf®cient for this pur-

pose.

De®nition 4.28 (Observability). The system x� � f�x;w�;y � h�x� is
observable if there exist ®nite No 2 I�1, w���, v��� 2 K such that for

every two initial states z1 and z2, and any two disturbance sequences

w1;w2, and all k � No

jz1 � z2j � w
�kw1 �w2k0:k�1

�� v� yz1;w1 � yz2;w2


0:k�1

�
Let Assumption 4.10 hold. Then theMHE objective function ÃVT ���T�

N�;!� is a continuous function of its arguments because f��� and h���
are continuous. We next show that ÃVT ��� is an unbounded function of

its arguments, which establishes existence of the solution of the MHE

optimization problem. Let Assumption 4.11 hold. Then we have that

ÃVT ���T �N�;!� �
T�1X

i�T�N

`�!�i�; ��i�� �

T�1X
i�T�N

�w�j!�i�j�� �v�j��i�j� (4.29)

From observability we have that for N � No

jx�T �N�� ��T �N�j � w�kw�!kT�N:T�1��
v�kv� �kT�N:T�1� (4.30)

Consider arbitrary but ®xed values of time T , horizon length N � No,

and the system state and measurement sequence. Let the decision vari-

ables j���T �N�;!�j ! 1. Then we have that either j��T �N�j ! 1
or j!j ! 1. If j!j ! 1, we have directly from (4.29) that ÃVT !
1. On the other hand, if j��T �N�j ! 1, then from (4.30), since
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x�T � N�, w and v are ®xed, we have that either k!kT�N:T�1 ! 1
or k�kT�N:T�1 ! 1, which implies from (4.29) that ÃVT ! 1. We con-

clude that ÃVT ���T � N�;!� ! 1 if j���T �N�;!�j ! 1. Therefore

the objective function is a continuous and unbounded function of its

arguments, and existence of the solution of the MHE problem can be es-

tablished from the Weierstrass theorem (Proposition A.7). The solution

does not have to be unique.

We show next that ®nal-state observability is a less restrictive and

more natural system requirement for MHE with zero prior weighting to

provide stability and convergence.

De®nition 4.29 (Final-state observability). The system x� � f�x;w�,
y � h�x� is ®nal-state observable (FSO) if there exist ®nite No 2 I�1,

w���, v��� 2 K such that for every two initial states z1 and z2, and

any two disturbance sequences w1;w2, and all k � No

jx�k;z1;w1�� x�k;z2;w2�j � w
�kw1 �w2k0:k�1

��
v
� yz1;w1 � yz2;w2


0:k�1

�
Notice that FSO is not the same as observable. For suf®ciently re-

stricted f���, FSO is weaker than observable and stronger than i-IOSS

(detectable) as discussed in Exercise 4.14.

To ensure FSO, we restrict the system as follows.

De®nition 4.30 (GloballyK-continuous). A function f : X ! Y is glob-

ally K-continuous if there exists function ���� 2 K such that for all

x1; x2 2 X ��f�x1�� f�x2��� � ��jx1 � x2j� (4.31)

We then have the following result.

Proposition 4.31 (Observable and globalK-continuous imply FSO). An

observable system x� � f�x;w�;y � h�x� with globallyK-continuous

f��� is ®nal-state observable.
The proof of this proposition is discussed in Exercise 4.14. Con-

sider two equal disturbance sequences, w1 � w2, and two equal mea-

surement sequences y1 � y2. FSO implies that for every pair z1 and z2,

x�No;z1;w1� � x�No;z2;w1�; we know the ®nal states at time k � No

are equal. FSO does not imply that the initial states are equal as re-

quired when the system is observable. We can of course add the non-

negative term ��jz1 � z2j ; k� to the right-hand side of the FSO inequal-

ity and obtain the i-IOSS inequality, so FSO implies i-IOSS. Exercise 4.11
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treats observable, FSO, and detectable for the linear time-invariant sys-

tem, which can be summarized compactly in terms of the eigenvalues

of the partitioned state transition matrix corresponding to the unob-

servable modes.

De®nition 4.32 (RGAS estimation (observable case)). The estimate is

based on the noisy measurement y � h�x�x0;w���v. The estimator is

RGAS (observable case) if there exist No 2 I�1 and function ���� 2 K
such that the following holds for all x0; x0 2 X, w 2 W, v 2 V, and

k � No ��x�k;x0;w�� x�k; Ãx�0jk�; bwk�
�� � ��k�w;v�kk�No:k�1�

Remark. Notice that the de®nition of RGAS estimation in the observ-

able case is silent about what happens to estimate error at early times,

k < No, while the estimator is collecting enough measurements to ob-

tain its ®rst valid state estimate.

We have the following theorem for this estimator.

Theorem 4.33 (MHE is RGAS (observable case)). Consider an observable

system with globally K-continuous f���, and measurement sequence

generated by (4.1) with bounded disturbances. Let Assumptions 4.10

and 4.11 hold. Then the MHE estimator using zero prior weighting and

N � No is RGAS (observability case).

Proof. Consider the system to be at state x�k � N� at time k � N and

subject to disturbance sequence �wk;vk�. Due to system observability

and Assumption 4.10, the MHE problem has a solution for all k � N �
No. Denote the estimator solution at such time k as initial state Ãx�k�
Njk� and disturbance sequence � Ãwk; Ãvk�. We start by noting that the

optimal MHE cost satis®es the bounds

k�1X
i�k�N

`� Ãwk�i�; Ãvk�i�� � ÃV0
k �

k�1X
i�k�N

`�w�i�; v�i��

Using the upper and lower bounds in Assumption 4.11, �w ; �v ; �w ;

�v , (B.1), and noting that max�jaj ; jbj� � j�a; b�j � jaj � jbj, we can

convert these bounds into

��
� bwk; bvk�k�N:k�1� � ÃV0

k � ��k�wk;vk�kk�N:k�1�

where ���� :� min��w ; �v�����=2� and � :� 2Nmax��w ; �v�. Note

that ����; ���� 2 K. The system is FSO by Proposition 4.31 since the
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system is observable and f��� is globally K-continuous. Considering

x�k�N� and Ãx�k�Njk� as two initial conditions and applying the FSO

bound gives

jx�k�� Ãx�k�j � w
� wk � bwk


k�N:k�1

�� v� �vk � bvk�k�N:k�1

�
for someK-functions w ; v . Again using j�a; b�j �max�jaj ; jbj� and
the triangle inequality, this bound can be rearranged into

jx�k�� Ãx�k�j � x
�k�wk;vk�kk�N:k�1

�� x� � bwk; bvk�k�N:k�1

�
where x��� :� 2max�w ; v��2����. Note that x��� 2 K. Next apply

��1 to the ÃV0
k inequality above to obtain� bwk; bvk�k�N:k�1 � ��1 � ��k�wk;vk�kk�N:k�1�

and substitute this result into the previous inequality to obtain for all

k � N � No

jx�k�� Ãx�k�j � ��k�wk;vk�kk�N:k�1

�
with � :� x � x � ��1 � � , which is also a K-function. We have

therefore established that MHE with zero prior weighting is RGAS (ob-

servable case). �

Notice that unlike in FIE, the estimate error bound does not require

the initial error x�0� � x0 since we have zero prior weighting and as

a result have assumed observability rather than detectability. Notice

also that RGAS implies estimate error converges to zero for convergent

disturbances. Finally, theK-functions � and hence � increase with N,

which shows that this analysis can likely be tightened to remove this

N dependence. See also the Notes discussion on this point.

4.3.2 Nonzero Prior Weighting

The two drawbacks of zero prior weighting are: the system had to be

assumed observable rather than detectable to ensure existence of the

solution to the MHE problem; and a large horizon N may be required

to obtain performance comparable to full information estimation. We

address these two disadvantages by using nonzero prior weighting. To

get started, we use forward DP, as we did in Chapter 1 for the uncon-

strained linear case, to decompose the FIE problem exactly into the MHE

problem (4.28) in which �k��� is chosen as arrival cost.
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De®nition 4.34 (Full information arrival cost). The full information ar-

rival cost is de®ned as

ZT �p� � min
��0�;!

VT ���0�;!� (4.32)

subject to

�� � f��;!� y � h���� � ��T ;��0�;!� � p
We have the following equivalence.

Lemma 4.35 (MHE and FIE equivalence). The MHE problem (4.28) is

equivalent to the full information problem (4.3) for the choice �k��� �
Zk��� for all k > N and N � 1.

The proof is left as an exercise. This lemma is the essential insight

provided by the DP recursion. But notice that evaluating arrival cost in

(4.32) has the same computational complexity as solving a full infor-

mation problem. So next we generate an MHE problem that has simpler

computational requirements, but retains the excellent stability proper-

ties of full information estimation.

4.3.3 RGES of MHE under exponential assumptions

We consider the simplest case of MHE in which we penalize deviation

from Ãx�kjk� with prior weighting that has power-law upper and lower

bounds with time-invariant parameters described by the following as-

sumption.

Assumption 4.36 (MHE prior weighting bounds). For all k 2 I�0, �k :

X � X ! R�0 is continuous and there exist constants c� ; c� � 0 such

that the following bounds hold uniformly in k for all �; Ãx�kjk� 2 X
c� j� � Ãx�kjk�j� � �k��� � c� j� � Ãx�kjk�j� (4.33)

in which � � 1 comes from Assumption 4.22.

So, when solving the MHE problem at time T , we bound the prior

weighting on the initial state at time T �N using the deviation from the

estimate Ãx�T�NjT�N�. Choosing a constant c� satisfying c� � c� � c�
and corresponding prior weighting �k��� � c� j� � Ãx�kjk�j� would be

the simplest choice meeting this assumption.

We next establish that MHE is RGES under the exponential case as-

sumptions with this so-called ®ltering prior and constant prior weight-

ing bounds (Allan and Rawlings, 2020, Theorem 4.2).
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Theorem 4.37 (MHE is RGES). Let Assumptions 4.10, 4.22±4.24, and

4.36 hold. Then there exists a horizon length N such that MHE is RGES

for all N � N.
Proof. Let e�k� :� x�k� � Ãx�kjk� and e0 :� x�0� � x0 to compress the

notation. Let any time k 2 I�0 be expressed as k � k0 � pN for k0 2
I0:N�1 and p � 0. Since k0 � N�1, the horizon at time k � k0 is not yet
®lled, and the MHE problem reduces to the FIE problem; we have from

Theorem 4.25(b) and (4.21) that

je�k0�j � ax je0j�k0 � max
j2I0:k0�1

ad
��d�k0 � j � 1�

���j
with 0 � � < 1. Now consider the time to be one horizon length later.

TheMHE problem at this time has identical structure to the FIE problem,

but with different data: the initial prior x0 is replaced by Ãx�k0jk0�, the
bounds on `x��� are replaced by the bounds on �k���, and the initial

and ®nal times �0; k0� are replaced by �k0; k0 �N�. We therefore have

that

je�k0 �N�j � a� je�k0�j�N � max
j2I0:N�1

ad
��d�k0 �N � j � 1�

���j
where the RGES constantax is altered by the new data to a new constant

denoted a� > 0.4 Using the previous bound for e�k0� then gives

je�k0 �N�j � je0jax�a��k0�N�� a��N max
j2I0:k0�1

ad
��d�k0 � j � 1�

���j
� max

j2I0:N�1
ad
��d�k0 �N � j � 1�

���j
We next choose N large enough so that a��N < 1. Choose N 2 I�1 as

the smallest value such that a��N < 1, and we restrict the horizon to

N � N. Repeating this bounding argument gives for p � 0��e�k0 � pN��� �
je0jax�ap� �k0�pN�� �a��N�p max

j2I0:k0�1
ad
��d�k0 � j � 1�

���j
p�1M
i�0

�a��
N�i max

j2I0:N�1
ad
��d�k0 � �p � i�N � j � 1�

���j
4The constant ax is derived in the proof of Theorem 3.15 in Allan and Rawlings

(2020) and shown to be ax :�
h
�cx � c22��1�1� cx=cx��=c1

i1=�
where c1 � c2 are

the constants in the power-law bounds for the exponential i-IOSS Lyapunov function

corresponding to Assumption 4.24, and cx ; cx are from Assumption 4.22. The value

of a� is therefore given by replacing cx and cx in this expression with c� and c� ,
respectively. Note that ax ; a� � 1 since c1 � c2.
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TT �NT � 2N

yT�2N:T�N�1

smoothing update
yT�N�1:T�2

y�k�

®ltering update

MHE problem at T
yT�N:T�1

k

Figure 4.1: Smoothing update.

Now let � :� a1=N� �, and note that � � � < 1 by the choice of N.

Substituting � into the previous equation and noting that a� � 1 gives

the bound

��e�k0 � pN��� � je0jax�k0�pN � max
j2I0:k0�1

ad
��d�k0 � j � 1�

���pN�j
p�1M
i�0

max
j2I0:N�1

ad
��d�k0 � �p � i�N � j � 1�

���iN�j
Now substitute k � k0 � pN and note that the maximizations simplify

giving

je�k�j � ax je0j�k � max
j2I0:k�1

ad
��d�k� j � 1�

���j
for all k � 0 with N � N, and MHE is RGES from Proposition 4.21. �

Filtering versus smoothing update. The MHE approach discussed

to this point uses, at all time T > N, the MHE estimate Ãx�T � N� and
prior weighting function �T�N���, which may be regarded as our best

approximation of the arrival cost. We call this approach a ª®ltering

updateº because the prior weight at time T is derived from the solution

of the MHE ª®ltering problemº at time T �N, i.e., the estimate of Ãx�T �
N� :� Ãx�T �NjT �N� given measurements up to time T �N � 1. For
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Figure 4.2: Comparison of ®ltering and smoothing updates for the

batch reactor system. Second column shows absolute

estimate error.

implementation, this choice requires storage of a window of N prior

®ltering estimates to be used in the prior weighting functions as time

progresses.

Next we describe a ªsmoothing updateº that can be used instead. As

depicted in Figure 4.1, in the smoothing update we wish to use Ãx�T �
NjT � 1� (instead of Ãx�T � NjT � N�) for the prior and wish to ®nd

an appropriate prior weighting based on this choice. For the linear

unconstrained problem we can ®nd an exact prior weighting that gives

an equivalence to the full information problem. See Rao, Rawlings, and

Lee (2001) and Rao (2000, pp.80±93) for a derivation of this equivalence,

with minor error corrections provided in the ®rst edition of this text

(Rawlings and Mayne, 2009, p.292).

We illustrate with the following example why the smoothing update

may be useful in nonlinear models.

Example 4.38: Filtering and smoothing updates

Consider a constant-volume batch reactor in which the reaction 2Az B

takes place (Tenny and Rawlings, 2002). The system state x consists
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of the partial pressures �pA; pb� that evolve according to

dpA
dt

� �2k1p2A � 2k2pB

dpB
dt

� k1pA � k2pB

with k1 � 0:16 min�1 atm�1 and k2 � 0:0064 min�1. The only mea-

surement is total pressure, y � pA � pB.
Starting from initial condition x � �3;1�, the system is measured

with sample time � � 0:1 min. The model is exact and there are no

disturbances. Using a poor initial estimate x0 � �0:1;4:5�, parameters

Q �
"
10�4 0

0 0:01

#
R �

h
0:01

i
P �

"
1 0

0 1

#

and horizonN � 10, MHE is performed on the system using the ®ltering

and smoothing updates for the prior weighting. For comparison, the

EKF is also used. The resulting estimates are plotted in Figure 4.2.

In this simulation, MHE performs well with either update formula.

Due to the structure of the ®ltering update, every N � 10 time steps,

a poor state estimate is used as the prior, which leads to undesirable

periodic behavior in the estimated state. Due to the poor initial state es-

timate, the EKF produces negative pressure estimates, leading to large

estimate errors throughout the simulation. �

Summary remarks. The results presented in this section are repre-

sentative of what is currently known about MHE for bounded distur-

bances, but we expect that this analysis remains far from ®nished. Sev-

eral questions remain open.

• Is MHE RGAS if the system is asymptotically (rather than exponen-

tially) i-IOSS? What are the required compatibility conditions be-

tween the allowable stage costs and the i-IOSS condition to achieve

an RGAS MHE estimator?

• What are the best methods to update the MHE initial penalty, �k���
to obtain an accurate estimator with a small horizon N for com-

putational ef®ciency?

• Is MHE with a smoothing update instead of a ®ltering update

RGAS? What stage costs are allowable to achieve RGAS of an MHE

estimator with a smoothing update?
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4.4 Other Nonlinear State Estimators

State estimation for nonlinear systems has a long history, and moving

horizon estimation is a rather new approach to the problem. As with

model predictive control, the optimal estimation problem on which

moving horizon is based has a long history, but only the rather recent

advances in computing technology have enabled moving horizon esti-

mation to be considered as a viable option in online applications. It is

therefore worthwhile to compare moving horizon estimation to other

less computationally demanding nonlinear state estimators.

4.4.1 Particle Filtering

An extensive discussion and complete derivation of particle ®ltering

appeared in the ®rst edition of the text (Rawlings and Mayne, 2009,

pp.301±355). This material is available electronically on the text's web-

site. As with many sample-based procedures, however, it seems that all

of the available sampling strategies in particle ®ltering do run into the

ªcurse of dimensionality.º The low density of samples in a reasonably

large-dimensional space (say n � 5) lead to inaccurate state estimates.

For this reason we omit further discussion of particle ®ltering in this

edition.

Feedback particle ®ltering has recently been suggested as an alter-

native to overcome many of the drawbacks of the particle ®lter (Yang,

Mehta, and Meyn, 2013). In feedback particle ®ltering, one uses the

measurements to in¯uence the particle locations by solving an optimal

control problem for repositioning the particles to obtain an accurate

posterior distribution after measurement. Application examples and

a burgeoning literature on the theoretical properties of different algo-

rithms indicate that this technique may provide a valuable addition to

nonlinear estimation (Berntorp and Grover, 2018).

4.4.2 Extended Kalman Filtering

The extended Kalman ®lter (EKF) generates estimates for nonlinear sys-

tems by ®rst linearizing the nonlinear system, and then applying the

linear Kalman ®lter equations to the linearized system. The approach

can be summarized in a recursion similar in structure to the Kalman
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®lter (Stengel, 1994, pp.387±388)

Ãx��k� 1� � f�Ãx�k�;0�
P��k� 1� � A�k�P�k�A�k�0 �G�k�QG�k�0

Ãx��0� � x0 P��0� � Q0

The mean and covariance after measurement are given by

Ãx�k� � Ãx��k�� L�k��y�k�� h�Ãx��k���
L�k� � P��k�C�k�0�R � C�k�P��k�C�k�0��1
P�k� � P��k�� L�k�C�k�P��k�

with the following linearizations

A�k� � @f�x;w�
@x

����
�Ãx�k�;0�

G�k� � @f�x;w�
@w

����
�Ãx�k�;0�

C�k� � @h�x�
@x

����
Ãx��k�

The densities of w;v; and x0 are assumed to be normal. Many vari-

ations on this theme have been proposed, such as the iterated EKF

and the second-order EKF (Gelb, 1974, 190±192). Of the nonlinear ®l-

tering methods, the EKF method has received the most attention due

to its relative simplicity and demonstrated effectiveness in handling

some nonlinear systems. Examples of implementations include esti-

mation for the production of silicon/germanium alloy ®lms (Middle-

brooks and Rawlings, 2006), polymerization reactions (Prasad, Schley,

Russo, and Bequette, 2002), and fermentation processes (Gudi, Shah,

and Gray, 1994). The EKF is at best an ad hoc solution to a dif®cult

problem, however, and hence there exist many pitfalls to the practi-

cal implementation of EKFs (see, for example, (Wilson, Agarwal, and

Rippin, 1998)). These problems include the inability to accurately in-

corporate physical state constraints, and the naive use of linearization

of the nonlinear model.

Until recently, few properties regarding the stability and conver-

gence of the EKF have been established. Recent research shows bounded

estimation error and exponential convergence for the continuous and

discrete EKF forms given observability, small initial estimation error,

small noise terms, and no model error (Reif, GÈunther, Yaz, and Unbe-

hauen, 1999; Reif and Unbehauen, 1999; Reif, GÈunther, Yaz, and Unbe-

hauen, 2000). Depending on the system, however, the bounds on initial

estimation error and noise terms may be unrealistic. Also, initial esti-

mation error may result in bounded estimate error but not exponential

convergence, as illustrated by Chaves and Sontag (2002).
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Julier and Uhlmann (2004a) summarize the status of the EKF as

follows.

The extended Kalman ®lter is probably themost widely used

estimation algorithm for nonlinear systems. However, more

than 35 years of experience in the estimation community

has shown that it is dif®cult to implement, dif®cult to tune,

and only reliable for systems that are almost linear on the

time scale of the updates.

We seem to be making a transition from a previous era in which new

approaches to nonlinear ®ltering were criticized as overly complex be-

cause ªthe EKF works,º to a new era in which researchers are demon-

strating ever simpler examples in which the EKF fails completely. The

unscented Kalman ®lter is one of the methods developed speci®cally

to overcome the problems caused by the naive linearization used in the

EKF.

4.4.3 Unscented Kalman Filtering

The linearization of the nonlinear model at the current state estimate

may not accurately represent the dynamics of the nonlinear system be-

havior even for one sample time. In the EKF prediction step, the mean

propagates through the full nonlinear model, but the covariance prop-

agates through the linearization. The resulting error is suf®cient to

throw off the correction step and the ®lter can diverge even with a per-

fect model. The unscented Kalman ®lter (UKF) avoids this linearization

at a single point by sampling the nonlinear response at several points.

The points are called sigma points, and their locations and weights are

chosen to satisfy the given starting mean and covariance (Julier and

Uhlmann, 2004a,b).5 Given Ãx and P , choose sample points, zi, and

weights, wi, such that

Ãx �
X
i

wizi P �
X
i

wi�zi � Ãx��zi � Ãx�0

Similarly, given w � N�0;Q� and v � N�0; R�, choose sample points

ni forw andmi for v . Each of the sigma points is propagated forward

at each sample time using the nonlinear system model. The locations

5Note that this idea is fundamentally different than the idea of particle ®ltering.

The sigma points are chosen deterministically, for example, as points on a selected

covariance contour ellipse or a simplex. The particle ®ltering points are chosen by

random sampling.
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and weights of the transformed points then update the mean and co-

variance

zi�k� 1� � f�zi�k�;ni�k��
�i � h�zi��mi all i

From these we compute the forecast step

Ãx� �
X
i

wizi Ãy� �
X
i

wi�i

P� �
X
i

wi�zi � Ãx���zi � Ãx��0

After measurement, the EKF correction step is applied after ®rst ex-

pressing this step in terms of the covariances of the innovation and

state prediction. The output error is given as ye :� y � Ãy�. We next

rewrite the Kalman ®lter update as

Ãx � Ãx� � L�y � Ãy��

L � E��x � Ãx��ye 0�| {z }
P�C0

E�yeye 0��1| {z }
�R�CP�C0��1

P � P� � L E��x � Ãx��ye 0�0| {z }
CP�

in which we approximate the two expectations with the sigma-point

samples

E��x � Ãx��ye 0� �X
i

wi�zi � Ãx����i � Ãy��0

E�yeye 0� �X
i

wi��i � Ãy����i � Ãy��0

See Julier, Uhlmann, and Durrant-Whyte (2000); Julier and Uhlmann

(2004a); van der Merwe, Doucet, de Freitas, and Wan (2000) for more

details on the algorithm. An added bene®t of the UKF approach is that

the partial derivatives @f�x;w�=@x; @h�x�=@x are not required. See

also Nùrgaard, Poulsen, and Ravn (2000) for other derivative-free non-

linear ®lters of comparable accuracy to the UKF. See Lefebvre, Bruyn-

inckx, and De Schutter (2002); Julier and Uhlmann (2002) for an inter-

pretation of the UKF as a use of statistical linear regression.

The UKF has been tested in a variety of simulation examples taken

from different application ®elds including aircraft attitude estimation,
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tracking and ballistics, and communication systems. In the chemical

process control ®eld, Romanenko and Castro (2004); Romanenko, San-

tos, and Afonso (2004) have compared the EKF and UKF on a strongly

nonlinear exothermic chemical reactor and a pH system. The reactor

has nonlinear dynamics and a linear measurement model, i.e., a sub-

set of states is measured. In this case, the UKF performs signi®cantly

better than the EKF when the process noise is large. The pH system

has linear dynamics but a strongly nonlinear measurement, i.e., the pH

measurement. In this case, the authors show a modest improvement

in the UKF over the EKF.

4.4.4 EKF, UKF, and MHE Comparison

One nice feature enjoyed by the EKF and UKF formulations is the re-

cursive update equations. One-step recursions are computationally ef-

®cient, which may be critical in online applications with short sample

times. The MHE computational burden may be reduced by shorten-

ing the length of the moving horizon, N. But use of short horizons

may produce inaccurate estimates, especially after an unmodeled dis-

turbance. This unfortunate behavior is the result of the system's non-

linearity. As we saw in Sections 1.4.3±1.4.4, for linear systems, the full

information problem and the MHE problem are identical to a one-step

recursion using the appropriate state penalty coming from the ®ltering

Riccati equation. Losing the equivalence of a one-step recursion to full

information or a ®nite moving horizon problem brings into question

whether the one-step recursion can provide equivalent estimator per-

formance. We show in the following example that the EKF and the UKF

do not provide estimator performance comparable to MHE.

Example 4.39: EKF, UKF, and MHE performance comparison

Consider the following set of reversible reactions taking place in a well-

stirred, isothermal, gas-phase batch reactor

A
k1
-*)-
k�1

B� C 2B
k2
-*)-
k�2

C

The material balance for the reactor is

d

dt

264cAcB
cC

375 �
264�1 0

1 �2
1 1

375"k1cA � k�1cBcC
k2c

2
B � k�2cC

#

dx

dt
� fc�x�
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with states and measurement

x �
h
cA cB cC

i0
y � RT

h
1 1 1

i
x

in which cj denotes the concentration of species j in mol/L, R is the

gas constant, and T is the reactor temperature in K. The measurement

is the reactor pressure in atm, and we use the ideal gas law to model

the pressure. The model is nonlinear because of the two second-order

reactions. We model the system plus disturbances with the following

discrete time model

x� � f�x��w
y � Cx � v

in which f is the solution of the ordinary differential equations (ODEs)

over the sample time, �, i.e, if s�t; x0� is the solution of dx=dt � fc�x�
with initial condition x�0� � x0 at t � 0, then f�x� � s��; x�. The

state andmeasurement disturbances,w and v , are assumed to be zero-

mean independent normals with constant covariances Q and R. The

following parameter values are used in the simulations

RT � 32:84mol � atm=L
� � 0:25 k1 � 0:5 k�1 � 0:05 k2 � 0:2 k�2 � 0:01

C �
h
1 1 1

i
RT P�0� � �0:5�2I Q � �0:001�2I R � �0:25�2

x0 �
26410
4

375 x�0� �
264 0:5

0:05

0

375
The prior density for the initial state, N�x0; P�0��, is deliberately cho-

sen to poorly represent the actual initial state to model a large initial

disturbance to the system. We wish to examine how the different esti-

mators recover from this large unmodeled disturbance.

Solution

Figure 4.3 (top) shows a typical EKF performance for these conditions.

Note that the EKF cannot reconstruct the state for this system and that

the estimates converge to incorrect steady states displaying negative

concentrations of A and B. For some realizations of the noise sequences,

the EKF may converge to the correct steady state. Even for these cases,
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Figure 4.3: Evolution of the state (solid line) and EKF state estimate

(dashed line). Top plot shows negative concentration es-

timates with the standard EKF. Bottom plot shows large

estimate errors and slow convergence with the clipped

EKF.
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Figure 4.4: Evolution of the state (solid line) and UKF state estimate

(dashed line). Top plot shows negative concentration es-

timates with the standard UKF. Bottom plot shows similar

problems even if constraint scaling is applied.
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Figure 4.5: Evolution of the state (solid line) and MHE state estimate

(dashed line).

however, negative concentration estimates still occur during the tran-

sient, which correspond to physically impossible states. Figure 4.3 (bot-

tom) presents typical results for the clipped EKF, in which negative val-

ues of the ®ltered estimates are set to zero. Note that although the

estimates converge to the system states, this estimator gives pressure

estimates that are two orders of magnitude larger than the measured

pressure before convergence is achieved.

The standard UKF achieves results similar to the EKF as shown in

Figure 4.4 (top). Vachhani, Narasimhan, and Rengaswamy (2006) have

proposed a modi®cation to the UKF to handle constrained systems. In

this approach, the sigma points that violate the constraints are scaled

back to the feasible region boundaries and the sigma-point weights are

modi®ed accordingly. If this constrained version of the UKF is applied

to this case study, the estimates do not signi®cantly improve as shown

in Figure 4.4 (bottom). The UKF formulations used here are based on

the algorithm presented by Vachhani et al. (2006, Sections 3 and 4)

with the tuning parameter � set to � � 1. Adjusting this parameter



4.4 Other Nonlinear State Estimators 311

using other suggestions from the literature (Julier and Uhlmann, 1997;

Qu and Hahn, 2009; Kandepu, Imsland, and Foss, 2008) and trial and

error, does not substantially improve the UKF estimator performance.

Better performance is obtained in this example if the sigma points

that violate the constraints are simply saturated rather than rescaled

to the feasible region boundaries. But, this form of clipping still does

not prevent the occurrence of negative concentrations in this example.

Negative concentration estimates are not avoided by either scaling or

clipping of the sigma points. As a solution to this problem, the use

of constrained optimization for the sigma points is proposed (Vach-

hani et al., 2006; Teixeira, TÃorres, Aguirre, and Bernstein, 2008). If one

is willing to perform online optimization, however, MHE with a short

horizon is likely to providemore accurate estimates at similar computa-

tional cost compared to approaches based on optimizing the locations

of the sigma points.

The authors have only recently become aware of yet another ap-

proach to handling constraints in the UKF that does work well on this

example (KolÊas, Foss, and Schei, 2009). It remains to be seen whether

further examples can be constructed that this approach cannot ad-

dress.

Finally, Figure 4.5 presents typical results of applying constrained

MHE to this example. For this simulation we choose N � 10 and the

smoothing update for the arrival cost approximation. Note that MHE

recovers well from the poor initial prior. Comparable performance is

obtained if the ®ltering update is used instead of the smoothing update

to approximate the arrival cost. The MHE estimates are also insensitive

to the choice of horizon length N for this example. �

The EKF, UKF, and all one-step recursive estimation methods, suffer

from the ªshort horizon syndromeº by design. One can try to reduce

the harmful effects of a short horizon through tuning various other

parameters in the estimator, but the basic problem remains. Large

initial state errors lead to inaccurate estimation and potential estimator

divergence. The one-step recursions such as the EKF and UKF can be

viewed as one extreme in the choice between speed and accuracy in

that only a single measurement is considered at each sample. That is

similar to an MHE problem in which the user chooses N � 1. Situations

in which N � 1 lead to poor MHE performance often lead to unreliable

EKF and UKF performance as well.
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4.5 On combining MHE and MPC

Estimating the state of a system is an interesting problem in its own

right, with many important applications having no connection to feed-

back control. But in some applications the goal of state estimation is

indeed to provide a state feedback controller with a good estimate of

the system state based on the available measurements. We close this

chapter with a look at the properties of such control systems consist-

ing of a moving horizon estimator that provides the state estimate to

a model predictive controller.

What's desirable. Consider the evolution of the system x� � f�x;u;
w� and its measurement y � h�x��v when taking control using MPC

based on the state estimate

x� � f�x; �N�Ãx�;w� y � h�x�� v
with f : Z � W ! Rn, h : Rn ! Rp, in which w 2 W is the process

disturbance and v 2 V is the measurement disturbance, u � �N�Ãx�
is the control from the MPC regulator, and Ãx is generated by the MHE

estimator. We assume, as we have through the text, that f��� and h���
are continuous functions. Again we denote estimate error by e :� x� Ãx,

which gives for the state evolution

x� � f�x; �N�x � e�;w� y � h�x�� v (4.34)

The obvious dif®culty with analyzing the effect of estimate error is the

coupling of estimation and control. Unlike the problem studied earlier

in the chapter, where x� � f�x;w�, we now have estimate error also

in¯uencing state evolution. This coupling precludes obtaining the sim-

ple bounds on je�k�j in terms of �e�0�;w;v� as we did in the previous

sections.

What's possible. Here we lower our sights from the analysis of the

fully coupled problem and consider only the effect of bounded esti-

mate error on the combined estimation/regulation problem. To make

this precise, consider the following de®nition of an incrementally, uni-

formly input/output-to-state stable (i-UIOSS) system.

De®nition 4.40 (i-UIOSS). The system

x� � f�x;u;w� y � h�x�
is incrementally uniformly input/output-to-state stable (i-UIOSS) if there

exist functions ���� 2 KL and w���, v��� 2 K such that for any
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two initial states z1 and z2, any input sequence u, and any two distur-

bance sequences w1 and w2 generating state sequences x1�z1;u;w1�

and x2�z2;u;w2�, the following holds for all k 2 I�0

jx�k;z1;u;w1�� x�k;z2;u;w2�j � ��jz1 � z2j ; k��
w
�kw1 �w2k0:k�1

�� v�kh�x1�� h�x2�k0:k�1 � (4.35)

Notice that the bound is uniform in the sense that it is independent

of the input sequence u generated by a controller. See Cai and Teel

(2008, De®nition 3.4) for similar de®nitions. Exercise 4.15 discusses

how to establish that a detectable linear system x� � Ax � Bu�Gw;
y � Cx is i-UIOSS.

Given this strong formof detectability, we assume that we can derive

an error bound of the form

Assumption 4.41 (Bounded estimate error). There exists � > 0 and

���� 2 KL and ���� 2 K such that for all k�w;v�k � � and for all

k � 0 the following holds

je�k�j � ��je�0�j ; k�� ��k�w;v�k�

Next we note that the evolution of the state in the form of (4.34)

is not a compelling starting point for analysis because the estimate

error perturbation appears inside a possibly discontinuous function,

�N��� (recall Example 2.8). Therefore, as in (Roset, Heemels, Lazar, and

Nijmeijer, 2008), we instead express the equivalent evolution, but in

terms of the state estimate as

Ãx� � f�Ãx � e; �N�Ãx�;w�� e� y � h�Ãx � e�� v

which is more convenient because the estimate error appears inside

continuous functions f��� and h���.
We require that the system not leave an invariant set due to the

disturbance.

De®nition 4.42 (Robust positive invariance). A set X � Rn is robustly

positive invariant with respect to a difference inclusion x� 2 f�x;d�
if there exists some � > 0 such that f�x;d� � X for all x 2 X and all

disturbance sequences d satisfying kdk � �.

So, we de®ne robust asymptotic stability as input-to-state stability

on a robust positive invariant set.
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De®nition 4.43 (Robust asymptotic stability). The origin of a perturbed

difference inclusion x� 2 f�x;d� is RAS in X if there exists some

� > 0 such that for all disturbance sequences d satisfying kdk � �
we have both that X is robustly positive invariant and that there exist

���� 2 KL and ��� 2 K such that for each x 2 X, we have for all

k 2 I�0 that all solutions ��k;x;d� satisfy����k;x;d��� � ��jxj ; k�� �kdk� (4.36)

To establish input-to-state stability, we de®ne an ISS Lyapunov func-

tion for a difference inclusion, similar to an ISS Lyapunov function de-

®ned in Jiang and Wang (2001); Lazar, Heemels, and Teel (2013). See

also De®nition B.45 in Appendix B.

De®nition 4.44 (ISS Lyapunov function). V��� is an ISS Lyapunov func-

tion in the robust positive invariant set X for the difference inclu-

sion x� 2 f�x;d� if there exists some � > 0, functions �1���;�2���;
�3��� 2 K1, and function ���� 2 K such that for all x 2 X and

kdk � �

�1�jxj� � V�x� � �2�jxj� (4.37)

sup
x�2f�x;d�

V�x�� � V�x���3�jxj�� ��jdj� (4.38)

The value of an ISS Lyapunov function is analogous to having a Lya-

punov function in standard stability analysis: it allows us to conclude

input-to-state stability and therefore robust asymptotic stability. The

following result is therefore highly useful in robustness analysis.

Proposition 4.45 (ISS Lyapunov stability theorem). If a difference inclu-

sion x� 2 f�x;d� admits an ISS Lyapunov function in a robust positive

invariant set X for all kdk � � for some � > 0, then the origin is RAS in

X for all kdk � �.
The proof of this proposition follows Jiang andWang (2001) asmod-

i®ed for a difference inclusion on a robust positive invariant set in Al-

lan, Bates, Risbeck, and Rawlings (2017, Proposition 19).

Combined MHE/MPC is RAS. Our strategy now is to establish that

V0
N�x� is an ISS Lyapunov function for the combined MHE/MPC system

subject to process and measurement disturbances on a robust positive

invariant set. We have already established the upper and lower bound-

ing inequalities

�1�jxj� � V0
N�x� � �2�jxj�
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Figure 4.6: Although the nominal trajectory from Ãx may terminate

on the boundary of Xf , the three perturbed trajectories,

including the one from Ãx�, terminate in Xf . After Allan

et al. (2017).

So we require only

sup
x�2f�x;d�

V0
N�x

�� � V0
N�x���3�jxj�� ��jdj�

with disturbance d de®ned here as d :� �e;w; e��. That plus robust

positive invariance establishes that the controlled system is RAS.

Figure 4.6 gives the picture of the argument we are going to make.

We have that Ãx� � f�Ãx � e; �N�Ãx�;w� � e� and x� � f�x; �N�Ãx�;w�.
We create the standard candidate input sequence by dropping the ®rst

input and applying the terminal control law to the terminal state, i.e.,

ue � �
u0�1; Ãx�; : : : ; u0�N � 1; Ãx�; �f �x

0�N; Ãx��
�
. We then compute dif-

ference in cost of trajectories starting at f�Ãx;�N�Ãx�;0� and Ãx� using

the same input sequence ue. We choose the terminal region to be a

sublevel set of the terminal cost, Xf � lev� Vf , � > 0. Note that ue is

feasible for both initial states, i.e., both trajectories terminate in Xf , if

j�e;w; e��j is small enough.

As in Chapter 3, we make use of Proposition 3.4 to bound the size

of the change to a continuous function (Allan et al., 2017, Proposition

20). Since VN�x;u� is continuous, Proposition 3.4 gives��VN�Ãx�;ue�� VN�f�Ãx;�N�Ãx�;0�;ue��� � �V ���Ãx� � f�Ãx;�N�Ãx�;0����
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with �V ��� 2 K. Note that we are not using the possibly discontinuous

V0
N�x� here). Since f�x;u;w� is also continuous��Ãx� � f�Ãx;�N�Ãx�;0��� � ��f�Ãx � e; �N�Ãx�;w�� e� � f�Ãx;�N�Ãx�;0���

� ��f�Ãx � e; �N�Ãx�;w�� f�Ãx;�N�Ãx�;0���� ��e���
� �f �j�e;w�j��

��e���
� �e f �jdj�

with d :� �e;w; e�� and �e f ��� 2 K. Therefore��VN�Ãx�;ue�� VN�f�Ãx;�N�Ãx�;0�;ue��� � �V � �e f �jdj� :� ��jdj�
VN�Ãx

�;ue� � VN�f�Ãx;�N�Ãx�;0�;ue�� ��jdj�
with ���� 2 K. Note that for the candidate sequence, VN

�
f�Ãx;�N�Ãx�;

0�;ue� � V0
N�Ãx�� `�Ãx;�N�Ãx��, so we have that

VN
�
f�Ãx;�N�Ãx�;0

�
;ue� � V0

N�Ãx���1�jÃxj�
since �1�jxj� � `�x; �N�x�� for all x. Therefore, we ®nally have

VN�Ãx
�;ue� � V0

N�Ãx���1�jÃxj�� ��jdj�
V0
N�Ãx

�� � V0
N�Ãx���1�jÃxj�� ��jdj� (4.39)

and we have established that V0
N��� satis®es the inequality of an ISS-

Lyapunov function. This analysis leads to the following main result.

Theorem 4.46 (Combined MHE/MPC is RAS). For the MPC regulator,

let the standard Assumptions 2.2, 2.3, and 2.14 hold, and choose Xf �
lev� Vf for some � > 0. For the moving horizon estimator, let Assump-

tion 4.41 hold. Then for every � > 0 there exists � > 0 such that if

kdk � �, the origin is RAS for the system Ãx� � f�Ãx � e; �N�Ãx�;w�� e�,
y � h�Ãx � e�� v , in the set X� � lev� Vf .

A complete proof of this theorem, for the more general case of sub-

optimal MPC, is given in Allan et al. (2017, Theorem 21). The proof

proceeds by ®rst showing that X� is robustly positive invariant for all

� > 0. That argument is similar to the one presented in Chapter 3 be-

fore Proposition 3.5. The proof then establishes that inequality (4.39)

holds for all Ãx 2 X� . Proposition 4.45 is then invoked to establish that

the origin is RAS.

Notice that neither V0
N��� nor �N��� need be continuous for this com-

bination of MHE and MPC to be inherently robust. Since x � Ãx�e, The-
orem 4.46 also gives robust asymptotic stability of the evolution of x

in addition to Ãx for the closed-loop system with bounded disturbances.
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Figure 4.7: Closed-loop performance of combined nonlinear

MHE/MPC with no disturbances. First column shows sys-

tem states, and second column shows estimation error.

Dashed line shows concentration setpoint. Vertical lines

indicate times of setpoint changes.

Example 4.47: Combined MHE/MPC

Consider the nonlinear reactor system from Example 1.11 with sample

time � � 0:5min and height h and inlet ¯ow F ®xed to their steady-

state values. The resulting system has two states (concentration c and

temperature T ) and one input (cooling temperature Tc). The only mea-

sured output is temperature, which means the reactor concentration

must be estimated via MHE.

To illustrate the performance of combined MHE/MPC, closed-loop

control to a changing setpoint is simulated. Figure 4.7 shows the chang-

ing states x and estimate errors x� Ãx. Note that each setpoint change

leads to a temporary increase in estimate error, which eventually de-

cays back to zero. Note that zero prior weighting is used in the MHE

formulation.

To illustrate the response to disturbances, the simulation is repeated

for varying disturbance sizes. The system itself is subject to a distur-

bance w, which adds to the evolution of concentration, while the tem-
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Figure 4.8: Closed-loop performance of combined nonlinear

MHE/MPC for varying disturbance size. The system is

controlled between two steady states.

perature measurement is subject to noise v . Figure 4.8 shows a phase

plot of system evolution subject to the same setpoint changes as be-

fore. As the disturbances become larger, the system deviates further

from its setpoint. Note that the same MHE objective function (with zero

prior weight) is used for all cases. �

4.6 Notes

State estimation is a fundamental topic appearing in many branches of

science and engineering, and has a large literature. A nice and brief

annotated bibliography describing the early contributions to optimal

state estimation of the linear Gaussian system is provided by ÊAstrÈom

(1970, pp. 252-255). Kailath (1974) provides a comprehensive and his-

torical review of linear ®ltering theory including the historical devel-

opment of Wiener-Kolmogorov theory for ®ltering and prediction that

preceded Kalman ®ltering (Wiener, 1949; Kolmogorov, 1941).

Jazwinski (1970) provides an early and comprehensive treatment of

the optimal stochastic state estimation problem for linear and nonlin-
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ear systems. As mentioned in Section 4.2.3, Jazwinski (1970) follows

Deyst and Price (1968) and proposes V�k;x� � �1=2�x0P�k��1x as a

Lyapunov function candidate for the linear controllable and observ-

able time-varying system. Note that the estimate error dynamic sys-

tem is time varying even if the model is time invariant because the

optimal estimator gains are time varying. This choice of Lyapunov

function has been used to establish estimator stability in many subse-

quent textbooks (Stengel, 1994, pp.474-475). The most complete treat-

ment of the linear problem in the literature seems to be (Anderson and

Moore, 1981), which assumes uniform stabilizability and detectabil-

ity for the time-varying system and establishes exponential stability.

Kailath (1974, p.152) remarks that the known proofs that the optimal

®lter is stable ªare somewhat dif®cult, and it is signi®cant that only a

small fraction of the vast literature on the Kalman ®lter deals with this

problem.º

For establishing stability of the steady-state optimal linear estima-

tor, simpler arguments suf®ce because the estimate error equation is

time invariant. Establishing duality with the optimal regulator is a fa-

vorite technique for establishing estimator stability in this case. See,

for example, Kwakernaak and Sivan (1972, Theorem 4.11) for a general

steady-state stability theorem for the linear Gaussian case.

Many of the full information and MHE results in this chapter are

motivated by early results in Rao (2000) and Rao, Rawlings, and Mayne

(2003). The full information analysis given here is more general be-

cause (i) we assume nonlinear detectability rather than nonlinear ob-

servability, and (ii) we establish asymptotic stability under process and

measurement disturbances, which were neglected in previous analysis.

Muske, Rawlings, and Lee (1993) andMeadows, Muske, and Rawlings

(1993) apparently were the ®rst to use the increasing property of the

optimal cost to establish classical (not KL) asymptotic stability for full

information estimation for linear models with constraints. Robertson

and Lee (2002) present the interesting statistical interpretation of MHE

for the constrained linear system. Michalska and Mayne (1995) estab-

lish stability of moving horizon estimation with zero prior weighting

for the continuous time nonlinear system. Alessandri, Baglietto, and

Battistelli (2008) also provide a stability analysis of MHE with an ob-

servability assumption and quadratic stage cost.

Rawlings and Ji (2012) streamlined the presentation of the full infor-

mation problem for the case of convergent disturbances, and pointed

to MHE of bounded disturbances, and suboptimal MHE as two signi®-
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cant open research problems. Next Ji, Rawlings, Hu, Wynn, and Diehl

(2016); Hu, Xie, and You (2015) provided the ®rst analysis of full infor-

mation estimation for bounded disturbances by introducing amax term

in the estimation objective function, and assuming stronger forms of

the i-IOSS detectability condition. This reformulation did provide RAS

of full information estimation with bounded disturbances, but had the

unfortunate side effect of removing convergent estimate error for con-

vergent disturbances.

In a major step forward, MÈuller (2017) examined MHE with bounded

disturbances for similarly restrictive i-IOSS conditions, and established

bounds on arrival cost penalty and horizon length that provide both

RAS for bounded disturbances and convergence of estimate error for

convergent disturbances. Hu (2017) generalized the detectability con-

ditions in Ji et al. (2016) and treated both full information with the max

term and MHE estimation. At this stage of development, all the bounds

for robust stability becameworsewith increasing horizon length, which

seems problematic since the use of more measurements should im-

prove estimation. In another signi®cant step, KnÈufer and MÈuller (2018)

next introduced a fading memory formulation of FIE and MHE for expo-

nentially i-IOSS systems whose bounds improved with horizon length.

But this formulation required that the stage cost satisfy the triangle

inequality, which excludes the quadratic penalty commonly used in es-

timation, especially for linear systems.

As described in detail throughout the chapter, Allan (2020) intro-

duced explicit stabilizability assumptions into the analysis and estab-

lished a converse theorem for i-IOSS. He then showed for general stage

costs that FIE is RGAS for (asymptotic) i-IOSS systems, thus removing

the exponential part of the assumption, and that MHE is RGES for ex-

ponentially i-IOSS systems. As mentioned in the chapter, whether MHE

is RGAS for (asymptotic) i-IOSS systems remains an open question. Fi-

nally, numerous application papers using MHE have appeared in the

last several years indicating a growing interest in this approach to state

estimation.

For the case of output feedback, there are of course alternatives

to simply combining independently designed MHE estimators and MPC

regulators as brie¯y analyzed in Section 4.5. Recently Copp and Hes-

panha (2017) propose solving instead a single min-max optimization

for simultaneous estimation and control. Because of the excellent re-

sultant closed-loop properties, this class of approaches certainly war-

rants further attention and development.
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4.7 Exercises

Exercise 4.1: Input-to-state stability and convergence

Assume the nonlinear system

x� � f�x;u�
is input-to-state stable (ISS) so that for all x0 2 Rn, input sequences u, and k � 0

jx�k;x0;u�j � ��jx0j ; k�� �kuk�
in which x�k;x0;u� is the solution to the system equation at time k starting at state

x0 using input sequence u, and  2 K and � 2 KL.
(a) Show that the ISS property also implies

jx�k;x0;u�j � ��jx0j ; k�� �kuk0:k�1�
in which kuka:b �maxa�j�b

��u�j���.
(b) Show that the ISS property implies the ªconverging-input converging-stateº prop-

erty (Jiang and Wang, 2001), (Sontag, 1998, p. 330), i.e., show that if the system

is ISS, then u�k�! 0 implies x�k�! 0.

Exercise 4.2: Output-to-state stability and convergence

Assume the nonlinear system

x� � f�x� y � h�x�
is output-to-state stable (OSS) so that for all x0 2 Rn and k � 0

jx�k;x0�j � ��jx0j ; k�� �kyk0:k�
in which x�k;x0� is the solution to the system equation at time k starting at state x0,
and  2 K and � 2 KL.

Show that the OSS property implies the ªconverging-output converging-stateº prop-

erty (Sontag and Wang, 1997, p. 281) i.e., show that if the system is OSS, then y�k�! 0

implies x�k�! 0.

Exercise 4.3: i-IOSS and convergence

Establish that if system

x� � f�x;w� y � g�x�
is i-IOSS, and w1�k�! w2�k� and y1�k�! y2�k� as k!1, then

x�k;z1;w1�! x�k;z2;w2� as k!1 for all z1; z2

Exercise 4.4: Observability and detectability of linear time-invariant sys-
tems and OSS

Consider the linear time-invariant system

x� � Ax y � Cx
(a) Show that if the system is observable, then the system is OSS.

(b) Show that the system is detectable if and only if the system is OSS.
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Exercise 4.5: Observability and detectability of linear time-invariant system
and IOSS

Consider the linear time-invariant system with input

x� � Ax �Gw y � Cx

(a) Show that if the system is observable, then the system is IOSS.

(b) Show that the system is detectable if and only if the system is IOSS.

Exercise 4.6: Max or sum?

To facilitate complicated arguments involvingK andKL functions, it is often conve-

nient to interchange sum and max operations. First some suggestive notation: let the

max operator over scalars be denoted with the � symbol so that

a� b :�max�a; b�

(a) Show that the � operator is commutative and associative, i.e., a�b � b�a and

�a � b� � c � a � �b � c� for all a;b; c, so that the following operation is well

de®ned and the order of operation is inconsequential

a1 � a2 � a3 � � � � an :�
nM
i�1

ai

(b) Find scalars d and e such that for all a;b � 0, the following holds

d�a� b� � a� b � e�a� b�

(c) Find scalars d and e such that for all a;b � 0, the following holds

d�a� b� � a� b � e�a� b�

(d) Generalize the previous result to the n term sum; ®nd dn; en; dn; en such that

the following holds for all ai � 0; i � 1;2; : : : ; n

dn

nX
i�1

ai �
nM
i�1

ai � en
nX
i�1

ai

dn

nM
i�1

ai �
nX
i�1

ai � en
nM
i�1

ai

(e) Show that establishing convergence (divergence) in sum or max is equivalent,

i.e., consider a time sequence �s�k��k�0

s�k� �
nX
i�1

ai�k� s�k� �
nM
i�1

ai�k�

Show that

lim
k!1

s�k� � 0 �1� if and only if lim
k!1

s�k� � 0 �1�
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Exercise 4.7: Where did my constants go?

Once K and KL functions appear, we may save some algebra by switching from the

sum to the max.

In the following, let ��� be anyK function and ai 2 R�0; i 2 I1:n.

(a) If you choose to work with sum, derive the following bounding inequalities

(Rawlings and Ji, 2012)

�a1 � a2 � � � � � an� � �na1�� �na2�� � � � � �nan�

�a1 � a2 � � � � � an� � 1

n

�
�a1�� �a2�� � � � � �an�

�
(b) If you choose to work with max instead, derive instead the following simpler

result

�a1 � a2 � � � � � an� � �a1�� �a2�� � � � � �an�
Notice that you have an equality rather than an inequality, which leads to tighter

bounds.

Exercise 4.8: Linear systems and incremental stability

Show that for a linear time-invariant system, i-ISS (i-OSS, i-IOSS) is equivalent to ISS

(OSS, IOSS).

Exercise 4.9: Nonlinear observability and Lipschitz continuity implies i-OSS

Consider the following de®nition of observability for nonlinear systems in which f and

h are Lipschitz continuous. A system

x� � f�x� y � h�x�
is observable if there exists No 2 I�1 andK function  such that

No�1X
k�0

��y�k;x1��y�k;x2��� � �jx1 � x2j� (4.40)

holds for all x1; x2 2 Rn. This de®nition was used by Rao et al. (2003) in showing

stability of nonlinear MHE to initial condition error under zero state and measurement

disturbances.

(a) Show that this form of nonlinear observability implies i-OSS.

(b) Show that i-OSS does not imply this form of nonlinear observability and, there-

fore, i-OSS is a weaker assumption.

The i-OSS concept generalizes the linear system concept of detectability to nonlinear

systems.

Exercise 4.10: Equivalance of detectability and IOSS for continuous time,
linear, time-invariant system

Consider the continuous time, linear, time-invariant system with input

Çx � Ax � Bu y � Cx
Show that the system is detectable if and only if the system is IOSS.
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Exercise 4.11: Observable, FSO, and detectable for linear systems

Consider the linear time-invariant system

x� � Ax y � Cx
and its observability canonical form. What conditions must the system satisfy to be

(a) observable?

(b) ®nal-state observable (FSO)?

(c) detectable?

Exercise 4.12: Exponential detectability and compatibility of stage cost

We commented in the text that working with exponential detectability lessens the

requirement for stage-cost compatibility in Assumption 4.11 that is necessary with

(asymptotic) detectability. To see why, consider the noise-free case and assume sys-

tem 4.1 is exponentially i-IOSS. Without loss of generality, the exponential i-IOSS Lya-

punov function can then be chosen quadratic (Allan, 2020, Corollary 2.15). The descent

condition is then given by

��f �x1;w1�; f �x2;w2��� � ��x1; x2�� a3 jx1 � x2j2�
aw jw1 �w2j2 � av jh�x1�� h�x2�j2

which holds for all x1; x2 2 X and w1;w2 2 W. Assume we have chosen the usual

least-squares stage cost

`�w;v� � jwj2
Q�1w

� jvj2
R�1v

where Qw ; Rv > 0 are estimates of the variances of process and measurement dis-

turbances w;v , respectively. The standard descent condition in the noise-free case

is

Y�j � 1jk� � Y�jjk�� `� Ãw�jjk�; Ãv�jjk�
� Y�jjk�� ��Q�1w �

�� Ãw�jjk���2 � ��R�1v ���Ãv�jjk���2
where ��A� is the smallest singular value of matrix A. De®ne Q�jjk� :� Y�jjk� �
��x�j�; Ãx�jjk��, and to establish estimator stability we need to show that theQ-function
has a descent condition

Q�j � 1jk� � Q�jjk�� c3
��x�j�� Ãx�jjk���2

for some c3 > 0.

But how can we have a descent condition when we have not assumed any rela-

tionship between matrices Qw ; Rv in the stage cost and constants aw and av in the

system's detectability condition?

Hint: consider what you are asked to show in Exercise B.3(b) about the converse

theorem for exponential stability. Use a similar idea here.

Exercise 4.13: Convergent disturbances

Prove Proposition 4.3, i.e., show that if an estimator is RGAS and �w�k�; v�k�� ! 0

as k ! 1, then Ãx�k� ! x�k� as k ! 1. Hint: in the de®nition of RGAS, break the

maximization over interval �0 : k � 1� into maximization over two intervals �0 : M �
1�[ �M : k� 1� and choose M to control the size of each maximization.
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Exercise 4.14: Observabilty plusK-continuity imply FSO

Prove Proposition 4.31. Hint: ®rst try replacing globalK-continuity with the stronger

assumption of global Lipschitz continuity to get a feel for the argument.

Exercise 4.15: Detectable linear time-invariant system and i-UIOSS

Show that the detectable linear time-invariant system x� � Ax � Bu�Gw;y � Cx is

i-UIOSS from De®nition 4.40.

Exercise 4.16: Dynamic programming recursion for Kalman predictor

In the Kalman predictor, we use forward DP to solve at stage k

min
x;w

`�x;w�� V�k �x� s.t. z � Ax �w

in which x is the state at the current stage and z is the state at the next stage. The

stage cost and arrival cost are given by

`�x;w� � �1=2�� ��y�k�� Cx��2R�1�w0Q�1w
�

V�k �x� � �1=2�
��x � Ãx��k�

��2
�P��k���1

and we wish to ®nd the value function V0�z�, which we denote V�k�1�z� in the Kalman

predictor estimation problem.

(a) Combine the two x terms to obtain

min
x;w

1

2

�
w0Q�1w � �x � Ãx�k��0P�k��1�x � Ãx�k��

�
s.t. z � Ax �w

and, using the third part of Example 1.1, show

P�k� � P��k�� P��k�C0�CP��k�C0 � R��1CP��k�
L�k� � P��k�C0�CP��k�C0 � R��1
Ãx�k� � Ãx��k�� L�k��y�k�� C Ãx��k��

(b) Add the w term and use the inverse form in Exercise 1.18 to show the optimal

cost is given by

V0�z� � �1=2��z �AÃx��k� 1��0�P��k� 1���1�z �AÃx��k� 1��

Ãx��k� 1� � AÃx�k�
P��k� 1� � AP�k�A0 �Q

Substitute the results for Ãx�k� and P�k� above and show

V�k�1�z� � �1=2��z � Ãx��k� 1��0�P��k� 1���1�z � Ãx�k� 1��

P��k� 1� � Q�AP��k�A0 �AP��k�C0�CP��k�C0 � R��1CP��k�A
Ãx��k� 1� � AÃx��k�� Le�k��y�k�� C Ãx��k��

Le�k� � AP��k�C0�CP��k�C0 � R��1
(c) Compare and contrast this form of the estimation problem to the one given in

Exercise 1.29 that describes the Kalman ®lter.
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Exercise 4.17: Duality, cost to go, and covariance

Using the duality variables of Table 4.2, translate Theorem 4.27 into the version that is

relevant to the state estimation problem.

Exercise 4.18: Estimator convergence for �A; G� not stabilizable

What happens to the stability of the optimal estimator if we violate the condition

�A;G� stabilizable

(a) Is the steady-state Kalman ®lter a stable estimator? Is the full information esti-

mator a stable estimator? Are these two answers contradictory? Work out the

results for the case A � 1; G � 0; C � 1; P��0� � 1;Q � 1; R � 1.

Hint: you may want to consult de Souza, Gevers, and Goodwin (1986).

(b) Can this phenomenon happen in the LQ regulator? Provide the interpretation

of the time-varying regulator that corresponds to the time-varying ®lter given

above. Does this make sense as a regulation problem?

Exercise 4.19: Exponential stability of the Kalman predictor

Establish that the Kalman predictor de®ned in Section 4.2.3 is a globally exponentially

stable estimator. What is the corresponding linear quadratic regulator?

Exercise 4.20: Equivalent de®nition of RGES

Prove Proposition 4.21.

Hint: Consider arbitrary w 2 Rg ; v 2 Rp . Show that

1. For everyaw ; av > 0, there existsad > 0 such thataw jwj�av jvj � ad j�w;v�j;
2. For every ad > 0, there exist aw ; av > 0 such that ad j�w;v�j � aw jwj�av jvj.
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5

Output Model Predictive Control

5.1 Introduction

In Chapter 2 we show how model predictive control (MPC) may be em-

ployed to control a deterministic system, that is, a system inwhich there

are no uncertainties and the state is known. In Chapter 3 we show how

to control an uncertain system in which uncertainties are present but

the state is known. Here we address the problem of MPC of an un-

certain system in which the state is not fully known. We assume that

there are outputs available that may be used to estimate the state as

shown in Chapter 4. These outputs are used by the model predictive

controller to generate control actions; hence the name output MPC.

The state is not known, but a noisy measurement y�t� of the state

is available at each time t. Since the state x is not known, it is re-

placed by a hyperstate p that summarizes all prior information (previ-

ous inputs and outputs and the prior distribution of the initial state)

and that has the ªstateº property: future values of p can be deter-

mined from the current value of p, and current and future inputs

and outputs. Usually p�t� is the conditional density of x�t� given

the prior density p�0� of x�0�, and the current available ªinformationº

I�t� :� �y�0�;y�1�; : : : ; y�t � 1�;u�0�;u�1�; : : : ; u�t � 1�
�
.

For the purpose of control, future hyperstates have to be predicted

since future noisy measurements of the state are not known. So the

hyperstate satis®es an uncertain difference equation of the form

p� � ��p;u; � (5.1)

where � �t��t2I�0 is a sequence of random variables. The problem of

controlling a system with unknown state x is transformed into the

problem of controlling an uncertain system with known state p. For
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example, if the underlying system is described by

x� � Ax � Bu�w
y � Cx � �

where �w�t��t2I�0 and ���t��t2I�0 are sequences of zero-mean, normal,

independent random variables with variances �w and �� , respectively,

and if the prior density p�0� of x�0� is normal with density n�Åx0;�0�,

then, as is well known, p�t� is the normal density n�Ãx�t�;��t�� so that

the hyperstate p�t� is ®nitely parameterized by �Ãx�t�;��t��. Hence the

evolution equation for p�t� may be replaced by the simpler evolution

equation for �Ãx;��, that is by

Ãx�t � 1� � AÃx�t�� Bu� L�t� �t� (5.2)

��t � 1� � ����t�� (5.3)

in which

���� :� A�A0 �A�C0�C0�C � ����1C�A0 � �w
 �t� :� y�t�� C Ãx�t� � Cxe�t�� ��t�
xe�t� :� x�t�� Ãx�t�

The initial conditions for (5.2) and (5.3) are

Ãx�0� � Åx0 ��0� � �0
These are, of course, the celebrated Kalman ®lter equations derived

in Chapter 1. The random variables xe and  have the following den-

sities: xe�t� � n�0;��t�� and  �t� � n�0;�� � C0��t�C�. The ®nite

dimensional equations (5.2) and (5.3) replace the difference equation

(5.1) for the hyperstate p that is a conditional density and, therefore,

in®nite dimensional in general. The sequence � �t��t2I�0 is known as

the innovations sequence;  �t� is the ªnewº information contained in

y�t�.

Output control, in general, requires control of the hyperstate p that

may be computed with dif®culty, since p satis®es a complex evolution

equation p� � ��p;u; � where  is a random disturbance. Control-

ling p is a problem of the same type as that considered in Chapter 3,

but considerably more complex since the function p��� is in®nite di-

mensional. Because of the complexity of the evolution equation for p,

a simpler procedure is often adopted. Assuming that the state x is

known, a stabilizing controller u � ��x� is designed. An observer or
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®lter yielding an estimate Ãx of the state is then separately designed

and the control u � ��Ãx� is applied to the plant. Indeed, this form of

control is actually optimal for the linear quadratic Gaussian (LQG) op-

timal control problem considered in Chapter 1, but is not necessarily

optimal and stabilizing when the system is nonlinear and constrained.

We propose a variant of this procedure, modi®ed to cope with state and

control constraints.

The state estimate Ãx satis®es an uncertain difference equation with

an additive disturbance of the same type as that considered in Chapter

3. Hence we employ tube MPC, similar to that employed in Chapter

3, to obtain a nominal trajectory satisfying tightened constraints. We

then construct a tube that has as its center the nominal trajectory, and

which includes every possible realization of Ãx � �Ãx�t��t2I�0 . We then

construct a second tube that includes the ®rst tube in its interior, and

is such that every possible realization of the sequence x � �x�t��t2I�0
lies in its interior. The tightened constraints are chosen to ensure every

possible realization of x � �x�t��t2I�0 does not transgress the original
constraints. An advantage of the method presented here is that its

online complexity is comparable to that of conventional MPC.

As in Chapter 3, a caveat is necessary. Because of the inherent com-

plexity of output MPC, different compromises between simplicity and

ef®ciency are possible. For this reason, output MPC remains an active

research area and alternative methods, available or yet to be developed,

may be preferred.

5.2 A Method for Output MPC

Suppose the system to be controlled is described by

x� � Ax � Bu�w
y � Cx � �

The state and control are required to satisfy the constraints x�t� 2 X
and u�t� 2 U for all t, and the disturbance is assumed to lie in the

compact set W. It is assumed that the origin lies in the interior of the

sets X, U, and W. The state estimator �Ãx;�� evolves, as shown in the

sequel, according to

Ãx� � ��Ãx;u; � (5.4)

�� � ���� (5.5)
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x2

fÃx�0�g � �
Ãx�k�

x�k�

x1

Figure 5.1: State estimator tube. The solid line Ãx�t� is the center of

the tube, and the dashed line is a sample trajectory of

x�t�.

in which  is a random variable in the stochastic case, and a bounded

disturbance taking values in 	 whenw and � are bounded. In the latter

case, x 2 fÃxg � � implies x� 2 fÃx�g � �� for all  2 	.
As illustrated in Figure 5.1, the evolution equations generate a tube,

which is the set sequence �fÃx�t�g � ��t��t2I�0 ; at time t the center of

the tube is Ãx�t� and the ªcross sectionº is ��t�. When the disturbances

are bounded, which is the only case we consider in the sequel, all possi-

ble realizations of the state trajectory �x�t�� lie in the set fÃx�t�g���t�
for all t; the dashed line is a sample trajectory of x�t�.

From (5.4), the estimator trajectory �Ãx�t��t2I�0 is in¯uenced both by

the control that is applied and by the disturbance sequence � �t��t2I�0 .

If the trajectory were in¯uenced only by the control, we could choose

the control to satisfy the control constraints, and to cause the estima-

tor tube to lie in a region such that the state constraints are satis®ed by

all possible realizations of the state trajectory. Hence the output MPC

problem would reduce to a conventional MPC problem with modi®ed

constraints in which the state is Ãx, rather than x. The new state con-

straint is Ãx 2 ÃX where ÃX is chosen to ensure that Ãx 2 ÃX implies x 2 X
and, therefore, satis®es ÃX � X	 � if � does not vary with time t.

But the estimator state Ãx�t� is in¯uenced by the disturbance  (see

(5.4)), so it cannot be precisely controlled. The problem of controlling

the system described by (5.4) is the same type of problem studied in
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x1

fÅx�0�g � �

Åx�k�

fÅx�0�g � S

x2

Figure 5.2: The system with disturbance. The state estimate lies in

the inner tube, and the state lies in the outer tube.

Chapter 3, where the system was described by x� � f�x;u;w� with
the estimator state Ãx, which is accessible, replacing the state x. Hence

we may use the techniques presented in Chapter 3 to choose a control

that forces Ãx to lie in another tube �fÅx�t�g � S�t��t2I�0 where the set

sequence �S�t��t2I�0 that de®nes the cross section of the tube is pre-

computed. The sequence �Åx�t��t2I�0 that de®nes the center of the tube

is the state trajectory of the nominal (deterministic) system de®ned by

Åx� � ��Åx; Åu;0� (5.6)

the nominal version of (5.4). Thus we get two tubes, one embedded in

the other. At time t the estimator state Ãx�t� lies in the set fÅx�t�g�S�t�,
and x�t� lies in the set fÃx�t�g � ��t�, so that for all t

x�t� 2 fÅx�t�g � ��t� ��t� :� ��t�� S�t�

Figure 5.2 shows the tube �fÅx�t�g � S�t��, in which the trajectory �Ãx�t��
lies, and the tube �fÅx�t�g � ��t��, in which the state trajectory �x�t��

lies.
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5.3 Linear Constrained Systems: Time-Invariant Case

5.3.1 Introduction

We consider the following uncertain linear time-invariant system

x� � Ax � Bu�w
y � Cx � � (5.7)

in which x 2 Rn is the current state, u 2 Rm is the current control

action, x� is the successor state, w 2 Rn is an unknown state distur-

bance, y 2 Rp is the current measured output, � 2 Rp is an unknown

output disturbance, the pair �A; B� is assumed to be controllable, and

the pair �A;C� observable. The state and additive disturbances w and

� are known only to the extent that they lie, respectively, in the C-

sets1 W � Rn and N � Rp. Let ��i;x�0�;u;w� denote the solution

of (5.7) at time i if the initial state at time 0 is x�0�, and the control

and disturbance sequences are, respectively, u :� �u�0�;u�1�; : : :� and
w :� �w�0�;w�1�; : : :�. The system (5.7) is subject to the following set

of hard state and control constraints

x 2 X u 2 U (5.8)

in which X � Rn and U � Rm are polyhedral and polytopic sets respec-

tively; both sets contain the origin as an interior point.

5.3.2 State Estimator

To estimate the state a Kalman ®lter or Luenberger observer is em-

ployed

Ãx� � AÃx � Bu� L�y � Ãy�

Ãy � C Ãx (5.9)

in which Ãx 2 Rn is the current observer state (state estimate), u 2 Rm

is the current control action, Ãx� is the successor state of the observer

system, Ãy 2 Rp is the current observer output, and L 2 Rn�p. The

output injection matrix L is chosen to satisfy ��AL� < 1 where AL :�
A� LC .

The estimated state Ãx therefore satis®es the following uncertain

difference equation

Ãx� � AÃx � Bu� L�Cxe � ��
1Recall, a C-set is a convex, compact set containing the origin.
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The state estimation error xe is de®ned by xe :� x� Ãx so that x � Ãx�xe .
Since x� � Ax � Bu�w, the state estimation error xe satis®es

xe� � ALxe �we we :� w � L� (5.10)

Because w and � are bounded, so is we ; in fact, we takes values in the

C-set ÅW de®ned by
ÅW :�W� ��LN�

We recall the following standard de®nitions (Blanchini, 1999).

De®nition 5.1 (Positive invariance; robust positive invariance). A set


 � Rn is positive invariant for the system x� � f�x� and the con-

straint set X if 
 � X and f�x� 2 
; 8x 2 
.
A set 
 � Rn is robust positive invariant for the system x� � f�x;w�
and the constraint set �X;W� if 
 � X and f�x;w� 2 
; 8w 2 W,

8x 2 
.

Since ��AL� < 1 and We is compact, there exists, as shown in Kol-

manovsky and Gilbert (1998), Theorem 4.1, a robust positive invariant

set � � Rn, satisfying

AL�� ÅW � � (5.11)

Hence, for all xe 2 �, xe� � ALxe �we 2 � for all we 2We ; the term robust

in the description of � refers to this property. In fact, � is the mini-

mal robust, positive invariant set for xe� � ALxe �we , we 2 We , i.e., a set
that is a subset of all robust positive invariant sets. There exist tech-

niques (RakoviÂc, Kerrigan, Kouramas, and Mayne, 2005) for obtaining,

for every � > 0, a polytopic, nonminimal, robust, positive invariant set

�0 that satis®es dH��;�0� � � where dH��; �� is the Hausdorff metric.

However, it is not necessary to compute the set � or �0 as shown in

Chapter 3. An immediate consequence of (5.11) is the following.

Proposition 5.2 (Proximity of state and state estimate). If the initial

system and observer states, x�0� and Ãx�0� respectively, satisfy fx�0�g 2
fÃx�0�g � �, then x�i� 2 fÃx�i�g � � for all i 2 I�0, and all admissible

disturbance sequences w and �.

The assumption that xe�i� 2 � for all i is a steady-state assumption;

if xe�0� 2 �, then xe�i� 2 � for all i. If, on the other hand, xe�0� 2 ��0�
where ��0� � �, then it is possible to show that xe�i� 2 ��i� for all
i 2 I�0 where ��i�! � in the Hausdorff metric as i!1; the sequence
���i�� satis®es ��0� � ��1� � ��2� � � � � � �. Hence, it is reasonable
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to assume that if the estimator has been running for a ªlongº time, it

is in steady state.

Hence we have obtained a state estimator, with ªstateº �Ãx;�� satis-
fying

Ãx� � AÃx � Bu� L�y � Ãy� (5.12)

�� � �

and x�i� 2 Ãx�i� � � for all i 2 I�0, thus meeting the requirements

speci®ed in Section 5.2. Knowing this, our remaining task is to control

Ãx�i� so that the resultant closed-loop system is stable and satis®es all

constraints.

5.3.3 Controlling Ãx

Since xe�i� 2 � for all i, we seek a method for controlling the observer

state Ãx�i� in such a way that x�i� � Ãx�i� � xe�i� satis®es the state

constraint x�i� 2 X for all i. The state constraint x�i� 2 X will be

satis®ed if we control the estimator state to satisfy Ãx�i� 2 X	� for all

i. The estimator state satis®es (5.12) which can be written in the form

Ãx� � AÃx � Bu� � (5.13)

where the disturbance � is de®ned by

� :� L�y � Ãy� � L�Cxe � ��
and, therefore, always lies in the C-set � de®ned by

� :� L�C��N�

The problem of controlling Ãx is, therefore, the same as that of control-

ling an uncertain system with known state. This problem was exten-

sively discussed in Chapter 3. We can therefore use the approach of

Chapter 3 here with Ãx replacing x, � replacing w, X 	 � replacing X

and � replacing W.

To control (5.13) we use, as in Chapter 3, a combination of open-loop

and feedback control, i.e., we choose the control u as follows

u � Åu�Ke e :� Ãx � Åx (5.14)

where Åx is the state of a nominal (deterministic) system that we shall

shortly specify; Åu is the feedforward component of the control u, and
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Ke is the feedback component. The matrix K is chosen to satisfy

��AK� < 1 where AK :� A � BK. The feedforward component v of

the control u generates, as we show subsequently, a trajectory �Åx�i��,

which is the center of the tube in which the state estimator trajectory

�Ãx�i�� lies. The feedback component Ke attempts to steer the trajec-

tory �Ãx�i�� of the state estimate toward the center of the tube, and

thereby controls the cross section of the tube. The controller is dy-

namic since it incorporates the nominal dynamic system.

With this control, Ãx satis®es the following difference equation

Ãx� � AÃx � BÅu� BKe� � � 2 � (5.15)

The nominal (deterministic) system describing the evolution of Åx is

obtained by neglecting the disturbances BKe and � in (5.15) yielding

Åx� � AÅx � BÅu

The deviation e � Ãx � Åx between the state Ãx of the estimator and the

state Åx of the nominal system satis®es

e� � AKe� � AK :� A� BK (5.16)

The feedforward component Åu of the controlu generates the trajectory

�Åx�i��, which is the center of the tube in which the state estimator

trajectory �Ãx�i�� lies. Because � is a C-set and ��AK� < 1, there exists

a robust positive invariant C-set S satisfying

AKS� � � S

An immediate consequence is the following.

Proposition 5.3 (Proximity of state estimate and nominal state). If the

initial states of the estimator and nominal system, Ãx�0� and Åx�0� re-

spectively, satisfy Ãx�0� 2 fÅx�0�g � S, then Ãx�i� 2 fÅx�i�g � S and

u�i� 2 fÅu�i�g � KS for all i 2 I�0, and all admissible disturbance se-

quences w and �.

It follows from Proposition 5.3 that the state estimator trajectory

Ãx remains in the tube �fÅx�i�g � S�i2I�0 and the control trajectory Åu re-

mains in the tube �fÅu�i�g � KS�i2I�0 provided that e�0� 2 S. Hence,

from Propositions 5.2 and 5.3, the state trajectory x lies in the tube

�fÅx�i�g � ��i2I�0 where � :� S�� provided that xe�0� � x�0�� Ãx�0� 2 �
and e�0� 2 S. This information may be used to construct a robust out-

put feedbackmodel predictive controller using the procedures outlined
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in Chapter 3 for robust state feedback MPC of systems; the major dif-

ference is that we now control the estimator state Ãx and use the fact

that the actual state x lies in fÃxg � �.

5.3.4 Output MPC

Model predictive controllers now can be constructed as described in

Chapter 3, which dealt with robust control when the state was known.

There is an obvious difference in that we now are concerned with con-

trolling Ãx whereas, in Chapter 3, our concern was control of x. We

describe here the appropriate modi®cation of the simple model predic-

tive controller presented in Section 3.5.2. We adopt the same procedure

of de®ning a nominal optimal control problem with tighter constraints

than in the original problem. The solution to this problem de®nes the

center of a tube in which solutions to the original system lie, and the

tighter constraints in the nominal problem ensure that the original con-

straints are satis®ed by the actual system.

The nominal system is described by

Åx� � AÅx � BÅu (5.17)

The nominal optimal control problem is the minimization of the cost

function ÅVN�Åx; Åu� with

ÅVN�Åx; Åu� :�
N�1X
k�0

`�Åx�k�; Åu�k��� Vf �Åx�N�� (5.18)

subject to satisfaction by the state and control sequences of (5.17) and

the tighter constraints

Åx�i� 2 ÅX � X	 � � :� S� � (5.19)

Åu�i� 2 ÅU � U	KS (5.20)

as well as a terminal constraint Åx�N� 2 ÅXf � ÅX. Notice that � appears

in (5.19) whereas S, the set in which e � Ãx�Åx lies, appears in (5.20); this

differs from the case studied in Chapter 3 where the same set appears

in both equations. The sets W and N are assumed to be suf®ciently

small to ensure satisfaction of the following condition.

Assumption 5.4 (Constraint bounds). � � S� � � X and KS � U.
If Assumption 5.4 holds, the sets on the right-hand side of (5.19)

and (5.20) are not empty; it can be seen from their de®nitions that the
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sets � and S tend to the set f0g as W and N tend to the set f0g in the

sense that dH�W; f0g�! 0 and dH�N; f0g�! 0.

It follows from Propositions 5.2 and 5.3, if Assumption 5.4 holds,

that satisfaction of the constraints (5.19) and (5.20) by the nominal sys-

tem ensures satisfaction of the constraints (5.8) by the original system.

The nominal optimal control problem is, therefore

PN�Åx� : ÅV0
N�Åx� �min

Åu
fÅVN�Åx; Åu� j Åu 2 ÅUN�Åx�g

in which the constraint set ÅUN�Åx� is de®ned by

ÅUN�Åx� :� fÅu j Åu�k� 2 ÅU and Å��k; Åx; Åu� 2 ÅX 8k 2 f0;1; : : : ;N � 1g;
Å��N; Åx; Åu� 2 ÅXf g (5.21)

In (5.21), ÅXf � ÅX is the terminal constraint set, and Å��k; Åx; Åu� denotes

the solution of Åx� � AÅx�BÅu at time k if the initial state at time 0 is Åx

and the control sequence is Åu � �Åu�0�; Åu�1�; : : : ; Åu�N � 1��. The termi-

nal constraint, which is not desirable in process control applications,

may be omitted, as shown in Chapter 2, if the set of admissible initial

states is suitably restricted. Let Åu0�Åx� denote the minimizing control

sequence; the stage cost `��� is chosen to ensure uniqueness of Åu0�Åx�.

The implicit model predictive control law for the nominal system is

Å�N��� de®ned by

Å�N�Åx� :� Åu0�0; Åx�

where Åu0�0; Åx� is the ®rst element in the sequence Åu0�Åx�. The domain

of ÅV0
N��� and Åu0���, and, hence, of Å�N���, is ÅXN de®ned by

ÅXN :� fÅx 2 ÅX j ÅUN�Åx� �;g (5.22)

ÅXN is the set of initial states Åx that can be steered to ÅXf by an admis-

sible control Åu that satis®es the state and control constraints, (5.19)

and (5.20), and the terminal constraint. From (5.14), the implicit con-

trol law for the state estimator Ãx� � AÃx � Bu � � is �N��� de®ned
by

�N�Ãx; Åx� :� Å�N�Åx��K�Ãx � Åx�

The controlled composite system with state �Ãx; Åx� satis®es

Ãx� � AÃx � B�N�Ãx; Åx�� � (5.23)

Åx� � AÅx � BÅ�N�Åx� (5.24)

with initial state �Ãx�0�; Åx�0�� satisfying Ãx�0� 2 fÅx�0�g � S, Åx�0� 2
ÅXN . These constraints are satis®ed if Åx�0� � Ãx�0� 2 ÅXN . The control

algorithm may be formally stated as follows.
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Algorithm 5.5 (Robust control algorithm (linear constrained systems)).

First set i � 0, set Ãx � Ãx�0�, and set Åx � Ãx. Then repeat

1. At time i, solve the nominal optimal control problem ÅPN�Åx� to ob-

tain the current nominal control action Åu � Å�N�Åx� and the control

u � Åx �K�Ãx � Åx�.

2. Apply the control u to the system being controlled.

3. Compute the successor state estimate Ãx� and the successor state of

the nominal system Åx�

Ãx� � AÃx � Bu� L�y � C Ãx� Åx� � AÅx � BÅu

4. Set �Ãx; Åx� � �Ãx�; Åx��, set i � i� 1.

If the terminal cost Vf ��� and terminal constraint set ÅXf satisfy the

stability Assumption 2.14, and if Assumption 5.4 is satis®ed, the value

function ÅV0
N��� satis®es

ÅV0
N�Åx� � `�Åx; Å�N�Åx�� 8Åx 2 ÅXN

ÅV0
N�Åx� � Vf �Åx� 8Åx 2 ÅXN

ÅV0
N�f �Åx; Å�N�Åx��� � ÅV0

N�Åx�� `�Åx; Å�N�Åx�� 8Åx 2 ÅXN

in which �ÅV0
N�Åx� :� ÅV0

N�f �Åx; Å�N�Åx���� ÅV0
N�Åx�.

As shown in Section 3.5.3, if, in addition to Assumption 5.4

1. the stability Assumption 2.14 is satis®ed,

2. `�Åx; Åu� � �1=2��jÅxj2Q�jÅuj2R� whereQ and R are positive de®nite,

3. Vf �Åx� � �1=2� jÅxj2Pf where Pf is positive de®nite, and

4. ÅXN is a C-set,

then there exist positive constants c1 and c2 such that

ÅV0
N�Åx� � c1 jÅxj2 8Åx 2 ÅXN

ÅV0
N�Åx� � c2 jÅxj2 8Åx 2 ÅXN

ÅV0
N�f �Åx; Å�N�Åx��� � ÅV0

N�Åx�� c1 jÅxj2 8Åx 2 ÅXN
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It follows from Chapter 2 that the origin is exponentially stable for the

nominal system Åx� � AÅx � BÅ�N�Åx� with a region of attraction ÅXN so

that there exists a c > 0 and a  2 �0;1� such that

jÅx�i�j � c jÅx�0�ji

for all Åx�0� 2 ÅXN , all i 2 I�0. Also Åx�i� 2 ÅXN for all i 2 I�0 if

Åx�0� 2 ÅXN so that problem PN�Åx�i�� is always feasible. Because the

state Ãx�i� of the state estimator always lies in fÅx�i�g�S, and the state

x�i� of the system being controlled always lies in fÅx�i�g � �, it fol-
lows that Ãx�i� converges robustly and exponentially fast to S, and x�i�

converges robustly and exponentially fast to �. We are now in a posi-

tion to establish exponential stability of A :� S� f0g with a region of

attraction � ÅXN � S�� ÅXN for the composite system (5.23) and (5.24).

Proposition 5.6 (Exponential stability of output MPC). The set A :�
S�f0g is exponentially stable with a region of attraction � ÅXN �S�� ÅXN

for the composite system (5.23) and (5.24).

Proof. Let � :� �Ãx; Åx� denote the state of the composite system. Then�����A is de®ned by �����A � jÃxjS � jÅxj
where jÃxjS :� d�Ãx;S�. But Ãx 2 fÅxg�S implies Ãx � Åx�e for some e 2 S
so that

jÃxjS � d�Ãx;S� � d�Åx � e;S� � d�Åx � e; e� � jÅxj
since e 2 S. Hence �����A � 2 jÅxj so that����i���A � 2 jÅx�i�j � 2c jÅx�0�ji � 2c

����0���i
for all ��0� 2 � ÅXN � S� � ÅXN . Since for all Åx�0� 2 ÅXN , Åx�i� 2 ÅX and

Åu�i� 2 ÅU, it follows that Ãx�i� 2 fÅx�i�g � S, x�i� 2 X, and u�i� 2 U for

all i 2 I�0. Thus A :� S � f0g is exponentially stable with a region of

attraction � ÅXN�S�� ÅXN for the composite system (5.23) and (5.24). �

It follows fromProposition 5.6 thatx�i�, which lies in the set fÅx�i�g�
�, � :� S � �, converges to the set �. In fact x�i� converges to a set

that is, in general, smaller than � since � is a conservative bound on

xe�i� � e�i�. We determine this smaller set as follows. Let � :� �xe ; e�
and let  :� �w; ��; � is the state of the two error systems and  is a

bounded disturbance lying in a C-set 	 :�W�N. Then, from (5.10) and

(5.16), the state � evolves according to

�� � Ae�� Be (5.25)
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where

Ae :�
"
AL 0

LC AK

#
Be :� " I �L

0 L

#

Because ��AL� < 1 and ��AK� < 1, it follows that ��Ae� < 1. Since

��Ae� < 1 and 	 is compact, there exists a robust positive invariant set

� � Rn �Rn for (5.25) satisfying

Ae�� Be	 � �

Hence ��i� 2 � for all i 2 I�0 if ��0� 2 �. Since x�i� � Åx�i� �
e�i� � xe�i�, it follows that x�i� 2 fÅx�i�g � H�, H :�

h
In In

i
, for all

i 2 I�0 provided that x�0�, Ãx�0�, and Åx�0� satisfy �xe�0�; e�0�� 2 �
where xe�0� � x�0� � Ãx�0� and e�0� � Ãx�0� � Åx�0�. If these initial

conditions are satis®ed, x�i� converges robustly and exponentially fast

to the set H�.
The remaining robust controllers presented in Section 3.5 may be

similarly modi®ed to obtain a robust output model predictive con-

troller.

5.3.5 Computing the Tightened Constraints

The analysis above shows the tightened state and control constraint

sets ÅX and ÅU for the nominal optimal control problem can, in principle,

be computed using set algebra. Polyhedral set computations are not

robust, however, and usually are limited to sets in Rn with n � 15. So

we present here an alternative method for computing tightened con-

straints, similar to that described in 3.5.3.

We next show how to obtain a conservative approximation to ÅX �
X	 �, � � S��. Suppose c0x � d is one of the constraints de®ning X.

Since e � Ãx � Åx , which lies in S, and xe � x � Ãx, which lies in �, satisfy
e� � AKe � LCxe � L� and xe� � ALxe �w � L� , the constraint c0x � d
(one of the constraints de®ning X), the corresponding constraint in ÅX

should be c0x � d��ÅX
1 in which

�
ÅX
1 �maxfc0e j e 2 Sg �maxfc0xe j xe 2 �g

� max
�w�i�;��i��

1X
j�0

A
j
K�LCxe�j�� L��j��� max

�w�i�;��i��

1X
j�0

A
j
L�w�j�� L��j��

in which xe�j� �Pj�1
i�0 A

i
L�w�i��L��i��. The maximizations are subject

to the constraints w�i� 2 W and ��i� 2 N for all i 2 I�0. Because
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maximization over an in®nite horizon is impractical, we determine, as

in 3.5.3, a horizon N 2 I�0 and an � 2 �0;1� such that ANKW � �W
and ANL N � �N, and de®ne the constraint in ÅX corresponding to the

constraint c0x � d in X to be c0x � d� �1���1��ÅX
N with

�
ÅX
N � max

�w�i�;��i��

N�1X
j�0

A
j
K�LCxe�j��L��j��� max

�w�i�;��i��

N�1X
j�0

A
j
L�w�j��L��j��

The tightened constraints yielding a conservative approximation to ÅU :�
U	KS may be similarly computed. The constraint c0u � d, one of the
constraints de®ning U, should be replaced by c0u � d � �1 � ���1�ÅU

N

with

�
ÅU
N �maxfc0e j e 2 KSg � max

�w�i�;��i��

N�1X
j�0

KA
j
K�LCxe�j�� L��j��

The maximizations for computing �
ÅX
N and �

ÅU
N are subject to the con-

straints w�i� 2W and ��i� 2 N for all i 2 I�0.

5.4 Linear Constrained Systems: Time-Varying Case

The time-invariant case corresponds to the ªsteady-stateº situation in

which the sets S�t� and ��t� have settled down to their steady-state

values S and �, respectively. As a result the constraint sets ÅX and ÅU

are also time invariant. When the state is accessible, the constraint

x 2 ÅX�i� :� X	 S�i� is less conservative than x 2 ÅX � X	 S, in which

S � S�1�. This relaxation of the constraint may be useful in some

applications. The version of tube-based MPC employed here is such

that S�t � 1� � S�t� for all t so that S�t� converges to S�1� as t ! 1.
In other versions of tube-based MPC, in which PN�x� rather PN�Åx� is

solved online, S�t� is reset to the empty set so that advantage in using

S�t� rather than S�1� is larger. On the other hand, the state estimation

set ��t� may increase or decrease with t depending on prior informa-

tion. The time-varying version of tube-based MPC is fully discussed in

Mayne, RakoviÂc, Findeisen, and AllgÈower (2009).

5.5 Offset-Free MPC

Offset-free MPC was introduced in Chapters 1 and 2 in a deterministic

context; see also Pannocchia and Rawlings (2003). Suppose the system
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Set De®nition Membership

X state constraint set x 2 X
U input constraint set u 2 U
Wx state disturbance set wx 2Wx

Wd integrating disturbance set wd 2Wd

W total state disturbance set, Wx �Wd w 2W
N measurement error set � 2 N
We estimate error disturbance set, W� ��LN� we 2We
� total estimate error disturbance set,

� � AeL��We � 2 �

�x state estimate error disturbance set,
h
In 0

i
� xe 2 �x

�d integrating disturbance estimate error set,h
0 Ip

i
� de 2 �d

� innovation set, L�Ce��N� Lye 2 �
�x set containing state component

of innovation, Lx�Ce��N� Lxye 2 �x
�d set containing integrating disturbance

component of innovation, Ld�Ce��N� Ldye 2 �d
S nominal state tracking error invariance set, e 2 S

AKS� �x � S Ãx 2 fÅxg � S
� state tracking error invariance set, S� �x x 2 fÅxg � �
ÅU nominal input constraint set, ÅU � U	KS Åu 2 ÅU
ÅX nominal state constraint set, ÅX � X	 � : Åx 2 ÅX

Table 5.1: Summary of the sets and variables used in output MPC.

to be controlled is described by

x� � Ax � Bdd� Bu�wx

y � Cx � Cdd� �
r � Hy re � r � År

in which wx and � are unknown bounded disturbances taking values,

respectively, in the compact sets Wx and N containing the origin in

their interiors. In the following discussion, y � Cx�Cdd is the output

of the system being controlled, r is the controlled variable, and År is

its setpoint. The variable re is the tracking error that we wish to mini-

mize. We assume d is nearly constant but drifts slowly, and model its
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behavior by

d� � d�wd

where wd is a bounded disturbance taking values in the compact set

Wd; in practice d is bounded, although this is not implied by our model.

We assume that x 2 Rn, d 2 Rp, u 2 Rm, y 2 Rr , and e 2 Rq, q � r ,
and that the system to be controlled is subject to the usual state and

control constraints

x 2 X u 2 U
We assume X is polyhedral and U is polytopic.

Given themany sets that are required to specify the output feedback

case we are about to develop, Table 5.1 may serve as a reference for the

sets de®ned in the chapter and the variables that are members of these

sets.

5.5.1 Estimation

Since both x and d are unknown, it is necessary to estimate them.

For estimation purposes, it is convenient to work with the composite

system whose state is � :� �x;d�. This system may be described more

compactly by

�� � Ae�� Beu�w
y � Ce�� �

in which w � �wx;wd� and

Ae :�
"
A Bd
0 I

#
Be :� "B

0

#
Ce :�

h
C Cd

i
and w :� �wx;wd� takes values in W �Wx �Wd. A necessary and suf-

®cient condition for the detectability of �Ae ; Ce� is given in Lemma 1.8.

A suf®cient condition is detectability of �A;C�, coupled with invertibil-

ity of Cd. If �Ae ; Ce� is detectable, the state may be estimated using the

time-invariant observer or ®lter described by

Ã�� � Ae Ã�� Beu� � � :� L�y � Ce Ã��
in which L is such that ��AeL� < 1 where AeL :� Ae � LCe . Clearly � � Lye
where ye � Ce�e � � . The estimation error �e :� �� Ã� satis®es

�e � � Ae�e �w � L�Ce�e � ��
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or, in simpler form

�e � � AeL�e �we we :� w � L�

Clearly we � w � L� takes values in the compact set We de®ned by

We :�W� ��LN�
If w and � are zero, �e decays to zero exponentially fast so that Ãx ! Åx

and Ãd! d exponentially fast. Since ��AeL� < 1 andWe is compact, there

exists a robust positive invariant set � for �e � � AeL�e � we , we 2 We
satisfying

� � AeL��We
Hence �e �i� 2 � for all i 2 I�0 if �e �0� 2 �. Since �e � �xe ; de� 2 Rn �Rp

where xe :� x� Ãx and de :� d� Ãd, we de®ne the sets �x and �d as follows

�x :�
h
In 0

i
� �d :�

h
0 Ip

i
�

It follows that xe�i� 2 �x and de�i� 2 �d so that x�i� 2 fÃxg � �x and

d�i� 2 f Ãd�i�g � �d for all i 2 I�0 if �e �0� � �xe�0�; de�0�� 2 �. That

�e �0� 2 � is a steady-state assumption.

5.5.2 Control

The estimation problem has a solution similar to previous solutions.

The control problem is more dif®cult. As before, we control the esti-

mator state, making allowance for state estimation error. The estimator

state Ã� satis®es the difference equation

Ã�� � Ae Ã�� Beu� �
where the disturbance � is de®ned by

� :� Lye � L�Ce�e � ��
The disturbance � � ��x; �d� lies in the C�set � de®ned by

� :� L�Ce��N�
where the set� is de®ned in Section 5.5.1. The system Ã�� � Ae Ã��Beu��
is not stabilizable, however, so we examine the subsystems with states

Ãx and Ãd

Ãx� � AÃx � Bd Ãd� Bu� �x
Ãd� � Ãd� �d
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where the disturbances �x and �d are components of � � ��x; �d� and
are de®ned by

�x :� Lxye � Lx�Ce�e � �� �d :� Ldye � Ld�Ce�e � ��
The matrices Lx and Ld are the corresponding components of L. The

disturbance �x and �d lie in the C�sets �x and �d de®ned by

�x :�
h
In 0

i
� � Lx�Ce��N� �d :�

h
0 Ip

i
� � Ld�Ce��N�

We assume that �A; B� is a stabilizable pair so the tube methodology

may be employed to control Ãx. The system Ãd� � Ãd � �d is uncon-

trollable. The central trajectory is therefore chosen to be the nominal

version of the difference equation for �Ãx; Ãd� and is described by

Åx� � AÅx � Bd Ãd� BÅu
Åd� � Åd

in which the initial state is �Ãx; Ãd�. We obtain Åu � Å�N�Åx; Åd; År� by solving

a nominal optimal control problem de®ned later and set u � Åu � Ke,
e :� Ãx � Åx where K is chosen so that ��AK� < 1, AK :� A � BK; this
is possible since �A; B� is assumed to be stabilizable. It follows that

e :� Ãx � Åx satis®es the difference equation

e� � AKe� �x �x 2 �x

Because �x is compact and ��AK� < 1, there exists a robust positive

invariant set S for e� � AKe� �x , �x 2 �x satisfying

AKS� �x � S
Hence e�i� 2 S for all i 2 I�0 if e�0� 2 S. So, as in Proposition 5.3, the

states and controls of the estimator and nominal system satisfy Ãx�i� 2
fÅx�i�g � S and u�i� 2 fÅu�i�g � KS for all i 2 I�0 if the initial states

Ãx�0� and Åx�0� satisfy Ãx�0� 2 fÅx�0�g � S. Using the fact established

previously that xe�i� 2 �x for all i, we can also conclude that x�i� �
Åx�i��e�i��xe�i� 2 fÅx�i�g�� and thatu�i� � Åu�i��Ke�i� 2 fÅu�i�g�KS
for all i where � :� S��x provided, of course, that ��0� 2 f Ã��0�g ��

and x�0� 2 fÃx�0�g � S. These conditions are equivalent to �e �0� 2 �
and e�0� 2 S where, for all i, e�i� :� Ãx�i� � Åx�i�. Hence x�i� lies in X

and u�i� lies in U if Åx�i� 2 ÅX :� X	 � and Åu�i� 2 ÅU :� U	KS.
Thus Ãx�i� and x�i� evolve in known neighborhoods of the central

state Åx�i� that we can control. Although we know that the uncontrol-

lable state d�i� lies in the set f Ãd�i�g�i�d for all i, the evolution of Ãd�i�
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is an uncontrollable random walk and is, therefore, unbounded. If the

initial value of Ãd at time 0 is Ãd0, then Ãd�i� lies in the set f Ãd0g� i�d that

increases without bound as i increases. This behavior is a defect in our

model for the disturbance d; the model is useful for estimation pur-

poses, but is unrealistic in permitting unbounded values for d. Hence

we assume in the sequel that d evolves in a compact C�set Xd. We can

modify the observer to ensure that Ãd lies in Xd, but ®nd it simpler to

observe that if d lies in Xd, Ãd must lie in Xd � �d.

Target Calculation. Our ®rst task is to determine the target state Åxs
and associated control Åus ; we require our estimate of the tracking error

re � r � År to be zero in the absence of any disturbances. We follow

the procedure outlined in Pannocchia and Rawlings (2003). Since our

estimate of the measurement noise � is 0 and since our best estimate

of d when the target state is reached is Ãd, we require

Ãr � År � H�C Åxs � Cd Ãd�� År � 0

We also require the target state to be an equilibrium state satisfying,

therefore, Åxs � AÅxs �Bd Ãd�BÅus for some control Åus . Given � Ãd; År�, the

target equilibrium pair �Åxs ; Åus�� Ãd; År� is computed as follows

�Åxs ; Åus�� Ãd; År� � argmin
Åx;Åu
fL�Åx; Åu� j Åx � AÅx � Bd Ãd� BÅu;

H�C Åx � Cd Ãd� � År ; Åx 2 ÅX; Åu 2 ÅUg

where L��� is an appropriate cost function; e.g., L�Åx; Åu� � �1=2� jÅuj2ÅR.
The equality constraints in this optimization problem can be satis®ed

if the matrix
h
I�A �B
HC 0

i
has full rank. As the notation indicates, the

target equilibrium pair �Åxs ; Åus�� Ãd; År� is not constant, but varies with

the estimate of the disturbance state d.

MPC algorithm. The control objective is to steer the central state Åx

to a small neighborhood of the target state Åxs� Ãd; År� while satisfying

the state and control constraints x 2 X and u 2 U. It is desirable

that Åx�i� converges to Åxs� Ãd; År� if Ãd remains constant, in which case

x�i� converges to the set fÅxs� Ãd; År�g � �. We are now in a position to

specify the optimal control problem whose solution yields Åu � Å�N�Åx;
Ãd; År� and, hence, u � Åu�K�Ãx� Åx�.To achieve this objective, we de®ne

the deterministic optimal control problem

ÅPN�Åx; Ãd; År� : V0
N�Åx; Ãd; År� :�min

Åu
fVN�Åx; Ãd; År ; Åu� j Åu 2 ÅUN�Åx; Ãd; År�g
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in which the cost VN��� and the constraint set ÅUN�Åx; Ãd; År� are de®ned

by

VN�Åx; Ãd; År ; Åu� :�
N�1X
i�0

`�Åx�i�� Åxs� Ãd; År�; Åu�i�� Åus� Ãd; År���

Vf �Åx�N�; Åxs� Ãd; År��

ÅUN�Åx; Ãd; År� :�
�
Åu j Åx�i� 2 ÅX; Åu�i� 2 ÅU 8i 2 I0:N�1;

Åx�N� 2 ÅXf �Åxs� Ãd; År��
	

and, for each i, Åx�i� � Å��i; Åx; Ãd; Åu�, the solution of Åx� � AÅx�Bd Ãd�BÅu
when the initial state is Åx, the control sequence is Åu, and the disturbance
Ãd is constant, i.e., satis®es the nominal difference equation Ãd� � Ãd. The

set of feasible �Åx; Ãd; År� and the set of feasible states Åx for ÅPN�Åx; Ãd; År�

are de®ned by

ÅFN :� f�Åx; Ãd; År� j UN�Åx; Ãd; År� �;g ÅXN� Ãd; År� :� fÅx j �Åx; Ãd; År� 2 ÅFNg

The terminal cost is zero when the terminal state is equal to the target

state. The solution to ÅPN�Åx; Ãd; År� is

Åu0�Åx; Ãd; År� � fÅu0�0; Åx; Ãd; År�; Åu0�1; Åx; Ãd; År�; : : : ; Åu0�N � 1; Åx; Ãd; År�g

and the implicit model control law Å�N��� is de®ned by

Å�N�Åx; Ãd; År� :� Åu0�0; Åx; Ãd; År�

where Åu0�0; Åx; Ãd; År� is the ®rst element in the sequence Åu0�Åx; Ãd; År�. The

control u applied to the plant and the observer is u � �N�Ãx; Åx; Ãd; År�
where �N��� is de®ned by

�N�Ãx; Åx; Ãd; År� :� Å�N�Åx; Ãd; År��K�Ãx � Åx�

Although the optimal control problem ÅPN�Åx; Ãd; År� is deterministic, Ãd is

random, so that the sequence �Åx�i��, which satis®es Åx� � AÅx � Bd Ãd�
BÅ�N�Åx; Ãd; År�, is random, unlike the case discussed in Chapter 3. The

control algorithm may now be formally stated.

Algorithm 5.7 (Robust control algorithm (offset-free MPC)).

1. At time 0, set i � 0, set Ã� � Ã��0� ( Ã� � �Ãx; Ãd�, and set Åx � Ãx.
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2. At time i, solve the ªnominalº optimal control problem ÅPN�Åx; Ãd; År�

to obtain the current ªnominalº control action Åu � Å�N�Åx; Ãd; År� and the

control action u � Åu�K�Ãx � Åx�.

3. If ÅPN�Åx; Ãd; År� is infeasible, adopt safety/recovery procedure.

4. Apply the control u to the system being controlled.

5. Compute the successor state estimate Ã�� � Ae Ãx � Beu� L�y � Ce Ã��.
6. Compute the successor state Åx� � AÅx � Bd Ãd � BÅu of the nominal

system.

7. Set � Ã�; Åx� � � Ã��; Åx��, set i � i� 1.

In normal operation, Step 2 is not activated; Propositions 5.2 and

5.3 ensure that the constraints Ãx 2 fÅxg � S and u 2 fÅug � KS are

satis®ed. If an unanticipated event occurs and Step 2 is activated, the

controller can be reinitialized by setting Åu � Å�N�Ãx; Ãd; År�, setting u � Åu,

and relaxing constraints if necessary.

5.5.3 Convergence Analysis

We give here an informal discussion of the stability properties of the

controller. The controller described above is motivated by the follow-

ing consideration: nominal MPC is able to handle ªslowº uncertainties

such as the drift of a target point.ªFastº uncertainties, however, are

better handled by the tube controller that generates, using MPC, a suit-

able central trajectory and a ªfastº ancillary controller to steer trajec-

tories of the uncertain system toward the central trajectory. As shown

above, the controller ensures that x�i� 2 fÅx�i�g � � for all i; its suc-

cess therefore depends on the ability of the controlled nominal system

Åx� � AÅx � Bd Ãd � BÅ�N�Åx; Ãd; År�, Åu � Å�N�Åx; Ãd; År�, to track the target

Åxs� Ãd; År� that varies as Ãd evolves.

Assuming that the standard stability assumptions are satis®ed for

the nominal optimal control problem ÅPN�Åx; Ãd; År� de®ned above, we

have

V0
N�Åx; Ãd; År� � c1

���Åx � Åxs� Ãd; År�
���2

V0
N�Åx; Ãd; År� � c2

���Åx � Åxs� Ãd; År�
���2

V0
N�Åx

�; Ãd; År� � V0
N�Åx; Ãd; År�� c1

���Åx � Åxs� Ãd; År�
���2
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with Åx� � AÅx�Bd Ãd�BÅ�N�Åx; Ãd; År�, for all �Åx; Ãd; År� 2 ÅFN . The ®rst and

last inequalities follow from our assumptions; we assume the existence

of the upper bound in the second inequality. The inequalities hold for

all �Åx; Ãd; År� 2 ÅFN . Note that the last inequality does NOT ensureV
0
N�Åx

�;

Ãd�; År� � V0
N�Åx; Ãd; År�� c1

���Åx � Åxs� Ãd; År�
���2 with Åx� � AÅx�Bd Ãd�BÅ�N�Åx;

Ãd; År� and Ãd� :� Ãd��d. The perturbation due to �d has to be taken into

account when analyzing stability.

Constant Ãd. If Ãd remains constant, Åxs� Ãd; År� is exponentially stable for

Åx� � AÅx � Bd Ãd � BÅ�N�Åx; Ãd; År� with a region of attraction ÅXN� Ãd; År�. It

can be shown, as in the proof of Proposition 5.6, that the setA� Ãd; År� :�
�fÅxs� Ãd; År�g � S�� fÅxs� Ãd; År�g is exponentially stable for the composite

system Ãx� � AÃx�Bd Ãd�B�N�Ãx; Åx; Ãd; År���x , Åx� � AÅx�Bd Ãd�BÅ�N�Åx;
Ãd�, �x 2 �x , with a region of attraction � ÅXN� Ãd; År� � S� � ÅXN� Ãd; År�.

Hence x�i� 2 fÅx�i�g � � tends to the set fÅxs� Ãd; År�g � � as i!1. If, in
addition, W � f0g and N � f0g, then � � f0g and � � � � S � f0g so
that x�i�! Åxs�d; År� and re�i�! 0 as i!1.
Slowly varying Ãd. If Ãd is varying, the descent property of V0

N��� is
modi®ed and it is necessary to obtain an upper bound for V0

N�AÅx �
Bd� Ãd��d��BÅ�N�Åx; Ãd; År�; Ãd��d; År�. We make use of Proposition 3.4 in

Chapter 3. If ÅXN is compact and if � Ãd; År�, Åxs� Ãd; År� and � Ãd; År�, Åus� Ãd;

År� are both continuous in some compact domain, then, since VN��� is
then continuous in a compact domainA, it follows from the properties

of V0
N��� and Proposition 3.4 that there exists aK1 function ���� such

that

V0
N�Åx; Ãd; År� � c1

���Åx � Åxs� Ãd; År�
���2

V0
N�Åx; Ãd; År� � c2

���Åx � Åxs� Ãd; År�
���2

V0
N�Åx

�; Ãd�; År� � V0
N�Åx; Ãd; År�� c1

���Åx � Åxs� Ãd; År�
���2 ����d�

for all �Åx; Ãd;�d; År� 2 V ; here �Åx; Ãd�� :� �Åx�; Ãd��, Åx� � AÅx � Bd� Ãd �
�d� � BÅ�N�Åx; Ãd; År� and Ãd� � Ãd � �d. A suitable choice for A is V �
D�fÅrg�UN with V the closure of leva V

0
N��� for some a > 0, andD a

compact set containing d and Ãd. It follows that there exists a  2 �0;1�
such that

V0
N��Åx; Ãd�

�; År� � V0
N�Åx; Ãd; År�����d�

with  � 1 � c1=c2 2 �0;1�. Assuming that PN�Åx; Ãd; År� is recursively

feasible

V0
N�Åx�i�; Ãd�i�; År� � iV0

N�Åx�0�; Ãd�0�; År�����d��1� i�=�1� �
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in which Åx�0� � x�0� and Ãd�0� � d�0�. It then follows from the last

inequality and the bounds on V0
N��� that���Åx�i�� Åxs� Ãd�i�; År�

��� � i=2�c2=c1�1=2 ���Åx�0�� Åxs� Ãd�0�; År�
���� c�i�

with c�i� :� ����d��1�i�=�1���1=2 so that c�i�! c :� ����d�=�1�
��1=2 and

���Åx�i�� Åxs� Ãd�i�; År�
��� ! c as i ! 1. Here we have made use

of the fact that �a� b�1=2 � a1=2 � b1=2.
Let C � Rn denote the set fx j jxj � cg. Then Åx�i� ! fÅxs� Ãd�i�;

År�g�C, Ãx�i�! fÅxs� Ãd�i�; År�g�C�S and x�i�! fÅxs� Ãd�i�; År�g�C�S��
as i ! 1. Since c�i� � ����d��1 � i�=�1 � ��1=2 ! 0 as �d ! 0,

it follows that Åx�i� ! Åxs� Ãd�i�; År� as i ! 1. The sizes of S and �

are dictated by the process and measurement disturbances, w and �

respectively.

Recursive feasibility. The result that x�i� ! fÅxs� Ãd�i�; År�g � C � � ,
� :� S��, is useful because it gives an asymptotic bound on the tracking

error. But it does depend on the recursive feasibility of the optimal

control problem PN���, which does not necessarily hold because of the

variation of Ãd with time. Tracking of a random reference signal has

been considered in the literature, but not in the context of output MPC.

We show next that PN��� is recursively feasible and that the tracking

error remains bounded if the estimate Ãd of the disturbance d varies

suf®ciently slowlyÐthat is if �d in the difference equation Ãd� � Ãd��d is
suf®ciently small. This can be ensured by design of the state estimator.

To establish recursive feasibility, assume that the current ªstateº is

�Åx; Ãd; År� and Åx 2 ÅX� Ãd; År�. In other words, we assume ÅPN�Åx; Ãd; År� is

feasible and ÅxN :� Å��N; Åx; Å�N�Åx; Ãd; År�� 2 Xf �Åxs� Ãd; År��. If the usual

stability conditions are satis®ed, problem PN�Åx�; Ãd; År� is also feasible

so that Åx� � AÅx � Bd Ãd � BÅ�N�Åx; Ãd; År� 2 ÅXN� Ãd; År�. But Ãd� � Ãd � �d
so that PN�Åx�; Ãd�; År� is not necessarily feasible since ÅxN , which lies in

Xf �Åxs� Ãd; År��, does not necessarily lie in Xf �Åxs� Ãd
�; År��. Let the terminal

set Xf �Åxs� Ãd; År�� :� fx j Vf �x � Åxs� Ãd; År�� � cg. If the usual stability

conditions are satis®ed, for each ÅxN 2 Xf �Åxs� Ãd; År��, there exists a u �
�f �ÅxN� that steers ÅxN to a state Åx�N in fx j Vf �x� Åxs� Ãd; År�� � eg, e < c.
Consequently, there exists a feasible control sequence ue�Åx� 2 ÅUN�Åx;
Ãd; År� that steers Åx� to a state Åx�N 2 fx j Vf �x � Åxs� Ãd; År�� � eg. If

the map Ãd , Åxs� Ãd; År� is uniformly continuous, there exists a constant

a > 0 such that j�dj � a implies that Åx�N lies also in Xf �Åxs� Ãd
�; År�� �

fx j Vf �x � Åxs� Ãd�; År�� � cg. Thus the control sequence ue�Åx� also
steers Åx� to the setXf �Åxs� Ãd

�; År�� and hence lies in ÅUN�Åx; Ãd�; År�. Hence
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problem ÅPN�Åx�; Ãd�; År� is feasible so that ÅPN is recursively feasible if

supi2I0:1 j�d�i�j � e.
Computing the tightened constraints. The ®rst step in the control

algorithm requires solution of the problem PN�Åx; Ãd; År�, in which the

state and control constraints are, respectively, Åx 2 ÅX and Åu 2 ÅU. Since

the sets ÅX and ÅU are dif®cult to compute, we replace them by tightened

versions of the original constraints as described in Section 5.3.5.

Summarizing, if the usual stability assumptions are satis-

®ed, if Ãd�i� remains in a compact set X Ãd for all i, if the map
Ãd, Åxs� Ãd; År� is continuous in X Ãd, if `��� and Vf ��� are quad-
ratic and positive de®nite, and j�d�i�j � a for all i, then the

asymptotic error x�i� � Åxs� Ãd�i�; År� lies in the compact set

C � � (� � S � �) that converges to the set f0g as the sets W
and N that bound the disturbances converge to the zero set

f0g. Similarly, the tracking error r � År is also bounded and

converges to 0 as W and N converge to the zero set f0g.

5.6 Nonlinear Constrained Systems

When the system being controlled is nonlinear, the state can be esti-

mated using moving horizon estimation (MHE), as described in Chap-

ter 4. But establishing stability of nonlinear output MPC that employs

MHE does not appear to have received much attention, with one impor-

tant exception mentioned in Section 5.7.

5.7 Notes

The problem of output feedback control has been extensively discussed

in the general control literature. For linear systems, it is well known

that a stabilizing state feedback controller and an observer may be sep-

arately designed and combined to give a stabilizing output feedback

controller (the separation principle). For nonlinear systems, Teel and

Praly (1994) show that global stabilizability and complete uniform ob-

servability are suf®cient to guarantee semiglobal stabilizability when

a dynamic observer is used, and provide useful references to related

work on this topic.

Although output MPC, in which nominal MPC is combined with a

separately designed observer, is widely used in industry since the state
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is seldom available, it has received relatively little attention in the liter-

ature because of the inherent dif®culty in establishing asymptotic sta-

bility. An extra complexity in MPC is the presence of hard constraints.

A useful survey, more comprehensive than these notes, is provided in

Findeisen, Imsland, AllgÈower, and Foss (2003). Earlier Michalska and

Mayne (1995) show for deterministic systems that for any subset of

the region of attraction of the full state feedback system, there exists

a sampling time and convergence rate for the observer such that the

subset also lies in the region of attraction of the output feedback sys-

tem. A more sophisticated analysis in Imsland, Findeisen, AllgÈower,

and Foss (2003) using continuous time MPC shows that the region of

attraction and rate of convergence of the output feedback system can

approach that of the state feedback system as observer gain increases.

We consider systems with input disturbances and noisy state mea-

surement, and employ the ªtubeº methodology that has its roots in the

work of Bertsekas and Rhodes (1971), and Glover and Schweppe (1971)

on constrained discrete time systems subject to bounded disturbances.

Reachability of a ªtarget setº and a ªtarget tubeº are considered in these

papers. These concepts were substantially developed in the context

of continuous time systems in Khurzhanski and Valyi (1997); Aubin

(1991); Kurzhanski and Filippova (1993).

The theory for discrete time systems is considerably simpler; a mod-

ern tube-based theory for optimal control of discrete time uncertain

systems with imperfect state measurement appears in MoitiÂe, Quin-

campoix, and Veliov (2002). As in this chapter, they regard a set X of

states x that are consistent with past measurements as the ªstateº of

the optimal control problem. The set X satis®es an uncertain ªfull in-

formationº difference equation of the form X� � f��X;u;W; v� so the

output feedback optimal control problem reduces to robust control of

an uncertain system with known state X.

The optimal control problem remains dif®cult because the state X,

a subset of Rn, is dif®cult to obtain numerically and determination

of a control law as a function of �X; t� prohibitive. In Mayne, RakoviÂc,

Findeisen, and AllgÈower (2006); Mayne et al. (2009) the output feedback

problem is simpli®ed considerably by replacing X�t� by a simple outer

approximation fÃx�t�g ��x in the time-invariant case, and by fÃx�t�g �
�x�t� in the time-varying case. The set�x , or the sequence ��x�t��, may

be precomputed so the dif®cult evolution equation for X is replaced

by a simple evolution equation for Ãx; in the linear case, the Luenberger

observer or Kalman ®lter describes the evolution of Ãx. The output
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feedback control problem reduces to control of an uncertain system

with known state Ãx.

Artstein and RakoviÂc (2008) provide an interesting extension of the

invariant sets given in (5.11) to the nonlinear case x� 2 F�x��V when

F��� is a contraction mapping and V is compact.

While the tube approach may be successfully employed for output

MPC when the system being controlled is linear, there seems to be no

literature on combining moving horizon estimation (MHE) with MPC

when the system being controlled is nonlinear, except for the paper

Copp and Hespanha (2014). The novel proposal in this paper is to re-

place separate solutions of the control and estimation problems by a

single min-max problem in which the cost is, unusually, over the inter-

val ��1;1� or ��T ; T�, and combines the cost of both estimation and

control. The authors also propose an ef®cient interior point algorithm

for solving the complex min-max problem.

The output MPC problem involves tracking of a possibly random ref-

erence, a problem that has extra dif®culty when zero offset is required.

There is a growing literature dealing with tracking random references

not necessarily in the context of output MPC. Examples of papers deal-

ing with this topic are Limon, Alvarado, Alamo, and Camacho (2008);

Ferramosca, Limon, Alvarado, Alamo, and Camacho (2009); Falugi and

Mayne (2013).
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5.8 Exercises

Exercise 5.1: Hausdorff distance between a set and a subset

Show that dH�A;B� �maxa2A d�a;B� if A and B are two compact subsets of Rn satis-

fying B � A.

Exercise 5.2: Hausdorff distance between sets A � B and B

Show that dH�A � B;A� � jBj if A and B are two compact subsets of Rn satisfying

0 2 B in which jBj :�maxbfjbj j b 2 Bg.

Exercise 5.3: Hausdorff distance between sets fzg � B and A

Show that dH�fzg � B;A� � jzj � dH�A;B� if A and B are two compact sets in Rn.

Exercise 5.4: Hausdorff distance between sets fzg � A and A

Show that dH�fzg �A;A� � jzj if z is a point and A is a compact set in Rn.

Exercise 5.5: Hausdorff distance between sets A � C and B � C

Show that dH�A� C;B� C� � dH�A;B� if A, B, and C are compact subsets of Rn.

Exercise 5.6: Hausdorff distance between sets FA and FB

Let A and B be two compact sets in Rn, and let F 2 Rn�n. Show that

dH�FA; FB� � jFjdH�A;B�

in which jFj is the induced norm of F satisfying jFxj � jFj jxj and jxj :� d�x;0�.

Exercise 5.7: Linear combination of sets; �1W � �2W � ��1 � �2�W

If W is a convex set, show that �1W� �2W � ��1 � �2�W for any �1; �2 2 R�0. Hence

show W� �W� �2W� � � � � �1� ���1W if � 2 �0;1�.

Exercise 5.8: Hausdorff distance between the sets ��i� and �

Show that there exist c > 0 and  2 �0;1� such that

dH���i�;�� � cdH���0�;��i

in which

��i� � Ae��i� 1�� Be	

� � Ae�� Be	

and Ae is a stable matrix (��Ae� < 1).
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6

Distributed Model Predictive Control

6.1 Introduction and Preliminary Results

Inmany large-scale control applications, it becomes convenient to break

the large plantwide problem into a set of smaller and simpler subprob-

lems in which the local inputs are used to regulate the local outputs.

The overall plantwide control is then accomplished by the composite

behavior of the interacting, local controllers. There are many ways to

design the local controllers, some of which produce guaranteed prop-

erties of the overall plantwide system. We consider four control ap-

proaches in this chapter: decentralized, noncooperative, cooperative,

and centralized control. The ®rst three methods require the local con-

trollers to optimize over only their local inputs. Their computational

requirements are identical. The communication overhead is different,

however. Decentralized control requires no communication between

subsystems. Noncooperative and cooperative control require the input

sequences and the current states or state estimates for all the other

local subsystems. Centralized control solves the large, complex plant-

wide optimization over all the inputs. Communication is not a relevant

property for centralized control because all information is available

in the single plantwide controller. We use centralized control in this

chapter to provide a benchmark of comparison for the distributed con-

trollers.

We have established the basic properties of centralized MPC, both

with and without state estimation, in Chapters 2, 3, and 5. In this

chapter, we analyze some basic properties of the three distributed

approaches: decentralized, noncooperative, and cooperative MPC. We

show that the conditions required for closed-loop stability of decentral-

ized control and noncooperative control are often violated for coupled

multivariable systems under reasonable decompositions into subsys-

tems. For ensuring closed-loop stability of a wide class of plantwide

363
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models and decomposition choices, cooperative control emerges as

the most attractive option for distributed MPC. We then establish the

closed-loop properties of cooperative MPC for unconstrained and con-

strained linear systems with and without state estimation. We also dis-

cuss current challenges facing this method, such as input constraints

that are coupled between subsystems.

In our development of distributed MPC, we require some basic re-

sults on two topics: how to organize and solve the linear algebra of

linear MPC, and how to ensure stability when using suboptimal MPC.

We cover these two topics in the next sections, and then turn to the

distributed MPC approaches.

6.1.1 Least Squares Solution

In comparing various forms of linear distributed MPC it proves conve-

nient to see the MPC quadratic program for the sequence of states and

inputs as a single large linear algebra problem. To develop this linear

algebra problem, we consider ®rst the unconstrained linear quadratic

(LQ) problem of Chapter 1, which we solved ef®ciently with dynamic

programming (DP) in Section 1.3.3

V�x�0�;u� � 1

2

N�1X
k�0

�
x�k�0Qx�k��u�k�0Ru�k��� �1=2�x�N�0Pfx�N�

subject to

x� � Ax � Bu
In this section, we ®rst take the direct but brute-force approach to ®nd-

ing the optimal control law. We write the model solution as266664
x�1�

x�2�
...

x�N�

377775 �
266664
A

A2

...

AN

377775
| {z }
A

x�0��

266664
B 0 � � � 0

AB B � � � 0
...

...
. . .

...

AN�1B AN�2B � � � B

377775
| {z }

B

266664
u�0�

u�1�
...

u�N � 1�

377775 (6.1)

or using the input and state sequences

x �Ax�0��Bu

The objective function can be expressed as

V�x�0�;u� � �1=2� �x0�0�Qx�0�� x0Qx� u0Ru�
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in which

Q � diag
�h
Q Q : : : Pf

i�
2 RNn�Nn

R � diag
�h
R R : : : R

i�
2 RNm�Nm (6.2)

Eliminating the state sequence. Substituting the model into the ob-

jective function and eliminating the state sequence gives a quadratic

function of u

V�x�0�;u� � �1=2�x0�0��Q�A0QA�x�0�� u0�B0QA�x�0��
�1=2�u0�B0QB�R�u (6.3)

and the optimal solution for the entire set of inputs is obtained in one

shot

u0�x�0�� � ��B0QB�R��1B0QA x�0�

and the optimal cost is

V0�x�0�� �
�
1

2

�
x0�0�

�
Q�A0QA�A0QB�B0QB�R��1B0QA

�
x�0�

If used explicitly, this procedure for computing u0 would be inef®cient

because B0QB � R is an �mN �mN� matrix. Notice that in the DP

formulation one has to invert instead an �m�m�matrixN times, which

is computationally less expensive.1 Notice also that unlike DP, the least

squares approach provides all input moves as a function of the initial

state, x�0�. The gain for the control law comes from the ®rst input

move in the sequence

K�0� � �
h
Im 0 � � � 0

i
�B0QB�R��1B0QA

It is not immediately clear that the K�0� and V0 given above from the

least squares approach are equivalent to the result from the Riccati

iteration, (1.10)±(1.14) of Chapter 1, but since we have solved the same

optimization problem, the two results are the same.2

Retaining the state sequence. In this section we set up the least

squares problem again, but with an eye toward improving its ef®ciency.

Retaining the state sequence and adjoining the model equations as

1Would you prefer to invert by hand 100 �1 � 1� matrices or a single �100 � 100�
dense matrix?

2Establishing this result directly is an exercise in using the partitioned matrix inver-

sion formula. The next section provides another way to show they are equivalent.
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equality constraints is a central idea in optimal control and is described

in standard texts (Bryson and Ho, 1975, p. 44). We apply this standard

approach here. Wright (1997) provides a discussion of this problem in

the linear model MPC context and the extensions required for the quad-

ratic programming problem when there are inequality constraints on

the states and inputs. Including the state with the input in the sequence

of unknowns, we de®ne the enlarged vector z to be

z �

2666666666664

u�0�

x�1�

u�1�

x�2�
...

u�N � 1�

x�N�

3777777777775
The objective function is

min
u
�1=2��x0�0�Qx�0�� z0Hz�

in which

H � diag
�h
R Q R Q � � � R Pf

i�
The constraints are

Dz � d
in which

D � �

266664
B �I

A B �I
. . .

A B �I

377775 d �

266664
A

0
...

0

377775x�0�
We now substitute these results into (1.57) and obtain the linear algebra

problem2
66666666666666666666664

R B0

Q �I A0

R B0

Q �I

. . .
. . .

R B0

Pf �I
B �I

A B �I

. . .

B �I

3
77777777777777777777775

2
66666666666666666666664

u�0�
x�1�
u�1�
x�2�

.

.

.
u�N � 1�
x�N�
��1�
��2�

.

.

.
��N�

3
77777777777777777777775

�

2
66666666666666666666664

0
0
0
0

.

.

.
0
0
�A
0

.

.

.
0

3
77777777777777777777775

x�0�
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Method FLOPs

dynamic programming (DP) Nm3

dense least squares N3m3

banded least squares N�2n�m��3n�m�2

Table 6.1: Computational cost of solving ®nite horizon LQR problem.

This equation is rather cumbersome, but if we reorder the unknown

vector to put the Lagrange multiplier together with the state and input

from the same time index, and reorder the equations, we obtain the

following banded matrix problem

2
66666666666666666664

R B0

B �I
�I Q

R

. . .
. . .

R B0

A B �I
�I Q A0

R B0

A B �I
�I Pf

3
77777777777777777775

2
66666666666666666664

u�0�
��1�
x�1�
u�1�

.

.

.
u�N � 2�
��N � 1�
x�N � 1�
u�N � 1�
��N�
x�N�

3
77777777777777777775

�

2
66666666666666666664

0
�A
0
0

.

.

.
0
0
0
0
0
0

3
77777777777777777775

x�0� (6.4)

The banded structure allows a more ef®cient solution procedure.

The ¯oating operation (FLOP) count for the factorization of a banded

matrix isO�LM2� in which L is the dimension of thematrix andM is the

bandwidth. This compares to the regular FLOP count of O�L3� for the

factorization of a regular dense matrix. The bandwidth of the matrix in

(6.4) is 3n�m and the dimension of thematrix isN�2n�m�. Therefore
the FLOP count for solving this equation is O�N�2n �m��3n �m�2�.
Notice that this approach reduces the N3 dependence of the previous

MPC solution method. That is the computational advantage provided

by these adjoint methods for treating the model constraints. Table 6.1

summarizes the computational cost of the three approaches for the

linear quadratic regulator (LQR) problem. As shown in the table, DP

is highly ef®cient. When we add input and state inequality constraints

to the control problem and the state dimension is large, however, we

cannot conveniently apply DP. The dense least squares computational

cost is high if we wish to compute a large number of moves in the

horizon. Note the cost of dense least squares scales with the third
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power of horizon length N. As we have discussed in Chapter 2, con-

siderations of control theory favor large N. Another factor increasing

the computational cost is the trend in industrial MPC implementations

to larger multivariable control problems with more states and inputs,

i.e., larger m and n. Therefore, the adjoint approach using banded

least squares method becomes important for industrial applications in

which the problems are large and a solid theoretical foundation for the

control method is desirable.

We might obtain more ef®ciency than the banded structure if we

view (6.4) as a block tridiagonal matrix and use the method provided

by Golub and Van Loan (1996, p. 174). The ®nal ®ne tuning of the

solutionmethod for this class of problems is a topic of current research,

but the important point is that, whatever ®nal procedure is selected,

the computational cost will be linear in N as in DP instead of cubic in

N as in dense least squares.

Furthermore, if we wish to see the connection to the DP solution, we

can proceed as follows. Substitute ��N� � Pf as in (1.11) of Chapter 1

and consider the last three-equation block of the matrix appearing in

(6.4) 264 R B0

A B �I
�I ��N�

375
26664
x�N � 1�

u�N � 1�

��N�

x�N�

37775 �
264 0

0

0

375
We can eliminate this small set of equations and solve for u�N � 1�,

��N�, x�N� in terms of x�N � 1�, resulting in

264 u�N � 1�

��N�

x�N�

375 �
264 ��B0��N�B � R��1B0��N�A
��N��I � B�B0��N�B � R��1B0��N��A

�I � B�B0��N�B � R��1B0��N��A

375x�N � 1�

Notice that in terms of the Riccati matrix, we also have the relationship

A0��N� � ��N � 1�x�N � 1��Qx�N � 1�

We then proceed to the next to last block of three equations

264 R B0

A B �I
�I Q A0

375
2666666664

x�N � 2�

u�N � 2�

��N � 1�

x�N � 1�

u�N � 1�

��N�

3777777775
�
264 0

0

0

375
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Note that the last equation gives

��N � 1� � Qx�N � 1��A0��N� � ��N � 1�x�N � 1�

Using this relationship and continuing on to solve forx�N�1�, ��N�1�,
u�N � 2� in terms of x�N � 2� gives2

64 u�N � 2�
��N � 1�
x�N � 1�

3
75 �

2
64 ��B0��N � 1�B � R��1B0��N � 1�A

��N � 1��I � B�B0��N � 1�B � R��1B0��N � 1��A
�I � B�B0��N � 1�B � R��1B0��N � 1��A

3
75x�N � 2�

Continuing on through each previous block of three equations pro-

duces the Riccati iteration and feedback gains of (1.10)±(1.13). The

other unknowns, the multipliers, are simply

��k� � ��k�x�k� k � 1;2; : : : ;N

so the cost to go at each stage is simply x�k�0��k�, and we see the nice

connection between the Lagrange multipliers and the cost of the LQR

control problem.

6.1.2 Stability of Suboptimal MPC

When using distributed MPC, it may be necessary or convenient to im-

plement the control without solving the complete optimization. We

then have a form of suboptimal MPC, which was ®rst considered in

Chapter 2, Section 2.7. Before adding the complexity of the distributed

version, we wish to further develop a few features of suboptimal MPC

in the centralized, single-player setting. These same features arise in

the distributed, many-player setting as we discuss subsequently.

We consider a speci®c variation of suboptimal MPC in which a start-

ing guess is available from the control trajectory at the previous time

and we take a ®xed number of steps of an optimization algorithm. The

exact nature of the optimization method is not essential, but we do

restrict the method so that each iteration is feasible and decreases the

value of the cost function. To initialize the suboptimal controller, we

are given an initial state x�0� � x0, and we generate an initial control

sequence u�0� � h�x0�. We consider input constraints u�i� 2 U � Rm;

i 2 I0:N�1, which we also write as u 2 UN � RN . As in Chapter 2 we

denote the set of feasible states as XN . These are the states for which

the initial control sequence h�x0� is well de®ned. The suboptimal MPC

algorithm is as follows.

Algorithm 6.1 (Suboptimal MPC (simpli®ed)). Set current state x � x0,
current control sequence, u � h�x0�, current warm start ue � u. Then

repeat
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1. Obtain current measurement of state x.

2. The controller performs some number of iterations of a feasible path

optimization algorithm to obtain an improved control sequence u such

that VN�x;u�0�� � VN�x;ue�0��.
3. Inject the ®rst element of the input sequence u.

4. Compute the next warm start.

ue� � �u�1�;u�2�; : : : ; u�N � 1�;0�

This warm start is a simpli®ed version of the one considered in

Chapter 2, in which the ®nal control move in the warm start was deter-

mined by the control law �f �x�. In distributed MPC it is simpler to use

zero for the ®nal control move in the warm start. We establish later in

the chapter that the system cost function V�x;u� satis®es the follow-

ing properties for the form of suboptimal MPC generated by distributed

MPC. There exist constants a;b; c > 0 such that

a j�x;u�j2 � V�x;u� � b j�x;u�j2

V�x�;u��� V�x;u� � �c j�x;u�0��j2

These properties are similar to those required for a valid Lyapunov

function. The difference is that the cost decrease here does not de-

pend on the size of u, but only x and the ®rst element of u, u�0�. This

cost decrease is suf®cient to establish that x�k� and u�k� converge to

zero, but allows the possibility that u�k� is large even though x�k� is

small. That fact prevents us from establishing the solution x�k� � 0

for all k is Lyapunov stable. We can establish that the solution x�k� � 0

for all k is Lyapunov stable at k � 0 only. We cannot establish uniform

Lyapunov stability nor Lyapunov stability for any k > 0. The problem

is not that our proof technique is de®cient. There is no reason to expect

that the solution x�k� � 0 for all k is Lyapunov stable for suboptimal

MPC. The lack of Lyapunov stability of x�k� � 0 for all k is a subtle

issue and warrants some discussion. To make these matters more pre-

cise, consider the following standard de®nitions of Lyapunov stability

at time k and uniform Lyapunov stability (Vidyasagar, 1993, p. 136).

De®nition 6.2 (Lyapunov stability). The zero solution x�k� � 0 for all

k is stable (in the sense of Lyapunov) at k � k0 if for any " > 0 there

exists a ��k0; "� > 0 such that

jx�k0�j < � =) jx�k�j < " 8k � k0 (6.5)
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Lyapunov stability is de®ned at a time k0. Uniform stability is the

concept that guarantees that the zero solution is not losing stability

with time. For a uniformly stable zero solution, � in De®nition 6.2 is

not a function of k0, so that (6.5) holds for all k0.

De®nition 6.3 (Uniform Lyapunov stability). The zero solution x�k� �
0 for all k is uniformly stable (in the sense of Lyapunov) if for any " > 0

there exists a ��"� > 0 such that

jx�k0�j < � =) jx�k�j < " 8k � k0 8k0

Exercise 6.6 gives an example of a linear system for which x�k�

converges exponentially to zero with increasing k for all x�0�, but the

zero solution x�k� � 0 for all k is Lyapunov stable only at k � 0. It

is not uniformly Lyapunov stable nor Lyapunov stable for any k > 0.

Without further restrictions, suboptimal MPC admits this same type of

behavior.

To ensure uniform Lyapunov stability, we add requirements to sub-

optimal MPC beyond obtaining only a cost decrease. Here we impose

the constraint

juj � d jxj x 2 rB
in which d; r > 0. This type of constraint is also included somewhat

indirectly by the suboptimal control approach discussed in Section 2.7.

In that arrangement, this constraint is implied by the ®rst case in (2.29),

which leads to Proposition 2.44. For simplicity, in this chapter we in-

stead include the constraint explicitly in the distributed MPC optimiza-

tion problem. Both approaches provide (uniform) Lyapunov stability

of the solution x�k� � 0 for all k.

The following lemma summarizes the conditions we use later in

the chapter for establishing exponential stability of distributed MPC.

A similar lemma establishing asymptotic stability of suboptimal MPC

was given by Scokaert, Mayne, and Rawlings (1999) (Theorem 1).

First we recall the de®nition of exponential stability.

De®nition 6.4 (Exponential stability). Let X be positive invariant set for

x� � f�x�. Then the origin is exponentially stable in X for x� � f�x�
if there exists c > 0 and 0 <  < 1 such that for each x 2 X����i;x��� � c jxji
for all i � I�0.
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Consider next the suboptimal MPC controller. Let the system satisfy

�x�;u�� � �f �x;u�; g�x;u�� with initial sequence u�0� � h�x�0��. The

controller constraints are x�i� 2 X � Rn for all i 2 I0:N and u�i� 2 U �
Rm for all i 2 I0:N�1. LetXN denote the set of states for which the MPC

controller is feasible.

Lemma 6.5 (Exponential stability of suboptimal MPC). Assume that the

suboptimal MPC system satis®es the following inequalities with r ;a; b;

c > 0

a j�x;u�j2 � V�x;u� � b j�x;u�j2 x 2 XN u 2 UN

V�x�;u��� V�x;u� � �c j�x;u�0��j2 x 2 XN u 2 UN
juj � d jxj x 2 rB

Then the origin is exponentially stable for the closed-loop system under

suboptimal MPC with region of attraction XN if either of the following

additional assumptions holds

(a) U is compact. In this case, XN may be unbounded.

(b) XN is compact. In this case U may be unbounded.

Proof. First we show that the origin of the extended state �x;u� is ex-

ponentially stable for x�0� 2 XN .

(a) For the case U compact, we have juj � d jxj ; x 2 rB. Consider the
optimization

max
u2UN

juj � s > 0

The solution exists by the Weierstrass theorem since U is compact,

which implies UN is compact. Then we have juj � �s=r� jxj for x 2
XN nrB, so we have juj � d0 jxj for x 2 XN in which d0 �max�d; s=r�.

(b) For the case XN compact, consider the optimization

max
x2XN

V�x;h�x�� � ÅV > 0

The solution exists because XN is compact and h��� and V��� are con-
tinuous. De®ne the compact set ÅU by

ÅU � fu j V�x;u� � ÅV; x 2 XNg

The set is bounded because V�x;u� � a j�x;u�j2 � a juj2. The set is

closed because V is continuous. The signi®cance of this set is that for
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all k � 0 and all x 2 XN , u�k� 2 ÅU. Therefore we have established that

XN compact implies u�k� evolves in a compact set as in the previous

case when U is assumed compact. Using the same argument as in that

case, we have established that there exists d0 > 0 such that juj � d0 jxj
for all x 2 XN .

For the two cases, we therefore have established for all x 2 XN ,

u 2 UN (case (a)) or u 2 ÅU (case (b))

j�x;u�j � jxj � juj � jxj � d0 jxj � �1� d0� jxj

which gives jxj � c0 j�x;u�j with c0 � 1=�1 � d0� > 0. Hence, there

exists a3 � c�c0�2 such that V�x�;u�� � V�x;u� � �a3 j�x;u�j2 for

all x 2 XN . Therefore the extended state �x;u� satis®es the standard

conditions of an exponential stability Lyapunov function (see Theorem

B.19 in Appendix B) with a1 � a;a2 � b;a3 � c�c0�2; � � 2 for �x;

u� 2 XN�UN (case (a)) orXN�ÅU (case (b)). Therefore for all x�0� 2 XN ,

k � 0

j�x�k�;u�k��j � � j�x�0�;u�0��jk

in which � > 0 and 0 <  < 1.

Finally we remove the input sequence and establish that the origin

for the state (rather than the extended state) is exponentially stable for

the closed-loop system. We have for all x�0� 2 XN and k � 0

jx�k�j � j�x�k�;u�k��j � � j�x�0�;u�0��jk
� ��jx�0�j � ju�0�j�k � ��1� d0� jx�0�jk
� �0 jx�0�jk

in which �0 � ��1 � d0� > 0, and we have established exponential

stability of the origin on the feasible set XN . �

Exercises 6.7 and 6.8 explore what to conclude about exponential

stability when both U and XN are unbounded.

We also consider later in the chapter the effects of state estimation

error on the closed-loop properties of distributed MPC. For analyzing

stability under perturbations, the following lemma is useful. Here e

plays the role of estimation error.

Lemma 6.6 (Global asymptotic stability and exponential convergence

with mixed powers of norm). Consider a dynamic system

�x�; e�� � f�x; e�
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with a zero steady-state solution, f�0;0� � �0;0�. Assume there exists

a function V : Rn�m ! R�0 that satis®es the following for all �x; e� 2
Rn �Rm

a�jxj� � jej� � V��x; e�� � b�jxj� � jej� (6.6)

V�f�x; e��� V��x; e�� � �c�jxj� � jej� (6.7)

with constants a;b; c;� ;  > 0. Then the following holds for all �x�0�;

e�0�� and k 2 I�0
jx�k�; e�k�j � ��jx�0�; e�0�j��k

with � < 1 and ���� 2 K1.

The proof of this lemma is discussed in Exercise 6.9. We also require

a converse theorem for exponential stability.

Lemma 6.7 (Converse theorem for exponential stability). If the zero

steady-state solution of x� � f�x� is globally exponentially stable, then

there exists Lipschitz continuous V : Rn ! R�0 that satis®es the follow-

ing: there exist constants a;b; c;� > 0, such that for all x 2 Rn

a jxj� � V�x� � b jxj�
V�f�x��� V�x� � �c jxj�

Moreover, any � > 0 is valid, and the constant c can be chosen as large

as one wishes.

The proof of this lemma is discussed in Exercise B.3.

6.2 Unconstrained Two-Player Game

To introduce clearly the concepts and notation required to analyze dis-

tributed MPC, we start with a two-player game. We then generalize to

an M-player game in the next section.

Let �A11; B11; C11� be a minimal state space realization of the �u1;

y1� input-output pair. Similarly, let �A12; B12; C12� be a minimal state

space realization of the �u2; y1� input-output pair. The dimensions are

u1 2 Rm1 , y1 2 Rp1 , x11 2 Rn11 , x12 2 Rn12 with n1 � n11 �n12. Out-

put y1 can then be represented as the following, possibly nonminimal,

state space model"
x11
x12

#�
�
"
A11 0

0 A12

#"
x11
x12

#
�
"
B11
0

#
u1 �

"
0

B12

#
u2

y1 �
h
C11 C12

i"x11
x12

#
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Proceeding in an analogous fashion with output y2 and inputs u1 and

u2, we model y2 with the following state space model"
x22
x21

#�
�
"
A22 0

0 A21

#"
x22
x21

#
�
"
B22
0

#
u2 �

"
0

B21

#
u1

y2 �
h
C22 C21

i"x22
x21

#

We next de®ne player one's local cost functions

V1�x1�0�;u1;u2� �
N�1X
k�0

`1�x1�k�;u1�k��� V1f �x1�N��

in which

x1 �
"
x11
x12

#
Note that the ®rst local objective is affected by the second player's

inputs through the model evolution of x1, i.e., through the x12 states.

We choose the stage cost to account for the ®rst player's inputs and

outputs

`1�x1; u1� � �1=2��y 01Q1y1 �u01R1u1�

`1�x1; u1� � �1=2��x01Q1x1 �u01R1u1�

in which

Q1 � C01Q1C1 C1 �
h
C11 C12

i
Motivated by the warm start to be described later, for stable systems,

we choose the terminal penalty to be the in®nite horizon cost to go

under zero control

V1f �x1�N�� � �1=2�x01�N�P1fx1�N�

We choose P1f as the solution to the following Lyapunov equation as-

suming A1 is stable

A01P1fA1 � P1f � �Q1 (6.8)

We proceed analogously to de®ne player two's local objective function

and penalties

V2�x2�0�;u1;u2� �
N�1X
k�0

`2�x2�k�;u2�k��� V2f �x2�N��
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In centralized control and the cooperative game, the two players

share a common objective, which can be considered to be the overall

plant objective

V�x1�0�; x2�0�;u1;u2� � �1V1�x1�0�;u1;u2�� �2V2�x2�0�;u2;u1�
in which the parameters �1, �2 are used to specify the relative weights

of the two subsystems in the overall plant objective. Their values are

restricted so �1; �2 > 0, �1 � �2 � 1 so that both local objectives must

have some nonzero effect on the overall plant objective.

6.2.1 Centralized Control

Centralized control requires the solution of the systemwide control

problem. It can be stated as

min
u1;u2

V�x1�0�; x2�0�;u1;u2�

s.t. x�1 � A1x1 � B11u1 � B12u2

x�2 � A2x2 � B22u2 � B21u1

in which

A1 �
"
A11 0

0 A12

#
A2 �

"
A22 0

0 A21

#

B11 �
"
B11
0

#
B12 �

"
0

B12

#
B21 �

"
0

B21

#
B22 �

"
B22
0

#
This optimal control problem is more complex than all of the dis-

tributed cases to follow because the decision variables include both

u1 and u2. Because the performance is optimal, centralized control is a

natural benchmark against which to compare the distributed cases: co-

operative, noncooperative, and decentralized MPC. The plantwide stage

cost and terminal cost can be expressed as quadratic functions of the

subsystem states and inputs

`�x;u� � �1=2��x0Qx �u0Ru�
Vf �x� � �1=2�x0Pfx

in which

x �
"
x1
x2

#
u �

"
u1

u2

#
Q �

"
�1Q1 0

0 �2Q2

#

R �
"
�1R1 0

0 �2R2

#
Pf �

"
�1P1f 0

0 �2P2f

#
(6.9)
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and we have the standard MPC problem considered in Chapters 1 and 2

min
u
V�x�0�;u�

s.t. x� � Ax � Bu (6.10)

in which

A �
"
A1 0

0 A2

#
B �

"
B11 B12
B21 B22

#
(6.11)

Given the terminal penalty in (6.8), stability of the closed-loop central-

ized system is guaranteed for all choices of system models and tuning

parameters subject to the usual stabilizability assumption on the sys-

tem model.

6.2.2 Decentralized Control

Centralized and decentralized control de®ne the two extremes in dis-

tributing the decision making in a large-scale system. Centralized con-

trol has full information and optimizes the full control problem over all

decision variables. Decentralized control, on the other hand, optimizes

only the local objectives and has no information about the actions of

the other subsystems. Player one's objective function is

V1�x1�0�;u1� �
N�1X
k�0

`1�x1�k�;u1�k��� V1f �x1�N��

We then have player one's decentralized control problem

min
u1
V1�x1�0�;u1�

s.t. x�1 � A1x1 � B11u1

We know the optimal solution for this kind of LQ problem is a linear

feedback law

u0
1 � K1x1�0�

Notice that in decentralized control, player one's model does not

account for the inputs of player two, and already contains model error.

In the decentralized problem, player one requires no information about

player two. The communication overhead for decentralized control

is therefore minimal, which is an implementation advantage, but the

resulting performance may be quite poor for systems with reasonably
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strong coupling. We compute an optimal K1 for system one (A1; B11;

Q1; R1) and optimal K2 for system 2. The closed-loop system evolution

is then "
x1
x2

#�
�
"
A1 � B11K1 B12K2
B21K1 A2 � B22K2

#"
x1
x2

#
and we know only that A11 � B11K1 and A22 � B22K2 are stable matri-

ces. Obviously the stability of the closed-loop, decentralized system is

fragile and depends in a sensitive way on the sizes of the interaction

terms B12 and B21 and feedback gains K1, K2.

6.2.3 Noncooperative Game

In the noncooperative game, player one optimizes V1�x1�0�;u1;u2�

over u1 and player two optimizes V2�x2�0�;u1;u2� over u2. From player

one's perspective, player two's planned inputs u2 are known distur-

bances affecting player one's output through the dynamic model. Part

of player one's optimal control problem is therefore to compensate for

player two's inputs with his optimal u1 sequence in order to optimize

his local objective V1. Similarly, player two considers player one's in-

puts as a known disturbance and solves an optimal control problem

that removes their effect in his local objective V2. Because this game

is noncooperative (V1 � V2), the struggle between players one and two

can produce an outcome that is bad for both of them as we show sub-

sequently. Notice that unlike decentralized control, there is no model

error in the noncooperative game. Player one knows exactly the effect

of the actions of player two and vice versa. Any poor nominal perfor-

mance is caused by the noncooperative game, not model error.

Summarizing the noncooperative control problem statement, player

one's model is

x�1 � A1x1 � B11u1 � B12u2

and player one's objective function is

V1�x1�0�;u1;u2� �
N�1X
k�0

`1�x1�k�;u1�k��� V1f �x1�N��

Note that V1 here depends on u2 because the state trajectory x1�k�;

k � 1 depends on u2 as shown in player one's dynamic model. We then

have player one's noncooperative control problem

min
u1
V1�x1�0�;u1;u2�

s.t. x�1 � A1x1 � B11u1 � B12u2
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Solution to player one's optimal control problem. We now solve

player one's optimal control problem. Proceeding as in Section 6.1.1

we de®ne

z �

266666664

u1�0�

x1�1�
...

u1�N � 1�

x1�N�

377777775 H � diag
�h
R1 Q1 � � � R1 P1f

i�

and can express player one's optimal control problem as

min
z
�1=2��z0Hz� x1�0�0Q1x1�0��

s.t. Dz � d
in which

D � �

266664
B11 �I

A1 B11 �I
. . .

A1 B11 �I

377775

d �

266664
A1x1�0�� B12u2�0�

B12u2�1�
...

B12u2�N � 1�

377775
We then apply (1.57) to obtain"

H �D0
�D 0

#"
z

�

#
�
"

0

�Ae 1
#
x1�0��

"
0

�Be12
#
u2 (6.12)

in which we have de®ned

� �

266664
��1�

��2�
...

��N�

377775 Ae 1 �
266664
A1

0
...

0

377775 Be12 �
266664
B12

B12
. . .

B12

377775
Solving this equation and picking out the rows of z corresponding to

the elements of u1 gives

u01 � K1x1�0�� L1u2
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�u
p�1
1 ; u

p�1
2 �

w1

next iterate

player two's optimization

�u
p
1 ; u

0
2�

w2

�u
p
1 ; u

p
2 �

�u0
1; u

p
2 �

player one's optimizationcurrent iterate

Figure 6.1: Convex step from �u
p
1 ; u

p
2 � to �u

p�1
1 ; u

p�1
2 �; the param-

eters w1, w2 with w1 � w2 � 1 determine location of

next iterate on line joining the two players' optimiza-

tions: �u0
1; u

p
2 � and �u

p
1 ; u

0
2�.

and we see player one's optimal decision depends linearly on his ini-

tial state, but also on player two's decision. This is the key difference

between decentralized control and noncooperative control. In nonco-

operative control, player two's decisions are communicated to player

one and player one accounts for them in optimizing the local objective.

Convex step. Let p 2 I�0 denote the integer-valued iteration in the

optimization problem. Looking ahead to the M-player game, we do

not take the full step, but a convex combination of the current optimal

solution, u01, and the current iterate, u
p
1

u
p�1
1 � w1u

0
1 � �1�w1�u

p
1 0 < w1 < 1

This iteration is displayed in Figure 6.1. Notice we have chosen a dis-

tributed optimization of the Gauss-Jacobi type (see Bertsekas and Tsit-

siklis, 1997, pp.219±223).

We place restrictions on the systems under consideration before

analyzing stability of the controller.

Assumption 6.8 (Unconstrained two-player game).

(a) All subsystems, Aij ; i � 1;2; j � 1;2, are stable.

(b) The controller penalties Q1;Q2; R1; R2 are positive de®nite.
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The assumption of stable models is purely for convenience of expo-

sition. We treat unstable, stabilizable systems in Section 6.3.

Convergence of the players' iteration. To understand the conver-

gence of the two players' iterations, we express both players' moves as

follows

u
p�1
1 � w1u

0
1 � �1�w1�u

p
1

u
p�1
2 � w2u

0
2 � �1�w2�u

p
2

1 � w1 �w2 0 < w1;w2 < 1

or "
u1
u2

#p�1
�
"
w1I 0

0 w2I

#"
u01
u02

#
�
"
�1�w1�I 0

0 �1�w2�I

#"
u1
u2

#p
The optimal control for each player is"

u01
u02

#
�
"
K1 0

0 K2

#"
x1�0�

x2�0�

#
�
"
0 L1
L2 0

#"
u1
u2

#p
Substituting the optimal control into the iteration gives"
u1
u2

#p�1
�
"
w1K1 0

0 w2K2

#
| {z }

K

"
x1�0�

x2�0�

#
�
"
�1�w1�I w1L1
w2L2 �1�w2�I

#
| {z }

L

"
u1
u2

#p

Finally writing this equation in the plantwide notation, we express the

iteration as

up�1 � Kx�0�� Lup

The convergence of the two players' control iteration is governed by

the eigenvalues of L. If L is stable, the control sequence converges to

u1 � �I � L��1Kx�0� j�j < 1 for � 2 eig�L�

in which

�I � L��1K �
"
w1I �w1L1
�w2L2 w2I

#�1 "
w1K1 0

0 w2K2

#

�I � L��1K �
"
I �L1
�L2 I

#�1 "
K1 0

0 K2

#
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Note that the weights w1, w2 do not appear in the converged input

sequence. The u11 , u
1
2 pair have the equilibrium property that nei-

ther player can improve his position given the other player's current

decision. This point is called a Nash equilibrium (BaËsar and Olsder,

1999, p. 4). Notice that the distributed MPC game does not have a Nash

equilibrium if the eigenvalues of L are on or outside the unit circle. If

the controllers have suf®cient time during the control system's sam-

ple time to iterate to convergence, then the effect of the initial control

sequence is removed by using the converged control sequence. If the

iteration has to be stopped before convergence, the solution is

up�1 � Lpu�0� �
p�1X
j�0

LjKx�0� 0 � p

in which u�0� is the p � 0 (initial) input sequence. We use the brackets

with p � 0 to distinguish this initial input sequence from an optimal

input sequence.

Stability of the closed-loop system. We assume the Nash equilib-

rium is stable and there is suf®cient computation time to iterate to

convergence.

We require a matrix of zeros and ones to select the ®rst move from

the input sequence for injection into the plant. For the ®rst player, the

required matrix is

u1�0� � E1u1
E1 �

h
Im1 0m1 : : : 0m1

i
m1 �m1N matrix

The closed-loop system is then

"
x1
x2

#�
�
"
A1 0

0 A2

#
| {z }

A

"
x1
x2

#
�

"
B11 B12
B21 B22

#
| {z }

B

"
E1 0

0 E2

#"
I �L1
�L2 I

#�1 "
K1 0

0 K2

#
| {z }

K

"
x1
x2

#

Using the plantwide notation for this equation and de®ning the feed-

back gain K gives

x� � �A� BK�x
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The stability of the closed loop with converged, noncooperative control

is therefore determined by the eigenvalues of �A� BK�.
We next present three simple examples to show that (i) the Nash

equilibrium may not be stable (L is unstable), (ii) the Nash equilibrium

may be stable but the closed loop is unstable (L is stable, A�BK is un-

stable), and (iii) the Nash equilibriummay be stable and the closed loop

is stable (L is stable, A� BK is stable). Which situation arises depends

in a nonobvious way on all of the problem data: A1, A2, B11, B12, B21,

B22, Q1, Q2, P1f , P2f , R1, R2, w1, w2, N. One has to examine the eigen-

values of L and A�BK for each application of interest to know how the

noncooperative distributed MPC is going to perform. Even for a ®xed

dynamic model, when changing tuning parameters such asQ, Pf , R,w,

one has to examine eigenvalues of L and A� BK to know the effect on

the closed-loop system. This is the main drawback of the noncoopera-

tive game. In many control system designmethods, such as all forms of

MPC presented in Chapter 2, closed-loop properties such as exponen-

tial stability are guaranteed for the nominal system for all choices of

performance tuning parameters. Noncooperative distributed MPC does

not have this feature and a stability analysis is required. We show in the

next section that cooperative MPC does not suffer from this drawback,

at the cost of slightly more information exchange.

Example 6.9: Nash equilibrium is unstable

Consider the following transfer function matrix for a simple two-input

two-output system"
y1�s�

y2�s�

#
�
"
G11�s� G12�s�

G21�s� G22�s�

#"
u1�s�

u2�s�

#

in which

G�s� �

26664
1

s2 � 2�0:2�s � 1

0:5

0:225s � 1

�0:5
�0:5s � 1��0:25s � 1�

1:5

0:75s2 � 2�0:8��0:75�s � 1

37775
Obtain discrete time models �Aij ; Bij ; Cij� for each of the four transfer

functions Gij�s� using a sample time of T � 0:2 and zero-order holds

on the inputs. Set the control cost function parameters to be

Q1 � Q2 � 1 P1f � P2f � 0 R1 � R2 � 0:01

N � 30 w1 � w2 � 0:5



384 Distributed Model Predictive Control

Compute the eigenvalues of the Lmatrix for this systemusing noncoop-

erative MPC. Show the Nash equilibrium is unstable and the closed-loop

system is therefore unstable. Discuss why this system is problematic

for noncooperative control.

Solution

For this problem L is a 60� 60 matrix (N�m1 �m2�). The magnitudes

of the largest eigenvalues are��eig�L��� � h1:11 1:11 1:03 1:03 0:914 0:914 � � �
i

The noncooperative iteration does not converge. The steady-state gains

for this system are

G�0� �
"

1 0:5

�0:5 1:5

#
and we see that the diagonal elements are reasonably large compared

to the nondiagonal elements. So the steady-state coupling between the

two systems is relatively weak. The dynamic coupling is unfavorable,

however. The response of y1 to u2 is more than four times faster than

the response of y1 to u1. The faster input is the disturbance and the

slower input is used for control. Likewise the response of y2 to u1 is

three times faster than the response of y2 to u2. Also in the second

loop, the faster input is the disturbance and the slower input is used

for control. These pairings are unfavorable dynamically, and that fact

is revealed in the instability of L and lack of a Nash equilibrium for the

noncooperative dynamic regulation problem. �

Example 6.10: Nash equilibrium is stable but closed loop is unstable

Switch the outputs for the previous example and compute the eigenval-

ues of L and �A�BK� for the noncooperative distributed MPC regulator

for the system

G�s� �

26664
�0:5

�0:5s � 1��0:25s � 1�

1:5

0:75s2 � 2�0:8��0:75�s � 1

1

s2 � 2�0:2�s � 1

0:5

0:225s � 1

37775
Show in this case that the Nash equilibrium is stable, but the noncoop-

erative regulator destabilizes the system. Discuss why this system is

problematic for noncooperative control.
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Solution

For this case the largest magnitude eigenvalues of L are��eig�L��� � h0:63 0:63 0:62 0:62 0:59 0:59 � � �
i

and we see the Nash equilibrium for the noncooperative game is sta-

ble. So we have removed the ®rst source of closed-loop instability by

switching the input-output pairings of the two subsystems. There are

seven states in the complete system model, and the magnitudes of the

eigenvalues of the closed-loop regulator �A� BK� are��eig�A� BK��� � h1:03 1:03 0:37 0:37 0:77 0:77 0:04
i

which also gives an unstable closed-loop system. We see the distributed

noncooperative regulator has destabilized a stable open-loop system.

The problem with this pairing is the steady-state gains are now

G�0� �
"
�0:5 1:5

1 0:5

#

If one computes any steady-state interaction measure, such as the rel-

ative gain array (RGA), we see the new pairings are poor from a steady-

state interaction perspective

RGA �
"
0:14 0:86

0:86 0:14

#

Neither pairing of the inputs and outputs is closed-loop stable with

noncooperative distributed MPC.

Decentralized control with this pairing is discussed in Exercise 6.10.

�

Example 6.11: Nash equilibrium is stable and the closed loop is stable

Next consider the system

G�s� �

26664
1

s2 � 2�0:2�s � 1

0:5

0:9s � 1

�0:5
�2s � 1��s � 1�

1:5

0:75s2 � 2�0:8��0:75�s � 1

37775
Compute the eigenvalues of L and A�BK for this system. What do you

conclude about noncooperative distributed MPC for this system?
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Solution

This system is not dif®cult to handle with distributed control. The

gains are the same as in the original pairing in Example 6.9, and the

steady-state coupling between the two subsystems is reasonably weak.

Unlike Example 6.9, however, the responses of y1 to u2 and y2 to u1

have been slowed so they are not faster than the responses of y1 to u1

and y2 to u2, respectively. Computing the eigenvalues of L and A�BK
for noncooperative control gives��eig�L��� � h0:61 0:61 0:59 0:59 0:56 0:56 0:53 0:53 � � �

i
��eig�A� BK��� � h0:88 0:88 0:74 0:67 0:67 0:53 0:53

i
The Nash equilibrium is stable since L is stable, and the closed loop is

stable since both L and A� BK are stable. �

These examples reveal the simple fact that communicating the ac-

tions of the other controllers does not guarantee acceptable closed-loop

behavior. If the coupling of the subsystems is weak enough, both dy-

namically and in steady state, then the closed loop is stable. In this

sense, noncooperative MPC has few advantages over completely decen-

tralized control, which has this same basic property.

We next show how to obtain much better closed-loop properties

while maintaining the small size of the distributed control problems.

6.2.4 Cooperative Game

In the cooperative game, the two players share a common objective,

which can be considered to be the overall plant objective

V�x1�0�; x2�0�;u1;u2� � �1V1�x1�0�;u1;u2�� �2V2�x2�0�;u2;u1�

in which the parameters �1, �2 are used to specify the relative weights

of the two subsystems in the overall plant objective. In the coopera-

tive problem, each player keeps track of how his input affects the other

player's output as well as his own output. We can implement this co-

operative game in several ways. The implementation leading to the

simplest notation is to combine x1 and x2 into a single model"
x1
x2

#�
�
"
A1 0

0 A2

#"
x1
x2

#
�
"
B11
B21

#
u1 �

"
B12
B22

#
u2
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and then express player one's stage cost as

`1�x1; x2; u1� � 1

2

"
x1
x2

#0 "
�1Q1 0

0 �2Q2

#"
x1
x2

#
� 1

2
u01��1R1�u1 � const.

V1f �x1; x2� � 1

2

"
x1
x2

#0 "
�1P1f 0

0 �2P2f

#"
x1
x2

#

Notice that u2 does not appear because the contribution of u2 to the

stage cost cannot be affected by player one, and can therefore be ne-

glected. The cost function is then expressed as

V�x1�0�; x2�0�;u1;u2� �
N�1X
k�0

`1�x1�k�; x2�k�;u1�k���V1f �x1�N�;x2�N��

Player one's optimal control problem is

min
u1
V�x1�0�; x2�0�;u1;u2�

s.t.

"
x1
x2

#�
�
"
A1 0

0 A2

#"
x1
x2

#
�
"
B11
B21

#
u1 �

"
B12
B22

#
u2

Note that this form is identical to the noncooperative form presented

previously if we rede®ne the terms (noncooperative -! cooperative)

x1 !
"
x1
x2

#
A1 !

"
A1 0

0 A2

#
B11 !

"
B11
B21

#
B12 !

"
B12
B22

#

Q1 !
"
�1Q1 0

0 �2Q2

#
R1 ! �1R1 P1f !

"
�1P1f 0

0 �2P2f

#

Any computational program written to solve either the cooperative or

noncooperative optimal control problem can be used to solve the other.

Eliminating states x2. An alternative implementation is to remove
states x2�k�; k � 1 from player one's optimal control problem by sub-
stituting the dynamic model of system two. This implementation re-
duces the size of the dynamic model because only states x1 are re-
tained. This reduction in model size may be important in applications
with many players. The removal of states x2�k�; k � 1 also introduces
linear terms into player one's objective function. We start by using the
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dynamic model for x2 to obtain

2666664
x2�1�

x2�2�
...

x2�N�

3777775 �
2666664
A2

A2
2

...

AN2

3777775x2�0��
2666664

B21
A2B21 B21

...
...

. . .

AN�12 B21 AN�22 B21 : : : B21

3777775

2666664
u1�0�

u1�1�
...

u1�N � 1�

3777775�
2666664

B22
A2B22 B22

...
...

. . .

AN�12 B22 AN�22 B22 : : : B22

3777775

2666664
u2�0�

u2�1�
...

u2�N � 1�

3777775
Using more compact notation, we have

x2 �A2x2�0��B21u1 �B22u2

We can use this relation to replace the cost contribution of x2 with

linear and quadratic terms in u1 as follows

N�1X
k�0

x2�k�
0Q2x2�k�� x2�N�0P2fx2�N� �

u01
�B021Q2B21

�
u1 � 2

�
x2�0�

0A0
2 � u02B022

�Q2B21 u1 � constant

in which

Q2 � diag
�h
Q2 Q2 : : : P2f

i�
Nn2 �Nn2 matrix

and the constant term contains products of x2�0� and u2, which are

constant with respect to player one's decision variables and can there-

fore be neglected.

Next we insert the new terms created by eliminating x2 into the cost

function. Assembling the cost function gives

min
z
�1=2�z0He z� h0z
s.t. Dz � d

and (1.57) again gives the necessary and suf®cient conditions for the

optimal solution"
He �D0
�D 0

#"
z

�

#
�
"

0

�Ae 1
#
x1�0��

"
�Ae 2
0

#
x2�0��

"
�Be22
�Be12

#
u2 (6.13)
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in which

He � H � E0B021Q2B21E Be22 � E0B021Q2B22 Ae 2 � E0B021Q2A2

E � IN 

h
Im1 0m1;n1

i
See also Exercise 6.13 for details on constructing the padding matrix E.

Comparing the cooperative and noncooperative dynamic games, (6.13)

and (6.12), we see the cooperative game has made three changes: (i)

the quadratic penalty H has been modi®ed, (ii) the effect of x2�0� has

been included with the term Ae 2, and (iii) the in¯uence of u2 has been

modi®ed with the term Be22. Notice that the size of the vector z has not
changed, and we have accomplished the goal of keeping player one's

dynamic model in the cooperative game the same size as his dynamic

model in the noncooperative game.

Regardless of the implementation choice, the cooperative optimal

control problem is nomore complex than the noncooperative game con-

sidered previously. The extra information required by player one in the

cooperative game is x2�0�. Player one requires u2 in both the cooper-

ative and noncooperative games. Only in decentralized control does

player one not require player two's input sequence u2. The other ex-

tra required information, A2; B21;Q2; R2; P2f , are ®xed parameters and

making their values available to player one is a minor communication

overhead.

Proceeding as before, we solve this equation for z0 and pick out the

rows corresponding to the elements of u01 giving

u01�x�0�;u2� �
h
K11 K12

i"x1�0�
x2�0�

#
� L1u2

Combining the optimal control laws for each player gives"
u01
u02

#
�
"
K11 K12
K21 K22

#"
x1�0�

x2�0�

#
�
"
0 L1
L2 0

#"
u1
u2

#p

in which the gain matrix multiplying the state is a full matrix for the

cooperative game. Substituting the optimal control into the iteration

gives"
u1
u2

#p�1
�
"
w1K11 w1K12
w2K21 w2K22

#
| {z }

K

"
x1�0�

x2�0�

#
�
"
�1�w1�I w1L1
w2L2 �1�w2�I

#
| {z }

L

"
u1
u2

#p
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Finally writing this equation in the plantwide notation, we express the

iteration as

up�1 � Kx�0�� Lup
Exponential stability of the closed-loop system. In the case of coop-

erative control, we consider the closed-loop systemwith a ®nite number

of iterations, p. With ®nite iterations, distributed MPC becomes a form

of suboptimal MPC as discussed in Sections 6.1.2 and 2.7. To analyze

the behavior of the cooperative controller with a ®nite number of it-

erations, we require the cost decrease achieved by a single iteration,

which we derive next. First we write the complete system evolution as

in (6.10)

x� � Ax � Bu
in which A and B are de®ned in (6.11). We can then use (6.3) to express

the overall cost function

V�x�0�;u� � �1=2�x0�0��Q�A0QA�x�0�� u0�B0QA�x�0��
�1=2�u0Huu

in which A and B are given in (6.1), the cost penalties Q and R are

given in (6.2) and (6.9), and

Hu � B0QB�R
The overall cost is a positive de®nite quadratic function in u because

R1 and R2 are positive de®nite, and therefore so are R1, R2, and R.

The iteration in the two players' moves satis®es

�u
p�1
1 ;u

p�1
2 � �

�
�w1u

0
1 � �1�w1�u

p
1 �; �w2u

0
2 � �1�w2�u

p
2 �
�

� �w1u
0
1; �1�w2�u

p
2 �� ��1�w1�u

p
1 ;w2u

0
2�

�u
p�1
1 ;u

p�1
2 � � w1�u

0
1;u

p
2 ��w2�u

p
1 ;u

0
2� (6.14)

Exercise 6.18 analyzes the cost decrease for a convex step with a posi-

tive de®nite quadratic function and shows

V�x�0�;u
p�1
1 ;u

p�1
2 � � V�x�0�;up1 ;up2 �

� 1

2

h
up � u0�x�0��

i0
P
h
up � u0�x�0��

i
(6.15)

in which P > 0 is given by

P � HuD
�1HeD�1Hu He � D �N

D �
"
w�1

1 Hu;11 0

0 w�1
2 Hu;22

#
N �

"
�w�1

1 w2Hu;11 Hu;12

Hu;21 �w1w
�1
2 Hu;22

#
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and Hu is partitioned for the two players' input sequences. Notice that

the cost decrease achieved in a single iteration is quadratic in the dis-

tance from the optimum. An important conclusion is that each iter-

ation in the cooperative game reduces the systemwide cost. This cost

reduction is the key property that gives cooperative MPC its excellent

convergence properties, as we show next.

The two players' warm starts at the next sample are given by

ue�1 � �u1�1�;u1�2�; : : : ; u1�N � 1�;0�

ue�2 � �u2�1�;u2�2�; : : : ; u2�N � 1�;0�

We de®ne the following linear time-invariant functions g
p
1 and g

p
2 as

the outcome of applying the control iteration procedure p times

u
p
1 � gp1 �x1; x2;u1;u2�

u
p
2 � gp2 �x1; x2;u1;u2�

in which p � 0 is an integer, x1 and x2 are the states, and u1;u2 are the

input sequences from the previous sample, used to generate the warm

start for the iteration. Here we consider p to be constant with time, but

Exercise 6.20 considers the case in which the controller iterations may

vary with sample time. The system evolution is then given by

x�1 � A1x1 � B11u1 � B12u2 x�2 � A2x2 � B21u1 � B22u2

u�1 � gp1 �x1; x2;u1;u2� u�2 � gp2 �x1; x2;u1;u2� (6.16)

By the construction of the warm start, ue�1 ;ue�2 , we have
V�x�1 ; x

�
2 ;ue�1 ;ue�2 � � V�x1; x2;u1;u2�� �1`1�x1; u1�� �2`2�x2; u2�

��1=2��1x1�N�0
h
A01P1fA1 � P1f �Q1

i
x1�N�

��1=2��2x2�N�0
h
A02P2fA2 � P2f �Q2

i
x2�N�

From our choice of terminal penalty satisfying (6.8), the last two terms

are zero giving

V�x�1 ; x
�
2 ;ue�1 ;ue�2 � � V�x1; x2;u1;u2�

� �1`1�x1; u1�� �2`2�x2; u2� (6.17)

No optimization, p � 0. If we do no further optimization, then we

have u�1 � ue�1 , u�2 � ue�2 , and the equality

V�x�1 ; x
�
2 ;u

�
1 ;u

�
2 � � V�x1; x2;u1;u2�� �1`1�x1; u1�� �2`2�x2; u2�
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The input sequences add a zero at each sample until u1 � u2 � 0 at

time k � N. The system decays exponentially under zero control and

the closed loop is exponentially stable.

Further optimization, p � 1. We next consider the case in which

optimization is performed. Equation 6.15 then gives

V�x�1 ; x
�
2 ;u

�
1 ;u

�
2 � � V�x�1 ; x�2 ;ue�1 ;ue�2 ��h

ue� � u0�x��
i0
P
h
ue� � u0�x��

i
p � 1

with equality holding for p � 1. Using this result in (6.17) gives

V�x�1 ; x
�
2 ;u

�
1 ;u

�
2 � � V�x1; x2;u1;u2�� �1`1�x1; u1�� �2`2�x2; u2�

�
h
ue� � u0�x��

i0
P
h
ue� � u0�x��

i
Since V is bounded below by zero and `1 and `2 are positive func-

tions, we conclude the time sequenceV�x1�k�; x2�k�;u1�k�;u2�k�� con-

verges. and therefore x1�k�, x2�k�, u1�k�, and u2�k� converge to zero.

Moreover, since P > 0, the last term implies that ue� converges to

u0�x��, which converges to zero because x� converges to zero. There-

fore, the entire input sequence u converges to zero. Because the total

system evolution is a linear time-invariant system, the convergence is

exponential. Even though we are considering here a form of subopti-

mal MPC, we do not require an additional inequality constraint on u

because the problem considered here is unconstrained and the itera-

tions satisfy (6.15).

6.2.5 Tracking Nonzero Setpoints

For tracking nonzero setpoints, we compute steady-state targets as dis-

cussed in Section 1.5. The steady-state input-output model is given by

ys � Gus G � C�I �A��1B

in which G is the steady-state gain of the system. The two subsystems

are denoted "
y1s

y2s

#
�
"
G11 G12

G21 G22

#"
u1s

u2s

#
For simplicity, we assume that the targets are chosen to be the mea-

surements (H � I). Further, we assume that both local systems are

square, and that the local targets can be reached exactly with the local
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inputs. This assumption means that G11 and G22 are square matrices

of full rank. We remove all of these assumptions when we treat the con-

strained two-player game in the next section. If there is model error,

integrating disturbance models are required as discussed in Chapter 1.

We discuss these later.

The target problem also can be solved with any of the four ap-

proaches discussed so far. We consider each.

Centralized case. The centralized problem gives in one shot both in-

puts required to meet both output setpoints

us � G�1ysp

ys � ysp

Decentralized case. The decentralized problem considers only the

diagonal terms and computes the following steady inputs

us �
"
G�111

G�122

#
ysp

Notice these inputs produce offset in both output setpoints

ys �
"

I G12G
�1
22

G21G
�1
11 I

#
ysp

Noncooperative case. In the noncooperative game, each player at-

tempts to remove offset in only its outputs. Player one solves the fol-

lowing problem

min
u1

�y1 �y1sp�
0Q1�y1 �y1sp�

s.t. y1 � G11u1 �G12u2

Because the target can be reached exactly, the optimal solution is to

®nd u1 such that y1 � y1sp, which gives

u0
1s � G�111

�
y1sp �G12u

p
2

�
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Player two solves the analogous problem. If we iterate on the two play-

ers' solutions, we obtain"
u1s

u2s

#p�1
�
"
w1G

�1
11

w2G
�1
22

#
| {z }

Ks

"
y1sp

y2sp

#
�

"
w2I �w1G

�1
11G12

�w2G
�1
22G21 w1I

#
| {z }

Ls

"
u1s

u2s

#p

This iteration can be summarized by

u
p�1
s � Ksysp � Lsups

If Ls is stable, this iteration converges to

u1s � �I � Ls��1Ksysp

u1s � G�1ysp

and we have no offset. We already have seen that we cannot expect

the dynamic noncooperative iteration to converge. The next several

examples explore the issue of whether we can expect at least the steady-

state iteration to be stable.

Cooperative case. In the cooperative case, both players work on min-

imizing the offset in both outputs. Player one solves

min
u1

�1=2�

"
y1 �y1sp

y2 �y2sp

#0 "
�1Q1

�2Q2

#"
y1 �y1sp

y2 �y2sp

#

s.t.

"
y1

y2

#
�
"
G11

G21

#
u1 �

"
G12

G22

#
u2

We can write this in the general form

min
rs
�1=2�r 0sHrs � h0rs
s.t. Drs � d

in which

rs �
264y1s

y2s

u1s

375 H �
264�1Q1

�2Q2

0

375 h �
"
�Qysp

0

#

D �
h
I �G1

i
d � G2u2 G1 �

"
G11

G12

#
G2 �

"
G12

G22

#
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We can then solve the linear algebra problem"
H �D0
�D 0

#"
rs
�s

#
� �

"
h

d

#

and identify the linear gains between the optimal u1s and the setpoint

ysp and player two's input u2s

u0
1s � K1sysp � L1sup2s

Combining the optimal control laws for each player gives"
u0
1s

u0
2s

#
�
"
K1s
K2s

#
ysp �

"
0 L1s
L2s 0

#"
u1s

u2s

#p

Substituting the optimal control into the iteration gives"
u1s

u2s

#p�1
�
"
w1K1s
w2K2s

#
| {z }

Ks

ysp �
"
�1�w1�I w1L1s
w2L2s �1�w2�I

#
| {z }

Ls

"
u1s

u2s

#p

Finally writing this equation in the plantwide notation, we express the

iteration as

u
p�1
s � Ksysp � Lsups

As we did with the cooperative regulation problem, we can analyze the

optimization problem to show that this iteration is always stable and

converges to the centralized target. Next we explore the use of these

approaches in some illustrative examples.

Example 6.12: Stability and offset in the distributed target calcula-

tion

Consider the following two-input, two-output system with steady-state

gain matrix and setpoint"
y1s

y2s

#
�
"
�0:5 1:0

2:0 1:0

#"
u1s

u2s

# "
y1sp

y2sp

#
�
"
1

1

#

(a) Show the ®rst 10 iterations of the noncooperative and cooperative

steady-state cases starting with the decentralized solution as the

initial guess.
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Describe the differences. Compute the eigenvalues of L for the

cooperative and noncooperative cases. Discuss the relationship

between these eigenvalues and the result of the iteration calcula-

tions.

Mark also the solution to the centralized and decentralized cases

on your plots.

(b) Switch the pairings and repeat the previous part. Explain your

results.

Solution

(a) The ®rst 10 iterations of the noncooperative steady-state calcu-

lation are shown in Figure 6.2. Notice the iteration is unstable

and the steady-state target does not converge. The cooperative

case is shown in Figure 6.3. This case is stable and the iterations

converge to the centralized target and achieve zero offset. The

magnitudes of the eigenvalues of Ls for the noncooperative (nc)

and cooperative (co) cases are given by��eig�Lsnc��� � f1:12;1:12g ��eig�Lsco��� � f0:757;0:243g
Stability of the iteration is determined by the magnitudes of the

eigenvalues of Ls .

(b) Reversing the pairings leads to the following gain matrix in which

we have reversed the labels of the outputs for the two systems"
y1s

y2s

#
�
"
2:0 1:0

�0:5 1:0

#"
u1s

u2s

#

The ®rst 10 iterations of the noncooperative and cooperative con-

trollers are shown in Figures 6.4 and 6.5. For this pairing, the

noncooperative case also converges to the centralized target. The

eigenvalues are given by��eig�Lsnc��� � f0:559;0:559g ��eig�Lsco��� � f0:757;0:243g
The eigenvalues of the cooperative case are unaffected by the re-

versal of pairings. �

Given the stability analysis of the simple unconstrained two-player

game, we remove from further consideration two options we have been
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�5 �4 �3 �2 �1 0 1 2 3 4 5

y1 � 1

y2 � 1

ude uce
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u1

Figure 6.2: Ten iterations of noncooperative steady-state calcula-

tion, u�0� � ude; iterations are unstable, up !1.
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Figure 6.3: Ten iterations of cooperative steady-state calculation,

u�0� � ude; iterations are stable, up ! uce.
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�0:5
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0:5

1

1:5

2

2:5

�0:6 �0:4 �0:2 0 0:2 0:4 0:6

y1 � 1

y2 � 1 udeuce
u2

u1

Figure 6.4: Ten iterations of noncooperative steady-state calcula-

tion, u�0� � ude; iterations are stable with reversed pair-

ing.

�0:5

0

0:5

1

1:5
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�0:6 �0:4 �0:2 0 0:2 0:4 0:6

y1 � 1

y2 � 1 udeuce
u2

u1

Figure 6.5: Ten iterations of cooperative steady-state calculation,

u�0� � ude; iterations are stable with reversed pairing.
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discussing to this point: noncooperative control and decentralized con-

trol. We next further develop the theory of cooperative MPC and com-

pare its performance to centralized MPC in more general and challeng-

ing situations.

6.2.6 State Estimation

Given output measurements, we can express the state estimation prob-

lem also in distributed form. Player one uses local measurements of

y1 and knowledge of both inputs u1 and u2 to estimate state x1

Ãx�1 � A1Ãx1 � B11u1 � B12u2 � L1�y1 � C1Ãx1�

De®ning estimate error to be e1 � x1 � Ãx1 gives

e�1 � �A1 � L1C1�e1

Because all the subsystems are stable, we know L1 exists so that A1 �
L1C1 is stable and player one's local estimator is stable. The estimate

error for the two subsystems is then given by"
e1
e2

#�
�
"
AL1

AL2

#"
e1
e2

#
(6.18)

in which ALi � Ai � LiCi.
Closed-loop stability. The dynamics of the estimator are given by

"
Ãx1
Ãx2

#�
�
"
A1

A2

#"
Ãx1
Ãx2

#
�
"
B11 B12
B21 B22

#"
u1

u2

#
�"
L1C1

L2C2

#"
e1
e2

#

In the control law we use the state estimate in place of the state, which

is unmeasured and unknown. We consider two cases.

Converged controller. In this case the distributed control law con-

verges to the centralized controller, and we have"
u1

u2

#
�
"
K11 K12
K21 K22

#"
Ãx1
Ãx2

#
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The closed-loop system evolves according to

"
Ãx1
Ãx2

#�
�
("
A1

A2

#
�
"
B11 B12
B21 B22

#"
K11 K12
K21 K22

#)"
Ãx1
Ãx2

#
�"

L1C1
L2C2

#"
e1
e2

#

TheA�BK term is stable because this term is the same as in the stabiliz-

ing centralized controller. The perturbation is exponentially decaying

because the distributed estimators are stable. Therefore Ãx goes to zero

exponentially, which, along with e going to zero exponentially, implies

x goes to zero exponentially.

Finite iterations. Here we use the state plus input sequence descrip-

tion given in (6.16), which, as we have already noted, is a linear time-

invariant system. With estimate error, the system equation is26664
Ãx�1
Ãx�2
u�1
u�2

37775 �
26664
A1Ãx1 � B11u1 � B12u2

A2Ãx2 � B21u1 � B22u2

g
p
1 �Ãx1; Ãx2;u1;u2�

g
p
2 �Ãx1; Ãx2;u1;u2�

37775�
26664
L1C1e1
L2C2e2

0

0

37775
Because there is again only one-way coupling between the estimate er-

ror evolution, (6.18), and the system evolution given above, the com-

posite system is exponentially stable.

6.3 Constrained Two-Player Game

Now that we have introduced most of the notation and the fundamen-

tal ideas, we consider more general cases. Because we are interested

in establishing stability properties of the controlled systems, we focus

exclusively on cooperative distributed MPC from this point forward. In

this section we consider convex input constraints on the two players.

We assume output constraints have been softened with exact soft con-

straints and added to the objective function, so do not consider output

constraints explicitly. The input constraints break into two signi®cant

categories: coupled and uncoupled constraints. We treat each of these

in turn.

We also allow unstable systems and replace Assumption 6.8 with

the following more general restrictions on the systems and controller

parameters.
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Assumption 6.13 (Constrained two-player game).

(a) The systems �Ai; Bi�, i � 1;2 are stabilizable, in whichAi � diag�A1i;

A2i� and Bi �
h
B1i
B2i

i
.

(b) The systems �Ai; Ci�, i � 1;2 are detectable.

(c) The input penalties R1; R2 are positive de®nite, and the state penal-

ties Q1;Q2 are semide®nite.

(d) The systems �A1;Q1� and �A2;Q2� are detectable.

(e) The horizon is chosen suf®ciently long to zero the unstable modes,

N �maxi2I1:2 n
u
i , in which nui is the number of unstable modes of Ai,

i.e., number of � 2 eig�Ai� such that j�j � 1.

Assumption (b) implies that we have Li such that �Ai � LiCi�; i �
1;2 is stable. Note that the stabilizable and detectable conditions of

Assumption 6.13 are automatically satis®ed if we obtain the state space

models from a minimal realization of the input/output models for �ui;

yj�, i; j � 1;2.

Unstable modes. To handle unstable systems, we add constraints to

zero the unstable modes at the end of the horizon. To set up this

constraint, consider the real Schur decomposition of Aij for i; j 2 I1:2

Aij �
h
Ssij Suij

i"Asij �
Auij

#"
Ssij

0

Suij
0

#
(6.19)

in which Asij is upper triangular and stable, and Auij is upper triangular

with all unstable eigenvalues.3 Given the Schur decomposition (6.19),

we de®ne the matrices

Ssi � diag�Ssi1; S
s
i2� Asi � diag�Asi1; A

s
i2� i 2 I1:2

Sui � diag�Sui1; S
u
i2� Aui � diag�Aui1; A

u
i2� i 2 I1:2

These matrices satisfy the Schur decompositions

Ai �
h
Ssi Sui

i"Asi �
Aui

#"
Ssi
0

Sui
0

#
i 2 I1:2

We further de®ne the matrices �1;�2 as the solutions to the Lyapunov

equations

As1
0
�1A

s
1 � �1 � �Ss10Q1S

s
1 As2

0
�2A

s
2 � �2 � �Ss20Q2S

s
2 (6.20)

3If Aij is stable, then there is no Auij and S
u
ij .
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We then choose the terminal penalty for each subsystem to be the cost

to go under zero control

P1f � Ss1�1Ss10 P2f � Ss2�2Ss20

6.3.1 Uncoupled Input Constraints

We consider convex input constraints of the following form

Hu�k� � h k � 0;1; : : : ;N

De®ning convex set U

U � fujHu � hg
we express the input constraints as

u�k� 2 U k � 0;1; : : : ;N

We drop the time index and indicate the constraints are applied over

the entire input sequence using the notation u 2 U. In the uncoupled

constraint case, the two players' inputs must satisfy

u1 2 U1 u2 2 U2

in which U1 and U2 are convex subsets of Rm1 and Rm2 , respectively.

The constraints are termed uncoupled because there is no interaction

or coupling of the inputs in the constraint relation. Player one then

solves the following constrained optimization

min
u1
V�x1�0�; x2�0�;u1;u2�

s.t.

"
x1
x2

#�
�
"
A1 0

0 A2

#"
x1
x2

#
�
"
B11
B21

#
u1 �

"
B12
B22

#
u2

u1 2 U1

Suj1
0
xj1�N� � 0 j 2 I1:2

ju1j � d1�jx11�0�j � jx21�0�j� x11�0�; x21�0� 2 rB

in which we include the system's hard input constraints, the stabil-

ity constraint on the unstable modes, and the Lyapunov stability con-

straints. Exercise 6.22 discusses how to write the constraint ju1j �
d1 jx1�0�j as a set of linear inequalities on u1. Similarly, player two
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solves

min
u2
V�x1�0�; x2�0�;u1;u2�

s.t.

"
x1
x2

#�
�
"
A1 0

0 A2

#"
x1
x2

#
�
"
B11
B21

#
u1 �

"
B12
B22

#
u2

u2 2 U2

Suj2
0
xj2�N� � 0 j 2 I1:2

ju2j � d2�jx21�0�j � jx22�0�j� x12�0�; x22�0� 2 rB
We denote the solutions to these problems as

u01�x1�0�; x2�0�;u2� u02�x1�0�; x2�0�;u1�

The feasible setXN for the unstable system is the set of states for which

the unstable modes can be brought to zero in N moves while satisfying

the input constraints.

Given an initial iterate, �u
p
1 ;u

p
2 �, the next iterate is de®ned to be

�u1;u2�
p�1 � w1�u

0
1�x1�0�; x2�0�;u

p
2 �;u

p
2 ��

w2�u
p
1 ;u

0
2�x1�0�; x2�0�;u

p
1 ��

To reduce the notational burden we denote this as

�u1;u2�
p�1 � w1�u

0
1;u

p
2 ��w2�u

p
1 ;u

0
2�

and the functional dependencies of u01 and u02 should be kept in mind.

This procedure provides three important properties, which we es-

tablish next.

1. The iterates are feasible: �u1;u2�p 2 �U1;U2� implies �u1;u2�p�1 2
�U1;U2�. This follows from convexity of U1, U2 and the convex

combination of the feasible points �u
p
1 ;u

p
2 � and �u

0
1;u

0
2� to make

�u1;u2�p�1.

2. The cost decreases on iteration: V�x1�0�; x2�0�; �u1;u2�p�1� �
V�x1�0�; x2�0�; �u1;u2�p� for all x1�0�, x2�0�, and for all feasible

�u1;u2�p 2 �U1;U2�. The systemwide cost satis®es the following

inequalities

V�x�0�;u
p�1
1 ;u

p�1
2 � � V

�
x�0�;

�
w1�u

0
1;u

p
2 ��w2�u

p
1 ;u

0
2�
��

� w1V�x�0�; �u
0
1;u

p
2 ���w2V�x�0�; �u

p
1 ;u

0
2��

� w1V�x�0�; �u
p
1 ;u

p
2 ���w2V�x�0�; �u

p
1 ;u

p
2 ��

� V�x�0�;up1 ;up2 �



404 Distributed Model Predictive Control

The ®rst equality follows from (6.14). The next inequality follows

from convexity of V . The next follows from optimality of u01 and

u02, and the last follows from w1 � w2 � 1. Because the cost is

bounded below, the cost iteration converges.

3. The converged solution of the cooperative problem is equal to

the optimal solution of the centralized problem. Establishing this

property is discussed in Exercise 6.26.

Exponential stability of the closed-loop system. We next consider

the closed-loop system. The two players' warm starts at the next sam-

ple are as de®ned previously

ue�1 � �u1�1�;u1�2�; : : : ; u1�N � 1�;0�

ue�2 � �u2�1�;u2�2�; : : : ; u2�N � 1�;0�

We de®ne again the functions g
p
1 , g

p
2 as the outcome of applying the

control iteration procedure p times

u
p
1 � gp1 �x1; x2;u1;u2�

u
p
2 � gp2 �x1; x2;u1;u2�

The important difference between the previous unconstrained and this

constrained case is that the functions g
p
1 , g

p
2 are nonlinear due to the

input constraints. The system evolution is then given by

x�1 � A1x1 � B11u1 � B12u2 x�2 � A2x2 � B21u1 � B22u2

u�1 � gp1 �x1; x2;u1;u2� u�2 � gp2 �x1; x2;u1;u2�

We have the following cost using the warm start at the next sample

V�x�1 ; x
�
2 ;ue�1 ;ue�2 � � V�x1; x2;u1;u2�� �1`1�x1; u1�� �2`2�x2; u2�

��1=2��1x1�N�0
h
A01P1fA1 � P1f �Q1

i
x1�N�

��1=2��2x2�N�0
h
A02P2fA2 � P2f �Q2

i
x2�N�

Using the Schur decomposition (6.19) and the constraints Suji
0
xji�N� �

0 for i; j 2 I1:2, the last two terms can be written as

�1=2��1x1�N�
0Ss1

h
As1

0
�1A

s
1 � �1 � Ss10Q1S

s
1

i
Ss1
0
x1�N�

��1=2��2x2�N�0Ss2
h
As2

0
�2A

s
2 � �2 � Ss20Q2S

s
2

i
Ss2
0
x2�N�
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These terms are zero because of (6.20). Using this result and applying

the iteration for the controllers gives

V�x�1 ; x
�
2 ;u

�
1 ;u

�
2 � � V�x1; x2;u1;u2�� �1`1�x1; u1�� �2`2�x2; u2�

The Lyapunov stability constraints give (see also Exercise 6.28)

j�u1;u2�j � 2max�d1; d2� j�x1; x2�j �x1; x2� 2 rB

Given the cost decrease and this constraint on the size of the input

sequence, we satisfy the conditions of Lemma 6.5, and conclude the

solution x�k� � 0 for all k is exponentially stable on all of XN if either

XN is compact or U is compact.

6.3.2 Coupled Input Constraints

By contrast, in the coupled constraint case, the constraints are of the

form

H1u1 �H2u2 � h or �u1;u2� 2 U (6.21)

These constraints represent the players sharing some common resource.

An example would be different subsystems in a chemical plant drawing

steam or some other utility from a single plantwide generation plant.

The total utility used by the different subsystems to meet their control

objectives is constrained by the generation capacity.

The players solve the same optimization problems as in the un-

coupled constraint case, with the exception that both players' input

constraints are given by (6.21). This modi®ed game provides only two

of the three properties established for the uncoupled constraint case.

These are

1. The iterates are feasible: �u1;u2�p 2 U implies �u1;u2�p�1 2 U.

This follows from convexity of U and the convex combination of

the feasible points �u
p
1 ;u

p
2 � and �u

0
1;u

0
2� to make �u1;u2�p�1.

2. The cost decreases on iteration: V�x1�0�; x2�0�; �u1;u2�p�1� �
V�x1�0�; x2�0�; �u1;u2�p� for all x1�0�, x2�0�, and for all feasible

�u1;u2�p 2 U. The systemwide cost satis®es the same inequalities

established for the uncoupled constraint case giving

V�x�0�;u
p�1
1 ;u

p�1
2 � � V�x�0�;up1 ;up2 �

Because the cost is bounded below, the cost iteration converges.
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u1

uce

u2

U

up cost decrease for player one

cost decrease for player two

Figure 6.6: Cooperative control stuck on the boundary of U under

coupled constraints; up�1 � up � uce.

The converged solution of the cooperative problem is not equal to the

optimal solution of the centralized problem, however. We have lost

property 3 of the uncoupled case. To see how the convergence property

is lost, consider Figure 6.6. Region U is indicated by the triangle and its

interior. Consider point up on the boundary of U. Neither player one

nor player two can improve upon the current point up so the iteration

has converged. But the converged point is clearly not the optimal point,

uce.

Because of property 2, the nominal stability properties for the cou-

pled and uncoupled cases are identical. The differences arise when the

performance of cooperative control is compared to the benchmark of

centralized control. Improving the performance of cooperative con-

trol in the case of coupled constraints is therefore a topic of current

research. Current approaches include adding another player to the

game, whose sole objective is to parcel out the coupled resource to the

other players in a way that achieves optimality on iteration. This ap-

proach also makes sense from an engineering perspective because it

is commonplace to design a dedicated control system for managing a

shared resource such as steam or power among many plant units. The

design of this single unit's control system is a reasonably narrow and

well-de®ned task compared to the design of a centralized controller for

the entire plant.
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6.3.3 Exponential Convergence with Estimate Error

Consider next the constrained system evolution with estimate error264Ãx
�

u�

e�

375 �
264AÃx � B1u1 � B2u2 � Le

gp�Ãx;u�

ALe

375 (6.22)

The estimate error is globally exponentially stable so we know from

Lemma 6.7 that there exists a Lipschitz continuous Lyapunov function

J��� such that for all e 2 Rn

a jej � J�e� � b jej
J�e��� J�e� � �c jej

in which b > 0, a > 0, and we can choose constant c > 0 as large

as desired. In the subsequent development, we require this Lyapunov

function to be based on the ®rst power of the norm rather than the

usual square of the norm to align with Lipschitz continuity of the Lya-

punov function. From the stability of the solution x�k� � 0 for all k for

the nominal system, the cost function V�Ãx;u� satis®es for all Ãx 2 XN ,

u 2 UN

ae j�Ãx;u�j2 � V�Ãx;u� � be j�Ãx;u�j2
V�AÃx � B1u1 � B2u2;u

��� V�Ãx;u� � �ce jÃxj2
juj � d jÃxj Ãx 2 reB

in which ae ; be; ce; re > 0. We propose W�Ãx;u; e� � V�Ãx;u� � J�e� as a

Lyapunov function candidate for the perturbed system. We next derive

the required properties ofW��� to establish exponential stability of the

solution �x�k�; e�k�� � 0. From the de®nition of W��� we have for all

�Ãx;u; e� 2 XN � UN �Rn

ae j�Ãx;u�j2 � a jej � W�Ãx;u; e� � be j�Ãx;u�j2 � b jej
a�j�Ãx;u�j2 � jej� � W�Ãx;u; e� � b�j�Ãx;u�j2 � jej� (6.23)

in which a � min�ae ; a� > 0, b � max�be; b�. Next we compute the cost

change

W�Ãx�;u�; e���W�Ãx;u; e� � V�Ãx�;u��� V�Ãx;u�� J�e��� J�e�
The Lyapunov function V is quadratic in �x;u� and therefore Lipschitz

continuous on bounded sets. Therefore, for all Ãx;u1; u2;u�; e in some
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bounded set���V�AÃx � B1u1 � B2u2 � Le;u��� V�AÃx � B1u1 � B2u2;u
��
��� � LV jLej

in which LV is the Lipschitz constant for V with respect to its ®rst

argument. Using the system evolution we have

V�Ãx�;u�� � V�AÃx � B1u1 � B2u2;u
��� L0V jej

in which L0V � LV jLj. Subtracting V�Ãx;u� from both sides gives

V�Ãx�;u��� V�Ãx;u� � �ce jÃxj2 � L0V jej
Substituting this result into the equation for the change in W gives

W�Ãx�;u�; e���W�Ãx;u; e� � �ce jÃxj2 � L0V jej � c jej
� �ce jÃxj2 � �c � L0V � jej

W�Ãx�;u�; e���W�Ãx;u; e� � �c�jÃxj2 � jej� (6.24)

in which we choose c > L0V , which is possible because we may choose

c as large as we wish, and c � min�ce; c � L0V � > 0. Notice this step is

what motivated using the ®rst power of the norm in J���. Lastly, we

require the constraint

juj � d jÃxj Ãx 2 reB (6.25)

Lemma 6.14 (Global asymptotic stability and exponential convergence

of perturbed system). If either XN or U is compact, there exist � < 1

and ���� 2 K1 such that the combined system (6.22) satis®es for all

�x�0�; e�0�� and k � 0

jx�k�; e�k�j � ��jx�0�; e�0�j��k

The proof is based on the properties (6.23), (6.24), and (6.25) of func-

tionW�Ãx;u; e�, and is basically a combination of the proofs of Lemmas

6.5 and 6.6. The region of attraction is the set of states and initial es-

timate errors for which the unstable modes of the two subsystems can

be brought to zero in N moves while satisfying the respective input

constraints. If both subsystems are stable, for example, the region of

attraction is �x; e� 2 XN �Rn.
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6.3.4 Disturbance Models and Zero Offset

Integrating disturbancemodel. As discussed in Chapter 1, wemodel

the disturbance with an integrator to remove steady offset. The aug-

mented models for the local systems are"
xi
di

#�
�
"
Ai Bdi
0 I

#"
xi
di

#
�
"
Bi1
0

#
u1 �

"
Bi2
0

#
u2

yi �
h
Ci Cdi

i"xi
di

#
i � 1;2

We wish to estimate both xi and di from measurements yi. To ensure

this goal is possible, we make the following restriction on the distur-

bance models.

Assumption 6.15 (Disturbance models).

rank

"
I �Ai �Bdi
Ci Cdi

#
� ni � pi i � 1;2

It is always possible to satisfy this assumption by proper choice of

Bdi; Cdi. FromAssumption 6.13 (b), �Ai; Ci� is detectable, which implies

that the ®rst ni columns of the square �ni � pi� � �ni � pi� matrix in

Assumption 6.15 are linearly independent. Therefore the columns ofh
�Bdi
Cdi

i
can be chosen so that the entire matrix has rank ni � pi. As-

sumption 6.15 is equivalent to detectability of the following augmented

system.

Lemma 6.16 (Detectability of distributed disturbance model). Consider

the augmented systems

Ae i �
"
Ai Bdi
0 I

#
Ce i � hCi Cdi

i
i � 1;2

The augmented systems �Ae i; Ce i�; i � 1;2 are detectable if and only if

Assumption 6.15 is satis®ed.

Proving this lemma is discussed in Exercise 6.29. The detectability

assumption then establishes the existence of Lei such that �Ae i � LeiCe i�;
i � 1;2 are stable and the local integrating disturbances can be esti-

mated from the local measurements.
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Centralized target problem. We can solve the target problem at the

plantwide level or as a distributed target problem at the subunit con-

troller level. Consider ®rst the centralized target problem with the dis-

turbance model discussed in Chapter 1, (1.45)

min
xs ;us

1

2

��us �usp

��2
Rs
� 1

2

���Cxs � Cd Ãd�k��ysp

���2
Qs

subject to "
I �A �B
HC 0

#"
xs
us

#
�
"

Bd Ãd�k�

rsp �HCd Ãd�k�

#
Eus � e

in which we have removed the state inequality constraints to be consis-

tent with the regulator problem. We denote the solution to this prob-

lem �xs�k�;us�k��. Notice ®rst that the solution of the target problem

depends only on the disturbance estimate, Ãd�k�, and not the solution

of the control problem. So we can analyze the behavior of the target

by considering only the exponential convergence of the estimator. We

restrict the plant disturbance d so that the target problem is feasible,

and denote the solution to the target problem for the plant disturbance,
Ãd�k� � d, as �x�s ; u�s �. Because the estimator is exponentially stable,

we know that Ãd�k�! d as k!1. Because the target problem is a posi-

tive de®nite quadratic program (QP), we know the solution is Lipschitz

continuous on bounded sets in the term Ãd�k�, which appears linearly

in the objective function and the right-hand side of the equality con-

straint. Therefore, if we also restrict the initial disturbance estimate

error so that the target problem remains feasible for all time, we know

�xs�k�;us�k��! �x�s ; u�s � and the rate of convergence is exponential.

Distributed target problem. Consider next the cooperative approach,

in which we assume the input inequality constraints are uncoupled. In

the constrained case, we try to set things up so each player solves a

local target problem

min
x1s ;u1s

1

2

"
y1s �y1sp

y2s �y2sp

#0 "
Q1s

Q2s

#"
y1s �y1sp

y2s �y2sp

#
�

1

2

"
u1s �u1sp

u2s �u2sp

#0 "
R1s

R2s

#"
u1s �u1sp

u2s �u2sp

#
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subject to26664
I �A1 �B11 �B12

I �A2 �B21 �B22
H1C1

H2C2

37775
26664
x1s
x2s
u1s

u2s

37775 �
266664

Bd1 Ãd1�k�

Bd2 Ãd2�k�

r1sp �H1Cd1 Ãd1�k�

r2sp �H2Cd2 Ãd2�k�

377775
E1u1s � e1

in which

y1s � C1x1s � Cd1 Ãd1�k� y2s � C2x2s � Cd2 Ãd2�k� (6.27)

But here we run into several problems. First, the constraints to ensure

zero offset in both players' controlled variables are not feasible with

only the u1s decision variables. We require also u2s , which is not avail-

able to player one. We can consider deleting the zero offset condition

for player two's controlled variables, the last equality constraint. But

if we do that for both players, then the two players have different and

coupled equality constraints. That is a path to instability as we have

seen in the noncooperative target problem. To resolve this issue, we

move the controlled variables to the objective function, and player one

solves instead the following

min
x1s ;u1s

1

2

"
H1y1s � r1sp
H2y2s � r2sp

#0 "
T1s

T2s

#"
H1y1s � r1sp
H2y2s � r2sp

#

subject to (6.27) and

"
I �A1 �B11 �B12

I �A2 �B21 �B22

#26664
x1s
x2s
u1s

u2s

37775 �
"
Bd1 Ãd1�k�

Bd2 Ãd2�k�

#

E1u1s � e1 (6.28)

The equality constraints for the two players appear coupled when writ-

ten in this form. Coupled constraints admit the potential for the op-

timization to become stuck on the boundary of the feasible region,

and not achieve the centralized target solution after iteration to con-

vergence. But Exercise 6.30 discusses how to show that the equality

constraints are, in fact, uncoupled. Also, the distributed target prob-

lem as expressed here may not have a unique solution when there are

more manipulated variables than controlled variables. In such cases,
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a regularization term using the input setpoint can be added to the ob-

jective function. The controlled variable penalty can be converted to a

linear penalty with a large penalty weight to ensure exact satisfaction

of the controlled variable setpoint.

If the input inequality constraints are coupled, however, then the

distributed target problem may indeed become stuck on the boundary

of the feasible region and not eliminate offset in the controlled vari-

ables. If the input inequality constraints are coupled, we recommend

using the centralized approach to computing the steady-state target.

As discussed above, the centralized target problem eliminates offset in

the controlled variables as long as it remains feasible given the distur-

bance estimates.

Zero offset. Finally we establish the zero offset property. As de-

scribed in Chapter 1, the regulator is posed in deviation variables

xe�k� � Ãx�k�� xs�k� ue�k� � u�k��us�k� ue � u�us�k�
in which the notation u � us�k� means to subtract us�k� from each

element of the u sequence. Player one then solves

mineu1 V�xe1�0�; xe2�0�;ue1;ue2�
s.t.

"
xe1
xe2
#�
�
"
A1 0

0 A2

#"
xe1
xe2
#
�
"
B11
B21

#
ue1 �

"
B12
B22

#
ue 2

ue1 2 U1 	us�k�
S01uxe1�N� � 0��ue1�� � d1 ��xe1�0���

Notice that because the input constraint is shifted by the input tar-

get, we must retain feasibility of the regulation problem by restrict-

ing also the plant disturbance and its initial estimate error. If the two

players' regulation problems remain feasible as the estimate error con-

verges to zero, we have exponential stability of the zero solution from

Lemma 6.14. Therefore we conclude

�xe�k�;ue�k��! �0;0� Lemma 6.14

=) �Ãx�k�;u�k��! �xs�k�;us�k�� de®nition of deviation variables

=) �Ãx�k�;u�k��! �x�s ; u�s � target problem convergence

=) x�k�! x�s estimator stability

=) r�k�! rsp target equality constraint
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and we have zero offset in the plant controlled variable r � Hy . The
rate of convergence of r�k� to rsp is also exponential. As we saw here,

this convergence depends on maintaining feasibility in both the target

problem and the regulation problem at all times.

6.4 Constrained M-Player Game

We have set up the constrained two-player game so that the approach

generalizes naturally to the M-player game. We do not have a lot of

work left to do to address this general case. Recall I1:M denotes the set

of integers f1;2; : : : ;Mg. We de®ne the following systemwide variables

x�0� �

266664
x1�0�

x2�0�
...

xM�0�

377775 u �

266664
u1
u2
...

uM

377775 Bi �

266664
B1i
B2i
...

BMi

377775 Bi �

266664
B1i
B2i
...

BMi

377775 i 2 I1:M

V�x�0�;u� �
X

j2I1:M

�jVj�xj�0�;u�

Each player solves a similar optimization, so for i 2 I1:M

min
ui
V�x�0�;u�

s.t. x� � Ax �
X

j2I1:M

Bjuj

ui 2 Ui
Suji

0
xji�N� � 0 j 2 I1:M

juij � di
X

j2I1:M

���xji�0���� if xji�0� 2 rB; j 2 I1:M

This optimization can be expressed as a quadratic program, whose con-

straints and linear cost term depend af®nely on parameterx. The warm

start for each player at the next sample is generated from purely local

information

ue�i � �ui�1�;ui�2�; : : : ; ui�N � 1�;0� i 2 I1:M

The controller iteration is given by

up�1 �
X

j2I1:M

wj

�
u
p
1 ; : : : ;u

0
j ; : : : ;u

p
M

�
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in which u0i � u0i

�
x�0�;u

p
j2I1:M ;j�i

�
. The plantwide cost function then

satis®es for any p � 0

V�x�;u�� � V�x;u��
X

j2I1:M

�j`j�xj ; uj�

juj � d jxj x 2 rB

For the M-player game, we generalize Assumption 6.13 of the two-

player game to the following.

Assumption 6.17 (Constrained M-player game).

(a) The systems �Ai; Bi�, i 2 I1:M are stabilizable, in whichAi � diag�A1i;

A2i; � � � ; AMi�.

(b) The systems �Ai; Ci�, i 2 I1:M are detectable.

(c) The input penalties Ri; i 2 I1:M are positive de®nite, andQi; i 2 I1:M
are semide®nite.

(d) The systems �Ai;Qi�; i 2 I1:M are detectable.

(e) The horizon is chosen suf®ciently long to zero the unstable modes;

N � maxi2I1:M �n
u
i �, in which nui is the number of unstable modes of

Ai.

(f) Zero offset. For achieving zero offset, we augment the models with

integrating disturbances such that

rank

"
I �Ai �Bdi
Ci Cdi

#
� ni � pi i 2 I1:M

Applying Theorem 6.5 then establishes exponential stability of the

solution x�k� � 0 for all k. The region of attraction is the set of states

for which the unstable modes of each subsystem can be brought to zero

in N moves, while satisfying the respective input constraints. These

conclusions apply regardless of how many iterations of the players'

optimizations are used in the control calculation. Although the closed-

loop system is exponentially stable for both coupled and uncoupled

constraints, the converged distributed controller is equal to the cen-

tralized controller only for the case of uncoupled constraints.

The exponential stability of the regulator implies that the states and

inputs of the constrainedM-player system converge to the steady-state

target. The steady-state target can be calculated as a centralized or

distributed problem. We assume the centralized target has a feasible,
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zero offset solution for the true plant disturbance. The initial state of

the plant and the estimate error must be small enough that feasibility

of the target is maintained under the nonzero estimate error.

6.5 Nonlinear Distributed MPC

In the nonlinear case, the usual model comes from physical principles

and conservation laws of mass, energy, and momentum. The state has

a physical meaning and the measured outputs usually are a subset of

the state. We assume the model is of the form

dx1
dt

� f1�x1; x2; u1; u2� y1 � C1x1
dx2
dt

� f2�x1; x2; u1; u2� y2 � C2x2

in which C1; C2 are matrices of zeros and ones selecting the part of the

state that is measured in subsystems one and two. We generally cannot

avoid state x2 dependence in the differential equation for x1. But often

only a small subset of the entire state x2 appears in f1, and vice versa.

The reason in chemical process systems is that the two subsystems are

generally coupled through a small set of process streams transferring

mass and energy between the systems. These connecting streams iso-

late the coupling between the two systems and reduce the in¯uence to

a small part of the entire state required to describe each system.

Given these physical system models of the subsystems, the overall

plant model is
dx

dt
� f�x;u� y � Cx

with

x �
"
x1
x2

#
u �

"
u1

u2

#
f �

"
f1
f2

#
y �

"
y1

y2

#
C �

"
C1

C2

#

6.5.1 Nonconvexity

The basic dif®culty in both the theory and application of nonlinear MPC

is the nonconvexity in the control objective function caused by the non-

linear dynamic model. This dif®culty applies even to centralized non-

linear MPC as discussed in Section 2.7, and motivates the development

of suboptimal MPC. In the distributed case, nonconvexity causes extra
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Figure 6.7: Cost contours for a two-player, nonconvex game; cost

increases for the convex combination of the two players'

optimal points.

dif®culties. As an illustration, consider the simple two-player, noncon-

vex game depicted in Figure 6.7. The cost function is

V�u1; u2� � e�2u1 � 2e�u1 � e�2u2 � 2e�u2

� a exp�����u1 � 0:2�2 � �u2 � 0:2�2��

in which a � 1:1 and � � 0:4. Each player optimizes the cooperative

objective starting at À and produces the points �u0
1; u

p
2 �, denoted Á,

and �u
p
1 ; u

0
2�, denoted Â. Consider taking a convex combination of the

two players' optimal points for the next iterate

�u
p�1
1 ; u

p�1
2 � � w1�u

0
1; u

p
2 ��w2�u

p
1 ; u

0
2� w1�w2 � 1; w1;w2 � 0

We see in Figure 6.7 that this iterate causes the objective function to

increase rather than decrease for most values ofw1,w2. Forw1 � w2 �
1=2, we see clearly from the contours that V at point Ã is greater than

V at point À.
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The possibility of a cost increase leads to the possibility of closed-

loop instability and precludes developing even a nominal control theory

for this simple approach, which was adequate for the convex, linear

plant case.4 In the centralized MPC problem, this nonconvexity issue

can be addressed in the optimizer, which can move both inputs simul-

taneously and always avoid a cost increase. One can of course consider

adding another player to the game who has access to more systemwide

information. This player takes the optimization results of the indi-

vidual players and determines a search direction and step length that

achieve a cost decrease for the overall system. This player is often

known as a coordinator. The main drawback of this approach is that

the design of the coordinator may not be signi®cantly simpler than the

design of the centralized controller.

Rather than design a coordinator, we instead let each player evaluate

the effect of taking a combination of all the players' optimalmoves. The

players can then easily ®nd an effective combination that leads to a cost

decrease. We describe one such algorithm in the next section, which

we call the distributed gradient algorithm.

6.5.2 Distributed Algorithm for Nonconvex Functions

We consider the problem

min
u
V�u� s.t. u 2 U (6.29)

in whichu 2 Rm and V : Rm ! R�0 is twice continuously differentiable

and not necessarily convex. We assume U is closed, convex, and can

be expressed as U � U1 � � � � � UM with Ui 2 Rmi for all i 2 I1:M . We

solve approximately the following subproblems at iterate p � 0 for all

i 2 I1:M
min
ui2Ui

V�ui; u
p
�i�

in which u�i � �u1; : : : ; ui�1; ui�1; : : : ; uM�. Let u
p
i denote the approx-

imate solution to these optimizations. We compute the approximate

solutions via the standard technique of line search with gradient pro-

jection. At iterate p � 0

u
p
i � Pi�upi �riV�u

p�� (6.30)

4This point marked the state of affairs at the time of publication of the ®rst edi-

tion of this text. The remaining sections summarize one approach that addresses the

nonconvexity problem (Stewart, Wright, and Rawlings, 2011).



418 Distributed Model Predictive Control

in which riV�up� is the ith component of rV�up� and Pi��� denotes
projection onto the set Ui. De®ne the step �

p
i � upi � upi . The step-

size �
p
i is chosen as follows; each suboptimizer initializes the stepsize

with �i, and then uses backtracking until �
p
i satis®es the Armijo rule

(Bertsekas, 1999, p.230)

V�up�� V�upi ��pi �pi ; up�i� � ���pi riV�u
p�0�

p
i (6.31)

in which � 2 �0;1�. After all suboptimizers ®nish backtracking, they

exchange proposed steps. Each suboptimizer forms a candidate step

u
p�1
i � upi �wi�

p
i �

p
i 8i 2 I1:M (6.32)

and checks the following inequality

V�up�1� �
X

i2I1:M

wiV�u
p
i ��pi �pi ; up�i� (6.33)

with
P
i2I1:M wi � 1 and wi > 0 for all i 2 I1:M . If condition (6.33) is

not satis®ed, then we remove the direction with the least cost improve-

ment, imax � argmaxifV�upi ��pi �pi ; up�i�g, by settingwimax
to zero and

repartitioning the remainingwi so that they sum to one. The candidate

step (6.32) is recalculated and condition (6.33) is checked again. This

process is repeated until (6.33) is satis®ed. It may happen that con-

dition (6.33) is satis®ed with only a single direction. The distributed

algorithm thus eliminates poor suboptimizer steps and ensures that

the objective function decreases at each iterate, even for nonconvex

objective functions. The proposed algorithm has the following proper-

ties.

Lemma 6.18 (Distributed gradient algorithmproperties). The distributed

gradient projection algorithm has the following properties.

(a) (Feasibility.) Given a feasible initial condition, the iterates up are

feasible for all p � 0.

(b) (Objective decrease.) The objective function decreases at every iter-

ate: V�up�1� � V�up�.
(c) (Convergence.) Every accumulation point of the sequence �up�p�0 is

a stationary point.

The proof of Lemma 6.18 is given in Stewart et al. (2011). Note

that the test of inequality (6.33) does not require a coordinator. At

each iteration the subsystems exchange the solutions of the gradient
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Figure 6.8: Nonconvex function optimized with the distributed gra-

dient algorithm. Iterations converge to local minima

from all starting points.

projection. Because each subsystem has access to the plantwidemodel,

they can evaluate the objection function, and the algorithm can be run

independently on each controller. This computation is likely a smaller

overhead than a coordinating optimization.

Figure 6.8 shows the results of applying the proposed distributed

gradient algorithm to the previous example. The problem has two

global minima located at �0:007;2:28� and �2:28;0;007�, and a local

minimum at �0:23;0:23�. The inputs are constrained: 0:1 � ui � 4 for

i 2 I1:2. The algorithm is initialized at three different starting points

�0:5;0:5�, �3:9;3:6�, and �2:99;3�. From Figure 6.8 we see that each of

these starting points converges to a different local minimum.

6.5.3 Distributed Nonlinear Cooperative Control

Next we design a controller based on the distributed optimization al-

gorithm. For simplicity of presentation, we assume that the plant con-

sists of two subsystems. We consider the standard MPC cost function
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for each system i 2 I1:2

Vi
�
x�0�;u1;u2

� � N�1X
k�0

`i
�
xi�k�;ui�k�

�� Vif �x�N��
with `i�xi; ui� denoting the stage cost, Vif �x� the terminal cost of sys-

tem i, and xi�i� � �i�k;xi;u1;u2�. Because xi is a function of both u1

and u2, Vi is a function of both u1 and u2. As in the case for linear

plants, we de®ne the plantwide objective

V
�
x1�0�; x2�0�;u1;u2

� � �1V1�x�0�;u1;u2�� �2V2�x�0�;u1;u2�
in which �1; �2 > 0 are weighting factors. To simplify notation we

use V�x;u� to denote the plantwide objective. Similarly we de®ne

the system stage cost and terminal cost as the combined stage costs

`�x;u� :� �1`1�x1; u1� � �2`2�x2; u2�, and terminal costs Vf �x� :�
�1V1f �x�� �2V2f �x�. Each subsystem has constraints of the form

u1�k� 2 U1 u2�k� 2 U2 k 2 I0:N�1
in which each Ui 2 Rmi is compact, convex, and contains the origin.

Finally, we de®ne the terminal region Xf to be a sublevel set of Vf .

Xf � fx j Vf �x� � ag
for some a > 0.

We next modify the standard stability assumption to account for

the distributed nature of the problem.

Assumption 6.19 (Basic stability assumption (distributed)). Vf ���, Xf ,
and `��� have the following properties.

(a) For all x 2 Xf , there exists �u1; u2� (such that �x;u1; u2� 2 Rn �
U1 �U2) satisfying

f�x;u1; u2� 2 Xf
Vf �f �x;u1; u2��� Vf �x� � �`�x;u1; u2�

(b) For each i 2 I1:2, there existK1 functions �i���, and �f ��� satisfy-
ing

`i�xi; ui� � �i�jxij� 8�xi; ui� 2 XN � Ui
Vf �x� � �f �jxj� 8x 2 Xf
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This assumption implies that there exist local controllers �if : Xf !
Ui for all i 2 I1:2 such that for all x 2 Xf

Vf
�
f�x; �1f �x�; �2f �x��

�� Vf �x� � �`�x;�1f �x�; �2f �x�� (6.34)

with f�x; �1f �x�; �2f �x�� 2 Xf . Each terminal controller �if ���may be

found of¯ine.

Removing the terminal constraint in suboptimal MPC. To show sta-

bility, we require that ��N;x;u� 2 Xf . But the terminal constraint on

the state shows up as a coupled input constraint in each subsystem's

optimization problem. As we have already discussed, coupled input

constraints may prevent the distributed algorithm from converging to

the optimal plantwide control (Stewart, Venkat, Rawlings, Wright, and

Pannocchia, 2010). The terminal constraint can be removed from the

control problem by modifying the terminal penalty, however, as we

demonstrate next.

For some � � 1, we de®ne the objective function

V��x;u� �
N�1X
k�0

`�x�k�;u�k��� �Vf �x�N�� (6.35)

and the set of admissible initial �x;u� as

Z0 � f�x;u� 2 X� UN j V��x;u� � V; ��N;x;u� 2 Xf g (6.36)

in which V > 0 is an arbitrary constant and X � Rn. The set of initial

states X0 is the projection of Z0 onto X

X0 � fx 2 X j 9u such that �x;u� 2 Z0g

We have the following result.

Proposition 6.20 (Terminal constraint satisfaction). Let f�x�k�;u�k�� j
k 2 I�0g denote the set of states and control sequences generated by

the suboptimal system. There exists a � > 1 such that for all � � �, if
�x�0�;u�0�� 2 Z0, then �x�k�;u�k�� 2 Z0 with ��N;x�k�;u�k�� 2 Xf

for all k 2 I�0.

The proof of this proposition is given in Stewart et al. (2011). We

are now ready to de®ne the cooperative control algorithm for nonlinear

systems.
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Cooperative control algorithm. Letx�0� be the initial state and ue 2 U
be the initial feasible input sequence for the cooperative MPC algorithm

such that ��N;x�0�;ue� 2 Xf . At each iterate p, an approximate solu-

tion of the following optimization problem is computed

min
u
V
�
x1�0�; x2�0�;u1;u2

�
s.t. x�1 � f1�x1; x2; u1; u2�

x�2 � f2�x1; x2; u1; u2�

ui 2 UNi 8i 2 I1:2
juij � �i�jxi�0�j� if x�0� 2 Br 8i 2 I1:2 (6.37)

in which �i��� 2 K1 and r > 0 can be chosen as small as desired.

We can express (6.37) in the form of (6.29) by eliminating the model

equality constraints. To implement distributed control, we simply use

the distributed gradient algorithm to solve (6.37).

Denote the solution returned by the algorithm as uÅp�x;ue�. The

®rst element of the sequence, denoted � Åp�x�0�� � uÅp�0;x�0�;ue�, is
injected into the plant. To reinitialize the algorithm at the next sample

time, we compute the warm start

ue�1 � fu1�1�;u1�2�; : : : ; u1�N � 1�; �1f
�
x�N�

�g
ue�2 � fu2�1�;u2�2�; : : : ; u2�N � 1�; �2f

�
x�N�

�g
in which x�N� � ��N;x�0�;u1;u2�. We expect that it is not possible

to solve (6.37) to optimality in the available sample time, and the dis-

tributed controller is therefore a form of suboptimal MPC. The proper-

ties of the closed-loop system are therefore analyzed using suboptimal

MPC theory.

6.5.4 Stability of Distributed Nonlinear Cooperative Control

We ®rst show that the plantwide objective function decreases between

sampling times. Let �x;u� be the state and input sequence at some

time. Using the warm start as the initial condition at the next sample
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time, we have

V�x�;ue�� � V�x;u�� �1`1�x1; u1�� �2`2�x2; u2�

��1V1f �x�N��� �2V2f �x�N��
��1`1

�
x1�N�; �1f

�
x�N�

��� �2`2�x2�N�; �2f �x�N���
��1V1f

�
f1
�
x1�N�;x2�N�; �1f

�
x�N�

�
; �2f

�
x�N�

���
��2V2f

�
f2
�
x1�N�;x2�N�; �1f �x�N��; �2f �x�N��

��
From (6.34) of the stability assumption, we have that

V�x�;ue�� � V�x;u�� �1`1�x1; u1�� �2`2�x2; u2�

By Lemma 6.18(b), the objective function cost only decreases from this

warm start, so that

V�x�;u�� � V�x;u�� �1`1�x1; u1�� �2`2�x2; u2�

and we have the required cost decrease of a Lyapunov function

V�x�;u��� V�x;u� � ���j�x;u�j� (6.38)

in which ��j�x;u�j� � �1�1�j�x1; u1�j�� �2�2�j�x2; u2�j�.
We can now state the main result. Let XN be the admissible set of

initial states for which the control optimization (6.37) is feasible.

Theorem6.21 (Asymptotic stability). Let Assumptions 2.2, 2.3, and 6.19

hold, and let V��� V���� from Proposition 6.20. Then for every x�0� 2
XN , the origin is asymptotically stable for the closed-loop system x� �
f�x; � Åp�x��.

The proof follows, with minor modi®cation, the proof that subopti-

mal MPC is asymptotically stable in Theorem 2.48. As in the previous

sections, the controller has been presented for the case of two subsys-

tems, but can be extended to any ®nite number of subsystems.

We conclude the discussion of nonlinear distributed MPC by revis-

iting the unstable nonlinear example system presented in Stewart et al.

(2011).

Example 6.22: Nonlinear distributed control

We consider the unstable nonlinear system

x�1 � x2
1 � x2 �u3

1 �u2

x�2 � x1 � x2
2 �u1 �u3

2
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with initial condition �x1; x2� � �3;�3�. The control objective is to

stabilize the system and regulate the states to the origin. We use a

standard quadratic stage cost

`1�x1; u1� �1
2
�x01Q1x1 �u01R1u1�

`2�x2; u2� �1
2
�x02Q2x2 �u02R2u2�

with Q1;Q2 > 0 and R1; R2 > 0. This stage cost gives the objective

function

V�x;u� � 1

2

N�1X
k�0

x�k�0Qx�k��u�k�0Ru�k�� Vf �x�N��

in which Q � diag�Q1;Q2�, R � diag�R1; R2�. The terminal penalty

is de®ned in the standard way for centralized MPC; we linearize the

system at the steady state, and design an LQ controller for the lin-

earized system. The terminal region is then a sublevel set of the termi-

nal penalty chosen small enough to satisfy the input constraints. We

use the following parameter values in the simulation study

Q � I R � I N � 2 p � 3 Ui � ��2:5;2:5� 8i 2 I1:2

Figure 6.9 shows that the controller is stabilizing for as few as p � 3

iterations. Increasing the maximum number of iterations can signi®-

cantly improve the performance. Figure 6.9 shows the performance

improvement for p � 10, which is close to the centralized MPC per-

formance. To see the dif®culty in optimizing the nonconvex objec-

tive function, iterations of the initial control optimization are shown

in Figure 6.10 for the N � 1 case. Clearly the distributed optimization

method is able to ef®ciently handle this nonconvex objective with only

a few iterations. �

6.6 Notes

At least three different ®elds have contributed substantially to the ma-

terial presented in this chapter. We attempt here to point out brie¯y

what each ®eld has contributed, and indicate what literature the inter-

ested reader may wish to consult for further pursuing this and related

subjects.
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Figure 6.9: Closed-loop state and control evolution with �x1�0�;

x2�0�� � �3;�3�. Setting p � 10 approximates the cen-

tralized controller.

Game theory. Game theory emerged in the mid-1900s to analyze situ-

ations in which multiple players follow a common set of rules but have

their own and different objectives that they try to optimize in com-

petition with each other. Von Neumann and Morgenstern introduced

the classic text on this subject, ªTheory of Games and Economic Behav-

ior,º in 1944. A principle aim of game theory since its inception was to

model and understand human economic behavior, especially as it arises

in a capitalistic, free-market system. For that reason, much of the sub-

sequent game theory literature was published in economics journals

rather than systems theory journals. This ®eld has contributed richly

to the ideas and vocabulary used in this chapter to describe distributed

control. For example, the game in which players have different objec-

tives is termed noncooperative. The equilibrium of a noncooperative

game is known as a Nash equilibrium (Nash, 1951). The Nash equilib-

rium is usually not Pareto optimal, which means that the outcomes for
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Figure 6.10: Contours of V�x�0�;u1;u2� with N � 1 at k � 0, �x1�0�;

x2�0�� � �3;�3�. Iterations of the subsystem con-

trollers with initial condition �u0
1; u

0
2� � �0;0�.

all players can be improved simultaneously from the Nash solution. A

comprehensive overview of the game theory literature, especially the

parts relevant to control theory, is provided by BaËsar and Olsder (1999,

Chapter 1), which is a highly recommended reference. Analyzing the

equilibria of a noncooperative game is usually more complex than the

cooperative game (optimal control problem). The closed-loop proper-

ties of a receding horizon implementation of any of these game theory

solutions is not addressed in game theory. That topic is addressed by

control theory.

Distributed optimization. The optimization community has exten-

sively studied the issue of solving large-scale optimization problems

using distributed optimization methods. The primary motivation in

this ®eld is to exploit parallel computing hardware and distributed

data communication networks to solve large optimization problems

faster. Bertsekas and Tsitsiklis provide an excellent and comprehen-

sive overview of this ®eld, focusing on numerical algorithms for imple-
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menting the distributed approaches. The important questions that are

addressed in designing a distributed optimization are: task allocation,

communication, and synchronization (Bertsekas and Tsitsiklis, 1997,

Chapter 1).

These basic concepts arise in distributed problems of all types, and

therefore also in the distributed MPC problem, which provides good

synergy between these ®elds. But one should also note the structural

distinctions between distributed optimization and distributedMPC. The

primary obstacle to implementing centralizedMPC for large-scale plants

is not computational but organizational. The agents considered in dis-

tributed MPC are usually existing MPC systems already built for units

or subsystems within an existing large-scale process. The plant man-

agement often is seeking to improve the plant performance by bet-

ter coordinating the behavior of the different agents already in opera-

tion. Ignoring these structural constraints and treating the distributed

MPC problem purely as a form of distributed optimization, ignores as-

pects of the design that are critical for successful industrial applica-

tion (Rawlings and Stewart, 2008).

Control theory. Researchers have long studied the issue of how to dis-

tribute control tasks in a complex large-scale plant (MesaroviÂc, Macko,

and Takahara, 1970; Sandell Jr., Varaiya, Athans, and Safonov, 1978).

The centralized controller and decentralized controller de®ne two lim-

iting design extremes. Centralized control accounts for all possible

interactions, large and small, whereas decentralized control ignores

them completely. In decentralized control the local agents have no

knowledge of each others' actions. It is well known that the nominal

closed-loop system behavior under decentralized control can be arbi-

trarily poor (unstable) if the system interactions are not small. The

following reviews provide general discussion of this and other perfor-

mance issues involving decentralized control (ÏSiljak, 1991; Lunze, 1992;

Larsson and Skogestad, 2000; Cui and Jacobsen, 2002).

The next level up in design complexity from decentralized control is

noncooperative control. In this framework, the agents have interaction

models and communicate at each iteration (Jia and Krogh, 2002; Motee

and Sayyar-Rodsari, 2003; Dunbar and Murray, 2006). The advantage

of noncooperative control over decentralized control is that the agents

have accurate knowledge of the effects of all other agents on their local

objectives. The basic issue to analyze and understand in this setup is

the competition between the agents. Characterizing the noncoopera-

tive equilibrium is the subject of noncooperative game theory, and the
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impact of using that solution for feedback control is the subject of con-

trol theory. For example, Dunbar (2007) shows closed-loop stability for

an extension of noncooperative MPC described in (Dunbar and Murray,

2006) that handles systems with interacting subsystem dynamics. The

key assumptions are the existence of a stabilizing decentralized feed-

back law valid near the origin, and an inequality condition limiting the

coupling between the agents.

Cooperative MPC was introduced by Venkat, Rawlings, and Wright

(2007). They show that a receding horizon implementation of a coop-

erative game with any number of iterates of the local MPC controllers

leads to closed-loop stability for linear dynamics. Venkat, Rawlings,

and Wright (2006a,b) show that state estimation errors (output instead

of state feedback) do not change the system closed-loop stability if the

estimators are also asymptotically stable. Most of the theoretical re-

sults on cooperative MPC of linear systems given in this chapter are

presented in Venkat (2006) using an earlier, different notation. If im-

plementable, this form of distributed MPC clearly has the best control

properties. Although one can easily modify the agents' objective func-

tions in a single large-scale process owned by a single company, this

kind of modi®cation may not be possible in other situations in which

competing interests share critical infrastructure.

The requirements of the many different classes of applications con-

tinue to create exciting opportunities for continued research in this

®eld. An excellent recent review provides a useful taxonomy of the dif-

ferent features of the different approaches (Scattolini, 2009). A recent

text compiles no less than 35 different approaches to distributed MPC

from more than 80 contributors (Maestre and Negenborn, 2014). The

growth in the number and diversity of applications of distributed MPC

shows no sign of abating.
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6.7 Exercises

Exercise 6.1: Three looks at solving the LQ problem (LQP)

In the following exercise, you will write three codes to solve the LQR using Octave or

MATLAB. The objective function is the LQR with mixed term

V � 1

2

N�1X
k�0

�
x�k�0Qx�k��u�k�0Ru�k�� 2x�k�0Mu�k�

�� �1=2�x�N�0Pfx�N�
First, implement the method described in Section 6.1.1 in which you eliminate the

state and solve the problem for the decision variable

u � �u�0�;u�1�; : : : ; u�N � 1��

Second, implement the method described in Section 6.1.1 in which you do not elim-

inate the state and solve the problem for

z � �u�0�; x�1�;u�1�; x�2�; : : : ; u�N � 1�; x�N��

Third, use backward dynamic programming (DP) and the Riccati iteration to com-

pute the closed-form solution for u�k� and x�k�.

(a) Let

A �
"
4=3 �2=3
1 0

#
B �

"
1

0

#
C �

h
�2=3 1

i
x�0� �

"
1

1

#

Q � C0C � 0:001I Pf � � R � 0:001 M � 0

in which the terminal penalty, Pf is set equal to �, the steady-state cost to go.

Compare the three solutions for N � 5. Plot x�k�, u�k� versus time for the

closed-loop system.

(b) Let N � 50 and repeat. Do any of the methods experience numerical problems

generating an accurate solution? Plot the condition number of the matrix that

is inverted in the ®rst two methods versus N.

(c) Now consider the following unstable system

A �
26427:8 �82:6 34:6
25:6 �76:8 32:4
40:6 �122:0 51:9

375 B �
2640:527 0:548
0:613 0:530
1:06 0:828

375 x�0� �
26411
1

375
Consider regulator tuning parameters and constraints

Q � I Pf � � R � I M � 0

Repeat parts (a) and (b) for this system. Do you lose accuracy in any of the

solution methods? What happens to the condition number of H�N� and S�N�
as N becomes large? Which methods are still accurate for this case? Can you

explain what happened?
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Exercise 6.2: LQ as least squares

Consider the standard LQP

min
u
V � 1

2

N�1X
k�0

�
x�k�0Qx�k��u�k�0Ru�k��� �1=2�x�N�0Pfx�N�

subject to

x� � Ax � Bu

(a) Set up the dense Hessian least squares problem for the LQP with a horizon of

three, N � 3. Eliminate the state equations and write out the objective function

in terms of only the decision variables u�0�;u�1�;u�2�.

(b) What are the conditions for an optimum, i.e., what linear algebra problem do

you solve to compute u�0�;u�1�;u�2�?

Exercise 6.3: Lagrange multiplier method

Consider the general least squares problem

min
x
V�x� � 1

2
x0Hx � const

subject to

Dx � d
(a) What is the Lagrangian L for this problem? What is the dimension of the Lagrange

multiplier vector, �?

(b) What are necessary and suf®cient conditions for a solution to the optimization

problem?

(c) Apply this approach to the LQP of Exercise 6.2 using the equality constraints to

represent the model equations. What are H;D;d for the LQP?

(d) Write out the linear algebra problem to be solved for the optimum.

(e) Contrast the two different linear algebra problems in these two approaches.

Which do you want to use when N is large and why?

Exercise 6.4: Reparameterizing an unstable system

Consider again the LQR problem with cross term

min
u
V � 1

2

N�1X
k�0

�
x�k�0Qx�k��u�k�0Ru�k�� 2x�k�0Mu�k�

�� �1=2�x�N�0Pfx�N�
subject to

x� � Ax � Bu
and the three approaches of Exercise 6.1.

1. The method described in Section 6.1.1 in which you eliminate the state and solve

the problem for the decision variable

u � �u�0�;u�1�; : : : ; u�N � 1��
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2. The method described in Section 6.1.1 in which you do not eliminate the state

and solve the problem for

z � �u�0�; x�1�;u�1�; x�2�; : : : ; u�N � 1�; x�N��

3. The method of DP and the Riccati iteration to compute the closed-form solution

for u�k� and x�k�.

(a) You found that unstable A causes numerical problems in the ®rst method using

large horizons. So let's consider a fourth method. Reparameterize the input in

terms of a state feedback gain via

u�k� � Kx�k�� v�k�
in which K is chosen so that A� BK is a stable matrix. Consider the matrices in

a transformed LQP

min
v
V � 1

2

N�1X
k�0

�
x�k�0Qex�k�� v�k�0Rev�k�� 2x�k�0Me v�k����1=2�x�N�0Pefx�N�

subject to x� � Aex � Bev .
What are the matricesAe ; Be;Qe ; Pef ; Re ;Me such that the two problems give the same

solution (state trajectory)?

(b) Solve the following problem using the ®rst method and the fourth method and

describe differences between the two solutions. Compare your results to the DP

approach. Plot x�k� and u�k� versus k.

A �
26427:8 �82:6 34:6
25:6 �76:8 32:4
40:6 �122:0 51:9

375 B �
2640:527 0:548
0:613 0:530
1:06 0:828

375 x�0� �
26411
1

375
Consider regulator tuning parameters and constraints

Q � Pf � I R � I M � 0 N � 50

Exercise 6.5: Recursively summing quadratic functions

Consider generalizing Example 1.1 to an N-term sum. Let the N-term sum of quadratic

functions be de®ned as

V�N;x� � 1

2

NX
i�1

�x � x�i��0Xi�x � x�i��

in which x;x�i� 2 Rn are real n-vectors and Xi 2 Rn�n are positive de®nite matrices.

(a) Show that V�N;x� can be found recursively

V�N;x� � �1=2��x � v�N��0H�N��x � v�N��� constant

in which v�i� and H�i� satisfy the recursion

H�i� 1� � Hi �Xi�1 v�i� 1� � H�1�i� 1�
�
Hivi �Xi�1x�i� 1�

�
H1 � X1 v1 � x1

Notice the recursively de®ned v�m� and H�m� provide the solutions and the

Hessian matrices of the sequence of optimization problems

min
x
V�m;x� 1 �m � N
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(b) Check your answer by solving the equivalent, but larger dimensional, constrained

least squares problem (see Exercise 1.16)

min
z
�z � z0�0He �z � z0�

subject to

Dz � 0

in which z; z0 2 RnN , He 2 RnN�nN is a block diagonal matrix, D 2 Rn�N�1��nN

z0 �

2666664
x�1�
.
.
.

x�N � 1�
x�N�

3777775 He �
2666664
X1

. . .

XN�1
XN

3777775 D �

26664
I �I

. . .
. . .

I �I

37775

(c) Compare the size and number ofmatrix inverses required for the two approaches.

Exercise 6.6: Why call the Lyapunov stability nonuniform?

Consider the following linear system

w� � Aw w�0� � Hx�0�
x � Cw

with solution w�k� � Akw�0� � AkHx�0�, x�k� � CAkHx�0�. Notice that x�0� com-

pletely determines both w�k� and x�k�, k � 0. Also note that zero is a solution, i.e.,

x�k� � 0; k � 0 satis®es the model.

(a) Consider the following case

A � �
"
cos� � sin�
sin� cos�

#
H �

"
0

�1
#

C �
h
1 �1

i
� � 0:925 � � �=4 x�0� � 1

Plot the solution x�k�. Does x�k� converge to zero? Does x�k� achieve zero

exactly for ®nite k > 0?

(b) Is the zero solution x�k� � 0 Lyapunov stable? State your de®nition of Lyapunov

stability, and prove your answer. Discuss how your answer is consistent with

the special case considered above.

Exercise 6.7: Exponential stability of suboptimal MPC with unbounded fea-
sible set

Consider again Lemma 6.5 when both U and XN are unbounded. Show that the subop-

timal MPC controller is exponentially stable on the following sets.

(a) Any sublevel set of V�x;h�x��

(b) Any compact subset of XN
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Exercise 6.8: A re®nement to the warm start

Consider the following re®nement to the warm start in the suboptimal MPC strategy.

First add the requirement that the initialization strategy satis®es the following bound

h�x� � Åd jxj x 2 XN

in which Åd > 0. Notice that all initializations considered in the chapter satisfy this

requirement.

Then, at time k and state x, in addition to the shifted input sequence from time

k � 1, ue, evaluate the initialization sequence applied to the current state, u � h�x�.
Select whichever of these two input sequence has lower cost as the warm start for time

k. Notice also that this re®nement makes the constraint

juj � d jxj x 2 rB

redundant, and it can be removed from the MPC optimization.

Prove that this re®ned suboptimal strategy is exponentially stabilizing on the set

XN . Notice that with this re®nement, we do not have to assume that XN is bounded

or that U is bounded.

Exercise 6.9: Global asymptotic stability and exponential convergence with
mixed powers of the norm

Prove Lemma 6.6.

Hints: exponential convergence can be established as in standard exponential sta-

bility theorems. To establish Lyapunov stability, notice that jx�0�j � j�x�0�; e�0��j and
je�0�j � j�x�0�; e�0��j and that ���� for � > 0 is aK1 function.

Exercise 6.10: Decentralized control of Examples 6.9±6.11

Apply decentralized control to the systems in Examples 6.9±6.11. Which of these sys-

tems are closed-loop unstable with decentralized control? Compare this result to the

result for noncooperative MPC.

Exercise 6.11: Cooperative control of Examples 6.9±6.11

Apply cooperative MPC to the systems in Examples 6.9±6.11. Are any of these systems

closed-loop unstable? Compare the closed-loop eigenvalues of converged cooperative

control to centralized MPC, and discuss any differences.

Exercise 6.12: Adding norms

Establish the following result used in the proof of Lemma 6.14. Given that w 2 Rm,

e 2 Rn

1p
2
�jwj � jej� � j�w; e�j � jwj � jej 8w;e
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V�u� �constant

u2

u1

up

u�

up�1

Figure 6.11: Optimizing a quadratic function in one set of variables

at a time.

Exercise 6.13: Padding matrices

Given a vector z and subvector u

z �

2666666666664

u�0�
x�1�
u�1�
x�2�
.
.
.

u�N � 1�
x�N�

3777777777775
u �

2666664
u�0�
u�1�
.
.
.

u�N � 1�

3777775 x 2 R
n u 2 R

m

and quadratic function of u

�1=2�u0Hu� h0u
Find the corresponding quadratic function of z so that

�1=2�z0Hzz� h0zz � �1=2�u0Hu� h0u 8z;u

Hint: ®rst ®nd the padding matrix E such that u � Ez.

Exercise 6.14: A matrix inverse

Compute the four partitioned elements in the two-player feedback gain �I � L��1K
u1 � �I � L��1Kx�0� ��eig�L��� < 1

in which

�I � L��1K �
"
I �L1
�L2 I

#�1 "
K1 0

0 K2

#
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Exercise 6.15: Optimizing one variable at a time

Consider the positive de®nite quadratic function partitioned into two sets of variables

V�u� � �1=2�u0Hu� c0u� d

V�u1; u2� � �1=2�
h
u01 u02

i"H11 H12

H21 H22

#"
u1

u2

#
�
h
c01 c02

i"u1

u2

#
� d

in which H > 0. Imagine we wish to optimize this function by ®rst optimizing over

the u1 variables holding u2 ®xed and then optimizing over the u2 variables holding u1

®xed as shown in Figure 6.11. Let's see if this procedure, while not necessarily ef®cient,

is guaranteed to converge to the optimum.

(a) Given an initial point �u
p
1 ; u

p
2 �, show that the next iteration is

u
p�1
1 � �H�111

�
H12u

p
2 � c1

�
u
p�1
2 � �H�122

�
H21u

p
1 � c2

�
(6.39)

The procedure can be summarized as

up�1 � Aup � b (6.40)

in which the iteration matrix A and constant b are given by

A �
"

0 �H�111 H12

�H�122 H21 0

#
b �

"
�H�111 c1
�H�122 c2

#
(6.41)

(b) Establish that the optimization procedure converges by showing the iteration

matrix is stable ��eig�A��� < 1

(c) Given that the iteration converges, show that it produces the same solution as

u� � �H�1c

Exercise 6.16: Monotonically decreasing cost

Consider again the iteration de®ned in Exercise 6.15.

(a) Prove that the cost function is monotonically decreasing when optimizing one

variable at a time

V�up�1� < V�up� 8up � �H�1c

(b) Show that the following expression gives the size of the decrease

V�up�1�� V�up� � ��1=2��up �u��0P�up �u��
in which

P � HD�1HeD�1H He � D �N D �
"
H11 0

0 H22

#
N �

"
0 H12

H21 0

#

and u� � �H�1c is the optimum.

Hint: to simplify the algebra, ®rst change coordinates and move the origin of the coor-

dinate system to u�.
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Exercise 6.17: One variable at a time with convex step

Consider Exercise 6.15 but with the convex step for the iteration24up�11

u
p�1
2

35 � w1

"
u0
1�u

p
2 �

u
p
2

#
�w2

"
u
p
1

u0
2�u

p
1 �

#
0 � w1;w2 w1 �w2 � 1

(a) Show that the iteration for the convex step is also of the form

up�1 � Aup � b
and the A matrix and b vector for this case are

A �
"

w2I �w1H
�1
11 H12

�w2H
�1
22 H21 w1I

#
b �

"
�w1H

�1
11

�w2H
�1
22

#"
c1
c2

#

(b) Show that A is stable.

(c) Show that this iteration also converges to u� � �H�1c.

Exercise 6.18: Monotonically decreasing cost with convex step

Consider again the problem of optimizing one variable at a time with the convex step

given in Exercise 6.17.

(a) Prove that the cost function is monotonically decreasing

V�up�1� < V�up� 8up � �H�1c
(b) Show that the following expression gives the size of the decrease

V�up�1�� V�up� � ��1=2��up �u��0P�up �u��
in which

P � HD�1HeD�1H He � D �N
D �

"
w�1

1 H11 0

0 w�1
2 H22

#
N �

"
�w�1

1 w2H11 H12

H21 �w1w
�1
2 H22

#
and u� � �H�1c is the optimum.

Hint: to simplify the algebra, ®rst change coordinates and move the origin of the coor-

dinate system to u�.

Exercise 6.19: Splitting more than once

Consider the generalization of Exercise 6.15 in which we repeatedly decompose a prob-

lem into one-variable-at-a-time optimizations. For a three-variable problemwe have the

three optimizations

u
p�1
1 � argmin

u1
V�u1; u

p
2 ; u

p
3 �

u
p�1
2 � argmin

u2
V�u

p
1 ; u2; u

p
3 � u

p�1
3 � argmin

u3
V�u

p
1 ; u

p
2 ; u3�

Is it true that

V�u
p�1
1 ; u

p�1
2 ; u

p�1
3 � � V�up1 ; u

p
2 ; u

p
3 �

Hint: you may wish to consider the following example, V�u� � �1=2�u0Hu � c0u, in
which

H �
2642 1 1

1 1 1

1 1 2

375 c �
26401
1

375 up �
26410
1

375
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Exercise 6.20: Time-varying controller iterations

We let pk � 0 be a time-varying integer-valued index representing the iterations applied

in the controller at time k.

x1�k� 1� � A1x1�k�� B11u1�0;k�� B12u2�0;k�

x2�k� 1� � A2x2�k�� B21u1�0;k�� B22u2�0;k�

u1�k� 1� � gpk1 �x1�k�; x2�k�;u1�k�;u2�k��
u2�k� 1� � gpk2 �x1�k�; x2�k�;u1�k�;u2�k��

Notice the system evolution is time-varying even though the models are time invariant

because we allow a time-varying sequence of controller iterations.

Show that cooperative MPC is exponentially stabilizing for any pk � 0 sequence.

Exercise 6.21: Stable interaction models

In some industrial applications it is preferable to partition the plant so that there are

no unstable connections between subsystems. Any inputs uj that have unstable con-
nections to outputs yi should be included in the ith subsystem inputs. Allowing an

unstable connection between two subsystems may not be robust to faults and other

kinds of system failures.5 To implement this design idea in the two-player case, we

replace Assumption 6.13 (b) with the following

Modi®ed Assumption 6.13 (Constrained two-player game).

(b) The interaction models Aij ; i � j are stable.

Prove that Modi®ed Assumption 6.13 (b) implies Assumption 6.13 (b). It may be

helpful to ®rst prove the following lemma.

Lemma 6.23 (Local detectability). Given partitioned system matrices

A �
"
A 0

0 As

#
C �

h
C Cs

i
in which As is stable, the system �A;C� is detectable if and only if the system �A;C� is
detectable.

Hint: use the Hautus lemma as the test for detectability.

Next show that this lemma and Modi®ed Assumption 6.13 (b) establishes the dis-

tributed detectability assumption, Assumption 6.13 (b).

Exercise 6.22: Norm constraints as linear inequalities

Consider the quadratic program (QP) in decision variable u with parameter x

min
u
�1=2�u0Hu� x0Du
s.t. Eu � Fx

5We are not considering the common instability of base-level inventory management

in this discussion. It is assumed that level control in storage tanks (integrators) is

maintained at all times with simple, local level controllers. The internal unit ¯owrates

dedicated for inventory management are not considered available inputs in the MPC

problem.
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in which u 2 Rm, x 2 Rn, and H > 0. The parameter x appears linearly (af®nely) in

the cost function and constraints. Assume that we wish to add a norm constraint of

the following form

juj� � c jxj� � � 2;1

(a) If we use the in®nity norm, show that this problem can be posed as an equivalent

QP with additional decision variables, and the cost function and constraints re-

main linear (af®ne) in parameterx. Howmany decision variables and constraints

are added to the problem?

(b) If we use the two norm, show that this problem can be approximated by a QP

whose solution does satisfy the constraints, but the solution may be suboptimal

compared to the original problem.

Exercise 6.23: Steady-state noncooperative game

Consider again the steady-state target problem for the system given in Example 6.12.

(a) Resolve the problem for the choice of convex step parameters w1 � 0:2, w2 �
0:8. Does the iteration for noncooperative control converge? Plot the iterations

for the noncooperative and cooperative cases.

(b) Repeat for the convex step w1 � 0:8;w2 � 0:2. Are the results identical to the

previous part? If not, discuss any differences.

(c) For what choices of w1;w2 does the target iteration converge using noncooper-

ative control for the target calculation?

Exercise 6.24: Optimality conditions for constrained optimization

Consider the convex quadratic optimization problem

min
u
V�u� subject to u 2 U

in which V is a convex quadratic function and U is a convex set. Show that u� is an

optimal solution if and only if

hz �u�;�r V ju�i � 0 8z 2 U (6.42)

Figure 6.12(a) depicts this condition for u 2 R2. This condition motivates de®ning the

normal cone (Rockafellar, 1970) to U at u� as follows

N�U; u�� � fy j hz �u�; y �u�i � 0 8z 2 Ug
The optimality condition can be stated equivalently as u� is an optimal point if and

only if the negative gradient is in the normal cone to U at u�

�r V ju� 2 N�U; u��
This condition and the normal cone are depicted in Figure 6.12(b).

Exercise 6.25: Partitioned optimality conditions with constraints

Consider a partitioned version of the constrained optimization problem of Exercise 6.24

with uncoupled constraints

min
u1;u2

V�u1; u2� subject to u1 2 U1 u2 2 U2

in which V is a quadratic function and U1 and U2 are convex and nonempty.



6.7 Exercises 439

U

z

�rV

u�

V � c2 < c1

V � c1

�

U

�rV

u�

N�U; u��

(b)(a)

Figure 6.12: (a) Optimality of u� means the angle between �rV and

any point z in the feasible region must be greater than

90� and less than 270�. (b) The same result restated:

u� is optimal if and only if the negative gradient is in

the normal cone to the feasible region at u�, �rV ju� 2
N�U; u��.

(a) Show that �u�1 ; u
�
2 � is an optimal solution if and only if

hz1 �u�1 ;�ru1 V j�u�1 ;u�2 �i � 0 8z1 2 U1

hz2 �u�2 ;�ru2 V j�u�1 ;u�2 �i � 0 8z2 2 U2 (6.43)

(b) Extend the optimality conditions to cover the case

min
u1;:::;uM

V�u1; : : : ; uM� subject to uj 2 Uj j � 1; : : : ;M

in which V is a quadratic function and the Uj are convex and nonempty.

Exercise 6.26: Constrained optimization of M variables

Consider an optimization problem with M variables and uncoupled constraints

min
u1;u2;:::;uM

V�u1; u2; : : : ; uM� subject to ul 2 Uj j � 1; : : : ;M

in which V is a strictly convex function. Assume that the feasible region is convex and

nonempty and denote the unique optimal solution as �u�1 ; u
�
2 ; : : : ; u

�
M� having cost

V� � V�u�1 ; : : : ; u�M�. Denote the M one-variable-at-a-time optimization problems at

iteration k

z
p�1
j � argmin

uj
V�u

p
1 ; : : : ; uj ; : : : ; u

p
M� subject to uj 2 Uj

Then de®ne the next iterate to be the following convex combination of the previous

and new points

u
p�1
j � �pj z

p�1
j � �1��pj �u

p
j j � 1; : : : ;M

" � �pj < 1 0 < " j � 1; : : : ;M; p � 1

MX
j�1

�
p
j � 1; p � 1

Prove the following results.
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(a) Starting with any feasible point, �u0
1; u

0
2; : : : ; u

0
M�, the iterations �u

p
1 ; u

p
2 ; : : : ; u

p
M�

are feasible for p � 1.

(b) The objective function decreases monotonically from any feasible initial point

V�u
p�1
1 ; : : : ; u

p�1
M � � V�up1 ; : : : ; u

p
M� 8u0

l 2 Uj ; j � 1; : : : ;M; p � 1

(c) The cost sequence V�u
p
1 ; u

p
2 ; : : : ; u

p
M� converges to the optimal cost V� from

any feasible initial point.

(d) The sequence �u
p
1 ; u

p
2 ; : : : ; u

p
M� converges to the optimal solution �u�1 ; u

�
2 ; : : : ;

u�M� from any feasible initial point.

Exercise 6.27: The constrained two-variable special case

Consider the special case of Exercise 6.26 with M � 2

min
u1;u2

V�u1; u2� subject to u1 2 U1 u2 2 U2

in which V is a strictly positive quadratic function. Assume that the feasible region

is convex and nonempty and denote the unique optimal solution as �u�1 ; u
�
2 � having

cost V� � V�u�1 ; u�2 �. Consider the two one-variable-at-a-time optimization problems

at iteration k

u
p�1
1 � argmin

u1
V�u1; u

p
2 � u

p�1
2 � argmin

u2
V�u

p
1 ; u2�

subject to u1 2 U1 subject to u2 2 U2

We know from Exercise 6.15 that taking the full step in the unconstrained problem

with M � 2 achieves a cost decrease. We know from Exercise 6.19 that taking the full

step for an unconstrained problem with M � 3 does not provide a cost decrease in

general. We know from Exercise 6.26 that taking a reduced step in the constrained

problem for all M achieves a cost decrease. That leaves open the case of a full step for

a constrained problem with M � 2.

Does the full step in the constrained case for M � 2 guarantee a cost decrease? If

so, prove it. If not, provide a counterexample.

Exercise 6.28: Subsystem stability constraints

Show that the following uncoupled subsystem constraints imply an overall system con-

straint of the same type. The ®rst is suitable for asymptotic stability and the second

for exponential stability.

(a) Given r1; r2 > 0, and functions 1 and 2 of class K, assume the following

constraints are satis®ed

ju1j � 1�jx1j� x1 2 r1B
ju2j � 2�jx2j� x2 2 r2B

Show that there exists r > 0 and function  of classK such that

j�u1;u2�j � �j�x1; x2�j� �x1; x2� 2 rB (6.44)
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(b) Given r1; r2 > 0, and constants c1; c2; �1; �2 > 0, assume the following con-

straints are satis®ed

ju1j � c1 jx1j�1 x1 2 r1B
ju2j � c2 jx2j�2 x2 2 r2B

Show that there exists r > 0 and function c;� > 0 such that

j�u1;u2�j � c j�x1; x2�j� �x1; x2� 2 rB (6.45)

Exercise 6.29: Distributed disturbance detectability

Prove Lemma 6.16.

Hint: use the Hautus lemma as the test for detectability.

Exercise 6.30: Distributed target problem and uncoupled constraints

Player one's distributed target problem in the two-player game is given in (6.28)

min
x11s ;x21s ;u1s

�1=2�

"
H1y1s � z1sp
H2y2s � z2sp

#0 "
T1s

T2s

#"
H1y1s � z1sp
H2y2s � z2sp

#
subject to

"
I �A1 �B11 �B12

I �A2 �B21 �B22

#26664
x1s
x2s
u1s

u2s

37775 �
"
B1d Ãd1�k�

B2d Ãd2�k�

#

E1u1s � e1
Show that the constraints can be expressed so that the target problem constraints are

uncoupled.
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7

Explicit Control Laws for Constrained

Linear Systems

7.1 Introduction

In preceding chapters we show howmodel predictive control (MPC) can

be derived for a variety of control problems with constraints. It is in-

teresting to recall the major motivation for MPC; solution of a feedback

optimal control problem for constrained and/or nonlinear systems to

obtain a stabilizing control law is often prohibitively dif®cult. MPC

sidesteps the problem of determining a control law ���� by determin-

ing, instead, at each state x encountered, a control action u � ��x�
by solving a mathematical programming problem. This procedure, if

repeated at every state x, yields an implicit control law ���� that solves
the original feedback problem. In many cases, determining an explicit

control law is impractical while solving a mathematical programming

problem online for a given state is possible; this fact has led to the

wide-scale adoption of MPC in the chemical process industry.

Some of the control problems for which MPC has been extensively

used, however, have recently been shown to be amenable to analysis,

at least for relatively simple systems. One such problem is control of

linear discrete time systems with polytopic constraints, for which de-

termination of a stabilizing control law was thought in the past to be

prohibitively dif®cult. It has been shown that it is possible, in principle,

to determine a stabilizing control law for some of these control prob-

lems. This result is often referred to as explicit MPC because it yields an

explicit control law in contrast to MPC that yields a control action for

each encountered state, thereby implicitly de®ning a control law. There

are two objections to this terminology. First, determination of control

laws for a wide variety of control problems has been the prime concern

of control theory since its birth and certainly before the advent of MPC,

445
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an important tool in this endeavor being dynamic programming (DP).

The new result shows that classical control-theoretic tools, such as DP,

can be successfully applied to a wider range of problems than was pre-

viously thought possible. MPC is a useful method for implementing

an implicit control law that can, in principle, be explicitly determined

using control-theoretic tools.

Second, some authors using this terminology have, perhaps inad-

vertently, implied that these results can be employed in place of con-

ventional MPC. This is far from the truth, since only relatively simple

problems, far simpler than those routinely solved in MPC applications,

can be solved. That said, the results may be useful in applications

where models with low state dimension are suf®ciently accurate and

where it is important that the control be rapidly computed. A previ-

ously determined control law may yield the control action more rapidly

than solving an optimal control problem. Potential applications include

vehicle control.

In the next section we give a few simple examples of parametric

programming. In subsequent sections we show how the solutions to

parametric linear and quadratic programs may be obtained, and also

show how these solutions may be used to solve optimal control prob-

lems when the system is linear, the cost quadratic or af®ne, and the

constraints polyhedral.

7.2 Parametric Programming

A conventional optimization problem has the form V0 � minufV�u� j
u 2 Ug where u is the ªdecisionº variable, V�u� is the cost to be min-

imized, and U is the constraint set. The solution to a conventional

optimization is a point or set in U; the value V0 of the problem satis-

®es V0 � V�u0� where u0 is a minimizer. A simple example of such

a problem is V0 � minufa � bu � �1=2�cu2 j u 2 ��1;1�g where

the solution is required for only one value of the parameters a;b and

c. The solution to this problem u0 � �b=c if jb=cj � 1, u0 � �1 if

b=c � 1 and u0 � 1 if b=c � �1. This may be written more compactly

as u0 � �sat�b=c� where sat��� is the saturation function. The corre-

sponding value is V0 � a � b2=2c if jb=cj � 1, V0 � a � b � c2=2 if

b=c � 1 and V0 � a� b � c2=2 if b=c � �1.
A parametric programming problem P�x� on the other hand, takes

the form V0�x� � minufV�x;u� j u 2 U�x�g where x is a parame-

ter so that the optimization problem, and its solution, depend on the
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value of the parameter. Hence, the solution to a parametric program-

ming problem P�x� is not a point or set but a function x , u0�x�

that may be set valued; similarly the value of the problem is a function

x , V0�x�. At each x, the minimizer u0�x� may be a point or a set.

Optimal control problems often take this form, with x being the state,

and u, in open-loop discrete time optimal control, being a control se-

quence; u0�x�, the optimal control sequence, is a function of the initial

state. In state feedback optimal control, necessary when uncertainty is

present, DP is employed yielding a sequence of parametric optimiza-

tion problems in each of which x is the state and u a control action;

see Chapter 2. The programming problem in the ®rst paragraph of this

section may be regarded as a parametric programming problem with

the parameter x :� �a; b; c�, V�x;u� :� �x1 � x2u� �1=2�x3u2=2� and

U�x� :� ��1;1�; U�x�, in this example, does not depend on x. The

solution to this problem yields the functions u0��� and V0��� de®ned
by u0�x� � �sat�x2=x3� and V0�x� � V�x;u0�x�� � x1 � x2u0�x� �
�x3=2��u0�x��2.

Because theminimizer and value of a parametric programming prob-

lem are functions rather than points or sets, we would not, in general,

expect to be able to compute a solution. Surprisingly, parametric pro-

grams may be solved when the cost function V��� is af®ne (V�x;u� �
a�b0x�c0u) or quadratic (V�x;u� � �1=2�x0Qx�x0Su��1=2�u0Ru)
and U�x� is de®ned by a set of af®ne inequalities: U�x� � fu j Mu �
Nx � pg. The parametric constraint u 2 U�x� may be conveniently

expressed as �x;u� 2 Z where Z is a subset of �x;u�-space which we

will take to be Rn �Rm; for each x

U�x� � fu j �x;u� 2 Zg
We assume that x 2 Rn and u 2 Rm. Let X � Rn be de®ned by

X :� fx j 9u such that �x;u� 2 Zg � fx j U�x� �;g
The setX is the domain of V0��� andu0��� and is thus the set of points

x for which a feasible solution of P�x� exists; it is the projection of Z

(which is a set in �x;u�-space) onto x-space. See Figure 7.1, which

illustrates Z and U�x� for the case when U�x� � fu j Mu � Nx � pg;
the set Z is thus de®ned by Z :� f�x;u� j Mu � Nx � pg. In this case,

both Z and U�x� are polyhedral.
Before proceeding to consider parametric linear and quadratic pro-

gramming, some simple examples may help the reader to appreciate

the underlying ideas. Consider ®rst a very simple parametric linear
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U�x�
Z

u

x

X

Figure 7.1: The sets Z, X, and U�x�.

u0�x� Z

constraint

0 x

u

Figure 7.2: Parametric linear program.

program minufV�x;u� j �x;u� 2 Zg where V�x;u� :� x � u and

Z :� f�x;u� j u � x � 0; u � x � 0g so that U�x� � fu j u � �x;
u � xg. The problem is illustrated in Figure 7.2. The set Z is the region

lying above the two solid lines u � �x and u � x, and is convex.

The gradient ruV�x;u� � 1 everywhere, so the solution, at each x,

to the parametric program is the smallest u in U�x�, i.e., the smallest

u lying above the two lines u � �x and u � x. Hence u0�x� � �x
if x � 0 and u0�x� � x if x � 0, i.e., u0�x� � jxj; the graph of

u0��� is the dashed line in Figure 7.2. Both u0��� and V0���, in which

V0�x� � x�u0�x�, are piecewise af®ne, being af®ne in each of the two

regions X1 :� fx j x � 0g and X2 :� fx j x � 0g.
Next consider an unconstrained parametric quadratic program (QP)

minu V�x;u� where V�x;u� :� �1=2��x � u�2 � u2=2. The problem is
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u0�x�
u

x

Figure 7.3: Unconstrained parametric quadratic program.

u
Z

u0�x�

constraint

x

u0
uc�x�

Figure 7.4: Parametric quadratic program.

illustrated in Figure 7.3. For each x 2 R, ruV�x;u� � �x � 2u and

ruuV�x;u� � 2 so that u0�x� � x=2 and V0�x� � x2=4. Hence u0���
is af®ne and V0��� is quadratic in R.

We now add the constraint set Z :� f�x;u� j u � 1; u�x=2 � 2; u�
x � 2g; see Figure 7.4. The solution is de®ned on three regions, X1 :�
��1;0�, X2 :� �0;2�, and X3 :� �2;1�. From the preceding example,

the unconstrained minimum is achieved at u0
uc�x� � x=2 shown by the

solid straight line in Figure 7.4. Since ruV�x;u� � �x � 2u, ruV�x;
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u� > 0 for all u > u0
uc�x� � x=2. Hence, in X1, u0�x� lies on the

boundary of Z and satis®es u0�x� � 2 � x. Similarly, in X2, u0�x�

lies on the boundary of Z and satis®es u0�x� � 2 � x=2. Finally, in

X3, u0�x� � u0
uc�x� � x=2, the unconstrained minimizer, and lies in

the interior of Z for x > 1. The third constraint u � 2 � x is active

in X1, the second constraint u � 2 � x=2 is active in X2, while no

constraints are active in X3. Hence the minimizer u0��� is piecewise

af®ne, being af®ne in each of the regions X1, X2 and X3. Since V0�x� �
�1=2�

��x �u0�x�
��2 � u0�x�2=2, the value function V0��� is piecewise

quadratic, being quadratic in each of the regions X1, X2 and X3.

We require, in the sequel, the following de®nitions.

De®nition 7.1 (Polytopic (polyhedral) partition). A set P � fZi j i 2 Ig,
for some index set I , is called a polytopic (polyhedral) partition of the

polytopic (polyhedral) set Z if Z � [i2IZi and the sets Zi, i 2 I , are
polytopes (polyhedrons) with nonempty interiors (relative to Z)1 that

are nonintersecting: int�Zi�\ int�Zj� � ; if i � j.

De®nition 7.2 (Piecewise af®ne function). A function f : Z ! Rm is

said to be piecewise af®ne on a polytopic (polyhedral) partition P �
fZi j i 2 Ig if it satis®es, for some Ki, ki, i 2 I , f�x� � Kix � ki for all
x 2 Zi, all i 2 I . Similarly, a function f : Z ! R is said to be piecewise

quadratic on a polytopic (polyhedral) partition P � fZi j i 2 Ig if it
satis®es, for some Qi, ri, and si, i 2 I , f�x� � �1=2�x0Qix � r 0ix � si
for all x 2 Zi, all i 2 I .

Note the piecewise af®ne and piecewise quadratic functions de®ned

this way are not necessarily continuous and may, therefore, be set val-

ued at the intersection of the de®ning polyhedrons. An example is the

piecewise af®ne function f��� de®ned by

f�x� :� �x � 1 x 2 ��1;0�
:� x � 1 x 2 �0;1�

This function is set valued at x � 0 where it has the value f�0� � f�1;
1g. We shall mainly be concerned with continuous piecewise af®ne and

piecewise quadratic functions.

We now generalize the points illustrated by our example above and

consider, in turn, parametric quadratic programming and parametric

1The interior of a set S � Z relative to the set Z is the set fz 2 S j "�z�B\ aff�Z� �
Z for some " > 0g where aff�Z� is the intersection of all af®ne sets containing Z.
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linear programming and their application to optimal control problems.

We deal with parametric quadratic programming ®rst because it ismore

widely used and because, with reasonable assumptions, the minimizer

is unique making the underlying ideas somewhat simpler to follow.

7.3 Parametric Quadratic Programming

7.3.1 Preliminaries

The parametric QP P�x� is de®ned by

V0�x� �min
u
fV�x;u� j �x;u� 2 Zg

where x 2 Rn and u 2 Rm. The cost function V��� is de®ned by

V�x;u� :� �1=2�x0Qx �u0Sx � �1=2�u0Ru� q0x � r 0u� c
and the polyhedral constraint set Z is de®ned by

Z :� f�x;u� j Mx � Nu� pg
where M 2 Rr�n, N 2 Rr�m and p 2 Rr ; thus Z is de®ned by r af®ne

inequalities. Let u0�x� denote the solution of P�x� if it exists, i.e., if

x 2 X, the domain of V0���; thus
u0�x� :� argmin

u
fV�x;u� j �x;u� 2 Zg

The solution u0�x� is unique if V��� is strictly convex in u; this is the

case if R is positive de®nite. Let the matrix Q be de®ned by

Q :�
"
Q S0

S R

#

For simplicity we assume the following in the sequel.

Assumption 7.3 (Strict convexity). The matrix Q is positive de®nite.

Assumption 7.3 implies that both R andQ are positive de®nite. The

cost function V��� may be written in the form

V�x;u� � �1=2��x;u�0Q�x;u�� q0x � r 0u� c
where, as usual, the vector �x;u� is regarded as a column vector �x0;

u0�0 in algebraic expressions. The parametric QPmay also be expressed

as

V0�x� :�min
u
fV�x;u� j u 2 U�x�g



452 Explicit Control Laws for Constrained Linear Systems

where the parametric constraint set U�x� is de®ned by

U�x� :� fu j �x;u� 2 Zg � fu 2 Rm j Mu � Nx � pg
For each x the set U�x� is polyhedral. The domain X of V0��� and
u0��� is de®ned by

X :� fx j 9u 2 Rm such that �x;u� 2 Zg � fx j U�x� �;g
For all �x;u� 2 Z, let the index set I�x;u� specify the constraints that

are active at �x;u�, i.e.,

I�x;u� :� fi 2 I1:r j Miu � Nix � pig
where Mi, Ni, and pi denote, respectively, the ith row of M , N, and p.

Similarly, for any matrix or vector A and any index set I, AI denotes

the matrix or vector with rows Ai, i 2 I. For any x 2 X, the indices set
I0�x� speci®es the constraints that are active at �x;u0�x��, namely

I0�x� :� I�x;u0�x�� � fi 2 I1:r j Miu
0�x� � Nix � pig

Since u0�x� is unique, I0�x� is well de®ned. Thus u0�x� satis®es the

equation

M0
xu � N0

xx � p0x
where

M0
x :� MI0�x�; N

0
x :� NI0�x�; p

0
x :� pI0�x� (7.1)

7.3.2 Preview

We show in the sequel that V0��� is piecewise quadratic andu0��� piece-
wise af®ne on a polyhedral partition of X, the domain of both these

functions. To do this, we take an arbitrary point x in X, and show that

u0�x� is the solution of an equality constrained QP P�x� : minufV�x;
u� j M0

xu � N0
xx � p0xg in which the equality constraint is M0

xu �
N0
xx � p0x . We then show that there is a polyhedral region R0

x � X in

which x lies and such that, for all w 2 R0
x , u

0�w� is the solution of

the equality constrained QP P�w� : minufV�w;u� j M0
xu � N0

xw �p0xg
in which the equality constraints are the same as those for P�x�. It

follows that u0��� is af®ne and V0��� is quadratic in R0
x . We then show

that there are only a ®nite number of such polyhedral regions so that

u0��� is piecewise af®ne, and V0��� piecewise quadratic, on a polyhe-

dral partition of X. To carry out this program, we require a suitable

characterization of optimality. We develop this in the next subsection.

Some readers may prefer to jump to Proposition 7.8, which gives the

optimality condition we employ in the sequel.
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7.3.3 Optimality Condition for a Convex Program

Necessary and suf®cient conditions for nonlinear optimization prob-

lems are developed in Section C.2 of Appendix C. Since we are con-

cerned here with a relatively simple optimization problem where the

cost is convex and the constraint set polyhedral, we give a self-contained

exposition that uses the concept of a polar cone.

De®nition 7.4 (Polar cone). The polar cone of a cone C � Rn is the cone

C� de®ned by

C� :� fg 2 Rn j hg;hi � 0 8h 2 Cg

We recall that a set C � Rn is a cone if 0 2 C and that h 2 C implies

�h 2 C for all � > 0. A cone C is said to be generated by fai j i 2 Ig
where I is an index set if C � Pi2If�iai j �i � 0; i 2 Ig in which case

we write C � conefai j i 2 Ig. We need the following result.

Proposition 7.5 (Farkas's lemma). Suppose C is a polyhedral cone de-

®ned by

C :� fh j Ah � 0g � fh j hai; hi � 0 j i 2 I1:mg
in which, for each i, ai is the ith row of A. Then

C� � conefai j i 2 I1:mg

A proof of this result is given in Section C.2 of Appendix C; that

g 2 conefai j i 2 I1:mg implies hg;hi � 0 for all h 2 C is easily shown.

An illustration of Proposition 7.5 is given in Figure 7.5.

Next we make use of a standard necessary and suf®cient condition

of optimality for optimization problems in which the cost is convex

and differentiable and the constraint set is convex.

Proposition 7.6 (Optimality conditions for convex set). Suppose, for

each x 2 X, u , V�x;u� is convex and differentiable and U�x� is
convex. Then u is optimal for minufV�x;u� j u 2 U�x�g if and only if

u 2 U�x� and hruV�x;u�; v �ui � 0 8v 2 U�x�

Proof. This Proposition appears as Proposition C.9 in Appendix Cwhere

a proof is given. �

In our case U�x�, x 2 X, is polyhedral and is de®ned by

U�x� :� fv 2 Rm j Mv � Nx � pg (7.2)



454 Explicit Control Laws for Constrained Linear Systems
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Figure 7.5: Polar cone.

so v 2 U�x� if and only if, for all u 2 U�x�, v � u 2 U�x� � fug :�
fv �u j v 2 U�x�g. With h :� v �u

U�x��fug �
(
h 2 Rm

����� Mih � 0; i 2 I�x;u�
Mjh < Njx � pj �Mju; j 2 I1:r n I�x;u�

)

since Miu � Nix � pi for all i 2 I�x;u�. For each z � �x;u� 2 Z, let
C�x;u� denote the cone of feasible directions2 h � v � u at u, i.e.,

C�x;u� is de®ned by

C�x;u� :� fh 2 Rm j Mih � 0; i 2 I�x;u�g

Clearly

U�x��fug � C�x;u�\fh 2 Rm j Mih < Nix�pi�Miu; i 2 I1:rnI�x;u�g

so that U�x� � fug � C�x;u�; for any �x;u� 2 Z, any h 2 C�x;u�,
there exists an � > 0 such that u��h 2 U�x�. Proposition 7.6 may be

expressed as: u is optimal for minufV�x;u� j u 2 U�x�g if and only if

u 2 U�x� and hruV�x;u�;hi � 0 8h 2 U�x�� fug

We may now state a modi®ed form of Proposition 7.6.

2A direction h at u is feasible if there exists an " > 0 such that u � �h 2 U�x� for
all � 2 �0; "�.
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Proposition 7.7 (Optimality conditions in terms of polar cone). Suppose

for each x 2 X, u , V�x; �� is convex and differentiable, and U�x� is
de®ned by (7.2). Then u is optimal for minufV�x;u� j u 2 U�x�g if
and only if

u 2 U�x� and hruV�x;u�;hi � 0 8h 2 C�x;u�
Proof. We show that the condition hruV�x;u�;hi � 0 for all h 2 C�x;
u� is equivalent to the condition hruV�x;u�;hi � 0 for all h 2 U�x��
fug employed in Proposition 7.6. (i) Since U�x� � fug � C�x;u�,

hruV�x;u�;hi � 0 for all h 2 C�x;u� implies hruV�x;u�;hi � 0

for all h 2 U�x�� fug. (ii) hruV�x;u�;hi � 0 for all h 2 U�x�� fug
implies hruV�x;u�;�hi � 0 for all h 2 U�x� � fug, all � > 0. But,

for any h� 2 C�x;u�, there exists an � � 1 such that h� � �h with

h :� �1=��h� 2 U�x� � fug. Hence hruV�x;u�;h�i � hruV�x;u�;

�hi � 0 for all h� 2 C�x;u�. �

We now make use of Proposition 7.7 to obtain the optimality condi-

tion in the form we use in the sequel. For all �x;u� 2 Z, let C��x;u�
denote the polar cone to C�x;u�.

Proposition 7.8 (Optimality conditions for linear inequalities). Sup-

pose, for each x 2 X, u , V�x;u� is convex and differentiable, and

U�x� is de®ned by (7.2). Then u is optimal for minufV�x;u� j u 2
U�x�g if and only if

u 2 U�x� and �ruV�x;u� 2 C��x;u� � conefM0
i j i 2 I�x;u�g

Proof. The desired result follows from a direct application of Proposi-

tion 7.5 to Proposition 7.7. �

Note that C�x;u� and C��x;u� are both cones so that each set con-

tains the origin. In particular, C��x;u� is generated by the gradients

of the constraints active at z � �x;u�, and may be de®ned by a set of

af®ne inequalities: for each z 2 Z, there exists a matrix Lz such that

C��x;u� � C��z� � fg 2 Rm j Lzg � 0g
The importance of this result for us lies in the fact that the necessary

and suf®cient condition for optimality is satisfaction of two polyhedral

constraints, u 2 U�x� and �ruV�x;u� 2 C��x;u�. Proposition 7.8

may also be obtained by direct application of Proposition C.12 of Ap-

pendix C; C��x;u�may be recognized asNU�x��u�, the regular normal

cone to the set U�x� at u.
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7.3.4 Solution of the Parametric Quadratic Program

For the parametric programming problem P�x�, the parametric cost

function is

V�x;u� :� �1=2�x0Qx �u0Sx � �1=2�u0Ru� q0x � r 0u� c

and the parametric constraint set is

U�x� :� fu j Mu � Nx � pg

Hence, the cost gradient is

ruV�x;u� � Ru� Sx � r

in which, because of Assumption 7.3, R is positive de®nite. Hence,

the necessary and suf®cient condition for the optimality of u for the

parametric QP P�x� is

Mu � Nx � p
� �Ru� Sx � r� 2 C��x;u�

in which C��x;u� � conefM0
i j i 2 I�x;u�g, the cone generated by

the gradients of the active constraints, is polyhedral. We cannot use

this characterization of optimality directly to solve the parametric pro-

gramming problem since I�x;u� and, hence, C��x;u�, varies with �x;

u�. Given any x 2 X, however, there exists the possibility of a region

containing x such that I0�x� � I0�w� for allw in this region. We make

use of this observation as follows. It follows from the de®nition of

I0�x� that the unique solution u0�x� of P�x� satis®es the equation

Miu � Nix � pi; i 2 I0�x�; i:e:;
M0
xu � N0

xx � p0x
where M0

x , N
0
x , and p

0
x are de®ned in (7.1). Hence u0�x� is the solution

of the equality constrained problem

V0�x� �min
u
fV�x;u� j M0

xu � N0
xx � p0xg

If the active constraint set remains constant near the point x or, more

precisely, if I0�x� � I0�w� for all w in some region in Rn containing

x, then, for all w in this region, u0�w� satis®es the equality constraint
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M0
xu � N0

xw � p0x . This motivates us to consider the simple equality

constrained problem Px�w� de®ned by

V0
x�w� �min

u
fV�w;u� j M0

xu � N0
xw � p0xg

u0
x�w� � argmin

u
fV�w;u� j M0

xu � N0
xw � p0xg

The subscriptx indicates that the equality constraints inPx�w� depend

on x. Problem Px�w� is an optimization problem with a quadratic cost

function and linear equality constraints and is, therefore, easily solved;

see the exercises at the end of this chapter. Its solution is

V0
x�w� � �1=2�w0Qxw � r 0xw � sx (7.3)

u0
x�w� � Kxw � kx (7.4)

for all w such that I0�w� � I0�x� where Qx 2 Rn�n, rx 2 Rn, sx 2 R,
Kx 2 Rm�n and kx 2 Rm are easily determined. Clearly, u0

x�x� �
u0�x�; but, is u0

x�w�, the optimal solution to Px�w�, the optimal so-

lution u0�w� to P�w� in some region containing x and, if it is, what

is the region? Our optimality condition answers this question. For all

x 2 X, let the region R0
x be de®ned by

R0
x :�

(
w
��� u0

x�w� 2 U�w�
�ruV�w;u0

x�w�� 2 C��x;u0�x��

)
(7.5)

Because of the equality constraintM0
xu � N0

xw�p0x in problem Px�w�,

it follows that I�w;u0
x�w�� � I�x;u0�x��, and that C�w;u0

x�w�� �
C�x;u0�x�� and C��w;u0

x�w�� � C��x;u0�x�� for all w 2 R0
x . Hence

w 2 R0
x impliesu0

x�w� 2 U�w� and�ruV�w;u0
x�w�� 2 C��w;u0

x�w��

for all w 2 R0
x which, by Proposition 7.8, is a necessary and suf®cient

condition for u0
x�w� to be optimal for P�w�. In fact, I�w;u0

x�w�� �
I�x;u0�x�� so that C��w;u0

x�w�� � C��x;u0�x�� for allw in the inte-

rior of R0
x . The obvious conclusion of this discussion is the following.

Proposition 7.9 (Solution of P�w�, w 2 R0
x). For any x 2 X, u0

x�w� is

optimal for P�w� for all w 2 R0
x .

The constraint u0
x�w� 2 U�w� may be expressed as

M�Kxw � kx� � Nw � p
which is an af®ne inequality in w. Similarly, since ruV�w;u� � Ru�
Sw � r and since C��x;u0�x�� � fg j L0xg � 0g where L0x � L�x;u0�x��,

the constraint �ruV�x;u0
x�w�� 2 C�x;u0�x�� may be expressed as

�L0x�R�Kxw � kx�� Sw � r� � 0
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which is also an af®ne inequality in the variable w. Thus, for each x,

there exists a matrix Fx and vector fx such that

R0
x � fw j Fxw � fxg

so that R0
x is polyhedral. Since u0

x�x� � u0�x�, it follows that u0
x�x� 2

U�x� and �ruV�x;u0
x�x�� 2 C��x;u0�x�� so that x 2 R0

x .

Our next task is to bound the number of distinct regions R0
x that

exist as we permit x to range over X. We note, from its de®nition, that

R0
x is determined, through the constraint M0

xu � N0
xw � p0x in Px�w�,

through u0
x��� and through C��x;u0�x��, by I0�x� so that R0

x1
� R0

x2

implies that I0�x1� � I0�x2�. Since the number of subsets of f1;2; : : : ;
pg is ®nite, the number of distinct regions R0

x as x ranges over X is

®nite. Because each x 2 X lies in the set R0
x , there exists a discrete set

of points X � X such that X � [fR0
x j x 2 Xg. We have proved the

following.

Proposition 7.10 (Piecewise quadratic (af®ne) cost (solution)).

(a) There exists a set X of a ®nite number of points in X such that X �
[fR0

x j x 2 Xg and fR0
x j x 2 Xg is a polyhedral partition of X.

(b) The value function V0��� of the parametric piecewise QP P is piece-

wise quadratic inX, being quadratic and equal to V0
x���, de®ned in (7.3)

in each polyhedron Rx , x 2 X. Similarly, the minimizer u0��� is piece-
wise af®ne inX, being af®ne and equal to u0

x��� de®ned in (7.4) in each

polyhedron R0
x , x 2 X.

Example 7.11: Parametric QP

Consider the example in Section 7.2. This may be expressed as

V0�x� �min
u
V�x;u�; V�x;u� :� f�1=2�x2�ux�u2 j Mu � Nx�pg

where

M �
264�1�1
�1

375 N �
264 0

1=2

1

375 p �
264�1�2
�2

375
At x � 1, u0�x� � 3=2 and I0�x� � f2g. The equality constrained

optimization problem Px�w� is

V0
x�w� �min

u
f�1=2�w2 �uw �u2 j �u � �1=2�w � 2g
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so that u0�w� � 2�w=2. Hence

R0
x :�

(
w
��� Mu0

x�w� � Nw � p�w�
�ruV�w;u0

x�w�� 2 C��x;u0�x��

)

Since M2 � �1, C��x� � conefM0
i j i 2 I0�x�g � conefM0

2g � fh 2 R j
h � 0g; also
ruV�w;u

0
x�w�� � �w � 2u0�w� � �w � 2�2�w=2� � �2w � 4

so that R0
x is de®ned by the following inequalities

�1=2�w � 2 � �1 or w � 2

�1=2�w � 2 � �1=2�w � 2 or w 2 R
�1=2�w � 2 � w � 2 or w � 0

2w � 4 � 0 or w � 2

which reduces to w 2 �0;2� so R0
x � �0;2� when x � 1; �0;2� is the set

X2 determined in Section 7.2. �

Example 7.12: Explicit optimal control

We return to the MPC problem presented in Example 2.5 of Chapter 2

V0�x;u� �min
u
fV�x;u� j u 2 Ug

V�x;u� :� �3=2�x2 � �2x;x�u� �1=2�u0Hu

H :�
"
3 1

1 2

#
U :� fu j Mu � pg

where

M :�

26664
1 0

�1 0

0 1

0 �1

37775 p :�

26664
1

1

1

1

37775
It follows from the solution to Example 2.5 that

u0�2� �
"
�1

��1=2�

#

and I0�x� � f2g. The equality constrained optimization problem at

x � 2 is

V0
x�w� �min

u
f�3=2�w2 � 2wu1 �wu2 � �1=2�u0Hu j u1 � �1g
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so that

u0
x�w� �

"
�1

�1=2�� �1=2�w

#
Hence u0

x�2� � ��1;�1=2�0 � u0�2� as expected. Since M0
x � M2 �

��1;0�, C��x;u0�x�� � fg 2 R2 j g1 � 0g. Also

ruV�w;u� �
"
2w � 3u1 �u2

w �u1 � 2u2

#

so that

ruV�w;u
0
x�w�� �

"
�3=2�w � �5=2�

0

#
Hence R0

x , x � 2 is the set of w satisfying the following inequalities

�1=2�� �1=2�w � 1 or w � �1
�1=2�� �1=2�w � �1 or w � 3

��3=2�w � �5=2� � 0 or w � �5=3�
which reduces to w 2 �5=3;3�; hence R0

x � �5=3;3� when x � 2 as

shown in Example 2.5. �

7.3.5 Continuity of V0��� and u0���

Continuity ofV0��� andu0��� follows fromTheoremC.34 in Appendix C.

We present here a simpler proof based on the above analysis. We use

the fact that the parametric quadratic problem is strictly convex, i.e.,

for each x 2 X, u , V�x;u� is strictly convex and U�x� is convex,

so that the minimizer u0�x� is unique as shown in Proposition C.8 of

Appendix C.

Let X � fxi j i 2 I1:Ig denote the set de®ned in Proposition 7.10(a).

For each i 2 Ii:I , let Ri :� R0
xi , Vi��� :� V0

xi��� and ui��� :� u0
xi���. From

Proposition 7.10, u0�x� � ui�x� for each x 2 Ri, each i 2 I1:I so that

u0��� is af®ne and hence continuous in the interior of each Ri, and also

continuous at any point x on the boundary of X such that x lies in a

single region Ri. Consider now a point x lying in the intersection of

several regions, x 2 \i2JRi, where J is a subset of I1:I . Then, by Propo-
sition 7.10, ui�x� � u0�x� for all x 2 \i2JRi, all i 2 J. Each ui��� is
af®ne and, therefore, continuous, so thatu0��� is continuous in\i2JRi.
Hence u0��� is continuous in X. Because V��� is continuous and u0���
is continuous in X, the value function V0��� de®ned by V0�x� � V�x;
u0�x�� is also continuous inX. Let S denote any bounded subset ofX.
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Then, since V0�x� � Vi�x� � �1=2�x0Qix � r 0ix � si for all x 2 Ri, all
i 2 I1:I where Qi :� Qxi , ri :� rxi and si :� sxi , it follows that V0��� is
Lipschitz continuous in each setRi\S and, hence, Lipschitz continuous
in X \ S. We have proved the following.

Proposition 7.13 (Continuity of cost and solution). The value function

V0��� and the minimizeru0��� are continuous inX. Moreover, the value

function and the minimizer are Lipschitz continuous on bounded sets.

7.4 Constrained Linear Quadratic Control

We now show how parametric quadratic programming may be used to

solve the optimal receding horizon control problem when the system

is linear, the constraints polyhedral, and the cost is quadratic. The

system is described, as before, by

x� � Ax � Bu (7.6)

and the constraints are, as before

x 2 X u 2 U (7.7)

where X is a polyhedron containing the origin in its interior and U is

a polytope also containing the origin in its interior. There may be a

terminal constraint of the form

x�N� 2 Xf (7.8)

where Xf is a polyhedron containing the origin in its interior. The cost

is

VN�x;u� �
24N�1X
i�0

`�x�i�;u�i��

35� Vf �x�N�� (7.9)

in which, for all i, x�i� � ��i;x;u�, the solution of (7.6) at time i

if the initial state at time 0 is x and the control sequence is u :�
�u�0�;u�1�; : : : ; u�N � 1��. The functions `��� and Vf ��� are quadratic

`�x;u� :� �1=2�x0Qx � �1=2�u0Ru; Vf �x� :� �1=2�x0Qfx (7.10)

The state and control constraints (7.7) induce, via the difference equa-

tion (7.6), an implicit constraint �x;u� 2 Z where

Z :� f�x;u� j x�i� 2 X; u�i� 2 U; i 2 I0:N�1; x�N� 2 Xf g (7.11)
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Figure 7.6: Regions Rx ; x 2 X for a second-order example; after

Mayne and RakoviÂc (2003).

where, for all i, x�i� � ��i;x;u�. It is easily seen that Z is polyhedral

since, for each i, x�i� � Aix �Miu for some matrix Mi in R
n�Nm; here

u is regarded as the column vector
h
u�0�0 u�1�0 � � � u�N � 1�0

i0
.

Clearly x�i� � ��i;x;u� is linear in �x;u�. The constrained linear op-

timal control problem may now be de®ned by

V0
N�x� �min

u
fVN�x;u� j �x;u� 2 Zg

Using the fact that for each i, x�i� � Aix �Miu, it is possible to deter-

mine matrices Q 2 Rn�n, R 2 RNm�Nm, and S 2 RNm�n such that

VN�x;u� � �1=2�x0Qx0 � �1=2�u0Ru� u0Sx (7.12)

Similarly, as shown above, there exist matricesM, N and a vector p such

that

Z � f�x;u� j Mu � Nx � pg (7.13)

This is precisely the parametric problem studied in Section 7.3, so that

the solution u0�x� to P�x� is piecewise af®ne on a polytopic partition

P � fRx j x 2 Xg of X the projection of Z � Rn �RNm onto Rn, being

af®ne in each of the constituent polytopes of P. The receding horizon

control law is x , u0�0;x�, the ®rst element of u0�x�. An example is

shown in Figure 7.6.
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7.5 Parametric Piecewise Quadratic Programming

The dimension of the decision variable u in the constrained linear quad-

ratic control problem discussed in Section 7.4 is Nm which is large. It

may be better to employ dynamic programming by solving a sequence

of problems P1, P2, . . . , PN . Although P1 is a conventional parametric

QP, each problem Pi, i � 2;3; : : : ;N, has the form

V0
i �x� �min

u
fV0

i�1�Ax � Bu�� `�x;u� j u 2 U; Ax � Bu 2 Xi�1g

in which V0
i�1��� is piecewise quadratic and Xi�1 is polyhedral. The

decision variable u in each problem Pi has dimension m. But each

problem Pi�x�, x 2 Xi, is a parametric piecewise QP rather than a

conventional parametric QP. Hence a method for solving parametric

piecewise quadratic programming problems is required if dynamic pro-

gramming is employed to obtain a parametric solution to PN . Readers

not concerned with this extension should proceed to Section 7.7.

The parametric QP P�x� is de®ned, as before, by

V0�x� �min
u
fV�x;u� j �x;u� 2 Zg (7.14)

where x 2 X � Rn and u 2 Rm, but now the cost function V��� is
assumed to be continuous, strictly convex, and piecewise quadratic on

a polytopic partition P � fZi j i 2 Ig of the set Z so that

V�z� � Vi�z� � �1=2�z0Qiz � s0iz � ci

for all z 2 Zi, all i 2 I where I is an index set.3 In (7.14), the matrix Qi

and the vector si have the structure

Qi �
"
Qi S0i
Si Ri

#
si �

"
qi
ri

#

so that for all i 2 I

Vi�x;u� � �1=2�x0Qix �u0Six � �1=2�u0Riu� q0ix � r 0iu� c

For each x, the function u , Vi�x;u� is quadratic and depends on x.

The constraint set Z is de®ned, as above, by

Z :� f�x;u� j Mu � Nx � pg
3Note that in this section the subscript i denotes partition i rather than ªtime to go.º
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Let u0�x� denote the solution of P�x�, i.e.,

u0�x� � argmin
u
fV�x;u� j �x;u� 2 Zg

The solution u0�x� is unique if V��� is strictly convex in u at each x;

this is the case if each Ri is positive de®nite. The parametric piecewise

QP may also be expressed, as before, as

V0�x� �min
u
fV�x;u� j u 2 U�x�g

u0�x� � argmin
u
fV�x;u� j u 2 U�x�g

where the parametric constraint set U�x� is de®ned by

U�x� :� fu j �x;u� 2 Zg � fu j Mu � Nx � pg
Let X � Rn be de®ned by

X :� fx j 9u such that �x;u� 2 Zg � fx j U�x� �;g
The set X is the domain of V0��� and of u0��� and is thus the set of

points x for which a feasible solution of P�x� exists; it is the projection

of Z, which is a set in �x;u�-space, onto x-space as shown in Figure 7.1.

We make the following assumption in the sequel.

Assumption 7.14 (Continuous, piecewise quadratic function). The func-

tion V��� is continuous, strictly convex, and piecewise quadratic on the

polytopic partition P � fZi j i 2 I :� I1:qg of the polytope Z in Rn�Rm;

V�x;u� � Vi�x;u� where Vi��� is a positive de®nite quadratic function
of �x;u� for all �x;u� 2 Zi, all i 2 I , and q is the number of constituent

polytopes in P.
The assumption of continuity places restrictions on the quadratic

functions Vi���, i 2 I . For example, we must have Vi�z� � Vj�z� for
all z 2 Zi \ Zj . Assumption 7.14 implies that the piecewise quadratic

programming problem P�x� satis®es the hypotheses of Theorem C.34

so that the value function V0��� is continuous. It follows from Assump-

tion 7.14 and TheoremC.34 that V0��� is strictly convex and continuous
and that the minimizer u0��� is continuous. Assumption 7.14 implies

that Qi is positive de®nite for all i 2 I . For each x, let the setU�x� be
de®ned by

U�x� :� fu j �x;u� 2 Zg
ThusU�x� is the set of admissible u at x, and P�x� may be expressed

in the form V0�x� �minufV�x;u� j u 2 U�x�g.
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For each i 2 I , we de®ne an ªarti®cialº problem Pi�x� as follows

V0
i �x� :�min

u
fVi�x;u� j �x;u� 2 Zig

u0
i �x� :� argmin

u
fVi�x;u� j �x;u� 2 Zig

The cost Vi�x;u� in the above equations may be replaced by V�x;u�

since V�x;u� � Vi�x;u� in Zi. The problem is arti®cial because it in-

cludes constraints (the boundaries of Zi) that are not necessarily con-

straints of the original problem. We introduce this problem because it

helps us to understand the solution of the original problem. For each

i 2 I1:p, let the set Ui�x� be de®ned as follows

Ui�x� :� fu j �x;u� 2 Zig

Thus the set Ui�x� is the set of admissible u at x, and problem Pi�x�

may be expressed as V0
i �x� :� minufVi�x;u� j u 2 Ui�x�g; the set

Ui�x� is polytopic. For each i, problem Pi�x� may be recognized as a

standard parametric QP discussed in Section 7.4. Because of the piece-

wise nature of V���, we require another de®nition.

De®nition 7.15 (Active polytope (polyhedron)). A polytope (polyhe-

dron) Zi in a polytopic (polyhedral) partition P � fZi j i 2 Ig of a
polytope (polyhedron) Z is said to be active at z 2 Z if z � �x;u� 2 Zi.
The index set specifying the polytopes active at z 2 Z is

S�z� :� fi 2 I j z 2 Zig

A polytope Zi in a polytopic partition P � fZi j i 2 Ig of a polytope Z

is said to be active for problem P�x�) if �x;u0�x�� 2 Zi. The index set
specifying polytopes active at �x;u0�x�� is S0�x� de®ned by

S0�x� :� S�x;u0�x�� � fi 2 I j �x;u0�x�� 2 Zig

Because we know how to solve the ªarti®cialº problems Pi�x�, i 2 I
that are parametric quadratic programs, it is natural to ask if we can

recover the solution of the original problem P�x� from the solutions

to these simpler problems. This question is answered by the following

proposition.

Proposition 7.16 (Solving P using Pi). For any x 2 X, u is optimal for

P�x� if and only if u is optimal for Pi�x� for all i 2 S�x;u�.
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Proof. (i) Suppose u is optimal for P�x� but, contrary to what we wish

to prove, there exists an i 2 S�x;u� � S0�x� such that u is not optimal

for Pi�x�. Hence there exists a v 2 Rm such that �x;v� 2 Zi and

V�x;v� � Vi�x;v� < Vi�x;u� � V�x;u� � V0�x�, a contradiction

of the optimality of u for P�x�. (ii) Suppose u is optimal for Pi�x�

for all i 2 S�x;u� but, contrary to what we wish to prove, u is not

optimal for P�x�. Hence V0�x� � V�x;u0�x�� < V�x;u�. If u0�x� 2
Z�x;u� :� [i2S�x;u�Zi, we have a contradiction of the optimality of u

in Z�x;u�. Assume then that u0�x� 2 Zj , j � S�x;u�; for simplicity,

assume further that Zj is adjacent to Z
�x;u�. Then, there exists a � 2

�0;1� such that u� :� u � ��u0�x� � u� 2 Z�x;u�; if not, j 2 S�x;
u�, a contradiction. Since V��� is strictly convex, V�x;u�� < V�x;u�,

which contradicts the optimality of u in Z�x;u�. The case when Zj is not

adjacent to Z�x;u� may be treated similarly. �

To obtain a parametric solution, we proceed as before. We select a

point x 2 X and obtain the solution u0�x� to P�x� using a standard

algorithm for convex programs. The solution u0�x� satis®es an equal-

ity constraint Exu � Fxx � gx , which we employ to de®ne, for any

w 2 X near x an easily solved equality constrained optimization prob-

lem Px�w� that is derived from the problems Pi�x�, i 2 S0�x�. Finally,
we show that the solution to this simple problem is also a solution to

the original problem P�w� at all w in a polytope Rx � X in which x

lies.

For each i 2 I , Zi is de®ned by

Zi :� f�x;u� j Miu � Nix � pig

Let Mi
j , N

i
j and q

i
j denote, respectively, the jth row of Mi, Ni and qi,

and let Ii�x;u� and I
0
i �x�, de®ned by

Ii�x;u� :� fj j Mi
ju � Ni

jx � pijg; I0i �x� :� Ii�x;u0
i �x��

denote, respectively, the active constraint set at �x;u� 2 Zi and the ac-

tive constraint set for Pi�x�. Because we now use subscript i to specify

Zi, we change our notation slightly and now let Ci�x;u� denote the

cone of ®rst-order feasible variations for Pi�x� at u 2 Ui�x�, i.e.,

Ci�x;u� :� fh 2 Rm j Mi
jh � 0 8j 2 Ii�x;u�g

Similarly, we de®ne the polar cone C�i �x;u� of the cone Ci�x;u� at
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h � 0 by

C�i �x;u� :� fv 2 Rm j v0h � 0 8h 2 Ci�x;u�g

�
8<: X
j2Ii�x;u�

�Mi
j�
0�j

��� �j � 0; j 2 Ii�x;u�
9=;

As shown in Proposition 7.7, a necessary and suf®cient condition for

the optimality of u for problem Pi�x� is

�ruVi�x;u� 2 C�i �x;u�; u 2 Ui�x� (7.15)

If u lies in the interior of Ui�x� so that I0i �x� � ;, condition (7.15)

reduces to ruVi�x;u� � 0. For any x 2 X, the solution u0�x� of the

piecewise parametric program P�x� satis®es

Mi
ju � Ni

jx � pij ; 8j 2 I0i �x�; 8i 2 S0�x� (7.16)

To simplify our notation, we rewrite the equality constraint (7.16) as

Exu � Fxx � gx
where the subscriptx denotes the fact that the constraints are precisely

those constraints that are active for the problems Pi�x�, i 2 S0�x�. The
fact that u0�x� satis®es these constraints and is, therefore, the unique

solution of the optimization problem

V0�x� �min
u
fV�x;u� j Exu � Fxx � gxg

motivates us to de®ne the equality constrained problem Px�w� forw 2
X near x by

V0
x�w� �min

u
fVx�w;u� j Exu � Fxw � gxg

where Vx�w;u� :� Vi�w;u� for all i 2 S0�x� and is, therefore, a posi-

tive de®nite quadratic function of �x;u�. The notation V0
x�w� denotes

the fact that the parameter in the parametric problem Px�w� is now

w but the data for the problem, namely �Ex; Fx; gx�, is derived from

the solution u0�x� of P�x� and is, therefore, x-dependent. Problem

Px�w� is a simple equality constrained problem in which the cost Vx���
is quadratic and the constraints Exu � Fxw �gx are linear. Let V0

x�w�

denote the value of Px�w� and u0
x�w� its solution. Then

V0
x�w� � �1=2�w0Qxw � r 0xw � sx
u0
x�w� � Kxw � kx (7.17)
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whereQx , rx , sx , Kx and kx are easily determined. It is easily seen that

u0
x�x� � u0�x� so that u0

x�x� is optimal for P�x�. Our hope is that

u0
x�w� is optimal for P�w� for all w in some neighborhood Rx of x.

We now show this is the case.

Proposition 7.17 (Optimality of u0
x�w� in Rx). Let x be an arbitrary

point in X. Then

(a) u0�w� � u0
x�w� and V

0�w� � V0
x�w� for allw in the set Rx de®ned

by

Rx :�
(
w 2 Rn

��� u0
x�w� 2 Ui�w� 8i 2 S0�x�

�ruVi�w;u0
x�w�� 2 C�i �x;u0�x�� 8i 2 S0�x�

)
(b) Rx is a polytope

(c) x 2 Rx

Proof.

(a) Because of the equality constraint 7.16 it follows that Ii�w;ux�w�� �
Ii�x;u0�x�� and that S�w;u0

x�w�� � S�x;u0�x�� for all i 2 S�x;

u0�x�� � S0�x�, all w 2 Rx . Hence Ci�w;u0
x�w�� � Ci�x;u0�x��,

which implies C�i �w;u
0
x�w�� � C�i �x;u0�x�� for all i 2 S�x;u0�x�� �

S�w;u0
x�w��. It follows from the de®nition ofRx thatu0

x�w� 2 Ui�w�

and that �ruVi�w;u0
x�w�� 2 C�i �w;u0

x�w�� for all i 2 S�w;u0
x�w��.

Hence u � u0
x�w� satis®es necessary and suf®cient for optimality for

Pi�w� for all i 2 S�w;u�, all w 2 Rx and, by Proposition 7.16, neces-

sary and suf®cient conditions of optimality for P�w� for all w 2 Rx .
Hence u0

x�w� � u0�w� and V0
x�w� � V0�w� for all w 2 Rx .

(b) That Rx is a polytope follows from the facts that the functions

w , u0
x�w� andw , ruVi�w;u0

x�w�� are af®ne, the sets Zi are poly-

topic and the sets C0
i �x;u

0�x�� are polyhedral; hence �w;u0
x�w�� 2 Zi

is a polytopic constraint and �ruVi�w;u0
x�w�� 2 C�i �x;u

0�x�� a

polyhedral constraint on w.

(c) Thatx 2 Rx follows fromProposition 7.16 and the fact thatu0
x�x� �

u0�x�. �

Reasoning as in the proof of Proposition 7.10, we obtain the follow-

ing.

Proposition 7.18 (Piecewise quadratic (af®ne) solution). There exists a

®nite set of points X in X such that fRx j x 2 Xg is a polytopic par-

tition of X. The value function V0��� for P�x� is strictly convex and
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piecewise quadratic and the minimizer u0��� is piecewise af®ne in X
being equal, respectively, to the quadratic function V0

x��� and the af®ne

function u0
x��� in each region Rx , x 2 X.

7.6 DP Solution of the Constrained LQ Control Problem

A disadvantage in the procedure described in Section 7.4 for determin-

ing the piecewise af®ne receding horizon control law is the dimension

Nm of the decision variable u. It seems natural to inquire whether

or not dynamic programming (DP), which replaces a multistage deci-

sion problem by a sequence of relatively simple single-stage problems,

provides a simpler solution. We answer this question by showing how

DP may be used to solve the constrained linear quadratic (LQ) problem

discussed in Section 7.4. For all j 2 I1:N , let V
0
j ���, the optimal value

function at time-to-go j, be de®ned by

V0
j �x� :�min

u
fVj�x;u� j �x;u� 2 Zjg

Vj�x;u� :�
j�1X
i�0

`�x�i�;u�i��� Vf �x�j��

Zj :� f�x;u� j x�i� 2 X; u�i� 2 U; i 2 I0:j�1; x�j� 2 Xf g

with x�i� :� ��i;x;u�; V0
j ��� is the value function for Pj�x�. As shown

in Chapter 2, the constrained DP recursion is

V0
j�1�x� �min

u
f`�x;u�� V0

j �f �x;u�� j u 2 U; f �x;u� 2 Xjg (7.18)

Xj�1 � fx 2 X j 9 u 2 U such that f�x;u� 2 Xjg (7.19)

where f�x;u� :� Ax � Bu with boundary condition

V0
0 ��� � Vf ���; X0 � Xf

The minimizer of (7.18) is �j�1�x�. In the equations, the subscript j

denotes time to go, so that current time i � N � j. For each j, Xj is

the domain of the value function V0
j ��� and of the control law �j���,

and is the set of states that can be steered to the terminal set Xf in

j steps or less by an admissible control that satis®es the state and

control constraints. The time-invariant receding horizon control law

for horizon j is �j��� whereas the optimal policy for problem Pj�x� is

f�j���; �j�1���; : : : ; �1���g. The data of the problem are identical to the

data in Section 7.4.
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We know from Section 7.4 that V0
j ��� is continuous, strictly convex

and piecewise quadratic, and that �j��� is continuous and piecewise

af®ne on a polytopic partition PXj of Xj . Hence the function �x;u� ,

V�x;u� :� `�x;u� � V0
j �Ax � Bu� is continuous, strictly convex and

piecewise quadratic on a polytopic partition PZj�1 of the polytope Zj�1
de®ned by

Zj�1 :� f�x;u� j x 2 X; u 2 U; Ax � Bu 2 Xjg

The polytopic partition PZj�1 of Zj�1 may be computed as follows: if

X is a constituent polytope of Xj , then, from (7.19), the corresponding

constituent polytope of PZj�1 is the polytope Z de®ned by

Z :� fz � �x;u� j x 2 X; u 2 U; Ax � Bu 2 Xg

Thus Z is de®ned by a set of linear inequalities; also `�x;u��V0
j �f �x;

u�� is quadratic on Z . Thus the techniques of Section 7.5 can be em-

ployed for its solution, yielding the piecewise quadratic value func-

tion V0
j�1���, the piecewise af®ne control law �j�1���, and the polytopic

partition PXj�1 on which V0
j�1��� and �j�1��� are de®ned. Each prob-

lem (7.18) is much simpler than the problem considered in Section 7.4

sincem, the dimension of u, is much less than Nm, the dimension of

u. Thus, the DP solution is preferable to the direct method described

in Section 7.4.

7.7 Parametric Linear Programming

7.7.1 Preliminaries

The parametric linear program P�x� is

V0�x� �min
u
fV�x;u� j �x;u� 2 Zg

where x 2 X � Rn and u 2 Rm, the cost function V��� is de®ned by

V�x;u� � q0x � r 0u

and the constraint set Z is de®ned by

Z :� f�x;u� j Mu � Nx � pg

Let u0�x� denote the solution of P�x�, i.e.,

u0�x� � argmin
u
fV�x;u� j �x;u� 2 Zg
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The solution u0�x� may be set valued. The parametric linear program

(LP) may also be expressed as

V0�x� �min
u
fV�x;u� j u 2 U�x�g

where, as before, the parametric constraint set U�x� is de®ned by

U�x� :� fu j �x;u� 2 Zg � fu j Mu � Nx � pg

Also, as before, the domain of V0��� and u0���, i.e., the set of points x
for which a feasible solution of P�x� exists, is the set X de®ned by

X :� fx j 9u such that �x;u� 2 Zg � fx j U�x� �;g

The set X is the projection of Z (which is a set in �x;u�-space) onto

x-space; see Figure 7.1. We assume in the sequel that the problem is

well posed, i.e., for each x 2 X, V0�x� > �1. This excludes problems

like V0�x� � infufx�u j �x � 1; x � 1g for which V0�x� � �1 for all

x 2 X � ��1;1�. Let I1:p denote, as usual, the index set f1;2; : : : ; pg.
For all �x;u� 2 Z, let I�x;u� denote the set of active constraints at

�x;u�, i.e.,

I�x;u� :� fi 2 I1:p j Miu � Nix � pig
where Ai denotes the ith row of any matrix (or vector) A. Similarly, for

any matrix A and any index set I, AI denotes the matrix with rows Ai,

i 2 I. If, for any x 2 X, u0�x� is unique, the set I0�x� of constraints

active at �x;u0�x�� is de®ned by

I0�x� :� I�x;u0�x��

When u0�x� is unique, it is a vertex (a face of dimension zero) of

the polyhedron U�x� and is the unique solution of

M0
xu � N0

xx � p0x
where

M0
x :� MI0�x�; N

0
x :� NI0�x�; p

0
x :� pI0�x�

In this case, the matrix M0
x has rankm.

Any face F ofU�x�with dimensiond 2 f1;2; : : : ;mg satis®esMiu �
Nix�pi for all i 2 IF , all u 2 F for some index set IF � I1:p. The matrix

MIF with rows Mi, i 2 IF , has rankm� d, and the face F is de®ned by

F :� fu j Miu � Nix � pi; i 2 IFg \U�x�
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When u0�x� is not unique, it is a face of dimension d � 1 and the set

I0�x� of active constraints is de®ned by

I0�x� :� fi j Miu � Nix�pi8u 2 u0�x�g � fi j i 2 I�x;u�8u 2 u0�x�g

The set fu j Miu � Nix � pi; i 2 I0�x�g is a hyperplane in which

u0�x� lies. See Figure 7.7 where u0�x1� is unique, a vertex of U�x1�,
and I0�x1� � f2;3g. If, in Figure 7.7, r � �e1, then u0�x1� � F2�x1�,
a face of dimension 1; u0�x1� is, therefore, set valued. Since u 2 Rm

where m � 2, u0�x1� is a facet, i.e., a face of dimension m � 1 � 1.

Thus u0�x1� is a set de®ned by u0�x1� � fu j M1u � N1x1 � p1;
M2u � N2x1 �p2; M3u � N3x1 �p3g. At each z � �x;u� 2 Z, i.e., for
each �x;u� such that x 2 X and u 2 U�x�, the cone C�z� � C�x;u�
of ®rst-order feasible variations is de®ned, as before, by

C�z� :� fh 2 Rm j Mih � 0; i 2 I�z�g � fh 2 Rm j MI�z�h � 0g

If I�z� � I�x;u� � ; (no constraints are active), C�z� � Rm (all varia-

tions are feasible).

Since u , V�x; �� is convex and differentiable, and U�x� is poly-

hedral for all x, the parametric LP P�x� satis®es the assumptions of

Proposition 7.8. Hence, repeating Proposition 7.8 for convenience, we

have

Proposition 7.19 (Optimality conditions for parametric LP). A neces-

sary and suf®cient condition for u to be a minimizer for the parametric

LP P�x� is

u 2 U�x� and �ruV�x;u� 2 C��x;u�
where ruV�x;u� � r and C��x;u� is the polar cone of C�x;u�.

An important difference between this result and that for the para-

metric QP is that ruV�x;u� � r and, therefore, does not vary with x

or u. We now use this result to show that both V0��� and u0��� are
piecewise af®ne. We consider the simple case when u0�x� is unique

for all x 2 X.

7.7.2 Minimizer u0�x� Is Unique for all x 2 X

Before proceeding to obtain the solution to a parametric LP when the

minimizer u0�x� is unique for each x 2 X, we look ®rst at the simple

example illustrated in Figure 7.7, which shows the constraint setU�x�
for various values of the parameter x in the interval �x1; x3�. The set
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Figure 7.7: Solution to a parametric LP.

U�x1� has six faces: F1�x1�, F2�x1�, F3�x1�, F4�x1�, F5�x1�, and F6�x1�.
Face F1�x� lies in the hyperplane H1�x� that varies linearly with x;

each face Fi�x�, i � 2; : : : ;6, lies in the hyperplane Hi that does not

vary with x. All the faces vary with x as shown so thatU�x2� has four
faces: F1�x2�, F3�x2�, F4�x2�, and F5�x2�; and U�x3� has three faces:

F1�x3�, F4�x3�, and F5�x3�. The face F1�x� is shown for three values

of x: x � x1 (the bold line), and x � x2 and x � x3 (dotted lines).

It is apparent that for x 2 �x1; x2�, u0�x� � u2;3 in which u2;3 is the

intersection of H2 and H3, and u0�x3� � u3;4, in which u3;4 is the

intersection ofH3 andH4. It can also be seen that u0�x� is unique for

all x 2 X.
We now return to the general case. Suppose, for some 2 X, u0�x�

is the unique solution of P�x�; u0�x� is the unique solution of

M0
xu � N0

xx � p0x
It follows that u0�x� is the trivial solution of the simple equality con-

strained problem de®ned by

V0�x� �min
u
fV�x;u� j M0

xu � N0
xx � p0xg (7.20)

The solution u0�x� of this equality constrained problem is trivial be-

cause it is determined entirely by the equality constraints; the cost
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plays no part.

The optimization problem (7.20)motivates us, as in parametric quad-

ratic programming, to consider, for any parameter w ªcloseº to x, the

simpler equality constrained problem Px�w� de®ned by

V0
x�w� �min

u
fV�w;u� j M0

xu � N0
xw � p0xg

u0
x�w� � argmin

u
fV�w;u� j M0

xu � N0
xw � p0xg

Let u0
x�w� denote the solution of Px�w�. Because, for each x 2 X,

the matrix M0
x has full rank m, there exists an index set Ix such that

MIx 2 Rm�m is invertible. Hence, for each w, u0
x�w� is the unique

solution of

MIxu � NIxw � pIx
so that for all x 2 X, all w 2 Rm

u0
x�w� � Kxw � kx (7.21)

where Kx :� �MIx�
�1NIx and kx :� �MIx�

�1pIx . In particular, u0�x� �
u0
x�x� � Kxx � kx . Since V0

x�x� � Vx�x;u0
x�w�� � q0x � r 0u0

x�w�, it

follows that

V0
x�x� � �q0 � r 0Kx�x � r 0kx

for all x 2 X, all w 2 Rm. Both V0
x��� and u0

x��� are af®ne in x.
It follows fromProposition 7.19 that�r 2 C��x;u0�x�� � conefM0

i j
i 2 I0�x� � I�x;u0�x��g � conefM0

i j i 2 Ixg. Since Px�w� satis®es

the conditions of Proposition 7.8, we may proceed as in Section 7.3.4

and de®ne, for each x 2 X, the set R0
x as in (7.5)

R0
x :�

(
w 2 Rn

��� u0
x�w� 2 U�w�

�ruV�w;u0
x�w�� 2 C��x;u0�x��

)

It then follows, as shown in Proposition 7.9, that for any x 2 X, u0
x�w�

is optimal for P�w� for all w 2 R0
x . Because P�w� is a parametric LP,

however, rather than a parametric QP, it is possible to simplify the def-

inition of R0
x . We note that ruV�w;u0

x�w�� � r for all x 2 X, all
w 2 Rm. Also, it follows from Proposition 7.8, since u0�x� is optimal

for P�x�, that �ruV�x;u0�x�� � �r 2 C��x� so that the second con-

dition in the de®nition above for R0
x is automatically satis®ed. Hence

we may simplify our de®nition for R0
x ; for the parametric LP, R0

x may

be de®ned by

R0
x :� fw 2 Rn j u0

x�w� 2 U�w�g (7.22)
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Because u0
x��� is af®ne, it follows from the de®nition of U�w� that

R0
x is polyhedral. The next result follows from the discussion in Sec-

tion 7.3.4.

Proposition 7.20 (Solution of P). For any x 2 X, u0
x�w� is optimal for

P�w� for all w in the set R0
x de®ned in (7.22).

Finally, the next result characterizes the solution of the parametric

LP P�x� when the minimizer is unique.

Proposition 7.21 (Piecewise af®ne cost and solution).

(a) There exists a ®nite set of points X in X such that fR0
x j x 2 Xg is a

polyhedral partition of X.

(b) The value functionV0��� forP�x� and theminimizeru0��� are piece-
wise af®ne in X being equal, respectively, to the af®ne functions V0

x���
and u0

x��� in each region Rx , x 2 X.

(c) The value function V0��� and the minimizer u0��� are continuous in
X.

Proof. The proof of parts (a) and (b) follows, apart fromminor changes,

the proof of Proposition 7.10. The proof of part (c) uses the fact that

u0�x� is unique, by assumption, for all x 2 X and is similar to the

proof of Proposition 7.13. �

7.8 Constrained Linear Control

The previous results on parametric linear programmingmay be applied

to obtain the optimal receding horizon control law when the system is

linear, the constraints polyhedral, and the cost linear as is done in a

similar fashion in Section 7.4 where the cost is quadratic. The optimal

control problem is therefore de®ned as in Section 7.4, except that the

stage cost `��� and the terminal cost Vf ��� are now de®ned by

`�x;u� :� q0x � r 0u Vf �x� :� q0fx

As in Section 7.4, the optimal control problem PN�x�may be expressed

as

V0
N�x� �min

u
fVN�x;u� j Mu � Nx � pg

where, now

VN�x;u� � q0x � r0u
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Hence the problem has the same form as that discussed in Section 7.7

and may be solved as shown there.

It is possible, using a simple transcription, to use the solution of

PN�x� to solve the optimal control problem when the stage cost and

terminal cost are de®ned by

`�x;u� :� jQxjp � jRujp ; Vf �x� :�
���Qfx

���
p

where j�jp denotes the p-norm and p is either 1 or 1.

7.9 Computation

Our main purpose above was to establish the structure of the solution

of parametric linear or QPs and, hence, of the solutions of constrained

linear optimal control problems when the cost is quadratic or linear.

We have not presented algorithms for solving these problem although;

there is now a considerable literature on this topic. One of the ear-

liest algorithms (SerÂon, De DonÂa, and Goodwin, 2000) is enumeration

based: checking every active set to determine if it de®nes a non-empty

region in which the optimal control is af®ne. There has recently been

a return to this approach because of its effectiveness in dealing with

systems with relatively high state dimension but a low number of con-

straints (Feller, Johansen, and Olaru, 2013). The enumeration based

procedures can be extended to solve mixed-integer problems. While

the early algorithms for parametric linear and quadratic programming

have exponential complexity, most later algorithms are based on a lin-

ear complementarity formulation and execute in polynomial time in

the number of regions; they also use symbolic perturbation to select a

unique and continuous solution when one exists (Columbano, Fukudu,

and Jones, 2009). Some research has been devoted to obtaining ap-

proximate solutions with lower complexity but guaranteed properties

such as stability (Borrelli, Bemporad, and Morari, 2017, Chapter 13).

Toolboxes for solving parametric linear and quadratic programming

problems include the The Multi-Parametric Toolbox inMATLAB and MPT3

described in (Herceg, Kvasnica, Jones, and Morari, 2013).

A feature of parametric problems is that state dimension is not a

reliable indicator of complexity. There exist problems with two states

that require over 105 regions and problems with 80 states that require

only hundreds of regions. While problems with state dimension less

than, say, 4 can be expected to have reasonable complexity, higher di-

mension problems may or may not have manageable complexity.
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7.10 Notes

Early work on parametric programming, e.g., (Dantzig, Folkman, and

Shapiro, 1967) and (Bank, Guddat, Klatte, Kummer, and Tanner, 1983),

was concerned with the sensitivity of optimal solutions to parameter

variations. Solutions to the parametric linear programming problem

were obtained relatively early (Gass and Saaty, 1955) and (Gal and Ne-

doma, 1972). Solutions to parametric QPs were obtained in (SerÂon et al.,

2000) and (Bemporad, Morari, Dua, and Pistikopoulos, 2002) and ap-

plied to the determination of optimal control laws for linear systems

with polyhedral constraints. Since then a large number of papers on

this topic have appeared, many of which are reviewed in (Alessio and

Bemporad, 2009). Most papers employ the Kuhn-Tucker conditions of

optimality in deriving the regions Rx , x 2 X. Use of the polar cone con-
dition was advocated in (Mayne and RakoviÂc, 2002) in order to focus on

the geometric properties of the parametric optimization problem and

avoid degeneracy problems. Section 7.5, on parametric piecewise quad-

ratic programming, is based on (Mayne, RakoviÂc, and Kerrigan, 2007).

The example in Section 7.4 was ®rst computed by RakoviÂc (Mayne and

RakoviÂc, 2003). That results from parametric linear and quadratic pro-

gramming can be employed, instead of maximum theorems, to estab-

lish continuity of u0��� and, hence, of V0���, was pointed out by Bem-

porad et al. (2002) and Borrelli (2003, p. 37).

Much research has been devoted to obtaining reliable algorithms;

see the survey papers (Alessio and Bemporad, 2009) and (Jones, BariÂc,

and Morari, 2007) and the references therein. Jones (2017, Chapter

13) provides a useful review of approximate explicit control laws of

speci®ed complexity that nevertheless guarantee stability and recursive

feasibility.
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7.11 Exercises

Exercise 7.1: QP with equality constraints

Obtain the solution u0 and the value V0 of the equality constrained optimization

problem V0 � minufV�u� j h�u� � 0g where V�u� � �1=2�u0Ru � r 0u � c and

h�u� :� Mu� p.

Exercise 7.2: Parametric QP with equality constraints

Show that the solutionu0�x� and the value V0�x� of the parametric optimization prob-

lem V0�x� � minufV�x;u� j h�x;u� � 0g where V�x;u� :� �1=2�x0Qx � u0Sx �
�1=2�u0Ru�q0x�r 0u�c and h�x;u� :� Mu�Nx�p have the form u0�x� � Kx�k
and V0�x� � �1=2�x0 ÅQx � Åq0x � s. Determine ÅQ, Åq, s, K, and k.

Exercise 7.3: State and input trajectories in constrained LQ problem

For the constrained linear quadratic problem de®ned in Section 7.4, show that u :�
�u�0�;u�1�; : : : ; u�N � 1�� and x :� �x�0�; x�1�; : : : ; x�N��, where x�0� � x and x�i� �
��i;x;u�, i � 0;1; : : : ;N, satisfy

x � Fx �Gu

and determine the matrices F and G; in this equation u and x are column vectors.

Hence show that VN�x;u� and Z, de®ned respectively in (7.9) and (7.11), satisfy (7.12)

and (7.13), and determine Q , R, M, N, and p.

Exercise 7.4: The parametric LP with unique minimizer

For the example of Figure 7.7, determine u0�x�, V0�x�, I0�x�, and C��x� for all x in

the interval �x1; x3�. Show that �r lies in C��x� for all x in �x1; x3�.

Exercise 7.5: Cost function and constraints in constrained LQ control prob-
lem

For the constrained linear control problem considered in Section 7.8, determine the

matrices M, N, and p that de®ne the constraint set Z, and the vectors q and r that

de®ne the cost VN���.

Exercise 7.6: Cost function in constrained linear control problem

Show that jxjp , p � 1 and p � 1, may be expressed as maxjfs0jx j j 2 Jg and

determine si, i 2 I for the two cases p � 1 and p � 1. Hence show that the optimal

control problem in Section 7.8 may be expressed as

V0
N�x� �min

v
fVN�x;v� j Mv � Nx � pg

where, now, v is a column vector whose components areu�0�;u�1�; : : : ; u�N�1�, `x�0�;
`x�1�; : : : ; `x�N�, `u�0�; `u�1�; : : : ; `u�N � 1� and f ; the cost VN�x;v� is now de®ned

by

VN�x;v� �
N�1X
i�0

�`x�i�� `u�i��� f
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Finally, Mv � Nx � p now speci®es the constraints u�i� 2 U and x�i� 2 X, jRu�i�jp �
`u�i�, jQx�i�jp � `x�i�, i � 0;1; : : : ;N�1, x�N� 2 Xf , and

���Qfx�N�
��� � f . As before,

x� � Fx�Gu.

Exercise 7.7: Is QP constraint quali®cation relevant to MPC?

Continuity properties of the MPC control law are often used to establish robustness

properties of MPC such as robust asymptotic stability. In early work on continuity

properties of linear model MPC, Scokaert, Rawlings, and Meadows (1997) used results

on continuity of QPs with respect to parameters to establish MPC stability under per-

turbations. For example, Hager (1979) considered the following QP

min
u
�1=2�u0Hu� h0u� c

subject to

Du � d
and established that the QP solution u0 and cost V0 are Lipschitz continuous in the

data of the QP, namely the parameters H;h;D;d. To establish this result Hager (1979)

made the following assumptions.

• The solution is unique for all H;h;D;d in a chosen set of interest.

• The rows ofD corresponding to the constraints active at the solution are linearly

independent. The assumption of linear independence of active constraints is a

form of constraint quali®cation.

(a) First we show that some form of constraint quali®cation is required to establish

continuity of the QP solution with respect to matrix D. Consider the following

QP example that does not satisfy Hager's constraint quali®cation assumption.

H �
"
1 0

0 1

#
D �

"
1 1

�1 �1
#

d �
"
1

�1
#

h �
"
�1
�1
#

c � 1

Find the solution u0 for this problem.

Next perturb the D matrix to

D �
"

1 1

�1� � �1
#

in which � > 0 is a small perturbation. Find the solution to the perturbed prob-

lem. Are V0 and u0 continuous in parameter D for this QP? Draw a sketch of

the feasible region and cost contours for the original and perturbed problems.

What happens to the feasible set when D is perturbed?

(b) Next consider MPC control of the following system with state inequality con-

straint and no input constraints

A �
"
�1=4 1

�1 1=2

#
B �

"
1 1

�1 �1
#

x�k� �
"
1

1

#
k 2 I0:N

Using a horizon N � 1, eliminate the state x�1� and write out the MPC QP for

the input u�0� in the form given above for Q � R � I and zero terminal penalty.

Find an initial condition x0 such that the MPC constraint matrix D and vector d
are identical to those given in the previous part. Is this x0 2 XN?

Are the rows of the matrix of active constraints linearly independent in this MPC

QP on the set XN? Are the MPC control law �N�x� and optimal value function

V0
N�x� Lipschitz continuous on the set XN for this system? Explain the reason

if these two answers differ.
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Figure 7.8: Solution times for explicit and implicit MPC for N � 20.

Plot shows kernel density estimate for 10,000 samples

using a Gaussian kernel (� � 1 ms).

Exercise 7.8: Explicit versus implicit

Using the system from Figure 7.6, ®nd the explicit control law for horizon N � 20

(you should ®nd 1719 regions). Implement a simple lookup function for the explicit

control law. Randomly sample a large number of points (� 1000) fromXN and compare

execution times for explicit MPC (via the lookup function) and implicit MPC (via solving

a QP). Which method is better? Example results are shown in Figure 7.8, although your

times may vary signi®cantly. How could you improve your lookup function?

Exercise 7.9: Cascaded MPC and PID

Consider a Smart TankTM of liquid whose height h evolves according to

�
dh

dt
� h � Kq; � � 10; K � 1

with q the (net) in¯ow. The tank is SmartTM in that it has an integrated PI controller

that computes

q � Kc
�
hsp � h� 1

�c
�

�
� �

Z
hsp � h dt
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so that the height of the tank returns tohsp automatically. Unfortunately, the controller

parameters are not very SmartTM, as they are ®xed permanently atKc � 1=2 and �c � 1.

(a) Simulate the closed-loop behavior of the system starting from h � �1, � � 0

with hsp � 0.

(b) Design an MPC controller to choose hsp. As a cost function take

`�h; �; q;hsp� � 5�h2 � �2�� q2 � 10h2sp

so that the controller drives the system to h � � � 0. Choose � � 1. How does

performance compare to the previous case? How much storage (i.e., how many

¯oating-point numbers must be stored) to implement this controller?

(c) Add the constraint q 2 ��0:2;0:2� to theMPC formulation, and design an explicit

MPC controller valid for h 2 ��5;5� and � 2 ��10;10� (use solvempqp.m from

Figure 7.6, and add constraints Ep � e to only search the region of interest). How
large does N have to be so that the full region is covered? How much storage is

needed to implement this controller?

Exercise 7.10: Explicit economic MPC for electricity arbitrage

Electricity markets are often subject to real-time pricing, whereby the cost of purchas-

ing electricity varies with time. Suppose that you have a large battery that allows you

to buy electricity at one time and then sell it back to the grid at another. We can model

this as a simple integrator system

x� � x �u
with x representing the amount of stored energy in the tank, and u giving the amount

of electricity that is purchased for the battery u > 0 or discharged from the battery

and sold back to the grid (u < 0). We wish to ®nd an explicit control law based on the

initial condition x�0� a known forecast of electricity prices c�0�; c�1�; : : : ; c�N � 1�.

(a) To start, suppose that u is constrained to the interval ��1;1� but x is uncon-

strained. A reasonable optimization problem is

min
u

N�1X
k�0

c�k�u�k�� 0:1u�k�2

s.t. x�k� 1� � x�k��u�k�
u�k� 2 ��1;1�

where the main component of the objective function is the cost of electricity

purchase/sale with a small penalty added to discourage larger transactions. By

removing the state evolution equation, formulate an explicit quadratic program-

ming problem with N variables (the u�k�) and N � 1 parameters (x�0� and the

price forecast c�k�). What is a theoretical upper bound on the number of regions

in the explicit control law? Assuming thatx�0� 2 ��10;10� and each c�k� 2 ��1;
�1�, ®nd the explicit control law for a few small values of N. (Consider using
solvempqp.m from Figure 7.6; you will need to add constraints Ep � e on the

parameter vector to make sure the regions are bounded.) How many regions do

you ®nd?
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(b) To make the problem more realistic, we add the constraint x�k� 2 ��10;10�
to the optimization, as well as an additional penalty on stored inventory. The

optimization problem is then

min
u

N�1X
k�0

c�k�u�k�� 0:1u�k�2 � 0:01x�k�2

s.t. x�k� 1� � x�k��u�k�
u�k� 2 ��1;1�
x�k� 2 ��10;10�

Repeat the previous part but using the new optimization problem.

(c) Suppose you wish to solve this problem with a 7-day horizon and a 1-hour time

step. Can you use the explicit solution of either formulation? (Hint: for compar-

ison, there are roughly 1080 atoms in the observable universe.)
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8

Numerical Optimal Control

8.1 Introduction

Numerical optimal control methods are at the core of every model pre-

dictive control implementation, and algorithmic choices strongly affect

the reliability and performance of the resulting MPC controller. The

aim of this chapter is to explain some of the most widely used algo-

rithms for the numerical solution of optimal control problems. Before

we start, recall that the ultimate aim of the computations in MPC is to

®nd a numerical approximation of the optimal feedback controlu0�x0�

for a given current state x0. This state x0 serves as initial condition for

an optimal control problem, and u0�x0� is obtained as the ®rst control

of the trajectory that results from the numerical solution of the optimal

control problem. Due to a multitude of approximations, the feedback

law usually is not exact. Some of the reasons are the following.

• The system model is only an approximation of the real plant.

• The horizon length is ®nite instead of in®nite.

• The system's differential equation is discretized.

• The optimization problem is not solved exactly.

While the ®rst two of the above are discussed in Chapters 2 and 3 of

this book, the last two are due to the numerical solution of the opti-

mal control problems arising in model predictive control and are the

focus of this chapter. We argue throughout the chapter that it is not a

good idea to insist that the ®nite horizon MPC problem shall be solved

exactly. First, it usually is impossible to solve a simulation or opti-

mization problem without any numerical errors, due to ®nite precision

arithmetic and ®nite computation time. Second, it might not even be

desirable to solve the problem as exactly as possible, because the neces-

sary computations might lead to large feedback delays or an excessive

use of CPU resources. Third, in view of the other errors that are nec-

essarily introduced in the modeling process and in the MPC problem

485
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formulation, errors due to an inexact numerical solution do not sig-

ni®cantly change the closed-loop performance, at least as long as they

are smaller than the other error sources. Thus, the optimal choice of a

numerical method for MPC should be based on a trade-off between ac-

curacy and computation time. There are, however, tremendous differ-

ences between different numerical choices, and it turns out that some

methods, compared to others, can have signi®cantly lower computa-

tional cost for achieving the same accuracy. Also, reliability is an issue,

as some methods might more often fail to ®nd an approximate solu-

tion than other methods. Thus, the aim of this chapter is to give an

overview of the necessary steps toward the numerical solution of the

MPC problem, and to discuss the properties of the different choices

that can be made in each step.

8.1.1 Discrete Time Optimal Control Problem

When working in a discrete time setting, the MPC optimization problem

that needs to be solved numerically in each time step, for a given system

state x0, can be stated as follows. For ease of notation, we introduce

the sequence of future control inputs on the prediction horizon, u :�
�u�0�;u�1�; : : : ; u�N � 1��, as well as the predicted state trajectories

x :� �x�0�; x�1�; : : : ; x�N��.

minimize
x;u

N�1X
k�0

`�x�k�;u�k��� Vf �x�N�� (8.1a)

subject to x�0� � x0 (8.1b)

x�k� 1� � f�x�k�;u�k��; k � 0;1; : : : ;N � 1 (8.1c)

�x�k�;u�k�� 2 Z; k � 0;1; : : : ;N � 1 (8.1d)

x�N� 2 Xf (8.1e)

We call the above optimization problem PN�x0� to indicate its depen-

dence on the parameter x0, and denote the resulting optimal value

function by VN�x0�. The value function VN�x0� is mostly of theoret-

ical interest, and is in practice computed only for those values of x0
that actually arise in the MPC context. In this chapter, we are mostly

interested in fast and ef®cient ways to ®nd an optimal solution, which

we denote by �x0�x0�;u0�x0��. The solution need not be unique for a

given problem PN�x0�, and in a mathematically correct notation one

could only de®ne the set S0�x0� of all solutions to PN�x0�. Usually

one tries to ensure by a proper formulation that the MPC optimization
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problems have unique solutions, however, so that the set of solutions

is a singleton, S0�x0� � f�x0�x0�;u0�x0��g.
A few remarks are in order regarding the statement of the optimiza-

tion problem (8.1a)-(8.1e). First, as usual in the ®eld of optimization, we

list the optimization variables of problem PN�x0� below the word ªmin-

imize.º Here, they are given by the sequences x and u. The constraints

of the problem appear after the keywords ªsubject toº and restrict the

search for the optimal solution. Let us discuss each of them brie¯y:

constraint (8.1b) ensures that the trajectory x � �x�0�; : : :� starts at x0,
and uniquely determines x�0�. Constraints (8.1c) ensure that the state

and control trajectories obey the system dynamics for all time steps

k � 0; : : : ;N � 1. If in addition to x�0� one would also ®x the controls

u, the whole state trajectory x would be uniquely determined by these

constraints. Constraints (8.1d) shall ensure that the state control pairs

�x�k�;u�k�� are contained in the set Z at each time step k. Finally,

the terminal state constraint (8.1e) requires the ®nal state to be in a

given terminal set Xf . The set of all variables �x;u� that satisfy all

constraints (8.1b)-(8.1e) is called the feasible set. Note that the feasible

set is the intersection of all constraint sets de®ned by the individual

constraints.

8.1.2 Convex Versus Nonconvex Optimization

Themost important dividing line in the ®eld of optimization is between

convex and nonconvex optimization problems. If an optimization prob-

lem is convex, every local minimum is also a global one. One can reli-

ably solve most convex optimization problems of interest, ®nding the

globally optimal solution in polynomial time. On the other hand, if a

problem is not convex, one can usually not ®nd the global minimum.

Even if one has accidentally found the global minimum, one usually

cannot certify that it is the global minimum. Thus, in nonconvex opti-

mization, one has usually to accept that one is only able to ®nd feasible

or locally optimal points. Fortunately, if one has found such a point,

one usually is also able to certify that it is a feasible or locally opti-

mal point. But in the worst case, one might not be able to ®nd even a

feasible point, without knowing if this is due to the problem being in-

feasible, or the optimization algorithm being just unable to ®nd points

in the feasible set. Thus, the difference between convex and nonconvex

has signi®cant implications in practice. To say it in the words of the

famous mathematical optimizer R. Tyrrell Rockafellar, ªThe great wa-

tershed in optimization is not between linearity and nonlinearity, but



488 Numerical Optimal Control

convexity and nonconvexity.º

When is a given optimization problem a convex optimization prob-

lem? By de®nition, an optimization problem is convex if its feasible

set is a convex set and if its objective function is a convex function. In

MPC, we usually have freedom in choosing the objective function, and

in most cases one chooses a convex objective function. For example,

the sum of quadratic functions of the form `�x;u� � x0Qx � u0Ru
with positive semide®nite matrices Q and R is a convex function. Usu-

ally, one also chooses the terminal cost Vf to be a convex function, so

that the objective function is a convex function.

Likewise, one usually chooses the terminal set Xf to be a convex

set. For example, one might choose an ellipsoid Xf � fx j x0Px � 1g
with a positive de®nite matrix P , which is a convex set. Very often, one

is lucky and also has convex constraint sets Z, for example box con-

straints on x�k� and u�k�. The initial-value constraint (8.1b) restricts

the variable x�0� to be in the point set fx0g, which is convex. Thus,

most of the constraints in the MPC optimization problem usually can

be chosen to be convex. On the other hand, the constraints (8.1c) re-

¯ect the system dynamics x�k�1� � f�x�k�;u�k�� for all k, and these

might or might not describe a convex set. Interestingly, it turns out that

they describe a convex set if the system model is linear or af®ne, i.e., if

f�x�k�;u�k�� � Ax�k�� Bu�k�� c with matrices A;B and vector c of

appropriate dimensions. This follows because the solution set of linear

equalities is an af®ne set, which is convex. Conversely, if the system

model is nonlinear, the solution set of the dynamic constraints (8.1c) is

most likely not a convex set. Thus, we can formulate a modi®cation of

Rockafellar's statement above: in MPC practice, the great watershed be-

tween convex and nonconvex optimization problems usually coincides

with the division line between linear and nonlinear system models.

One speaks of linear MPC if a linear or af®ne simulation model is

used, and of nonlinear MPC otherwise. When speaking of linear MPC,

one implicitly assumes that all other constraints and the objective func-

tion are chosen to be convex, but not necessarily linear. In particular, in

linear MPC, the objective function usually is chosen to be convex quad-

ratic. Thus, in the MPC literature, the term linear MPC is used as if

it coincides with ªconvex linear MPC.º Theoretically possible ªnoncon-

vex linear MPCº methods, where the system model is linear but where

the cost or constraint sets are not convex, are not of great practical

interest. On the other hand, for nonlinear MPC, i.e., when a nonlin-

ear model is used, convexity usually is lost anyway, and there are no
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implicit convexity assumptions on the objective and constraints, such

that the term nonlinear MPC nearly always coincides with ªnonconvex

nonlinear MPC.º

Example 8.1: Nonlinear MPC

We regard a simple MPC optimization problem of the form (8.1) with

one dimensional state x and control u, system dynamics f�x;u� �
x �u� 2u2, initial value x0 � 1, and horizon length N � 1, as follows

minimize
x�0�;x�1�;u�0�

x�0�2 �u�0�2 � 10x�1�2 (8.2a)

subject to x�0� � x0 (8.2b)

x�1� � x�0��u�0�� 2u�0�2 (8.2c)

� 1 � u�0� � 1 (8.2d)

First, we observe that the optimization problemhas a three-dimensional

space of optimization variables. To check convexity of the problem,

we ®rst regard the objective, which is a sum of positive quadratic func-

tions, thus a convex function. On the other hand, we need to check

convexity of the feasible set. The initial-value constraint (8.2b) ®xes

one of the three variables, thus selects a two-dimensional af®ne subset

in the three-dimensional space. This subset is described by x�0� � 1

while u�0� and x�1� remain free. Likewise, the control bounds in (8.2d)

cut away all values for u�0� that are less than �1 or more than �1,
thus, there remains only a straight stripe of width 2 in the af®ne sub-

set, still extending to in®nity in the x�1� direction. This straight two-

dimensional stripe still is a convex set. The system equation (8.2c) is a

nonlinear constraint that selects a curve out of the stripe, which is visu-

alized on the left of Figure 8.1. This curve is not a convex set, because

the connecting lines between two points on the curve are not always

contained in the curve. In a formula, the feasible set is given by f�x�0�;
x�1�;u�0�� j x�0� � 1; u�0� 2 ��1;1�; x�1� � 1�u�0�� 2u�0�2g.

Even though the objective function is convex, the fact that the op-

timization problem has a nonconvex feasible set can lead to different

local minima. This is indeed the case in our example. To see this, let

us evaluate the objective function on all feasible points and plot it as a

function of u�0�. This reduced objective function  �u� can be obtained

by insertingx�0� � 1 andx�1� � x�0��u�0��2u�0�2 into the objective
x�0�2�u�0�2�10x�1�2, which yields �u� � 1�u2�10�1�u�2u2�2 �
11 � 20u � 29u2 � 40u3 � 40u4. This reduced objective is visualized
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Figure 8.1: Feasible set and reduced objective  �u�0�� of the non-

linear MPC Example 8.1.

on the right of Figure 8.1 and it can clearly be seen that two different

locally optimal solutions exist, only one of which is the globally optimal

choice. �

8.1.3 Simultaneous Versus Sequential Optimal Control

The optimal control problem (OCP) (8.1) can be passed to an appro-

priate optimization routine without any modi®cation. In this case, the

optimization variables are given by both, the state trajectory x as well

as the control trajectory u. The pair �x;u� is consistent with the initial

value x0 and the simulation model if and only if the constraints (8.1b)

and (8.1c) are satis®ed, which is the case for any feasible solution of

the problem. During the optimization calculations, however, these con-

straintsmight be violated, and the state trajectory xmight not be a valid

simulation corresponding to the controls u. Since the optimization rou-

tine has to simultaneously solve the simulation and the optimization

problem, one calls this approach the simultaneous approach to optimal

control.

On the other hand, one could use the constraints (8.1b)-(8.1c) to ®nd

the unique feasible state trajectory x for any given control trajectory

u. We denote, as before in Chapter 2, the state x�k� that results from

a given initial condition x0 and a given control trajectory u � �u�0�;
u�1�; : : : ; u�N � 1�� by ��k;x0;u�. Using this expression, that can be

computed by a simple forward simulation routine, we can replace the

equalities (8.1b)-(8.1c) by the trivial equalities x�k� � ��k;x0;u� for



8.1 Introduction 491

k � 0;1; : : : ;N. And these constraints can be used to eliminate the com-

plete state trajectory x � �x�0�; x�1�; : : : ; x�N�� from the optimization

problem. The optimization problem in this reduced variable space is

given by

minimize
u

N�1X
k�0

`���k;x0;u�;u�k��� Vf ���N;x0;u�� (8.3a)

subject to ���k;x0;u�;u�k�� 2 Z; k � 0;1; : : : ;N � 1 (8.3b)

��N;x0;u� 2 Xf (8.3c)

If this reduced optimization problem is solved by an iterative optimiza-

tion routine, in each iteration, one performs a sequence of two steps.

First, for given u, the simulation routine computes the state trajectory

x, and second, the optimization routine updates the control variables

u to iterate toward an optimal solution. Due to this sequential evalu-

ation of simulation and optimization routines, one calls this approach

the sequential approach to optimal control. Though the simultaneous

and the sequential approach solve equivalent optimization problems,

their approach toward ®nding the solutions is different.

For linear MPC problems, where the system model is linear, the dif-

ference between the two approaches regards mostly the sparsity struc-

ture of the optimization problem, as discussed in Chapter 6 and in

Section 8.8.4. In this case, one usually calls the reduced optimization

problem (8.3) the condensed problem, and the computational process

to generate the data for the condensed problem (8.3) from the data of

the original problem (8.1) is called condensing. Though the condensed

problem has fewer variables, the matrices de®ning it may have more

nonzero entries than the original problem. Which of the two formula-

tions leads to shorter computation times for a given problem depends

on the number of states, controls and constraints, the speci®c sparsity

structures, and on the horizon length N. For small N, condensing is

typically preferable, while for large N, it is advisable to apply a sparse

convex solver to the original problem in the full variable space. Despite

the different sparsity structure, and different cost per iteration, many

widely used convex optimization algorithms perform identical iterates

on both problems, because the eliminated constraints are linear and

are exactly respected in each iteration in both the condensed as well as

the original problem formulation.

For nonlinear MPC problems, the sequential and simultaneous ap-

proach can lead to signi®cantly different optimization iterations. Even
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if both problems are addressed with the same optimization algorithm

and are initialized with the same initial guess, i.e., the same u for both,

together with the corresponding simulation result x, the optimization

iterations typically differ after the ®rst iteration, such that the two for-

mulations can need a signi®cantly different number of iterations to

converge; they might even converge to different local solutions or one

formulation might converge while the other does not. As a rule of

thumb, the sequential approach is preferable if the optimization solver

cannot exploit sparsity and the system is stable, while the simultaneous

approach is preferable for unstable nonlinear systems, for problems

with state constraints, and for systems which need implicit simulation

routines.

Example 8.2: Sequential approach

We regard again the simple MPC optimization problem (8.2a), but elim-

inate the states as a function of u � �u�0�� by x�0� � ��0;x0;u� � x0
and x�1� � ��1;x0;u� � x0�u�0��2u�0�2. The reduced optimization

problem in the sequential approach is then given by

minimize
u�0�

x2
0 �u�0�2 � 10

�
x0 �u�0�� 2u�0�2

�2
(8.4a)

subject to � 1 � u�0� � 1 (8.4b)

�

8.1.4 Continuous Time Optimal Control Problem

In most nonlinear MPC applications and many linear MPC applications,

the system dynamics are not given in discrete time but in continuous

time, in form of differential equations

dx

dt
� fc�x;u�

For notational convenience, we usually denote differentiation with re-

spect to time by a dot above the quantity, i.e., we can abbreviate the

above equations by Çx � fc�x;u�. Both the state and control trajecto-

ries are functions of continuous time, and we denote them by x�t� and

u�t�. The trajectories need only to be de®ned on the time horizon of

interest, i.e., for all t 2 �0; T �, where T is the horizon length. If we do

not assume any discretization, and if we use the shorthand symbols
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x��� and u��� to denote the state and control trajectories, the continu-

ous time optimal control problem (OCP) can be formulated as follows

minimize
x���;u���

Z T
0
`c�x�t�;u�t�� dt � Vf �x�T�� (8.5a)

subject to x�0� � x0 (8.5b)

Çx�t� � fc�x�t�;u�t��; t 2 �0; T � (8.5c)

�x�t�;u�t�� 2 Z; t 2 �0; T � (8.5d)

x�T� 2 Xf (8.5e)

It is important to note that the continuous time optimal control

problem is an in®nite-dimensional optimization problem with in®nite-

dimensional decision variables and an in®nite number of constraints,

because the time index t runs through in®nitely many values t 2 �0; T �.
This is in contrast to discrete time, where the ®nite number of time in-

dices k 2 I0:N leads to ®nitely many decision variables and constraints.

There exists a variety of methods to numerically solve continuous

time OCPs. What all approaches have in common is that at one point,

the in®nite-dimensional problem needs to be discretized. One fam-

ily of methods ®rst formulates what is known as the Hamilton-Jacobi-

Bellman (HJB) equation, a partial differential equation for the value

function, which depends on both state space and time, and then dis-

cretizes and solves it. Unfortunately, due to the ªcurse of dimensional-

ity,º this approach is only practically applicable to systems with small

state dimensions, say less than ®ve, or to the special case of uncon-

strained linear systems with quadratic costs.

A second family of methods, the indirect methods, ®rst derive opti-

mality conditions in continuous time by algebraic manipulations that

use similar expressions as the HJB equation; they typically result in the

formulation of a boundary-value problem (BVP), and only discretize the

resulting continuous time BVP at the very end of the procedure. One

characterizes the indirect methods often as ª®rst optimize, then dis-

cretize.º A third class of methods, the direct methods, ®rst discretizes

the continuous time OCP, to convert it into a ®nite-dimensional opti-

mization problem. The ®nite-dimensional optimization problem can

then be solved by tailored algorithms from the ®eld of numerical op-

timization. The direct methods are often characterized as ª®rst dis-

cretize, then optimize.º These methods are most widely used in MPC

applications and are therefore the focus of this chapter.
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To sketch the discretization methods, we look at the continuous

time optimal control problem (8.5). In a direct method, we replace

the continuous index t 2 �0; T � by a discrete integer index. For this

aim, we can divide the time horizon T into N intervals, each of length

h � T
N , and evaluate the quantities of interest only for the discrete time

points t � hk with k 2 I0:N . We use the notation hI0:N � f0; h;2h; : : : ;
Nhg, such that we can use the expression ªt 2 hI0:Nº to indicate that

t is only considered at these discrete time points. To discretize the

OCP, the objective integral is replaced by a Riemann sum, and the time

derivative by a ®nite difference approximation: Çx�t� � x�t�h��x�t�
h . As

before in discrete time, we denote the sequence of discrete states by

x � �x�0�; x�h�;x�2h�; : : : ; x�Nh�� and the sequence of controls by

u � �u�0�;u�h�; : : : ; u�Nh� h��.

minimize
x;u

X
t2hI0:N�1

h`c�x�t�;u�t�� � Vf �x�Nh�� (8.6a)

subject to x�0� � x0 (8.6b)

x�t�h��x�t�
h

� fc�x�t�;u�t��; t 2 hI0:N�1 (8.6c)

�x�t�;u�t�� 2 Z; t 2 hI0:N�1 (8.6d)

x�Nh� 2 Xf (8.6e)

It is easily checked that the constraints (8.6b)-(8.6c) uniquely determine

all states x if the control sequence u is given. The above problem is ex-

actly in the form of the discrete time optimization problem (8.1), if one

uses the de®nitions `�x;u� :� h`c�x;u� and f�x;u� :� x � hfc�x;u�.
This simple way to go from continuous to discrete time, in particular

the idea to solve a differential equation Çx � fc�x;u� by the simple

difference method x� � x � hfc�x;u�, is originally due to Leonhard

Euler (1707±1783), and is therefore called the Euler integration method.

The Euler method is not the only possible integration method, and in

fact, not the most ef®cient one. Numerical analysts have investigated

the simulation of differential equations for more than two centuries,

and discovered powerful discretization methods that have much lower

computational cost and higher accuracy than the Euler method and are

therefore more widely used in practice. These are the topic of the next

section.
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8.2 Numerical Simulation

The classical task of numerical simulation is the solution of initial-value

problems. An initial-value problem is characterized by an initial state

value x0 at time 0, and a differential equation Çx � f�t; x� that the
solution x�t� should satisfy on the time interval of interest, i.e., for all

t 2 �0; T � with T > 0. In particular, we are interested in computing

an approximation of the ®nal state x�T�. In this section, we allow an

explicit dependence of the right-hand-side function f�t; x� on time. To

be consistent with the literature in the ®eld of numerical simulationÐ

and deviating from the notation in other chapters of this bookÐwe use

t here as the ®rst input argument of f�t; x�. The time dependence

might in particular be due to a ®xed control trajectory u�t�, and if a

given system is described by the continuous time ODE Çx � fc�x;u�, the
time dependent right-hand-side function is de®ned by f�t; x� :� fc�x;
u�t��. The choice of the control trajectory u�t� is not the focus in

this section, but becomes important later when we treat the solution

of optimal control problems. Instead, in this section, we just review

results from the ®eld of numerical simulation of ordinary differential

equationsÐwhich is sometimes also called numerical integrationÐthat

are most relevant to continuous time optimal control computations.

Throughout this section we consider the following initial-value

problem

x�0� � x0; Çx�t� � f�t; x�t�� for t 2 �0; T � (8.7)

with a given right-hand-side function f : �0; T ��Rn ! Rn. We denote

the exact solution, if it exists, by x�t�. Existence of a unique solution of

the initial-value problem is guaranteed by a classical theorem by ÂEmile

Picard (1856±1941) and Ernst LindelÈof (1870±1946), which requires the

function f to be continuous with respect to time t and Lipschitz contin-

uous with respect to the state x. Lipschitz continuity is stronger than

continuity and requires the existence of a constant L > 0 such that the

following inequality��f�t; x�� f�t;y��� � L��x �y�� (8.8)

holds for all t 2 �0; T � and all x;y 2 Rn. In many cases of interest,

the function f is not de®ned on the whole state space, or there might

exist no global Lipschitz constant L for all states x and y . Fortunately,

a local version of the Picard-LindelÈof Theorem exists that only needs

Lipschitz continuity in a neighborhood of the point �0; x0� and still
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ensures the existence of a unique solution x�t� for suf®ciently small

T . Local Lipschitz continuity is implied by continuous differentiabil-

ity, which is easy to verify and holds for most functions f arising in

practice. In fact, the function f usually is many times differentiable in

both its arguments, and often even in®nitely many timesÐfor example,

in the case of polynomials or other analytic functions. The higher dif-

ferentiability of f also leads to higher differentiability of the solution

trajectory x�t� with respect to t, and is at the basis of the higher-order

integration methods that are widely used in practice.

Because all numerical integration methods produce only approxi-

mations to the true solution x�t�, we use a different symbol for these

approximations, namely xe�t�. The numerical approximation is usu-

ally only exact for the initial value, where we simply set xe�0� :� x0.
For the ®nal state at time T , we aim to have a small error E�T� :���xe�T�� x�T���, at low computational cost. All integration methods di-

vide the time horizon of interest into smaller intervals, and proceed by

making a sequence of integration steps, one per interval. For simplic-

ity, assume that the steps are equidistant, and that in total N steps of

size h � T=N are taken. In each step, the integration method makes a

local error, and the combined effect of the accumulated local errors at

time t, i.e., the distance E�t� � ��xe�t�� x�t���, is called the global error.

After the ®rst integrator step, local and global error coincide because

the integration starts on the exact trajectory, but in subsequent steps,

the global error typically grows while the local errors remain of similar

size.

8.2.1 Explicit Runge-Kutta Methods

Let us ®rst investigate the Euler integrator, that iterates according to

the update rule

xe�t � h� � xe�t�� hf�t; xe�t��
starting withxe�0� � x0. Which local error do wemake in each step? For

local error analysis, we assume that the starting point xe�t� was on an

exact trajectory, i.e., equal tox�t�, while the result of the integrator step

xe�t�h� is different from x�t�h�. For the analysis, we assume that the

true trajectory x�t� is twice continuously differentiable with bounded

second derivatives, which implies that its ®rst-order Taylor series satis-

®es x�t�h� � x�t��hÇx�t��O�h2�, where O�h2� denotes an arbitrary

function whose size shrinks faster than h2 for h ! 0. Since the ®rst

derivative is known exactly, Çx�t� � f�t; x�t��, andwas used in the Euler
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integrator, we immediately obtain that
��xe�t � h�� x�t � h��� � O�h2�.

Because the global error is the accumulated and propagated effect of

the local errors, and because the total number of integrator steps grows

linearly with 1=h, one can show that the global error at the end of the

interval of interest is of size 1=h O�h2� � O�h�, i.e., of ®rst order. For
this reason one says that the Euler method is a ®rst-order integration

method. The Euler integrator is easy to remember and easy to imple-

ment, but the number of time steps that are needed to obtain even a

moderate accuracy can be reduced signi®cantly if higher-order meth-

ods are used.

Like the Euler integrator, all one-step integration methods create a

discrete time system of the form

xe�t � h� � xe�t�� ��t; xe�t�; h�
Here, the map � approximates the integral

R t�h
t f��;x���� d� . If �

would be equal to this integral, the integration method would be exact,

due to the identity

x�t � h�� x�t� �
Z t�h
t

Çx��� d� �
Z t�h
t

f��;x���� d�

While the Euler integrator approximates the integral by the expression

��t; x;h� � hf�t; x�t�� that has an error of O�h2� and needs only

one evaluation of the function f per step, one can ®nd more accurate

approximations by allowing more than one function evaluation per in-

tegration step. This idea leads directly to the Runge-Kutta (RK) integra-

tion methods, that are named after Carl Runge (1856±1927) and Martin

Wilhelm Kutta (1867±1944).

The classical Runge-Kutta method (RK4). One of the most widely

used methods invented by Runge and Kutta performs four function

evaluations, as follows.

k1 � f�t; x�
k2 � f�t � h=2; x � �h=2�k1�
k3 � f�t � h=2; x � �h=2�k2�
k4 � f�t � h;x � hk3�
� � �h=6�k1 � �h=3�k2 � �h=3�k3 � �h=6�k4

It is a fourth-order method, and therefore often abbreviated RK4. Since

it is one of the most competitive methods for the accuracies that are
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typically needed in applications, the RK4 integrator is one of the most

widely used integration methods for simulation of ordinary differential

equations. A comparison of the RK4 method with Euler's ®rst-order

method and a second-order method named after Karl Heun (1859±

1929) is shown in Figure 8.2.

Example 8.3: Integration methods of different order

We regard the simulation of the linear ordinary differential equation

(ODE)

Çx � Ax with A �
"
0 1

�1 0

#
over the interval T � 2� , starting at x0 � �1;0�0. The analytic solution
of this system is known to be x�t� � exp�At�x0 � �cos�t�;� sin�t��0,

such that the ®nal state is given by x�2�� � �1;0�0. To investigate

the performance of different methods, we divide the time horizon into

N equal integration intervals of length h � 2�=N. Note that a Runge-

Kuttamethodwith s stages needs in totalM :� Ns function evaluations.
We compare the Euler (s � 1), Heun (s � 2), and RK4 method (s � 4).

For each integration method we evaluate the global error at the end

of the integration interval, E�2�� � ��xe�2��� x�2����, and plot it as

a function of the number of function evaluations, M , in Figure 8.2.

We use a doubly logarithmic scale, i.e., plot log��� versus log�M�, to

show the effect of the order. Note that the slope of the higher-order

methods is an integer multiple of the slope of the Euler method. Also

note that the accuracy for each investigated method cannot exceed a

certain base value due to the ®nite precision arithmetic, and that this

limit is reached for the RK4 integrator at approximatelyM � 105. After

this point, increasing the number of integration steps does not further

improve the accuracy. �

The Butcher tableau. A general explicit Runge-Kutta method with s

stages performs the following computations in each integration step

k1 � f�t�c1h; x �

k2 � f�t�c2h; x � h �a21k1� �

k3 � f�t�c3h; x � h �a31k1 � a32k2� �
...

. . .

ks � f�t�csh; x � h �as1k1 � : : : � as;s�1ks�1� �

� � h �b1 k1 � : : : � bs�1 ks�1 � bs ks�
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Figure 8.2: Performance of different integration methods.

It is important to note that on the right-hand side of each row, only

those ki values are used that are already computed. This property

holds for every explicit integration method, and makes it possible to

explicitly evaluate the ®rst s equations one after the other to obtain

all values k1; : : : ; ks for the summation in the last line. One usually

summarizes the coef®cients of a Runge-Kutta method in what is known

as a Butcher tableau (after John C. Butcher, born 1933) given by

c1
c2 a21
c3 a31 a32
...

. . .
. . .

cs as1 � � � as;s�1
b1 b2 � � � bs

The Butcher tableau of three popular RK methods is stated below

Euler

0

1

Heun

0

1 1

1=2 1=2

RK4

0

1=2 1=2

1=2 0 1=2

1 0 0 1

1=6 2=6 2=6 1=6

Note that the bi coef®cients on the bottom always add to one. An

interesting fact is that an s-stage explicit Runge-Kuttamethod can never
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have a higher order than s. And only for orders equal or less than four

exist explicit Runge-Kutta methods for which the order and the number

of stages coincide.

8.2.2 Stiff Equations and Implicit Integrators

Unfortunately, some differential equations cannot reliably be solved by

explicit integration methods; it can occur that even if the underlying

ODE is stable, the integration method is not. Let us regard the scalar

linear ODE

Çx � �x
with initial condition x0 as a test case. The exact solution is known to

be x�t� � e�tx0. When this ODE is solved by an explicit Euler method,

it iterates like x� � x � h�x and it is easy to see that the explicit so-

lution is given by xe�kh� � �1 � h��kx0. For positive �, this leads to

exponential growth, which is not surprising given that the exact ODE

solution grows exponentially. If � is a large negative number, how-

ever, the exact solution x�t� would decay very fast to zero, while the

Euler integrator is unstable and oscillates with exponentially growing

amplitude if h is larger than 2=����. A similar observation holds for

all explicit integration methods.

The most perturbing fact is that the explicit integration methods

are extremely unstable exactly because of the fact that the system is

extremely stable. Extremely stable ODEs are called stiff equations. For

stiff ODE Çx � f�t; x�, some of the eigenvalues of the Jacobian fx have

extremely large negative real parts, which lead to extremely stable sub-

dynamics. Exactly these extremely stable subdynamics let the explicit

integrators fail; even for relatively short stepsizes h, they overshoot

the true solution and exhibit unstable oscillations. These oscillations

do not just lead to inaccurate solutions, but in fact they quickly ex-

ceed the range of computer representable numbers (10308 for double

precision), such that the explicit integrator just outputs ªNaNº (ªnot a

numberº) most of the time.

Fortunately, there exist integrationmethods that remain stable even

for stiff ODE. Their only drawback is that they are implicit, i.e., they re-

quire the solution of an equation system to compute the next step. The

simplest of these implicit methods is called the implicit Euler method

and it iterates according to

x� � x � hf�t � h;x��
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Note that the desired output value x� appears also on the right side of

the equation. For the scalar linear ODE Çx � �x, the implicit Euler step

is determined by x� � x�h�x�, which can explicitly be solved to give

x� � x=�1 � h��. For any negative �, the denominator is larger than

one, and the numerical approximation xe�kh� � x0=�1 � h��k there-

fore decays exponentially, similar to the exact solution. An integration

method which has the desirable property that it remains stable for the

test ODE Çx � �x whenever Re��� < 0 is called A-stable. While none of

the explicit Runge-Kutta methods is A-stable, the implicit Euler method

is A-stable. But it has a low order. Can we devise A-stable methods that

have a higher order?

8.2.3 Implicit Runge-Kutta and Collocation Methods

Once we accept that we need to solve a nonlinear equation system in or-

der to compute an integration step, we can extend the family of Runge-

Kutta methods by allowing diagonal and upper-triangular entries in the

Butcher tableau. Our hope is to ®nd integration methods that are both

A-stable and have a high order. A general implicit Runge-Kutta method

with s stages solves the following nonlinear system in each integration

step

k1 � f�t � c1h ; x � h � a11k1 � a12k2 � : : : � a1;sks� �
k2 � f�t � c2h ; x � h � a21k1 � a22k2 � : : : � a2;sks� �

...
...

...

ks � f�t � csh ; x � h � as1k1 � as;2k2 � : : : � as;sks� �

� � h � b1 k1 � b2 k2 � : : : � bs ks �

Note that the upper s equations are implicit and form a root-®nding

problem with sn nonlinear equations in sn unknowns, where s is the

number of RK stages and n is the state dimension of the differen-

tial equation Çx � f�t; x�. Nonlinear root-®nding problems are usually

solved by Newton's method, which is treated in the next section. For

Newton's method to work, one has to assume that the Jacobian of the

residual function is invertible. For the RK equations above, this can be

shown to always hold if the time step h is suf®ciently small, depending

on the right-hand-side function f . After the values k1; : : : ; ks have been

computed, the last line can be executed and yields the resulting map

��t; x;h�. The integrator then uses the map � to proceed to the next

integration step exactly as the other one-step methods, according to
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the update equation

xe�t � h� � xe�t�� ��t; xe�t�; h�
For implicit integrators, contrary to the explicit ones, the map � cannot

easily be written down as a series of function evaluations. Evaluation of

��t; x;h� includes the root-®nding procedure and typically needs sev-

eral evaluations of the root-®nding equations and of their derivatives.

Thus, an s-stage implicit Runge-Kutta method is signi®cantly more ex-

pensive per step compared to an s-stage explicit Runge-Kutta method.

Implicit integrators are usually preferable for stiff ordinary differential

equations, however, due to their better stability properties.

Many different implicit Runge-Kutta methods exist, and each of

them can be de®ned by its Butcher tableau. For an implicit RK method,

at least one of the diagonal and upper-triangular entries (aij with j � i)
is nonzero. Some methods try to limit the implicit part for easier com-

putations. For example, the diagonally implicit Runge-Kutta methods

have only the diagonal entries nonzero while the upper-triangular part

remains zero.

Collocation methods. One particularly popular subclass of implicit

Runge-Kutta methods is formed by the collocation methods. An s-stage

collocation method ®rst ®xes the values ci of the Butcher tableau, and

chooses them so that they are all different and in the unit interval,

i.e., 0 � c1 < c2 < : : : < cs � 1. The resulting time points �t � hci�
are called the collocation points, and their choice uniquely determines

all other entries in the Butcher tableau. The idea of collocation is to

approximate the trajectory on the collocation interval by a polynomial

xe��� for � 2 �t; t�h�, and to require satisfaction of theODE Çx � f�t; x�
only on the collocation points, i.e., impose the conditions Çxe�t �hci� �
f�t�hci; xe�t�hci�� for i � 1; : : : ; s. Together with the requirement that

the approximating polynomial xe��� should start at the initial value, i.e.,
xe�t� � x, we have �s � 1� conditions such that the polynomial needs

to have �s�1� coef®cients, i.e., have the degree s, to yield a well-posed

root-®nding problem.

The polynomial xe��� can be represented in different ways, which

are related via linear basis changes and therefore lead to numerically

equivalent root-®nding problems. One popular way is to parameterize

xe��� as the interpolating polynomial through the initial value x and the

state values at the collocation points. This only gives a unique param-

eterization if c1 � 0. To have a more generally applicable derivation
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of collocation, we use instead the value x together with the s deriva-

tive values k1; : : : ; ks at the collocation time points to parameterize

xe���. More precisely, we use the identity xe��� � x � R �t Çxe��1;k1; k2;
: : : ; ks� d�1, where Çxe��� is the time derivative of xe���, and therefore a

polynomial of degree �s � 1� that can be represented by s coef®cients.

Fortunately, due to the fact that all collocation points are different, the

interpolating polynomial through the s vectors k1; : : : ; ks is well de®ned

and can easily be represented in a Lagrange basis, with basis functions

Li
�
��t
h

�
that are one on the i-th collocation point and zero on all oth-

ers.1 Collocation thus approximates Çx��� by the polynomial

Çxe�� ;k1; k2; : : : ; ks� :� k1L1 �� � t
h

�
�k2L2

�
� � t
h

�
� : : :�ksLs

�
� � t
h

�
and x��� by its integral

xe�� ;x;k1; k2; : : : ; ks� :� x � Z �
t

Çxe��1;k1; k2; : : : ; ks� d�1
To obtain the state at the collocation point �t � cih�, we just need to

evaluate xe�t � cih;x;k1; k2; : : : ; ks�, which is given by the following in-

tegral

x �
Z t�cih
t

Çxe��1;k1; k2; : : : ; ks� d�1 � x � sX
j�1

kjh

Z ci
0
Lj��� d�| {z }
�:aij

Note that the integrals over the Lagrange basis polynomials depend

only on the relative positions of the collocation time points, and directly

yield the coef®cients aij . Likewise, to obtain the coef®cients bi, we

evaluate xe�t � h;x;k1; k2; : : : ; ks�, which is given by

x �
Z t�h
t

Çxe�� ;k1; k2; : : : ; ks� d� � x � sX
i�1

kih

Z 1

0
Li��� d�| {z }
�:bi

In Figure 8.3, the difference between the exact solution x��� and the

collocation polynomial xe��� as well as the difference between their

1The Lagrange basis polynomials are de®ned by

Li��� :�
Y

1�j�s; j�i

�� � cj�
�ci � cj�
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Figure 8.3: Polynomial approximation xe1�t� and true trajectory

x1�t� of the ®rst state and its derivative, computed at

the ®rst integration step of the GL4 collocation method

applied to the stiff ODE from Example 8.4. Note that the

accuracy of the polynomial at the end of the interval is

signi®cantly higher than in the interior. The result of this

®rst GL4 step can also be seen on the right side of Fig-

ure 8.4.

time derivatives is visualized, for a collocation method with s � 2 col-

location points (GL4) applied to the ODE from Example 8.4. Note that

in this example, Çxe�� ;k1; k2; : : : ; ks� is a polynomial of order one, i.e., an

af®ne function, and its integral, xe�� ;x;k1; k2; : : : ; ks�, is a polynomial

of order two.

The Butcher tableau of three popular collocation methods is

Implicit

Euler

1 1

1

Midpoint

rule (GL2)

1=2 1=2

1

Gauss-Legendre

of order 4 (GL4)

1=2�p3=6 1=4 1=4�p3=6
1=2�p3=6 1=4�p3=6 1=4

1=2 1=2
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An interesting remark is that the highest order that an s-stage implicit

Runge-Kutta method can achieve is given by 2s, and that the Gauss-

Legendre collocation methods achieve this order, due to a particularly

smart choice of collocation points (namely as roots of the orthogonal

Legendre polynomials, following the idea of Gaussian quadrature). The

midpoint rule is a Gauss-Legendre method of second order (GL2). The

Gauss-Legendre methods, like many other popular collocation meth-

ods, are A-stable. Some methods, such as the Radau IIA collocation

methods, have even stronger stability properties (they are also L-stable),

and are often preferable for stiff problems. All collocation methods

need to solve a nonlinear system of equations in ns dimensions in each

step, which can become costly for large state dimensions and many

stages.

Example 8.4: Implicit integrators for a stiff ODE system

We consider the following ODE

Çx � Ax � 500x �jxj2 � 1�

with A and initial conditions as before in Example 8.3. In contrast to

the previous example, this ODE is nonlinear and stiff, due to the ad-

ditive nonlinear term �500x �jxj2 � 1�. This term is zero only if the

norm of x is one, i.e., if the state lies on the unit circle. If not, the

state is strongly pushed toward the unit circle. This makes the system

a stiff ODE. As we start at �1;0�0, the exact solution lies again on the

unit circle, and also ends at �1;0�0. For comparison, we solve the initial

value problem with three implicit integration methods, all of colloca-

tion type (implicit Euler, GL2, GL4). To have an approximate measure of

the computational costs of the different methods, we denote by M the

total number of collocation points on the time horizon. The results are

shown in Figure 8.4. On the left-hand side, the different order behav-

ior is observed. On the right-hand side, the trajectories resulting from

a total of M � 10 collocation points are shown for the three different

methods. In Figure 8.3, the ®rst step of the GL4 method is visualized in

detail, showing both the trajectory of the ®rst state as well as its time

derivative, together with their polynomial approximations. �

8.2.4 Differential Algebraic Equations

Some systemmodels do not only contain differential, but also algebraic

equations, and therefore belong to the class of differential algebraic
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(b) Simulation result for M � 10 points.

Figure 8.4: Performance of implicit integration methods on a stiff

ODE.

equations (DAEs). The algebraic equations might, for example, re¯ect

conservation laws in chemical reactionmodels or kinematic constraints

in robot models. DAE models come in many different forms, some

of which are easier to treat numerically than others. One particularly

favorable class of DAE are the semiexplicit DAE of index one, which can

be written as

Çx � f�t; x; z� (8.9a)

0 � g�t; x; z� (8.9b)

Here, the differential states x 2 Rn are accompanied by algebraic states

z 2 Rnz , and the algebraic states are implicitly determined by the alge-

braic equations (8.9b). Here, the number of algebraic equations is equal

to the number of algebraic states, i.e., g : R � Rn � Rnz ! Rnz , such

that for ®xed t and x, the algebraic equation (8.9b) forms a nonlinear

system of nz equations for nz unknowns.

The assumption of index one requires the Jacobian matrix of g with

respect to z to be invertible at all points of interest. The fact that Çx

appears alone on the left side of the differential equation (8.9a) makes

the DAE semiexplicit. An interesting observation is that it is possible to

reduce a semiexplicit DAE of index one to an ODE if one ®nds an explicit

symbolic expression z��t; x� for the implicit function de®ned by g�t; x;

z��t; x�� � 0. The resulting ODE that is equivalent to the original DAE

is given by Çx � f�t; x; z��t; x��. Usually, this reduction from an index-

one DAE to an ordinary differential equation is not possible analytically.

A numerical computation of z��t; x� is always possible in principle, but
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requires the use of an underlying root-®nding method. This way it is

possible to solve a DAE with explicit integration methods. For implicit

integration methods, however, one can simply augment the nonlinear

equation system by the algebraic equations g at all evaluation points

of the right-hand-side of the differential function f , and then rely on

the root-®nding method of the integrator. For this reason, and because

they are often stiff, DAE are usually addressed with implicit integrators.

8.2.5 Integrator Adaptivity

Many practical integration methods use an adaptive stepsize selection

to attain a good trade-off between numerical accuracy and computa-

tional effort. Instead of performing steps of equal length h, adaptive

methods vary h in each step. Usually, they try to keep an estimate of

the local error constant. The details are beyond our interest here, but

we note that integrator adaptivity can be a crucial feature for the ef-

®ciency of nonlinear MPC implementations, in particular for the long

simulation intervals which appear when one appends a prediction hori-

zon at the end of the control horizon. On the other hand, integrator

adaptivity needs to be treated with care when numerical derivatives of

the simulation result are computed, as discussed in Section 8.4.6.

8.3 Solving Nonlinear Equation Systems

We have seen that an important subtask within numerical simulationÐ

as well as in numerical optimizationÐis the solution of nonlinear equa-

tion systems. In this section, we therefore discuss the basic technolo-

gies that make it possible to solve implicit equation systems with thou-

sands of unknowns within a few milliseconds. We start with linear

equations, and then proceed to nonlinear equations and their solution

with Newton-type methods.

8.3.1 Linear Systems

Solving a linear system of equations Az � b with a square invert-

ible matrix A 2 Rnz�nz is an easy task in the age of digital comput-

ers. The direct solution of the system requires only two computational

steps: ®rst, a factorization of the matrix A, for example, a lower-upper-

factorization (LU-factorization) that yields a lower-triangular matrix L

and an upper-triangular matrix U such that LU � A. Second, one
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needs to perform a forward and a back substitution, yielding the so-

lution as z � U�1�L�1b�. The computation of the LU-factorization, or

LU-decomposition, requires �2=3�n3
z ¯oating-point operations (FLOPs),

while the forward and back substitution require togethern2
z operations.

Additional row or column permutationsÐin a process called pivotingÐ

usually need to be employed and improve numerical stability, but only

add little extra computational cost. The LU-decomposition algorithm

was introduced by Alan Turing (1912±1954), and can be traced back to

Gaussian elimination, after Carl Friedrich Gauss (1777±1855). Solving

a dense linear system with nz � 3000 variables needs about 18 � 109
FLOPs, which on a current quadcore processor (2.9 GHz Intel Core i5)

need only 600 ms.

The runtime of the LU-decomposition and the substitutions can sig-

ni®cantly be reduced if the matrix A is sparse, i.e., if it has many more

zero than nonzero entries. Sparsity is particularly simple to exploit

in case of banded matrices, which have their nonzero entries only in

a band around the diagonal. Tailored direct methods also can exploit

other structures, like block sparsity, or symmetry of the matrix A. For

symmetric A, one usually performs a lower-diagonal-lower-transpose-

factorization (LDLT-factorization) of the form LDL0 � A (with lower-

triangular L and diagonal D), which reduces the computational cost by

a factor of two compared to an LU-factorization. For symmetric and

positive de®nite matrices A, one can even apply a Cholesky decomposi-

tion of the form LL0 � A, with similar costs as the LDLT-factorization.

For huge linear systems that cannot be addressed by direct factor-

ization approaches, there exist a variety of indirect or iterative solvers.

Linear system solving is one of the most widely used numerical tech-

niques in science and engineering, and the ®eld of computational lin-

ear algebra is investigated by a vibrant and active research community.

Contrary to only a century ago, when linear system solving was a te-

dious and error-prone task, today we rarely notice when we solve a

linear equation, e.g., by using the backslash operator in MATLAB in the

expression A\b, because computational linear algebra is such a reliable

and mature technology.

8.3.2 Nonlinear Root-Finding Problems

A more dif®cult situation occurs when a nonlinear equation system

R�z� � 0 needs to be solved, for example, in each step of an im-

plicit Runge-Kutta method, or in nonlinear optimization. Depending
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on the problem, one can usually not even be sure that a solution z0

with R�z0� � 0 exists. And if one has found a solution, one usually

cannot be sure that it is the only one. Despite these theoretical dif®-

culties with nonlinear root-®nding problems, they are nearly as widely

formulated and solved in science and engineering as linear equation

systems.

In this section we therefore consider a continuously differentiable

function R : Rnz ! Rnz , z , R�z�, where our aim is to solve the non-

linear equation

R�z� � 0

Nearly all algorithms to solve this system derive from an algorithm

called Newton's method or Newton-Raphson method that is accredited

to Isaac Newton (1643±1727) and Joseph Raphson (about 1648±1715),

but which was ®rst described in its current form by Thomas Simpson

(1710±1761). The idea is to start with an initial guess z0, and to gener-

ate a sequence of iterates �zk�
1
k�0 by linearizing the nonlinear equation

at the current iterate

R�zk�� @R
@z
�zk��z � zk� � 0

This equation is a linear system in the variable z, and if the Jacobian

J�zk� :� @R
@z �zk� is invertible, we can explicitly compute the next iterate

as

zk�1 � zk � J�zk��1R�zk�
Here, we use the notation J�zk��1R�zk� as a shorthand for the algo-

rithm that solves the linear system J�zk��z � R�zk�. In the actual

computation of a Newton step, the inverse J�zk��1 is never computed,

but only a LU-decomposition of J�zk�, and a forward and a back sub-

stitution, as described in the previous subsection.

More generally, we can use an invertible approximationMk of the Ja-

cobian J�zk�, leading to theNewton-type methods. The general Newton-

type method iterates according to

zk�1 � zk �M�1
k R�zk�

Depending on how closely Mk approximates J�zk�, the local conver-

gence can be fast or slow, or the sequence may even not converge. The

advantages of using an Mk that is different from J�zk� could be that it

can be chosen to be invertible even if J�zk� is not, or that computation

of Mk, or of its factorization, can be cheaper. For example, one could
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Figure 8.5: Newton-type iterations for solution of R�z� � 0 from Ex-

ample 8.5. Left: exact Newton method. Right: constant

Jacobian approximation.

reuse one matrix and its factorization throughout several Newton-type

iterations.

Example 8.5: Finding a ®fth root with Newton-type iterations

We ®nd the zero of R�z� � z5 � 2 for z 2 R. Here, the derivative is
@R
@z �z� � 5z4, such that the Newton method iterates

zk�1 � zk � �5z4k��1�z5k � 2�

When starting at z0 � 2, the ®rst step is given by z1 � 2� �80��1�32�
2� � 13=8, and the following iterates quickly converge to the solution

z� with R�z�� � 0, as visualized in Figure 8.5 on the left side.

Alternatively, we could use a Jacobian approximation Mk � J�zk�,

e.g., the constant value Mk � 80 corresponding to the true Jacobian at

z � 2. The resulting iteration would be

zk�1 � zk � �80��1�z5k � 2�

When started at z0 � 2 the ®rst iteration would be the same as for New-

ton's method, but then the Newton-typemethod with constant Jacobian

produces a different sequence, as can be seen on the right side of Fig-

ure 8.5. Here, the approximate method also converges; but in general,
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when does a Newton-type method converge, and when it converges,

how quickly? �

8.3.3 Local Convergence of Newton-Type Methods

Next we investigate the conditions on R�z�, z0 and on Mk required to

ensure local convergence of Newton-type iterations. In particular we

discuss the speed of convergence. In fact, even if we assume that a

sequence of iterates zk 2 Rn converges to a solution point z�, i.e., if

zk ! z�, the rate of convergence can be painstakingly slow or light-

ning fast. The speed of convergence can make the difference between

a method being useful or useless for practical computations. Math-

ematically speaking, a sequence �zk� is said to converge q-linearly if

there exists a positive integer k0 and a positive real number cmax < 1,

and sequence �ck�
1
k0 such that for all k � k0 holds that ck � cmax and

that ��zk�1 � z��� � ck ��zk � z��� (8.10)

If in addition, ck ! 0, the sequence is said to converge q-superlinearly.

If in addition, ck � O�jzk � z�j�, the sequence is said to converge q-

quadratically.2

Example 8.6: Convergence rates

We discuss and visualize four examples with zk 2 �0;1� and zk ! 0,

see Figure 8.6.

• zk � 1
2k

converges q-linearly:
zk�1
zk
� 1

2

• zk � 0:99k also converges q-linearly:
zk�1
zk
� 0:99. This example

converges very slowly. In practice we desire cmax to be smaller

than, say, 1
2

• zk � 1
k! converges q-superlinearly, as

zk�1
zk
� 1

k�1

• zk � 1

22
k converges q-quadratically, because

zk�1
�zk�2

� �22
k
�2

22
k�1 � 1 <

1. For k � 6, zk � 1
264
� 0. This is a typical feature of q-quadratic

convergence: often, convergence up to machine precision is ob-

tained in about six iterations. �

2The historical pre®x ªqº stands for ªquotient,º to distinguish it from a weaker form

of convergence that is called ªr-convergence,º where ªrº stands for ªroot.º
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Figure 8.6: Convergence of different sequences as a function of k.

Local convergence of a Newton-type method can be guaranteed by the

following classical result (see, e.g., Bock (1983) or Deu¯hard (2011)),

which also speci®es the rate of convergence.

Theorem 8.7 (Local contraction for Newton-type methods). Regard a

nonlinear continuously differentiable function R : D ! Rnz de®ned on

an open domain D � Rnz and a solution point z� 2 D with R�z�� � 0.

We start the Newton-type iteration with the initial guess z0 2 D and

iterate according to zk�1 � zk�M�1
k R�zk�. The sequence �zk� converges

at least q-linearly to z� and obeys the contraction inequality��zk�1�z��� � ��k�!
2

��zk�z������zk�z��� (8.11)

if there exist constants! 2 �0;1�, �max 2 �0;1�, and a sequence ��k�1k�0
with �k 2 �0; �max�, that satisfy for all zk and all z 2 D the following

two inequalities���M�1
k �J�zk�� J�z��

��� �! jzk � zj (Lipschitz condition)���M�1
k �J�zk��Mk�

��� � �k (compatibility condition)

and if the ball B :�
n
z 2 Rnz j jz � z�j < 2�1��max�

!

o
is completely con-

tained in D and if z0 2 B. If in addition �k ! 0, the sequence converges

q-superlinearly. If in addition �k � O�jzk � z�j� or even �max � 0, the

sequence converges q-quadratically.
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Corollary 8.8 (Convergence of exact Newton's method). For an exact

Newton's method, the convergence rate is q-quadratic, because we have

Mk � J�zk�, i.e., �max � 0.

8.3.4 Af®ne Invariance

An iterative method to solve a root-®nding problem R�z� � 0 is called

af®ne invariant if af®ne basis transformations of the equations or vari-

ables do not change the resulting iterations. This is an important prop-

erty in practice. It is not unreasonable to ask that a good numerical

method should behave the same if it is applied to problems formulated

in different units or coordinate systems.

The exact Newton method is af®ne invariant, and also some popu-

lar Newton-type optimization methods like the Gauss-Newton method

for nonlinear least squares problems share this property. Their af®ne

invariance makes them insensitive to the chosen problem scaling, and

this is one reason why they are successful in practice. On the other

hand, a method that is not af®ne invariant usually needs careful scal-

ing of the model equations and decision variables to work well.

8.3.5 Globalization for Newton-Type Methods

The iterations of a Newton-type method can be regarded the trajec-

tory of a nonlinear discrete time system, and the solution z0 a ®xed

point. This system is autonomous if Mk is constant or a function of z,

i.e., if Mk � M�zk�. In this case, the discrete time system is given by

z� � f�z� with f�z� :� z �M�z��1R�z�. When designing the Newton-

typemethod, one usually wants the solution z0 to be a stable ®xed point

with a large area of attraction. Local convergence to this ®xed point

usually can be guaranteed under conditions stated in Theorem 8.7, in

particular if the exact Jacobian is available. On the other hand, the area

of attraction for the full-step Newton-type methods described so far

is unfortunately not very large in practice, and Newton-type methods

usually need extra globalization features to make them globally conver-

gent from arbitrary initial guesses. Some globalization techniques are

based on amerit function that plays the role of a Lyapunov function to

be reduced in each iteration; others are based on a ®lter as a measure

of merit of a new iterate. To ensure progress from one iteration to

the next, some form of damping is applied that either reduces the un-

modi®ed Newton-type step by doing a line-search along the proposed

direction, or changes the step computation by adding a trust-region
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constraint. For a detailed description of globalization techniques, we

refer to textbooks on optimization such as Nocedal and Wright (2006).

8.4 Computing Derivatives

Whenever a Newton-type method is used for numerical simulation or

optimization, we need to provide derivatives of nonlinear functions

that exist as computer code. Throughout this section, we consider a

differentiable function F�u� with m inputs and p outputs y � F�u�,
i.e., a function F : Rm ! Rp. The main object of interest is the Jacobian

J�u� 2 Rm�p of F at the point u, or some of its elements.

Among the many ways to compute the derivatives of F�u�, the most

obvious would be to apply the known differentiation rules on paper for

each of its components, and then to write another computer code by

hand that delivers the desired derivatives. This process can become

tedious and error prone, but can be automated by using symbolic com-

puter algebra systems such as Maple or Mathematica. This symbolic

differentiation often works well, but typically suffers from two disad-

vantages. First, it requires the code to exist in the speci®c symbolic lan-

guage. Second, the resulting derivative expressions can become much

longer than the original function, such that the CPU time needed to

evaluate the Jacobian J�u� by symbolic differentiation can become sig-

ni®cantly larger than the CPU time to evaluate F�u�.

In contrast, we next present three ways to evaluate the Jacobian J�u�

of any computer-represented function F�u� by algorithms that have

bounded costs: numerical differentiation, as well as the algorithmic

differentiation (AD) in forward mode and in reverse mode. All three

ways are based on the evaluation of directional derivatives of the form

J�u�Çu with a vector Çu 2 Rm (forward directional derivatives used in

numerical differentiation and forward AD) or of the form Åy 0J�u� with

Åy 2 Rp (reverse directional derivatives used in reverse AD). When unit

vectors are used for Çu or Åy , the directional derivatives correspond to

columns or rows of J�u�, respectively. Evaluation of the full Jacobian

thus needs eitherm forward derivatives or p reverse derivatives. Note

that in this section, the use of a dot or a bar above a vector as in Çu and

Åy just denotes another arbitrary vector with the same dimensions as

the original one.
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8.4.1 Numerical Differentiation

Numerical differentiation is based on multiple calls of the function

F�u� at different input values. In its simplest and cheapest form, it

computes a forward difference approximation of J�u�Çu for given u

and Çu 2 Rm by using a small but ®nite perturbation size t� > 0 as

follows
F�u� t� Çu�� F�u�

t�

The optimal size of t� for the forward difference approximation de-

pends on the numerical accuracy of the evaluations of F , which we

denote by � > 0, and on the relative size of the second derivatives of F

compared to F , which we denote by L > 0. A detailed derivation leads

to the optimal choice

t� �
r
�

L

While � is typically known and given by the machine precision, i.e.,

� � 10�16 for double-precision ¯oating-point computations, the rela-

tive size of the second derivative L is typically not known, but can be

estimated. Often, L is just assumed to be of size one, resulting in the

choice t� � p�, i.e., t� � 10�8 for double precision. One can show that

the accuracy of the forward derivative approximation is then also given

by
p
�, i.e., one loses half of the valid digits compared to the function

evaluation. To compute the full Jacobian J�u�, one needs to evaluate

m forward differences, for them seed vectors Çu � �1;0;0; : : :�0, Çu � �0;
1;0 : : :�0, etc. Because the center point can be recovered, one needs in

total �m � 1� evaluations of the function F . Thus, we can summarize

the cost for computation of the full Jacobian J (as well as the function

F ) by the statement

cost�F; J� � �1�m� cost�F�
There exists a variety of more accurate, but also more expensive, forms

of numerical differentiation, which can be derived from polynomial in-

terpolation of multiple function evaluations of F . The easiest of these

are central differences, which are based on a positive and a negative

perturbation. Using such higher-order formulas with adaptive pertur-

bation size selection, one can obtain high-accuracy derivatives with nu-

merical differentiation, but at signi®cant cost. One interesting way to

actually reduce the cost of the numerical Jacobian calculation arises if

the Jacobian is known to be sparse, and ifmany of its columns are struc-

turally orthogonal, i.e., have their nonzero entries at different locations.
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To ef®ciently generate a full Jacobian, one can, for example, use the al-

gorithm by Curtis, Powell, and Reid (1974) that is implemented in the

FORTRAN routine TD12 from the HSL Mathematical Software Library

(formerly Harwell Subroutine Library). For details of sparse Jacobian

evaluations, we refer to the review article by Gebremedhin, Manne, and

Pothen (2005).

In summary, and despite the tricks to improve accuracy or ef®-

ciency, one has to conclude that numerical differentiation often re-

sults in quite inaccurate derivatives, and its onlyÐbut practically

importantÐadvantage is that it works for any black-box function that

can be evaluated on a given computer. Fortunately, there exists a dif-

ferent technology, called AD, that also has tight bounds on the com-

putational cost of the Jacobian evaluation, but avoids the numerical

inaccuracies of numerical differentiation. It is often even faster than

numerical differentiation, and in the case of reverse derivatives Åy 0J, it

can be tremendously faster. It does so, however, by opening the black

box.

8.4.2 Algorithmic Differentiation

We next consider a function F : Rm ! Rp that is composed of a se-

quence of N elementary operations, where an elementary operation

acts on only one or two variables. We also introduce a vector x 2 Rn

with n �m �N that contains all intermediate variables including the

inputs, x1 � u1, x2 � u2, : : : xm � um. While the inputs are given be-

fore the function is called, each elementary operation generates a new

intermediate variable, xm�i, for i � 1; : : : ;N. Some of these intermedi-

ate variables are used as output y 2 Rp of the code. This decompo-

sition into elementary operations is automatically performed in each

executable computer code, and best illustrated with an example.

Example 8.9: Function evaluation via elementary operations

We consider the function

F�u1; u2; u3� �
"

u1u2u3

sin�u1u2�� exp�u1u2u3�

#

with m � 3 and p � 2. We can decompose this function into N �
5 elementary operations that are preceded by m and followed by p
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renaming operations, as follows

x1 � u1

x2 � u2

x3 � u3

x4 � x1x2
x5 � sin�x4�

x6 � x4x3
x7 � exp�x6�

x8 � x5 � x7
y1 � x6
y2 � x8

(8.12)

Thus, if the m � 3 inputs u1; u2; u3 are given, the N � 5 nontrivial

elementary operations compute the intermediate quantities x4; : : : ; x8,

and the sixth and eighth of the intermediate quantities are then used

as the output y � F�u� of our function. �

The idea of AD is to use the chain rule and differentiate each of the

elementary operations separately. There exist two modes of AD, the

forward mode and the reverse mode. Both can be derived in a mathe-

matically rigorous way by interpreting the computer functiony � F�u�
as the output of an implicit function, as explained next.

8.4.3 Implicit Function Interpretation

Let us regard all equations that recursively de®ne the intermediate

quantities x 2 Rn for a given u 2 Rm as one large nonlinear equa-

tion system

G�x;u� � 0 (8.13)

with G : Rn � Rm ! Rn. Here, the partial derivative @G
@x 2 Rn�n is a

lower-triangular invertible matrix and @G
@u 2 Rn�m turns out to be an

m-dimensional unit matrix augmented by zeros, which we will denote

by B. The function G de®nes an implicit function x� : Rm ! Rn, u ,

x��u� that satis®es G�x��u�;u� � 0. The output y � F�u� is given by

the selection of some entries of x��u� via a selection matrix C 2 Rp�n,

i.e., the computer function is represented by the expression F�u� �
Cx��u�. The derivative dx�

du of the implicit function satis®es @G
@x

dx�

du �
@G
@u � 0 and is therefore given by

dx�

du
�
�
�@G
@x

��1 @G
@u| {z }
�:B

�
�
�@G
@x

��1
B
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and the Jacobian of F is simply given by J�u� � C dx�

du �u�. The forward

directional derivative is given by

J�u�Çu � C
�
�@G
@x

��1
BÇu| {z }

�:Çx

� C Çx

Here, we have introduced the dot quantities Çx that denote the direc-

tional derivative of x��u� into the direction Çu, i.e., Çx � dx�

du Çu. An ef®-

cient algorithm to compute Çx corresponds to the solution of a lower-

triangular linear equation system that is given by

�
�@G
@x

�
Çx � BÇu (8.14)

Since the matrix @G
@x is lower triangular, the linear system can be solved

by a forward sweep that computes the components of Çx in the same

order as the elementary operations, i.e., it ®rst computes Çx1, then Çx2,

etc. This leads to the forward mode of AD.

The reverse directional derivative, on the other hand, is given by

Åy 0J�u� � Åy 0 C

�
�@G
@x

��1
| {z }

�:Åx0

B � Åx0B

where we de®ne the bar quantities Åx that have a different meaning than

the dot quantities. For computing Åx, we need to also solve a linear

system, but with the transposed system matrix

�
�@G
@x

�0
Åx � C0 Åy (8.15)

Due to the transpose, this system involves an upper-triangular matrix

and can thus be solved by a reverse sweep, i.e., one ®rst computes Åxn,

then Åxn�1, etc. This procedure leads to the reverse mode of AD.

Example 8.10: Implicit function representation

Let us regard Example 8.9 and ®nd the corresponding function G�x;u�

as well as the involved matrices. The function G corresponds to the
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®rst n � 8 rows of (8.12) and is given by

G�x;u� �

266666666666664

u1 � x1
u2 � x2
u3 � x3
x1x2 � x4
sin�x4�� x5
x4x3 � x6

exp�x6�� x7
x5 � x7 � x8

377777777777775
It is obvious that the nonlinear equation G�x;u� � 0 can be solved for

any given u by a simple forward elimination of the variables x1; x2;

: : :, yielding the map x��u�. This fact implies also the lower-triangular

structure of the Jacobian @G
@x which is given by

@G

@x
�

266666666666664

�1
0 �1
0 0 �1
x2 x1 0 �1
0 0 0 cos�x4� �1
0 0 x4 x3 0 �1
0 0 0 0 0 exp�x6� �1
0 0 0 0 1 0 1 �1

377777777777775
The derivative of G with respect to u is given by a unit matrix to which

zero rows are appended, and given by

B :� @G
@u
�

266666666666664

1

1

1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

377777777777775
The identity y � Cx corresponds to the last p � 2 rows of (8.12), and

the matrix C 2 Rp�n is therefore given by

C �
"
0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

#
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The right-hand-side vectors in the equations (8.14) and (8.15) are given

by

BÇu �

266666666666664

Çu1

Çu2

Çu3

0

0

0

0

0

377777777777775
and C0 Åy �

266666666666664

0

0

0

0

0

Åy1

0

Åy2

377777777777775
�

8.4.4 Algorithmic Differentiation in Forward Mode

The forward mode of AD computes Çx by solving the lower-triangular

linear system (8.14) with a forward sweep. After the trivial de®nition of

the ®rstm components of Çx, it goes through all elementary operations

in the same order as in the original function to compute the compo-

nents of Çx one by one. If an original line of code reads xk � �k�xi; xj�,

the corresponding line to compute Çxk by forward AD is simply given

by

Çxk � @�k

@xi
�xi; xj� Çxi � @�k

@xj
�xi; xj� Çxj

In forward AD, the function evaluation and the derivative evaluation

can be performed simultaneously, if desired, eliminating the need to

store any internal information. The algorithm is best explained by look-

ing again at the example.

Example 8.11: Forward algorithmic differentiation

We differentiate the algorithm from Example 8.9. To highlight the rela-

tion to the original code, we list the original command again on the left

side, and show the algorithm to compute Çx on the right side. For given

u � �u1 u2 u3�0 and Çu � �Çu1 Çu2 Çu3�0, the two algorithms proceed as
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follows

x1 � u1 Çx1 � Çu1

x2 � u2 Çx2 � Çu2

x3 � u3 Çx3 � Çu3

x4 � x1x2 Çx4 � x2Çx1 � x1Çx2
x5 � sin�x4� Çx5 � cos�x4�Çx4

x6 � x4x3 Çx6 � x3Çx4 � x4Çx3
x7 � exp�x6� Çx7 � exp�x6�Çx6

x8 � x5 � x7 Çx8 � Çx5 � Çx7
y1 � x6 Çy1 � Çx6

y2 � x8 Çy2 � Çx8

The result of the original algorithm isy � �y1 y2�0 and the result of the

forward AD sweep is Çy � �Çy1 Çy2�0. If desired, one could perform both

algorithms in parallel, i.e., evaluate ®rst the left side, then the right side

of each row consecutively. This procedure would allow one to delete

each intermediate variable and the corresponding dot quantity after its

last usage, making the memory demands of the joint evaluation just

twice as big as those of the original function evaluation. �

One can see that the dot-quantity evaluations on the right-hand

sideÐwhichwe call a forward sweepÐare never longer than about twice

the original line of code. This is because each elementary operation de-

pends on at maximum two intermediate variables. More generally, it

can be proven that the computational cost of one forward sweep in

AD is smaller than a small constant times the cost of a plain function

evaluation. This constant depends on the chosen set of elementary

operations, but is usually much less than two, so that we conclude

cost�J Çu� � 2cost�F�

To obtain the full Jacobian J, we need to perform the forward sweep

several times, each time with the seed vector corresponding to one of

the m unit vectors in Rm. The m forward sweeps all could be per-

formed simultaneously with the evaluation of the function itself, so

that one needs in total one function evaluation plusm forward sweeps,

i.e., we have

cost�F; J� � �1� 2m� cost�F�

This is a conservative bound, and depending on the AD tool used the

cost of several combined forward sweeps can be signi®cantly reduced,
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and often become much cheaper than a ®nite difference approxima-

tion. Most important, the result of forward AD is exact up to machine

precision.

8.4.5 Algorithmic Differentiation in Reverse Mode

The reverse mode of AD computes Åx by solving the upper-triangular

linear system (8.15) with a reverse sweep. It does so by ®rst computing

the right-hand-side C0 Åy vector and initializing all bar quantities with

the respective values, i.e., it initially sets Åx � C0 Åy . Then, the reverse

AD algorithm modi®es the bar quantities by going through all elemen-

tary operations in reverse order. The value of Åxi is modi®ed for each

elementary operation in which xi is involved. If two quantities xi and

xj are used in the elementary operation xk � �k�xi; xj�, then the cor-

responding two update equations are given by

Åxi � Åxi � Åxk
@�k

@xi
�xi; xj� and

Åxj � Åxj � Åxk
@�k

@xj
�xi; xj�

Again, the algorithm is best illustrated with the example.

Example 8.12: Algorithmic differentiation in reverse mode

We consider again the code from Example 8.9. In contrast to before

in Example 8.11, now we compute the reverse directional derivative

Åy 0J�u� for given �u1 u2 u3�0 and Åy � �Åy1 Åy2�0. After the forward

evaluation of the function, which is needed to de®ne all intermediate

quantities, we need to solve the linear system (8.15) to obtain Åx. In the

example, this system is explicitly given by266666666666664

1 �x2
1 �x1

1 0 �x4
1 � cos�x4� �x3

1 0 �1
1 � exp�x6� 0

1 �1
1

377777777777775

266666666666664

Åx1
Åx2
Åx3
Åx4
Åx5
Åx6
Åx7
Åx8

377777777777775
�

266666666666664

0

0

0

0

0

Åy1

0

Åy2

377777777777775
To solve this equation without forming thematrix explicitly, we process

the elementary operations in reverse order, i.e., one column after the
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other, noting that the ®nal result for each Åxi will be a sum of the right-

hand-side vector component C0 Åy and a weighted sum of the values Åxj
for those j > i which correspond to elementary operations that have

xi as an input. We therefore initialize all variables by Åx � C0 Åy , which
results for the example in the initialization

Åx1 � 0 Åx5 � 0

Åx2 � 0 Åx6 � Åy1

Åx3 � 0 Åx7 � 0

Åx4 � 0 Åx8 � Åy2

In the reverse sweep, the algorithm updates the bar quantities in re-

verse order compared to the original algorithm, processing one column

after the other.

// differentiation of x8 � x5 � x7
Åx5 � Åx5 � Åx8

Åx7 � Åx7 � Åx8

// differentiation of x7 � exp�x6�

Åx6 � Åx6 � Åx7 exp�x6�

// differentiation of x6 � x4x3
Åx4 � Åx4 � Åx6x3

Åx3 � Åx3 � Åx6x4

// differentiation of x5 � sin�x4�

Åx4 � Åx4 � Åx5 cos�x4�

// differentiation of x4 � x1x2
Åx1 � Åx1 � Åx4x2

Åx2 � Åx2 � Åx4x1

At the very end, the algorithm sets

Åu1 � Åx1

Åu2 � Åx2

Åu3 � Åx3

to read out the desired result Åy 0J�x� � �Åu1 Åu2 Åu3�. Note that all three

of the components are returned by only one reverse sweep. �

It can be shown that the cost of one reverse sweep of AD is less than

a small constant (which is certainly less than three) times the cost of a
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function evaluation, i.e.,

cost�Åy 0J� � 3cost�F�

To obtain the full Jacobian of F , we need to call the reverse sweep p

times, with the seed vectors corresponding to the unit vectors in Rp,

i.e., together with one forward evaluation, we have

cost�F; J� � �1� 3p� cost�F�

Remarkably, reverse AD can compute the full Jacobian at a cost that is

independent of the input dimension m. This is particularly advanta-

geous if p � m, e.g., if we compute the gradient of a scalar function

like the objective in optimization. The reversemode can bemuch faster

than what we can obtain by forward ®nite differences, where we always

need �m�1� function evaluations. For example, to compute the gradi-

ent of a scalar function f : Rm ! R whenm � 1;000;000 and each call

of the function requires one second of CPU time, the ®nite difference

approximation of the gradient would take 1;000;001 seconds, while

the computation of the same quantity with the backward mode of AD

requires only four seconds (one call of the function plus one backward

sweep). Thus, besides being more accurate, reverse AD can also be

much faster than numerical ®nite differences. This astonishing fact is

also known as the ªcheap gradient resultº in the AD community, and

in the ®eld of neural networks it is exploited in the back propagation

algorithm. The only disadvantage of the reverse mode of AD is that

we have to store all intermediate variables and partial derivatives, in

contrast to ®nite differences or forward AD.

Backward sweep for discrete time optimal control. In numerical op-

timal control we often have to differentiate a function that is the result

of a dynamic system simulation. If the system simulation is in discrete

time, one can directly apply the principles of AD to compute the de-

sired derivatives by the forward or the reverse mode. For evaluating

the gradient of the objective, the reverse mode is most ef®cient. If

the controls are given by u � �u�0�0 � � � u�N � 1�0�0 and the states

x�k� are obtained by a discrete time forward simulation of the form

x�k�1� � f�x�k�;u�k�� for k � 0; : : : ;N �1 started at x�0� � x0, and
if the objective function is given by J�u� :�PN�1

k�0 `�x�k�;u�k���V�xN�,
then the backward sweep to compute ruJ�u� performs the following
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steps

Åx�N�0 � Vx�x�N��
for k � N � 1; N � 2; : : : ;0 (8.16)

Åx�k�0 � `x�x�k�;u�k��� Åx�k� 1�0fx�x�k�;u�k��

Åu�k�0 � `u�x�k�;u�k��� Åx�k� 1�0fu�x�k�;u�k��

end

The output of this algorithm is the vector Åu � �Åu�0�0 � � � Åu�N � 1�0�0

which equals the gradient ruJ�u�. This method to compute the ob-

jective gradient in the sequential approach was well known in the ®eld

of optimal control even before the ®eld of algorithmic differentiation

developed. From a modern perspective, however, it is simply an ap-

plication of reverse AD to the algorithm that computes the objective

function.

8.4.6 Differentiation of Simulation Routines

When a continuous time system is simulated by numerical integration

methods and one wants to compute the derivatives of the state trajec-

tory with respect to initial values or controls, as needed in shooting

methods, there are many different approaches and many possible pit-

falls. While a complete textbook could be written on the differentiation

of just numerical integrators, we present and discuss only three popu-

lar approaches here.

External numerical differentiation (END). Probably the simplest ap-

proach to differentiate an integrator is to regard the integrator call as

a black box, and to compute the desired derivatives by numerical ®-

nite differences. Here one computes one nominal trajectory, and one

or more perturbed trajectories, depending on the desired number of

forward derivatives. This approach, called external numerical differ-

entiation (END), is easy to implement; it is generally not recommended

because it suffers from some disadvantages.

• It is typically inaccurate because integrator accuracies �int are well

above machine precision, e.g., �int � 10�6, such that the perturba-

tion size needs to be chosen rather large, in particular for adaptive

integrators.

• It usually is expensive because each call of the integrator for a per-

turbed trajectory creates some overhead, such as error control or

matrix factorizations, which can be avoided in other approaches.
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• It can only compute forward derivatives.

The ®rst disadvantage can be mitigated for explicit integrators with

®xed stepsize, where one is allowed to choose smaller perturbation

sizes, in the order of the square root of the machine precision. For this

special case, END becomes equivalent to the approach described next.

Internal numerical differentiation (IND). The idea behind internal

numerical differentiation (IND) (Bock, 1981) is to regard the numerical

integrator as a differentiable computer code in the spirit of algorithmic

differentiation (AD). Similar to END, it works with perturbed trajecto-

ries. What is different from END is that all perturbed trajectories are

treated in one single forward sweep, and that all adaptive integrator

components are switched off for the perturbed trajectories. Thus, for

an adaptive explicit integrator, the stepsize selection works only on the

nominal trajectory; once the stepsize is chosen, the same size also is

used for all perturbed trajectories.

For implicit integrators, where one performs Newton-type iterations

in each step, the philosophy of IND is to choose the sequence of itera-

tion matrices and numbers of Newton-type iterations for only the nom-

inal trajectory, and to regard the iteration matrices as constant for all

perturbed trajectories. Because all adaptive components are switched

off during the numerical differentiation process, one can regard the

integrator code as a function that evaluates its output with machine

precision. For this reason, the perturbation size can be chosen sig-

ni®cantly smaller than in END. Thus, IND is both more accurate and

cheaper than END.

Algorithmic differentiation of integrators. Another approach that

is related to IND is to directly apply the principles of AD to the integra-

tion algorithm. In an extreme case, one could just take the integrator

code and process it with an AD toolÐthis approach can work well for

explicit integrators with ®xed stepsize, as we show in Example 8.13,

but otherwise needs to be applied with care to avoid the many possible

pitfalls of a blind application of AD. In particular, for adaptive integra-

tors, one needs to avoid the differentiation of the stepsize selection

procedure. If this simple rule is respected, AD in both forward and re-

verse modes can be easily applied to adaptive explicit integrators, and

is both ef®cient and yields highly accurate results.

For implicit integrators, one should also regard the number and type

of Newton-type iterations in each step as constant. Otherwise, the AD

tool also tries to differentiate the Jacobian evaluations and factoriza-
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tions, which would create unnecessary overhead. When AD is imple-

mented in this way, i.e., if it respects the same guidelines as the IND

approach, its forward mode has similar costs, but yields more accurate

derivatives than IND. Depending on input and output dimensions, the

reverse mode can accelerate computations further.

8.4.7 Algorithmic and Symbolic Differentiation Software

A crucial property of many AD tools is that they are able to pro-

cess generic code from a standard programming language like C, C++,

MATLAB, or FORTRAN, with no or only minor modi®cations to the source

code. For example, the AD tools ADOL-C and CppAD can process

generic user-supplied C or C++ code. This is in contrast to computer al-

gebra systems such as Maple, Mathematica, or MATLAB's Symbolic Math

Toolbox, which require the user to de®ne the function to be differenti-

ated using symbolic expressions in a domain-speci®c language. A fur-

ther advantage of AD over symbolic differentiation is that it is able to

provide tight bounds on the length of the resulting derivative code, as

well as its runtime andmemory requirements. On the other hand, some

symbolic toolsÐsuch as AMPL or CasADiÐmake use of AD internally,

so the performance differences between algorithmic and symbolic dif-

ferentiation can become blurry.

An overview of nearly all available AD tools is given at www.

autodiff.org. Most AD tools implement both the forward and re-

verse mode of AD, and allow recursive application of AD to generate

higher-order derivatives. Some AD tools automatically perform graph-

coloring strategies to reduce the cost of Jacobian evaluations, similar

to the sparse numerical differentiation algorithm by Curtis et al. (1974)

mentioned before in the context of numerical differentiation. We refer

to the textbook on algorithmic differentiation by Griewank andWalther

(2008) for an in-depth analysis of the different concepts of AD.

8.4.8 CasADi for Optimization

Many of the computational exercises in this text use the open-source

tool CasADi, which implements AD on user-de®ned symbolic expres-

sions. CasADi also provides standardized interfaces to a variety of

numerical routines: simulation and optimization, and solution of lin-

ear and nonlinear equations. A key feature of these interfaces is that

every user-de®ned CasADi function passed to a numerical solver au-

tomatically provides the necessary derivatives to this solver, without
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any additional user input. Often, the result of the numerical solver it-

self can be interpreted as a differentiable CasADi function, such that

derivatives up to any order can be generated without actually differen-

tiating the source code of the solver. Thus, concatenated and recursive

calls to numerical solvers are possible and still result in differentiable

CasADi functions.

CasADi is written in C++, but allows user input to be provided from

either C++, Python, Octave, or MATLAB. When CasADi is used from the

interpreter languages Python, Octave, orMATLAB, the user does not have

any direct contact with C++; but because the internal handling of all

symbolic expressions as well as the numerical computations are per-

formed in a compiled environment, the speed of simulation or op-

timization computations is similar to the performance of compiled

C-code. One particularly powerful optimization solver interfaced to

CasADi is IPOPT, an open-source C++ code developed and described

by WÈachter and Biegler (2006). IPOPT is automatically provided in the

standard CasADi installation. For more information on CasADi and

how to install it, we refer the reader to casadi.org. Here, we illustrate

the use of CasADi for optimal control in a simple example.

Example 8.13: Sequential optimal control using CasADi from Octave

In the following example we formulate and solve a simple nonlinear

MPC problem. The problem is formulated and solved by the sequential

approach in discrete time, but the discrete time dynamics are the result

of one step of an integrator applied to a continuous time ordinary dif-

ferential equation (ODE). We go through the example problem and the

corresponding solution using CasADi from Octave, which works with-

out changes fromMATLAB. The code is available from the book website as

the ®le casadi-example-mpc-book-1.m along with a Python version

of the same code, casadi-example-mpc-book-1.py.

As a ®rst step, we de®ne the ODE describing the system, which is

given by a nonlinear oscillator described by the following ODE with

x 2 R2 and u 2 R

d

dt

"
x1
x2

#
�
"

x2
�x1 � x3

1 �u

#
| {z }

�:fc�x;u�

with the initial condition x�0� � �0;1�0. We can encode this in Oc-

tave as follows
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% Continuous time dynamics

f_c = @(x, u) [x(2); -x(1) - x(1)^3 + u];

To de®ne the discrete time dynamics x� � f�x;u�, we perform one

step of the classical Runge-Kutta method of fourth order. We choose

a stepsize of 0:2 seconds. Given x� � f�x;u�, we can state an MPC

optimization problem with zero terminal constraint that we solve, as

follows

minimize
x;u

N�1X
k�0

x�k�0
"
10 0

0 5

#
x�k��u�k�2 (8.17a)

subject to x�0� � �1;0�0 (8.17b)

x�k� 1� � f�x�k�;u�k��; k � 0;1; : : : ;N � 1 (8.17c)

u�k� 2 ��1;1�; k � 0;1; : : : ;N � 1 (8.17d)

x�N� � �0;0�0 (8.17e)

For its numerical solution, we formulate this problem using the se-

quential approach, i.e., we regard only u as optimization variables and

eliminate x by a system simulation. This elimination allows us to gen-

erate a cost function c�u� and a constraint function G�u� such that the

above problem is equivalent to

minimize
u

c�u� (8.18a)

subject to u 2 ��1;1�N (8.18b)

G�u� � 0 (8.18c)

Here, c : RN ! R and G : RN ! R2, with N � 50.

To code this into CasADi/Octave, we begin by declaring a symbolic

variable corresponding to u as follows

% Decision variable

N = 50;

U = casadi.SX.sym('U', N);

This symbolic variable can be used to construct expressions for c and

G

% System simulation

xk = [1; 0];

c = 0;

for k=1:N

% RK4 method
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dt = 0.2;

k1 = f_c(xk, U(k));

k2 = f_c(xk+0.5*dt*k1, U(k));

k3 = f_c(xk+0.5*dt*k2, U(k));

k4 = f_c(xk+dt*k3, U(k));

xk = xk + dt/6.0*(k1 + 2*k2 + 2*k3 + k4);

% Add contribution to objective function

c = c + 10*xk(1)^2 + 5*xk(2)^2 + U(k)^2;

end

% Terminal constraint

G = xk - [0; 0];

The last remaining step is to pass the expressions for c and G to an

optimization solver, more speci®cally, to the nonlinear programming

solver IPOPT. The solver expects an optimization problem with lower

and upper bounds for all variables and constraints of the form

minimize
x

f�x�

subject to xlb � x � xub
glb � g�x� � gub

(8.19)

To formulate equality constraints in the CasADi syntax for NLPs, one

just sets the upper and lower bounds to equal values. The solver also

expects an initial guess x0 for the optimization variables (the initial

guess x0 for the NLP solver is not to be confused with the initial value

x0 for the state trajectory). The interface to the NLP solver uses the

keywords f and g for the functions f and g, x for the variables x, lbx

for xlb etc. The corresponding CasADi code to pass all data to the NLP

solver, call it, and retrieve the solution looks as follows.

% Create an NLP solver object

nlp = struct('x', U, 'f', c, 'g', G);

solver = casadi.nlpsol('solver', 'ipopt', nlp);

% Solve the NLP

solution = solver('x0', 0, 'lbx', -1, 'ubx', 1,

'lbg', 0, 'ubg', 0);

U_opt = solution.x;

�

8.5 Direct Optimal Control Parameterizations

Direct optimal control methods transform a continuous time optimal

control problem of the form (8.5) into a ®nite-dimensional optimization
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problem. For convenience, we restate the OCP (8.5) in a form that re-

places the constraint sets Z andXf by equivalent inequality constraints,

as follows

minimize
x���;u���

Z T
0
`c�x�t�;u�t�� dt � Vf �x�T�� (8.20a)

subject to x�0� � x0 (8.20b)

Çx�t� � fc�x�t�;u�t��; t 2 �0; T � (8.20c)

h�x�t�;u�t�� � 0; t 2 �0; T � (8.20d)

hf �x�T�� � 0 (8.20e)

While the above problem has in®nitely many variables and constraints,

the idea of direct optimal control methods is to solve instead a related

®nite-dimensional problem of the general form

minimize
w 2 Rnw

F�w�

subject to G�x0;w� � 0

H�w� � 0

(8.21)

This ®nite-dimensional optimization problem is solved for given initial

value x0 with any of the Newton-type optimization methods described

in the following section, Section 8.6. In this section, we are concerned

only with the transformation of the continuous problem (8.20) into a

®nite-dimensional problem of form (8.21).

First, one chooses a ®nite representation of the continuous func-

tions, which is often called discretization. This encompasses three parts

of the OCP, namely the control trajectory (which is often represented by

a piecewise constant function), the state trajectory (which is often dis-

cretized using a numerical integration rule), and the path constraints

(which are often only imposed on some grid points). Second, one selects

the variablesw that are ®nally passed to the optimization solver. These

can be all of the discretization variables (in the fully simultaneous or

direct transcription approach), but are often only a subset of the param-

eters that represent the control and state trajectories. The remaining

discretization parameters are hidden to the optimization solver, but

are implicitly computed during the optimization computationsÐsuch

as the state trajectories in the sequential approach, or the intermediate

quantities in a Runge-Kutta step. Next we present some of the most

widely used direct optimal control parameterizations.
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8.5.1 Direct Single Shooting

Like most direct methods, the single-shooting approach ®rst parame-

terizes the control trajectory with a ®nite-dimensional vector q 2 Rnq

and sets u�t� � ue�t;q� for t 2 �0; T �. One sometimes calls this step

ªcontrol vector parameterization.º One example for such a function

ue : �0; T � � Rnq ! Rm is a polynomial of degree p, which requires

�p � 1� coef®cients for each component of u�t� 2 Rm. With this

choice, the resulting control parameter q would have the dimension

nq � �p � 1�m. A disadvantage of the polynomialsÐas of any other

ªglobalº parameterizationÐis that the inherent problem sparsity due

to the dynamic system structure is inevitably lost. For this reason, and

also because it better corresponds to the discrete time implementation

of MPC, most often one chooses basis functions with local support, for

example, a piecewise constant control parameterization. In this case,

one divides the time horizon �0; T � into N subintervals �ti; ti�1� with

0 � t0 < t1 < : : : < tN � T , and sets

ue�t;q� :� qi for t 2 �ti; ti�1�

For each interval, one needs one vector qi 2 Rm, such that the to-

tal dimension of q � �
q0; q1; : : : ; qN�1

�
is given by nq � Nm. In the

following, we assume this form of piecewise constant control parame-

terization.

Regarding the state discretization, the direct single-shooting

method relies on any of the numerical simulation methods described in

Section 8.2 to ®nd an approximation xe�t;x0;q� of the state trajectory,
given the initial value x0 at t � 0 and the control trajectory ue�t;q�.
Often, adaptive integrators are chosen. In case of piecewise constant

controls, the integration needs to stop and restart brie¯y at the time

points ti to avoid integrating a nonsmooth right-hand-side function.

Due to state continuity, the state xe�ti;x0;q� is both the initial state

of the interval �ti; ti�1� as well as the last state of the previous inter-

val �ti�1; ti�. The control values used in the numerical integrators on

both sides differ, due to the jump at ti, and are given by qi�1 and qi,

respectively.

Evaluating the integral in the objective (8.20a) requires an integra-

tion rule. One option is to just augment the ODE system with a quadra-

ture state xquad�t� starting at xquad�0� � 0, and obeying the trivial dif-

ferential equation Çxquad�t� � `c�x�t�;u�t�� that can be solved with

the same numerical solver as the standard ODE. Another option is to
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evaluate `c�xe�t;x0;q�;ue�t;q�� on some grid and to apply another inte-

gration rule that is external with respect to the integrator. For example,

one can use a re®nement of the grid that was used for the control dis-

cretization, where each interval �ti; ti�1� is divided intoM equally sized

subintervals ��i;j ; �i;j�1� with �i;j :� ti� j=M�ti�1� ti� for j � 0; : : : ;M

and i � 0; : : : ;N � 1, and just apply a Riemann sum on each interval to

yield the objective function

F�x0;q� :�
N�1X
i�0

M�1X
j�0

`c�xe��i;j ;x0;q�;ue��i;j ;q�� ��i;j�1��i;j�
� Vf �xe�T ;x0;q��

In the context of the Gauss-Newton method for least squares integrals,

this second option is preferable because it allows one to easily obtain

a Gauss-Newton Hessian approximation from the sensitivities which

are provided by the integrator. Note that the ®ne grid evaluation as

described here requires an integrator able to output the states at ar-

bitrary locations; collocation methods, for example, have this ability.

If not, one must select points �i;j that coincide with the intermediate

steps or stages of the integrator.

The last discretization choice considers the path constraints (8.20d).

These often are evaluated on the same grid as the control discretization,

or, more generally, on a ®ner grid, e.g., the time points �i;j de®ned

above for the objective integral. Then, only ®nitely many constraints

h�xe��i;j ;x0;q�;ue��i;j ;q�� � 0 are imposed for j � 0; : : : ;M and i � 0;

1; : : : ;N � 1. Together with the terminal constraint, one de®nes the

inequality constraint function

H�x0;q� :�

26666666666666664

h�xe��0;0;x0;q�;ue��0;0;q��
h�xe��0;1;x0;q�;ue��0;1;q��

...

h�xe��1;0;x0;q�;ue��1;0;q��
h�xe��1;1;x0;q�;ue��1;1;q��

...

h�xe��N�1;M�1;x0;q�;ue��N�1;M�1;q��
hf �xe�T ;x0;q��

37777777777777775
If the function h maps to Rnh and hf to R

nhf , the function H maps to

R
�NMnh�nhf

�
. The resulting ®nite-dimensional optimization problem in
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single shooting is thus given by

minimize
s0;q

F�s0;q�

subject to s0 � x0 � 0

H�s0;q� � 0

(8.22)

Of course, the trivial equality constraint s0 � x0 � 0 could easily be

eliminated, and this is often done in single-shooting implementations.

In the real-time optimization context, however, it is bene®cial to in-

clude also the parameter x0 as a trivially constrained variable s0 of

the single-shooting optimization problem, as we do here. This simple

trick is called initial-value embedding, and allows one to initialize the

optimization procedure with the past initial value s0, for which an ap-

proximately optimal solution already exists; it also allows one to easily

obtain a linearized feedback control for new values of x0, as we dis-

cuss in the next section. Also, for moving horizon estimation (MHE)

problems, one has to keep the (unconstrained) initial value s0 as an

optimization variable in the single-shooting optimization problem for-

mulation.

In summary, the single-shooting method is a fully sequential ap-

proach that treats all intermediate state values computed in the numer-

ical integration routine as hidden variables, and solves the optimization

problem in the space of control parameters q 2 Rnq and initial values

s0 2 Rn only.

There aremany different ways to numerically solve the optimization

problem (8.22) in the single-shooting approach using standard meth-

ods from the ®eld of nonlinear programming. At ®rst sight, the opti-

mization problem in the single-shooting method is dense, and usually

problem (8.22) is solved by a dense NLP solver. However, some single-

shooting approaches use a piecewise control parameterization and are

able to exploit the intrinsic sparsity structure of the OCP in the NLP

solution, as discussed in Section 8.8.5.

8.5.2 Direct Multiple Shooting

The direct multiple-shooting method makes exactly the same dis-

cretization choices as the single-shooting method with piecewise con-

trol discretization, but it keeps the states si � x�ti� at the interval

boundary time points as decision variables in the ®nite-dimensional

optimization problem. This allows one to completely decouple the nu-

merical integrations on the separate intervals. For simplicity, we regard
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again a piecewise constant control parameterization that uses the con-

stant control value qi 2 Rm on the interval �ti; ti�1�. On the same

interval, we then de®ne the N trajectory pieces xe i�t; si; qi� that are the
numerical solutions of the initial-value problems

xe i�ti; si; qi� � si; dxe i
dt
�t; si; qi� � fc�xe i�t; si; qi�; qi�; t 2 �ti; ti�1�

for i � 0;1; : : : ;N � 1. Note that each trajectory piece only depends

on the arti®cial initial value si 2 Rn and the local control parameter

qi 2 Rm.

Using again a possibly re®ned grid on each interval, with time points

�i;j 2 �ti; ti�1� for j � 0; : : : ;M , we can formulate numerical approx-

imations of the objective integrals
R ti�1
ti
`c�xe i�t; si; qi�; qi� dt on each

interval by

`i�si; qi� :�
M�1X
j�0

`c�xe i��i;j ; si; qi�; qi� ��i;j�1��i;j�

The overall objective is thus given by
PN�1
i�0 `i�si; qi� � Vf �sN�. Note

that the objective terms `i�si; qi� each depend again only on the lo-

cal initial values si and local controls qi, and can thus be evaluated

independently from each other. Likewise, we discretize the path con-

straints, for simplicity on the same re®ned grid, by de®ning the local

inequality constraint functions

Hi�si; qi� :�

266664
h�xe i��0;0; si; qi�; qi�
h�xe i��0;1; si; qi�; qi�

...

h�xe i��0;M�1; si; qi�; qi�

377775

for i � 0;1; : : : ;N � 1. These are again independent functions, with

Hi : R
n�Rm ! R�Mnh�. Using these de®nitions, and the concatenations

s :� �s0; s1; : : : ; sN� and q :� �
q0; : : : ; qN�1

�
, one can state the ®nite-

dimensional optimization problem that is formulated and solved in
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the direct multiple-shooting method

minimize
s;q

N�1X
i�0

`i�si; qi� � Vf �sN� (8.23a)

subject to s0 � x0 (8.23b)

si�1 � xe i�ti�1; si; qi�; for i � 0; : : : ;N � 1 (8.23c)

Hi�si; qi� � 0; for i � 0; : : : ;N � 1 (8.23d)

hf �sN� � 0 (8.23e)

By a straightforward de®nition of problem functions F;G; and H; and

optimization variables w � �s00 q00 s01 q01 � � � s0N�1 q0N�1 s0N�0, the above
problem can be brought into the form (8.21).

Note that, due to the presence of s as optimization variables,

the problem dimension is higher than in the single-shooting method,

namely nw � �N � 1�n�Nm variables compared with only �n�Nm�
in the single-shooting method. On the other hand, the additional Nn

equality constraints (8.23c) eliminate the additionalNn degrees of free-

dom, and the problems (8.23) and (8.22) are fully equivalent if the same

integration routines are used. Also note that the multiple-shooting

NLP (8.23) has exactly the same form as the discrete time optimal con-

trol problem (8.1). From this perspective, the single-shooting prob-

lem (8.22) is thus identical to the sequential formulation, compare (8.3),

and the multiple-shooting problem is identical to the simultaneous for-

mulation, compare (8.1), of the same discrete time OCP.

When comparing the continuous time problem (8.20) with the non-

linear program (NLP) (8.23) in direct multiple shooting, it is interest-

ing to note that the terminal cost and terminal constraint function are

identical, while the cost integrals, the system dynamics, and the path

constraints are all numerically approximated in the multiple-shooting

NLP.

Multiple versus single shooting. The advantages of multiple com-

pared to single shooting are the facts that the evaluation of the in-

tegrator calls can be performed in parallel on the different subinter-

vals, that the state values s can also be used for initialization of the

optimization solver, and that the contraction rate of Newton-type op-

timization iterations is often observed to be faster, in particular for

nonlinear and unstable systems. Its disadvantage for problems with-

out state constraints is that globalization strategies cannot simply rely

on the objective function as merit function, but have to also monitor
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the residuals of the dynamic constraints (8.23c), which can become

cumbersome. Some people also prefer the single-shooting method for

the simple reason, that, as a sequential approach, it shows ªfeasible,º

or more exactly, ªphysicalº state trajectories in each optimization iter-

ation, i.e., trajectories that satisfy, up to numerical integration errors,

the system's differential equation.

We argue here, however, that this reason is not valid, because if

one wants to see ªphysicalº trajectories during an optimization run,

one could numerically simulate and plot the system evolution for the

currently best available guess of the control trajectory q in any simul-

taneous method at comparably low additional cost. On the other hand,

in the presence of state constraints, the iterates of both sequential and

simultaneous methods always lead to slightly infeasible state trajec-

tories, while simultaneous methods often converge even faster in this

case. Thus, ªfeasibilityº is not really a reason to prefer one approach

over the other.

A theoretical comparison of sequential and simultaneous (ªliftedº)

formulations in the context of Newton-type optimization (Albersmeyer

and Diehl, 2010) shows that both methods can be implemented with

nearly identical computational cost per iteration. Also, it can be

shownÐand observed in practiceÐthat simultaneous formulations

lead to faster contraction rates if the nonlinearities of the concate-

nated system dynamics reinforce each other, e.g., if an exponential

x1 � exp�x0� is concatenated with an exponential x2 � exp�x1�, lead-

ing to x2 � exp�exp�x0��. On the other hand, the sequential approach

would lead to faster contraction if the concatenated nonlinearities miti-

gate each other, e.g., if a logarithmx2 � log�x1� follows the exponential

x1 � exp�x0� and renders the concatenation x2 � log�exp�x0�� � x0
the identity (a linear map). In optimal control, one often observes that

the concatenation reinforces the nonlinearities, which renders the si-

multaneous approach favorable.

Exact expressions for linear systems with quadratic costs. In the

special case of linear systems fc�x;u� � Acx � Bcu with quadratic

costs `c�x;u� � x0Qcx�u0Rcu, the exact multiple-shooting functions

xe i�ti�1; si; qi� and `i�si; qi� also turn out to be linear and quadratic,

and it is possible to compute them explicitly. Speci®cally

xe i�ti�1; si; qi� � Asi � Bqi
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with

A � exp �Ac �ti�1 � ti�� and B �
Z �ti�1�ti�
0

exp �Ac��Bc d�

and

`i�si; qi� �
"
si
qi

#0 "
Q S

S0 R

#"
si
qi

#
with more complicated formulas for Q;R; and S that can be found

in Van Loan (1978) or Pannocchia, Rawlings, Mayne, and Mancuso

(2015). Note that approximations of the above matrices also can be ob-

tained from the differentiation of numerical integration routines that

are applied to the linear ODE system, augmented by the quadratic cost

integral. The ®rst-order derivatives of the ®nal states yield A and B,

and the second-order derivative of the cost gives Q;R; and S. Because

these numerical computations can be done before an actual MPC im-

plementation, they can be performed of¯ine and with high accuracy.

8.5.3 Direct Transcription and Collocation Methods

The idea of simultaneous optimal control can be extended even further

by keeping all ODE discretization variables as optimization variables.

This fully simultaneous approach is taken in the family of direct tran-

scription methods, which directly transcribe all data of the continuous

time OCP (8.20) into an NLP without making use of numerical integra-

tion routines. Instead, they directly formulate the numerical simula-

tion equations as equalities of the optimization problem. One example

of a direct transcription method was already given in the introduction

of this chapter, in (8.6), where an explicit Euler integration rule was

employed. Because the state equations are equality constraints of the

optimization problem, direct transcription methods often use implicit

integration rules; they offer higher orders for the same number of state

discretization variables, and come with better stability properties for

stiff systems. Probably the most popular class of direct transcription

methods are the direct collocation methods.

Direct transcription by collocation. In direct collocation, the time

horizon �0; T � is ®rst divided into a typically large number N of collo-

cation intervals �ti; ti�1�, with 0 � t0 < t1 < : : : < tN � T . On each of

these intervals, an implicit Runge-Kutta integration rule of collocation

type is applied to transcribe the ODE Çx � fc�x;u� to a ®nite set of non-
linear equations. For this aim, we ®rst introduce the states si � x�ti� at
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the time points ti, and then regard the implicit Runge-Kutta equations

with M stages on the interval with length hi :� �ti�1� ti�, which create

an implicit relation between si and si�1. We introduce additional vari-

ables Ki :� �k0i;1 � � � k0i;M�0 2 RnM , where ki;j 2 Rn corresponds to the

state derivative at the collocation time point ti � cjhi for j � 1; : : : ;M .

These variables Ki are uniquely de®ned by the collocation equations if

si and the control value qi 2 Rm are given. We summarize the colloca-

tion equations as GRK
i �si; Ki; qi� � 0 with

GRK
i �si; Ki; qi� :�

266664
ki;1 � fc�si � hi�a11ki;1 � : : :� a1;Mki;M�; qi�
ki;2 � fc�si � hi�a21ki;1 � : : :� a2;Mki;M�; qi�

...

ki;M � fc�si � hi�aM1ki;1 � : : :� aM;Mki;M�; qi�

377775
(8.24)

The transition to the next state is described by si�1 � FRKi �si; Ki; qi�
with

FRKi �si; Ki; qi� :� si � hi�b1ki;1 � : : :� bMki;M�
In contrast to shooting methods, where the controls are often held con-

stant across several integration steps, in direct collocation one usu-

ally allows one new control value qi per collocation interval, as we do

here. Even a separate control parameter for every collocation time point

within the interval is possible. This would introduce the maximum

number of control degrees of freedom that is compatible with direct

collocation methods and could be interpreted as a piecewise polyno-

mial control parameterization of order �M � 1�.

Derivative versus state representation. In most direct collocation

implementations, one uses a slightly different formulation, where the

intermediate stage derivative variables Ki � �k0i;1 � � � k0i;M�0 2 RnM are

replaced by the stage state variables Si � �s0i;1 � � � s0i;M�0 2 RnM that

are related to si and Ki via the linear map

si;j � si � hi�aj1ki;1 : : :� aj;Mki;M� for j � 1; : : : ;M (8.25)

If c1 > 0, then the relative time points �0; c1; : : : ; cM� are all different,

such that the interpolation polynomial through the �M � 1� states �si;

si;1; : : : ; si;M� is uniquely de®ned, which renders the linear map (8.25)

from �si; Ki� to �si; Si� invertible. Concretely, the values ki;j can be

obtained as the time derivatives of the interpolation polynomial at the

collocation time points. The inverse map, for j � 1; : : : ;M , is given by

ki;j � 1

hi

�
Dj;1�si;1 � si�� : : :�Dj;M�si;M � si�

�
(8.26)
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Interestingly, the matrix �Djl� is the inverse of the matrix �amj� from

the Butcher tableau, such that
PM
j�1 amjDjl � �ml. Inserting this in-

verse map into GRK
i �si; Ki; qi� from Eq. (8.24) leads to the equivalent

root-®nding problem Gi�si; Si; qi� � 0 with

Gi�si; Si; qi� :�2666664
1
hi

�
D1;1�si;1 � si�� : : :�D1;M�si;M � si�

� � fc�si;1; qi�
1
hi

�
D2;1�si;1 � si�� : : :�D2;M�si;M � si�

� � fc�si;2; qi�
...

1
hi

�
DM;1�si;1 � si�� : : :�DM;M�si;M � si�

� � fc�si;M ; qi�

3777775 (8.27)

Likewise, inserting the inverse map into FRKi �si; Ki; qi� leads to the lin-

ear expression

Fi�si; Si; qi� :� si � be1�si;1 � si�� : : :� beM�si;M � si�
where the coef®cient vector be 2 RM is obtained from the RK weight

vector b by the relation be � D0b. In the special case that cM � 1, for

example in Radau IIA collocation methods, the vector be becomes a unit

vector and the simple relation Fi�si; Si; qi� � si;M holds. Because the

transition from �si; Ki� to �si; Si� just amounts to a basis change, af®ne

invariant Newton-type methods lead to identical iterates independent

of the chosen parameterization. However, using either the derivative

variables Ki or the state variables Si leads to different sparsity patterns

in the Jacobians and higher-order derivatives of the problem functions.

In particular, the Hessian of the Lagrangian is typically sparser if the

node state variables Si are used. For this reason, the state represen-

tation is more often used than the derivative representation in direct

collocation codes.

Direct collocation optimization problem. The objective integralsR ti�1
ti
`c�xe�t�; qi� dt on each interval are canonically approximated by

a weighted sum of evaluations of `c on the collocation time points, as

follows

`i�si; Si; qi� :� hi
MX
j�1

bj`c�si;j ; qi�
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Similarly, one might choose to impose the path constraints on all col-

location time points, leading to the stage inequality function

Hi�si; Si; qi� :�

266664
h�si;1; qi�

h�si;2; qi�
...

h�si;M ; qi�

377775
The ®nite-dimensional optimization problem to be solved in direct

collocation has as optimization variables the sequence of external

states s :� �s0; s1; : : : ; sN�, the sequence of the internal states S :�
�S0; S1; : : : ; SN�1� as well as the sequence of local control parameters,

q :� �q0; q1; : : : ; qN�1�, and is formulated as follows

minimize
s;S;q

N�1X
i�0

`i�si; Si; qi� � Vf �sN� (8.28a)

subject to s0 � x0 (8.28b)

si�1 � Fi�si; Si; qi�; for i � 0; : : : ;N � 1 (8.28c)

0 � Gi�si; Si; qi�; for i � 0; : : : ;N � 1 (8.28d)

Hi�si; Si; qi� � 0; for i � 0; : : : ;N � 1 (8.28e)

hf �sN� � 0 (8.28f)

One sees that the above nonlinear programming problem in direct

collocation is similar to the NLP (8.23) arising in the direct multiple-

shooting method, but is augmented by the intermediate state variables

S and the corresponding algebraic constraints (8.28d). Typically, it is

sparser, but has more variables than the multiple-shooting NLP, not

only because of the presence of S, but also because N is larger since

it equals the total number of collocation intervals, each of which cor-

responds to one integration step in a shooting method. Typically, one

chooses rather small stage orders M , e.g., two or three, and large num-

bers for N, e.g., 100 or 1000. The NLPs arising in the direct collocation

method are large but sparse. If the sparsity is exploited in the opti-

mization solver, direct collocation can be an extremely ef®cient optimal

control method. For this reason, it is widely used.

Pseudospectral methods. The pseudospectral optimal control

method can be regarded a special case of the direct collocation

method, where only one collocation interval (N � 1) is chosen, but with

a high-order M . By increasing the order M , one can obtain arbitrarily



542 Numerical Optimal Control

high solution accuracies in case of smooth trajectories. The state

trajectory is represented by one global polynomial of order M that

is uniquely determined by the initial value s0 and the M collocation

node values s0;1; : : : ; s0;M . In this approach, the controls are typically

parameterized by one parameter per collocation node, i.e., by M

distinct values q0;1; : : : ; q0;M , such that the control trajectories can be

regarded to be represented by global polynomials of order �M � 1�.

One gains a high approximation order, but at the cost that the typical

sparsity of the direct collocation problem is lost.

8.6 Nonlinear Optimization

After the ®nite-dimensional optimization problem is formulated, it

needs to be solved. From now on, we assume that a nonlinear pro-

gram (NLP) of the form (8.21) is formulated, with variablew 2 Rnw and

parameter x0 2 Rn, which we restate here for convenience.

minimize
w 2 Rnw

F�w�

subject to G�x0;w� � 0

H�w� � 0

(8.29)

As before, we call the above optimization problem PN�x0� to indicate

its dependence on the parameter x0 and on the horizon length N. The

aim of the optimization procedure is to reliably and ef®ciently ®nd an

approximation of the solution w0�x0� of PN�x0� for a given value of

x0. Inside the MPC loop, the optimization solver is confronted with

a sequence of related values of the parameter x0, a fact that can be

exploited in online optimization algorithms to improve speed and reli-

ability compared to standard of¯ine optimization algorithms.

Assumptions and de®nitions. In this chapter, we make only two as-

sumptions on PN�x0�: ®rst, that all problem functions are at least twice

continuously differentiable, and second, that the parameter x0 enters

the equalitiesG linearly, such that the Jacobian matricesGx andGw are

independent of x0. This second assumption is satis®ed for all problem

formulations from the previous sections, because the initial value en-

ters only via the initial-value constraint s0 � x0 � 0. If one would en-

counter a problem where the parametric dependence is nonlinear, one

could always use the same trick that we used in the single-shooting

method and introduce a copy of the parameter as an additional opti-

mization variable s0Ðwhich becomes part of wÐand constrain it by
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the additional constraint s0�x0 � 0. Throughout the section, we often

make use of the linearization HL��; Åw� of a function H��� at a point Åw,

i.e., its ®rst-order Taylor series, as follows

HL�w; Åw� :� H� Åw��Hw� Åw��w � Åw�

Due to the linear parameter dependence of G, its Jacobian does not

depend on x0, such that we can write

GL�x0;w; Åw� � G�x0; Åw��Gw� Åw��w � Åw�

We also heavily use the Lagrangian function de®ned by

L�x0;w; �; �� :� F�w�� �0G�x0;w�� �0H�w� (8.30)

whose gradient and Hessian matrix with respect to w are often used.

Again, they do not depend on x0, and can thus be written as rwL�w;
�; �� andr2

wL�w;�; ��. Note that the dimensions of themultipliers, or

dual variables � and �, equal the output dimensions of the functions

G and H, which we denote by nG and nH . We sometimes call w 2 Rnw

the primal variable. At a feasible point w, we say that an inequality

with index i 2 f1; : : : ; nHg is active if and only if Hi�w� � 0. The

linear independence constraint quali®cation (LICQ) is satis®ed if and

only if the gradients of all active inequalities,rwHi�w� 2 Rnw , and the

gradients of the equality constraints, rwGj�w� 2 Rnw for j 2 f1; : : : ;
nGg, form a linearly independent set of vectors.

8.6.1 Optimality Conditions and Perturbation Analysis

The ®rst-order necessary conditions for optimality of the above opti-

mization problem are known as the Karush-Kuhn-Tucker (KKT) condi-

tions, which are formulated as follows.

Theorem 8.14 (KKT conditions). If w0 is a local minimizer of the opti-

mization problem PN�x0� de®ned in (8.29) and if LICQ holds atw0, then

there exist multiplier vectors �0 and �0 such that

rwL�w0; �0; �0� � 0 (8.31a)

G�x0;w
0� � 0 (8.31b)

0 � H�w0� ? �0 � 0 (8.31c)

Here, the last condition, known as the complementarity condition,

states not only that all components of H�w0� are negative and all com-

ponents of �0 are positive, but also that the two vectors are orthogonal,
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which implies that the products �0iHi�w0� are zero for each i 2 f1; : : : ;
nHg. Thus, each pair �Hi�w0�; �0i � 2 R2 must be an element of a nons-

mooth, L-shaped subset of R2 that comprises only the negative x-axis,

the positive y-axis, and the origin.

Any triple �w0; �0; �0� that satis®es the KKT conditions (8.31) and

LICQ is called a KKT point, independent of local optimality.

In general, the existence of multipliers such that the KKT condi-

tions (8.31) hold is just a necessary condition for local optimality of a

point w0 at which LICQ holds. Only in the special case that the opti-

mization problem is convex, the KKT conditions can be shown to be

both a necessary and a suf®cient condition for global optimality. For

the general case, we need to formulate additional conditions on the

second-order derivatives of the problem functions to arrive at suf®-

cient conditions for local optimality. This is only possible after making

a few de®nitions.

Strictly active constraints and null space basis. At a KKT point �w;

�; ��, an active constraint with index i 2 f1; : : : ; nHg is called weakly

active if and only if �i � 0 and strictly active if �i > 0. Note that for

weakly active constraints, the pair �Hi�w�; �i� is located at the origin,

i.e., at the nonsmooth point of the L-shaped set. For KKT points without

weakly active constraints, i.e., when the inequalities are either strictly

active or inactive, we say that the strict complementarity condition is

satis®ed.

Based on the division into weakly and strictly active constraints, one

can construct the linear spaceZ of directions in which the strictly active
constraints and the equality constraints remain constant up to ®rst or-

der. This space Z plays an important role in the second-order suf®cient

conditions for optimality that we state below, and can be de®ned as the

null space of the matrix that is formed by putting the transposed gra-

dient vectors of all equality constraints and all strictly active inequality

constraints on top of each other. To de®ne this properly at a KKT point

�w;�; ��, we reorder the inequality constraints such that

H�w� �
264H

��w�

H0�w�

H��w�

375
In this reordered view on the functionH�w�, the strictly active inequal-

ity constraints H��w� come ®rst, then the weakly active constraints

H0�w�, and ®nally the inactive constraints H��w�. Note that the out-

put dimensions of the three functions add to nH . The set Z � Rnw is
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now de®ned as null space of the matrix

A :�
"
Gw�w�

H�w�w�

#
2 RnA�nw

One can regard an orthogonal basis matrix Z 2 Rnw��nw�nA� of Z that

satis®es AZ � 0 and Z0Z � I and whose columns span Z. This al-

lows us to compactly formulate the following suf®cient conditions for

optimality.

Theorem 8.15 (Strong second-order suf®cient conditions for optimal-

ity). If �w0; �0; �0� is a KKT point and if the Hessian of its Lagrangian

is positive de®nite on the corresponding space Z, i.e., if
Z0r2

wL�w0; �0; �0�Z > 0 (8.32)

then the point w0 is a local minimizer of problem PN�x0�.

We call a KKT point that satis®es the conditions of Theorem 8.15 a

strongly regular KKT point. We should mention that there exists also a

weaker form of second-order suf®cient conditions. We prefer to work

with the stronger variant because it does not only imply optimality

but also existence of neighboring solutions w0�x0� as a function of

the parameter x0. Moreover, the solution map w0�x0� is directionally

differentiable, and the directional derivative can be obtained by the

solution of a quadratic program, as stated in the following theorem that

summarizes standard results from parametric optimization (Robinson,

1980; Guddat, Vasquez, and Jongen, 1990) and is proven in the speci®c

form below in Diehl (2001).

Theorem 8.16 (Tangential predictor by quadratic program). If � Åw; Å�;

Å�� is a strongly regular KKT point for problem PN�Åx0� (i.e., it satis®es

the conditions of Theorem 8.15) then there is a neighborhoodN � Rn

around Åx0 such that for each x0 2 N the problem PN�x0� has a lo-

cal minimizer and corresponding strongly regular KKT point �w0�x0�;

�0�x0�; �0�x0��. Moreover, the map from x0 2 N to �w0�x0�; �0�x0�;

�0�x0�� is directionally differentiable at Åx0, and the directional deriva-

tive can be obtained by the solution of the following quadratic pro-

gram

minimize
w 2 Rnw

FL�w; Åw�� 1

2
�w � Åw�0r2

wL� Åw; Å�; Å���w � Åw�

subject to GL�x0;w; Åw� � 0

HL�w; Åw� � 0

(8.33)
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More speci®cally, the solution �wQP�x0; �QP�x0�; �QP�x0�� of the above

QP satis®es �������
264w

QP�x0��w0�x0�

�QP�x0�� �0�x0�
�QP�x0�� �0�x0�

375
������� � O�jx0 � Åx0j2�

8.6.2 Nonlinear Optimization with Equalities

When we solve an optimization problem without inequalities, the KKT

conditions simplify to

rwL�w0; �0� � 0

G�x0;w
0� � 0

This is a smooth root-®nding problem that can be summarized as R�x0;

z� � 0 with z � �w0 �0�0. Interestingly, if one regards the Lagrangian L
as a function of x0 and z, we have R�x0; z� � rzL�x0; z�. The classical
Newton-Lagrangemethod addresses the above root-®nding problem by

a Newton iteration of the form

zk�1 � zk ��zk with Rz�zk��zk � �R�x0; zk� (8.35)

To simplify notation and avoid that the iteration index k interferes with

the indices of the optimization variables, we usually use the following

notation for the Newton step

z� � Åz ��z with Rz�Åz��z � �R�x0; Åz� (8.36)

Here, the old iterate and linearization point is called Åz and the new it-

erate z�. The square Jacobian matrix Rz�z� that needs to be factorized

in each iteration to compute �z has a particular structure and is given

by

Rz�z� �
"
r2
wL�w;�� Gw�w�0

Gw�w� 0

#
This matrix is called the KKT matrix and plays an important role in

all constrained optimization algorithms. The KKT matrix is invertible

at a point z if the LICQ condition holds, i.e., Gw�w� has rank nG, and

if the Hessian of the Lagrangian is positive de®nite on the null space

of Gw�w�, i.e., if Z0r2
wL�w;�; ��Z > 0, for Z being a null space basis.

The matrix Z0r2
wL�w;�; ��Z is also called the reduced Hessian. Note

that the KKT matrix is invertible at a strongly regular point, as well
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as in a neighborhood of it, such that Newton's method is locally well

de®ned. The KKT matrix is the second derivative of the Lagrangian L
with respect to the primal-dual variables z, and is therefore symmetric.

For this reason, it has only real eigenvalues, but it is typically inde®nite.

At strongly regular KKT points, it has nw positive and nG negative

eigenvalues.

Quadratic program interpretation and tangential predictors. A

particularly simple optimization problem arises if the objective func-

tion is linear quadratic, F�w� � b0w � �1=2�w0Bw, and the constraint

linear, G�w� � a�Aw. In this case, we speak of a quadratic program

(QP), and the KKT conditions of the QP directly form a linear system in

the variables z � �w0 �0�0, namely"
B A0

A 0

#"
w

�

#
� �

"
b

a

#
Due to the equivalence of the KKT conditions of the QP with a linear

system one can show that the new point z� � Åz � �z in the Newton

iteration for the nonlinear problem (8.34) also can be obtained as the

solution of a QP

minimize
w 2 Rnw

FL�w; Åw�� 1

2
�w � Åw�0Bex�Åz��w � Åw�

subject to GL�x0;w; Åw� � 0

(8.37)

with Bex�Åz� :� r2
wL� Åw; Å�; Å��. If the primal-dual solution of the above

QP is denoted by wQP and �QP, one can easily show that setting

w� :� wQP and �� :� �QP yields the same step as the Newton iteration.

The interpretation of the Newton step as a QP is not particularly rele-

vant for equality constrained problems, but becomes a powerful tool in

the context of inequality constrained optimization. It directly leads to

the family of sequential quadratic programming (SQP) methods, which

are treated in Section 8.7.1. One interesting observation is that the

QP (8.37) is identical to the QP (8.33) from Theorem 8.16, and thus its

solution cannot only be used as a Newton step for a ®xed value of x0,

but it can also deliver a tangential predictor for changing values of x0.

This property is used extensively in continuation methods for nonlin-

ear MPC, such as the real-time iteration presented in Section 8.9.2.

8.6.3 Hessian Approximations

Even though the reduced exact Hessian is guaranteed to be positive def-

inite at regular points, it can become inde®nite at nonoptimal points.
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In that case the Newton's method would fail because the KKT matrix

would become singular in one iteration. Also, the evaluation of the ex-

act Hessian can be costly. For this reason, Newton-type optimization

methods approximate the exact Hessian matrix Bex�Åz� by an approxi-

mation ÅB that is typically positive de®nite or at least positive semidef-

inite, and solve the QP

minimize
w 2 Rnw

FL�w; Åw�� 1

2
�w � Åw�0ÅB�w � Åw�

subject to GL�x0;w; Åw� � 0

(8.38)

in each iteration. These methods can be generalized to the case of

inequality constrained optimization problems and then fall into the

class of sequential quadratic programming (SQP) methods.

The local convergence rate of Newton-type optimization methods

can be analyzed directly with the tools from Section 8.3.3. Since the

difference between the exact KKT matrix J�zk� and the Newton-type

iteration matrixMk is due only to the difference in the Hessian approx-

imation, Theorem 8.7 states that convergence can occur only if the dif-

ference Bex�zk��ÅBk is suf®ciently small, and that the linear contraction

factor �max directly depends on this difference and becomes zero if the

exact Hessian is used. Thus, the convergence rate for an exact Hessian

SQPmethod is quadratic, and superlinear convergence occurs if the dif-

ference between exact and approximate Hessian shrinks to zero in the

relevant directions. Note that the algorithms described in this and the

following sections only approximate the Hessian matrix, but evaluate

the exact constraint Jacobian Gw� Åw� in each iteration.

The constrained Gauss-Newton method. One particularly useful

Hessian approximation is possible if the objective function F�w� is a

sum of squared residuals, i.e., if

F�w� � �1=2� jM�w�j2

for a differentiable function M : Rnw ! RnM . In this case, the exact

Hessian Bex�Åz� is given by

Mw� Åw�
0Mw� Åw�| {z }

�:BGN� Åw�

�
nMX
j�1

Mj� Åw�r2Mj� Åw��
nGX
i�1

Å�ir2Gi� Åw�

By taking only the ®rst part of this expression, one obtains the Gauss-

Newton Hessian approximation BGN� Åw�, which is by de®nition always
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a positive semide®nite matrix. In the case that Mw� Åw� 2 RnM�nw has

rank nw , i.e., if nM � nw and the nw columns are linearly indepen-

dent, the Gauss-Newton Hessian BGN� Åw� is even positive de®nite. Note

that BGN� Åw� does not depend on the multipliers �, but the error with

respect to the exact Hessian does. This error would be zero if both the

residuals Mj� Åw� and the multipliers �i are zero. Because both can be

shown to be small at a strongly regular solution with small objective

function �1=2� jM�w�j2, the Gauss-Newton Hessian BGN� Åw� is a good

approximation for problems with small residuals jM�w�j.
When the Gauss-Newton Hessian BGN� Åw� is used within a con-

strained optimization algorithm, as we do here, the resulting algo-

rithm is often called the constrained or generalized Gauss-Newton

method (Bock, 1983). Newton-type optimization algorithms with

Gauss-NewtonHessian converge only linearly, but their contraction rate

can be surprisingly fast in practice, in particular for problems with

small residuals. The QP subproblem that is solved in each iteration of

the constrained Gauss-Newton method can be shown to be equivalent

to

minimize
w 2 Rnw

�1=2� jML�w; Åw�j2

subject to GL�x0;w; Åw� � 0
(8.39)

A particularly simple instance of the constrained Gauss-Newton

method arises if the objective function is itself already a positive de®-

nite quadratic function, i.e., if F�w� � �1=2��w �wref�0B�w �wref�. In

this case, one could de®ne M�w� :� B 1
2 �w �wref� to see that the QP

subproblem has the same objective as the NLP. Generalizing this ap-

proach to nonquadratic, but convex, objectives and convex constraint

sets, leads to the class of sequential convex programming methods as

discussed and analyzed in Tran-Dinh, Savorgnan, and Diehl (2012).

Hessian update methods. Another way to obtain a cheap and posi-

tive de®nite Hessian approximation ÅB for Newton-type optimization is

provided by Hessian update methods. In order to describe them, we

recall the iteration index k to the primal-dual variables zk � �w0
k �

0
k�
0

and the Hessian matrix Bk at the k-th iteration, such that the QP to be

solved in each iteration is described by

minimize
w 2 Rnw

FL�w;wk�� 1

2
�w �wk�

0Bk�w �wk�

subject to GL�x0;w;wk� � 0

(8.40)
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In a full stepmethod, the primal-dual solutionwQP
k and �QPk of the above

QP is used as next iterate, i.e., wk�1 :� wQP
k and �k�1 :� �QPk . A Hessian

update formula uses the previous Hessian approximation Bk and the

Lagrange gradient evaluations at wk and wk�1 to compute the next

Hessian approximation Bk�1. Inspired from a directional derivative of

the function rwL��; �k�1� in the direction sk :� �wk�1 � wk�, which,

up-to-®rst order, should be equal to the ®nite difference approximation

yk :� rwL�wk�1; �k�1��rwL�wk; �k�1�, all Hessian update formulas

require the secant condition

Bk�1sk � yk
One particularly popular way of the many ways to obtain a matrix

Bk�1 that satis®es the secant condition is given by the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) formula, which sets

Bk�1 :� Bk �
Bksks

0
kBk

s0kBksk
� yky

0
k

y 0ksk

One often starts the update procedure with a scaled unit matrix, i.e.,

sets B0 :� �I with some � > 0. It can be shown that for a positive de®-

nite Bk and for y 0ksk > 0, the matrix Bk�1 resulting from the BFGS for-

mula is also positive de®nite. In a practical implementation, to ensure

positive de®niteness of Bk�1, the unmodi®ed update formula is only

applied if y 0ksk is suf®ciently large, say if the inequality y
0
ksk � �s0kBksk

is satis®ed with some � 2 �0;1�, e.g., � � 0:2. If it is not satis®ed, the

update can either be skipped, i.e., one sets Bk�1 :� Bk, or the vector yk
is ®rst modi®ed and then the BFGS update is performed with this mod-

i®ed vector. An important observation is that the gradient difference

yk can be computed with knowledge of the ®rst-order derivatives of F

and G atwk andwk�1, which are needed to de®ne the linearizations FL
and GL in the QP (8.40) at the current and next iteration point. Thus, a

Hessian update formula does not create any additional costs in terms

of derivative computations compared to a ®xed Hessian method (like,

for example, steepest descent); but it typically improves the conver-

gence speed signi®cantly. One can show that Hessian update methods

lead to superlinear convergence under mild conditions.

8.7 Newton-Type Optimization with Inequalities

The necessary optimality conditions for an equality constrained opti-

mization problem form a smooth system of nonlinear equations in the
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primal-dual variables, and can therefore directly be addressed by New-

ton's method or its variants. In contrast to this, the KKT conditions for

inequality constrained problems contain the complementarity condi-

tions (8.31c), which de®ne an inherently nonsmooth set in the primal-

dual variable space, such that Newton-type methods can be applied

only after some important modi®cations. In this section, we present

two widely used classes of methods, namely sequential quadratic pro-

gramming (SQP) and nonlinear interior point (IP) methods.

8.7.1 Sequential Quadratic Programming

Sequential quadratic programming (SQP) methods solve in each itera-

tion an inequality constrained quadratic program (QP) that is obtained

by linearizing all problem functions

minimize
w 2 Rnw

FL�w;wk�� 1

2
�w �wk�

0Bk�w �wk�

subject to GL�x0;w;wk� � 0

HL�w;wk� � 0

(8.41)

The above QP is a quadratic approximation of the nonlinear problem

PN�x0�, and is denoted by P
QP
N �x0;wk; Bk� to express its dependence

on the linearization pointwk and the choice of Hessian approximation

Bk. In the full-step SQP method, the primal-dual solution zQPk � �wQP
k ;

�QPk ; �
QP
k � of the QP P

QP
N �x0;wk; Bk� is directly taken as the next iter-

ate, zk�1 � �wk�1; �k�1; �k�1�, i.e., one sets zk�1 :� zQPk . Note that the

multipliers ��k�1; �k�1� only have an in¯uence on the next QP via the

Hessian approximation Bk�1, and can be completely discarded in case a

multiplier-free Hessian approximation such as a Gauss-Newton Hessian

is used.

The solution of an inequality constrained QP is a nontrivial task, but

for convexQP problems there exist ef®cient and reliable algorithms that

are just treated here as a black box. To render the QP subproblem con-

vex, one often chooses positive semide®nite Hessian approximations

Bk.

Active set detection and local convergence. A crucial property of

SQP methods is that the set of active inequalities (the active set, in

short) is discovered inside the QP solver, and that the active set can

change signi®cantly from one SQP iteration to the next. However, one

can show that the QP solution discovers the correct active set when
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the linearization point wk is close to a strongly regular solution of the

NLP (8.29) at which strict complementarity holds. Thus, in the vicinity

of the solution, the active set remains stable, and, therefore, the SQP

iterates become identical to the iterates of a Newton-type method for

equality constrained optimization applied to a problem where all active

constraints are treated as equalities, andwhere all other inequalities are

discarded. Therefore, the local convergence results for general Newton-

type methods can be applied; and the SQP method shows quadratic

convergence in case of an exact Hessian, superlinear convergence in

case of Hessian updates, and linear convergence in case of a Gauss-

Newton Hessian.

Generalized tangential predictors in SQP methods. An appealing

property of SQP methods for problems that depend on a parameter x0
is that they deliver a generalized tangential predictor, even at points

where the active set changes, i.e., where strict complementarity does

not hold. More precisely, it is easily seen that the QP P
QP
N �x0; Åw; ÅB�

formulated in an SQP method, with exact Hessian ÅB � r2L�Åz� at a
strongly regular solution Åz � � Åw; Å�; Å�� of problem PN�Åx0�, delivers the

tangential predictor of Theorem 8.16 for neighboring problems PN�x0�

with x0 � Åx0 (Diehl, 2001). A disadvantage of SQP methods is that they

require in each iteration the solution of an inequality constrained QP,

which is more expensive than solution of a linear system.

8.7.2 Nonlinear Interior Point Methods

Nonlinear interior point (IP) methods remove the nonsmoothness of

the KKT conditions by formulating an approximate, but smooth root-

®nding problem. This smooth problem corresponds to the necessary

optimality conditions of an equality constrained optimization problem

that is an approximation of the original problem. In a ®rst and trivial

step, the nonlinear inequalities H�w� � 0 are reformulated into equal-

ity constraintsH�w��s � 0 by introduction of a slack variable s 2 RnH

that is required to be positive, such that the equivalent new problem

has bounds of the form s � 0 as its only inequality constraints. In the

second and crucial step, these bounds are replaced by a barrier term

of the form ��PnH

i�1 log si with � > 0 that is added to the objective.

This leads to a different and purely equality constrained optimization
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problem given by

minimize
w; s

F�w�� �
nHX
i�1

log si

subject to G�x0;w� � 0

H�w�� s � 0

(8.42)

For � ! 0, the barrier term �� log si becomes zero for any strictly posi-

tive si > 0 while it always grows to in®nity for si ! 0, i.e., on the bound-

ary of the feasible set. Thus, for � ! 0, the barrier function would be a

perfect indicator function of the true feasible set and one can show that

the solution of the modi®ed problem (8.42) tends to the solution of the

original problem (8.29) for � ! 0. For any positive � > 0, the necessary

optimality conditions of problem (8.42) are a smooth set of equations,

and can, if we denote the multipliers for the equalities H�w��s � 0 by

� 2 RnH and keep the original de®nition of the Lagrangian from (8.30),

be equivalently formulated as

rwL�w;�; �� � 0 (8.43a)

G�x0;w� � 0 (8.43b)

H�w�� s � 0 (8.43c)

�isi � � for i � 1; : : : ; nH (8.43d)

Note that for � > 0, the last condition (8.43d) is a smooth version of

the complementarity condition 0 � s ? � � 0 that would correspond

to the KKT conditions of the original problem after introduction of the

slack variable s.

A nonlinear IP method proceeds as follows: it ®rst sets � to a rather

large value, and solves the corresponding root-®nding problem (8.43)

with a Newton-typemethod for equality constrained optimization. Dur-

ing these iterations, the implicit constraints si > 0 and �i > 0 are

strictly enforced by shortening the steps, if necessary, to avoid being

attracted by spurious solutions of �isi � � . Then, it slowly reduces the
barrier parameter � ; for each new value of � , the Newton-type iterations

are initialized with the solution of the previous problem.

Of course, with ®nitely many Newton-type iterations, the root-

®nding problems for decreasing values of � can only be solved ap-

proximately. In practice, one often performs only one Newton-type

iteration per problem, i.e., one iterates while one changes the problem.

Here, we have sketched the primal-dual IP method as it is for example
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implemented in the NLP solver IPOPT (WÈachter and Biegler, 2006); but

there exist many other variants of nonlinear interior point methods. IP

methods also exist in variants that are tailored to linear or quadratic

programs and IPmethods also can be applied to other convex optimiza-

tion problems such as second-order cone programs or semide®nite pro-

grams (SDP). For these convex IP algorithms, one can establish polyno-

mial runtime bounds, which unfortunately cannot be established for

the more general case of nonlinear IP methods described here.

Nonlinear IP methods with ®xed barrier parameter. Some variants

of nonlinear IP methods popular in the ®eld of nonlinear MPC use a

®xed positive barrier parameter � throughout all iterations, and there-

fore solve a modi®ed MPC problem. The advantage of this approach is

that a simple and straightforward Newton-type framework for equality

constrained optimization can be used out of the box. The disadvantage

is that for a large value of � , themodi®edMPC problem is a conservative

approximation of the original MPC problem; for a small value of � , the

nonlinearity due to the condition (8.43d) is severe and slows down the

convergence of the Newton-type procedure. Interestingly, these non-

linear IP variants are sometimes based on different barrier functions

than the logarithmic barrier described above; they use slack formula-

tions that make violation of the implicit constraint si � 0 impossible by

setting, for example, si � �ti�2 with new slacks ti. This last variant is

successfully used for nonlinear MPC by Ohtsuka (2004), and modi®es

the original problem to a related problem of the form

minimize
w; t

F�w�� �
nHX
i�1

ti

subject to G�x0;w� � 0

Hi�w�� �ti�2 � 0; i � 1; : : : ; nH

(8.44)

which is then solved by a tailored Newton-type method for equality

constrained optimization.

8.7.3 Comparison of SQP and Nonlinear IP Methods

While SQP methods need to solve a QP in each iteration, nonlinear IP

methods only solve a linear system of similar size in each iteration,

which is cheaper. Some SQP methods even solve the QP by an interior

point method, and then perform about 10-30 inner iterationsÐeach of
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which is as expensive as the linear system solution in a nonlinear IP

method.

On the other hand, the cost per iteration for both SQP and nonlin-

ear IP methods also comprises the evaluation of the problem functions

and their derivatives. The number of high-level iterations required to

reach a desired level of accuracy is often smaller for SQP methods than

for nonlinear IP methods. Also, SQP methods are better at warmstart-

ing, which is particularly important in the context of nonlinear MPC.

Roughly speaking, for an NLP with cheap function and derivative eval-

uations, as in direct collocation, and if no good initial guess is provided,

a nonlinear IP method is preferable. An SQPmethod would be favorable

in case of expensive function evaluations, as in direct single or multiple

shooting, and when good initial guesses can be provided, for example,

if a sequence of neighboring problems is solved.

8.8 Structure in Discrete Time Optimal Control

When a Newton-type optimization method is applied to an optimal con-

trol problem, the dynamic system constraints lead to a speci®c sparsity

structure in the KKT matrix. And the quadratic program (QP) in the

Newton-type iteration corresponds to a linear quadratic (LQ) optimal

control problem with time-varying matrices. To discuss this structure

in detail, consider an unconstrained discrete time OCP as it arises in

the direct multiple-shooting method

minimize
w

N�1X
i�0

`i�xi; ui� � Vf �xN�

subject to ÅÅx0 � x0 � 0

fi�xi; ui�� xi�1 � 0 for i � 0; : : : ;N � 1

(8.45)

Here, the vector w 2 R�N�1�n�Nm of optimization variables is given by

w � �x00 u00 � � � x0N�1 u0N�1 x0N�0. The ®xed vector ÅÅx0 is marked by

two bars to distinguish it from the optimization variable x0, as well

as from a speci®c value Åx0 of x0 that is used as linearization point

in a Newton-type algorithm. We introduce also a partitioned vector of

Lagrange multipliers, � � ��00 �01 : : : �0N�0, with � 2 R�N�1�n, such that
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the Lagrangian of the problem is given by

L�ÅÅx0;w; �� � �00�ÅÅx0 � x0��
N�1X
i�0

`i�xi; ui��

�0i�1�fi�xi; ui�� xi�1�� Vf �xN�
As before, we can combine w and � to a vector z 2 R2�N�1�n�Nm of all

primal-dual variables. Interestingly, the exact Hessian matrix Bex�z� �
r2
wL�z� is block diagonal (Bock and Plitt, 1984), because the Lagrangian

function L is a sum of independent terms that each depend only on a

small subset of the variablesÐa property called partial separability.

The exact Hessian is easily computed to be a matrix with the structure

Bex�Åz� �

26666666664

Q0 S00
S0 R0

. . .

QN�1 S0N�1
SN�1 RN�1

PN

37777777775
(8.46)

where the blocks with index i, only depend on the primal variables with

index i and the dual variables with index �i� 1�. More speci®cally, for

i � 0; : : : ;N � 1 the blocks are readily shown to be given by"
Qi S0i
Si Ri

#
� r2

�xi;ui�
�`i�xi; ui�� �0i�1fi�xi; ui��

8.8.1 Simultaneous Approach

Most simultaneous Newton-type methods for optimal control pre-

serve the block diagonal structure of the exact Hessian Bex�Åz� and

also of the Hessian approximation ÅB. Thus, the linear quadratic

optimization problem (8.38) that is solved in one iteration of a

Newton-type optimization method for a given linearization point Åw �
�Åx00 Åu00 � � � Åx0N�1 Åu0N�1 Åx0N�

0 and a given Hessian approximation ÅB is

identical to the following time-varying LQ optimal control problem

minimize
w

N�1X
i�0

`QP;i�xi; ui; Åw; ÅB� � VQP;f �xN ; Åw; ÅB�

subject to ÅÅx0 � x0 � 0

fL;i�xi; ui; Åxi; Åui�� xi�1 � 0 for i � 0; : : : ;N � 1

(8.47)
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Here, the quadratic objective contributions `QP;i�xi; ui; Åw; ÅB� are given

by

`i�Åxi; Åui��r�s;q�`i�Åxi; Åui�
0

"
xi � Åxi
ui � Åui

#
�1
2

"
xi � Åxi
ui � Åui

#0 " ÅQi ÅS0i
ÅSi ÅRi

#"
xi � Åxi
ui � Åui

#

the terminal cost VQP;f �xN ; Åw; ÅB� is given by

Vf �ÅxN��rVf �ÅxN�0�xN � ÅxN�� �1=2��xN � ÅxN�
0 ÅPN�xN � ÅxN�

and the linearized constraint functions fL;i�xi; ui; Åxi; Åui� are simply

given by

fi�Åxi; Åui�� @fi
@s
�Åxi; Åui�| {z }
�: ÅAi

�xi � Åxi�� @fi
@q
�Åxi; Åui�| {z }
�:ÅBi

�ui � Åui�

To create a banded structure, it is advantageous to order the primal-

dual variable vector as z � ��00 x00 u00 � � � �0N�1 x0N�1 u0N�1 �0N x0N�0;
then the solution of the above LQ optimal control problem at iterate

Åz corresponds to the solution of a block-banded linear system ÅMKKT �
�z � Åz� � �rzL�ÅÅx0; Åz�, which we can write equivalently as

ÅMKKT � z � �ÅrKKT (8.48)

where the residual vector is given by ÅrKKT :� rzL�ÅÅx0; Åz� � ÅMKKTÅz.

The matrix ÅMKKT is an approximation of the block-banded KKT matrix

r2
zL�Åz� and given by

ÅMKKT �

266666666666666666664

0 �I
�I ÅQ0 ÅS00 ÅA00

ÅS0 ÅR0 ÅB00
ÅA0 ÅB0 0 �I

�I . . .
ÅQN�1 ÅS0N�1 ÅA0N�1
ÅSN�1 ÅRN�1 ÅB0N�1
ÅAN�1 ÅBN�1 0 �I

�I
ÅPN

377777777777777777775

(8.49)

Ignoring the speci®c block structure, this is a banded symmetric ma-

trix with bandwidth �2n�m� and total size N�2n�m�� 2n, and the
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linear system can thus in principle be solved using a banded LDLT-

factorization routine at a cost that is linear in the horizon length N

and cubic in �2n �m�. There exists a variety of even more ef®cient

solvers for this form of KKT systems with smaller runtime and smaller

memory footprint. Many of these solvers exploit the speci®c block-

banded structure of the LQ optimal control problem. Some of these

solvers are based on the backward Riccati recursion, as introduced in

Section 1.3.3 and Section 6.1.1, and described in Section 8.8.3 for the

time-varying case.

8.8.2 Linear Quadratic Problems (LQP)

Consider a time-varying LQ optimal control problem of the form

minimize
x;u

N�1X
i�0

"
Åqi
Åri

#0"
xi
ui

#
�1

2

"
xi
ui

#0" ÅQi ÅS0i
ÅSi ÅRi

#"
xi
ui

#
� Åp0NxN�

1

2
x0N ÅPNxN

subject to ÅÅx0 � x0 � 0

Åbi � ÅAixi � ÅBiui � xi�1 � 0 for i � 0; : : : ;N � 1

(8.50)

Here, we use the bar above ®xed quantities such as ÅAi; ÅQi to distin-

guish them from the optimization variables xi; ui; and the quantities

that are computed during the solution of the optimization problem.

This distinction makes it possible to directly interpret problem (8.50)

as the LQ approximation (8.47) of a nonlinear problem (8.45) at a given

linearization point Åz � �Å�00 Åx00 Åu00 � � � Å�0N�1 Åx0N�1 Åu0N�1
Å�0N Åx0N�

0 within

a Newton-type optimizationmethod. We call the above problem the lin-

ear quadratic problem (LQP), and present different solution approaches

for the LQP in the following three subsections.

8.8.3 LQP Solution by Riccati Recursion

One band-structure-exploiting solution method for the above linear

quadratic optimization problem is called the Riccati recursion. It can

easily be derived by dynamic programming arguments. It is given by

three recursionsÐone expensive matrix and two cheaper vector recur-

sions.

First, and most important, we perform a backward matrix recursion

which is started at PN :� ÅPN , and goes backward through the indices
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i � N � 1; : : : ;0 to compute PN�1; : : : ; P0 with the following formula

Pi :� ÅQi � ÅA0iPi�1 ÅAi

� �ÅS0i � ÅA0iPi�1ÅBi��ÅRi � ÅB0iPi�1ÅBi�
�1�ÅSi � ÅB0iPi�1 ÅAi� (8.51)

The only condition for the above matrix recursion formula to be well

de®ned is that the matrix �ÅRi � ÅB0iPi�1ÅBi� is positive de®nite, which

turns out to be equivalent to the optimization problem being well posed

(otherwise, problem (8.50) would be unbounded from below). Note that

the Riccati matrix recursion propagates symmetric matrices Pi, whose

symmetry can and should be exploited for ef®cient computations.

The second recursion is a vector recursion that also goes backward

in time and is based on the matrices P0; : : : ; PN resulting from the ®rst

recursion, and can be performed concurrently. It starts with pN :� ÅpN
and then runs through the indices i � N � 1; : : : ;0 to compute

pi :� Åqi � ÅA0i�Pi�1
Åbi � pi�1�

� �ÅS0i � ÅA0iPi�1ÅBi��ÅRi � ÅB0iPi�1ÅBi�
�1�Åri � ÅB0i�Pi�1

Åbi � pi�1�� (8.52)

Interestingly, the result of the ®rst and the second recursion together

yield the optimal cost-to-go functions V0
i for the states xi that are given

by

V0
i �xi� � ci � p0ixi �

1

2
x0iPixi

where the constants ci are not of interest here. Also, one directly ob-

tains the optimal feedback control laws u0
i that are given by

u0
i �xi� � ki �Kixi

with

Ki :� ��ÅRi � ÅB0iPi�1ÅBi�
�1�ÅSi � ÅB0iPi�1 ÅAi� and (8.53a)

ki :� ��ÅRi � ÅB0iPi�1ÅBi�
�1�Åri � ÅB0i�Pi�1

Åbi � pi�1�� (8.53b)

Based on these data, the optimal solution to the optimal control prob-

lem is obtained by a forward vector recursion that is nothing other

than a forward simulation of the linear dynamics using the optimal

feedback control law. Thus, the third recursion starts with x0 :� ÅÅx0

and goes through i � 0; : : : ;N � 1 computing

ui :� ki �Kixi (8.54a)

xi�1 :� Åbi � ÅAixi � ÅBiui (8.54b)
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For completeness, one would simultaneously also compute the La-

grange multipliers �i, which are for i � 0; : : : ;N given by the gradient

of the optimal cost-to-go function at the solution

�i :� pi � Pixi (8.54c)

The result of the three recursions of the Riccati algorithm is a vector

z � ��00 x00 u00 � � � �0N�1 x0N�1 u0N�1 �0N x0N�0 that solves the linear

system ÅMKKT � z � �ÅrKKT with a right-hand side that is given by ÅrKKT �
�ÅÅx

0
0 Åq00 År 00

Åb00 � � � Åq0N�1 År 0N�1
Åb0N�1 Åp0N�

0.

The matrix recursion (8.51) can be interpreted as a factorization of

the KKTmatrix ÅMKKT, and in an ef®cient implementation it needs about

N�7=3n3 � 4n2m � 2nm2 � 1=3m3� FLOPs, which is about one-third

the cost of a plain banded LDLT-factorization.

On the other hand, the two vector recursions (8.52) and (8.54a)-

(8.54c) can be interpreted as a linear system solve with the already fac-

torized matrix ÅMKKT. In an ef®cient implementation, this linear system

solve needs about N�8n2 � 8nm� 2n2� FLOPs.

If care is taken to reduce the number of memory movements and

to optimize the linear algebra operations for full CPU usage, one can

obtain signi®cant speedups in the range of one order of magnitude

compared to a standard implementation of the Riccati recursionÐeven

for small- andmedium-scale dynamic systems (Frison, 2015). With only

minormodi®cations, the Riccati recursion can be used inside an interior

point method for inequality constrained optimal control problems.

8.8.4 LQP Solution by Condensing

A different way to exploit the block-sparse structure of the LQ op-

timal control problem (8.50) is to ®rst eliminate the state trajectory

x � �x00 x01 � � � x0N�0 as a function of the initial value ÅÅx0 and the con-

trol u � �u00 u01 � � � u0N�1�0. After subdivision of the variables into

states and controls, the equality constraints of the QP (8.50) can be ex-

pressed in the following form, where we omit the bar above the system

matrices and vectors for better readability266666664

I

�A0 I

�A1 I
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It can easily be shown that the inverse ofA is given by

A�1�

266666664
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A1A0 A1 I
...

...
...

. . .

�AN�1 � � �A0� �AN�1 � � �A1� �AN�1 � � �A2� I

377777775
and state elimination results in the af®ne map

x �A�1b � A�1I ÅÅx0 � A�1B u

Using this explicit expression to eliminate all states in the objective

results in a condensed, unconstrained quadratic optimization problem

of the form

minimize
u

c �
"
q
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#0"
ÅÅx0

u

#
� 1
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"
ÅÅx0

u

#0"Q S0
S R

#"
ÅÅx0

u

#
(8.55)

that is equivalent to the original optimal control problem (8.50). Con-

densing algorithms process the vectors and matrices of the sparse

problem (8.50) to yield the data of the condensed QP (8.55)Ðin par-

ticular the Hessian RÐand come in different variants. One classical

condensing algorithm has a cost of about �1=3�N3nm2 FLOPS; a second

variant, that can be derived by applying reverse AD to the quadratic cost

function, has a different complexity and costs about N2�2n2m�nm2�

FLOPs. See Frison (2015) for a detailed overview of these and other

condensing approaches.

After condensing, the condensed QP still needs to be solved, and

the solution of the above unconstrained QP (8.50) is given by u0 �
�R�1�r �SÅÅx0�. Because the HessianR is a dense symmetric and usu-

ally positive de®nite matrix of size �Nm�, it can be factorized using a

Cholesky decomposition, which costs about �1=3�N3m3 FLOPs. Inter-

estingly, the Cholesky factorization also could be computed simultane-

ously with the second condensing procedure mentioned above, which

results in an additional cost of only about Nm3 FLOPs (Frison, 2015),

resulting in a condensing based Cholesky factorization of quadratic

complexity in N, as discovered by Axehill and Morari (2012). The con-

densing approach can easily be extended to the case of additional con-

straints, and results in a condensed QP with Nm variables and some

additional equality and inequality constraints that can be addressed by

a dense QP solver.
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Is condensing a sequential approach? Condensing is similar in

spirit to a sequential approach that is applied to the LQ subproblem. To

distinguish the different algorithmic ingredients, we reserve the term

ªsequentialº for the nonlinear OCP only, while we speak of ªcondens-

ingº whenwe refer to an LQ optimal control problem. This distinction is

useful because all four combinations of sequential or simultaneous ap-

proaches with either the Riccati recursion or the condensing algorithm

are possible, and lead to different algorithms. For example, when the

simultaneous approach is combined with the condensing algorithm, it

leads to different Newton-type iterates than the plain sequential ap-

proach, even though the linear algebra operations in the quadratic sub-

problems are similar.

Comparing Riccati recursion and condensing. The Riccati recur-

sion, or, more generally, the banded-LDLT-factorization approaches,

have a runtime that is linear in the horizon length N; they are there-

fore always preferable to condensing for long horizons. They can easily

be combined with interior point methods and result in highly compet-

itive QP solution algorithms. On the other hand, condensing-based QP

solutions becomemore competitive than the Riccati approach for short

to moderate horizon lengths NÐin particular if the state dimension n

is larger than the control dimension m, and if an ef®cient dense ac-

tive set QP solver is used for the condensed QPs. Interestingly, one

can combine the advantages of condensing and band structured linear

algebra to yield a partial condensing method (Axehill, 2015), which is

even more ef®cient than the plain Riccati approach on long horizons.

8.8.5 Sequential Approaches and Sparsity Exploitation

So far, we have only presented the solution of the unconstrained OCP

by Newton-type methods in the simultaneous approach, to highlight

the speci®c sparsity structure that is inherent in the resulting LQ prob-

lem. Many Newton-type algorithms also exist which are based on the

sequential approach, however, where the Newton-type iterations are

performed in the space of control sequences u � �u00 � � � u0N�1�0 only.
We recall that one eliminates the state trajectory by a nonlinear forward

simulation in the sequential approach to maintain physically feasible

trajectories. The plain sequential approach does not exploit sparsity

and is not applicable to strongly unstable systems. Interestingly, some

sequential approaches exist that do exploit the sparsity structure of

the OCP and someÐnotably differential dynamic programmingÐeven
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incorporate feedback into the forward simulation to better deal with

unstable dynamic systems.

Plain dense sequential approach. We start by describing how the

plain sequential approachÐthe direct single-shooting method intro-

duced in Section 8.5.1Ðsolves the unconstrained OCP (8.45) with a

Newton-type method. Here, all states are directly eliminated as a func-

tion of the controls by a forward simulation that starts at x0 :� ÅÅx0 and

recursively de®nes xi�1 :� fi�xi; ui� for i � 0; : : : ;N � 1. The result is

that the objective function F�ÅÅx0;u� :�
PN�1
i�0 `i�xi; ui� � Vf �xN� di-

rectly depends on all optimization variables u � �u00 � � � u0N�1�0. The
task of optimization now is to ®nd a root of the nonlinear equation

system ruF�ÅÅx0;u� � 0. At some iterate Åu, after choosing a Hessian

approximation ÅB � r2
uF�ÅÅx0; Åu�, one has to solve linear systems of the

form
ÅB�u� Åu� � �ruF�ÅÅx0; Åu� (8.56)

It is important to note that the exact Hessian r2
uF�ÅÅx0; Åu� is a dense

matrix of size Nm (where m is the control dimension), and that one

usually also chooses a dense Hessian approximation ÅB that is ideally

positive de®nite.

A Cholesky decomposition of a symmetric positive de®nite linear

system of sizeNm has a computational cost of �1=3��Nm�3 FLOPs, i.e.,

the iteration cost of the plain sequential approach grows cubically with

the horizon length N. In addition to the cost of the linear system solve,

one has to consider the cost of computing the gradient ruF�ÅÅx0; Åu�.

This is ideally done by a backward sweep equivalent to the reversemode

of algorithmic differentiation (AD) as stated in (8.16), at a cost that

grows linearly in N. The cost of forming the Hessian approximation

depends on the chosen approximation, but is typically quadratic in N.

For example, an exact Hessian could be computed by performing Nm

forward derivatives of the gradient function ruF�ÅÅx0;u�.

The plain dense sequential approach results in a medium-sized op-

timization problem without much sparsity structure but with expen-

sive function and derivative evaluations, and can thus be addressed

by a standard nonlinear programming method that does not exploit

sparsity, but converges with a limited number of function evaluations.

Typically, an SQP method in combination with a dense active set QP

solver is used.

Sparsity-exploiting sequential approaches. Interestingly, one can

form and solve the same linear system as in (8.56) by using the sparse
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linear algebra techniques described in the previous section for the si-

multaneous approach. To implement this, it would be easiest to start

with an algorithm for the simultaneous approach that computes the

full iterate in the vector z that contains as subsequences the controls

u � �u00 � � � u0N�1�0, the states x � �x00 � � � xN�0, and the multipliers

� � ��00 � � � �0N�0. After the linear system solve, one would simply

overwrite the states x by the result of a nonlinear forward simulation

for the given controls u.

The sparse sequential approach is particularly easy to implement

if a Gauss-Newton Hessian approximation is used (Sideris and Bobrow,

2005). To compute the exact Hessian blocks, one performs a second

reverse sweep identical to (8.16) to overwrite the values of the multipli-

ers �. As in the simultaneous approach, the cost for each Newton-type

iteration would be linear in N with this approach, while one can show

that the resulting iterates would be identical to those of the dense se-

quential approach for both the exact and the Gauss-Newton Hessian

approximations.

8.8.6 Differential Dynamic Programming

The sequential approaches presented so far ®rst compute the com-

plete control trajectory u in each iteration, and then simulate the non-

linear system open loop with this trajectory u to obtain the states x

for the next linearization point. In contrast, differential dynamic pro-

gramming (DDP) (Mayne, 1966; Jacobson and Mayne, 1970) uses the

time-varying af®ne feedback law u0
i �xi� � ki � Kixi from the Riccati

recursion to simulate the nonlinear system forward in time. Like other

sequential approaches, the DDP algorithm starts with an initial guess

for the control trajectoryÐor the assumption of some feedback lawÐ

and the corresponding state trajectory. But then in each DDP iteration,

starting at x0 :� ÅÅx0, one recursively de®nes for i � 0;1; : : : ;N � 1

ui :� ki �Kixi (8.57a)

xi�1 :� fi�xi; ui� (8.57b)

with Ki and ki from (8.53a) and (8.53b), to de®ne the next control and

state trajectory. Interestingly, DDP only performs the backward recur-

sions (8.51) and (8.52) from the Riccati algorithm. The forward simula-

tion of the linear system (8.54b) is replaced by the forward simulation

of the nonlinear system (8.57b). Note that both the states and the con-

trols in DDP are different from the standard sequential approach.
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DDP with Gauss-Newton Hessian. Depending on the type of Hessian

approximation, different variants of DDP can be derived. Conceptu-

ally the easiest is DDP with a Gauss-Newton Hessian approximation,

because it has no need of the multipliers �i. In case of a quadratic

objective with positive semide®nite cost matrices, these matrices coin-

cide with the Gauss-Newton Hessian blocks, and the method becomes

particularly simple; one needs only to compute the system lineariza-

tion matrices ÅAi; ÅBi for i � 0; : : : ;N �1 at the trajectory �x;u� from the

previous iteration to obtain all data for the LQ optimal control prob-

lem, and then perform the backward recursions (8.51) and (8.52) to

de®ne Ki and ki in (8.53a) and (8.53b). This DDP variant is sometimes

called iterative linear quadratic regulator (LQR) (Li and Todorov, 2004)

and is popular in the ®eld of robotics. Like any method based on the

Gauss-Newton Hessian, the iterative LQR algorithm has the advantage

that the Hessian approximation is always positive semide®nite, but the

disadvantage that its convergence rate is only linear.

DDP with exact Hessian. In contrast to the iterative LQR algorithm,

the DDP algorithm from Mayne (1966) uses an exact Hessian approxi-

mation and thus offers a quadratic rate of convergence. Like all exact

Hessian methods, it can encounter inde®niteness of the Hessian, which

can be addressed by algorithmic modi®cations that are beyond our in-

terest here. To compute the exact Hessian blocks"
ÅQi ÅS0i
ÅSi ÅRi

#
:� r2

�xi;ui�
�`i�Åxi; Åui�� Å�0i�1fi�Åxi; Åui��

the DDP algorithm needs not only the controls Åui, but also the states

Åxi and the Lagrange multipliers Å�i�1, which are not part of the mem-

ory of the algorithm. While the states Åxi are readily obtained by the

nonlinear forward simulation (8.57b), the Lagrange multipliers Å�i�1 are

obtained simultaneously with the combined backward recursions (8.51)

and (8.52). They are chosen as the gradient of the quadratic cost-to-go

function V0
i �xi� � p0ixi�1

2x
0
iPixi at the corresponding state values, i.e.,

as
Å�i :� pi � PiÅxi (8.58)

for i � N�1; : : : ;0. The last Hessian block (which is needed ®rst in the

backward recursion) is independent of the multipliers and just given

by the second derivative of the terminal cost and de®ned by ÅPN :�
r2Vf �ÅxN�. Because ÅpN :� rVf �ÅxN�� ÅPN ÅxN , the last multiplier is given

by Å�N :� rVf �ÅxN�. Starting with these values for ÅPN ; ÅpN ; and Å�N , the
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backward Riccati recursions (8.51) and (8.52) can be started and the

Lagrange multipliers be computed simultaneously using (8.58).

The DDP algorithm in its original form is only applicable to uncon-

strained problems, but can easily be adapted to deal with control con-

straints. In order to deal with state constraints, a variety of heuristics

can be employed that include, for example, barrier methods; a similar

idea was presented in themore general context of constrained OCPs un-

der the name feasibility perturbed sequential quadratic programming

by Tenny, Wright, and Rawlings (2004).

8.8.7 Additional Constraints in Optimal Control

Most Newton-type methods for optimal control can be generalized to

problems with additional equality or inequality constraints. In nonlin-

ear MPC, these additional constraints could be terminal equality con-

straints of the form r�xN� � 0, as in the case of a zero terminal con-

straint; or terminal inequality constraints of the form r�xN� � 0, as

in the case of a terminal region. They could also be path constraints

of the form ri�xi; ui� � 0 or ri�xi; ui� � 0 for i � 0; : : : ;N � 1. The

Lagrangian function then comprises additional contributions, but the

block diagonal structure of the exact Hessian in (8.46) and the general

sparsity of the problem is preserved.

Simultaneous approaches. If themultipliers for the extra constraints

are denoted by �i for i � 0; : : : ;N, the Lagrangian in the simultaneous

approaches is given by

L�ÅÅx0;w; �; �� � �00�ÅÅx0 � x0�� �0NrN�xN� � Vf �xN�

�
N�1X
i�0

`i�xi; ui�� �0i�1�fi�xi; ui�� xi�1�� �0iri�xi; ui�

We can summarize all primal-dual variables in a vector z :� �w0 �0 �0�0

andwrite the Lagrangian asL�ÅÅx0; z�. In the purely equality-constrained

case, Newton-type optimization algorithms again just try to ®nd a root

of the nonlinear equation system rzL�z� � 0 by solving at a given

iterate Åz the linear system ÅM�z � Åz� � �rzL�Åz� where ÅM is an ap-

proximation of the exact KKT matrix r2
zL�Åz�. In the presence of in-

equalities, one can resort to SQP or nonlinear IP methods. In all cases,

the Lagrangian remains partially separable and the KKT matrix has a

similar sparsity structure as for the unconstrained OCP. Therefore, the
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linear algebra operations again can be performed by band-structure-

exploiting algorithms that have a linear complexity in the horizon

length N, if desired, or by condensing based approaches.

One major difference with unconstrained optimal control is that the

overall feasibility of the optimization problem and the satisfaction of

the linear independence constraint quali®cation (LICQ) condition is no

longer guaranteed a priori, and thus, care needs to be taken in for-

mulating well-posed constrained OCPs. For example, one immediately

runs into LICQ violation problems if one adds a zero terminal con-

straint xN � 0 to a problem with a large state dimension n, but a small

control dimension m, and such a short time horizon N that the total

number of control degrees of freedom, Nm, is smaller than n. In these

unfortunate circumstances, the total number of equality constraints,

�N�1�n�n, would exceed the total number of optimization variables,

�N � 1�n�Nm, making satisfaction of LICQ impossible.

Sequential approaches. Like the simultaneous approaches, most se-

quential approaches to optimal controlÐwith the exception of DDPÐ

can easily be generalized to the case of extra equality constraints, with

some adaptations to the linear algebra computations in each iteration.

For the treatment of inequality constraints on states and controls, one

can again resort to SQP or nonlinear IP-based solution approaches. In

the presence of state constraints, however, the iterates violate in gen-

eral these state constraints; thus the iterates are infeasible points of

the optimization problem, and the main appeal of the sequential ap-

proach is lost. On the other hand, the disadvantages of the sequential

approach, i.e., the smaller region of convergence and slower contraction

rate, especially for nonlinear and unstable systems, remain or become

even more pronounced. For this reason, state constrained optimal con-

trol problems aremost often addressed with simultaneous approaches.

8.9 Online Optimization Algorithms

Optimization algorithms for model predictive control need to solve not

only one OCP, but a sequence of problems PN�x0� for a sequence of

different values of x0, and the time to work on each problem is limited

by the sampling time �t. Many different ideas can be used alone or in

combination to ensure that the numerical approximation errors do not

become too large and that the computation times remain bounded. In

this section, we ®rst discuss some general algorithmic considerations,



568 Numerical Optimal Control

then present the important class of continuation methods and discuss

in some detail the real-time iteration.

8.9.1 General Algorithmic Considerations

We next discuss one by one some general algorithmic ideas to adapt

standard numerical optimal control methods to the context of online

optimization for MPC.

Coarse discretization of control and state trajectories. The CPU

time per Newton-type iteration strongly depends on the number of opti-

mization variables in the nonlinear program (NLP), which itself depends

on the horizon length N, the number of free control parameters, and

on the state discretization method. To keep the size of the NLP small,

one would classically choose a relatively small horizon length N, and

employ a suitable terminal cost and constraint set that ensures recur-

sive feasibility and nominal stability in case of exact NLP solutions. The

total number of control parameters would then be Nm, and the state

discretization would be equally accurate on all N control intervals.

In the presence of modeling errors and unavoidably inexact NLP

solutions, however, one could also accept additional discretization er-

rors by choosing a coarser control or state discretization, in particular

in the end of the MPC horizon. Often, practitioners use move blocking

where only the ®rstM � N control moves in the MPC horizon have the

feedback sampling time �t. The remaining �N �M� control moves are

combined into blocks of size two or larger, such that the overall num-

ber of control parameters is less thanNm. In particular if a plain dense

single-shooting algorithm is employed, move blocking can signi®cantly

reduce the CPU cost per iteration. Likewise, one could argue that the

state evolution need only be simulated accurately on the immediate fu-

ture, while a coarser state discretization could be used toward the end

of the horizon.

From the viewpoint of dynamic programming, one could argue that

only the ®rst control interval of duration �t needs to be simulated ac-

curately using the exact discrete time model x1 � f�x0; u0�, while the

remaining �N �1� intervals of the MPC horizon only serve the purpose

of providing an approximation of the gradient of the cost-to-go func-

tion, i.e., of the gradient of VN�1�f �x0; u0��. Since the discrete time

dynamics usually originate from the approximation of a continuous

time system, one could even decide to use a different state and control

parameterization on the remaining time horizon. For example, after
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the ®rst interval of length �t, one could use one single long collocation

interval of length �N�1��t with one global polynomial approximation

of states and controls, as in pseudospectral collocation, in the hope of

obtaining a cheaper approximation of VN�1�f �x0; u0��.

Code generation and ®xed matrix formats. Since MPC optimization

problems differ only in the value x0, many problem functions, and

even some complete matrices in the Newton-type iterations, remain

identical across different optimization problems and iterations. This

allows for the code generation of optimization solvers that are tailored

to the speci®c system model and MPC formulation. While the user in-

terface can be in a convenient high-level language, the automatically

generated code is typically in a standardized lower-level programming

language such as plain C, which is supported by many embedded com-

puting systems. The generated code has ®xedmatrix and vector dimen-

sions, needs no online memory allocations, and contains no or very few

switches. As an alternative to code generation, one could also just ®x

the matrix and vector dimensions in the most computationally inten-

sive algorithmic components, and use a ®xed speci®c matrix storage

format that is optimized for the given computing hardware.

Delay compensations by prediction. Often, at a sampling instant t0,

one has a current state estimate x0, but knows in advance that the MPC

optimization calculations take some time, e.g., a full sampling time �t.

In the meantime, i.e., on the time interval �t0; t0 ��t�, one usually has
to apply some previously computed control action u0. As all this is

known before the optimization calculations start, one could ®rst pre-

dict the expected state x1 :� f�x0; u0� at the time �t0 � �t� when the

MPC computations are ®nished, and directly let the optimization algo-

rithm address the problem PN�x1�. Though this prediction approach

cannot eliminate the feedback delay of one sampling time �t in case

of unforeseen disturbances, it can alleviate its effect in the case that

model predictions and reality are close to each other.

Division into preparation and feedback phases. An additional idea

is to divide the computations during each sampling interval into a long

preparation phase, and a much shorter feedback phase that could,

for example, consist of only a matrix vector multiplication in case of

linear state feedback. We assume that the computations in the feed-

back phase take a computational time �tfb with �tfb � �t, while the

preparation time takes the remaining duration of one sampling inter-

val. Thus, during the time interval �t0; t0��t��tfb� one would perform
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a preparation phase that presolves as much as possible the optimiza-

tion problem that one expects at time �t0 � �t�, corresponding to a

predicted state Åx1.

At time �t0��t��tfb�, when the preparation phase is ®nished, one

uses themost current state estimate to predict the state at time �t0��t�
more accurately than before. Denote this new prediction x1. During

the short time interval �t0 ��t ��tfb; t0 ��t�, one performs the com-

putations of the feedback phase to obtain an approximate feedback u1

that is based on x1. In case of linear state feedback, one would, for ex-

ample, precompute a vector v and a matrix K in the preparation phase

that are solely based on Åx1, and then evaluate u1 :� v �K�x1 � Åx1� in

the feedback phase. Alternatively, more complex computationsÐsuch

as the solution of a condensed QPÐcan be performed in the feedback

phase. The introduction of the feedback phase reduces the delay to

unforeseen disturbances from �t to �tfb. One has to accept, however,

that the feedback is not the exact MPC feedback, but only an approxima-

tion. Some online algorithms, such as the real-time iteration discussed

in Section 8.9.2, achieve the division into preparation and feedback

phase by reordering the computational steps of a standard optimiza-

tion algorithm, without creating any additional overhead per iteration.

Tangential predictors. A particularly powerful way to obtain a cheap

approximation of the exact MPC feedback is based on the tangential

predictors from Theorem 8.16. In case of strict complementarity at the

solution Åw of an expected problem PN�Åx1�, one can show that for suf®-

ciently small distance jx1 � Åx1j, the solution of the parametric QP (8.33)

corresponds to a linear map, i.e.,wQP�x1� � Åw�A�x1�Åx1�. The matrix

A can be precomputed based on knowledge of the exact KKT matrix at

the solution Åw, but before the state x1 is known.

Generalized tangential predictors are based on the (approximate)

solution of the full QP (8.33), which is more expensive than a matrix

vector multiplication, but is also applicable to the cases where strict

complementarity does not hold or where the active set changes. The

aim of all tangential predictors is to achieve a second-order approxi-

mation that satis®es
��wQP�x1��w��x1�

�� � O�jx1 � Åx1j2�, which is

only possible if the exact KKT matrix is known. If the exact KKT matrix

is not used in the underlying optimization algorithm, e.g., in case of a

Gauss-Newton Hessian approximation, one can alternatively compute

an approximate generalized tangential predictor we QP
�x1� � wQP�x1�,

which only approximates the exact tangential predictor, but can be ob-

tained without creating additional overhead compared to a standard
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optimization iteration.

Warmstarting and shift. Another easy way to transfer solution infor-

mation from one MPC problem to the next is to use an existing solution

approximation as initial guess for the next MPC optimization problem,

in a procedure called warmstarting. In its simplest variant, one can

just use the existing solution guess without any modi®cation. In the

shift initialization, one ®rst shifts the current solution guess to account

for the advancement of time. The shift initialization can most easily be

performed if an equidistant grid is used for control and state discretiza-

tion, and is particularly advantageous for systems with time-varying

dynamics or objectives, e.g., if a sequence of future disturbances is

known, or one is tracking a time-varying trajectory.

Iterating while the problem changes. Extending the idea of warm-

starting, some MPC algorithms do not separate between one opti-

mization problem and the next, but always iterate while the problem

changes. They only perform one iteration per sampling time, and they

never try to iterate the optimization procedure to convergence for any

®xed problem. Instead, they continue to iterate while the optimization

problem changes. When implemented with care, this approach ensures

that the algorithm always works with themost current information, and

never loses precious time by working on outdated information.

8.9.2 Continuation Methods and Real-Time Iterations

Several of the ideas mentioned above are related to the idea of contin-

uation methods, which we now discuss in more algorithmic detail. For

this aim, we ®rst regard a parameter-dependent root-®nding problem

of the form

R�x; z� � 0

with variable z 2 Rnz , parameter x 2 Rn, and a smooth function

R : Rn�Rnz ! Rnz . This root-®nding problem could originate from an

equality constrained MPC optimization problem with ®xed barrier as

it arises in a nonlinear IP method. The parameter dependence on x is

due to the initial state value, which varies from one MPC optimization

problem to the next. In case of in®nite computational resources, one

could just employ one of the Newton-type methods from Section 8.3.2

to converge to an accurate approximation of the exact solution z��x�

that satis®es R�x; z��x�� � 0. In practice, however, we only have lim-

ited computing power and ®nite time, and need to be satis®ed with an

approximation of z��x�.
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Fortunately, it is a realistic assumption that we have an approximate

solution of a related problem available, for the previous value of x. To

clarify notation, we introduce a problem index k, such that the aim of

the continuation method is to solve root-®nding problems R�xk; z� � 0

for a sequence �xk�k2I. For algorithmic simplicity, we assume that the

parameter x enters the function R linearly. This assumption means

that the Jacobian of R with respect to z does not depend on x but only

on z, and can thus be written as Rz�z�. As a consequence, also the

linearization of R depends only on the linearization point Åz, i.e., it can

be written as RL�x; z; Åz� :� R�x; Åz�� Rz�Åz��z � Åz�.

A simple full-step Newton iteration for a ®xed parameter x would

iterate z� � Åz � Rz�Åz��1R�x; Åz�. If we have a sequence of values xk,

we could decide to perform only one Newton iteration for each value

xk and then proceed to the next one. Given a solution guess zk for the

parameter value xk, a continuation method would then generate the

next solution guess by the iteration formula

zk�1 :� zk � Rz�zk��1R�xk�1; zk�

Another viewpoint on this iteration is that zk�1 solves the linear equa-

tion system RL�xk�1; zk�1;zk� � 0. Interestingly, assuming only regu-

larity of Rz, one can show that if zk equals the exact solution z��xk�

for the previous parameter xk, the next iterate zk�1 is a ®rst-order ap-

proximation, or tangential predictor, for the exact solution z��xk�1�.

More generally, one can show that

��zk�1 � z��xk�1��� � O
0@�����
"
zk � z��xk�
xk�1 � xk

#�����
2
1A (8.59)

From this equation it follows that one can remain in the area of con-

vergence of the Newton method if one starts close enough to an ex-

act solution, zk � z��xk�, and if the parameter changes �xk�1 � xk�
are small enough. Interestingly, it also implies quadratic convergence

toward the solution in case the parameter values of xk remain con-

stant. Roughly speaking, the continuation method delivers tangential

predictors in case the parameters xk change a lot, and nearly quadratic

convergence in case they change little.

The continuation method idea can be extended to Newton-type it-

erations of the form

zk�1 :� zk �M�1
k R�xk�1; zk�
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with approximations Mk � Rz�zk�. In this case, only approximate tan-

gential predictors are obtained.

Real-time iterations. To generalize the continuation idea to a se-

quence of inequality constrained optimization problems PN�xk� of the

general form (8.29) with primal-dual solutions z��xk�, one performs

SQP type iterations of the form (8.41), but use in each iteration a new

parameter value xk�1. This idea directly leads to the real-time itera-

tion (Diehl, Bock, SchlÈoder, Findeisen, Nagy, and AllgÈower, 2002) that

determines the approximate solution zk�1 � �wk�1; �k�1; �k�1� of prob-

lem PN�xk�1� from the primal-dual solution of the following QP

minimize
w 2 Rnw

FL�w;wk�� 1

2
�w �wk�

0Bk�w �wk�

subject to GL�xk�1;w;wk� � 0

HL�w;wk� � 0

(8.60)

which we denote by P
QP
N �xk�1;wk; Bk�. If one uses the exact Hessian,

Bk � r2
wL�zk�, Theorem 8.16 ensures that the QP solution is a gener-

alized tangential predictor of the exact solution if zk was equal to an

exact and strongly regular solution z��xk�. Conversely, if the values of

xk would remain constant, the exact Hessian SQP method would have

quadratic convergence.

More generally, the exact Hessian real-time iteration satis®es the

quadratic approximation formula (8.59), despite the fact that active set

changes lead to nondifferentiability in the solution map z����. Loosely
speaking, the SQP based real-time iteration is able to easily ªjumpº

across this nondifferentiability, and its prediction and convergence

properties are not directly affected by active set changes. If the Hessian

is not the exact one, the real-time iteration method delivers only ap-

proximate tangential predictors, and shows linear instead of quadratic

convergence. In practice, one often uses the Gauss-Newton Hessian in

conjunction with a simultaneous approach to optimal control, but also

sequential approaches were suggested in a similar framework (Li and

Biegler, 1989). One can generalize the SQP based real-time iteration

idea further by allowing the subproblems to be more general convex

optimization problems, and by approximating also the constraint Jaco-

bians, as proposed and investigated by Tran-Dinh et al. (2012).

Shift initialization and shrinking horizon problems. If the paramet-

ric optimization problems originate from an MPC optimal control prob-

lem with time-varying dynamics or objectives, it can be bene®cial to
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employ a shift strategy that shifts every approximate solution by one

time step backward in time before the next QP problem is solved. For

notational correctness, we need to denote the MPC problem by PN�k;

xk� in this case, to re¯ect the direct dependence on the time index k.

While most of the variable shift is canonical, the addition of an extra

control, state, and multiplier at the end of the prediction horizon is

not trivial, and different variants exist. Some are based on an auxiliary

control law and a forward simulation, but also a plain repetition of the

second-to-last interval, which needs no additional computations, is a

possibility.

The guiding idea of the shift initialization is that a shifted optimal

solution should ideally correspond to an optimal solution of the new

MPC problem, if the new initial value xk�1 originates from the nominal

system dynamics xk�1 � f�xk; uk�. But while recursive feasibility can

be obtained easily by a shift, recursive optimality can usually not be

obtained for receding horizon problems. Thus, a shift strategy perturbs

the contraction of the real-time iterations and needs to be applied with

care. In the special case of time-invariant MPC problems PN�xk� with a

short horizon and tight terminal constraint or cost, a shift strategy is

not bene®cial.

On the other hand, in the case of ®nite-time (batch) processes that

are addressed by MPC on shrinking horizons, recursive optimality can

easily be achieved by shrinking a previously optimal solution. More

concretely, if the initial horizon length was N, and at time k one would

have the solution to the problem PN�k�k;xk� on the remaining time

horizon, the optimal solution to the problem PN�k�1�k � 1; xk�1� is

easily obtained by dropping the ®rst component of the controls, states,

and multipliers. Thus, the shrinking operation is canonical and should

be used if real-time iterationsÐor other continuation methodsÐare ap-

plied to shrinking horizon MPC problems.

8.10 Discrete Actuators

Optimal control problems with discrete actuators fall into the class of

mixed-integer optimal control problems, which are NP-hard and known

to be dif®cult to solve. If one is lucky and the system model and con-

straints are linear and the cost is linear or convex quadratic, the dis-

crete time optimal control problem turns out to be a mixed-integer

linear program (MILP) or mixed-integer quadratic program (MIQP). For

both classes there exist robust and reliable solvers that can be used
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as a black-box for small to moderate problem dimensions. Another

lucky case arises if the sequence of switches happens to be known in

advance in a continuous time system, in which case switching-time op-

timization can be used to transform the problem into a standard non-

linear program (NLP). On the other hand, if we have a nonlinear system

model with unknown switching sequence, we have to confront a sig-

ni®cantly more dif®cult problem after discretization, namely a mixed-

integer nonlinear program (MINLP). To address this MINLP one has ba-

sically three options:

• One can use piecewise system linearizations and mixed logical

dynamics (MLD) to approximate the MINLP by a MILP or MIQP.

• One can try to solve the MINLP to global optimality using tech-

niques from the ®eld of global optimization.

• One can use a heuristic to ®nd an approximate solution of the

MINLP.

While the ®rst two options can lead to viable solutions for relevant ap-

plications, they often lead to excessively large runtimes, so the MPC

practitioner may need to resort to the last option. Fortunately, the

optimal control structure of the problem allows us to use a powerful

heuristic that exploits the fact that the state of a (continuous time)

system is most strongly in¯uenced by the time average of its controls

rather than their pointwise values, as illustrated in Figure 8.7. This

heuristic is based on a careful MINLP formulation, which is very similar

to a standard nonlinear MPC problem, but with special structure. First,

divide the input vector u � �uc ; ub� 2 Rmc�mb into continuous inputs,

uc , and binary integer inputs, ub, such that the system is described by

x� � f�x;uc ; ub�. Second, and without loss of generality, we restrict

ourselves to binary integers ub 2 f0;1gmb inside a convex polyhedron

P � �0;1�mb , and assume thatub enters the system linearly.3 The poly-

hedral constraint ub 2 P allows us to exclude some combinations, e.g.,

3If necessary, this binary representation can be achieved by a technique called outer

convexi®cation, which is applicable to any system x� � fe�x;uc ; uI� where the integer
vector uI has dimension mI and can take ®nitely many (nI ) values uI 2 fuI;1; : : : ;
uI;nI g. We setmb :� nI and f�x;uc ; ub� :�

Pmb
i�1ub;if

e�x;uc ; uI;i� and P :� fub 2 �0;
1�mb j Pmb

j�1ub;i � 1g. Due to exponential growth of nI in the number of original

integer decisionsmI , this technique should be applied with care, e.g., only partially for

separate subsystems, or avoided altogether if the original system is already linear in

the integer controls.
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if two machines cannot be operated simultaneously. The polyhedron

P can and should be chosen such that its vertices equal the admissible

binary values in each time step.

We might have additional combinatorial constraints that couple dif-

ferent time steps with each other. Typical examples are limits on the

total number of switches, or dwell-time constraints, which bound the

duration that a component of ub can be active without interruption.

We introduce the binary control trajectory ub :� �ub�0�;ub�1�; : : : ;

ub�N�1�� 2 �0;1�mb�N and denote the set of combinatorially feasible

trajectories by B � f0;1gmb�N \ PN . The MINLP arising in MPC with

discrete actuators can then be formulated as follows

minimize
x;uc ;ub

N�1X
k�0

`�x�k�;uc�k�;ub�k��� Vf �x�N��

subject to x�0� � x0
x�k� 1� � f�x�k�;uc�k�;ub�k��; k � 0; : : : ;N � 1

h�x�k�;uc�k�;ub�k�� � 0; k � 0; : : : ;N � 1

hf �x�N�� � 0

ub�k� 2 P; k � 0; : : : ;N � 1

ub 2 B

(8.61)

Without the last constraint, ub 2 B, the above problem would be a

standard NLP with optimal control structure. Likewise, a standard NLP

arises if the binary controls ub are ®xed. These two observations di-

rectly lead to the following three-step algorithm that is a heuristic to

®nd a good feasible solution of the MINLP (8.61).

1. Solve the relaxed NLP (8.61) without combinatorial constraints,

ub 2 B, leading to a relaxed solution guess �x�;u�c ;u
�
b �, possi-

bly with u�b � B, with objective value V�N .

2. Find a binary trajectory u��b 2 B that approximates u�b , e.g. by

minimizing the distance between u�b and u��b in a suitable norm.

3. Fix the binary controls to u��b and solve the restricted NLP (8.61)

in the variables �x;uc� only, with solution �x���;u���c � and ob-

jective value V���N .

The result of the algorithm is the triple �x���;u���c ;u��b � which is a
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feasible, but typically not an optimal point of the MINLP (8.61).4 Note

that this feasible MINLP solution has an objective value V���N that is

larger than the unknown exact MINLP solution V0
N which in turn is larger

than the relaxedNLP objectiveV�N from Step 1 (if the global NLP solution

was found): V�N � V0
N � V���N . Thus, the objective values from Steps 1

and 3 help us to bound the optimality loss incurred by using the above

three-step heuristic.

The choice of the approximation in Step 2 affects both solution qual-

ity and computational complexity. One popular choice, that is taken in

the combinatorial integral approximation (CIA) algorithm (Sager, Jung,

and Kirches, 2011) is to minimize the distance in a specially scaled

maximum norm that compares integrals, and is given by

kubkCIA :� max
j�mb ; n�N

������
n�1X
k�0

ub;j�k�

������
Thus, in Step 2 of the CIA algorithm, one has to ®nd u��b �
argminub2B kub � u�bkCIA. This problem turns out to be a MILP (see

Exercise 8.11) with a special structure that can be exploited in tai-

lored algorithms, some of which are available in the open source tool

pycombina (BÈurger, Zeile, Hahn, Altmann-Dieses, Sager, and Diehl,

2020).

For the special case of continuous time problems with trivial com-

binatorial constraints, B � f0;1gmb�N \ PN , one can show under mild

conditions that the difference between the objectives V�N and V���N in

the three-step CIA algorithm shrinks linearly with the discretization

step size h � T=N if the length of the continuous time horizon T is

®xed while N grows (Sager, Bock, and Diehl, 2012). A more general

approximation result can be established in the presence of minimum

dwell-time constraints (Zeile, Robuschi, and Sager, 2020).

Example 8.17: MPC with discrete actuator

We regard a simple problem of the form (8.61) for a nonlinear and un-

stable system with one state x 2 R and one binary control ub 2 R. The
continuous time system is described by Çx � x3 �ub and transformed

to a discrete time system x� � f�x;ub� by using one RK4 step with

step length h � 0:05. The aim is to track a reference xref � 0:7 starting

from the initial value x0 � 0:9 on a horizon of length N � 30, resulting

4An important feature in practice is the relaxation of inequality constraints, e.g., by

using L1-penalties, in order to ensure feasible optimization problems in Steps 1 and 3.
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Figure 8.7: Relaxed and binary feasible solution for Example 8.17.

in the following MINLP

minimize
x;ub

NX
k�0

�x�k�� xref�2

subject to x�0� � x0
x�k� 1� � f�x�k�;ub�k��; k � 0; : : : ;N � 1

ub�k� 2 �0;1�; k � 0; : : : ;N � 1

ub 2 B

(8.62)

The combinatorial constraint set B imposes a minimum dwell-time con-

straint on the uptime that requires that ub remains active for at least

two consecutive time steps, i.e., we have B � fub 2 f0;1gN j ub�k� �
ub�k � 1� � ub�k � 2�; k � 0; : : : ;N � 1g. The required initial val-

ues ub��1� and ub��2� are both set to zero. We solve the problem

using the described three-step procedure and the combinatorial inte-

gral approximation in Step 2. The relaxed solution �x�;u�b � after Step

1 as well as the solution �x���;u��b � after Step 3 are shown in Fig-

ure 8.7. Note that due to the absence of continuous controls, Step 3

just amounts to a system simulation. The objective values are given by



8.11 Notes 579

V�N � 0:166 and V���N � 0:1771. The true optimal cost, which can for

this simple example be found in a few seconds by an intelligent inves-

tigation of all 230 � 109 possibilities via branch-and-bound, is given by

V0
N � 0:176. �

8.11 Notes

The description of numerical optimal control methods in this chapter

is far from complete, and we have left out many details as well as many

methods that are important in practice. We mention some related lit-

erature and software links that could complement this chapter.

General numerical optimal control methods are described in the

textbooks by Bryson and Ho (1975); Betts (2001); Gerdts (2011); and

in particular by Biegler (2010). The latter reference focuses on di-

rect methods and also provides an in-depth treatment of nonlinear

programming. The overview articles by Binder, Blank, Bock, Bulirsch,

Dahmen, Diehl, Kronseder, Marquardt, SchlÈoder, and Stryk (2001);

and Diehl, Ferreau, and Haverbeke (2009); as well a forthcoming text-

book on numerical optimal control (Gros and Diehl, 2020) has a similar

focus on online optimization for MPC as the current chapter.

General textbooks on numerical optimization are Bertsekas (1999);

Nocedal and Wright (2006). Convex optimization is covered by Ben-

Tal and Nemirovski (2001); Nesterov (2004); Boyd and Vandenberghe

(2004). The last book is particularly accessible for an engineering audi-

ence, and its PDF is freely available on the home page of its ®rst author.

Newton's method for nonlinear equations and its many variants are

described and analyzed in a textbook by Deu¯hard (2011). An up-to-

date overview of optimization tools can be found at plato.asu.edu/

guide.html, many optimization solvers are available as source code

at www.coin-or.org, and many optimization solvers can be accessed

online via neos-server.org.

While the direct single-shooting method often is implemented by

coupling an ef®cient numerical integration solver with a general non-

linear program (NLP) solver such as SNOPT (Gill, Murray, and Saun-

ders, 2005), the direct multiple-shooting and direct collocation meth-

ods need to be implemented by using NLP solvers that fully exploit the

sparsity structure, such as IPOPT5 (WÈachter and Biegler, 2006) There

exist many custom implementations of the direct multiple-shooting

5This code is available to the public under a permissive open-source license.
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method with their own structure-exploiting NLP solvers, such as, for

example, HQP5 (Franke, 1998); MUSCOD-II (Leineweber, Bauer, SchÈafer,

Bock, and SchlÈoder, 2003); ACADO5(Houska, Ferreau, and Diehl, 2011);

and FORCES-NLP (Zanelli, Domahidi, Jerez, and Morari, 2017).

Structure-exploiting QP solvers that can be used standalone for lin-

ear MPC or as subproblem solvers within SQPmethods are, for example,

the dense code qpOASES5 (Ferreau, Kirches, Potschka, Bock, and Diehl,

2014), which is usually combined with condensing, or the sparse codes

FORCES (Domahidi, 2013); qpDUNES5 (Frasch, Sager, and Diehl, 2015);

and HPMPC5 (Frison, 2015). The latter is based on a CPU speci®c ma-

trix storage format that by itself leads to speedups in the range of one

order of magnitude, and which was made available to the public in the

BLASFEO5 library at github.com/giaf/blasfeo.

In Section 8.2 on numerical simulation methods, we have exclu-

sively treated Runge-Kutta methods because they play an important

role within a large variety of numerical optimal control algorithms, such

as shooting, collocation, or pseudospectral methods. Another popular

and important family of integration methods, however, are the linear

multistep methods; in particular, the implicit backward differentiation

formula (BDF)methods arewidely used for simulation and optimization

of large stiff differential algebraic equations (DAEs). For an in-depth

treatment of general numerical simulation methods for ordinary dif-

ferential equations (ODEs) and DAEs, we recommend the textbooks by

Hairer, Nùrsett, and Wanner (1993, 1996); as well as Brenan, Campbell,

and Petzold (1996); Ascher and Petzold (1998).

For derivative generation of numerical simulationmethods, we refer

to the research articles Bauer, Bock, KÈorkel, and SchlÈoder (2000); Pet-

zold, Li, Cao, and Serban (2006); Kristensen, Jùrgensen, Thomsen, and

Jùrgensen (2004); Quirynen, Gros, Houska, andDiehl (2017a); Quirynen,

Houska, and Diehl (2017b); and the Ph.D. theses by Albersmeyer (2010);

Quirynen (2017). A collection of numerical ODE and DAE solvers with

ef®cient derivative computations are implemented in the SUNDIALS5

suite (Hindmarsh, Brown, Grant, Lee, Serban, Shumaker, and Wood-

ward, 2005).

Regarding Section 8.4 on derivatives, we refer to a textbook on al-

gorithmic differentiation (AD) by Griewank and Walther (2008), and

an overview of AD tools at www.autodiff.org. The AD framework

CasADi5 can in its latest form be found at casadi.org, and is de-

scribed in the article Andersson, Akesson, and Diehl (2012); and the

Ph.D. theses by Andersson (2013); Gillis (2015).
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8.12 Exercises

Some of the exercises in this chapter were developed for courses on

numerical optimal control at the University of Freiburg, Germany. The

authors gratefully acknowledge Joel Andersson, Joris Gillis, SÂebastien

Gros, Dimitris Kouzoupis, Jesus Lago Garcia, Rien Quirynen, Andrea

Zanelli, and Mario Zanon for contributions to the formulation of these

exercises; as well as Michael Risbeck, Nishith Patel, Douglas Allan, and

Travis Arnold for testing and writing solution scripts.

Exercise 8.1: Newton's method for root ®nding

In this exercise, we experiment with a full-step Newton method and explore the depen-

dence of the iterates on the problem formulation and the initial guess.

(a) Write a computer program that performs Newton iterations in Rn that takes as

inputs a function F�z�, its Jacobian J�z�, and a starting point z�0� 2 Rn. It

shall output the ®rst 20 full-step Newton iterations. Test your program with

R�z� � z32 � 2 starting ®rst at z�0� � 1 and then at different positive initial

guesses. Howmany iterations do you typically need in order to obtain a solution

that is exact up to machine precision?

(b) An equivalent problem to z32 � 2 � 0 can be obtained by lifting it to a higher

dimensional space (Albersmeyer and Diehl, 2010), as follows

R�z� �

26666666664

z2 � z21
z3 � z22
z4 � z23
z5 � z24
2� z25

37777777775
Use your algorithm to implement Newton's method for this lifted problem and

start it at z�0� � �1 1 1 1 1�0 (note that we use square brackets in the index to

denote the Newton iteration). Compare the convergence of the iterates for the

lifted problem with those of the equivalent unlifted problem from the previous

task, initialized at one.

(c) Consider now the root-®nding problem R�z� � 0 with R : R ! R; R�z� :�
tanh�z�� 1

2 . Convergence of Newton's method is sensitive to the chosen initial

value z0. Plot R�z� and observe the nonlinearity. Implement Newton's method

with full steps for it, and test if it converges or not for different initial values

z�0�.

(d) Regard the problem of ®nding a solution to the nonlinear equation system

2x � ey=4 and 16x4 � 81y4 � 4 in the two variables x;y 2 R. Solve it with

your implementation of Newton's method using different initial guesses. Does

it always converge, and, if it converges, does it always converge to the same

solution?
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Exercise 8.2: Newton-type methods for a boundary-value problem

Regard the scalar discrete time system

x�k� 1� � 1

10

�
11x�k�� x�k�2 �u

�
; k � 0; : : : ;N � 1

with boundary conditions

x�0� � x0 x�N� � 0

We ®x the initial condition to x0 � 0:1 and the horizon length to N � 30. The aim is to

®nd the control value u 2 RÐwhich is kept constant over the whole horizonÐin order

to steer the system to the origin at the ®nal time, i.e., to satisfy the constraint x�N� � 0.

This is a two-point boundary-value problem (BVP). In this exercise, we formulate this

BVP as a root-®nding problem in two different ways: ®rst, with the sequential approach,

i.e., with only the single control as decision variable; and second, with the simultaneous

approach, i.e., with all 31 states plus the control as decision variables.

(a) Formulate and solve the problem with the sequential approach, and solve it with

an exact Newton's method initialized at u � 0. Plot the state trajectories in each

iteration. Also plot the residual values x�N� and the variable u as a function of

the Newton iteration index.

(b) Now formulate and solve the problemwith the simultaneous approach, and solve

it with an exact Newton's method initialized at u � 0 and the corresponding

state sequence that is obtained by forward simulation started at x0. Plot the

state trajectories in each iteration.

Plot again the residual valuesx�N� and the variableu as a function of the Newton

iteration index, and compare with the results that you have obtained with the

sequential approach. Do you observe differences in the convergence speed?

(c) One feature of the simultaneous approach is that its states can be initialized with

any trajectory, even an infeasible one. Initialize the simultaneous approach with

the all-zero trajectory, and again observe the trajectories and the convergence

speed.

(d) Now solve both formulations with a Newton-type method that uses a constant

Jacobian. For both approaches, the constant Jacobian corresponds to the exact

Jacobian at the solution of the same problem for x0 � 0, where all states and the

control are zero. Start with implementing the sequential approach, and initialize

the iterates at u � 0. Again, plot the residual values x�N� and the variable u as

a function of iteration index.

(e) Now implement the simultaneous approach with a ®xed Jacobian approxima-

tion. Again, the Jacobian approximation corresponds to the exact Jacobian at

the solution of the neighboring problem with x0 � 0, i.e., the all zero trajectory.

Start the Newton-type iterations with all states and the control set to zero, and

plot the residual values x�N� and the variable u as a function of iteration index.

Discuss the differences of convergence speed with the sequential approach and

with the exact Newton methods from before.

(f) The performance of the sequential approach can be improved if one introduces

the initial state x�0� as a second decision variable. This allows more freedom

for the initialization, and one can automatically pro®t from tangential solution



8.12 Exercises 583

predictors. Adapt your exact Newton method, initialize the problem in the all-

zero solution and again observe the results.

(g) If u� is the exact solution that is found at the end of the iterations, plot the loga-

rithm of
��u�u��� versus the iteration number for all six numerical experiments

(a)±(f), and compare.

(h) The linear system that needs to be solved in each iteration of the simultaneous

approach is large and sparse. We can use condensing in order to reduce the linear

system to size one. Implement a condensing-based linear system solver that only

uses multiplications and additions, and one division. Compare the iterations

with the full-space linear algebra approach, and discuss the differences in the

iterations, if any.

Exercise 8.3: Convex functions

Determine and explain whether the following functions are convex or not on their

respective domains.

(a) f�x� � c0x � x0A0Ax on Rn

(b) f�x� � �c0x � x0A0Ax on Rn

(c) f�x� � log�c0x�� exp�b0x� on fx 2 Rn j c0x > 0g

(d) f�x� � � log�c0x�� exp�b0x� on fx 2 Rn j c0x > 0g

(e) f�x� � 1=�x1x2� on R2
��

(f) f�x� � x1=x2 on R2
��

Exercise 8.4: Convex sets

Determine and explain whether the following sets are convex or not.

(a) A ball, i.e., a set of the form


 � fx j jx � xcj � rg

(b) A sublevel set of a convex function f : Rn ! R for a constant c 2 R


 � fx 2 R
n j f�x� � cg

(c) A superlevel set of a convex function f : Rn ! R for a constant c 2 R


 � fx 2 R
n j f�x� � cg

(d) The set


 � fx 2 R
n j x0B0Bx � b0xg

(e) The set


 � fx 2 R
n j x0B0Bx � b0xg

(f) A cone, i.e., a set of the form


 � f�x;�� 2 R
n �R j jxj � �g
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(g) A wedge, i.e., a set of the form

fx 2 R
n j a01x � b1; a02x � b2g

(h) A polyhedron

fx 2 R
n j Ax � bg

(i) The set of points closer to one set than another


 � fx 2 R
n j dist�x;S� � dist�x;T �g

where dist�x;S� :� inffjx � zj2 j z 2 Sg.

Exercise 8.5: Finite differences: theory of optimal perturbation size

Assume we have a twice continuously differentiable function f : R ! R and we want

to evaluate its derivative f 0�x0� at x0 with ®nite differences. Further assume that for

all x 2 �x0 � �;x0 � �� holds that��f�x��� � fmax

��f 00�x��� � f 00max

��f 000�x��� � f 000max

We assume � > t for any perturbation size t in the following ®nite difference approx-

imations. Due to ®nite machine precision �mach that leads to truncation errors, the

computed function fe�x� � f�x��1���x�� is perturbed by noise ��x� that satis®es the
bound

j��x�j � �mach

(a) Compute a bound on the error of the forward difference approximation

fe 0fd;t�x0� :� fe�x0 � t�� fe�x0�t

namely, a function  �t;fmax ; f 00max ; �mach� that satis®es����fe 0fd;t�x0�� f 0�x0����� �  �t;fmax ; f
00
max ; �mach�

(b) Which value t� minimizes this bound and which value  � has the bound at t�?

(c) Perform a similar error analysis for the central difference quotient

fe 0cd;t�x0� :� fe�x0 � t�� fe�x0 � t�2t

that is, compute a bound����fe 0fd;t�x0�� f 0�x0����� �  cd�t;fmax ; f
00
max ; f

000
max ; �mach�

(d) For central differences, what is the optimal perturbation size t�cd and what is the

size  �cd of the resulting bound on the error?
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Figure 8.8: A hanging chain at rest. See Exercise 8.6(b).

Exercise 8.6: Finding the equilibrium point of a hanging chain using CasADi

Consider an elastic chain attached to two supports and hanging in-between. Let us

discretize it with N mass points connected by N � 1 springs. Each mass i has position
�yi; zi�; i � 1; : : : ;N.

Our task is to minimize the total potential energy, which is made up by potential

energy in each string and potential energy of each mass according to

J�y1; z1; : : : ; yn; zn� �
1

2

N�1X
i�1

Di
�
�yi �yi�1�2 � �zi � zi�1�2

�
| {z }

spring potential energy

� g0

NX
i�1

mi zi| {z }
gravitational potential energy

(8.63)

subject to constraints modeling the ground.

(a) CasADi is an open-source software tool for solving optimization problems in

general and optimal control problems (OCPs) in particular. In its most typical

usage, it is used to formulate and solve constrained optimization problems of

the form
minimize

x
f�x�

subject to x � x � x
g � g�x� � g

(8.64)

where x 2 Rnx is the decision variable, f : Rnx ! R is the objective function,

and g : Rnx ! R
ng is the constraint function. For equality constraints, the
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upper and lower bounds are equal.

If you have not already done so, go to casadi.org and locate the installation

instructions. On most platforms, installing CasADi amounts to downloading a

binary installation and placing it somewhere in your path. Version 3.3 of CasADi

on Octave/MATLABwas used in this edition, somake sure that you are not using a

version older than this and keep an eye on the text website for incompatibilities

with future versions of CasADi. Locate the CasADi user guide and, with anOctave

orMATLAB interpreter in front of you, read Chapters 1 through 4. These chapters

give you an overview of the scope and syntax of CasADi.

(b) We assume that f is a convex quadratic function and g is a linear function. In

this case we refer to (8.64) as a convex quadratic program (QP). To solve a QP

with CasADi, we construct symbolic expressions for x, f , and g, and use this

to construct a solver object that can be called one or more times with different

values for x, x, g, and g. An initial guess for x can also be provided, but this is

less important for convex QPs, where the solution is unique.

Figure 8.8 shows the solution of the unconstrained problem using the open-

source QP solver qpOASES with N � 40, mi � 40=N kg, Di � 70N N=m, and

g0 � 9:81 m=s2. The ®rst and last mass points are ®xed to ��2;1� and �2;1�,
respectively. Go through the code for the ®gure and make sure you understand

the steps.

(c) Now introduce ground constraints: zi � 0:5 and zi � 0:5�0:1yi, for i � 2; � � � ;
N � 2. Resolve the QP and compare with the unconstrained solution.

(d) We now want to formulate and solve a nonlinear program (NLP). Since an NLP is a

generalization of a QP, we can solve the above problem with an NLP solver. This

can be done by simply changing casadi.qpsol in the script to casadi.nlpsol

and the solver plugin 'qpoases' with 'ipopt', corresponding to the open-

source NLP solver IPOPT. Are the solutions of the NLP and QP solver the same?

(e) Now, replace the linear equalities by nonlinear ones that are given by zi � 0:5�
0:1y2

i for i � 2; � � � ; N � 2. Modify the expressions from before to formulate

and solve the NLP, and visualize the solution. Is the NLP convex?

(f) Now, by modi®cations of the expressions from before, formulate and solve an

NLP where the inequality constraints are replaced by zi � 0:8� 0:05yi � 0:1y2
i

for i � 2; � � � ; N � 2. Is this NLP convex?

Exercise 8.7: Direct single shooting versus direct multiple shooting

Consider the following OCP, corresponding to driving a Van der Pol oscillator to the

origin, on a time horizon with length T � 10
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Figure 8.9: Direct single shooting solution for (8.65) without path

constraints.

minimize
x���;u���

Z T
0
�x1�t�

2 � x2�t�2 �u�t�2�dt

subject to Çx1�t� � �1� x2�t�2�x1�t�� x2�t��u�t�
Çx2�t� � x1�t�
�1 �u�t� � 1; t 2 �0; T �
x1�0� � 0; x1�T� � 0

x2�0� � 1; x2�T� � 0

�0:25 �x1�t�; t 2 �0; T �

(8.65)

We will solve this problem using direct single shooting and direct multiple shooting

using IPOPT as the NLP solver.

(a) Figure 8.9 shows the solution to the above problem using a direct single shooting

approach, without enforcing the constraint �0:25 � x1�t�. Go through the code

for the ®gure step by step. The code begins with a modeling step, where sym-

bolic expressions for the continuous-time model are constructed. Thereafter,

the problem is transformed into discrete time by formulating an object that

integrates the system forward in time using a single step of the RK4 method.

This function also calculates the contribution to the objective function for the

same interval using the same integrator method. In the next part of the code, a
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symbolic representation of the NLP is constructed, starting with empty lists of

variables and constraints. This symbolic representation of the NLP is used to

de®ne an NLP solver object using IPOPT as the underlying solver. Finally, the

solver object is evaluated to obtain the optimal solution.

(b) Modify the code so that the path constraint on x1�t� is being respected. You

only need to enforce this constraint at the end of each control interval. This

should result in additional components to the NLP constraint function G�w�,
which will now have upper and lower bounds similar to the decision variable w.

Resolve the modi®ed problem and compare the solution.

(c) Modify the code to implement the direct multiple-shooting method instead of

direct single shooting. This means introducing decision variables corresponding

to not only the control trajectory, but also the state trajectory. The added deci-

sion variables will be matched with an equal number of new equality constraints,

enforcing that the NLP solution corresponds to a continuous state trajectory.

The initial and terminal conditions on the state can be formulated as upper and

lower bounds on the corresponding elements of w. Use x�t� � 0 as the initial

guess for the state trajectory.

(d) Compare the IPOPT output for both transcriptions. How did the change from

direct single shooting to direct multiple shooting in¯uence

• The number of iterations?

• The number of nonzeros in the Jacobian of the constraints?

• The number of nonzeros in the Hessian of the Lagrangian?

(e) Generalize the RK4 method so that it takesM � 4 steps instead of just one. This

corresponds to a higher-accuracy integration of the model dynamics. Approxi-

mately how much smaller discretization error can we expect from this change?

(f) Replace the RK4 integrator with the variable-order, variable-step size code

CVODES from the SUNDIALS suite, available as the 'cvodes' plugin for

casadi.integrator. Use 10�8 for the relative and absolute tolerances. Consult

CasADi's user guide for syntax. What are the advantages and disadvantages of

using this integrator over the ®xed-step RK4 method used until now?

Exercise 8.8: Direct collocation

Collocation, in its most basic sense, refers to a way of solving initial-value problems

by approximating the state trajectory with piecewise polynomials. For each step of the

integrator, corresponding to an interval of time, we choose the coef®cients of these

polynomials to ensure that the ODE becomes exactly satis®ed at a given set of time

points. In the following, we choose the Gauss-Legendre collocation integrator of sixth

order, which has d � 3 collocation points. Together with the point 0 at the start of the

interval �0;1�, we have four time points to de®ne the collocation polynomial

�0 � 0 �1 � 1=2�
p
15=10 �2 � 1=2 �3 � 1=2�

p
15=10

Using these time points, we de®ne the corresponding Lagrange polynomials

Lj��� �
dY

r�0; r 6�j

� � �r
�j � �r
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Introducing a uniform time grid tk � kh, k � 0; : : : ;N, with the corresponding state

values xk :� x�tk�, we can approximate the state trajectory inside each interval �tk;
tk�1� as a linear combination of these basis functions

xek�t� � dX
r�0

Lr

�
t � tk
h

�
xk;r

By differentiation, we get an approximation of the time derivative at each collocation

point for j � 1; : : : ;3

Çxek�tk;j� � 1

h

dX
r�0

ÇLr ��j�xk;r :� 1

h

dX
r�0

Cr ;j xk;r

We also can get an expression for the state at the end of the interval

xek�1;0 � dX
r�0

Lr �1�xk;r :�
dX

r�0

Dr xk;r

Finally, we also can integrate our approximation over the interval, giving a formula for

quadratures Z tk�1
tk

xek�t�dt � h dX
r�0

Z 1

0
Lr ���d� xk;r :� h

dX
r�1

br xk;r

(a) Figure 8.10 shows an open-loop simulation for the ODE in (8.65) using Gauss-

Legendre collocation of order 2, 4, and 6. A constant control u�t� � 0:5 was

applied and the initial conditions were given by x�0� � �0;1�0. The ®gure on

the left shows the ®rst state x1�t� for the three methods as well as a high-

accuracy solution obtained from CVODES, which uses a backward differentia-

tion formula (BDF) method. In the ®gure on the right we see the discretization

error, as compared with CVODES. Go through the code for the ®gure and make

sure you understand it. Using this script as a template, replace the integrator

in the direct multiple-shooting method from Exercise 8.7 with this collocation

integrator. Make sure that you obtain the same solution. The structure of the

NLP should remain unchangedÐyou are still implementing the direct multiple-

shooting approach, only with a different integrator method.

(b) In the NLP transcription step, replace the embedded function call with additional

degrees of freedom corresponding to the state at all the collocation points. En-

force the collocation equations at the NLP level instead of the integrator level.

Enforce upper and lower bounds on the state at all collocation points. Compare

the solution time and number of nonzeros in the Jacobian and Hessian matrices

with the direct multiple-shooting method.

Exercise 8.9: Gauss-Newton SQP iterations for optimal control

Consider a nonlinear pendulum de®ned by

Çx�t� � f�x�t�;u�t�� �
"

v�t�
�C sin�p�t�=C�

#
�
"
0

1

#
u�t�

with state x � �p;v�0 and C :� 180=�=10, to solve an OCP using a direct multiple-

shooting method and a self-written sequential quadratic programming (SQP) solver

with a Gauss-Newton Hessian.
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Figure 8.10: Open-loop simulation for (8.65) using collocation.

(a) Starting with the pendulum at Åx0 � �10 0�0, we aim to minimize the required

controls to bring the pendulum to xN � �0 0�0 in a time horizon T � 10 s.

Regarding bounds on p, v , and u, namely pmax � 10, vmax � 10, and umax � 3,

the required controls can be obtained as the solution of the following OCP

minimize
x0;u0;x1;:::;
uN�1;xN

1

2

N�1X
k�0

��uk��22
subject to Åx0 � x0 � 0

��xk; uk�� xk�1 � 0; k � 0; : : : ;N � 1

xN � 0

� xmax � xk � xmax ; k � 0; : : : ;N � 1

�umax � uk � umax ; k � 0; : : : ;N � 1

Formulate the discrete dynamics xk�1 � ��xk; uk� using a RK4 integrator with

a time step �t � 0:2 s. Encapsulate the code in a single CasADi function of the

form of a CasADi function object as in Exercise 8.7. Simulate the system forward

in time and plot the result.

(b) Usingw � �x0; u0; : : : ; uN�1; xN� as the NLP decision variable, we can formulate

the equality constraint function G�w�, the least squares functionM�w�, and the
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bounds vector wmax so that the above OCP can be written

minimize
w

1

2
jM�w�j22

subject to G�w� � 0

�wmax � w � wmax

The SQP method with Gauss-Newton Hessian solves a linearized version of this

problem in each iteration. More speci®cally, if the current iterate is Åw, the next

iterate is given by Åw ��w, where �w is the solution of the following QP

minimize
�w

1

2
�w0JM� Åw�

0JM� Åw��w �M� Åw�0JM� Åw��w

subject to G� Åw�� JG� Åw��w � 0

�wmax � Åw � �w � wmax � Åw

(8.66)

In order to implement the Gauss-Newton method, we need the Jacobians

JG�w� � @G
@w �w� and JM�w� � @M

@w �w�, both of which can be ef®ciently obtained

using CasADi's jacobian command. In this case the Gauss-Newton Hessian

H � JM� Åw�0JM� Åw� can readily be obtained by pen and paper. De®ne what Hx
and Hu need to be in the Hessian

H �

2666664
Hx

Hu
. . .

Hx

3777775 Hx �
" #

Hu �
h i

(c) Figure 8.11 shows the control trajectory after 0, 1, 2, and 6 iterations of the

Gauss-Newton method applied to a direct multiple-shooting transcription of

(8.65). Go through the code for the ®gure step by step. You should recog-

nize much of the code from the solution to Exercise 8.7. The code represents a

simpli®ed, yet ef®cient way of using CasADi to solve OCPs.

Modify the code to solve the pendulum problem. Note that the sparsity patterns

of the linear and quadratic terms of the QP are printed out at the beginning of

the execution. JG�w� is a block sparse matrix with blocks being either identity

matrices I or partial derivatives Ak � @�
@x �xk; uk� and Bk � @�

@u �xk; uk�.

Initialize the Gauss-Newton procedure at w � 0, and stop the iterations when��wk�1 �wk

�� gets smaller than 10�4. Plot the iterates as well as the vector G
during the iterations. How many iterations do you need?
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Figure 8.11: Gauss-Newton iterations for a direct multiple-shooting

transcription of (8.65); u�t� after 0, 1, 2, and 6 Gauss-

Newton iterations.

Exercise 8.10: Real-time iterations and nonlinear MPC

We return to the OCP from Exercise 8.9

minimize
x0;u0;x1;:::;
uN�1;xN

1

2

N�1X
k�0

��uk��22
subject to Åx0 � x0 � 0

��xk; uk�� xk�1 � 0; k � 0; : : : ;N � 1

xN � 0

�xmax � xk � xmax ; k � 0; : : : ;N � 1

�umax � uk � umax ; k � 0; : : : ;N � 1

In this problem, we regard Åx0 as a parameter and modify the simultaneous Gauss-

Newton algorithm from Exercise 8.9. In particular, we modify this algorithm to per-

form real-time iterations for different values of Åx0, so that we can use the algorithm

to perform closed-loop nonlinear MPC simulations for stabilization of the nonlinear

pendulum.

(a) Modify the function sqpstep from the solution of Exercise 8.9 so that it accepts

the parameter Åx0. You would need to update the upper and lower bounds on w
accordingly. Test it and make sure that it works.
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(b) In order to visualize the generalized tangential predictor, call the sqpstep

method with different values for Åx0 while resetting the variable vector Åw to its

initial value (zero) between each call. Use a linear interpolation for Åx0 with 100

points between zero and the value �10;0�0, i.e., set Åx0 � ��10 0�0 for � 2 �0;1�.
Plot the ®rst control u0 as a function of � and keep your plot.

(c) To compute the exact solution manifold with relatively high accuracy, perform

now the same procedure for the same 100 increasing values of �, but this time

perform for each value of � multiple Gauss-Newton iterations, i.e., replace each

call to sqpstep with, e.g., 10 calls without changing Åx0. Plot the obtained values

for u0 and compare with the tangential predictor from the previous task by

plotting them in the same plot.

(d) In order to see how the real-time iterations work in a more realistic setting, let

the values of � jump faster from 0 to 1, e.g., by doing only 10 steps, and plot the

result again into the same plot.

(e) Modify the previous algorithm as follows: after each change of � by 0.1, keep it

constant for nine iterations, before you do the next jump. This results in about

100 consecutive real-time iterations. Interpret what you see.

(f) Nowwe do the ®rst closed-loop simulation: set the value of Åx
�1�
0 to �10 0�0 and ini-

tializew�0� at zero, and perform the ®rst real-time iteration by calling sqpstep.

This iteration yields the new solution guessw�1� and corresponding controlu
�1�
0 .

Use this control at the ªreal plant,º i.e., generate the next value of Åx0, which we

denote Åx
�2�
0 , by calling the one-step simulation function, Åx

�2�
0 :� ��Åx

�1�
0 ; u

�1�
0 �.

Close the loop by calling sqpstep using w�1� and Åx
�2�
0 , etc., and perform 100

iterations. For better observation, plot after each real-time iteration the control

and state variables on the whole prediction horizon. (It is interesting to note

that the state trajectory is not necessarily feasible).

Also observe what happens with the states Åx0 during the scenario, and plot

them in another plot against the time index. Do they converge, and if yes, to

what value?

(g) Now we make the control problem more dif®cult by treating the pendulum in an

upright position, which is unstable. This is simply done by changing the sign in

front of the sine in the differential equation, i.e., our model is now

f�x�t�;u�t�� �
"

v�t�
C sin�p�t�=C�

#
�
"
0

1

#
u�t� (8.67)

Start your real-time iterations again at w�0� � 0 and set Åx
�1�
0 to �10 0�0, and

perform the same closed-loop simulation as before. Explain what happens.

Exercise 8.11: CIA norm and MILP

One of the heuristics discussed in Section 8.10 for approximating the solution ofmixed-

integer nonlinear optimal control problems is the combinatorial integral approximation
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(CIA) (Sager et al., 2011). The CIA step solves the following optimization problem

min
ub

max
j 2 I1:nb
k 2 I0:N�1

������
kX
i�0

ub;j�i��u�b;j�i�
������

in which ub is the discrete control sequence that approximates u�b , the real-valued

solution of a nonlinear program in the heuristic. Additional constraints can be included

in this optimization such as rate-of-change constraints, dwell-time constraints, etc.

Consider the standard form of a mixed-integer linear program (MILP)

min
x;y

c0x � d0y

subject to

Ax � Ey � b
y 2 B

s

with real x 2 Rq and b 2 Rr , and binary y 2 Bs . State the CIA step in the standard

form of an MILP, i.e., give the MILP variables x;y; c; d;A; E; b; q; r ; s for solving the CIA
step.
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matrix, 23

weak, 116

Controllable, 23

Converse theorem

asymptotic stability, 705

exponential stability, 374, 725

Convex, 646

cone, 644

function, 488, 583, 646

hull, 641

optimization problem, 487, 741

optimality condition, 453

set, 338, 583, 641

Cooperative control, 363, 386

algorithm, 422

distributed nonlinear, 419

Correlation, 668

Cost function, 11, 95, 369

DAE, 505

semiexplicit DAE of index one, 506

Damping, 514

DARE, 25, 69, 136

DDP, 564

exact Hessian, 565

Gauss-Newton Hessian, 565

Decentralized control, 363, 377

Decreasing, see Sequence

Derivatives, 636

Detectability, 50, 120, 275, 319, 321,

322, 719

duality with stabilizability, 291

exponential, 285

Detectable, 26, 68, 72, 73, 325

Determinant, 27, 628, 659, 666

Deterministic problem, 91

Difference equation, 5

linear, 5
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nonlinear, 93, 237

uncertain systems, 203, 211

Difference inclusion, 203, 711

asymptotic stability, 150

discontinuous systems, 206

uncertain systems, 203

Differential algebraic equation, see

DAE

Differential dynamic programming,

see DDP

Differential equation, 91

Differential equations, 648

Differential states, 506

Differentiation

algorithmic, 516

numerical, 515

symbolic, 514

Direct collocation, 540, 588

Direct methods, 493

Direct multiple shooting, 534, 586,

589

Direct single shooting, 532, 586

Direct transcription methods, 538

Directional derivatives, 639

forward, 518

reverse, 518

Discrete actuators, 8, 160

Discrete algebraic Riccati equation,

see DARE

Discretization, 531

Dissipativity, see Economic MPC

Distance

Hausdorff, set to set, 224, 339

point to set, 207, 208, 224

Distributed

gradient algorithm, 417

nonconvex optimization, 417

nonlinear cooperative control,

419

stability, 422

optimization, 427

state estimation, 399

target problem, 410

Distributed MPC, 363

disturbance models, 409

nonlinear, 415, 422

state estimation, 399

target problem, 410

zero offset, 412

Disturbances, 49

additive, 193, 224, 228

bounded, 336

integrating, 50

measurement, 269

process, 269

random, 198

stability, 712

Dot quantities, 518

DP, 14, 107, 195, 364, 367, 469, 729

backward, 14, 18

forward, 14, 33, 296

robust control, 214

Dual dynamic system, 677

Duality

of linear estimation and regula-

tion, 290

strong, 184, 769

weak, 184, 769

Dynamic programming, see DP

Economic MPC, 153

asymptotic average performance,

155

asymptotic stability, 156

comparison with tracking MPC,

158

dissipativity, 156

strict dissipativity, 157, 160

EKF, 302±304

END, 525

Epigraph, 647

Equilibrium point, 694

Estimation, 26, 269, 349

convergence, 43

distributed, 399

duality with regulation, 290

full information, see FIE

least squares, 33
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linear optimal, 29

moving horizon, see MHE

stability, 288

Euler integration method, 494, 497

Expectation, 655

Explicit MPC, 445

Exponential stability, see Stability

Extended Kalman ®lter, see EKF

External numerical differentiation,

see END

Farkas's lemma, 453

Feasibility

recursive, 112, 132, 356

Feasible set, 487

Feedback control, 49, 195, 340

Feedback MPC, 200

Feedback particle ®ltering, 302

Feedforward control, 341

FIE, 269

Final-state observability, see FSO

Finite horizon, 21, 89

Floating point operation, see FLOP

FLOP, 367, 508, 560, 561

Forward mode, see AD

Fritz-John necessary conditions, 753

FSO, 294

Full information estimation, see FIE

Fundamental theorem of linear alge-

bra, 23, 42, 625

existence, 23, 625

uniqueness, 42, 625

Game

M-player game, 413

constrained two-player, 400

cooperative, 386

noncooperative, 378

theory, 426

two-player nonconvex, 419

unconstrained two-player, 374

GAS, 112, 408, 433, 698

Gauss divergence theorem, 61

Gauss-Jacobi iteration, 380

Gauss-Legendre methods, see GL

Gauss-Newton Hessian, 548, 589

Gaussian distribution, see Normal

density

Gaussian elimination, 508

Generalized Gauss-Newton method,

549

Generalized predictive control, see

GPC

Generalized tangential predictors,

552, 570

GES, 698

GL, 505

Global error, 496

Global solutions, 741

Globalization techniques, 514

Globally asymptotically stable, see

GAS

Globally exponentially stable, see

GES

GPC, 167

Gramian

observability, 684

reachability, 683

Hamilton-Jacobi-Bellman equation,

see HJB

Hausdorff metric, seeDistance Haus-

dorff

Hautus lemma

controllability, 24

detectability, 72, 437, 441

observability, 42

stabilizability, 68

Hessian approximations, 547

BFGS, 550

Gauss-Newton, 548

secant condition, 550

update methods, 549

HJB, 493

Hurwitz matrix, 220, 706

Hyperplane, 472, 642, 643

support, 644

Hyperstate, 194, 333, 334
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i-IOSS, 275, 285, 321, 323, 722

Implicit integrators, 500

Increasing, see Sequence

Incrementally, uniformly

input/output-to-state-stable,

see i-UIOSS

IND, 526

Independent, see Random variable

Indirect methods, 493

In®nite horizon, 21, 89

Initial-value embedding, 534

Initial-value problem, 495

Innovation, 194, 305, 334

Input-to-state-stability, see ISS

Input/output-to-state-stability, see

IOSS

Integral control, see Offset-free con-

trol

Interior point methods, see IP

Internal model principle, 49

Internal numerical differentiation,

see IND

Invariance

control, 110

positive, 110, 339, 694, 712

robust control, 217

robust positive, 212, 217, 313,

339, 350

sequential control, 125

sequential positive, 125, 707

IOSS, 121, 322, 323, 721

IP, 552, 580

IPOPT, 528, 554, 580

ISS, 718

i-UIOSS, 312, 325

K functions, 112, 275, 285, 694

upper bounding, 709

K1 functions, 112, 694

KL functions, 112, 275, 285, 694

Kalman ®lter, see KF

Karush-Khun-Tucker conditions, see

KKT

KF, 26, 33, 43, 51, 78, 79, 334

extended, 306±311

unscented, 304±311

KKT, 543, 755

matrix, 546

strongly regular, 545

L-stable integration methods, 505

Lagrange basis polynomials, 503

Lagrange multipliers, 66, 67, 365,

369, 430

Laplace transform, 3

LAR, 179, 475±476

LDLT-factorization, 508

plain banded, 560

Least squares estimation, see Estima-

tion

Leibniz formula, 61

Level set, 16, 137, 648

LICQ, 543, 755

Limit, see Sequence

Line search, 417, 514

Linear

MPC, 131±139, 488

quadratic MPC, 11, 99, 461±470

space, 624

subspace, 624

system, 27, 131±139

Linear absolute regulator, see LAR

Linear independence constraint

quali®cation, see LICQ

Linear multistep methods, 580

Linear optimal state estimation, see

KF

Linear program, see LP

Linear quadratic Gaussian, see LQG

Linear quadratic problems, see LQP

Linear quadratic regulator, see LQR

Lipschitz continuous, 374, 407, 461,

495, 637, 761, 766

Local error, 496

Local solutions, 489, 741

Look-up table, 90

LP, 448, 451

parametric, 470
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LQG, 194, 335

LQP, 429, 430, 558

condensing, 560

Riccati recursion, 558

LQR, 11, 24, 364, 429, 430, 565, 736

constrained, 461±470

convergence, 24

DP solution for constrained, 469

in®nite horizon, 21

unconstrained, 132

LU-factorization, 508

Luenberger observer, 338

Lyapunov equation, 137, 706

Lyapunov function, 113, 701

control, see CLF

global, 208

IOSS, 721

ISS, 314, 718

local, 239

OSS, 720

Lyapunov stability, 370, 432

uniform, 371

Lyapunov stability constraint, 405

Lyapunov stability theorem, 113,

700

KL version, 703

M-player game

constrained, 413

MATLAB, 22, 64, 65, 68, 508, 528

Mean value theorem, 638

Merit function, 514

MHE, 39, 292

as conditional density, 40

as least squares, 40

combining with MPC, 312

comparison with EKF and UKF,

306

convergence, 296

existence, 293

nonzero prior weighting, 296

zero prior weighting, 293

MILP, 575, 594

Min-max optimal control, 214

Minimum theorem, 760

Minkowski set subtraction, see Set al-

gebra

MINLP, 575

MIQP, 575

Mixed continuous/discrete actua-

tors, 162

Mixed-integer optimization, 161

Models, 1

continuous time, 492

deterministic, 2, 9

discrete time, 5, 486

distributed, 4

disturbance, 49, 409

input-output, 3

linear dynamic, 2

stochastic, 9

time-invariant, 2, 10

time-varying, 2

Monotonicity, 118, 435

Monte Carlo optimization, 223

Move blocking, 568

Moving horizon estimation, see MHE

MPCTools, vi, xi

Multipliers, 543

Multistage optimization, 12

Nash equilibrium, 382±386

Newton-Lagrange method, 546

Newton-Raphson method, 509

Newton-type methods, 507, 510

local convergence, 511

Newton-type optimization with in-

equalities, 550

NLP, 534, 542

Noise, 10

Gaussian, 287

measurement, 10, 26, 269

process, 26, 269

Nominal stability, see Stability

Nonconvex

optimization problem, 487

Nonconvex optimization problem,

745
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Nonconvexity, 166, 416

Noncooperative control, 363, 378

Nonlinear

MPC, 139±144, 488

Nonlinear interior point methods,

see IP

Nonlinear optimization, 542

Nonlinear program, see NLP

Nonlinear root-®nding problems,

508

Norm, 631, 690, 696, 717

Normal cone, see Cone

Normal density, 27, 656

conditional, 28, 674, 675

degenerate, 661

Fourier transform of, 658

linear transformation, 28, 75

multivariate, 659

singular, 661

Normal distribution, seeNormal den-

sity

Nullspace, 53, 624

Numerical differentiation, 515

forward difference, 515

Numerical integration, 495

Numerical optimal control, 485

Observability, 41, 293, 722

canonical form, 72

duality with controllability, 291

Gramian, 684

matrix, 42

Observable, 41, 293

OCP, 490, 585, 586, 589, 592, 731

continuous time, 492

discrete time, 486, 555

Octave, 22, 64, 65, 68, 528

ODE, 495±507, 528

Offset-free control, 48±59

Offset-free MPC, 347

One-step integration methods, 497

Online optimization algorithms, 567

Open-loop control, 195

Optimal control problem, see OCP

Optimality conditions, 543, 737

convex program, 453

KKT, 543

linear inequalities, 744

nonconvex problems, 752

normal cone, 742

parametric LP, 472

tangent cone, 743

Ordinary differential equation, see

ODE

OSS, 321, 323, 719

Outer-bounding tube, see Tube

Output MPC, 312±318, 333

stability, 314, 345

Output-to-state-stability, see OSS

Parameter, 97, 446

Parametric optimization, 97

Parametric programming, 97, 446

computation, 476

continuity of V 0��� and u0���, 460
linear, 470, 472, 473

piecewise quadratic, 463

quadratic, 451, 456, 458

Partial condensing, 562

Partial separability, 556

Particle ®ltering, 302

feedback, 302

Partitioned matrix inversion theo-

rem, 16, 65, 628

Peano's existence theorem, 651

Picard-LindelÈof theorem, 495

PID control, 49, 84

Pivoting, 508

Plantwide control, 363, 410, 419

optimal, 376, 421

subsystems, 364, 374, 415

Polyhedral, 446, 447, 450, 743, 761

Polytope, 203, 450, 461, 462, 464±

466, 468, 761, 765, 766

Pontryagin set subtraction, see Set al-

gebra

Positive de®nite, 121, 629, 695

Positive semide®nite, 121, 629
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Principle of optimality, 734

Probability

conditional density, 27, 672

density, 27, 654

distribution, 27, 654

marginal density, 27, 659

moments, 655

multivariate density, 27, 659

noninvertible transformations,

666

Projection, 97, 111, 447, 731, 756,

763, 765, 767

Proportional-integral-derivative, see

PID control

Pseudo-inverse, 625

Pseudospectral method, 541

Python, 528

Q-convergence

q-linearly, 511

q-quadratically, 511

q-superlinearly, 511

Q-function, 279, 281±283

QP, 100, 364, 437, 449, 451, 547

parametric, 451

parametric piecewise, 463

Quadratic

piecewise, 104, 450, 452, 458, 463,

464, 468, 761

Quadratic program, see QP

Quadrature state, 532

Radau IIA collocation methods, 505,

540

Random variable, 654

independent, 27

Range, 624

RAS, 229, 313

Reachability Gramian, 683

Real-time iterations, 573

Receding horizon control, see RHC

Recursive feasibility, see Feasibility

Recursive least squares, 38, 75

Reduced Hessian, 547

Region of attraction, see Attraction

Regularization, 206±209

Regulation, 89, 350

combining with MHE, 312

duality with estimation, 290

Relative gain array, see RGA

Reverse mode, see AD

RGA, 385

RGAS, 207, 272, 710

convolution maximization form,

273

RGES, 285

RHC, 108, 109, 135, 163, 217

Riccati equation, 20, 68, 69, 72, 136,

291, 369

Riccati recursion, 558

RK, 498

classical (RK4), 497

explicit, 496

implicit, 501

Robust min-max MPC, 220

Robust MPC, 193, 200

min-max, 220

tube-based, 223

Robustly asymptotically stable, see

RAS

Robustly globally asymptotically sta-

ble, see RGAS

Robustly globally exponentially sta-

ble, see RGES

Robustness

inherent, 204

nominal, 204, 709

of nominal MPC, 209

Runge-Kutta method, see RK

Scenario optimization, 254

Schur decomposition, 629

real, 401, 630

Semicontinuity

inner, 757

outer, 757

Sequence, 632

accumulation point, 632, 759
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convergence, 632

limit, 632, 679, 680, 759

monotone, 632

nondecreasing, 44

nonincreasing, 25

subsequence, 632

Sequential optimal control, 491, 562

plain dense, 563

sparsity-exploiting, 563

Sequential quadratic programming,

see SQP

Set

af®ne, 632

algebra, 224

boundary, 631

bounded, 631

closed, 631

compact, 631

complement, 631

interior, 631

level, 16, 137

open, 631

quasiregular, 751

regular, 749

relative interior, 632

sublevel, 137

Set-valued function, 99, 472, 755±

757

Setpoint

nonzero, 46, 349

Shift initialization, 571

Short horizon syndrome, 311

Sigma points, 305

Simultaneous optimal control, 490

Singular-value decomposition, see

SVD

Space

linear, 624

vector, 624

Sparsity, 491

SQP, 551, 589

feasibility perturbed, 566

local convergence, 552

Stability, 112

asymptotic, 112, 423, 698

constrained, 699

exponential, 120, 698

global, 112, 698

global asymptotic, 112, 126, 408,

433, 698

global asymptotic (KL version),

699

global attractive, 112

global exponential, 120, 698

inherent, 91

local, 112, 698

nominal, 91

robust asymptotic, see RAS

robust exponential, 235

robust global asymptotic, see

RGAS

time-varying systems, 125

with disturbances, 712

Stabilizability, 68, 120

duality with detectability, 291

Stabilizable, 26, 46, 68, 73, 136, 140,

714

Stage cost, 18, 153

economic, 153

State estimation, see Estimation

Statistical independence, 668

Steady-state target, 48, 352

distributed, 410

Stiff equations, 500

Stochastic MPC, 193, 200, 246

stabilizing conditions, 248

tightened constraints, 253

tube-based, 250

Storage function, 156

Strong duality, see Duality

Subgradient, 640

convex function, 762

Sublevel set, 137, 648

Suboptimal MPC, 147, 369

asymptotic stability, 151

distributed, 369

exponential stability, 372

Subspace
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linear, 624

Supply rate, 156

Support function, 648

SVD, 627

System

composite, 343, 345

deterministic, 9, 196, 333

discontinuous, 206

linear, 2, 133, 224, 228, 338

noisy, 269

nominal, 238

nonlinear, 2, 93, 123, 139, 236

periodic, 133

time-invariant, 3, 5, 10, 93, 338

time-varying, 2, 123, 141, 347, 437

uncertain, 193, 195, 196, 333, 334,

338

Tangent cone, see Cone

Taylor series, 3, 64

Taylor's theorem, 143

Terminal constraint, see Constraints

Terminal region, 93

Time to go, 108, 109, 196, 217, 469

Trace, 74, 681

Tracking, 46

periodic target, 142

Transfer function, 4, 6, 179, 383

Trust region, 514

Tube, 202, 335

bounding, 226

outer-bounding, 224

Tube-based robust MPC, 223

feedback controller, 228

improved, 234

linear systems, 228

model predictive controller, 238

nominal controller, 228

nominal trajectory, 238

nonlinear systems, 236

tightened constraints, 230, 242

Two-player game

constrained, 400

coupled input constraints, 405

unconstrained, 374

uncoupled input constraints, 402

UKF, 304±306

Uncertainty, 193

parametric, 194

Uncontrollable, 22

Unit ball, 631

Unscented Kalman ®lter, see UKF

Value function, 13, 92, 204, 240

continuity, 104, 208, 759

discontinuity, 104

Lipschitz continuity, 760

Variable

controlled, 47

disturbance, 49

dual, 543

input, 2

output, 2

primal, 543

random, 27, 654

independent, 27, 654

state, 2

Vertex, 471

Warm start, 148, 183, 221, 370, 391,

404, 413, 433, 555

shift initialization, 571

Weak controllability, see Controlla-

bility

Weak duality, see Duality

Weierstrass theorem, 97, 98, 294,

372, 636

Z-transform, 5
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A.1 Introduction

In this appendix we give a brief review of some concepts that we need.

It is assumed that the reader has had at least a ®rst course on lin-

ear systems and has some familiarity with linear algebra and analy-

sis. The appendices of Polak (1997); Nocedal and Wright (2006); Boyd

and Vandenberghe (2004) provide useful summaries of the results we

require. The material presented in Sections A.2±A.14 follows closely

Polak (1997) and earlier lecture notes of Professor Polak.

A.2 Vector Spaces

The Euclidean space Rn is an example of a vector space that satis®es a

set of axioms the most signi®cant being: if x and z are two elements

of a vector space V , then �x � �z is also an element of V for all �;

� 2 R. This de®nition presumes addition of two elements of V and

multiplication of any element of V by a scalar are de®ned. Similarly,

S � V is a linear subspace1 of V if any two elements of x and z of S

satisfy �x��z 2 S for all �;� 2 R. Thus, in R3, the origin, a line or a

plane passing through the origin, the whole set R3, and even the empty

set are all subspaces.

A.3 Range and Nullspace of Matrices

Suppose A 2 Rm�n. Then R�A�, the range of A, is the set fAx j x 2
Rng; R�A� is a subspace of Rm and its dimension, i.e., the number

of linearly independent vectors that span R�A�, is the rank of A. For

1All of the subspaces used in this text are linear subspaces, so we often omit the

adjective linear.

624



A.4 Linear Equations Ð Existence and Uniqueness 625

example, if A is the column vector
h
1
1

i
, then R�A� is the subspace

spanned by the vector
h
1
1

i
and the rank of A is 1. The nullspaceN �A�

is the set of vectors in Rn that are mapped to zero byA so thatN �A� �
fx j Ax � 0g. The nullspace N �A� is a subspace of Rn. For the

example above, N �A� is the subspace spanned by the vector
h

1
�1

i
. It

is an important fact that R�A0� � N �A� � Rn or, equivalently, that

N �A� � �R�A0��? where A0 2 Rn�m is the transpose of A and S?

denotes the orthogonal complement of any subspace S; a consequence

is that the sum of the dimensions R�A� andN �A� is n. If A is square

and invertible, then n � m and the dimension of R�A� is n so that

the dimension ofN �A� is 0, i.e., the nullspace contains only the zero

vector,N �A� � f0g.

A.4 Linear Equations Ð Existence and Uniqueness

Let A 2 Rm�n be a real-valued matrix withm rows and n columns. We

are often interested in solving linear equations of the type

Ax � b

in which b 2 Rm is given, and x 2 Rn is the unknown. The fundamen-

tal theorem of linear algebra gives a complete characterization of the

existence and uniqueness of solutions to Ax � b (Strang, 1980, pp.87±

88). Every matrix A decomposes the spaces Rn and Rm into the four

fundamental subspaces depicted in Figure A.1. A solution to Ax � b
exists for every b if and only if the rows ofA are linearly independent. A

solution to Ax � b is unique if and only if the columns of A are linearly

independent.

A.5 Pseudo-Inverse

The solution of Ax � y when A is invertible is x � A�1y where A�1 is

the inverse of A. Often an approximate inverse of y � Ax is required

when A is not invertible. This is yielded by the pseudo-inverse Ay of A;

if A 2 Rm�n, then Ay 2 Rn�m. The properties of the pseudo-inverse

are illustrated in Figure A.2 for the case when A 2 R2�2 where both

R�A� and N �A� have dimension 1. Suppose we require a solution to

the equation Ax � y . Since every x 2 R2 is mapped into R�A�, we
see that a solution may only be obtained if y 2 R�A�. Suppose this is
not the case, as in Figure A.2. Then the closest point, in the Euclidean

sense, to y inR�A� is the point y� which is the orthogonal projection
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N �A�
n� r

N �A0�
m� r

R�A�R�A0�

r r

A0 A

RmRn

Ax � b

0 0

Figure A.1: The four fundamental subspaces of matrix A (after

(Strang, 1980, p.88)). The dimension of the range of

A and A0 is r , the rank of matrix A. The nullspace of A

and range of A0 are orthogonal as are the nullspace of A0

and range of A. Solutions to Ax � b exist for all b if and

only ifm � r (rows independent). A solution to Ax � b
is unique if and only if n � r (columns independent).

of y onto R�A�, i.e., y �y� is orthogonal to R�A�. Since y� 2 R�A�,
there exists a point in R2 that A maps into y�. Now A maps any point

of the form x � h where h 2 N �A� into A�x � h� � Ax � Ah � Ax
so that there must exist a point x� 2 �N �A��? � R�A0� such that

Ax� � y�, as shown in Figure A.2. All points of the form x � x� � h
where h 2 N �A� are also mapped into y�; x� is the point of least

norm that satis®es Ax� � y� where y� is that point in R�A� closest,
in the Euclidean sense, to y .

The pseudo-inverse Ay of a matrix A 2 Rm�n is a matrix in Rn�m

that maps every y 2 Rm to that point x 2 R�A0� of least Euclidean
norm that minimizes

��y �Ax��2. The operation of Ay is illustrated in
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x�

x y

y�

R�A�N �A�

A

A

R�A0�

Figure A.2: Matrix A maps into R�A�.

Figure A.3. Hence AAy projects any point y 2 Rm orthogonally onto

R�A�, i.e., AAyy � y�, and AyA projects any x 2 Rn orthogonally

onto R�A0�, i.e., AyAx � x�.

x�

x y

y�

N �A�

R�A0�

R�A�

Ay

Ay

Figure A.3: Pseudo-inverse of A maps into R�A0�.

If A 2 Rm�n wherem < n has maximal rankm, then AA0 2 Rm�m

is invertible and Ay � A0�AA0��1; in this case, R�A� � Rm and every

y 2 Rm lies in R�A�. Similarly, if n < m and A has maximal rank

n, then A0A 2 Rn�n is invertible and Ay � �A0A��1A0; in this case,

R�A0� � Rn and every x 2 Rn lies in R�A0�. More generally, if A 2
Rm�n has rank r , then A has the singular-value decomposition A �
U�V 0 where U 2 Rm�r and V 2 Rr�n are orthogonal matrices, i.e.,

U 0U � Ir and V 0V � Ir , and � � diag��1; �2; : : : ; �r � 2 Rr�r where

�1 > �2 > � � � > �r > 0. The pseudo-inverse of A is then

Ay � V��1U 0
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A.6 Partitioned Matrix Inversion Theorem

Let matrix Z be partitioned into

Z �
"
B C

D E

#

and assume Z�1; B�1 and E�1 exist. Performing row elimination gives

Z�1 �
"
B�1 � B�1C�E �DB�1C��1DB�1 �B�1C�E �DB�1C��1

��E �DB�1C��1DB�1 �E �DB�1C��1
#

Note that this result is still valid if E is singular. Performing column

elimination gives

Z�1 �
"

�B � CE�1D��1 ��B � CE�1D��1CE�1
�E�1D�B � CE�1D��1 E�1 � E�1D�B � CE�1D��1CE�1

#

Note that this result is still valid if B is singular. A host of other useful

control-related inversion formulas follow from these results. Equating

the (1,1) or (2,2) entries of Z�1 gives the identity

�A� BCD��1 � A�1 �A�1B�DA�1B � C�1��1DA�1

A useful special case of this result is

�I �X�1��1 � I � �I �X��1

Equating the (1,2) or (2,1) entries of Z�1 gives the identity

�A� BCD��1BC � A�1B�DA�1B � C�1��1

Determinants. We require some results on determinants of parti-

tioned matrices when using normal distributions in the discussion of

probability. If E is nonsingular

det�A� � det�E�det�B � CE�1D�

If B is nonsingular

det�A� � det�B�det�E �DB�1C�
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A.7 Quadratic Forms

Positive de®nite and positive semide®nite matrices show up often in

LQ problems. Here are some basic facts about them. In the following

Q is real and symmetric and R is real.

The matrix Q is positive de®nite (Q > 0), if

x0Qx > 0; 8 nonzero x 2 Rn

The matrix Q is positive semide®nite (Q � 0), if

x0Qx � 0; 8x 2 Rn

You should be able to prove the following facts.

1. Q > 0 if and only if � > 0; � 2 eig�Q�.

2. Q � 0 if and only if � � 0; � 2 eig�Q�.

3. Q � 0) R0QR � 0 8R.
4. Q > 0 and R nonsingular ) R0QR > 0.

5. Q > 0 and R full column rank ) R0QR > 0.

6. Q1 > 0;Q2 � 0) Q � Q1 �Q2 > 0.

7. Q > 0) z�Qz > 0 8 nonzero z 2 Cn.
8. Given Q � 0, x0Qx � 0 if and only if Qx � 0.

Youmay want to use the Schur decomposition (Schur, 1909) of a matrix

in establishing some of these eigenvalue results. Golub and Van Loan

(1996, p.313) provide the following theorem

Theorem A.1 (Schur decomposition). If A 2 Cn�n then there exists a

unitary Q 2 Cn�n such that

Q�AQ � T

in which T is upper triangular.

Note that because T is upper triangular, its diagonal elements are

the eigenvalues of A. Even if A is a real matrix, T can be complex be-

cause the eigenvalues of a real matrix may come in complex conjugate

pairs. Recall a matrix Q is unitary if Q�Q � I. You should also be able

to prove the following facts (Horn and Johnson, 1985).
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1. If A 2 Cn�n and BA � I for some B 2 Cn�n, then

(a) A is nonsingular

(b) B is unique

(c) AB � I

2. The matrix Q is unitary if and only if

(a) Q is nonsingular and Q� � Q�1

(b) QQ� � I
(c) Q� is unitary

(d) The rows of Q form an orthonormal set

(e) The columns of Q form an orthonormal set

3. IfA is real and symmetric, then T is real and diagonal andQ can be

chosen real and orthogonal. It does not matter if the eigenvalues

of A are repeated.

For real, but not necessarily symmetric, A you can restrict yourself

to real matrices, by using the real Schur decomposition (Golub and

Van Loan, 1996, p.341), but the price you pay is that you can achieve

only block upper triangular T , rather than strictly upper triangular T .

Theorem A.2 (Real Schur decomposition). If A 2 Rn�n then there exists

an orthogonal Q 2 Rn�n such that

Q0AQ �

266664
R11 R12 � � � R1m
0 R22 � � � R2m
...

...
. . .

...

0 0 � � � Rmm

377775
in which each Rii is either a real scalar or a 2�2 real matrix having com-

plex conjugate eigenvalues; the eigenvalues of Rii are the eigenvalues

of A.

If the eigenvalues of Rii are disjoint (i.e., the eigenvalues are not re-

peated), then R can be taken block diagonal instead of block triangular

(Golub and Van Loan, 1996, p.366).
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A.8 Norms in Rn

A norm in Rn is a function j�j : Rn ! R�0 such that

(a) jxj � 0 if and only if x � 0;

(b) j�xj � j�j jxj ; for all � 2 R; x 2 Rn;

(c)
��x �y�� � jxj � ��y�� ; for all x;y 2 Rn:

Let B :� fx j jxj � 1g denote the closed ball of radius 1 centered at

the origin. For any x 2 Rn and � > 0, we denote by x � �B or B�x;��

the closed ball fz j jz � xj � �g of radius � centered at x. Similarly

fx j jxj < 1g denotes the open ball of radius 1 centered at the origin

and fz j jz � xj < �g the open ball of radius � centered at x; closed

and open sets are de®ned below.

A.9 Sets in Rn

The complement of S � Rn in Rn, is the set Sc :� fx 2 Rn j x 62 Sg. A
set X � Rn is said to be open, if for every x 2 X, there exists a � > 0

such that B�x;�� � X. A set X � Rn is said to be closed if Xc , its

complement in Rn, is open.

A setX � Rn is said to be bounded if there exists anM <1 such that

jxj � M for all x 2 X. A set X � Rn is said to be compact if X is closed

and bounded. An element x 2 S � Rn is an interior point of the set S if

there exists a � > 0 such that z 2 S, for all jz � xj < �. The interior of a
set S � Rn, int�S�, is the set of all interior points of S; int�S� is an open

set, the largest2 open subset of S. For example, if S � �a; b� � R, then
int�S� � �a; b�; as another example, int�B�x; ��� � fz j jz � xj < �g.
The closure of a set S � Rn, denoted ÅS, is the smallest3 closed set

containing S. For example, if S � �a; b� � R, then ÅS � �a; b�. The

boundary of S � Rn, is the set �S :� ÅS n int�S� � fs 2 ÅS j s � int�S�g.
For example, if S � �a; b� � R, then int�S� � �a; b�; ÅS � �a; b�; @S � fa;
bg.

An af®ne set S � Rn is a set that can be expressed in the form

S � fxg � V :� fx � v j v 2 Vg for some x 2 Rn and some subspace

V of Rn. An example is a line in Rn not passing through the origin.

The af®ne hull of a set S � Rn, denoted aff�S�, is the smallest4 af®ne

2Largest in the sense that every open subset of S is a subset of int�S�.
3Smallest in the sense that ÅS is a subset of any closed set containing S.
4In the sense that aff�S� is a subset of any other af®ne set containing S.
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set that contains S. That is equivalent to the intersection of all af®ne

sets containing S.

Some sets S, such as a line in Rn; n � 2, do not have an interior,

but do have an interior relative to the smallest af®ne set in which S

lies, which is aff�S� de®ned above. The relative interior of S is the

set fx 2 S j 9� > 0 such that int�B�x; ��� \ aff�S� � Sg. Thus the

line segment, S :� fx � R2 j x � �
h
1
0

i
� �1 � ��

h
0
1

i
; � 2 �0;1�g

does not have an interior, but does have an interior relative to the line

containing it, aff�S�. The relative interior of S is the open line segment

fx 2 R2 j x � �
h
1
0

i
� �1� ��

h
0
1

i
; � 2 �0;1�g.

A.10 Sequences

Let the set of nonnegative integers be denoted by I�0. A sequence is a

function from I�0 intoR
n. We denote a sequence by its values, �xi�i2I�0 .

A subsequence of �xi�i2I�0 is a sequence of the form �xi�i2K , where K

is an in®nite subset of I�0.

A sequence �xi�i2I�0 in Rn is said to converge to a point Ãx if

limi!1 jxi � Ãxj � 0, i.e., if, for all � > 0, there exists an integer k such

that jxi � Ãxj � � for all i � k; we write xi ! Ãx as i ! 1 to denote the

fact that the sequence �xi� converges to Ãx. The point Ãx is called a limit

of the sequence �xi�. A point x� is said to be an accumulation point

of a sequence �xi�i2I�0 in R
n, if there exists an in®nite subset K � I�0

such that xi ! x� as i!1; i 2 K in which case we say xi
K! x�.5

Let �xi� be a bounded in®nite sequence in R and let the S be the set

of all accumulation points of �xi�. Then S is compact and limsupxi is

the largest and lim infxi the smallest accumulation point of �xi�:

limsup
i!1

xi :�maxfx j x 2 Sg; and

lim inf
i!1

xi :�minfx j x 2 Sg

Theorem A.3 (Bolzano-Weierstrass). Suppose X � Rn is compact and

�xi�i2I�0 takes its values in X. Then �xi�i2I�0 must have at least one

accumulation point.

From Exercise A.7, it follows that the accumulation point postulated

by Theorem A.3 lies in X. In proving asymptotic stability we need the

following property of monotone sequences.

5Be aware of inconsistent usage of the term limit point. Some authors use limit point

as synonymous with limit. Others use limit point as synonymous with accumulation

point. For this reason we avoid the term limit point.
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Proposition A.4 (Convergence of monotone sequences). Suppose that

�xi�i2I�0 is a sequence in R such that x0 � x1 � x2 � : : :, i.e., suppose
the sequence is monotone nonincreasing. If �xi� has an accumulation

point x�, then xi ! x� as i!1, i.e., x� is a limit.

Proof. For the sake of contradiction, suppose that �xi�i2I�0 does not

converge to x�. Then, for some � > 0, there exists a subsequence

�xi�i2K such that xi 62 B�x�; �� for all i 2 K, i.e., jxi � x�j > � for all

i 2 K. Since x� is an accumulation point, there exists a subsequence

�xi�i2K� such that xi
K�! x�. Hence there is an i1 2 K� such that

jxi � x�j � �=2, for all i � i1; i 2 K�: Let i2 2 K be such that i2 > i1.

Then we must have that xi2 � xi1 and
��xi2 � x��� > �, which leads

to the conclusion that xi2 < x
� � �. Now let i3 2 K� be such that

i3 > i2. Then we must have that xi3 � xi2 and hence that xi3 < x
� � �

which implies that
��xi3 � x��� > �. But this contradicts the fact that��xi3 � x��� � �=2, and hence we conclude that xi ! x� as i!1. �

It follows from Proposition A.4 that if �xi�i2I�0 is a monotone de-

creasing sequence inR bounded below by b, then the sequence �xi�i2I�0
converges to some x� 2 R where x� � b.

A.11 Continuity

We now summarize some essential properties of continuous functions.

1. A function f : Rn ! Rm is said to be continuous at a point x 2 Rn,

if for every � > 0 there exists a � > 0 such that��f�x0�� f�x��� < � 8x0 2 int�B�x; ���

A function f : Rn ! Rm is said to be continuous if it is continuous

at all x 2 Rn.

2. Let X be a closed subset of Rn. A function f : X ! Rm is said to

be continuous at a point x in X if for every � > 0 there exists a

� > 0 such that��f�x0�� f�x��� < � 8x0 2 int�B�x; ���\X

A function f : Rn ! Rm is said to be continuous on X if it is

continuous at all x in X.
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3. A function f : Rn ! Rm is said to be upper semicontinuous at a

point x 2 Rn, if for every � > 0 there exists a � > 0 such that

f�x0�� f�x� < � 8x0 2 int�B�x; ���

A function f : Rn ! Rm is said to be upper semicontinuous if it

is upper semicontinuous at all x 2 Rn.

4. A function f : Rn ! Rm is said to be lower semicontinuous at a

point x 2 Rn, if for every � > 0 there exists a � > 0 such that

f�x0�� f�x� > �� 8x0 2 int�B�x; ���

A function f : Rn ! Rm is said to be lower semicontinuous if it

is lower semicontinuous at all x 2 Rn.

5. A function f : Rn ! Rm is said to be uniformly continuous on a

subset X � Rn if for any � > 0 there exists a � > 0 such that for

any x0; x00 2 X satisfying jx0 � x00j < �,��f�x0�� f�x00��� < �
Proposition A.5 (Uniform continuity). Suppose that f : Rn ! Rm is

continuous and that X � Rn is compact. Then f is uniformly continuous

on X.

Proof. For the sake of contradiction, suppose that f is not uniformly

continuous on X. Then, for some � > 0, there exist sequences
�
x0i

�
;�

x00i

�
in X such that���x0i � x00i ��� < �1=i�; for all i 2 I�0

but ���f�x0i�� f�x00i ���� > �; for all i 2 I�0 (A.1)

Since X is compact, there must exist a subsequence
�
x0i

�
i2K

such that

x0i
K! x� 2 X as i ! 1. Furthermore, because of (A.1), x00i

K! x� also

holds. Hence, since f��� is continuous, we must have f�x0i�
K! f�x��

and f�x00i �
K! f�x��. Therefore, there exists a i0 2 K such that for all

i 2 K; i � i0���f�x0i�� f�x00i ���� � ���f�x0i�� f�x������ ���f�x��� f�x00i ���� < �=2
contradicting (A.1). This completes our proof. �
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Proposition A.6 (Compactness of continuous functions of compact

sets). Suppose that X � Rn is compact and that f : Rn ! Rm is contin-

uous. Then the set

f�X� :� ff�x� j x 2 Xg
is compact.

Proof.

(a) First we show that f�X� is closed. Thus, let �f �xi� j i 2 I�0�, with
xi 2 X, be any sequence in f�X� such that f�xi�! y as i!1. Since
�xi� is in a compact set X, there exists a subsequence �xi�i2K such

that xi
K! x� 2 X as i ! 1. Since f��� is continuous, f�xi� K! f�x��

as i ! 1. But y is the limit of �f �xi��i2I�0 and hence it is the limit of

any subsequence of �f �xi�� : We conclude that y � f�x�� and hence

that y 2 f�X�, i.e., f�X� is closed.
(b) Next, we prove that f�X� is bounded. Suppose f�X� is not

bounded. Then there exists a sequence �xi� such that
��f�xi��� � i for

all i 2 I�0. Now, since �xi� is in a compact set, there exists a subse-

quence �xi�i2K such that xi
K! x� with x� 2 X, and f�xi� K! f�x�� by

continuity of f���. Hence there exists an i0 such that for any j > i > i0;
j; i 2 K���f�xj�� f�xi���� � ���f�xj�� f�x������ ��f�xi�� f�x���� < 1=2 (A.2)

Let i � i0 be given. By hypothesis there exists a j 2 K; j � i such that���f�xj���� � j � ��f�xi���� 1. Hence���f�xj�� f�xi���� � ��� ���f�xj����� ��f�xi��� ��� � 1

which contradicts (A.2). Thus f�X�must be bounded, which completes

the proof. �

Let Y � R. Then inf�Y�, the in®mum of Y , is de®ned to be the

greatest lower bound6 of Y . If inf�Y� 2 Y , then min�Y� :� minfy j
y 2 Yg, the minimum of the set Y , exists and is equal to inf�Y�. The

in®mum of a set Y always exists if Y is not empty and is bounded from

below, in which case there always exist sequences
�
yi
� 2 Y such that

yi & � :� inf�Y� as i ! 1. Note that � :� inf�Y� does not necessarily

lie in the set Y .

6The value � 2 R is the greatest lower bound of Y if y � � for all y 2 Y , and � > �
implies that � is not a lower bound for Y .



636 Mathematical Background

Proposition A.7 (Weierstrass). Suppose that f : Rn ! R is continuous

and that X � Rn is compact. Then there exists an Ãx 2 X such that

f�Ãx� � inf
x2X

f�x�

i.e., minx2X f�x� is well de®ned.

Proof. Since X is compact, f�X� is bounded. Hence infx2X f�x� � �
is ®nite. Let �xi� be an in®nite sequence in X such that f�xi� & �
as i ! 1. Since X is compact, there exists a converging subsequence

�xi�i2K such that xi
K! Ãx 2 X. By continuity, f�xi�

K! f�Ãx� as i ! 1.
Because �f �xi�� is a monotone nonincreasing sequence that has an

accumulation point f�Ãx�, it follows from Proposition A.4 that f�xi�!
f�Ãx� as i ! 1. Since the limit of the sequence �f �xi�� is unique, we

conclude that f�Ãx� � �. �

A.12 Derivatives

We ®rst de®ne some notation. If f : Rn ! R, then �@=@x�f�x� is a row

vector de®ned by

�@=@x�f�x� :� ��@=@x1�f �x�; : : : ; �@=@xn�f �x��

provided the partial derivatives �@=@xi�f �x�, i � 1;2; : : : ; n exist. Sim-

ilarly, if f : Rn ! Rm, �@=@x�f�x� is de®ned to be the matrix

�@=@x�f�x� :�

266664
�@=@x1�f1�x� �@=@x2�f1�x� : : : �@=@xn�f1�x�

�@=@x1�f2�x� �@=@x2�f2�x� : : : �@=@xn�f2�x�
...

...
...

...

�@=@x1�fm�x� �@=@x2�fm�x� : : : �@=@xn�fm�x�

377775
where xi and fi denote, respectively, the ith component of the vectors

x and f . We sometimes use fx�x� in place of �@=@x�f�x�. If f : Rn !
R, then its gradient rf�x� is a column vector de®ned by

rf�x� :�

266664
�@=@x1�f �x�

�@=@x2�f �x�
...

�@=@xn�f �x�

377775
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and its Hessian is r2f�x� � �@2=@x2�f �x� � fxx�x� de®ned by

r2f�x� :�

266664
�@2=@x2

1�f �x� �@2=@x1@x2�f �x� : : : �@2=@x1@xn�f �x�

�@2=@x2@x1�f �x� �@x2
2�f �x� : : : �@2=@x2@xn�f �x�

...
...

. . .
...

�@2=@xn@x1�f �x� �@2=@xn@x2�f �x� : : : �@2=@x2
n�f �x�

377775
We note that rf�x� � ��@=@x�f�x��0 � f 0x�x�.

We now de®ne what we mean by the derivative of f���. Let f : Rn !
Rm be a continuous function with domain Rn. We say that f��� is
differentiable at Ãx if there exists a matrixDf�Ãx� 2 Rm�n (the Jacobian)

such that

lim
h!0

��f�Ãx � h�� f�Ãx��Df�Ãx�h��
jhj � 0

in which case Df��� is called the derivative of f��� at Ãx. When f��� is
differentiable at all x 2 Rn, we say that f is differentiable.

We note that the af®ne function h, f�Ãx��Df�Ãx�h is a ®rst order

approximation of f�Ãx�h�. The Jacobian can be expressed in terms of

the partial derivatives of f���.
Proposition A.8 (Derivative and partial derivative). Suppose that the

function f : Rn ! Rm is differentiable at Ãx. Then its derivative Df�Ãx�

satis®es

Df�Ãx� � fx�Ãx� :� @f�Ãx�=@x
Proof. From the de®nition of Df�Ãx� we deduce that for each i 2 f1;2;
: : : ;mg

lim
h!0

��fi�Ãx � h�� fi�Ãx��Dfi�Ãx�h��
jhj � 0

where fi is the ith element of f and �Df�i the ith row of Df . Set

h � tej , where ej is the j-th unit vector in Rn so that jhj � t. Then

�Df�i�Ãx�h � t�Df�i�Ãx�ej � �Df�ij�Ãx�, the ijth element of the matrix

Df�Ãx�. It then follows that

lim
t&0

���f i�Ãx � tej�� f�Ãx�� t�Df�ij�Ãx����
t

� 0

which shows that �Df�ij�Ãx� � @fi�Ãx�=@xj . �

A function f : Rn ! Rm is locally Lipschitz continuous at Ãx if there

exist L 2 �0;1�; Ã� > 0 such that��f�x�� f�x0��� � L��x � x0�� ; for all x;x0 2 B�Ãx; Ã��
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The function f is globally Lipschitz continuous if the inequality holds

for all x;x0 2 Rn. The constant L is called the Lipschitz constant of

f . It should be noted that the existence of partial derivatives of f���
does not ensure the existence of the derivative Df��� of f���; see e.g.
Apostol (1974, p.103). Thus consider the function

f�x;y� � x �y if x � 0 or y � 0

f�x;y� � 1 otherwise

In this case

@f�0;0�

@x
� lim

t!0

f�t;0�� f�0;0�
t

� 1

@f�0;0�

@y
� lim

t!0

f�0; t�� f�0;0�
t

� 1

but the function is not even continuous at �0;0�. In view of this, the

following result is relevant.

Proposition A.9 (Continuous partial derivatives). Consider a function

f : Rn ! Rm such that the partial derivatives @f i�x�=dxj exist in a

neighborhood of Ãx, for i � 1;2; : : : ; n; j � 1;2; : : : ;m. If these partial

derivatives are continuous at Ãx, then the derivative Df�Ãx� exists and is

equal to fx�Ãx�.

The following chain rule holds.

Proposition A.10 (Chain rule). Suppose that f : Rn ! Rm is de®ned by

f�x� � h�g�x�� with both h : Rl ! Rm and g : Rn ! Rl differentiable.

Then
@f�Ãx�

@x
� @h�g�Ãx��

@y

@g�Ãx�

@x

The following result Dieudonne (1960), replaces, inter alia, themean

value theorem for functions f : Rn ! Rm whenm > 1.

Proposition A.11 (Mean value theorem for vector functions).

(a) Suppose that f : Rn ! Rm has continuous partial derivatives at each

point x of Rn. Then for any x;y 2 Rn,

f�y� � f�x��
Z 1

0
fx�x � s�y � x���y � x�ds
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(b) Suppose that f : Rn ! Rm has continuous partial derivatives of

order two at each point x of Rn. Then for any x;y 2 Rn,

f�y� � f�x��fx�x��y�x��
Z 1

0
�1�s��y�x�0fxx�x�s�y�x���y�x�ds

Proof.

(a) Consider the function g�s� � f�x � s�y � x�� where f : Rn ! Rm.

Then g�1� � f�y�; g�0� � f�x� and

g�1�� g�0� �
Z 1

0
g0�s�ds

�
Z 1

0
Df�x � s�y � x���y � x�ds

which completes the proof for p � 1.

(b) Consider the function g�s� � f�x � s�y � x�� where f : Rn ! R.

Then
d

ds
�g0�s��1� s�� g�s�� � g00�s��1� s�

Integrating from 0 to 1 yields

g�1�� g�0�� g0�0� �
Z 1

0
�1� s�g00�s�ds

But g00�s� � �y�x�0fxx�x�s�y�x���y�x� so that the last equation
yields

f�y��f�x� � fx�x��y�x��
Z 1

0
�1�s��y�x�0fxx�x�s�y�x���y�x�ds

when g�s� is replaced by f�x � s�y � x��.
�

Finally, we de®ne directional derivatives which may exist even when

a function fails to have a derivative. Let f : Rn ! Rm. We de®ne the

directional derivative of f at a point Ãx 2 Rn in the directionh 2 Rn�h 6�
0� by

df�Ãx;h� :� lim
t&0

f�Ãx � th�� f�Ãx�
t

if this limit exists (note that t > 0 is required). The directional deriva-

tive is positively homogeneous, i.e., df�x;�h� � �df�x;h� for all

� > 0.
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Not all the functions we discuss are differentiable everywhere. Ex-

amples include themax function ��� de®ned by �x� :�maxiff i�x� j
i 2 Ig where each function f i : Rn ! R is continuously differentiable

everywhere. The function ��� is not differentiable at thosex for which

the active set I0�x� :� fi 2 I j f i�x� �  �x�g has more than one

element. The directional derivative d�x;h� exists for all x;h in Rn,

however, and is given by

d �x;h� �max
i
fdfi�x;h� j i 2 I0�x�g �max

i
fhrfi�x�;hi j i 2 I0�x�g

When, as in this example, the directional derivative exists for all x;h in

Rn we can de®ne a generalization, called the subgradient, of the con-

ventional gradient. Suppose that f : Rn ! R has a directional derivative

for all x;h in Rn. The f��� has a subgradient @f��� de®ned by

@ �x� :� fg 2 Rn j df�x;h� � hg;hi 8h 2 Rng

The subgradient at a point x is, unlike the ordinary gradient, a set.

For our max example (f�x� �  �x� � maxiffi�x� j i 2 Ig) we have

d �x;h� � maxifhrf i�x�;hi j i 2 I0�x�g. In this case, it can be

shown that

@ �x� � cofrf i�x� j i 2 I0�x�g
If the directional derivative h, df�x;h� is convex, then the subgradi-

ent @f�x� is nonempty and the directional derivative df�x;h� may be

expressed as

df�x;h� �max
g
fhg;hi j g 2 @f�x�g

Figure A.4 illustrates this for the case when �x� :�maxff1�x�; f2�x�g
and I0�x� � f1;2g.

x

@ �x�

rf1�x� rf2�x�

f2�x� �  �x�f1�x� �  �x�

Figure A.4: Subgradient.
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A.13 Convex Sets and Functions

Convexity is an enormous subject. We collect here only a few essential

results that wewill need in our study of optimization; for further details

see Rockafellar (1970). We begin with convex sets.

A.13.1 Convex Sets

De®nition A.12 (Convex set). A set S 2 Rn is said to be convex if, for

any x0; x00 2 S and � 2 �0;1�, ��x0 � �1� ��x00� 2 S.
Let S be a subset of Rn. We say that co�S� is the convex hull of S if

it is the smallest7 convex set containing S.

Theorem A.13 (Caratheodory). Let S be a subset of Rn. If Åx 2 co�S�,

then it may be expressed as a convex combination of no more than n�1
points in S, i.e., there existm � n� 1 distinct points, fxigmi�1, in S such

that Åx �Pm
i�1 �

ixi; �i > 0;
Pm
i�1 �

i � 1:

Proof. Consider the set

Cs :� fx j x �
kxX
i�1

�ixi; xi 2 S; �i � 0;
kxX
i�1

�i � 1; kx 2 I�0g

First, it is clear that S � Cs . Next, since for any x0; x00 2 Cs ; �x0 �
�1 � �x00� 2 Cs , for � 2 �0;1�, it follows that Cs is convex. Hence

we must have that co�S� � Cs . Because Cs consists of all the convex

combinations of points in S, however, we must also have that Cs �
co�S�. Hence Cs � co�S�. Now suppose that

Åx �
ÅkX
i�1

Å�ixi

with Å�i � 0; i � 1;2; : : : ; Åk;
PÅk
i�1 Å�

i � 1. Then the following system of

equations is satis®ed
ÅkX
i�1

Å�i
"
xi
1

#
�
"
Åx

1

#
(A.3)

with Å�i � 0. Suppose that Åk > n � 1. Then there exist coef®cients

�j ; j � 1;2; : : : ; Åk, not all zero, such that

ÅkX
i�1

�i
"
xi
1

#
� 0 (A.4)

7Smallest in the sense that any other convex set containing S also contains co�S�.
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Adding (A.4) multiplied by � to (A.3) we get

ÅkX
i�1

�Å�i � ��i�
"
xi
1

#
�
"

Åx

1

#

Suppose, without loss of generality, that at least one�i < 0. Then there

exists a Å� > 0 such that Å�j � Å��j � 0 for some j while Å�i � Å��i � 0

for all other i. Thus we have succeeded in expressing Åx as a convex

combination of Åk� 1 vectors in S. Clearly, these reductions can go on

as long as Åx is expressed in terms of more than �n � 1� vectors in S.

This completes the proof. �

Let S1; S2 be any two sets in Rn. We say that the hyperplane

H � fx 2 Rn j hx;vi � �g
separates S1 and S2 if

hx;vi � � for all x 2 S1

y;v

� � � for all y 2 S2
The separation is said to be strong if there exists an " > 0 such that

hx;vi � �� " for all x 2 S1

y;v

� � �� " for all y 2 S2

S1

S2

H
v

Figure A.5: Separating hyperplane.

Theorem A.14 (Separation of convex sets). Let S1; S2 be two convex

sets in Rn such that S1 \ S2 � ;. Then there exists a hyperplane which

separates S1 and S2. Furthermore, if S1 and S2 are closed and either S1
or S2 is compact, then the separation can be made strict.
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Theorem A.15 (Separation of convex set from zero). Suppose that S �
Rn is closed and convex and 0 62 S. Let

Ãx � argminfjxj2 j x 2 Sg

Then

H � fx j hÃx;xi � jÃxj2g
separates S from 0, i.e., hÃx;xi � jÃxj2 for all x 2 S.
Proof. Letx 2 S be arbitrary. Then, since S is convex, �Ãx���x�Ãx�� 2 S
for all � 2 �0;1�. By de®nition of Ãx, we must have

0 < jÃxj2 � jÃx � ��x � Ãx�j2

� jÃxj2 � 2�hÃx;x � Ãxi � �2 jx � Ãxj2

Hence, for all � 2 �0;1�,

0 � 2 hÃx;x � Ãxi � � jx � Ãxj2

Letting �! 0 we get the desired result. �

Theorem A.15 can be used to prove the following special case of

Theorem A.14:

Corollary A.16 (Existence of separating hyperplane). Let S1; S2 be two

compact convex sets in Rn such that S1 \ S2 � ;. Then there exists a

hyperplane which separates S1 and S2.

Proof. Let C � S1�S2 :� fx1�x2 j x1 2 S1; x2 2 S2g. Then C is convex

and compact and 0 62 C . Let Ãx � �Ãx1 � Ãx2� � argminfjxj2 j x 2 Cg,
where Ãx1 2 S1 and Ãx2 2 S2. Then, by Theorem A.15

hx � Ãx; Ãxi � 0; for all x 2 C (A.5)

Let x � x1 � Ãx2, with x1 2 S1. Then (A.5) leads to

hx1 � Ãx2; Ãxi � jÃxj2 (A.6)

for all x1 2 S1. Similarly, letting x � Ãx1 � x2; in (A.5) yields

hÃx1 � x2; Ãxi � jÃxj2 (A.7)

for all x2 2 S2. The inequality in (A.7) implies that

hÃx1 � Ãx2 � Ãx2 � x2; Ãxi � jÃxj2
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Since Ãx1 � Ãx2 � Ãx, we obtain

hx2 � Ãx2; Ãxi � 0 (A.8)

for all x2 2 S2. The desired result follows from (A.6) and (A.8), the

separating hyperplane H being fx 2 Rn j hÃx;x � Ãx2i � 0g. �

De®nition A.17 (Support hyperplane). Suppose S � Rn is convex. We

say that H � fx j hx � Åx;vi � 0g is a support hyperplane to S through

Åx with inward (outward) normal v if Åx 2 S and

hx � Åx;vi � 0 �� 0� for all x 2 S

Theorem A.18 (Convex set and halfspaces). A closed convex set is equal

to the intersection of the halfspaces which contain it.

Proof. Let C be a closed convex set and A the intersection of halfspaces

containing C . Then clearly C � A. Now suppose Åx 62 C . Then there

exists a support hyperplane H which separates strictly Åx and C so that

Åx does not belong to one halfspace containing C . It follows that Åx 62 A.
Hence Cc � Ac which leads to the conclusion that A � C . �

An important example of a convex set is a convex cone.

De®nition A.19 (Convex cone). A subset C of Rn, C � ;, is called a

cone if x 2 C implies �x 2 C for all � � 0. A cone C is pointed if

C \�C � f0g. A convex cone is a cone that is convex.

An example of a cone is a halfspaces with a boundary that is a hy-

perplane passing through the origin; an example of a pointed cone is

the positive orthant. A polyhedron C de®ned by C :� fx j hai; xi � 0;

i 2 Ig is a convex cone that is pointed

De®nition A.20 (Polar cone). Given a cone C � Rn, the cone C� de®ned

by

C� :� fh j hh;xi � 0 8x 2 Cg
is called the polar cone of C .

An illustration of this de®nition when C is a polyhedron containing

the origin is given in Figure A.6. In this ®gure, H is the hyperplane with

normal h passing through the origin.
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H 0

C

C�

h

Figure A.6: Polar cone.

De®nition A.21 (Cone generator). A cone K is said to be generated by

a set fai j i 2 Ig where I is an index set if

K �
8<:X
i2I

�iai j �i � 0; i 2 I
9=;

in which case we write K � conefai j i 2 Ig.
We make use of the following result:

Proposition A.22 (Cone and polar cone generator).

(a) Suppose C is a convex cone containing the origin and de®ned by

C :� fx 2 Rn j hai; xi � 0; i 2 Ig
Then

C� � conefai j i 2 Ig
(b) If C is a closed convex cone, then �C��� � C .
(c) If C1 � C2, then C�2 � C�1 .
Proof.

(a) Let the convex set K be de®ned by

K :� conefai j i 2 Ig
We wish to prove C� � K. To prove K � C�, suppose h is an arbitrary

point in K :� conefai j i 2 Ig. Then h �
P
i2I �iai where �i � 0 for all

i 2 I . Let x be an arbitrary point in C so that hai; xi � 0 for all i 2 I .
Hence

hh;xi � h
X
i2I

�iai; xi �
X
i2I

�ihai; xi � 0
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so that h 2 C�. This proves that K � C�. To prove that C� � K,
assume thath 2 C� but that, contrary to what we wish to prove, h 62 K.
Hence h � P

i2I �iai � he where either �j > 0 for at least one j 2 I ,
or he , which is orthogonal to ai; i 2 I , is not zero, or both. If �j < 0,

let x 2 C be such that hai; xi � 0 for all i 2 I; i � j and haj ; xi < 0;

if he � 0, let x 2 C be such that hhe ; xi > 0 (both conditions can be

satis®ed). Then

hh;xi � h�jaj ; xi � hhe ; xi � �jhaj ; xi � hhe ; xi > 0

since either both �j and haj ; xi are strictly negative or he � 0 or both.

This contradicts the fact that x 2 C and h 2 C� (so that hh;xi � 0).

Hence h 2 K so that C� � K. It follows that C� � conefai j i 2 Ig.
(b) That �C��� � C when C is a closed convex cone is given in Rock-

afellar and Wets (1998), Corollary 6.21.

(c) This result follows directly from the de®nition of a polar cone.

�

A.13.2 Convex Functions

Next we turn to convex functions. For an example see Figure A.7.

f�x�

x y

f�y�

Figure A.7: A convex function.

A function f : Rn ! R is said to be convex if for any x0; x00 2 Rn

and � 2 �0;1�,

f��x0 � �1� ��x00� � �f�x0�� �1� ��f�x00�
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A function f : Rn ! R is said to be concave if �f is convex.

The epigraph of a function f : Rn ! R is de®ned by

epi�f � :� f�x;y� 2 Rn �R j y � f�x�g

Theorem A.23 (Convexity implies continuity). Suppose f : Rn ! R is

convex. Then f is continuous in the interior of it domain.

The following property is illustrated in Figure A.7.

Theorem A.24 (Differentiability and convexity). Suppose f : Rn ! R is

differentiable. Then f is convex if and only if

f�y�� f�x� � 
rf�x�;y � x� for all x;y 2 Rn (A.9)

Proof. ) Suppose f is convex. Then for any x;y 2 Rn, and � 2 �0;1�

f �x � ��y � x�� � �1� ��f�x�� �f�y� (A.10)

Rearranging (A.10) we get

f�x � ��y � x��� f�x�
�

� f�y�� f�x� for all � 2 �0;1�

Taking the limit as �! 0 we get (A.9).

( Suppose (A.9) holds. Let x and y be arbitrary points in Rn and

let � be an arbitrary point in �0;1�. Let z � �x � �1� ��y . Then

f�x� � f�z�� f 0�z��x � z�; and
f�y� � f�z�� f 0�z��y � z�

Multiplying the ®rst equation by � and the second by �1 � ��, adding
the resultant equations, and using the fact that z � �x��1���y yields

�f�x�� �1� ��f�y� � f�z� � f��x � �1� ��y�

Since x and y in Rn and � in �0;1� are all arbitrary, the convexity of

f��� is established. �

Theorem A.25 (Second derivative and convexity). Suppose that f :

Rn ! R is twice continuously differentiable. Then f is convex if and only

if the Hessian (second derivative) matrix @2f�x�=@x2 is positive semidef-

inite for all x 2 Rn, i.e.,


y; @2f�x�=@x2y

� � 0 for all x;y 2 Rn.
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Proof. ) Suppose f is convex. Then for any x;y 2 Rn, because of

Theorem A.24 and Proposition A.11

0 � f�y�� f�x�� 
rf�x�;y � x�
�
Z 1

0
�1� s�

*
y � x; @

2f�x � s�y � x��
@x2

�y � x�
+
ds (A.11)

Hence, dividing by
��y � x��2 and letting y ! x, we obtain that

@2f�x�=@x2 is positive semide®nite.

( Suppose that @2f�x�=@x2 is positive semide®nite for all x 2 R.
Then it follows directly from the equality in (A.11) and Theorem A.24

that f is convex. �

De®nition A.26 (Level set). Suppose f : Rn ! R. A level set of f is a

set of the form fx j f�x� � �g; � 2 R.

De®nition A.27 (Sublevel set). Suppose f : Rn ! R. A sublevel set X

of f is a set of the form X � fx j f�x� � �g; � 2 R. We also write the

sublevel set as X � lev� f .

De®nition A.28 (Support function). Suppose Q � Rn. The support

function �Q : Rn ! Re � R[ f�1g is de®ned by:

�Q�p� � sup
x
f
p;x� j x 2 Qg

�Q�p� measures how far Q extends in direction p.

Proposition A.29 (Setmembership and support function). SupposeQ �
Rn is a closed and convex set. Then x 2 Q if and only if �Q�p� �



p;x

�
for all p 2 Rn

Proposition A.30 (Lipschitz continuity of support function). Suppose

Q � Rn is bounded. Then �Q is bounded and Lipschitz continuous���Q�p�� �Q�q��� � K ��p � q�� for all p;q 2 Rn, where K :� supfjxj j
x 2 Qg <1.

A.14 Differential Equations

Although difference equation models are employed extensively in this

book, the systems being controlled are most often described by differ-

ential equations. Thus, if the system being controlled is described by
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the differential equation Çx � fc�x;u�, as is often the case, and if it

is decided to control the system using piecewise constant control with

period �, then, at sampling instants k� where k 2 I, the system is

described by the difference equation

x� � f�x;u�

then f��� may be derived from fc��� as follows

f�x;u� � x �
Z
�

0
fc��c�s;x;u�;u�ds

where �c�s;x;u� is the solution of Çx � fc�x;u� at time s if its initial

state at time 0 is x and the control has a constant valueu in the interval

�0;��. Thus x in the difference equation is the state at time k, say, u

is the control in the interval �0;��, and x� is the state at time k� 1.

Because the discrete time system is most often obtained by a contin-

uous time system, wemust be concernedwith conditions which guaran-

tee the existence and uniqueness of solutions of the differential equa-

tion describing the continuous time system. For excellent expositions

of the theory of ordinary differential equations see the books by Hale

(1980), McShane (1944), Hartman (1964), and Coddington and Levinson

(1955).

Consider, ®rst, the unforced system described by

�d=dt�x�t� � f�x�t�; t� or Çx � f�x; t� (A.12)

with initial condition

x�t0� � x0 (A.13)

Suppose f : D ! Rn, where D is an open set in Rn �R, is continuous.
A function x : T ! Rn, where T is an interval in R, is said to be a

(conventional) solution of (A.12) with initial condition (A.13) (or passing

through (x0; t0)) if:

(a) x is continuously differentiable and x satis®es (A.12) on T ,

(b) x�t0� � x0,
and �x�t�; t� 2 D for all t in T . It is easily shown, when f is continuous,

that x satis®es (A.12) and (A.13) if and only if:

x�t� � x0 �
tZ
t0

f�x�s�; s�ds (A.14)
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Peano's existence theorem states that if f is continuous on D, then,

for all �x0; t0� 2 D there exists at least one solution of (A.12)) passing

through �x0; t0�. The solution is not necessarily unique - a counter

example being Çx � px for x � 0. To proceed we need to be able to

deal with systems for which f��� is not necessarily continuous for the
following reason. If the system is described by Çx � f�x;u; t� where
f : Rn � Rm ! Rn is continuous, and the control u : R ! Rm is

continuous, then, for given u���, the function fu : Rn�R! Rn de®ned

by:

fu�x; t� :� f�x;u�t�; t�
is continuous in t. We often encounter controls that are not continuous,

however, in which case fu��� is also not continuous. We need a richer

class of controls. A suitable class is the class of measurable functions

which, for the purpose of this book, we may take to be a class rich

enough to include all controls, such as those that are merely piecewise

continuous, that we may encounter. If the control u��� is measurable

and f��� is continuous, then fu���, de®ned above, is continuous in x

but measurable in t, so we are forced to study such functions. Suppose,

as above, D is an open set in Rn � R. The function f : D ! Rn is said

to satisfy the Caratheodory conditions in D if:

(a) f is measurable in t for each ®xed x,

(b) f is continuous in x for each ®xed t,

(c) for each compact set F in D there exists a measurable function

t ,mF�t� such that��f�x; t��� �mF�t�

for all �x; t� 2 F . We now make use of the fact that if t , h�t� is mea-

surable, its integral t , H�t�
�� R tt0 h�s�ds is absolutely continuous and,

therefore, has a derivative almost everywhere. Where H��� is differen-
tiable, its derivative is equal to h���. Consequently, if f��� satis®es the
Caratheodory conditions, then the solution of (A.14), i.e., a function

���� satisfying (A.14) everywhere does not satisfy (A.12) everywhere

but only almost everywhere, at the points where ���� is differentiable.
In view of this, we may speak either of a solution of (A.14) or of a

solution of (A.12) provided we interpret the latter as an absolutely con-

tinuous function which satis®es (A.12)) almost everywhere. The ap-

propriate generalization of Peano's existence theorem is the following

result due to Caratheodory:
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Theorem A.31 (Existence of solution to differential equations). If D is

an open set in Rn�R and f��� satis®es the Caratheodory conditions on
D, then, for any �x0; t0� in D, there exists a solution of (A.14) or (A.12)

passing through �x0; t0�.

Two other classical theorems on ordinary differential equations that

are relevant are:

Theorem A.32 (Maximal interval of existence). If D is an open set in

Rn � R, f��� satis®es the Caratheodory conditions on D, and ���� is a
solution of (A.10) on some interval, then there is a continuation �0��� of
���� to a maximal interval �ta; tb� of existence. The solution �0���, the
continuation of ����, tends to the boundary of D as t & ta and t % tb.

Theorem A.33 (Continuity of solution to differential equation). Sup-

pose D is an open set in Rn �R, f satis®es the Caratheodory condition

and, for each compact set U in D, there exists an integrable function

t , ku�t� such that��f�x; t�� f�y; t��� � ku�t���x �y��
for all �x; t�; �y; t� in U . Then, for any �x0; t0� in U there exists a unique

solution ���;x0; t0� passing through �x0; t0�. The function �t; x0; t0� ,

��t;x0; t0� : R � Rn � R ! Rn is continuous in its domain E which is

open.

Note that D is often Rn�R, in which case Theorem A.32 states that

a solution x��� of (A.14) escapes, i.e., jx�t�j ! 1 as t & ta or t % tb
if ta and tb are ®nite; ta and tb are the escape times. An example of

a differential equation with ®nite escape time is Çx � x2 which has, if

x0 > 0; t0 � 0, a solution x�t� � x0�1� �t � t0�x0��1 and the maximal

interval of existence is �ta; tb� � ��1; t0 � 1=x0�.

These results, apart from absence of a control u which is trivially

corrected, do not go far enough. We require solutions on an interval �t0;

tf � given a priori. Further assumptions are needed for this. A useful

tool in developing the required results is the Bellman-Gronwall lemma:

Theorem A.34 (Bellman-Gronwall). Suppose that c 2 �0;1� and that

� : �0;1�! R� is a bounded, integrable function, and that the integrable

function y : �0;1�! R satis®es the inequality

y�t� � c �
Z t
0
��s�y�s�ds (A.15)
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for all t 2 �0;1�. Then
y�t� � ce

R t
0 ��s�ds (A.16)

for all t 2 �0;1�.
Note that, if the inequality in (A.15) were replaced by an equality,

(A.15) could be integrated to yield (A.16).

Proof. Let the function Y : �0;1�! R be de®ned by

Y�t� �
Z t
0
��s�y�s�ds (A.17)

so that ÇY�t� � ��t�y�t� almost everywhere on �0;1�. It follows from

(A.15) and (A.17) that:

y�t� � c � Y�t� 8t 2 �0;1�

Hence

�d=dt��e�
R t
0 ��s�dsY�t�� � e�

R t
0 ��s�ds�ÇY�t����t�Y�t��

� �e�
R t
0 ��s�ds���t��y�t�� Y�t��

� c�e�
R t
0 ��s�ds���t� (A.18)

almost everywhere on �0;1�. Integrating both sides of (A.18) from 0 to

t yields

e�
R t
0 ��s�dsY�t� � c�1� e�

R t
0 ��s�ds�

for all t 2 �0;1�. Hence

Y�t� � c�e
R t
0 ��s�ds � 1�

and

y�t� � ce
R t
0 ��s�ds

for all t 2 �0;1�. �

The interval �0;1� may, of course, be replaced by �t0; tf � for arbi-

trary t0; tf 2 ��1;1�. Consider now the forced system described by

Çx�t� � f�x�t�;u�t�; t� a:e (A.19)

with initial condition

x�0� � 0
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The period of interest is now T :� �0;1� and ªa.e.º denotes ªalmost

everywhere on T .º Admissible controlsu��� are measurable and satisfy

the control constraint

u�t� 2 
 a:e:

where 
 � Rm is compact. For convenience, we denote the set of

admissible controls by

U :� fu : T ! Rm j u��� is measurable; u�t� 2 
 a:e:g
Clearly U is a subset of L1. For simplicity we assume, in the sequel,

that f is continuous; this is not restrictive. For each u in U, x in IRn,

the function t , fu�x; t� :� f�x;u�t�; t� is measurable so that fu sat-

is®es the Caratheodory conditions and our previous results, Theorems

A.31±A.33, apply. Our concern now is to show that, with additional

assumptions, for each u inU, a solution to (A.12) or (A.13) exists on T ,

rather than on some maximal interval that may be a subset of T , and

that this solution is unique and bounded.

Theorem A.35 (Existence of solutions to forced systems). Suppose:

(a) f is continuous and

(b) there exists a positive constant c such that��f�x0; u; t�� f�x;u; t��� � c ��x0 � x��
for all �x;u; t� 2 Rn � 
 � T . Then, for each u in U, there exists a

unique, absolutely continuous solution xu : T ! Rn of (A.19) on the

interval T passing through �x0;0�. Moreover, there exists a constant K

such that

jxu�t�j � K
for all t 2 T , all u 2 U.

Proof. A direct consequence of (b) is the existence of a constant which,

without loss of generality, we take to be c, satisfying

(c)
��f�x;u; t��� � c�1� jxj� for all �x;u; t� 2 Rn �
 � T .

Assumptions (a) and (b) and their corollary (c), a growth condition on

f���, ensure that fu��� satis®es the Caratheodory conditions stated

earlier. Hence, our previous results apply, and there exists an interval

�0; tb� on which a unique solution xu��� exists; moreover jxu�t�j ! 1
as t % tb. Since xu��� satis®es

xu�t� � x0 �
Z t
0
f�xu�s�;u�s�; s�ds
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it follows from the growth condition that

jxu�t�j � jx0j �
Z t
0

��f�xu�s�;u�s�; s���ds
� jx0j � c

Z t
0
�1� jxu�s�j�ds

� �jx0j � c�� c
Z t
0
jxu�s�jds

Applying the Bellman-Gronwall lemma yields

jxu�t�j � �c � jx0j�ect

for all t 2 �0; tb�;u 2 U. If follows that the escape time tb cannot be

®nite, so that, for allu inU, there exists a unique absolutely continuous

solution xu��� on T passing through �x0; �0��. Moreover, for all u in

U, all t 2 T
jxu�t�j � K

where K :� �c � jx0j�ec . �

A.15 Random Variables and the Probability Density

Let � be a random variable taking values in the ®eld of real numbers

and the function F��x� denote the probability distribution function

of the random variable so that

F��x� � Pr�� � x�

i.e., F��x� is the probability that the random variable � takes on a value

less than or equal to x. F� is obviously a nonnegative, nondecreasing

function and has the following properties due to the axioms of proba-

bility

F��x1� � F��x2� if x1 < x2

lim
x!�1

F��x� � 0

lim
x!1

F��x� � 1

We next de®ne the probability density function, denoted p��x�,

such that

F��x� �
Z x
�1
p��s�ds; �1 < x <1 (A.20)
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We can allow discontinuous F� if we are willing to accept generalized

functions (delta functions and the like) for p� . Also, we can de®ne the

density function for discrete as well as continuous random variables if

we allow delta functions. Alternatively, we can replace the integral in

(A.20) with a sum over a discrete density function. The random variable

may be a coin toss or a dice game, which takes on values from a discrete

set contrasted to a temperature or concentration measurement, which

takes on a values from a continuous set. The density function has the

following properties

p��x� � 0

Z1
�1
p��x�dx � 1

and the interpretation in terms of probability

Pr�x1 � � � x2� �
Z x2

x1

p��x�dx

The mean or expectation of a random variable � is de®ned as

E��� �
Z1
�1
xp��x�dx

The moments of a random variable are de®ned by

E��n� �
Z1
�1
xnp��x�dx

and it is clear that the mean is the zeroth moment. Moments of � about

the mean are de®ned by

E��� �E����n� �
Z1
�1
�x �E����np��x�dx

and the variance is de®ned as the second moment about the mean

var��� � E��� �E����2� � E��2��E2���

The standard deviation is the square root of the variance

���� � �var����1=2
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Normal distribution. The normal or Gaussian distribution is ubiqui-

tous in applications. It is characterized by its mean, m and variance,

� 2, and is given by

p��x� � 1p
2�� 2

exp

 
�1
2

�x �m�2
� 2

!
(A.21)

We proceed to check that the mean of this distribution is indeedm and

the variance is � 2 as claimed and that the density is normalized so that

its integral is one. We require the de®nite integral formulasZ1
�1
e�x

2

dx � p�Z1
0
x1=2e�xdx � ��3=2� �

p
�

2

The ®rst formula may also be familiar from the error function in trans-

port phenomena

erf�x� � 2p
�

Z x
0
e�u

2

du

erf�1� � 1

We calculate the integral of the normal density as followsZ1
�1
p��x�dx � 1p

2�� 2

Z1
�1

exp

 
�1
2

�x �m�2
� 2

!
dx

De®ne the change of variable

u � 1p
2

�
x �m
�

�
which gives Z1

�1
p��x�dx � 1p

�

Z1
�1

exp
�
�u2

�
du � 1

and (A.21) does have unit area. Computing the mean gives

E��� � 1p
2�� 2

Z1
�1
x exp

 
�1
2

�x �m�2
� 2

!
dx

using the same change of variables as before yields

E��� � 1p
�

Z1
�1
�
p
2u� �m�e�u2

du
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The ®rst term in the integral is zero because u is an odd function, and

the second term produces

E��� �m
as claimed. Finally the de®nition of the variance of � gives

var��� � 1p
2�� 2

Z1
�1
�x �m�2 exp

 
�1
2

�x �m�2
� 2

!
dx

Changing the variable of integration as before gives

var��� � 2p
�
� 2

Z1
�1
u2e�u

2

du

and because the integrand is an even function,

var��� � 4p
�
� 2

Z1
0
u2e�u

2

du

Now changing the variable of integration again using s � u2 gives

var��� � 2p
�� 2

Z1
0
s1=2e�sds

The second integral formula then gives

var��� � � 2

Shorthand notation for the random variable � having a normal distri-

bution with meanm and variance � 2 is

� � N�m;� 2�

Figure A.8 shows the normal distribution with a mean of one and

variances of 1/2, 1 and 2. Notice that a large variance implies that

the random variable is likely to take on large values. As the variance

shrinks to zero, the probability density becomes a delta function and

the random variable approaches a deterministic value.

Central limit theorem.

The central limit theorem states that if a set of n random

variables xi; i � 1;2; : : : ; n are independent, then under gen-

eral conditions the density py of their sum

y � x1 � x2 � � � � � xn
properly normalized, tends to a normal density as n ! 1.
(Papoulis, 1984, p. 194).
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Figure A.8: Normal distribution, p��x� � 1p
2�� 2

exp
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2

�x �m�2
� 2

!
.

Mean is one and standard deviations are 1/2, 1 and 2.

Notice that we require only mild restrictions on how the xi themselves

are distributed for the sum y to tend to a normal. See Papoulis (1984,

p. 198) for one set of suf®cient conditions and a proof of this theorem.

Fourier transform of the density function. It is often convenient to

handle the algebra of density functions, particularly normal densities,

by using the Fourier transform of the density function rather than the

density itself. The transform, which we denote as'��u�, is often called

the characteristic function or generating function in the statistics liter-

ature. From the de®nition of the Fourier transform

'��u� �
Z1
�1
eiuxp��x�dx

The transform has a one-to-one correspondence with the density func-

tion, which can be seen from the inverse transform formula

p��x� � 1

2�

Z1
�1
e�iux'��u�du
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Example A.36: Fourier transform of the normal density.

Show the Fourier transform of the normal density is

'��u� � exp
�
ium� 1

2u
2� 2

�
. �

A.16 Multivariate Density Functions

In applications we normally do not have a single random variable but

a collection of random variables. We group these variables together

in a vector and let random variable � now take on values in Rn. The

probability density function is still a nonnegative scalar function

p��x� : R
n ! R�

which is sometimes called the joint density function. As in the scalar

case, the probability that the n-dimensional random variable � takes

on values between a and b is given by

Pr�a � � � b� �
Z bn
an
� � �

Z b1
a1

p��x�dx1 � � �dxn

Marginal density functions. We are often interested in only some

subset of the random variables in a problem. Consider two vectors

of random variables, � 2 Rn and � 2 Rm. We can consider the joint

distribution of both of these random variables p�;��x;y� or we may

only be interested in the � variables, in which case we can integrate out

them � variables to obtain the marginal density of �

p��x� �
1Z
� � �

Z
�1

p�;��x;y�dy1 � � �dym

Analogously to produce the marginal density of � we use

p��y� �
1Z
� � �

Z
�1

p�;��x;y�dx1 � � �dxn

Multivariate normal density. We de®ne the multivariate normal den-

sity of the random variable � 2 Rn as

p��x� � 1

�2��n=2�detP�1=2
exp

�
�1
2
�x �m�0P�1�x �m�

�
(A.22)

in which m 2 Rn is the mean and P 2 Rn�n is the covariance matrix.

The notation detP denotes determinant of P . As noted before, P is a
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p�x� � exp
�
�1=2

�
3:5x2

1 � 2�2:5�x1x2 � 4:0x2
2

��

�2 �1
0

1
2

x1 �2 �1
0

1
2

x2

0

0:25

0:5

Figure A.9: Multivariate normal in two dimensions.

real, symmetric matrix. Themultivariate normal density is well-de®ned

only for P > 0. The singular, or degenerate, case P � 0 is discussed

subsequently. Shorthand notation for the random variable � having a

normal distribution with meanm and covariance P is

� � N�m;P�

The matrix P is a real, symmetric matrix. Figure A.9 displays a mul-

tivariate normal for

P�1 �
"
3:5 2:5

2:5 4:0

#
m �

"
0

0

#

As displayed in Figure A.9, lines of constant probability in the multi-

variate normal are lines of constant

�x �m�0P�1�x �m�

To understand the geometry of lines of constant probability (ellipses in

two dimensions, ellipsoids or hyperellipsoids in three or more dimen-

sions) we examine the eigenvalues and eigenvectors of the P�1 matrix.
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Avi � �ivi
x0Ax � b

x2r
b
�2
v2 r

b
�1
v1

x1

q
bAe 11

q
bAe 22

Figure A.10: The geometry of quadratic form x0Ax � b.

Consider the quadratic function x0Ax depicted in Figure A.10. Each

eigenvector of A points along one of the axes of the ellipse x0Ax � b.
The eigenvalues show us how stretched the ellipse is in each eigenvec-

tor direction. If we want to put simple bounds on the ellipse, then we

draw a box around it as shown in Figure A.10. Notice the box contains

much more area than the corresponding ellipse and we have lost the

correlation between the elements of x. This loss of information means

we can put different tangent ellipses of quite different shapes inside

the same box. The size of the bounding box is given by

length of ith side �
q
bAe ii

in which

Ae ii � �i; i� element of A�1

See Exercise A.45 for a derivation of the size of the bounding box. Fig-

ure A.10 displays these results: the eigenvectors are aligned with the

ellipse axes and the eigenvalues scale the lengths. The lengths of the

sides of the box that are tangent to the ellipse are proportional to the

square root of the diagonal elements of A�1.

Singular or degenerate normal distributions. It is often convenient

to extend the de®nition of the normal distribution to admit positive

semide®nite covariance matrices. The distribution with a semide®nite

covariance is known as a singular or degnerate normal distribution (An-
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derson, 2003, p. 30). Figure A.11 shows a nearly singular normal dis-

tribution.

To see how the singular normal arises, let the scalar random variable

� be distributed normally with zero mean and positive de®nite covari-

ance, � � N�0; Px�, and consider the simple linear transformation

� � A� A �
"
1

1

#

in which we have created two identical copies of � for the two compo-

nents �1 and �2 of �. Now consider the density of �. If we try to use

the standard formulas for transformation of a normal, we would have

� � N�0; Py� Py � APxA0 �
"
Px Px
Px Px

#

and Py is singular since its rows are linearly dependent. Therefore one

of the eigenvalues of Py is zero and Py is positive semide®nite and not

positive de®nite. Obviously we cannot use (A.22) for the density in this

case because the inverse of Py does not exist. To handle these cases, we

®rst provide an interpretation that remains valid when the covariance

matrix is singular and semide®nite.

De®nition A.37 (Density of a singular normal). A singular joint normal

density of random variables ��1; �2�, �1 2 Rn1 , �2 2 Rn2 , is denoted"
�1
�2

#
� N

�"
m1

m2

#
;

"
�1 0

0 0

#�
with �1 > 0. The density is de®ned by

p��x1; x2� � 1

�2��
n1
2 �det�1�

1
2

exp

�
�1
2
jx1 �m1�j2��11

�
��x2�m2�

(A.23)

In this limit, the ªrandomº variable �2 becomes deterministic and

equal to its mean m2. For the case n1 � 0, we have the completely

degenerate case in which p�2�x2� � ��x2 �m2�, which describes the

completely deterministic case �2 � m2 and there is no random com-

ponent �1. This expanded de®nition enables us to generalize the im-

portant result that the linear transformation of a normal is normal,

so that it holds for any linear transformation, including rank de®cient

transformations such as the A matrix given above in which the rows
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are not independent (see Exercise 1.40). Starting with the de®nition of

a singular normal, we can obtain the density for � � N�mx; Px� for any

positive semide®nite Px � 0. The result is

p��x� � 1

�2��
r
2 �det�1�

1
2

exp
�� 1

2
j�x �mx�j2Q1

�
��Q02�x �mx��

(A.24)

in which matrices � 2 Rr�r and orthonormal Q 2 Rn�n are obtained

from the eigenvalue decomposition of Px

Px � Q�Q0 �
h
Q1 Q2

i"
�1 0

0 0

#"
Q01
Q02

#

and�1 > 0 2 Rr�r ,Q1 2 Rn�r ,Q2 2 Rn��n�r�. This density is nonzero

for x satisfying Q02�x �mx� � 0. If we let N�Q02� denote the r di-

mensional nullspace of Q02, we have that the density is nonzero for

x 2 N�Q02�� fmxg in which � denotes set addition.

Example A.38: Marginal normal density

Given that � and � are jointly, normally distributed with mean

m �
"
mx

my

#

and covariance matrix

P �
"
Px Pxy
Pyx Py

#

show that the marginal density of � is normal with the following pa-

rameters

� � N�mx; Px� (A.25)

Solution

As a ®rst approach to establish (A.25), we directly integrate the y vari-

ables. Let Åx � x �mx and Åy � y �my , and nx and ny be the dimen-

sion of the � and � variables, respectively, and n � nx �ny . Then the

de®nition of the marginal density gives

p��x� � 1

�2��n=2�detP�1=2

Z1
�1

exp

24�1
2

"
Åx

Åy

#0 "
Px Pxy
Pyx Py

#�1 "
Åx

Åy

#35dÅy
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Let the inverse of P be denoted as Pe and partition Pe as follows"
Px Pxy
Pyx Py

#�1
�
"
Pex Pexy
Peyx Pey

#
(A.26)

Substituting (A.26) into the de®nition of the marginal density and ex-

panding the quadratic form in the exponential yields

�2��n=2�detP�1=2p��x� �

exp
�
��1=2�Åx0Pex Åx�Z1

�1
exp

�
��1=2��2Åy 0Peyx Åx � Åy 0Pey Åy��dÅy

We complete the square on the term in the integral by noting that

�Åy�Pe�1y Peyx Åx�0Pey�Åy�Pe�1y Peyx Åx� � Åy 0Pey Åy�2Åy 0Peyx Åx�Åx0Pe 0yxPe�1y Peyx Åx
Substituting this relation into the previous equation gives

�2��n=2�detP�1=2p��x� � exp

�
��1=2�Åx0�Pex � Pe 0yxPe�1y Peyx�Åx�Z1

�1
exp

�
��1=2��Åy � a�0Pey�Åy � a��dÅy

in which a � Pe�1y Peyx Åx. Using (A.22) to evaluate the integral gives

p��x� � 1

�2��nx=2
�
det�P�det�Pey��1=2 exp

�
��1=2�Åx0�Pex � Pe 0yxPe�1y Peyx�Åx�

From the matrix inversion formula we conclude

Pex � Pe 0xyPe�1y Peyx � P�1x
and

det�P� � det�Px�det�Py � PyxP�1x Pxy� � detPx detPe�1y � detPx

detPey
Substituting these results into the previous equation gives

p��x� � 1

�2��nx=2�detPx�1=2
exp

�
��1=2�Åx0P�1x Åx

�
Therefore

� � N�mx; Px�

�



A.16 Multivariate Density Functions 665

p�x� � exp
�
�1=2

�
27:2x2

1 � 2��43:7�x1x2 � 73:8x2
2

��

�2�1
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Figure A.11: A nearly singular normal density in two dimensions.

Functions of random variables. In stochastic dynamical systems we

need to know how the density of a random variable is related to the

density of a function of that random variable. Let f : Rn ! Rn be

a mapping of the random variable � into the random variable � and

assume that the inverse mapping also exits

� � f���; � � f�1���

Given the density of �;p��x�; we wish to compute the density of �,

p��y�, induced by the function f . Let S denote an arbitrary region of

the ®eld of the random variable � and de®ne the set S0 as the transform

of this set under the function f

S0 � fy j y � f�x�;x 2 Sg

Then we seek a function p��y� such thatZ
S
p��x�dx �

Z
S0
p��y�dy (A.27)
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for every admissible set S. Using the rules of calculus for transforming

a variable of integration we can writeZ
S
p��x�dx �

Z
S0
p��f

�1�y��

�����det
�
@f�1�y�

@y

������dy (A.28)

in which
��det�@f�1�y�=@y��� is the absolute value of the determinant

of the Jacobian matrix of the transformation from � to �. Subtracting

(A.28) from (A.27) givesZ
S0

�
p��y�� p��f�1�y��

���det�@f�1�y�=@y�����dy � 0 (A.29)

Because (A.29) must be true for any set S0, we conclude (a proof by

contradiction is immediate)8

p��y� � p��f�1�y��
���det�@f�1�y�=@y���� (A.30)

Example A.39: Nonlinear transformation

Show that

p��y� � 1

3
p
2��y2=3

exp

24�1
2

 
y1=3 �m

�

!2
35

is the density function of the random variable � under the transforma-

tion

� � �3

for � � N�m;� 2�. Notice that the density p� is singular at y � 0. �

Noninvertible transformations. Given n random variables � � ��1;
�2; : : : ; �n� with joint density p� and k random variables � � ��1; �2;
: : : ; �k� de®ned by the transformation � � f���

�1 � f1��� �2 � f2��� � � � �k � fk���

We wish to ®nd p� in terms of p� . Consider the region generated in Rn

by the vector inequality

f�x� � c
8Some care should be exercised if one has generalized functions in mind for the

conditional density.
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c x1

c

x2

X�c�

Figure A.12: The region X�c� for y �max�x1; x2� � c.

Call this region X�c�, which is by de®nition

X�c� � fx j f�x� � cg
Note X is not necessarily simply connected. The probability distribu-

tion (not density) for � then satis®es

P��y� �
Z
X�y�

p��x�dx (A.31)

If the density p� is of interest, it can be obtained by differentiating P�.

Example A.40: Maximum of two random variables

Given two independent random variables, �1; �2 and the new random

variable de®ned by the noninvertible, nonlinear transformation

� �max��1; �2�

Show that �'s density is given by

p��y� � p�1�y�
Z y
�1
p�2�x�dx � p�2�y�

Z y
�1
p�1�x�dx

Solution

The region X�c� generated by the inequality y � max�x1; x2� � c is

sketched in Figure A.12. Applying (A.31) then gives

P��y� �
Z y
�1

Z y
�1
p��x1; x2�dx1dx2

� P��y;y�
� P�1�y�P�2�y�
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which has a clear physical interpretation. It says the probability that

the maximum of two independent random variables is less than some

value is equal to the probability that both random variables are less

than that value. To obtain the density, we differentiate

p��y� � p�1�y�P�2�y�� P�1�y�p�2�y�

� p�1�y�
Z y
�1
p�2�x�dx � p�2�y�

Z y
�1
p�1�x�dx

�

A.16.1 Statistical Independence and Correlation

We say two random variables �; � are statistically independent or sim-

ply independent if

p�;��x;y� � p��x�p��y�; all x;y

The covariance of two random variables �; � is de®ned as

cov��; �� � E ��� �E���� ���E�����

The covariance of the vector-valued random variable � with compo-

nents �i; i � 1; : : : n can be written as

Pij � cov��i; �j�

P �

266664
var��1� cov��1; �2� � � � cov��1; �n�

cov��2; �1� var��2� � � � cov��2; �n�
...

...
. . .

...

cov��n; �1� cov��n; �2� � � � var��n�

377775
We say two random variables, � and �, are uncorrelated if

cov��; �� � 0

Example A.41: Independent implies uncorrelated

Prove that if � and � are statistically independent, then they are uncor-

related.
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Solution

The de®nition of covariance gives

cov��; �� � E��� �E�������E�����
� E���� �E���� �E����E���E����
� E�����E���E���

Taking the expectation of the product �� and using the fact that � and

� are independent gives

E���� �
1ZZ
�1

xyp�;��x;y�dxdy

�
1ZZ
�1

xyp��x�p��y�dxdy

�
Z1
�1
xp��x�dx

Z1
�1
yp��y�dy

� E���E���
Substituting this fact into the covariance equation gives

cov��; �� � 0

�

Example A.42: Does uncorrelated imply independent?

Let � and � be jointly distributed random variables with probability

density function

p�;��x;y� �
(

1
4�1� xy�x2 �y2��; jxj < 1;

��y�� < 1

0; otherwise

(a) Compute the marginals p��x� and p��y�. Are � and � indepen-

dent?

(b) Compute cov��; ��. Are � and � uncorrelated?

(c) What is the relationship between independent and uncorrelated?

Are your results on this example consistent with this relationship?

Why or why not?
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p�;��x;y� � 1
4

�
1� xy�x2 �y2�

�

�1
0

1
x

�1
0

1

y
0

0:25

0:5

Figure A.13: A joint density function for the two uncorrelated ran-

dom variables in Example A.42.

Solution

The joint density is shown in Figure A.13.

(a) Direct integration of the joint density produces

p��x� � �1=2�; jxj < 1 E��� � 0

p��y� � �1=2�;
��y�� < 1 E��� � 0

and we see that both marginals are zero mean, uniform densities.

Obviously � and � are not independent because the joint density

is not the product of the marginals.

(b) Performing the double integral for the expectation of the product

term gives

E���� �
1ZZ
�1

xy � �xy�2�x2 �y2�dxdy

� 0
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and the covariance of � and � is therefore

cov��; �� � E�����E���E���
� 0

and � and � are uncorrelated.

(c) We know independent implies uncorrelated. This example does

not contradict that relationship. This example shows uncorre-

lated does not imply independent, in general, but see the next

example for normals.

�

Example A.43: Independent and uncorrelated are equivalent for nor-

mals

If two random variables are jointly normally distributed,"
�

�

#
� N

 "
mx

my

#
;

"
Px Pxy
Pyx Py

#!

Prove � and � are statistically independent if and only if � and � are

uncorrelated, or, equivalently, P is block diagonal.

Solution

We have already shown that independent implies uncorrelated for any

density, so we now show that, for normals, uncorrelated implies inde-

pendent. Given cov��; �� � 0, we have

Pxy � P 0yx � 0 detP � detPx detPy

so the density can be written

p�;��x;y� �
exp

0@�1
2

"
Åx

Åy

#0 "
Px 0

0 Py

#�1 "
Åx

Åy

#1A
�2���nx�ny �=2

�
detPx detPy

�1=2 (A.32)

For any joint normal, we know the marginals are simply

� � N�mx; Px� � � N�my ; Py�
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so we have

p��x� � 1

�2��nx=2�detPx�1=2
exp

�
��1=2�Åx0P�1x Åx

�
p��y� � 1

�2��ny=2�detPy�1=2
exp

�
��1=2�Åy 0P�1y Åy

�
Forming the product and combining terms gives

p��x�p��y� �
exp

 
�1

2

"
Åx

Åy

#0 "
P�1x 0

0 P�1y

#"
Åx

Åy

#!
�2���nx�ny �=2

�
detPx detPy

�1=2
Comparing this equation to (A.32), and using the inverse of a block-

diagonal matrix, we have shown that � and � are statistically indepen-

dent. �

A.17 Conditional Probability and Bayes's Theorem

Let � and � be jointly distributed random variables with density p�;��x;

y�. We seek the density function of � given a speci®c realization y of

� has been observed. We de®ne the conditional density function as

p�j��xjy� �
p�;��x;y�

p��y�

Consider a roll of a single die in which � takes on values E or O to

denote whether the outcome is even or odd and � is the integer value

of the die. The twelve values of the joint density function are simply

computed

p�;��1;E� � 0

p�;��2;E� � 1=6

p�;��3;E� � 0

p�;��4;E� � 1=6

p�;��5;E� � 0

p�;��6;E� � 1=6

p�;��1;O� � 1=6

p�;��2;O� � 0

p�;��3;O� � 1=6

p�;��4;O� � 0

p�;��5;O� � 1=6

p�;��6;O� � 0

(A.33)

The marginal densities are then easily computed; we have for �

p��x� �
EX

y�O

p�;��x;y�
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which gives by summing across rows of (A.33)

p��x� � 1=6; x � 1;2; : : :6

Similarly, we have for �

p��y� �
6X

x�1

p�;��x;y�

which gives by summing down the columns of (A.33)

p��y� � 1=2; y � E;O

These are both in accordance of our intuition on the rolling of the die:

uniform probability for each value 1 to 6 and equal probability for an

even or an odd outcome. Now the conditional density is a different

concept. The conditional density p�j��x;y� tells us the density of x

given that � � y has been observed. So consider the value of this

function

p�j��1jO�
which tells us the probability that the die has a 1 given that we know

that it is odd. We expect that the additional information on the die

being odd causes us to revise our probability that it is 1 from 1/6 to

1/3. Applying the de®ning formula for conditional density indeed gives

p�j��1jO� � p�;��1;O�=p��O� � 1=6

1=2
� 1=3

Consider the reverse question, the probability that we have an odd

given that we observe a 1. The de®nition of conditional density gives

p�;��Oj1� � p�;��O;1�=p��1� � 1=6

1=6
� 1

i.e., we are sure the die is odd if it is 1. Notice that the arguments to

the conditional density do not commute as they do in the joint density.

This fact leads to a famous result. Consider the de®nition of condi-

tional density, which can be expressed as

p�;��x;y� � p�j��xjy�p��y�

or

p�;��y;x� � p�j��yjx�p��x�
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Because p�;��x;y� � p�;��y;x�, we can equate the right-hand sides

and deduce

p�j��xjy� �
p�j��yjx�p��x�

p��y�

which is known as Bayes's theorem (Bayes, 1763). Notice that this re-

sult comes in handy whenever we wish to switch the variable that is

known in the conditional density, which we will see is a key step in

state estimation problems.

Example A.44: Conditional normal density

Show that if � and � are jointly normally distributed as"
�

�

#
� N

 "
mx

my

#
;

"
Px Pxy
Pyx Py

#!

then the conditional density of � given � is also normal

��j�� � N�m;P�

in which the mean is

m �mx � PxyP�1y �y �my� (A.34)

and the covariance is

P � Px � PxyP�1y Pyx (A.35)

Solution

The de®nition of conditional density gives

p�j��xjy� �
p�;��x;y�

p��y�

Because ��; �� is jointly normal, we know from Example A.38

p��y� � 1

�2��n�=2�detPy�1=2
exp

�
��1=2��y �my�

0P�1y �y �my�
�

and therefore

p�j��xjy� �
�detPy�1=2

�2��n�=2

 
det

"
Px Pxy
Pyx Py

#!1=2 exp��1=2a� (A.36)
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in which the argument of the exponent is

a �
"
x �mx

y �my

#0 "
Px Pxy
Pyx Py

#�1 "
x �mx

y �my

#
��y�my�

0P�1y �y�my�

If we use P � Px � PxyP�1y Pyx as de®ned in (A.35) then we can use the

partitioned matrix inversion formula to express the matrix inverse in

the previous equation as"
Px Pxy
Pyx Py

#�1
�
"

P�1 �P�1PxyP�1y
�P�1y PyxP�1 P�1y � P�1y PyxP�1PxyP�1y

#

Substituting this expression and multiplying out terms yields

a � �x �mx�
0P�1�x �mx�� 2�y �my�

0�P�1y PyxP
�1��x �mx�

� �y �my�
0�P�1y PyxP

�1PxyP
�1
y ��y �my�

which is the expansion of the following quadratic term

a �
h
�x �mx�� PxyP�1y �y �my�

i0
P�1

h
�x �mx�� PxyP�1y �y �my�

i
in which we use the fact that Pxy � P 0yx . Substituting (A.34) into this

expression yields

a � �x �m�0P�1�x �m� (A.37)

Finally noting that for the partitioned matrix

det

"
Px Pxy
Pyx Py

#
� detPy detP (A.38)

and substitution of equations (A.38) and (A.37) into (A.36) yields

p�j��xjy� � 1

�2��n�=2�detP�1=2
exp

�
�1
2
�x �m�0P�1�x �m�

�
which is the desired result. �

Example A.45: More normal conditional densities

Let the joint conditional of random variables a and b given c be a nor-

mal distribution with

p�a;bjc� � N
 "

ma

mb

#
;

"
Pa Pab
Pba Pb

#!
(A.39)
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Then the conditional density of a given b and c is also normal

p�ajb; c� � N�m;P�

in which the mean is

m �ma � PabP�1b �b �mb�

and the covariance is

P � Pa � PabP�1b Pba

Solution

From the de®nition of joint density we have

p�ajb; c� � p�a;b; c�
p�b; c�

Multiplying the top and bottom of the fraction by p�c� yields

p�ajb; c� � p�a;b; c�
p�c�

p�c�

p�b; c�

or

p�ajb; c� � p�a;bjc�
p�bjc�

Substituting the distribution given in (A.39) and using the result in Ex-

ample A.38 to evaluate p�bjc� yields

p�ajb; c� �
N

 "
ma

mb

#
;

"
Pa Pab
Pba Pb

#!
N�mb; Pb�

And now applying the methods of Example A.44 this ratio of normal

distributions reduces to the desired expression. �

Adjoint operator. Given a linear operator G : U ! V and inner prod-

ucts for the spaces U and V, the adjoint of G, denoted by G� is the

linear operator G� : V! U such that

hu;G�vi � hGu;vi; 8u 2 U; v 2 V (A.40)
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Dual dynamic system (Callier and Desoer, 1991). The dynamic sys-

tem

x�k� 1� � Ax�k�� Bu�k�; k � 0; : : : ;N � 1

y�k� � Cx�k��Du�k�
maps an initial condition and input sequence �x�0�;u�0�; : : : ; u�N�1��
into a ®nal condition and an output sequence �x�N�;y�0�; : : : ; y�N �
1��. Call this linear operator G266664

x�N�

y�0�
...

y�N � 1�

377775 � G
266664

x�0�

u�0�
...

u�N � 1�

377775
The dual dynamic system represents the adjoint operator G�266664

x�0�

y�1�
...

y�N�

377775 � G�
266664
x�N�

u�1�
...

u�N�

377775
We de®ne the usual inner product, ha;bi � a0b, and substitute into

(A.40) to obtain

x�0�0x�0��u�0�0y�1�� � � � �u�N � 1�0y�N�| {z }
hu;G�vi

�

x�N�0x�N��y�0�0u�1�� � � � �y�N � 1�0u�N�| {z }
hGu;vi

� 0

If we express the y�k� in terms of x�0� and u�k� and collect terms we

obtain

0 � x�0�0
h
x�0�� C0u�1��A0C0u�2�� � � � �A0Nx�N�

i
�u�0�0

h
y�1��D0u�1�� B0C0u�2�� � � � � B0A0�N�2�C0u�N�� B0A0�N�1�x�N�

i
� � � �
�u�N � 2�0

�
y�N � 1��D0u�N � 1�� B0C0u�N�� B0A0x�N��

�u�N � 1�0
�
y�N��D0u�N�� B0x�N��

Since this equation must hold for all �x�0�;u�0�; : : : ; u�N � 1��, each

term in brackets must vanish. From the u�N � 1� term we conclude

y�N� � B0x�N��D0u�N�
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Using this result, the u�N � 2� term gives

B0
�
x�N � 1�� �A0x�N�� C0u�N��� � 0

From which we ®nd the state recursion for the dual system

x�N � 1� � A0x�N�� C0u�N�
Passing through each term then yields the dual state space description

of the adjoint operator G�

x�k� 1� � A0x�k�� C0u�k�; k � N; : : : ;1
y�k� � B0x�k��D0u�k�

So the primal and dual dynamic systems change matrices in the follow-

ing way

�A; B;C;D� -! �A0; C0; B0;D0�
Notice this result produces the duality variables listed in Table A.1 if

we ®rst note that we have also renamed the regulator's input matrix B

to G in the estimation problem. We also note that time runs in the op-

posite directions in the dynamic system and the dual dynamic system,

which corresponds to the fact that the Riccati equation iterations run

in opposite directions in the regulation and estimation problems.

A.18 Exercises

Exercise A.1: Norms in Rn

Show that the following three functions are all norms in Rn

jxj2 :�
0@ nX
i�1

�xi�2

1A1=2

jxj1 :�maxf
���x1��� ;���x2��� ; : : : ;��xn��g

jxj1 :�
nX
i�1

���xj���
where xj denotes the jth component of the vector x.

Exercise A.2: Equivalent norms

Show that there are ®nite constants Kij ; i; j � 1;2;1 such that

jxji � Kij jxjj ; for all i; j 2 f1;2;1g:
This result shows that the norms are equivalent and may be used interchangeably for

establishing that sequences are convergent, sets are open or closed, etc.
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Regulator Estimator

A A0

B C0

C G0

k l � N � k
��k� P��l�

��k� 1� P��l� 1�

� P�

Q Q

R R

Q�N� Q�0�

K �Le0
A� BK �A� LeC�0
x "

Regulator Estimator

R > 0; Q > 0 R > 0; Q > 0

�A; B� stabilizable �A;C� detectable

�A;C� detectable �A;G� stabilizable

Table A.1: Duality variables and stability conditions for linear quad-

ratic regulation and linear estimation.

Exercise A.3: Open and closed balls

Let x 2 Rn and � > 0 be given. Show that fz j jz � xj < �g is open and that B�x;�� is

closed.

Exercise A.4: Condition for closed set

Show that X � Rn is closed if and only if int�B�x; ��� \ X 6� ; for all � > 0 implies

x 2 X.

Exercise A.5: Convergence

Suppose that xi ! Ãx as i!1; show that for every � > 0 there exists an ip 2 I�0 such

that xi 2 B�Ãx;�� for all i � ip .

Exercise A.6: Limit is unique

Suppose that Ãx; Ãx0 are limits of a sequence
�
xi
�
i2I�0

. Show that Ãx � Ãx0.

Exercise A.7: Open and closed sets

(a) Show that a set X � Rn is open if and only if, for any Ãx 2 X and any sequence�
xi
� � Rn such that xi ! Ãx as i ! 1, there exists a q 2 I�0 such that xi 2 X

for all i � q.

(b) Show that a set X � Rn is closed if and only if for all
�
xi
� � X, if xi ! Ãx as

i ! 1, then Ãx 2 X, i.e., a set X is closed if and only if it contains the limit of

every convergent sequences lying in X.
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Exercise A.8: Decreasing and bounded below

Prove the observation at the end of Section A.10 that a monotone decreasing sequence

that is bounded below converges.

Exercise A.9: Continuous function

Show that f : Rn ! Rm is continuous at Ãx implies f�xi�! f�Ãx� for any sequence
�
xi
�

satisfying xi ! Ãx as i!1.

Exercise A.10: Alternative proof of existence of minimum of continuous
function on compact set

Prove Proposition A.7 by making use of the fact that f�X� is compact.

Exercise A.11: Differentiable implies Lipschitz

Suppose that f : Rn ! Rm has a continuous derivative fx��� in a neighborhood of Ãx.

Show that f is locally Lipschitz continuous at Ãx.

Exercise A.12: Continuous, Lipschitz continuous, and differentiable

Provide examples of functions meeting the following conditions.

1. Continuous but not Lipschitz continuous.

2. Lipschitz continuous but not differentiable.

Exercise A.13: Differentiating quadratic functions and time-varying matrix
inverses

(a) Show that rf�x� � Qx if f�x� � �1=2�x0Qx and Q is symmetric.

(b) Show that �d=dt�A�1�t� � �A�1�t� ÇA�t�A�1�t� if A : R ! Rn�n, A�t� is invert-
ible for all t 2 R, and ÇA�t� :� �d=dt�A�t�.

Exercise A.14: Directional derivative

Suppose that f : Rn ! Rm has a derivative fx�Ãx� at Ãx. Show that for any h, the
directional derivative df�Ãx;h� exists and is given by

df�Ãx;h� � fx�Ãx�h � �@f�x�=@x�h:

Exercise A.15: Convex combination

Suppose S � Rn is convex. Let fxigki�1 be points in S and let f�igki�1 be scalars such

that �i � 0 for i � 1;2; : : : ; k and
Pk
i�1 �

i � 1. Show that0@ kX
i�1

�ixi

1A 2 S:
Exercise A.16: Convex epigraph

Show that f : Rn ! R is convex if and only if its epigraph is convex.
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Exercise A.17: Bounded second derivative and minimum

Suppose that f : Rn ! R is twice continuously differentiable and that for some 1 >
M �m > 0, M

��y��2 � hy; @2f=@x2�x�yi �m ��y��2 for all x;y 2 Rn. Show that the

sublevel sets of f are convex and compact and that f��� attains its in®mum.

Exercise A.18: Sum and max of convex functions are convex

Suppose that fi : R
n ! R; i � 1;2; : : : ;m are convex. Show that

 1�x� :�max
i
ffi�x� j i 2 f1;2; : : : ;mgg;

 2�x� :�
mX
i�1

fi�x�

are both convex.

Exercise A.19: Einige kleine Mathprobleme

(a) Prove that if � is an eigenvalue and v is an eigenvector of A (Av � �v), then �
is also an eigenvalue of T in which T is upper triangular and given by the Schur

decomposition of A
Q�AQ � T

What is the corresponding eigenvector?

(b) Prove statement 1 on positive de®nite matrices (from Section A.7). Where is this

fact needed?

(c) Prove statement 6 on positive de®nite matrices. Where is this fact needed?

(d) Prove statement 5 on positive de®nite matrices.

(e) Prove statement 8 on positive semide®nite matrices.

(f) Derive the two expressions for the partitioned A�1.

Exercise A.20: Positive de®nite but not symmetric matrices

Consider rede®ning the notation A > 0 for A 2 Rn�n to mean x0Ax > 0 for all x 2
Rn � 0. In other words, the restriction that A is symmetric in the usual de®nition of

positive de®niteness is removed. Consider also B :� �A � A0�=2. Show the following

hold for all A. (a) A > 0 if and only if B is positive de®nite. (b) tr�A� � tr�B�. (Johnson,
1970; Johnson and Hillar, 2002)

Exercise A.21: Trace of a matrix function

Derive the following formula for differentiating the trace of a function of a square

matrix
d tr�f �A��

dA
� g�A0� g�x� � df�x�

dx
in which g is the usual scalar derivative of the scalar function f . This result proves

useful in evaluating the change in the expectation of the stage cost in stochastic control

problems.
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Exercise A.22: Some matrix differentiation

Derive the following formulas (Bard, 1974). A;B 2 Rn�n; a;x 2 Rn.

(a)
@x0Ax

@x
� Ax �A0x

(b)
@Axa0Bx

@x0
� �a0Bx�A�Axa0B

(c)
@a0Ab

@A
� ab0

Exercise A.23: Partitioned matrix inversion formula

In deriving the partitioned matrix inversion formula we assumed A is partitioned into

A �
"
B C
D E

#

and that A�1; B�1 and E�1 exist. In the ®nal formula, the term

�E �DB�1C��1

appears, but we did not assume this matrix is invertible. Did we leave out an assump-

tion or can the existence of this matrix inverse be proven given the other assumptions?

If we left out an assumption, provide an example in which this matrix is not invertible.

If it follows from the other assumptions, prove this inverse exists.

Exercise A.24: Partitioned positive de®nite matrices

Consider the partitioned positive de®nite, symmetric matrix

H �
"
H11 H12

H21 H22

#
Prove that the following matrices are also positive de®nite

1. H11

2. H22

3. H in which

H �
"
H11 �H12

�H21 H22

#

4. H11 �H12H
�1
22 H21 and H22 �H21H

�1
11 H12

Exercise A.25: Properties of the matrix exponential

Prove that the following properties of the matrix exponential, which are useful for

dealing with continuous time linear systems. The matrix A is a real-valued n � n
matrix, and t is real.

(a)

rank
�
eAt

�
� n 8t
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(b)

rank

 Z t
0
eA�d�

!
� n 8t > 0

Exercise A.26: Controllability in continuous time

A linear, time-invariant, continuous time system

dx

dt
� Ax � Bu

x�0� � x0 (A.41)

is controllable if there exists an input u�t�;0 � t � t1; t1 > 0 that takes the system

from any x0 at time zero to any x1 at some ®nite time t1.

(a) Prove that the system in (A.41) is controllable if and only if

rank �C� � n
in which C is, remarkably, the same controllability matrix that was de®ned for

discrete time systems 1.16

C �
h
B AB � � � An�1B

i
(b) Describe a calculational procedure for ®nding this required input.

Exercise A.27: Reachability Gramian in continuous time

Consider the symmetric, n�n matrix W de®ned by

W�t� �
Z t
0
e�t���ABB0e�t���A

0

d�

The matrixW is known as the reachability Gramian of the linear, time-invariant system.

The reachability Gramian proves useful in analyzing controllability and reachability.

Prove the following important properties of the reachability Gramian.

(a) The reachability Gramian satis®es the following matrix differential equation

dW

dt
� BB0 �AW �WA0

W�0� � 0

which provides one useful way to calculate its values.

(b) The reachability Gramian W�t� is full rank for all t > 0 if and only if the system

is controllable.

Exercise A.28: Differences in continuous time and discrete time systems

Consider the de®nition that a system is controllable if there exists an input that takes

the system from any x0 at time zero to any x1 at some ®nite time t1.

(a) Show that x1 can be taken as zero without changing the meaning of controlla-

bility for a linear continuous time system.

(b) In linear discrete time systems, x1 cannot be taken as zero without changing the

meaning of controllability. Why not? Which A require a distinction in discrete

time. What are the eigenvalues of the corresponding A in continuous time?
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Exercise A.29: Observability in continuous time

Consider the linear time-invariant continuous time system

dx

dt
� Ax

x�0� � x0 (A.42)

y � Cx
and let y�t;x0� represent the solution to (A.42) as a function of time t given starting

state value x0 at time zero. Consider the output from two different initial conditions

y�t;w�; y�t;z� on the time interval 0 � t � t1 with t1 > 0.

The system in (A.42) is observable if

y�t;w� � y�t;z�; 0 � t � t1 =) w � z
In other words, if two output measurement trajectories agree, the initial conditions

that generated the output trajectories must agree, and hence, the initial condition is

unique. This uniqueness of the initial condition allows us to consider building a state

estimator to reconstruct x�0� from y�t;x0�. After we have found the unique x�0�,
solving the model provides the rest of the state trajectory x�t�. We will see later that

this procedure is not the preferred way to build a state estimator; it simply shows that

if the system is observable, the goal of state estimation is reasonable.

Show that the system in (A.42) is observable if and only if

rank �O� � n
in which O is, again, the same observability matrix that was de®ned for discrete time

systems 1.36

O �

2666664
C
CA
.
.
.

CAn�1

3777775
Hint: what happens if you differentiate y�t;w� � y�t;z� with respect to time? How

many times is this function differentiable?

Exercise A.30: Observability Gramian in continuous time

Consider the symmetric, n�n matrix Wo de®ned by

Wo�t� �
Z t
0
eA

0�C0CeA�d�

The matrix Wo is known as the observability Gramian of the linear, time-invariant sys-

tem. Prove the following important properties of the observability Gramian.

(a) The observability GramianWo�t� is full rank for all t > 0 if and only if the system

is observable.

(b) Consider an observable linear time invariant systemwithu�t� � 0 so thaty�t� �
CeAtx0. Use the observability Gramian to solve this equation forx0 as a function
of y�t�;0 � t � t1.

(c) Extend your result from the previous part to ®nd x0 for an arbitrary u�t�.
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Exercise A.31: Detectability of �A; C� and output penalty

Given a system

x�k� 1� � Ax�k�� Bu�k�
y�k� � Cx�k�

Suppose �A;C� is detectable and an input sequence has been found such that

u�k�! 0 y�k�! 0

Show that x�k�! 0.

Exercise A.32: Prove your favorite Hautus lemma

Prove the Hautus lemma for controllability, Lemma 1.2, or observability, Lemma 1.4.

Exercise A.33: Positive semide®nite Q penalty and its square root

Consider the linear quadratic problem with system

x�k� 1� � Ax�k�� Bu�k�
y�k� � Q1=2x�k�

and in®nite horizon cost function

� �
1X
k�0

x�k�0Qx�k��u�k�0Ru�k�

�
1X
k�0

y�k�0y�k��u�k�0Ru�k�

with Q � 0, R > 0, and �A; B� stabilizable. In Exercise A.31 we showed that if �A;Q1=2�
is detectable and an input sequence has been found such that

u�k�! 0 y�k�! 0

then x�k�! 0.

(a) Show that if Q � 0, then Q1=2 is a well de®ned, real, symmetric matrix and

Q1=2 � 0.

Hint: apply Theorem A.1 to Q, using the subsequent fact 3.

(b) Show that �A;Q1=2� is detectable (observable) if and only if �A;Q� is detectable
(observable). So we can express one of the LQ existence, uniqueness, and stability

conditions using detectability of �A;Q� instead of �A;Q1=2�.

Exercise A.34: Probability density of the inverse function

Consider a scalar random variable � 2 R and let the random variable � be de®ned by

the inverse function

� � ��1

(a) If � is distributed uniformly on �a;1� with 0 < a < 1, what is the density of �?

(b) Is �'s density well de®ned if we allow a � 0? Explain your answer.



686 Mathematical Background

Exercise A.35: Expectation as a linear operator

(a) Consider the random variable x to be de®ned as a linear combination of the

random variables a and b
x � a� b

Show that

E�x� � E�a��E�b�
Do a and b need to be statistically independent for this statement to be true?

(b) Next consider the random variable x to be de®ned as a scalar multiple of the

random variable a
x � �a

Show that

E�x� � �E�a�

(c) What can you conclude about E�x� if x is given by the linear combination

x �
X
i

�ivi

in which vi are random variables and �i are scalars.

Exercise A.36: Minimum of two random variables

Given two independent random variables, �1; �2 and the random variable de®ned by

the minimum operator

� �min��1; �2�

(a) Sketch the region X�c� for the inequality min�x1; x2� � c.

(b) Find �'s probability density in terms of the probability densities of �1; �2.

Exercise A.37: Maximum of n normally distributed random variables

Given n independent, identically distributed normal random variables, �1; �2; : : : ; �n
and the random variable de®ned by the maximum operator

� �max��1; �2; : : : �n�

(a) Derive a formula for �'s density.

(b) Plot p� for �i � N�0;1� and n � 1;2; : : :5. Describe the trend in p� as n in-

creases.

Exercise A.38: Another picture of mean

Consider a scalar random variable � with probability distribution P� shown in Fig-

ure A.14. Consider the inverse probability distribution, P�1� , also shown in Figure A.14.

(a) Show that the expectation of � is equal to the following integral of the probability
distribution (David, 1981, p. 38)

E��� � �
Z 0

�1
P��x�dx �

Z1
0
�1� P��x��dx (A.43)
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0

P��x�

0 1

A1

A2

A1

A2

P�1� �w�

x

w

Figure A.14: The probability distribution and inverse distribution for

random variable �. The mean of � is given by the dif-

ference in the hatched areas, E��� � A2 �A1.

(b) Show that the expectation of � is equal to the following integral of the inverse

probability distribution

E��� �
Z 1

0
P�1� �w�dw (A.44)

These interpretations of mean are shown as the hatched areas in Figure A.14,

E��� � A2 �A1.

Exercise A.39: Ordering random variables

We can order two random variables A and B if they obey an inequality such as A � B.
The frequency interpretation of the probability distribution, PA�c� � Pr�A � c�, then
implies that PA�c� � PB�c� for all c.

If A � B, show that

E�A� � E�B�

Exercise A.40: Max of the mean and mean of the max

Given two random variables A and B, establish the following inequality

max�E�A�;E�B�� � E�max�A; B��

In other words, the max of the mean is an underbound for the mean of the max.

Exercise A.41: Observability

Consider the linear system with zero input

x�k� 1� � Ax�k�
y�k� � Cx�k�
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with

A �
264 1 0 0

0 1 0

2 1 1

375 ; C �
"

1 0 0

0 1 0

#

(a) What is the observability matrix for this system? What is its rank?

(b) Consider a string of data measurements

y�0� � y�1� � � � � � y�n� 1� � 0

Now x�0� � 0 is clearly consistent with these data. Is this x�0� unique? If yes,

prove it. If no, characterize the set of all x�0� that are consistent with these

data.

Exercise A.42: Nothing is revealed

An agitated graduate student shows up at your of®ce. He begins, ªI am afraid I have

discovered a deep contradiction in the foundations of systems theory.º You ask him

to calm down and tell you about it. He continues, ªWell, we have the pole placement

theorem that says if �A;C� is observable, then there exists a matrix L such that the

eigenvalues of an observer

A�ALC
can be assigned arbitrarily.º

You reply, ªWell, they do have to be conjugate pairs because the matrices A;L;C
are real-valued, but yeah, sure, so what?º

He continues, ªWell we also have the Hautus lemma that says �A;C� is observable
if and only if

rank

"
�I �A
C

#
� n 8� 2 C

ªYou know, the Hautus lemma has always been one of my favorite lemmas; I don't

see a problem,º you reply.

ªWell,º he continues, ªisn't the innovations form of the system, �A � ALC;C�, ob-
servable if and only if the original system, �A;C�, is observable?º

ªYeah . . . I seem to recall something like that,º you reply, starting to feel a little

uncomfortable.

ªOK, how about if I decide to put all the observer poles at zero?º he asks, innocently.

You object, ªWait a minute, I guess you can do that, but that's not going to be a

very good observer, so I don't think it matters if . . . .º

ªWell,º he interrupts, ªhow about we put all the eigenvalues of A � ALC at zero,

like I said, and then we check the Hautus condition at � � 0? I get

rank

"
�I � �A�ALC�

C

#
� rank

"
0

C

#
� � 0

ªSo tell me, how is that matrix on the right ever going to have rank n with that big, fat

zero sitting there?º At this point, you start feeling a little dizzy.

What's causing the contradiction here: the pole placement theorem, the Hautus

lemma, the statement about equivalence of observability in innovations form, some-

thing else? How do you respond to this student?
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Exercise A.43: The sum of throwing two dice

Using (A.30), what is the probability density for the sum of throwing two dice? On what

number do you want to place your bet? How often do you expect to win if you bet on

this outcome?

Make the standard assumptions: the probability density for each die is uniform

over the integer values from one to six, and the outcome of each die is independent of

the other die.

Exercise A.44: The product of throwing two dice

Using (A.30), what is the probability density for the product of throwing two dice? On

what number do you want to place your bet? How often do you expect to win if you

bet on this outcome?

Make the standard assumptions: the probability density for each die is uniform

over the integer values from one to six, and the outcome of each die is independent of

the other die.

Exercise A.45: The size of an ellipse's bounding box

Here we derive the size of the bounding box depicted in Figure A.10. Consider a real,

positive de®nite, symmetric matrix A 2 Rn�n and a real vector x 2 Rn. The set of x
for which the scalar x0Ax is constant are n-dimensional ellipsoids. Find the length of

the sides of the smallest box that contains the ellipsoid de®ned by

x0Ax � b
Hint: Consider the equivalent optimization problem to minimize the value of x0Ax

such that the ith component of x is given by xi � c. This problem de®nes the ellipsoid

that is tangent to the plane xi � c, and can be used to answer the original question.

Exercise A.46: The tangent points of an ellipse's bounding box

Find the tangent points of an ellipsoid de®ned by x0Ax � b, and its bounding box

as depicted in Figure A.10 for n � 2. For n � 2, draw the ellipse, bounding box and

compute the tangent points for the following parameters taken from Figure A.10

A �
"
3:5 2:5
2:5 4:0

#
b � 1

Exercise A.47: Let's make a deal!

Consider the following contest of the American television game show of the 1960s, Let's

Make a Deal. In the show's grand ®nale, a contestant is presented with three doors.

Behind one of the doors is a valuable prize such as an all-expenses-paid vacation to

Hawaii or a new car. Behind the other two doors are goats and donkeys. The contestant

selects a door, say door number one. The game show host, Monty Hall, then says,

ªBefore I show you what is behind your door, let's reveal what is behind door num-

ber three!º Monty always chooses a door that has one of the booby prizes behind it.

As the goat or donkey is revealed, the audience howls with laughter. Then Monty asks

innocently,

ªBefore I show you what is behind your door, I will allow you one chance to change

your mind. Do you want to change doors?º While the contestant considers this option,

the audience starts screaming out things like,
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ªStay with your door! No, switch, switch!º Finally the contestant chooses again,

and then Monty shows them what is behind their chosen door.

Let's analyze this contest to see how to maximize the chance of winning. De®ne

p�i; j;y�; i; j;y � 1;2;3

to be the probability that you chose door i, the prize is behind door j andMonty showed

you door y (named after the data!) after your initial guess. Then you would want to

max
j
p�jji;y�

for your optimal choice after Monty shows you a door.

(a) Calculate this conditional density and give the probability that the prize is behind

door i, your original choice, and door j � i.

(b) You will need to specify a model of Monty's behavior. Please state the one that

is appropriate to Let's Make a Deal.

(c) For what other model of Monty's behavior is the answer that it doesn't matter if

you switch doors. Why is this a poor model for the game show?

Exercise A.48: Norm of an extended state

Consider x 2 Rn with a norm denoted j�j�, and u 2 Rm with a norm denoted j�j�.
Now consider a proposed norm for the extended state �x;u�

j�x;u�j :� jxj� � juj�
Show that this proposal satis®es the de®nition of a norm given in Section A.8.

If the � and � norms are chosen to be p-norms, is the  norm also a p-norm? Show

why or why not.

Exercise A.49: Distance of an extended state to an extended set

Let x 2 Rn and X a set of elements in Rn, and u 2 Rm and U a set of elements in Rm.

Denote distances from elements to their respective sets as

jxjX :� inf
y2X

��x �y��� jujU :� inf
v2U

ju� vj�
j�x;u�jX�U :� inf

�y;v�2X�U

���x;u�� �y;v���
Use the norm of the extended state de®ned in Exercise A.48 to show that

j�x;u�jX�U � jxjX � jujU
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B.1 Introduction

In this appendix we consider stability properties of discrete time sys-

tems. A good general reference for stability theory of continuous time

systems is Khalil (2002). There are not many texts for stability theory

of discrete time systems; a useful reference is LaSalle (1986). Recently

stability theory for discrete time systems has received more attention

in the literature. In the notes below we draw on Jiang and Wang (2001,

2002); Kellett and Teel (2004a,b).

We consider systems of the form

x� � f�x;u�
where the state x lies in Rn and the control (input) u lies in Rm; in

this formulation x and u denote, respectively, the current state and

control, and x� the successor state. We assume in the sequel that

the function f : Rn � Rm ! Rn is continuous. Let ��k;x;u� denote

the solution of x� � f�x;u� at time k if the initial state is x�0� � x
and the control sequence is u � �u�0�;u�1�;u�2�; : : :�; the solution

exists and is unique. If a state-feedback control law u � ��x� has been
chosen, the closed-loop system is described by x� � f�x; ��x��, which
has the same form x� � fc�x� where fc��� is de®ned by fc�x� :� f�x;
��x��. Let ��k;x;����� denote the solution of this difference equation

at time k if the initial state at time 0 is x�0� � x; the solution exists

and is unique (even if ���� is discontinuous). If ���� is not continuous,
as may be the case when ���� is an implicit model predictive control

(MPC) law, then fc��� may not be continuous. In this case we assume

that fc��� is locally bounded.1

1A function f : X ! X is locally bounded if, for any x 2 X, there exists a neighbor-

hood N of x such that f�N � is a bounded set, i.e., if there exists a M > 0 such that��f�x��� � M for all x 2N .

693
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We would like to be sure that the controlled system is ªstableº, i.e.,

that small perturbations of the initial state do not cause large variations

in the subsequent behavior of the system, and that the state converges

to a desired state or, if this is impossible due to disturbances, to a

desired set of states. These objectives are made precise in Lyapunov

stability theory; in this theory, the system x� � f�x� is assumed given

and conditions ensuring the stability, or asymptotic stability of a spec-

i®ed state or set are sought; the terms stability and asymptotic stability

are de®ned below. If convergence to a speci®ed state, x� say, is sought,

it is desirable for this state to be an equilibrium point:

De®nition B.1 (Equilibrium point). A point x� is an equilibrium point

of x� � f�x� if x�0� � x� implies x�k� � ��k;x�� � x� for all k � 0.

Hence x� is an equilibrium point if it satis®es

x� � f�x��

An equilibrium point x� is isolated if there are no other equilib-

rium points in a suf®ciently small neighborhood of x�. A linear system

x� � Ax � b has a single equilibrium point x� � �I �A��1b if I �A is

invertible; if not, the linear system has a continuum fx j �I �A�x � bg
of equilibrium points. A nonlinear system, unlike a linear system, may

have several isolated equilibrium points.

In other situations, for example when studying the stability proper-

ties of an oscillator, convergence to a speci®ed closed set A � Rn is

sought. In the case of a linear oscillator with state dimension 2, this

set is an ellipse. If convergence to a setA is sought, it is desirable for

the setA to be positive invariant :

De®nition B.2 (Positive invariant set). A closed setA is positive invari-

ant for the system x� � f�x� if x 2A implies f�x� 2A.

Clearly, any solution of x� � f�x� with initial state in A, remains

in A. The closed set A � fx�g consisting of a (single) equilibrium

point is a special case; x 2A (x � x�) implies f�x� 2A (f�x� � x�).
De®ne jxjA :� infz2A jx � zj to be the distance of a point x from the

set A; if A � fx�g, then jxjA � jx � x�j which reduces to jxj when
x� � 0.

Before introducing the concepts of stability and asymptotic stability

and their characterization by Lyapunov functions, it is convenient to

make a few de®nitions.
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De®nition B.3 (K,K1,KL, and PD functions). A function � : R�0 !
R�0 belongs to class K if it is continuous, zero at zero, and strictly

increasing; � : R�0 ! R�0 belongs to class K1 if it is a class K and

unbounded (��s� ! 1 as s ! 1). A function � : R�0 � I�0 ! R�0

belongs to class KL if it is continuous and if, for each t � 0, ���; t�
is a class K function and for each s � 0, ��s; �� is nonincreasing and

satis®es limt!1 ��s; t� � 0. A function  : R ! R�0 belongs to class

PD (is positive de®nite) if it is zero at zero and positive everywhere

else.2

The following useful properties of these functions are established

in Khalil (2002, Lemma 4.2): if �1��� and �2��� are K functions (K1

functions), then ��11 ��� and ��1 � �2����3 are K functions4 (K1 func-

tions). Moreover, if �1��� and �2��� areK functions and ���� is aKL
function, then ��r ; s� � �1����2�r�; s�� is aKL function.

The following properties prove useful when analyzing the robust-

ness of perturbed systems.

1. For ��� 2 K, the following holds for all ai 2 R�0, i 2 I1:n
1

n

�
�a1�� � � � � �an�

� � �a1 � � � � � an� �
�na1�� � � � � �nan� (B.1)

2. Similarly, for ���� 2 KL, the following holds for all ai 2 R�0,

i 2 I1:n, and t 2 R�0
1

n

�
��a1; t�� � � � � ��an; t�

� � ���a1 � � � � � an�; t� �
��na1; t�� ��na2; t�� � � � � ��nan; t� (B.2)

3. If �i��� 2 K�K1�, for i 2 I1:n then

min
i
f�i���g :� ���� 2 K�K1� (B.3)

max
i
f�i���g :� ���� 2 K�K1� (B.4)

2Be aware that the existing stability literature sometimes includes continuity in the

de®nition of a positive de®nite function. We used such a de®nition in the ®rst edition

of this text, for example. But in the second edition, we remove continuity and retain

only the requirement of positivity in the de®nition of positive de®nite function.
3��1 ��2���� is the composition of the two functions �1��� and �2��� and is de®ned

by ��1 ��2��s� :� �1��2�s��.
4Note, however, that the domain of ��1��� may be restricted from R�0 to �0; a� for

some a > 0.
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4. Let vi 2 Rni for i 2 I1:n, and v :� �v1; : : : ; vn� 2 R
P
ni . If �i��� 2

K�K1� and �i��� 2 KL for i 2 I1:n, then there exist ����;���� 2
K�K1� and ����; ���� 2 KL such that

��jvj� � �1�jv1j�� � � � ��n�jvnj� � ��jvj� (B.5)

and, for all t 2 R�0
��jvj ; t� � �1�jv1j ; t�� � � � � �n�jvnj ; t� � ��jvj ; t� (B.6)

5. Let vi; v;�i���; �i��� be de®ned as in 4. Then there exist ����;
���� 2 K�K1� and ����; ���� 2 KL such that

��jvj� � �1�jv1j�� � � � ��n�jvnj� � ��jvj� (B.7)

and, for all t 2 R�0
��jvj ; t� � �1�jv1j ; t�� � � � � �n�jvnj ; t� � ��jvj ; t� (B.8)

See (Rawlings and Ji, 2012) for short proofs of (B.1) and (B.2), and (Allan,

Bates, Risbeck, and Rawlings, 2017, Proposition 23) for a short proof

of (B.3). The result (B.4) follows similarly to (B.3). Result (B.5) and (B.7)

follow from (B.1) and (B.3)±(B.4), and (B.6) and (B.8) follow from (B.5)

and (B.7), respectively. See also Exercises B.9 and B.10.

B.2 Stability and Asymptotic Stability

In this section we consider the stability properties of the autonomous

systemx� � f�x�; we assume that f��� is locally bounded, and that the
setA is closed and positive invariant for x� � f�x� unless otherwise
stated.

De®nition B.4 (Local stability). The (closed, positive invariant) setA is

locally stable for x� � f�x� if, for all " > 0, there exists a � > 0 such

that jxjA < � implies
����i;x���A < " for all i 2 I�0.

See Figure B.1 for an illustration of this de®nition whenA� f0g; in
this case we speak of stability of the origin.

Remark. Stability of the origin, as de®ned above, is equivalent to con-

tinuity of the map x , x :� �x;��1;x�;��2;x�; : : :�, R ! `1 at the

origin so that kxk ! 0 as x ! 0 (a small perturbation in the initial state

causes a small perturbation in the subsequent motion).
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�B

0
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x

Figure B.1: Stability of the origin. B denotes the unit ball.

De®nition B.5 (Global attraction). The (closed, positive invariant) set

A is globally attractive for the system x� � f�x� if ����i;x���A ! 0 as

i!1 for all x 2 Rn.

De®nition B.6 (Global asymptotic stability). The (closed, positive in-

variant) set A is globally asymptotically stable (GAS) for x� � f�x� if
it is locally stable and globally attractive.

It is possible for the origin to be globally attractive but not locally

stable. Consider a second order system

x� � Ax ���x�

where A has eigenvalues �1 � 0:5 and �2 � 2 with associated eigen-

vectors w1 and w2, shown in Figure B.2; w1 is the ªstableº and w2 the

ªunstableº eigenvector; the smooth function ���� satis®es ��0� � 0

and �@=@x���0� � 0 so that x� � Ax � ��x� behaves like x� � Ax
near the origin. If ��x� � 0, the motion corresponding to an initial

state �w1, � � 0, converges to the origin, whereas the motion corre-

sponding to an initial state �w2 diverges. If ���� is such that it steers

nonzero states toward the horizontal axis, we get trajectories of the

form shown in Figure B.2. All trajectories converge to the origin but

the motion corresponding to an initial state �w2, no matter how small,

is similar to that shown in Figure B.2 and cannot satisfy the "; � de®ni-

tion of local stability. The origin is globally attractive but not stable. A
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w1

w2

Figure B.2: An attractive but unstable origin.

trajectory that joins an equilibrium point to itself, as in Figure B.2, is

called a homoclinic orbit.

We collect below a set of useful de®nitions:

De®nition B.7 (Various forms of stability). The (closed, positive invari-

ant) setA is

(a) locally stable if, for each " > 0, there exists a � � ��"� > 0 such

that jxjA < � implies
����i;x���A < " for all i 2 I�0.

(b) unstable, if it is not locally stable.

(c) locally attractive if there exists � > 0 such that jxjA < � implies����i;x���A ! 0 as i!1.
(d) globally attractive if

����i;x���A ! 0 as i!1 for all x 2 Rn.

(e) locally asymptotically stable if it is locally stable and locally attrac-

tive.

(f) globally asymptotically stable if it is locally stable and globally at-

tractive.

(g) locally exponentially stable if there exist � > 0, c > 0, and  2 �0;1�
such that jxjA < � implies

����i;x���A � c jxjA i for all i 2 I�0.
(h) globally exponentially stable if there exists a c > 0 and a  2 �0;1�
such that

����i;x���A � c jxjA i for all x 2 Rn, all i 2 I�0.
The following stronger de®nition of GAS has recently started to be-

come popular.
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De®nition B.8 (Global asymptotic stability (KL version)). The (closed,

positive invariant) setA is globally asymptotically stable (GAS) for x� �
f�x� if there exists aKL function ���� such that, for each x 2 Rn

����i;x���A � ��jxjA ; i� 8i 2 I�0 (B.9)

Proposition B.9 (Connection of classical and KL global asymptotic sta-

bility). Suppose A is compact (and positive invariant) and that f��� is
continuous. Then the classical and KL de®nitions of global asymptotic

stability ofA for x� � f�x� are equivalent.
The KL version of global asymptotic stability implies the classical

version from (B.9) and the de®nition of a KL function. The converse

is harder to prove but is established in Jiang and Wang (2002) where

Proposition 2.2 establishes the equivalence of the existence of a KL
function satisfying (2) with UGAS (uniform global asymptotic stabil-

ity), and Corollary 3.3 which establishes the equivalence, when A is

compact, of uniform global asymptotic stability and global asymptotic

stability. Note that f��� must be continuous for the two de®nitions to

be equivalent. See Exercise B.8 for an example with discontinuous f���
where the system is GAS in the classical sense but does not satisfy (B.9),

i.e., is not GAS in the KL sense.

For a KL version of exponential stability, one simply restricts the

form of the KL function ���� of asymptotic stability to ��jxjA ; i� �
c jxjA �i with c > 0 and � 2 �0;1�, but, as we see, that is exactly the

classical de®nition so there is no distinction between the two forms for

exponential stability.

In practice, global asymptotic stability of A often cannot be

achieved because of state constraints. Hence we have to extend slightly

the de®nitions given above. In the following, let B denote a unit ball in

Rn with center at the origin.

De®nition B.10 (Various forms of stability (constrained)). Suppose

X � Rn is positive invariant for x� � f�x�, that A � X is closed

and positive invariant for x� � f�x�. ThenA is

(a) locally stable in X if, for each " > 0, there exists a � � ��"� > 0

such that x 2 X \ �A� �B�, implies
����i;x���A < " for all i 2 I�0.

(b) locally attractive in X if there exists a � > 0 such that x 2 X\�A�
�B� implies

����i;x���A ! 0 as i!1.
(c) attractive in X if

����i;x���A ! 0 as i!1 for all x 2 X.
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(d) locally asymptotically stable in X if it is locally stable in X and

locally attractive in X.

(e) asymptotically stable in X if it is locally stable in X and attractive

in X.

(f) locally exponentially stable in X if there exist � > 0, c > 0, and

 2 �0;1� such that x 2 X \ �A� �B� implies
����i;x���A � c jxjA i

for all i 2 I�0.
(g) exponentially stable in X if there exists a c > 0 and a  2 �0;1�
such that

����i;x���A � c jxjA i for all x 2 X, all i 2 I�0.
The assumption that X is positive invariant for x� � f�x� ensures

that��i;x� 2 X for all x 2 X, all i 2 I�0. The KL version of asymptotic

stability in X is the following.

De®nition B.11 (Asymptotic stability (constrained, KL version)). Sup-

pose that X is positive invariant and the setA � X is closed and pos-

itive invariant for x� � f�x�. The set A is asymptotically stable in X

for x� � f�x� if there exists a KL function ���� such that, for each

x 2 X ����i;x���A � ��jxjA ; i� 8i 2 I�0 (B.10)

Finally, we de®ne the domain of attraction of an asymptotically sta-

ble setA for the system x� � f�x� to be the set of all initial states x

such that
����i;x���A ! 0 as i ! 1. We use the term region of attrac-

tion to denote any set of initial states x such that
����i;x���A ! 0 as

i!1. From these de®nitions, ifA is attractive in X, then X is a region

of attraction of setA for the system x� � f�x�.

B.3 Lyapunov Stability Theory

Energy in a passive electrical or mechanical system provides a useful

analogy to Lyapunov stability theory. In a lumped mechanical system,

the total mechanical energy is the sum of the potential and kinetic en-

ergies. As time proceeds, this energy is dissipated by friction into heat

and the total mechanical energy decays to zero at which point the sys-

tem is in equilibrium. To establish stability or asymptotic stability,

Lyapunov theory follows a similar path. If a real-valued function can

be found that is positive and decreasing if the state does not lie in the

setA, then the state converges to this set as time tends to in®nity. We

now make this intuitive idea more precise.
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B.3.1 Time-Invariant Systems

First we consider the time-invariant (autonomous) model x� � f�x�.

De®nition B.12 (Lyapunov function (unconstrained and constrained)).

Suppose that X is positive invariant and the set A � X is closed and

positive invariant for x� � f�x�, and f��� is locally bounded. A func-

tion V : X ! R�0 is said to be a Lyapunov function in X for the system

x� � f�x� and setA if there exist functions �1; �2 2 K1, and contin-

uous function �3 2 PD such that for any x 2 X

V�x� � �1�jxjA� (B.11)

V�x� � �2�jxjA� (B.12)

V�f�x��� V�x� � ��3�jxjA� (B.13)

If X � Rn, then we drop the restrictive phrase ªin X.º

Remark (Discontinuous f and V ). In MPC, the value function for the

optimal control problem solved online is often employed as a Lyapunov

function. The reader should be aware that many similar but different

de®nitions of Lyapunov functions are in use inmany different branches

of the science and engineering literature. To be of the most use in MPC

analysis, we do not assume here that f��� or V��� is continuous. We

assume only that f��� is locally bounded; V��� is also locally bounded

due to (B.12), and continuous on the set A (but not necessarily on a

neighborhood ofA) due to (B.11)±(B.12).

Remark (Continuous (and positive de®nite) �3). One may wonder why

�3��� is assumed continuous in addition to positive de®nite in the def-

inition of the Lyapunov function, when much of the classical literature

leaves out continuity; see for example the autonomous case given in

Kalman and Bertram (1960). Again, most of this classical literature as-

sumes instead that f��� is continuous, which we do not assume here.

See Exercise B.7 for an example from Lazar, Heemels, and Teel (2009)

with discontinuous f��� for which removing continuity of �3��� in Def-

inition B.12 would give a Lyapunov function that fails to imply asymp-

totic stability.

For making connections to the wide body of existing stability litera-

ture, which mainly uses the classical de®nition of asymptotic stability,

and because the proof is instructive, we ®rst state and prove the clas-

sical version of the Lyapunov stability theorem.
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Theorem B.13 (Lyapunov function and GAS (classical de®nition)). Sup-

pose that X is positive invariant and the setA� X is closed and positive

invariant for x� � f�x�, and f��� is locally bounded. Suppose V���
is a Lyapunov function for x� � f�x� and set A. Then A is globally

asymptotically stable (classical de®nition).

Proof.

(a) Stability. Let " > 0 be arbitrary and let � :� ��12 ��1�"��. Suppose

jxjA < � so that, by (B.12), V�x� � �2��� � �1�"�. From (B.13),

�V�x�i���i2I�0 , x�i� :� ��i;x�, is a nonincreasing sequence so that,

for all i 2 I�0, V�x�i�� � V�x�. From (B.11), jx�i�jA � ��11 �V�x�� �
��11 ��1�"�� � " for all i 2 I�0.
(b) Attractivity. Let x 2 Rn be arbitrary. From (B.12) V�x� is ®nite, and

from (B.11) and (B.13), the sequence �V�x�i���i2I�0 is nonincreasing

and bounded below by zero and therefore converges to ÅV � 0 as i!1.
We next show that ÅV � 0. From (B.11) and (B.12) and the properties of

K1 functions, we have that for all i � 0,

��12 �V�x�i��� � jx�i�jA � ��11 �V�x�i��� (B.14)

Assume for contradiction that ÅV > 0. Since �3��� is continuous and

positive de®nite and interval I :� ���12 �ÅV�;��11 �ÅV�� is compact, the

following optimization has a positive solution

� :� min
jxjA2I

�3�jxjA� > 0

From repeated use of (B.13), we have that for all i � 0

V�x�i�� � V�x��
i�1X
j�0

�3�
��x�j���A�

Since jx�i�jA converges to interval I where �3�jx�i�jA� is under-

bounded by � > 0, �3��� is continuous, and V�x� is ®nite, the in-

equality above implies that V�x�i��! �1 as i!1, which is a contra-

diction. Therefore V�x�i�� converges to ÅV � 0 and (B.14) implies x�i�

converges toA as i!1. �

Next we establish the analogous Lyapunov stability theorem using

the stronger KL de®nition of GAS, De®nition B.8. Before establishing

the Lyapunov stability theorem, it is helpful to present the following

lemma established by Jiang and Wang (2002, Lemma 2.8) that enables

us to assume when convenient that �3��� in (B.13) is a K1 function

rather than just a continuous PD function.
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Lemma B.14 (From PD to K1 function (Jiang and Wang (2002))). As-

sume V��� is a Lyapunov function for system x� � f�x� and setA, and

f��� is locally bounded. Then there exists a smooth function5 ���� 2 K1

such that W��� :� � � V��� is also a Lyapunov function for system

x� � f�x� and setA that satis®es for all x 2 Rn

W�f�x���W�x� � ���jxjA�
with ���� 2 K1.

Note that Jiang and Wang (2002) prove this lemma under the as-

sumption that both f��� and V��� are continuous, but their proof re-

mains valid if both f��� and V��� are only locally bounded.
We next establish the Lyapunov stability theorem in which we add

the parenthetical (KL de®nition) purely for emphasis and to distinguish

this result from the previous classical result, but we discontinue this

emphasis after this theorem, and use exclusively the KL de®nition.

Theorem B.15 (Lyapunov function and global asymptotic stability (KL

de®nition)). Suppose that X is positive invariant and the set A � X is

closed and positive invariant for x� � f�x�, and f��� is locally bounded.
Suppose V��� is a Lyapunov function for x� � f�x� and setA. ThenA
is globally asymptotically stable (KL de®nition).

Proof. Due to Lemma B.14 we assume without loss of generality that

�3 2 K1. From (B.13) we have that

V���i� 1;x�� � V���i;x����3�
����i;x���A� 8x 2 Rn i 2 I�0

Using (B.12) we have that

�3�jxjA� � �3 ���12 �V�x�� 8x 2 Rn

Combining these we have that

V���i� 1;x�� � �1�V���i;x��� 8x 2 Rn i 2 I�0
in which

�1�s� :� s ��3 ���12 �s�
We have that �1��� is continuous on R�0, �1�0� � 0, and �1�s� < s for

s > 0. But �1��� may not be increasing. We modify �1 to achieve this

property in two steps. First de®ne

�2�s� :� max
s02�0;s�

�1�s
0� s 2 R�0

5A smooth function has derivatives of all orders.
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in which the maximum exists for each s 2 R�0 because �1��� is con-

tinuous. By its de®nition, �2��� is nondecreasing, �2�0� � 0, and

0 � �2�s� < s for s > 0, and we next show that �2��� is continuous

on R�0. Assume that �2��� is discontinuous at a point c 2 R�0. Be-

cause it is a nondecreasing function, there is a positive jump in the

function �2��� at c (Bartle and Sherbert, 2000, p. 150). De®ne 6

a1 :� lim
s%c
�2�s� a2 :� lim

s&c
�2�s�

We have that �1�c� � a1 < a2 or we violate the limit of �2 from below.

Since �1�c� < a2, �1�s� must achieve value a2 for some s < c or we

violate the limit from above. But �1�s� � a2 for s < c also violates the

limit from below, and we have a contradiction and �2��� is continuous.
Finally, de®ne

��s� :� �1=2��s � �2�s�� s 2 R�0
and we have that ���� is a continuous, strictly increasing, and un-

bounded function satisfying ��0� � 0. Therefore, ���� 2 K1, �1�s� <

��s� < s for s > 0 and therefore

V���i� 1;x�� � ��V���i;x��� 8x 2 Rn i 2 I�0 (B.15)

Repeated use of (B.15) and then (B.12) gives

V���i;x�� � � i ��2�jxjA� 8x 2 Rn i 2 I�0
in which � i represents the composition of � with itself i times. Using

(B.11) we have that����i;x���A � ��jxjA ; i� 8x 2 Rn i 2 I�0
in which

��s; i� :� ��11 � � i ��2�s� 8s 2 R�0 i 2 I�0
For all s � 0, the sequence wi :� � i��2�s�� is nonincreasing with i,

bounded below (by zero), and therefore converges to a, say, as i !
1. Therefore, both wi ! a and ��wi� ! a as i ! 1. Since ���� is
continuouswe also have that��wi�! ��a� so��a� � a, which implies

that a � 0, and we have shown that for all s � 0, ��11 �� i ��2�s�! 0 as

6The limits from above and below exist because �2��� is nondecreasing (Bartle and

Sherbert, 2000, p. 149). If the point c � 0, replace the limit from below by �2�0�.



B.3 Lyapunov Stability Theory 705

i!1. Since ��11 ��� also is aK function, we also have that for all s � 0,

��11 � � i � �2�s� is nonincreasing with i. We have from the properties

of K functions that for all i � 0, ��11 � � i � �2�s� is a K function,

and can therefore conclude that ���� is aKL function and the proof is

complete. �

Theorem B.15 provides merely a suf®cient condition for global

asymptotic stability that might be thought to be conservative. Next

we establish a converse stability theorem that demonstrates necessity.

In this endeavor we require a useful preliminary result onKL functions

(Sontag, 1998b, Proposition 7)

Proposition B.16 (Improving convergence (Sontag (1998b))). Assume

that ���� 2 KL. Then there exists �1���; �2��� 2 K1 so that

��s; t� � �1��2�s�e�t� 8s � 0; 8t � 0 (B.16)

Theorem B.17 (Converse theorem for global asymptotic stability). Sup-

pose that the (closed, positive invariant) setA is globally asymptotically

stable for the system x� � f�x�. Then there exists a Lyapunov function

for the system x� � f�x� and setA.

Proof. Since the setA is GAS we have that for each x 2 Rn and i 2 I�0����i;x�A�� � ��jxjA ; i�
in which ���� 2 KL. Using (B.16) then gives for each x 2 Rn and

i 2 I�0
��11

�����i;x���A� � �2�jxjA�e�i
in which ��11 ��� 2 K1. Propose as Lyapunov function

V�x� �
1X
i�0

��11
�����i;x���A�

Since ��0;x� � x, we have that V�x� � ��11 �jxjA� and we choose

�1��� � ��11 ��� 2 K1. Performing the sum gives

V�x� �
1X
i�0

��11
�����i;x�A��� � �2�jxjA� 1X

i�0

e�i � �2�jxjA� e

e� 1
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and we choose �2��� � �e=�e � 1���2��� 2 K1. Finally, noting that

f���i;x�� � ��i� 1;x� for each x 2 Rn, i 2 I�0, we have that

V�f�x��� V�x� �
1X
i�0

��11
���f���i;x����A�� ��11 �����i;x���A�

� ���11 �
����0;x���A�

� ���11 �jxjA�
and we choose �3��� � ��11 ��� 2 K1, and the result is established. �

The appropriate generalization of Theorem B.15 for the constrained

case is:

Theorem B.18 (Lyapunov function for asymptotic stability (con-

strained)). If there exists a Lyapunov function in X for the system x� �
f�x� and setA, thenA is asymptotically stable in X for x� � f�x�.

The proof of this result is similar to that of Theorem B.15 and is left

as an exercise.

Theorem B.19 (Lyapunov function for exponential stability). If there

exists V : X ! R�0 satisfying the following properties for all x 2 X
a1 jxj�A � V�x� � a2 jxj�A
V�f�x��� V�x� � �a3 jxj�A

in which a1; a2; a3; � > 0, thenA is exponentially stable in X for x� �
f�x�.

Linear time-invariant systems. We review some facts involving the

discrete matrix Lyapunov equation and stability of the linear system

x� � Ax
in which x 2 Rn. The discrete time system is asymptotically stable if

and only if the magnitudes of the eigenvalues of A are strictly less than

unity. Such an A matrix is called stable, convergent, or discrete time

Hurwitz.

In the following, A;S;Q 2 Rn�n. The following matrix equation is

known as a discrete matrix Lyapunov equation,

A0SA� S � �Q
The properties of solutions to this equation allow one to draw con-

clusions about the stability of A without computing its eigenvalues.

Sontag (1998a, p. 231) provides the following lemma
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Lemma B.20 (Lyapunov function for linear systems). The following

statements are equivalent (Sontag, 1998a).

(a) A is stable.

(b) For eachQ 2 Rn�n, there is a unique solution S of the discretematrix

Lyapunov equation

A0SA� S � �Q
and if Q > 0 then S > 0.

(c) There is some S > 0 such that A0SA� S < 0.

(d) There is some S > 0 such that V�x� � x0Sx is a Lyapunov function

for the system x� � Ax.

Exercise B.1 asks you to establish the equivalence of (a) and (b).

B.3.2 Time-Varying, Constrained Systems

Following the discussion in Rawlings and Risbeck (2017), we consider

the nonempty sets X�i� � Rn indexed by i 2 I�0. We de®ne the time-

varying system

x� � f�x; i�
with f� � ; i� : X�i� ! X�i � 1�. We assume that f� � ; i� is locally

bounded for all i 2 I�0. Note from the de®nition of f that the sets

X�i� satisfy positive invariance in the following sense: x 2 X�i� for
any i � 0 implies x�i� 1� :� f�x; i� 2 X�i� 1�. We say that the set se-

quence �X�i��i�0 is sequentially positive invariant to denote this form

of invariance.

De®nition B.21 (Sequential positive invariance). A sequence of sets

�X�i��i�0 is sequentially positive invariant for the system x� � f�x;
i� if for any i � 0, x 2 X�i� implies f�x; i� 2 X�i� 1�.

We again assume that A is closed and positive invariant for the

time-varying system, i.e, x 2 A at any time i � 0 implies f�x; i� 2 A.

We also assume thatA� X�i� for all i � 0. We next de®ne asymptotic

stability ofA.

De®nition B.22 (Asymptotic stability (time-varying, constrained)). Sup-

pose that the sequence �X�i��i�0 is sequentially positive invariant and

the set A � X�i� for all i � 0 is closed and positive invariant for

x� � f�x; i�. The set A is asymptotically stable in X�i� at each time
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i � 0 for x� � f�x; i� if the following holds for all i � i0 � 0, and

x 2 X�i0� ����i;x; i0���A � ��jxjA ; i� i0� (B.17)

in which � 2 KL and ��i;x; i0� is the solution to x� � f�x; i� at time

i � i0 with initial condition x at time i0 � 0.

This stability de®nition is somewhat restrictive because ��i;x; i0�

is bounded by a function depending on i � i0 rather than on i. For

example, to be more general we could de®ne a time-dependent set of

KL functions, �j���, j � 0, and replace (B.17) with
����i;x; i0���A �

�i0�jxjA ; i� for all i � i0 � 0.

We de®ne a time-varying Lyapunov function for this system as fol-

lows.

De®nition B.23 (Lyapunov function: time-varying, constrained case).

Let the sequence �X�i��i�0 be sequentially positive invariant, and the

set A � X�i� for all i � 0 be closed and positive invariant. Let V��;
i� : X�i�! R�0 satisfy for all x 2 X�i�; i 2 I�0

�1�jxjA� � V�x; i� � �2�jxjA�
V�f�x; i�; i� 1�� V�x; i� � ��3�jxjA�

with �1; �2; �3 2 K1. Then V��; �� is a time-varying Lyapunov function

in the sequence �X�i��i�0 for x
� � f�x; i� and setA.

Note that f�x; i� 2 X�i � 1� since x 2 X�i� which veri®es that

V�f�x; i�; i�1� is well de®ned for all x 2 X�i�; i � 0. We then have the

following asymptotic stability result for the time-varying, constrained

case.

Theorem B.24 (Lyapunov theorem for asymptotic stability (time-vary-

ing, constrained)). Let the sequence �X�i��i�0 be sequentially positive

invariant, and the set A � X�i� for all i � 0 be closed and positive in-

variant, and V��; �� be a time-varying Lyapunov function in the sequence

�X�i��i�0 for x� � f�x; i� and set A. Then A is asymptotically stable

in X�i� at each time i � 0 for x� � f�x; i�.
Proof. For x 2 X�i0�, we have that ���i;x; i0�; i� 2 X�i� for all i � i0.
From the ®rst and second inequalities we have that for all i � i0 and

x 2 X�i0�
V���i� 1;x; i0�; i� 1� � V���i;x; i0�; i���3�

����i;x; i0���A�
� �1�V���i;x; i0�; i��
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with �1�s� :� s ��3 ���12 �s�. Note that �1��� may not beK1 because

it may not be increasing. But given this result we can ®nd, as in the

proof of Theorem B.15, ���� 2 K1 satisfying �1�s� < ��s� < s for all

s 2 R>0 such that V���i � 1;x; i0�; i � 1� � ��V���i;x; i0�; i��. We

then have that����i;x; i0���A � ��jxjA ; i� i0� 8x 2 X�i0�; i � i0

in which ��s; i� :� ��11 �� i ��2�s� for s 2 R�0; i � 0 is aKL function,

and the result is established. �

B.3.3 Upper bounding K functions

In using Lyapunov functions for stability analysis, we often have to

establish that the upper bound inequality holds on some closed set.

The following result proves useful in such situations.

Proposition B.25 (Global K function overbound). Let X � Rn be closed

and suppose that a function V : X ! R�0 is continuous at x0 2 X and

locally bounded on X, i.e., bounded on every compact subset of X. Then,

there exists a K function � such that

jV�x�� V�x0�j � ��jx � x0j� for all x 2 X

A proof is given in Rawlings and Risbeck (2015).

B.4 Robust Stability

We now turn to the task of obtaining stability conditions for discrete

time systems subject to disturbances. There are two separate questions

that should be addressed. The ®rst is nominal robustness; is asymp-

totic stability of a setA for a (nominal) system x� � f�x� maintained

in the presence of arbitrarily small disturbances? The second question

is the determination of conditions for asymptotic stability of a set A
for a system perturbed by disturbances lying in a given compact set.

B.4.1 Nominal Robustness

Here we follow Teel (2004). The nominal system is x� � f�x�. Con-

sider the perturbed system

x� � f�x � e��w (B.18)
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where e is the state error and w the additive disturbance. Let e :�
�e�0�; e�1�; : : :� and w :� �w�0�;w�1�; : : :� denote the disturbance se-

quences with norms kek :� supi�0 je�i�j and kwk :� supi�0 jw�i�j. Let
M� :� f�e;w� j kek � �;kwk � �g and, for each x 2 Rn, let S� denote

the set of solutions ���;x;e;w� of (B.18) with initial state x (at time

0) and perturbation sequences �e;w� 2 M�. A closed, compact set A
is nominally robustly asymptotically stable for the (nominal) system

x� � f�x� if a small neighborhood ofA is locally stable and attractive

for all suf®ciently small perturbation sequences. We use the adjective

nominal to indicate that we are examining how a system x� � f�x� for
whichA is known to be asymptotically stable behaves when subjected

to small disturbances. More precisely Teel (2004):

De®nition B.26 (Nominal robust global asymptotic stability). The

closed, compact setA is said to be nominally robustly globally asymp-

totically stable (nominally RGAS) for the system x� � f�x� if there
exists aKL function ���� and, for each " > 0 and each compact set X,

there exists a � > 0 such that, for each x 2 X and each solution ����
of the perturbed system lying in S�,

����i���A � ��jxjA ; i� � " for all
i 2 I�0.

Thus, for each " > 0, there exists a � > 0 such that each solution

���� of x� � f�x�e��w starting in a � neighborhood ofA remains in

a ���;0�� " neighborhood ofA, and each solution starting anywhere

in Rn converges to a " neighborhood of A. These properties are a

necessary relaxation (because of the perturbations) of local stability

and global attractivity.

Remark. What we call ªnominally robustly globally asymptotically sta-

bleº in the above de®nition is called ªrobustly globally asymptotically

stableº in Teel (2004); we use the term ªnominalº to indicate that we

are concerned with the effect of perturbations e and w on the stabil-

ity properties of a ªnominalº system x� � f�x� for which asymptotic

stability of a set A has been established (in the absence of perturba-

tions). We use the expression ªA is globally asymptotically stable for

x� � f�x � e��wº to refer to the case when asymptotic stability of a

setA has been established for the perturbed system x� � f�x�e��w.

The following result, where we add the adjective ªnominalº, is es-

tablished in (Teel, 2004, Theorem 2):

Theorem B.27 (Nominal robust global asymptotic stability and Lya-

punov function). Suppose setA is closed and compact and f��� is locally
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bounded. Then the set A is nominally robustly globally asymptotically

stable for the system x� � f�x� if and only if there exists a continuous

(in fact, smooth) Lyapunov function for x� � f�x� and setA.

The signi®cance of this result is that while a nonrobust system, for

which A is globally asymptotically stable, has a Lyapunov function,

that function is not continuous. For the globally asymptotically sta-

ble example x� � f�x� discussed in Section 3.2 of Chapter 3, where

f�x� � �0; jxj� when x1 � 0 and f�x� � �0;0� otherwise, one Lya-

punov function V��� is V�x� � 2 jxj if x1 � 0 and V�x� � jxj if x1 � 0.

That V��� is a Lyapunov function follows from the fact that it satis®es

V�x� � jxj, V�x� � 2 jxj and V�f�x�� � V�x� � �jxj for all x 2 R2.

It follows immediately from its de®nition that V��� is not continuous;
but we can also deduce from Theorem B.27 that every Lyapunov func-

tion for this system is not continuous since, as shown in Section 3.2

of Chapter 3, global asymptotic stability for this system is not robust.

Theorem B.27 shows that existence of a continuous Lyapunov function

guarantees nominal robustness. Also, it follows from Theorem B.17

that there exists a smooth Lyapunov function for x� � f�x� if f��� is
continuous andA is GAS for x� � f�x�. Since f��� is locally bounded
if it is continuous, it then follows from Theorem B.27 that A is nomi-

nally robust GAS for x� � f�x� if it is GAS and f��� is continuous.

B.4.2 Robustness

We turn now to stability conditions for systems subject to bounded

disturbances (not vanishingly small) and described by

x� � f�x;w� (B.19)

where the disturbance w lies in the compact set W. This system may

equivalently be described by the difference inclusion

x� 2 F�x� (B.20)

where the set F�x� :� ff�x;w� j w 2 Wg. Let S�x� denote the set

of all solutions of (B.19) or (B.20) with initial state x. We require, in

the sequel, that the closed setA is positive invariant for (B.19) (or for

x� 2 F�x�):
De®nition B.28 (Positive invariance with disturbances). The closed set

A is positive invariant for x� � f�x;w�, w 2 W if x 2 A implies

f�x;w� 2 A for all w 2 W; it is positive invariant for x� 2 F�x� if
x 2A implies F�x� �A.
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Clearly the two de®nitions are equivalent; A is positive invariant

for x� � f�x;w�, w 2 W, if and only if it is positive invariant for

x� 2 F�x�.

Remark. In the MPC literature, but not necessarily elsewhere, the term

robust positive invariant is often used in place of positive invariant to

emphasize that positive invariance is maintained despite the presence

of the disturbance w. However, since the uncertain system x� � f�x;
w�, w 2 W is speci®ed (x� � f�x;w�, w 2 W or x� 2 F�x�) in the

assertion that a closed set A is positive invariant, the word ªrobustº

appears to be unnecessary. In addition, in the systems literature, the

closed set A is said to be robust positive invariant for x� 2 F�x� if it
satis®es conditions similar to those of De®nition B.26 with x� 2 F�x�
replacing x� � f�x�; see Teel (2004), De®nition 3.

In De®nitions B.29±B.31, we use ªpositive invariantº to denote ªpos-

itive invariant for x� � f�x;w�, w 2Wº or for x� 2 F�x�.

De®nition B.29 (Local stability (disturbances)). The closed, positive

invariant set A is locally stable for x� � f�x;w�, w 2 W (or for

x� 2 F�x�) if, for all " > 0, there exists a � > 0 such that, for each

x satisfying jxjA < �, each solution ���� 2 S�x� satis®es ����i���A < "
for all i 2 I�0.

De®nition B.30 (Global attraction (disturbances)). The closed, positive

invariant setA is globally attractive for the system x� � f�x;w�, w 2
W (or for x� 2 F�x�) if, for each x 2 Rn, each solution ���� 2 S�x�
satis®es

����i���A ! 0 as i!1.

De®nition B.31 (GAS (disturbances)). The closed, positive invariant set

A is globally asymptotically stable for x� � f�x;w�, w 2 W (or for

x� 2 F�x�) if it is locally stable and globally attractive.

An alternative de®nition of global asymptotic stability of closed set

A for x� � f�x;w�, w 2 W, if A is compact, is the existence of a

KL function ���� such that for each x 2 Rn, each � 2 S�x� satis®es����i���A � ��jxjA ; i� for all i 2 I�0. To cope with disturbances we

require a modi®ed de®nition of a Lyapunov function.

De®nition B.32 (Lyapunov function (disturbances)). A function V :

Rn ! R�0 is said to be a Lyapunov function for the system x� � f�x;
w�, w 2W (or for x� 2 F�x�) and closed setA if there exist functions
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�i 2 K1, i � 1;2;3 such that for any x 2 Rn,

V�x� � �1�jxjA� (B.21)

V�x� � �2�jxjA� (B.22)

sup
z2F�x�

V�z�� V�x� � ��3�jxjA� (B.23)

Remark. Without loss of generality, we can choose the function �3���
in (B.23) to be a classK1 function if f��� is continuous (see Jiang and

Wang (2002), Lemma 2.8).

Inequality B.23 ensures V�f�x;w���V�x� � ��3�jxjA� for allw 2
W. The existence of a Lyapunov function for the system x� 2 F�x� and
closed setA is a suf®cient condition forA to be globally asymptotically

stable for x� 2 F�x� as shown in the next result.

Theorem B.33 (Lyapunov function for global asymptotic stability (dis-

turbances)). Suppose V��� is a Lyapunov function for x� � f�x;w�,
w 2 W (or for x� 2 F�x�) and closed set A with �3��� a K1 function.

Then A is globally asymptotically stable for x� � f�x;w�, w 2 W (or

for x� 2 F�x�).
Proof. (i) Local stability: Let " > 0 be arbitrary and let � :� ��12 ��1�"��.

Suppose jxjA < � so that, by (B.22), V�x� � �2��� � �1�"�. Let ����
be any solution in S�x� so that ��0� � x. From (B.23), �V���i���i2I�0
is a nonincreasing sequence so that, for all i 2 I�0, V���i�� � V�x�.
From (B.21),

����i���A � ��11 �V�x�� � ��11 ��1�"�� � " for all i 2 I�0.

(ii) Global attractivity: Let x 2 Rn be arbitrary. Let ���� be any solu-

tion in S�x� so that ��0� � x. From Equations B.21 and B.23, since

��i � 1� 2 F���i��, the sequence �V���i���i2I�0 is nonincreasing and

bounded from below by zero. Hence both V���i�� and V���i�1�� con-
verge to ÅV � 0 as i ! 1. But ��i � 1� 2 F���i�� so that, from (B.23),

�3�
����i���A�! 0 as i!1. Since ����i���A � ��13 ��3�

����i���A��where
��13 ��� is aK1 function,

����i���A ! 0 as i!1. �

B.5 Control Lyapunov Functions

A control Lyapunov function is a useful generalization, due to Sontag

(1998a, pp.218±233), of a Lyapunov function; while a Lyapunov func-

tion is relevant for a system x� � f�x� and provides conditions for the

(asymptotic) stability of a set for this system, a control Lyapunov func-

tion is relevant for a control system x� � f�x;u� and provides condi-
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tions for the existence of a controller u � ��x� that ensures (asymp-

totic) stability of a set for the controlled system x� � f�x; ��x��. Con-
sider the control system

x� � f�x;u�
where the control u is subject to the constraint

u 2 U

Our standing assumptions in this section are that f��� is continuous

and U is compact.

De®nition B.34 (Global control Lyapunov function (CLF)). A function

V : Rn ! R�0 is a global control Lyapunov function for the system

x� � f�x;u�, u 2 U, and closed set A if there exist K1 functions

�1���;�2���;�3��� satisfying for all x 2 Rn:

�1�jxjA� � V�x� � �2�jxjA�
inf
u2U

V�f�x;u��� V�x� � ��3�jxjA�

De®nition B.35 (Global stabilizability). Let set A be compact. The set

A is globally stabilizable for the system x� � f�x;u� if there exists a
state-feedback function � : Rn ! U such thatA is globally asymptoti-

cally stable for x� � f�x; ��x��.

Remark. Given a global control Lyapunov function V���, one can

choose a control law � : Rn ! U satisfying

V�f�x; ��x��� � V�x���3�jxjA�=2

for all x 2 Rn (seeTeel (2004)). Since U is compact, ���� is locally

bounded and, hence, so is x , f�x; ��x��. Thus we may use Theorem

B.13 to deduce that A is globally asymptotically stable for x� � f�x;
��x��. If V��� is continuous, one can also establish nominal robustness

properties.

In a similar fashion one can extend the concept of control Lyapunov

functions to the case when the system is subject to disturbances. Con-

sider the system

x� � f�x;u;w�
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where the control u is constrained to lie in U and the disturbance takes

values in the set W. We assume that f��� is continuous and that U and

W are compact. The system may be equivalently de®ned by

x� 2 F�x;u�

where the set-valued function F��� is de®ned by

F�x;u� :� ff�x;u;w� j w 2Wg

We can now make the obvious generalizations of the de®nitions in Sec-

tion B.4.2.

De®nition B.36 (Positive invariance (disturbance and control)). The

closed set A is positive invariant for x� � f�x;u;w�, w 2 W (or for

x� 2 F�x;u�) if for all x 2 A there exists a u 2 U such that f�x;u;

w� 2A for all w 2W (or F�x;u� �A).

De®nition B.37 (CLF (disturbance and control)). A function V : Rn !
R�0 is said to be a control Lyapunov function for the system x� � f�x;
u;w�, u 2 U, w 2 W (or x� 2 F�x;u�, u 2 U) and setA if there exist

functions �i 2 K1, i � 1;2;3 such that for any x 2 Rn,

�1�jxjA� � V�x� � �2�jxjA�
inf
u2U

sup
z2F�x;u�

V�z�� V�x� � ��3�jxjA� (B.24)

Remark (CLF implies control law). Given a global control Lyapunov

function V���, one can choose a control law � : Rn ! U satisfying

sup
z2F�x;��x��

V�z� � V�x���3�jxjA�=2

for all x 2 Rn. Since U is compact, ���� is locally bounded and, hence,

so is x , f�x; ��x��. Thus we may use Theorem B.33 to deduce that

A is globally asymptotically stable for x� � f�x; ��x�;w�, w 2W (for

x� 2 F�x; ��x��).
These results can be further extended to deal with the constrained

case. First, we generalize the de®nitions of positive invariance of a

set.

De®nition B.38 (Control invariance (constrained)). The closed setA is

control invariant for x� � f�x;u�, u 2 U if, for all x 2A, there exists

a u 2 U such that f�x;u� 2A.
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Suppose that the state x is required to lie in the closed set X � Rn.

In order to show that it is possible to ensure a decrease of a Lyapunov

function, as in (B.24), in the presence of the state constraint x 2 X, we
assume that there exists a control invariant set X � X for x� � f�x;
u;w�, u 2 U, w 2 W. This enables us to obtain a control law that

keeps the state in X and, hence, in X, and, under suitable conditions,

to satisfy a variant of (B.24).

De®nition B.39 (CLF (constrained)). Suppose the set X and closed set

A, A � X, are control invariant for x� � f�x;u�, u 2 U. A function

V : X ! R�0 is said to be a control Lyapunov function in X for the

system x� � f�x;u�, u 2 U, and closed set A in X if there exist

functions �i 2 K1, i � 1;2;3, de®ned on X, such that for any x 2 X,

�1�jxjA� � V�x� � �2�jxjA�
inf
u2U
fV�f�x;u�� j f�x;u� 2 Xg � V�x� � ��3�jxjA�

Remark. Again, if V��� is a control Lyapunov function in X for x� �
f�x;u�, u 2 U and closed set A in X, one can choose a control law

� : Rn ! U satisfying

V�f�x; ��x���� V�x� � ��3�jxjA�=2

for all x 2 X. Since U is compact, ���� is locally bounded and, hence,

so is x , f�x; ��x��. Thus, when �3��� is aK1 function, we may use

Theorem B.18 to deduce thatA is asymptotically stable for x� � f�x;
��x��, u 2 U in X; also ��i;x� 2 X � X for all x 2 X, all i 2 I�0.

Finally we consider the constrained case in the presence of distur-

bances. First we de®ne control invariance in the presence of distur-

bances.

De®nition B.40 (Control invariance (disturbances, constrained)). The

closed set A is control invariant for x� � f�x;u;w�, u 2 U, w 2 W

if, for all x 2 A, there exists a u 2 U such that f�x;u;w� 2 A for all

w 2W (or F�x;u� �A where F�x;u� :� ff�x;u;w� j w 2Wg).
Next, we de®ne what we mean by a control Lyapunov function in

this context.

De®nition B.41 (CLF (disturbances, constrained)). Suppose the set X

and closed set A, A � X, are control invariant for x� � f�x;u;w�,
u 2 U,w 2W. A function V : X ! R�0 is said to be a control Lyapunov
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function in X for the system x� � f�x;u;w�, u 2 U, w 2 W and set

A if there exist functions �i 2 K1, i � 1;2;3, de®ned on X, such that

for any x 2 X,
�1�jxjA� � V�x� � �2�jxjA�

inf
u2U

sup
z2F�x;u�\X

V�z�� V�x� � ��3�jxjA�

Suppose now that the state x is required to lie in the closed set

X � Rn. Again, in order to show that there exists a condition similar

to (B.24), we assume that there exists a control invariant set X � X for

x� � f�x;u;w�, u 2 U, w 2 W. This enables us to obtain a control

law that keeps the state in X and, hence, in X, and, under suitable

conditions, to satisfy a variant of (B.24).

Remark. If V��� is a control Lyapunov function in X for x� � f�x;u�,
u 2 U, w 2 W and setA in X, one can choose a control law � : X ! U

satisfying

sup
z2F�x;��x��

V�z�� V�x� � ��3�jxjA�=2

for all x 2 X. Since U is compact, ���� is locally bounded and, hence,

so is x , f�x; ��x��. Thus, when �3��� is a K1 function, we may

use Theorem B.18 to deduce that A is asymptotically stable in X for

x� � f�x; ��x�;w�,w 2W (or, equivalently, for x� 2 F�x; ��x��); also
��i� 2 X � X for all x 2 X, all i 2 I�0, all � 2 S�x�.

B.6 Input-to-State Stability

We consider, as in the previous section, the system

x� � f�x;w�
where the disturbance w takes values in Rp. In input-to-state stability

(Sontag and Wang, 1995; Jiang and Wang, 2001) we seek a bound on

the state in terms of a uniform bound on the disturbance sequence

w :� �w�0�;w�1�; : : :�. Let k�k denote the usual `1 norm for sequences,

i.e., kwk :� supk�0 jw�k�j.
De®nition B.42 (Input-to-state stable (ISS)). The system x� � f�x;w�
is (globally) input-to-state stable (ISS) if there exists aKL function ����
and aK function���� such that, for eachx 2 Rn, and each disturbance

sequence w � �w�0�;w�1�; : : :� in `1����i;x;wi�
�� � ��jxj ; i�� ��kwik�
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for all i 2 I�0, where ��i;x;wi� is the solution, at time i, if the initial

state is x at time 0 and the input sequence is wi :�
�
w�0�;w�1�; : : : ;

w�i� 1�
�
.

We note that this de®nition implies the origin is globally asymptot-

ically stable if the input sequence is identically zero. Also, the norm

of the state is asymptotically bounded by ��kwk� where w :� �
w�0�;

w�1�; : : :
�
. As before, we seek a Lyapunov function that ensures input-

to-state stability.

De®nition B.43 (ISS-Lyapunov function). A function V : Rn ! R�0 is

an ISS-Lyapunov function for system x� � f�x;w� if there exist K1

functions �1���;�2���;�3��� and a K function ���� such that for all

x 2 Rn, w 2 Rp

�1�jxj� � V�x� � �2�jxj�
V�f�x;w��� V�x� � ��3�jxj�� ��jwj�

The following result appears in Jiang and Wang (2001, Lemma 3.5)

Lemma B.44 (ISS-Lyapunov function implies ISS). Suppose f��� is con-
tinuous and that there exists a continuous ISS-Lyapunov function for

x� � f�x;w�. Then the system x� � f�x;w� is ISS.
The converse, i.e., input-to-state stability implies the existence of

a smooth ISS-Lyapunov function for x� � f�x;w� is also proved in

Jiang and Wang (2002, Theorem 1). We now consider the case when the

state satis®es the constraint x 2 X where X is a closed subset of Rn.

Accordingly, we assume that the disturbance w satis®es w 2W where

W is a compact set containing the origin and that X � X is a closed

robust positive invariant set for x� � f�x;w�, w 2W or, equivalently,

for x� 2 F�x;u�.
De®nition B.45 (ISS (constrained)). Suppose that W is a compact set

containing the origin and that X � X is a closed robust positive invari-

ant set for x� � f�x;w�, w 2 W. The system x� � f�x;w�, w 2 W is

ISS in X if there exists a classKL function ���� and a classK function

���� such that, for all x 2 X, all w 2W whereW is the set of in®nite

sequences w satisfying w�i� 2W for all i 2 I�0����i;x;wi�
�� � ��jxj ; i�� ��kwik�

De®nition B.46 (ISS-Lyapunov function (constrained)). A function V :

X ! R�0 is an ISS-Lyapunov function in X for system x� � f�x;w�
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if there exist K1 functions �1���;�2���;�3��� and a K function ����
such that for all x 2 X, all w 2W

�1�jxj� � V�x� � �2�jxj�
V�f�x;w��� V�x� � ��3�jxj�� ��jwj�

The following result is a minor generalization of Lemma 3.5 in Jiang

and Wang (2001).

Lemma B.47 (ISS-Lyapunov function implies ISS (constrained)). Suppose

that W is a compact set containing the origin and that X � X is a closed

robust positive invariant set for x� � f�x;w�, w 2W. If f��� is contin-
uous and there exists a continuous ISS-Lyapunov function in X for the

system x� � f�x;w�, w 2 W, then the system x� � f�x;w�, w 2 W is

ISS in X.

B.7 Output-to-State Stability and Detectability

We present some de®nitions and results that are discrete time versions

of results due to Sontag and Wang (1997) and Krichman, Sontag, and

Wang (2001). The output-to-state (OSS) property corresponds, infor-

mally, to the statement that ªno matter what the initial state is, if the

observed outputs are small, then the state must eventually be smallº. It

is therefore a natural candidate for the concept of nonlinear (zero-state)

detectability. We consider ®rst the autonomous system

x� � f�x� y � h�x� (B.25)

where f��� : X ! X is locally Lipschitz continuous and h��� is contin-
uously differentiable where X � Rn for some n. We assume x � 0

is an equilibrium state, i.e., f�0� � 0. We also assume h�0� � 0. We

use ��k;x0� to denote the solution of (B.25) with initial state x0, and

y�k;x0� to denote h���k;x0��. The function yx0��� is de®ned by

yx0�k� :� y�k;x0�

We use j�j and k�k to denote, respectively the Euclidean norm of a

vector and the sup norm of a sequence; k�k0:k denotes the max norm

of a sequence restricted to the interval �0; k�. For conciseness, u, y

denote, respectively, the sequences
�
u�j�

�
,
�
y�j�

�
.
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De®nition B.48 (Output-to-state stable (OSS)). The system (B.25) is

output-to-state stable (OSS) if there exist functions ���� 2 KL and

��� 2 K such that for all x0 2 Rn and all k � 0

jx�k;x0�j �max
�
��jx0j ; k�; �kyk0:k�

	
De®nition B.49 (OSS-Lyapunov function). An OSS-Lyapunov function

for system (B.25) is any function V��� with the following properties

(a) There existK1 functions �1��� and �2��� such that

�1�jxj� � V�x� � �2�jxj�
for all x in Rn.

(b) There exist K1 functions ���� and ���� such that for all x 2 Rn

either

V�x�� � V�x����jxj�� ����y���
or

V�x�� � �V�x�� ����y��� (B.26)

with x� � f�x�, y � h�x�, and � 2 �0;1�.
Inequality (B.26) corresponds to an exponential-decay OSS-

Lyapunov function.

Theorem B.50 (OSS and OSS-Lyapunov function). The following prop-

erties are equivalent for system (B.25):

(a) The system is OSS.

(b) The system admits an OSS-Lyapunov function.

(c) The system admits an exponential-decay OSS-Lyapunov function.

B.8 Input/Output-to-State Stability

Consider now a system with both inputs and outputs

x� � f�x;u� y � h�x� (B.27)

Input/output-to-state stability corresponds roughly to the statement

that, no matter what the initial state is, if the input and the output con-

verge to zero, so does the state. We assume f��� and h��� are contin-
uous. We also assume f�0;0� � 0 and h�0� � 0. Let x��; x0;u� denote
the solution of (B.27) which results from initial state x0 and control

u � �u�j��j�0 and let yx0;u�k� :� y�k;x0;u� denote h�x�k;x0;u��.
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De®nition B.51 (Input/output-to-state stable (IOSS)). The system (B.27)

is input/output-to-state stable (IOSS) if there exist functions ���� 2 KL
and 1���, 2��� 2 K such that

jx�k;x0�j �max
�
��jx0j ; k�; 1 �kuk0:k�1� ; 2

�kyk0:k�	
for every initial state x0 2 Rn, every control sequence u � �u�j��, and
all k � 0.

De®nition B.52 (IOSS-Lyapunov function). An IOSS-Lyapunov function

for system (B.27) is any function V��� with the following properties:

(a) There existK1 functions �1��� and �2��� such that

�1�jxj� � V�x� � �2�jxj�

for all x 2 Rn.

(b) There existK1 functions ����, �1���, and �2��� such that for every

x and u either

V�x�� � V�x����jxj�� �1�juj�� �2�
��y���

or

V�x�� � �V�x�� �1�juj�� �2�
��y���

with x� � f�x;u�, y � h�x�, and � 2 �0;1�.
The following result proves useful when establishing that MPC em-

ploying cost functions based on the inputs and outputs rather than

inputs and states is stabilizing for IOSS systems. Consider the system

x� � f�x;u�;y � h�x� with stage cost `�y;u� and constraints �x;

u� 2 Z. The stage cost satis®es `�0;0� � 0 and `�y;u� � �����y;u����
for all �y;u� 2 Rp � Rm with �1 a K1 function. Let X :� fx j
9u with �x;u� 2 Zg.
Theorem B.53 (Modi®ed IOSS-Lyapunov function). Assume that there

exists an IOSS-Lyapunov function V : X! R�0 for the constrained system

x� � f�x;u� such that the following holds for all �x;u� 2 Z for which

f�x;u� 2 X

�1�jxj� � V�x� � �2�jxj�
V�f�x;u��� V�x� � ��3�jxj�� ��`�y;u��

with �1; �2; �3 2 K1 and � 2 K.
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For any �4 2 K1, there exists another IOSS-Lyapunov function � :

X! R�0 for the constrained systemx� � f�x;u� such that the following
holds for all �x;u� 2 Z for which f�x;u� 2 X

�1�jxj� � ��x� � �2�jxj�
��f �x;u�����x� � ���jxj���4�`�y;u��

with �1; �2 2 K1 and continuous function � 2 PD. Note that � �  �V
for some  2 K.

Conjecture B.54 (IOSS and IOSS-Lyapunov function). The following

properties are equivalent for system (B.27):

(a) The system is IOSS.

(b) The system admits a smooth IOSS-Lyapunov function.

(c) The system admits an exponential-decay IOSS-Lyapunov function.

As discussed in the Notes section of Chapter 2, Grimm, Messina,

Tuna, and Teel (2005) use a storage function like ���� in Theorem B.53

to treat a semide®nite stage cost. Cai and Teel (2008) provide a dis-

crete time converse theorem for IOSS that holds for all Rn. Allan and

Rawlings (2018) provide the converse theorem on closed positive in-

variant sets (Theorem 36), and also provide a lemma for changing the

supply rate function (Theorem 38).

B.9 Incremental-Input/Output-to-State Stability

De®nition B.55 (Incremental input/output-to-state stable). The system

(B.27) is incrementally input/output-to-state stable (i-IOSS) if there ex-

ists some ���� 2 KL and 1���, 2��� 2 K such that, for every two

initial states z1 and z2 and any two control sequences u1 �
�
u1�j�

�
and u2 �

�
u2�j�

�
jx�k;z1;u1�� x�k;z2;u2�j �
max

n
��jz1 � z2j ; k�; 1�ku1 � u2k0:k�1�; 2�

yz1;u1 � yz2;u2

0:k�

o
B.10 Observability

De®nition B.56 (Observability). The system (B.27) is (uniformly) observ-

able if there exists a positive integer N and an ���� 2 K such that

k�1X
j�0

��h�x�j;x;u��� h�x�j;z;u���� � ��jx � zj� (B.28)
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for all x; z, all k � N and all control sequences u; here x�j;z;u� �
��j;z;u�, the solution of (B.27) when the initial state is z at time 0 and

the control sequence is u.

When the system is linear, i.e., f�x;u� � Ax � Bu and h�x� � Cx,
this assumption is equivalent to assuming the observability GramianPn�1
j�0 CA

j�Aj�0C0 is positive de®nite. Consider the system described

by

z� � f�z;u��w y � v � h�z� (B.29)

with output yw � y � v . Let z�k;z;u;w� denote the solution, at time

k of (B.29) if the state at time 0 is z, the control sequence is u and the

disturbance sequence is w. We assume, in the sequel, that

Assumption B.57 (Lipschitz continuity of model).

(a) The function f��� is globally Lipschitz continuous in Rn � U with

Lipschitz constant c.

(b) The function h��� is globally Lipschitz continuous in Rn with Lips-

chitz constant c.

Lemma B.58 (Lipschitz continuity and state difference bound). Suppose

Assumption B.57 is satis®ed (with Lipschitz constant c). Then,

jx�k;x;u�� z�k;z;u;w�j � ck jx � zj �
k�1X
i�0

ck�i�1 jw�i�j

Proof. Let ��k� :� jx�k;x;u�� z�k;z;u;w�j. Then

��k� 1� � ��f�x�k;x;u�;u�k��� f�z�k;z;u;w�;u�k���w�k���
� c j��k�j � jw�k�j

Iterating this equation yields the desired result. �

Theorem B.59 (Observability and convergence of state). Suppose (B.27)

is (uniformly) observable and that Assumption B.57 is satis®ed. Then,

w�k�! 0 and v�k�! 0 as k!1 imply jx�k;x;u�� z�k;z;u;w�j ! 0

as k!1.

Proof. Let x�k� and z�k� denote x�k;x;u� and z�k;z;u;w�, respec-

tively, in the sequel. Since (B.27) is observable, there exists an integer
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N satisfying (B.28). Consider the sum

S�k� �
k�NX
j�k

v�k� �
k�NX
j�k

��h�x�j;x;u��� h�z�j;z;u;w����
�

k�NX
j�k

��h�x�j;x�k�;u��� h�x�j;z�k�;u����
�

k�NX
j�k

��h�x�j;z�k�;u��� h�z�j;z�k�;u;w���� (B.30)

where we have used the fact that ja� bj � jaj�jbj. By the assumption

of observability

k�NX
j�k

��h�x�j;x�k�;u��� h�x�j;z�k�;u���� � ��jx�k�� z�k�j�
for all k. From Lemma B.58 and the Lipschitz assumption on h���
��h�x�j;z�k�;u��� h�z�j;z�k�;u;w���� �

c
��x�j;z�k�;u�� z�j;z�k�;u;w��� � c j�1X

i�k

cj�1�i jw�i�j

for all j in fk�1; k�2; : : : k�Ng. Hence there exists a d 2 �0;1� such
that the last term in (B.30) satis®es

k�NX
j�k

��h�x�j;x�k�;u��� h�x�j;z�k�;u���� � dkwkk�N:k

Hence, (B.30) becomes

��jx�k�� z�k�j� � N kvkk�N:k � dkwkk�N:k

Since, by assumption,w�k�! 0 and v�k�! 0 as k!1, and ���� 2 K,

it follows that jx�k�� z�k�j ! 0 as k!1. �

B.11 Exercises

Exercise B.1: Lyapunov equation and linear systems

Establish the equivalence of (a) and (b) in Lemma B.20.
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Exercise B.2: Lyapunov function for exponential stability

Let V : Rn ! R�0 be a Lyapunov function for the system x� � f�x� with the following

properties. For all x 2 Rn

a1 jxj� � V�x� � a2 jxj�
V�f�x��� V�x� � �a3 jxj�

in which a1; a2; a3; � > 0. Show that the origin of the system x� � f�x� is globally

exponentially stable.

Exercise B.3: A converse theorem for exponential stability

(a) Assume that the origin is globally exponentially stable (GES) for the system

x� � f�x�
in which f��� is continuous. Show that there exists a continuous Lyapunov

function V��� for the system satisfying for all x 2 Rn

a1 jxj� � V�x� � a2 jxj�
V�f�x��� V�x� � �a3 jxj�

in which a1; a2; a3; � > 0.

Hint: Consider summing the solution
����i;x���� on i as a candidate Lyapunov

function V�x�.

(b) Establish that in the Lyapunov function de®ned above, any � > 0 is valid, and

also that the constant a3 can be chosen as large as one wishes.

Exercise B.4: Revisit Lemma 1.3 in Chapter 1

Establish Lemma 1.3 in Chapter 1 using the Lyapunov function tools established in

this appendix. Strengthen the conclusion and establish that the closed-loop system is

globally exponentially stable.

Exercise B.5: Continuity of Lyapunov function for asymptotic stability

Let X be a compact subset of Rn containing the origin in its interior that is positive

invariant for the system x� � f�x�. If f��� is continuous on X and the origin is

asymptotically stable with a region of attraction X, show that the Lyapunov function

suggested in Theorem B.17 is continuous on X.

Exercise B.6: A Lipschitz continuous converse theorem for exponential sta-
bility

Consider the system x� � f�x�, f�0� � 0, with function f : D ! Rn Lipschitz contin-

uous on compact set D � Rn containing the origin in its interior. Choose R > 0 such

that BR � D. Assume that there exist scalars c > 0 and � 2 �0;1� such that����k;x��� � c jxj�k for all jxj � r ; k � 0

with r :� R=c.
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Show that there exists a Lipschitz continuous Lyapunov function V��� satisfying for
all x 2 Br

a1 jxj2 � V�x� � a2 jxj2

V�f�x��� V�x� � �a3 jxj2

with a1; a2; a3 > 0.

Hint: Use the proposed Lyapunov function of Exercise B.3 with � � 2. See also

(Khalil, 2002, Exercise 4.68).

Exercise B.7: Lyapunov function requirements: continuity of �3

Consider the following scalar system x� � f�x� with piecewise af®ne and discontinu-

ous f��� (Lazar et al., 2009)

f�x� �
8<:0; x 2 ��1;1�
�1=2��x � 1�; x 2 �1;1�

Note that the origin is a steady state

(a) Consider V�x� � jxj as a candidate Lyapunov function. Show that this V satis-

®es (B.11)±(B.13) of De®nition B.12, in which �3�x� is positive de®nite but not

continuous.

(b) Show by direction calculation that the origin is not globally asymptotically stable.

Show that for initial conditions x0 2 �1;1�, x�k;x0�! 1 as k!1.

The conclusion here is that one cannot leave out continuity of �3 in the de®nition of a

Lyapunov function when allowing discontinuous system dynamics.

Exercise B.8: Difference between classical and KL stability de®nitions (Teel)

Consider the discontinuous nonlinear scalar example x� � f�x� with

f�x� �

8>>>><>>>>:
1

2
x jxj 2 �0;1�
2x

2� jxj jxj 2 �1;2�
0 jxj 2 �2;1�

Is this system GAS under the classical de®nition? Is this system GAS under the KL

de®nition? Discuss why or why not.

Exercise B.9: CombiningK functions

Establish (B.5) and (B.7) starting from (B.3) and (B.4) and then using (B.1).

Exercise B.10

DeriveKL bounds (B.6) and (B.8) from (B.5) and (B.7), respectively.
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C.1 Dynamic Programming

The name dynamic programming dates from the 1950s when it was

coined by Richard Bellman for a technique for solving dynamic opti-

mization problems, i.e., optimization problems associated with deter-

ministic or stochastic systems whose behavior is governed by differ-

ential or difference equations. Here we review some of the basic ideas

behind dynamic programming (DP) Bellman (1957); Bertsekas, Nedic,

and Ozdaglar (2001).

To introduce the topic in its simplest form, consider the simple

routing problem illustrated in Figure C.1. To maintain connection with

optimal control, each node in the graph can be regarded as a point �x;

t� in a subset S of X�T where both the state space X � fa;b; c; : : : ; gg
and the set of times T � f0;1;2;3g are discrete. The set of permissible

control actions is U � fU;Dg, i.e., to go ªupº or ªdown.º The control

problem is to choose the lowest cost path from event �d;0� (state d

at t � 0) to any of the states at t � 3; the cost of going from one

event to the next is indicated on the graph. This problem is equivalent

to choosing an open-loop control, i.e., a sequence �u�0�;u�1�;u�2��

of admissible control actions. There are 2N controls where N is the

number of stages, 3 in this example. The cost of each control can, in

this simple example, be evaluated and is given in Table C.1.

There are two different open-loop optimal controls, namely

�U;D;U� and �D;D;D�, each incurring a cost of 16. The corresponding

control UUU UUD UDU UDD DUU DUD DDU DDD

cost 20 24 16 24 24 32 20 16

Table C.1: Control Cost.
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Figure C.1: Routing problem.

state trajectories are �d; e; d; e� and �d; c; b; a�.

In discrete problems of this kind, DP replaces the N-stage problem

by M single stage problems, where M is the total number of nodes, i.e.,

the number of elements in S � X � T . The ®rst set of optimization

problems deals with the states b;d; f at time N � 1 � 2. The optimal

decision at event �f ;2�, i.e., state f at time 2, is the control U and

gives rise to a cost of 4. The optimal cost and control for node �f ;

2� are recorded; see Table C.2. The procedure is then repeated for

states d and b at time t � 2 (nodes �d;2� and �b;2�) and recorded as

shown in Table C.2. Attention is next focused on the states e and c at

t � 1 (nodes �e;1� and �c;1�). The lowest cost that can be achieved at

node �e;1� if control U is chosen, is 16 � 4, the sum of the path cost

16 associated with the control U , and the optimal cost 4 associated

with the node �f ;2� that results from using control U at node �e;1�.

Similarly the lowest possible cost, if controlD is chosen, is 8�8. Hence
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t 0 1 2

state d e c f d b

control U or D D D U U D

optimal cost 16 16 8 4 8 4

Table C.2: Optimal Cost and Control

the optimal control and cost for node �e;1� are, respectively, D and 16.

The procedure is repeated for the remaining state d at t � 1 (node �d;

1�). A similar calculation for the state d at t � 0 (node �d;0�), where

the optimal control is U or D, completes this backward recursion; this

backward recursion provides the optimal cost and control for each �x;

t�, as recorded in Table C.2. The procedure therefore yields an optimal

feedback control that is a function of �x; t� 2 S. To obtain the optimal

open-loop control for the initial node �d;0�, the feedback law is obeyed,

leading to control U or D at t � 0; if U is chosen, the resultant state at

t � 1 is e. From Table C.2, the optimal control at �e;1� is D, so that the

successor node is �d;2�. The optimal control at node �d;2� is U . Thus

the optimal open-loop control sequence �U;D;U� is re-obtained. On

the other hand, if the decision at �d;0� is chosen to be D, the optimal

sequence �D;D;D� is obtained. This simple example illustrates the

main features of DP that we will now examine in the context of discrete

time optimal control.

C.1.1 Optimal Control Problem

The discrete time system we consider is described by

x� � f�x;u� (C.1)

where f��� is continuous. The system is subject to the mixed state-

control constraint

�x;u� 2 Z
where Z is a closed subset of Rn�Rm and Pu�Z� is compact where Pu
is the projection operator �x;u� , u. Often Z � X � U in which case

the constraint �x;u� 2 Z becomes x 2 X and u 2 U and Pu�Z� � U

so that U is compact. In addition there is a constraint on the terminal

state x�N�:

x�N� 2 Xf
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where Xf is closed. In this section we ®nd it easier to express the

value function and the optimal control in terms of the current state

and current time i rather than using time-to-go k. Hence we replace

time-to-go k by time i where k � N� i, replace V0
k �x� (the optimal cost

at state x when the time-to-go is k) by V0�x; i� (the optimal cost at state

x, time i) and replace Xk by X�i� where X�i� is the domain of V0��; i�).
The cost associated with an initial state x at time 0 and a control

sequence u :� �u�0�;u�1�; : : : ; u�N � 1�� is

V�x;0;u� � Vf �x�N���
N�1X
i�1

`�x�i�;u�i�� (C.2)

where `��� and Vf ��� are continuous and, for each i, x�i� � ��i; �x;
0�;u� is the solution at time i of (C.1) if the initial state is x at time 0

and the control sequence is u. The optimal control problem P�x;0� is

de®ned by

V0�x;0� �min
u
V�x;0;u� (C.3)

subject to the constraints �x�i�;u�i�� 2 Z, i � 0;1; : : : ;N � 1 and

x�N� 2 Xf . Equation (C.3) may be rewritten in the form

V0�x;0� �min
u
fV�x;0;u� j u 2 U�x;0�g (C.4)

where u :� �u�0�;u�1�; : : : ; u�N � 1��,

U�x;0� :� fu 2 RNm j �x�i�;u�i�� 2 Z; i � 0;1; : : : ;N�1;x�N� 2 Xf g

and x�i� :� ��i; �x;0�;u�. ThusU�x;0� is the set of admissible control

sequences1 if the initial state is x at time 0. It follows from the continu-

ity of f��� that for all i 2 f0;1; : : : ;N � 1g and all x 2 Rn, u , ��i; �x;

0�;u� is continuous, u , V�x;0;u� is continuous and U�x;0� is com-

pact. Hence the minimum in (C.4) exists at all x 2 fx 2 Rn j U�x;
0� �;g.

DP embeds problem P�x;0� for a given state x in a whole family of

problems P�x; i� where, for each �x; i�, problem P�x; i� is de®ned by

V0�x; i� �min
ui
fV�x; i;ui� j ui 2 U�x; i�g

where

ui :� �u�i�;u�i� 1�; : : : ; u�N � 1��

1An admissible control sequence satis®es all constraints.
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V�x; i;ui� :� Vf �x�N���
N�1X
j�i

`�x�j�;u�j�� (C.5)

and

U�x; i� :� fui 2 R�N�i�m j �x�j�;u�j�� 2 Z; j � i; i� 1; : : : ;N � 1

x�N� 2 Xf g (C.6)

In (C.5) and (C.6), x�j� � ��j; �x; i�;ui�, the solution at time j of (C.1)

if the initial state is x at time i and the control sequence is ui. For each

i, X�i� denotes the domain of V0��; i� and U��; i� so that

X�i� � fx 2 Rn j U�x; i� �;g: (C.7)

C.1.2 Dynamic Programming

One way to approach DP for discrete time control problems is the sim-

ple observation that for all �x; i�

V0�x; i� �min
ui
fV�x; i;ui� j ui 2 U�x; i�g

�min
u
f`�x;u��min

ui�1
V�f�x;u�; i� 1;ui�1� j

fu;ui�1g 2 U�x; i�g (C.8)

where ui � �u;u�i� 1�; : : : ; u�N � 1�� �
�
u;ui�1

�
. We now make use

of the fact that fu;ui�1g 2 U�x; i� if and only if �x;u� 2 Z, f�x;

u� 2 X�i � 1�, and ui�1 2 U�f �x;u�; i � 1� since f�x;u� � x�i � 1�.

Hence we may rewrite (C.8) as

V0�x; i� �min
u
f`�x;u�� V0�f �x;u�; i� 1� j
�x;u� 2 Z; f �x;u� 2 X�i� 1�g (C.9)

for all x 2 X�i� where

X�i� � fx 2 Rn j 9u such that �x;u� 2 Z and f�x;u� 2 X�i� 1�g
(C.10)

Equations (C.9) and (C.10), together with the boundary condition

V0�x;N� � Vf �x� 8x 2 X�N�; X�N� � Xf
constitute the DP recursion for constrained discrete time optimal con-

trol problems. If there are no state constraints, i.e., if Z � Rn�U where
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U � Rm is compact, then X�i� � Rn for all i 2 f0;1; : : : ;Ng and the DP

equations revert to the familiar DP recursion:

V0�x; i� �min
u
f`�x;u�� V0�f �x;u�; i� 1�g 8x 2 Rn

with boundary condition

V0�x;N� � Vf 8x 2 Rn

We now prove some basic facts; the ®rst is the well known principle

of optimality.

Lemma C.1 (Principle of optimality). Let x 2 XN be arbitrary, let

u :� �u�0�;u�1�; : : : ; u�N � 1�� 2 U�x;0� denote the solution of P�x;0�

and let �x;x�1�; x�2�; : : : ; x�N�� denote the corresponding optimal state

trajectory so that for each i, x�i� � ��i; �x;0�;u�. Then, for any i 2 f0;
1; : : : ;N�1g, the control sequence ui :� �u�i�;u�i� 1�; : : : ; u�N � 1�� is

optimal for P�x�i�; i� (any portion of an optimal trajectory is optimal).

Proof. Since u 2 U�x;0�, the control sequence ui 2 U�x�i�; i�. If ui �
�u�i�;u�i� 1�; : : : ; u�N � 1�� is not optimal for P�x�i�; i�, there exists

a control sequence u0 � �u0�i�;u0�i� 1�; : : : ; u�N � 1�0� 2 U�x�i�; i�
such that V�x�i�; i;u0� < V�x�i�;u�. Consider now the control se-

quence ue :� �u�0�;u�1�; : : : ; u�i� 1�;u0�i�;u0�i� 1�; : : : ; u�N � 1�0�.

It follows that ue 2 U�x;0� and V�x;0;ue� < V�x;0;u� � V0�x;0�, a

contradiction. Hence u�x�i�; i� is optimal for P�x�i�; i�. �

The most important feature of DP is the fact that the DP recur-

sion yields the optimal value V0�x; i� and the optimal control ��x; i� �
argminuf`�x;u�� V0�f �x;u�; i� 1� j �x;u� 2 Z; f �x;u� 2 X�i� 1�g
for each �x; i� 2 X�i�� f0;1; : : : ;N � 1g.
Theorem C.2 (Optimal value function and control law from DP). Sup-

pose that the function 	 : Rn�f0;1; : : : ;Ng ! R, satis®es, for all i 2 f1;
2; : : : ;N � 1g, all x 2 X�i�, the DP recursion

	�x; i� �minf`�x;u�� 	�f �x;u�; i� 1� j �x;u� 2 Z; f �x;u� 2 X�i� 1�g
X�i� � fx 2 Rn j 9u 2 Rm such that �x;u� 2 Z; f �x;u� 2 X�i� 1�g

with boundary conditions

	�x;N� � Vf �x� 8x 2 Xf ; X�N� � Xf
Then 	�x; i� � V0�x; i� for all �x; i� 2 X�i� � f0;1;2; : : : ;Ng; the DP

recursion yields the optimal value function and the optimal control law.
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Proof. Let �x; i� 2 X�i� � f0;1; : : : ;Ng be arbitrary. Let u �
�u�i�;u�i� 1�; : : : ; u�N � 1�� be an arbitrary control sequence inU�x;
i� and let x � �x;x�i� 1�; : : : ; x�N�� denote the corresponding tra-

jectory starting at �x; i� so that for each j 2 fi; i � 1; : : : ;Ng,
x�j� � ��j;x; i;u�. For each j 2 fi; i � 1; : : : ;N � 1g, let uj :��
u�j�;u�j � 1�; : : : ; u�N � 1�

�
; clearly uj 2 U�x�j�; j�. The cost due

to initial event �x�j�; j� and control sequence uj is ��x�j�; j� de®ned

by

��x�j�; j� :� V�x�j�; j;uj�
Showing that 	�x; i� � ��x; i� proves that 	�x; i� � V0�x; i� since u is

an arbitrary sequence in U�x; i�; because �x; i� 2 X�i� � f0;1; : : : ;Ng
is arbitrary, that fact that 	�x; i� � V0�x; i� proves that DP yields the

optimal value function.

To prove that 	�x; i� � ��x; i�, we compare 	�x�j�; j� and ��x�j�;

j� for each j 2 fi; i � 1; : : : ;Ng, i.e., we compare the costs yielded by

the DP recursion and by the arbitrary control u along the corresponding

trajectory x. By de®nition, 	�x�j�; j� satis®es for each j

	�x�j�; j� �min
u

�
`�x�j�;u�� 	�f �x�j�;u�; j � 1� j

�x�j�;u� 2 Z; f �x�j�;u� 2 X�j � 1�
	

(C.11)

To obtain ��x�j�; j� for each j we solve the following recursive equa-

tion

��x�j�; j� � `�x�j�;u�j��� ��f �x�j�;u�j��; j � 1� (C.12)

The boundary conditions are

	�x�N�;N� � ��x�N�;N� � Vf �x�N�� (C.13)

Since u�j� satis®es �x�j�;u�j�� 2 Z and f�x�j�;u�j�� 2 X�j � 1� but

is not necessarily a minimizer in (C.11), we deduce that

	�x�j�; j� � `�x�j�;u�j��� 	�f �x�j�;u�j��; j � 1� (C.14)

For each j, let E�j� be de®ned by

E�j� :� 	�x�j�; j�� ��x�j�; j�

Subtracting (C.12) from (C.14) and replacing f�x�j�;u�j�� by x�j � 1�

yields

E�j� � E�j � 1� 8j 2 fi; i� 1; : : : Ng
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Since E�N� � 0 by virtue of (C.13), we deduce that E�j� � 0 for all

j 2 fi; i� 1; : : : ;Ng; in particular, E�i� � 0 so that

	�x; i� � ��x; i� � V�x; i;u�

for all u 2 U�x; i�. Hence 	�x; i� � V0�x; i� for all �x; i� 2 X�i� � f0;
1; : : : ;Ng. �

Example C.3: DP applied to linear quadratic regulator

A much used example is the familiar linear quadratic regulator prob-

lem. The system is de®ned by

x� � Ax � Bu

There are no constraints. The cost function is de®ned by (C.2) where

`�x;u� :� �1=2�x0Qx � �1=2�u0Ru

and Vf �x� � 0 for all x; the horizon length is N. We assume that Q

is symmetric and positive semide®nite and that R is symmetric and

positive de®nite. The DP recursion is

V0�x; i� �min
u
f`�x;u�� V0�Ax � Bu; i� 1�g 8x 2 Rn

with terminal condition

V0�x;N� � 0 8x 2 Rn

Assume that V0��; i � 1� is quadratic and positive semide®nite and,

therefore, has the form

V0�x; i� 1� � �1=2�x0P�i� 1�x

where P�i� 1� is symmetric and positive semide®nite. Then

V0�x; i� � �1=2�min
u
fx0Qx �u0Ru� �Ax � Bu�0P�i� 1��Ax � Bu�g

The right-hand side of the last equation is a positive de®nite function

of u for all x, so that it has a unique minimizer given by

��x; i� � K�i�x K�i� :� ��B0P�i� 1�B � R��1B0P�i� 1�

Substituting u � K�i�x in the expression for V0�x; i� yields

V0�x; i� � �1=2�x0P�i�x
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where P�i� is given by:

P�i� � Q�K�i�0RK�i��A0P�i� 1�B�B0P�i� 1�B � R��1B0P�i� 1�A

Hence V0��; i� is quadratic and positive semide®nite if V0��; i � 1� is.

But V0��; N�, de®ned by

V0�x;N� :� �1=2�x0P�N�x � 0 P�N� :� 0

is symmetric and positive semide®nite. By induction V0��; i� is quad-
ratic and positive semide®nite (and P�i� is symmetric and positive

semide®nite) for all i 2 f0;1; : : : ;Ng. Substituting K�i� � ��B0P�i �
1�B�R��1B0P�i�1�A in the expression for P�i� yields the more famil-

iar matrix Riccati equation

P�i� � Q�A0P�i� 1�A�A0P�i� 1�B�B0P�i� 1�B � R��1BP�i� 1�A

�

C.2 Optimality Conditions

In this section we obtain optimality conditions for problems of the form

f 0 � inf
u
ff�u� j u 2 Ug

In these problems, u 2 Rm is the decision variable,f�u� the cost to be

minimized by appropriate choice of uand U � Rm the constraint set.

The value of the problem is f 0. Some readers may wish to read only

Section C.2.2, which deals with convex optimization problems and Sec-

tion C.2.3 which deals with convex optimization problems in which the

constraint set U is polyhedral. These sections require some knowledge

of tangent and normal cones discussed in Section C.2.1; Proposition C.7

in particular derives the normal cone for the case when U is convex.

C.2.1 Tangent and Normal Cones

In determining conditions of optimality, it is often convenient to em-

ploy approximations to the cost function f��� and the constraint set U .

Thus the cost function f���may be approximated, in the neighborhood

of a point Åu, by the ®rst order expansion f�Åu� � hrf�Åu�; �u � Åu�i or
by the second order expansion f�Åu�� hrf�Åu�; �u� Åu�i � �1=2���u�
Åu�0r2f�Åx��u� Åu�� if the necessary derivatives exist. Thus we see that
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u2

Åu2

rf�Åu�

Åu�TU �Åu�

U

u1Åu1

Figure C.2: Approximation of the set U .

TU �u�

TU �v�

U

u

ÃN�u�

v ÃN�v�

Figure C.3: Tangent cones.

in the unconstrained case, a necessary condition for the optimality of

Åu is rf�Åu� � 0. To obtain necessary conditions of optimality for con-

strained optimization problems, we need to approximate the constraint

set as well; this is more dif®cult. An example of U and its approxima-

tion is shown in Figure C.2; here the set U � fu 2 R2 j g�u� � 0g
where g : R ! R is approximated in the neighborhood of a point Åu

satisfying g�Åu� � 0 by the set Åu � TU�Åu� where2 the tangent cone

TU�Åu� :� fh 2 R2 j rg�Åu�;u� Åui � 0g. In general, a set U is approx-

2If A and B are two subsets of Rn, say, then A � B :� fa � b j a 2 A;b 2 Bg and
a� B :� fa� b j b 2 Bg.
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U

u

ÃNU �u�

Figure C.4: Normal at u.

imated, near a point Åu, by Åu�TU�Åu� where its tangent cone TU�Åu� is
de®ned below. Following Rockafellar and Wets (1998), we use u� --------------------------------------------!

U
v

to denote that the sequence fu� j � 2 I�0g converges to v as � ! 1
while satisfying u� 2 U for all � 2 I�0.
De®nition C.4 (Tangent vector). A vector h 2 Rm is tangent to the set

U at Åu if there exist sequences u� --------------------------------------------!
U
Åu and �� & 0 such that

�u� � Åu�=�� ! h

TU�u� is the set of all tangent vectors.
Equivalently, a vector h 2 Rm is tangent to the set U at Åu if there

exist sequences h� ! h and �� & 0 such that Åu � ��h� 2 U for all

� 2 I�0. This equivalence can be seen by identifyingu� with Åu���h� .
Proposition C.5 (Tangent vectors are closed cone). The set TU�u� of all
tangent vectors to U at any point u 2 U is a closed cone.

See Rockafellar and Wets (1998), Proposition 6.2. That TU�Åu� is a
cone may be seen from its de®nition; if h is a tangent, so is �h for any

� � 0. Two examples of a tangent cone are illustrated in Figure C.3.

Associated with each tangent cone TU�u� is a normal cone ÃN�u�

de®ned as follows Rockafellar and Wets (1998):

De®nition C.6 (Regular normal). A vector g 2 Rm is a regular normal

to a set U � Rm at Åu 2 U if

hg;u� Åui � o�ju� Åuj� 8u 2 U (C.15)

where o��� has the property that o�ju� Åuj�=ju� Åuj ! 0 as u--------------------------------------------!
U
Åu with

u � Åu; ÃNU�u� is the set of all regular normal vectors.



740 Optimization

Some examples of normal cones are illustrated in Figure C.3; here

the set ÃNU�u� � f�g j � � 0g is a cone generated by a single vector g,

say, while ÃNU�v� � f�1g1 � �2g2 j �1 � 0; �2 � 0g is a cone generated
by two vectors g1 and g2, say. The term o�ju� Åuj�may be replaced by

0 if U is convex as shown in Proposition C.7(b) below but is needed in

general since U may not be locally convex at Åu as illustrated in Figure

C.4.

The tangent cone TU�Åu� and the normal cone ÃNU�Åu� at a point Åu 2
U are related as follows.

Proposition C.7 (Relation of normal and tangent cones).

(a) At any point Åu 2 U � Rm,

ÃNU�Åu� � TU�Åu�� :� fg j hg;hi � 0 8h 2 TU�Åu�g

where, for any cone V , V� :� fg j hg;hi � 08h 2 Vg denotes the polar
cone of V .

(b) If U is convex, then, at any point Åu 2 U

ÃNU�Åu� � fg j hg;u� Åui � 0 8u 2 Ug (C.16)

Proof.

(a) To prove ÃNU�Åu� � TU�Åu��, we take an arbitrary point g in ÃNU�Åu�

and show that hg;hi � 0 for all h 2 T �Åu� implying that g 2 T �
U �Åu�.

For, if h is tangent to U at Åu, there exist, by de®nition, sequences

u� --------------------------------------------!
U
Åu and �� & 0 such that

h� :� �u� � Åu�=�� ! h

Since g 2 ÃNU�Åu�, it follows from (C.15) that hg;h�i � o�j�u� � Åu�j� �
o���jh�j�; the limit as � ! 1 yields hg;hi � 0, so that g 2 T �

U �Åu�.

Hence ÃNU�Åu� � TU�Åu��. The proof of this result, and the more subtle

proof of the converse, that TU�Åu�� � ÃNU�Åu�, are given in Rockafellar

and Wets (1998), Proposition 6.5.

(b) This part of the proposition is proved in (Rockafellar and Wets,

1998, Theorem 6.9). �

Remark. A consequence of (C.16) is that for each g 2 ÃNU�Åu�, the half-

space Hg :� fu j hg;u � Åui � 0g supports the convex set U at Åu, i.e.,

U � Hg and Åu lies on the boundary of the half-space Hg .
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We wish to derive optimality conditions for problems of the form

P : infuff�u� j u 2 Ug. The value of the problem is de®ned to be

f 0 :� inf
u
ff�u� j u 2 Ug

There may not exist a u 2 U such that f�u� � f 0. If, however, f��� is
continuous and U is compact, there exists a minimizing u in U , i.e.,

f 0 � inf
u
ff�u� j u 2 Ug �min

u
ff�u� j u 2 Ug

The minimizing u, if it exists, may not be unique so

u0 :� argmin
u
ff�u� j u 2 Ug

may be a set. We sayu is feasible ifu 2 U . A pointu is globally optimal

for problem P if u is feasible and f�v� � f�u� for all v 2 U . A point u

is locally optimal for problem P if u is feasible and there exists a " > 0

such that f�v� � f�u� for all v in �u� "B�\ U where B is the closed

unit ball fu jmin juj � 1g.

C.2.2 Convex Optimization Problems

The optimization problem P is convex if the function f : Rm ! R and

the set U � Rm are convex. In convex optimization problems, U often

takes the form fu j gj�u� � 0; j 2 Jg where J :� f1;2; : : : ; Jg and
each function gj��� is convex. A useful feature of convex optimization

problems is the following result:

Proposition C.8 (Global optimality for convex problems). Suppose the

function f��� is convex and differentiable and the set U is convex. Any

locally optimal point of the convex optimization problem infuff�u� j
u 2 Ug is globally optimal.

Proof. Suppose u is locally optimal so that there exists an " > 0 such

that f�v� � f�u� for all v 2 �u � "B� \ U . If, contrary to what we

wish to prove, u is not globally optimal, there exists a w 2 U such

that f�w� < f�u�. For any � 2 �0;1�, the point w� :� �w � �1 � ��u
lies in �u;w� (the line joining u and w). Then w� 2 U (because U is

convex) and f�w�� � �f�w� � �1 � ��f�u� < f�u� for all � 2 �0;1�
(because f��� is convex and f�w� < f�u�). We can choose � > 0 so

that w� 2 �u� "B�\ U and f�w�� < f�u�. This contradicts the local

optimality of u. Hence u is globally optimal. �
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On the assumption that f��� is differentiable, we can obtain a simple

necessary and suf®cient condition for the (global) optimality of a point

u.

Proposition C.9 (Optimality conditionsÐnormal cone). Suppose the

function f��� is convex and differentiable and the set U is convex. The

point u is optimal for problem P if and only if u 2 U and

df�u;v �u� � hrf�u�; v �ui � 0 8v 2 U (C.17)

or, equivalently

�rf�u� 2 ÃNU�u� (C.18)

Proof. Because f��� is convex, it follows from Theorem 7 in Appendix

A1 that

f�v� � f�u�� hrf�u�; v �ui (C.19)

for all u;v in U . To prove suf®ciency, suppose u 2 U and that the

condition in (C.17) is satis®ed. It then follows from (C.19) that f�v� �
f�u� for all v 2 U so that u is globally optimal. To prove necessity,

suppose that u is globally optimal but that, contrary to what we wish

to prove, the condition on the right-hand side of (C.17) is not satis®ed

so that there exists a v 2 U such that

df�u;h� � hrf�u�; v �ui � �� < 0

where h :� v �u. For all � 2 �0;1�, let v� :� �v � �1� ��u � u� �h;
because U is convex, each v� lies in U . Since

df�u;h� � lim
�&0

f�u� �h�� f�u�
�

� lim
�&0

f�v��� f�u�
�

� ��

there exists a � 2 �0;1� such that f�v�� � f�u� � ���=2 < 0 which

contradicts the optimality of u. Hence the condition in (C.17) must be

satis®ed. That (C.17) is equivalent to (C.18) follows from Proposition

C.7(b). �

Remark. The condition (C.17) implies that the linear approximation
Ãf�v� :� f�u� � hrf�u�; v � ui to f�v� achieves its minimum over U

at u.

It is an interesting fact that U in Proposition C.9 may be replaced by

its approximation u�TU�u� at u yielding
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Proposition C.10 (Optimality conditionsÐtangent cone). Suppose the

function f��� is convex and differentiable and the set U is convex. The

point u is optimal for problem P if and only if u 2 U and

df�u;v �u� � hrf�u�;hi � 0 8h 2 TU�u�
or, equivalently

�rf�u� 2 ÃNU�u� � T �
U �u�:

Proof. It follows from Proposition C.9 that u is optimal for problem P

if and only if u 2 U and �rf�u� 2 ÃNU�u�. But, by Proposition C.7,
ÃNU�u� � fg j hg;hi � 0 8h 2 TU�u�g so that �rf�u� 2 ÃNU�u� is

equivalent to hrf�u�;hi � 0 for all h 2 TU�u�. �

C.2.3 Convex Problems: Polyhedral Constraint Set

The de®nitions of tangent and normal cones given above may appear

complex but this complexity is necessary for proper treatment of the

general case when U is not necessarily convex. When U is polyhedral,

i.e., when U is de®ned by a set of linear inequalities

U :� fu 2 Rm j Au � bg
where A 2 Rp�m and b 2 Rp, I :� f1;2; : : : ; pg, then the normal and

tangent cones are relatively simple. We ®rst note that U is equivalently

de®ned by

U :� fu 2 Rm j hai; ui � bi; i 2 Ig
where ai is the ith row of A and bi is the ith element of b. For each

u 2 U , let
I0�u� :� fi 2 I j hai; ui � big

denote the index set of constraints active at u. Clearly I0�u� � ; if u

lies in the interior of U . An example of a polyhedral constraint set is

shown in Figure C.5. The next result shows that in this case, the tangent

cone is the set of h in Rm that satisfy hai; hi � 0 for all i in I0�u� and
the normal cone is the cone generated by the vectors ai, i 2 I0�u�; each
normal h in the normal cone may be expressed as

P
i2I0�u� �iai where

each �i � 0.

Proposition C.11 (Representation of tangent and normal cones). Let

U :� fu 2 Rm j hai; ui � bi; i 2 Ig. Then, for any u 2 U :
TU�u� � fh j hai; hi � 0; i 2 I0�u�g
ÃNU�u� � T �

U �u� � conefai j i 2 I0�u�g
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Proof. (i) Suppose h is any vector in fh j hai; hi � 0; i 2 I0�u�g. Let
the sequences u� and �� satisfy u� � u � ��h and �� & 0 with �0,

the ®rst element in the sequence �� , satisfying u��0h 2 U . It follows
that �u� � u�=�� � h so that from De®nition C.4, h is tangent to U

at u. Hence fh j hai; hi � 0; i 2 I0�u�g � TU�u�. (ii) Conversely,

if h 2 TU�u�, then there exist sequences �� & 0 and h� ! h such

that hai; u � ��h�i � bi for all i 2 I , all � 2 I�0. Since hai; ui � bi
for all i 2 I0�u�, it follows that hai; h�i � 0 for all i 2 I0�u�, all
� 2 I�0; taking the limit yields hai; hi � 0 for all i 2 I0�u� so that

h 2 fh j hai; hi � 0; i 2 I0�u�g which proves TU�u� � fh j hai; hi � 0;

i 2 I0�u�g. We conclude from (i) and (ii) that TU�u� � fh j hai; hi � 0;

i 2 I0�u�g. That ÃNU�u� � T �
U �u� � conefai j i 2 I0�u�g then follows

from Proposition C.7 above and Proposition 9 in Appendix A1. �

The next result follows from Proposition C.5 and Proposition C.7.

Proposition C.12 (Optimality conditionsÐlinear inequalities). Suppose

the function f��� is convex and differentiable and U is the convex set

fu j Au � bg. Then u is optimal for P : minuff�u� j u 2 Ug if and only

if u 2 U and

�rf�u� 2 ÃNU�u� � conefai j i 2 I0�u�g

Corollary C.13 (Optimality conditionsÐlinear inequalities). Suppose

the function f��� is convex and differentiable and U � fu j Au � bg.
Then u is optimal for P : minuff�u� j u 2 Ug if and only if Au � b and

there exist multipliers �i � 0; i 2 I0�u� satisfying

rf�u��
X

i2I0�u�

�irgi�u� � 0 (C.20)

where, for each i, gi�u� :� hai; ui�bi so that gi�u� � 0 is the constraint

hai; ui � bi and rgi�u� � ai.
Proof. Since any point g 2 conefai j i 2 I0�u�g may be expressed as

g � P
i2I0�u� �iai where, for each i, �i � 0, the condition �rf�u� 2

conefai j i 2 I0�u�g is equivalent to the existence of multipliers �i � 0;

i 2 I0�u� satisfying (C.20). �

The above results are easily extended if U is de®ned by linear equal-

ity and inequality constraints, i.e., if

U :� fhai; ui � bi; i 2 I; hci; ui � di; i 2 Eg
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a1

F��u�

a2

uU

F�u�

�rf�u�

Figure C.5: Condition of optimality.

In this case, at any point u 2 U , the tangent cone is
TU�u� � fh j hai; hi � 0; i 2 I0�u�; hci; hi � 0; i 2 Eg

and the normal cone is

ÃNU�u� � f
X

i2I0�u�

�iai �
X
i2E

�ici j �i � 0 8i 2 I0�u�; �i 2 R 8i 2 Eg

With U de®ned this way, u is optimal for minuff�u� j u 2 Ug where
f��� is convex and differentiable if and only if

�rf�u� 2 ÃNU�u�

For each i 2 I let gi�u� :� hai; ui � bi and for each i 2 E, let hi�u� :�
hci; ui � di so that rg�ui� � ai and rhi � ci. It follows from the

characterization of ÃNU�u� that u is optimal for minuff�u� j u 2 Ug if
and only if there exist multipliers �i � 0; i 2 I0�u� and �i 2 R; i 2 E
such that

rf�u��
X

i2I0�u�

�irgi�u��
X
i2E

hi�u� � 0 (C.21)

C.2.4 Nonconvex Problems

We ®rst obtain a necessary condition of optimality for the problem

minff�u� j u 2 Ug where f��� is differentiable but not necessarily
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convex and U � Rm is not necessarily convex; this result generalizes

the necessary condition of optimality in Proposition C.9.

Proposition C.14 (Necessary condition for nonconvex problem). A nec-

essary condition foru to be locally optimal for the problem ofminimizing

a differentiable function f��� over the set U is

df�u;h� � hrf�u�;hi � 0; 8h 2 TU�u�
which is equivalent to the condition

�rf�u� 2 ÃNU�u�

Proof. Suppose, contrary to what we wish to prove, that there exists

a h 2 TU�u� and a � > 0 such that hrf�u�;hi � �� < 0. Because

h 2 TU�u�, there exist sequences h� --------------------------------------------!
U
h and �� & 0 such that u� :�

u� ��h� converges to u and satis®es u� 2 U for all � 2 I�0. Then
f�u��� f�u� � hrf�u�; ��h�i � o���jh�j�

Hence

�f �u��� f�u��=�� � hrf�u�;h�i � o����=��

where we make use of the fact that jh�j is bounded for � suf®ciently

large. It follows that

�f �u��� f�u��=�� ! hrf�u�;hi � ��
so that there exists a ®nite integer j such that f�uj��f�u� � ��j�=2 <
0 which contradicts the local optimality of u. Hence hrf�u�;hi � 0

for all h 2 TU�u�. That �rf�u� 2 ÃNU�u� follows from Proposition

C.7. �

A more concise proof proceeds as follows Rockafellar and Wets

(1998). Since f�v� � f�u� � hrf�u�; v � ui � o�jv � uj� it follows
that h�rf�u�; v � ui � o�jv � uj� � �f �v� � f�u��. Because u is lo-

cally optimal, f�v� � f�u� � 0 for all v in the neighborhood of u so

that h�rf�u�; v �ui � o�jv �uj� which, by (C.15), is the de®nition of

a normal vector. Hence �rf�u� 2 ÃNU�u�.

C.2.5 Tangent and Normal Cones

The material in this section is not required for Chapters 1-7; it is pre-

sented merely to show that alternative de®nitions of tangent and nor-

mal cones are useful in more complex situations than those considered
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(a) Normal cones.

U

ÃTU �u�

u

TU �u�

(b) Tangent cones.

Figure C.6: Tangent and normal cones.

above. Thus, the normal and tangent cones de®ned in C.2.1 have some

limitations when U is not convex or, at least, not similar to the con-

straint set illustrated in Figure C.4. Figure C.6 illustrates the type of

dif®culty that may occur. Here the tangent cone TU�u� is not con-

vex, as shown in Figure C.6(b), so that the associated normal cone
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ÃNU�u� � TU�u�� � f0g. Hence the necessary condition of optimal-

ity of u for the problem of minimizing a differentiable function f���
over U is rf�u� � 0; the only way a differentiable function f��� can
achieve a minimum over U at u is for the condition rf�u� � 0 to be

satis®ed. Alternative de®nitions of normality and tangency are some-

times necessary. In Rockafellar and Wets (1998), a vector g 2 ÃNU�u�

is normal in the regular sense; a normal in the general sense is then

de®ned by:

De®nition C.15 (General normal). A vector g is normal to U at u in

the general sense if there exist sequences u� --------------------------------------------!
U
u and g� ! g where

g� 2 ÃNU�u�� for all � ; NU�u� is the set of all general normal vectors.

The cone NU�u� of general normal vectors is illustrated in Figure

C.6(a); here the cone NU�u� is the union of two distinct cones each

having form f�g j � � 0g. Also shown in Figure C.6(a) are single

elements of two sequences g� in ÃNU�u�� converging toNU�u�. Counter

intuitively, the general normal vectors in this case point into the interior

of U . Associated with NU�u� is the set ÃTU�u� of regular tangents to U
at u de®ned, when U is locally closed,3 in (Rockafellar and Wets, 1998,

Theorem 6.26) by:

De®nition C.16 (General tangent). Suppose U is locally closed at u. A

vector h is tangent to U at u in the regular sense if, for all sequences

u� --------------------------------------------!
U
u, there exists a sequence h� ! h that satis®es h� 2 Tu�u�� for

all � ; ÃTU�u� is the set of all regular tangent vectors to U at u.

Alternatively, a vector h is tangent to U at u in the regular sense if,

for all sequences u� --------------------------------------------!
U
u and �� & 0, there exists a sequence h� ! h

satisfying u� � ��h� 2 U for all � 2 I�0. The cone of regular tangent
vectors for the example immediately above is shown in Figure C.6(b).

The following result is proved in Rockafellar and Wets (1998), Theorem

6.26:

Proposition C.17 (Set of regular tangents is closed convex cone). At any

u 2 U , the set ÃTU�u� of regular tangents to U at u is a closed convex

cone with ÃTU�u� � TU�u�. Moreover, if U is locally closed at u, then
ÃTU�u� � NU�u��.

3A set U is locally closed at a point u if there exists a closed neighborhoodN of u
such that U \N is closed; U is locally closed if it is locally closed at all u.
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Figure C.7: Condition of optimality.

Figure C.7 illustrates some of these results. In Figure C.7, the con-

stant cost contour fv j f�v� � f�u�g of a nondifferentiable cost func-

tion f��� is shown together with a sublevel set D passing through the

point u: f�v� � f�u� for all v 2 D. For this example, df�u;h� �
maxfhg1; hi; hg2; hig where g1 and g2 are normals to the level set of

f��� at u so that df�u;h� � 0 for all h 2 ÃTU�u�, a necessary condi-

tion of optimality; on the other hand, there exist h 2 TU�u� such that

df�u;h� < 0. The situation is simpler if the constraint set U is regular

at u.

De®nition C.18 (Regular set). A set U is regular at a point u 2 U in the

sense of Clarke if it is locally closed at u and if NU�u� � ÃNU�u� (all

normal vectors at u are regular).

The following consequences of Clarke regularity are established in

Rockafellar and Wets (1998), Corollary 6.29:

Proposition C.19 (Conditions for regular set). Suppose U is locally

closed at u 2 U . Then U is regular at u is equivalent to each of the

following.

(a) NU�u� � ÃNU�u� (all normal vectors at u are regular).

(b) TU�u� � ÃTU�u� (all tangent vectors at u are regular).

(c) NU�u� � TU�u��.
(d) TU�u� � NU�u��.
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(e) hg;hi � 0 for all h 2 TU�u�, all g 2 NU�u�.

It is shown in Rockafellar and Wets (1998) that if U is regular at u

and a constraint quali®cation is satis®ed, then a necessary condition

of optimality, similar to (C.21), may be obtained. To obtain this result,

we pursue a slightly different route in Sections C.2.6 and C.2.7.

C.2.6 Constraint Set De®ned by Inequalities

We now consider the case when the set U is speci®ed by a set of differ-

entiable inequalities:

U :� fu j gi�u� � 0 8i 2 Ig (C.22)

where, for each i 2 I , the function gi : Rm ! R is differentiable. For

each u 2 U
I0�u� :� fi 2 I j gi�u� � 0g

is the index set of active constraints. For each u 2 U , the set FU�u�

of feasible variations for the linearized set of inequalities; FU�u� is

de®ned by

FU�u� :� fh j hrgi�u�;hi � 0 8i 2 I0�u�g (C.23)

The setFU�u� is a closed, convex cone and is called a cone of ®rst order

feasible variations in Bertsekas (1999) because h is a descent direction

for gi�u� for all i 2 I0�u�, i.e., gi�u � �h� � 0 for all � suf®ciently

small. When U is polyhedral, the case discussed in C.2.3, gi�u� � hai;
ui � bi and rgi�u� � ai so that FU�u� � fh j hai; hi � 0 8i 2 I0�u�g
which was shown in Proposition C.11 to be the tangent cone TU�u�.
An important question whether FU�u� is the tangent cone TU�u� for
a wider class of problems because, if FU�u� � TU�u�, a condition of

optimality of the form in (C.20) may be obtained. In the example in

Figure C.8, FU�u� is the horizontal axis fh 2 R2 j h2 � 0g whereas
TU�u� is the half-line fh 2 R2 j h1 � 0; h2 � 0g so that in this case,

FU�u� � TU�u�. While FU�u� is always convex, being the intersection

of a set of half-spaces, the tangent coneTU�u� is not necessarily convex
as Figure C.6b shows. The set U is said to be quasiregular at u 2 U
if FU�u� � TU�u� is which case u is said to be a quasiregular point

Bertsekas (1999). The next result, due to Bertsekas (1999), shows that

FU�u� � TU�u�, i.e., U is quasiregular at u, when a certain constraint

quali®cation is satis®ed.



C.2 Optimality Conditions 751

FU �u�

rg2�u�
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Figure C.8: FU�u� 6� TU�u�.

Proposition C.20 (Quasiregular set). Suppose U :� fu j gi�u� � 0 8i 2
Ig where, for each i 2 I , the function gi : Rm ! R is differentiable.

Suppose also that u 2 U and that there exists a vector Åh 2 FU�u� such

that

hrgi�u�; Åhi < 0; 8 i 2 I0�u� (C.24)

Then

TU�u� � FU�u�

i.e., U is quasiregular at u.

Equation (C.24) is the constraint quali®cation; it can be seen that it

precludes the situation shown in Figure C.8.

Proof. It follows from the de®nition (C.23) ofFU�u� and the constraint

quali®cation (C.24) that:

hrgi�u�;h���Åh� h�i < 0; 8h 2 FU�u�;� 2 �0;1�; i 2 I0�u�
Hence, for all h 2 FU�u�, all � 2 �0;1�, there exists a vector h� :�
h � ��Åh � h�, in FU�u� satisfying hrgi�u�;h�i < 0 for all i 2 I0�u�.
Assuming for the moment that h� 2 TU�u� for all� 2 �0;1�, it follows,
since h� ! h as � ! 0 and TU�u� is closed, that h 2 TU�u�, thus
proving FU�u� � TU�u�. It remains to show that h� is tangent to U

at u. Consider the sequences h� and �� & 0 where h� :� h� for all

� 2 I�0. There exists a � > 0 such that hrgi�u�;h�i � �� for all

i 2 I0�u� and gi�u� � �� for all i 2 I n I0�u�. Since
gi�u� ��h�� � gi�u�� ��hrgi�u�;h�i � o���� � ����� o����
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for all i 2 I0�u�, it follows that there exists a ®nite integer N such that

gi�u � ��h�� � 0 for all i 2 I , all � � N. Since the sequences fh�g
and f��g for all � � N satisfy h� ! h�, �� & 0 and u � ��h� 2 U for

all i 2 I , it follows that h� 2 TU�u�, thus completing the proof that

FU�u� � TU�u�.
Suppose now that h 2 TU�u�. There exist sequences h� ! h and

�� ! 0 such that u���h� 2 U so that g�u���h�� � 0 for all � 2 I�0.
Since g�u���h�� � g�u��hrgj�u�; ��h�i�o���jh�j� � 0, it follows

that hrgj�u�; ��h�i � o���� � 0 for all j 2 I0�u�, all � 2 I�0. Hence
hrgj�u�;h�i � o����=�� � 0 for all j 2 I0�u�, all � 2 I�0. Taking the

limit yields hrgj�u�;h�i � 0 for all j 2 I0�u� so that h 2 FU�u�which

proves TU�u� � FU�u�. Hence TU�u� � FU�u�. �

The existence of a Åh satisfying (C.24) is, as we have noted above, a

constraint quali®cation. If u is locally optimal for the inequality con-

strained optimization problem of minimizing a differentiable function

f��� over the set U de®ned in (C.22) and, if (C.24) is satis®ed thereby

ensuring that TU�u� � FU�u�, then a condition of optimality of the

form (C.20) may be easily obtained as shown in the next result.

Proposition C.21 (Optimality conditions nonconvex problem). Suppose

u is locally optimal for the problem of minimizing a differentiable func-

tion f��� over the set U de®ned in (C.22) and that TU�u� � FU�u�.

Then

�rf�u� 2 conefrgi�u� j i 2 I0�u�g
and there exist multipliers �i � 0, i 2 I0�u� satisfying

rf�u��
X

i2I0�u�

�irgi�u� � 0 (C.25)

Proof. It follows from Proposition C.14 that �rf�u� 2 ÃNU�u� and

from Proposition C.7 that ÃNU�u� � T �
U �u�. But, by hypothesis,

TU�u� � FU�u� so that ÃNU�u� � F�
U �u�, the polar cone of FU�u�.

It follows from (C.23) and the de®nition of a polar cone, given in Ap-

pendix A1, that

F�
U �u� � conefrgi�u� j i 2j I0�u�g

Hence

�rf�u� 2 conefrgi�u� j i 2 I0�u�g
The existence of multipliers �i satisfying (C.25) follows from the de®-

nition of a cone generated by frgi�u� j i 2 I0�u�g. �
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C.2.7 Constraint Set De®ned by Equalities and Inequalities

Finally, we consider the case when the set U is speci®ed by a set of

differentiable equalities and inequalities:

U :� fu j gi�u� � 0 8i 2 I; hi�u� � 0 8i 2 Eg

where, for each i 2 I , the function gi : Rm ! R is differentiable and for

each i 2 E, the function hi : Rm ! R is differentiable. For each u 2 U

I0�u� :� fi 2 I j gi�u� � 0g

the index set of active inequality constraints is de®ned as before. We

wish to obtain necessary conditions for the problem of minimizing a

differentiable function f��� over the set U . The presence of equality

constraints makes this objective more dif®cult than for the case when

U is de®ned merely by differentiable inequalities. The result we wish

to prove is a natural extension of Proposition C.21 in which the equality

constraints are included in the set of active constraints:

Proposition C.22 (Fritz-John necessary conditions). Supposeu is a local

minimizer for the problem of minimizing f�u� subject to the constraint

u 2 U where U is de®ned in (C.22). Then there exist multipliers �0,

�i; i 2 I and �i; i 2 E, not all zero, such that

�0rf�u��
X
i2I

�irgi�u��
X
j2E

�jrhj�u� � 0 (C.26)

and

�igi�u� � 0 8i 2 I
where �0 � 0 and �i � 0 for all i 2 I0.

The condition �igi�u� � 0 for all i 2 I is known as the complemen-

tarity conditions and implies �i � 0 for all i 2 I such that gi�u� < 0.

If �0 > 0, then (C.26) may be normalized by dividing each term by �0
yielding the more familiar expression

rf�u��
X
i2I

�irgi�u��
X
j2E

rhj�u� � 0

We return to this point later. Perhaps the simplest method for proving

Proposition C.22 is the penalty approach adopted by Bertsekas (1999),

Proposition 3.3.5. We merely give an outline of the proof. The con-

strained problem of minimizing f�v� over U is approximated, for each
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k 2 I�0 by a penalized problem de®ned below; as k increases the pe-

nalized problem becomes a closer approximation to the constrained

problem. For each i 2 I , we de®ne

g�i �v� :�maxfgi�v�;0g

For each k, the penalized problem Pk is then de®ned as the problem of

minimizing Fk�v� de®ned by

Fk�v� :� f�v�� �k=2�
X
i2I

�g�i �v��
2� �k=2�

X
j2E

�hj�v��
2� �1=2�jv �uj2

subject to the constraint

S :� fv j jv �uj � "g

where � > 0 is such that f�u� � f�v� for all v in S \U . Let vk denote
the solution of Pk. Bertsekas shows that vk ! u as k ! 1 so that for

all k suf®ciently large, vk lies in the interior of S and is, therefore, the

unconstrained minimizer of Fk�v�. Hence for each k suf®ciently large,

vk satis®es rFk�vk� � 0, or

rf�vk��
X
i2I

Å�kirg�vk��
X
i2E

Å�kirh�vk� � 0 (C.27)

where

Å�ki :� kg�i �vk�; Å�ki :� khi�vk�
Let �k denote the vector with elements �ki , i 2 I and �k the vector with
elements �ki , k 2 E. Dividing (C.27) by �k de®ned by

�k :� �1� j�kj2 � j�kj2�1=2

yields

�k0rf�vk��
X
i2I

�kirg�vk��
X
j2E

�kjrh�vk� � 0

where

�k0 :� Å�ki =�
k; �ki :� Å�ki =�

k; �kj :� Å�ki =�
k

and

��k0�
2 � j�kj2 � j�kj2 � 1

Because of the last equation, the sequence
�
�k0 ; �

k; �k
�
lies in a compact

set, and therefore has a subsequence, indexed by K � I�0, converging
to some limit ��0; �; �� where � and � are vectors whose elements are,



C.3 Set-Valued Functions and Continuity of Value Function 755

respectively, �i; i 2 I and �j ; j 2 E. Because vk ! u as k 2 K tends

to in®nity, it follows from (C.27) that

�0rf�u��
X
i2I

�irgi�u��
X
j2E

�jrhj�u� � 0

To prove the complementarity condition, suppose, contrary to what we

wish to prove, that there exists a i 2 I such that gi�u� < 0 but �i > 0.

Since �ki ! �i > 0 and gi�vk� ! gi�u� as k ! 1, k 2 K, it follows that
�i�

k
i > 0 for all k 2 K suf®ciently large. But �ki � Å�ki =�

k � kg�i �vk�=�k
so that �i�

k
i > 0 implies �ig

�
i �v

k� > 0 which in turn implies g�i �v
k� �

gi�vk� > 0 for all k 2 K suf®ciently large. This contradicts the fact that

gi�vk� ! gi�u� < 0 as k ! 1, k 2 K. Hence we must have gi�u� � 0

for all i 2 I such that �i > 0.

The Fritz-John condition in Proposition C.22 is known as the Karush-

Kuhn-Tucker (KKT) condition if �0 > 0; if this is the case, �0 may be

normalized to �0 � 1. A constraint quali®cation is required for the

Karush-Kuhn-Tucker condition to be a necessary condition of optimal-

ity for the optimization problem considered in this section. A sim-

ple constraint quali®cation is linear independence of frgi�u�; i 2
I0�u�; rhj�u�; j 2 Eg at a local minimizer u. For, if u is a lo-

cal minimizer and �0 � 0, then the Fritz-John condition implies thatP
i2I0�u� �irgi�u� �

P
j2E �jrhj�u� � 0 which contradicts the linear

independence of frgi�u�; i 2 I0�u�; rhj�u�; j 2 Eg since not all the
multipliers are zero. Another constraint quali®cation, used in Propo-

sitions C.20 and C.21 for an optimization problem in which the con-

straint set is U :� fu j gi�u� � 0; i 2 Ig, is the existence of a vector
Åh�u� 2 FU�u� such that hrgi�u�; Åhi < 0 for all i 2 I0�u�; this condi-
tion ensures �0 � 1 in C.25. Many other constraint quali®cations exist;

see, for example, Bertsekas (1999), Chapter 3.

C.3 Set-Valued Functions and Continuity of Value Func-

tion

A set-valued function U��� is one for which, for each value of x, U�x�

is a set; these functions are encountered in parametric programming.

For example, in the problem P�x� : infuff�x;u� j u 2 U�x�g (which
has the same form as an optimal control problem in which x is the

state and u is a control sequence), the constraint set U is a set-valued

function of the state. The solution to the problem P�x� (the value of u

that achieves the minimum) can also be set-valued. It is important to
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U�x1� Z

u

x1

X
x

Figure C.9: Graph of set-valued function U���.

know how smoothly these set-valued functions vary with the parameter

x. In particular, we are interested in the continuity properties of the

value function x , f 0�x� � infuff�x;u� j u 2 U�x�g since, in optimal

control problems we employ the value function as a Lyapunov function

and robustness depends, as we have discussed earlier, on the continuity

of the Lyapunov function. Continuity of the value function depends,

in turn, on continuity of the set-valued constraint set U���. We use the

notation U : Rn � Rm to denote the fact that U��� maps points in Rn

into subsets of Rm.

The graph of a set-valued functions is often a useful tool. The graph

of U : Rn � Rm is de®ned to be the set Z :� f�x;u� 2 Rn �Rm j u 2
U�x�g; the domain of the set-valued function U is the set X :� fx 2
Rn j U�x� � ;g � fx 2 Rn j 9u 2 Rm such that �x;u� 2 Zg; clearly
X � Rn. Also X is the projection of the set Z � Rn �Rm onto Rn, i.e.,

�x;u� 2 Z implies x 2 X. An example is shown in Figure C.9. In this

example, U�x� varies continuously with x. Examples in which U���
is discontinuous are shown in Figure C.10. In Figure C.10(a), the set

U�x� varies continuously if x increases from its initial value of x1, but

jumps to amuch larger set if x decreases an in®nitesimal amount (from

its initial value of x1); this is an example of a set-valued function that

is inner semicontinuous at x1. In Figure C.10(b), the set U�x� varies

continuously if x decreases from its initial value of x1, but jumps to

a much smaller set if x increases an in®nitesimal amount (from its

initial value of x1); this is an example of a set-valued function that is
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U�x�

S1

S2

U�x1�

x1 x2 x

(a) Inner semicontinuous set-valued function.

U�x�

S3

S1

U�x1�

x1 x2 x

(b) Outer semicontinuous set-valued function.

Figure C.10: Graphs of discontinuous set-valued functions.

outer semicontinuous at x1. The set-valued function is continuous at

x2 where it is both outer and inner semicontinuous.

We can now give precise de®nitions of inner and outer semiconti-

nuity.

C.3.1 Outer and Inner Semicontinuity

The concepts of inner and outer semicontinuity were introduced by

Rockafellar and Wets (1998, p. 144) to replace earlier de®nitions of

lower and upper semicontinuity of set-valued functions. This section is

based on the useful summary provided by Polak (1997, pp. 676-682).

De®nition C.23 (Outer semicontinuous function). A set-valued func-

tion U : Rn �Rm is said to be outer semicontinuous (osc) at x if U�x�
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U�x�

U�x0�

S

x � �B

x

x0

(a) Outer semicontinuity.

S

U�x�

U�x0�

x � �B

x

x0

(b) Inner semicontinuity.

Figure C.11: Outer and inner semicontinuity of U���.

is closed and if, for every compact set S such that U�x�\ S � ;, there

exists a � > 0 such that U�x0� \ S � ; for all x0 2 x � �B.4 The

set-valued function U : Rn �Rm is outer semicontinuous if it is outer

semicontinuous at each x 2 Rn.

De®nition C.24 (Inner semicontinuous function). A set-valued function

U : Rn �Rm is said to be inner semicontinuous (isc) at x if, for every

open set S such that U�x� \ S � ;, there exists a � > 0 such that

U�x0�\S �; for allx0 2 x��B. The set-valued functionU : Rn �Rm

is inner semicontinuous if it is inner semicontinuous at each x 2 Rn.

These de®nitions are illustrated in Figure C.11. Roughly speaking,

a set-valued function that is outer semicontinuous at x cannot explode

as x changes to x0 arbitrarily close to x; similarly, a set-valued function

that is inner semicontinuous at x cannot collapse as x changes to x0

arbitrarily close to x.

De®nition C.25 (Continuous function). A set-valued function is contin-

uous (at x) if it is both outer and inner continuous (at x).

If we return to Figure C.10(a) we see that S1 \ U�x1� � ; but S1 \
U�x� � ; for x in®nitesimally less than x1 so that U��� is not outer
semicontinuous at x1. For all S2 such that S2 \ U�x1� � ;, however,

S2 \ U�x� � ; for all x in a suf®ciently small neighborhood of x1 so

that U��� is inner semicontinuous at x1. If we turn to Figure C.10(b)

we see that S1 \ U�x1� � ; but S1 \ U�x� � ; for x in®nitesimally

greater than x1 so that in this case U��� is not inner semicontinuous at

x1. For all S3 such that S3 \ U�x1� � ;, however, S3 \ U�x� � ; for

4Recall that B :� fx j jxj � 1g is the closed unit ball in Rn.
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all x in a suf®ciently small neighborhood of x1 so that U��� is outer

semicontinuous at x1.

The de®nitions of outer and inner semicontinuity may be inter-

preted in terms of in®nite sequences (Rockafellar and Wets, 1998, p.

152), (Polak, 1997, pp. 677-678).

Theorem C.26 (Equivalent conditions for outer and inner semicontinu-

ity).

(a) A set-valued function U : Rn � Rm is outer semicontinuous at x if

and only if for every in®nite sequence �xi� converging to x, any accu-

mulation point5 u of any sequence �ui�, satisfying ui 2 U�xi� for all i,
lies in U�x� (u 2 U�x�).
(b) A set-valued function U : Rn � Rm is inner semicontinuous at x

if and only if for every u 2 U�x� and for every in®nite sequence �xi�

converging to x, there exists an in®nite sequence �ui�, satisfying ui 2
U�xi� for all i, that converges to u.

Proofs of these results may be found in Rockafellar andWets (1998);

Polak (1997). Another result that we employ is:

Proposition C.27 (Outer semicontinuity and closed graph). A set-valued

function U : Rn �Rm is outer semicontinuous in its domain if and only

if its graph Z is closed in Rn �Rm.

Proof. Since �x;u� 2 Z is equivalent to u 2 U�x�, this result is a direct
consequence of the Theorem C.26. �

In the above discussion we have assumed, as in Polak (1997), that

U�x� is de®ned everywhere in Rn; in constrained parametric optimiza-

tion problems, however, U�x� is de®ned on X, a closed subset of Rn;

see Figure C.9. Only minor modi®cations of the above de®nitions are

then required. In de®nitions C.23 and C.24 we replace the closed set

�B by �B\X and in Theorem C.26 we replace ªevery in®nite sequence

(in Rn)º by ªevery in®nite sequence in X.º In effect, we are replacing

the topology of Rn by its topology relative to X.

C.3.2 Continuity of the Value Function

Our main reason for introducing set-valued functions is to provide us

with tools for analyzing the continuity properties of the value func-

tion and optimal control law in constrained optimal control problems.

5Recall, u is the limit of
�
ui
�
if ui ! u as i!1; u is an accumulation point of

�
ui
�

if it is the limit of a subsequence of
�
ui
�
.
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These problems have the form

V0�x� �minfV�x;u� j u 2 U�x�g (C.28)

u0�x� � argminfV�x;u� j u 2 U�x�g (C.29)

where U : Rn � Rm is a set-valued function and V : Rn � Rm ! R is

continuous; in optimal control problems arising from MPC, u should

be replaced by u � �u�0�;u�1�; : : : ; u�N � 1�� and m by Nm. We are

interested in the continuity properties of the value function V0 : Rn !
R and the control law u0 : Rn ! Rm; the latter may be set-valued (if

the minimizer in (C.28) is not unique).

The following max problem has been extensively studied in the lit-

erature

�0�x� �maxf��x;u� j u 2 U�x�g
�0�x� � argmaxf��x;u� j u 2 U�x�g

If we de®ne ���� by ��x;u� :� �V�x;u�, we see that �0�x� � �V0�x�

and �0�x� � u0�x� so that we can obtain the continuity properties of

V0��� and u0��� from those of �0��� and �0��� respectively. Using this
transcription and Corollary 5.4.2 and Theorem 5.4.3 in Polak (1997) we

obtain the following result:

Theorem C.28 (Minimum theorem). Suppose that V : Rn � Rm ! R

is continuous, that U : Rn � Rm is continuous, compact-valued and

satis®es U�x� � U for all x 2 X where U is compact. Then V0��� is
continuous and u0��� is outer semicontinuous. If, in addition, u0�x� �
f�0�x�g (there is a unique minimizer �0�x�), then �0��� is continuous.

It is unfortunately the case, however, that due to state constraints,

U��� is often not continuous in constrained optimal control problems.

If U��� is constant, which is the case in optimal control problem if state

or mixed control-state constraints are absent, then, from the above

results, the value function V0��� is continuous. Indeed, under slightly
stronger assumptions, the value function is Lipschitz continuous.

Lipschitz continuity of the value function. If we assume that V���
is Lipschitz continuous and that U�x� � U , we can establish Lipschitz

continuity of V0���. Interestingly the result does not require, nor does
it imply, Lipschitz continuity of the minimizer u0���.
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Theorem C.29 (Lipschitz continuity of the value function, constant U ).

Suppose that V : Rn �Rm ! R is Lipschitz continuous on bounded sets6

and that U�x� � U where U is a compact subset of Rm. Then V0��� is
Lipschitz continuous on bounded sets.

Proof. Let S be an arbitrary bounded set in X, the domain of the value

function V0���, and let R :� S �U; R is a bounded subset of Z. Since R
is bounded, there exists a Lipschitz constant LS such that��V�x0; u�� V�x00; u��� � LSjx0 � x00j
for all x0; x00 2 S, all u 2 U . Hence,

V0�x0�� V0�x00� � V�x0; u00�� V�x00; u00� � LSjx0 � x00j

for all x0; x00 2 S, any u00 2 u0�x00�. Interchanging x0 and x00 in the

above derivation yields

V0�x00�� V0�x0� � V�x00; u0�� V�x0; u0� � LSjx00 � x0j

for all x0; x00 2 S, anyu0 2 u0�x0�. Hence V0��� is Lipschitz continuous
on bounded sets. �

We now specialize to the case where U�x� � fu 2 Rm j �x;u� 2 Zg
where Z is a polyhedron in Rn � Rm; for each x, U�x� is a polytope.

This type of constraint arises in constrained optimal control problems

when the system is linear and the state and control constraints are

polyhedral. What we show in the sequel is that, in this special case,

U��� is continuous and so, therefore, is V0���. An alternative proof,

which many readers may prefer, is given in Chapter 7 where we exploit

the fact that if V��� is strictly convex and quadratic and Z polyhedral,

then V0��� is piecewise quadratic and continuous. Our ®rst concern is

to obtain a bound on d�u;U�x0��, the distance of any u 2 U�x� from
the constraint set U�x0�.

A bound on d�u; U�x0��, u 2 U�x�. The bound we require is given

by a special case of a theorem due to Clarke, Ledyaev, Stern, and Wolen-

ski (1998, Theorem 3.1, page 126). To motivate this result, consider a

differentiable convex function f : R! R so that f�u� � f�v��hrf�v�;
u � vi for any two points u and v in R. Suppose also that there

exists a nonempty interval U � �a; b� � R such that f�u� � 0 for

6A function V��� is Lipschitz continuous on bounded sets if, for any bounded set S,
there exists a constant LS 2 �0;1� such that jV�z0��V�z�j � LS jz�z0j for all z; z0 2 S.
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Figure C.12: Subgradient of f���.

all u 2 U and that there exists a � > 0 such that �f�u� > � for all

u 2 R. Let u > b and let v � b be the closest point in U to u. Then

f�u� � f�v� � hrf�v�;u � vi � �jv � uj so that d�u;U� � f�u�=�.
The theorem of Clarke et al. (1998) extends this result to the case when

f��� is not necessarily differentiable but requires the concept of a sub-
gradient of a convex function

De®nition C.30 (Subgradient of convex function). Suppose f : Rm ! R

is convex. Then the subgradient �f�u� of f��� at u is de®ned by

�f�u� :� fg j f�v� � f�u�� hg;v �ui 8v 2 Rmg

Figure C.12 illustrates a subgradient. In the ®gure, g is one element

of the subgradient because f�v� � f�u� � hg;v � ui for all v ; g is

the slope of the line passing through the point �u; f �u��. To obtain a

bound on d�u;U�x�� we require the following result which is a special

case of the much more general result of the theorem of Clarke et al.:

Theorem C.31 (Clarke et al. (1998)). Take a nonnegative valued, convex

function  : Rn � Rm ! R. Let U�x� :� fu 2 Rm j  �x;u� � 0g and
X :� fx 2 Rn j U�x� �;g. Assume there exists a � > 0 such that

u 2 Rm; x 2 X; �x;u� > 0 and g 2 @u �x;u� =) jgj > �

where @u �x;u� denotes the convex subgradient of  with respect to
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the variable u. Then, for each x 2 X, d�u;U�x�� �  �x;u�=� for all

u 2 Rm.

The proof of this result is given in the reference cited above. We

next use this result to bound the distance of u from U�x� where, for

each x, U�x� is polyhedral.

Corollary C.32 (A bound on d�u;U�x0�� for u 2 U�x�). 7 Suppose

Z is a polyhedron in Rn � Rm and let X denote its projection on Rn

�X � fx j 9u 2 Rm such that �x;u� 2 Zg�. Let U�x� :� fu j �x;
u� 2 Zg. Then there exists a K > 0 such that for all x;x0 2 X, d�u;

U�x0�� � Kjx0�xj for all u 2 U�x� (or, for all x;x0 2 X, all u 2 U�x�,
there exists a u0 2 U�x0� such that ju0 �uj � Kjx0 � xj).

Proof. The polyhedron Z admits the representation Z � f�x;u� j hmj ;

ui � hnj ; xi �pj � 0; j 2 Jg for somemj 2 Rm, nj 2 Rn and pj 2 R,
j 2 J :� f1; : : : ; Jg. De®ne D to be the collection of all index sets I � J
such that

P
j2I �

jmj � 0; 8� 2 �I in which, for a particular index

set I, �I is de®ned to be �I :� f� j �j � 0;
P
j2I �

j � 1g. Because D
is a ®nite set, there exists a � > 0 such that for all I 2 D, all � 2 �I ,

jPj2I �
jmjj > �. Let ��� be de®ned by �x;u� :�maxfhmj ; ui�hnj ;

xi � pj ;0 j j 2 Jg so that �x;u� 2 Z (or u 2 U�x�) if and only if

 �x;u� � 0. We now claim that, for every �x;u� 2 X � Rm such

that  �x;u� > 0 and every g 2 @u �x;u�, the subgradient of  with

respect to u at �x;u�, we have jgj > �. Assuming for the moment that

the claim is true, the proof of the Corollary may be completed with the

aid of Theorem C.31. Assume, as stated in the Corollary, that x;x0 2 X
and u 2 U�x�; the theorem asserts

d�u;U�x0�� � �1=�� �x0; u�; 8x0 2 X

But  �x;u� � 0 (since u 2 U�x�) so that

d�u;U�x0�� � �1=��� �x0; u�� �x;u�� � �c=��jx0 � xj

where c is the Lipschitz constant for x ,  �x;u� ( ��� is piecewise

af®ne and continuous). This proves the Corollary with K � c=�.
It remains to con®rm the claim. Take any �x;u� 2 X � Rm such

that �x;u� > 0. Then maxjfhmj ; ui�hnj ; xi�pj ;0 j j 2 Jg > 0. Let

7The authors wish to thank Richard Vinter and Francis Clarke for providing this

result.
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I0�x;u� denote the active constraint set (the set of those constraints

at which the maximum is achieved). Then

hmj ; ui � hnj ; xi � pj > 0; 8j 2 I0�x;u�
Since x 2 X, there exists a Åu 2 U�x� so that

hmj ; Åui � hnj ; xi � pj � 0; 8j 2 I0�x;u�
Subtracting these two inequalities yields

hmj ; u� Åui > 0; 8j 2 I0�x;u�
But then, for all � 2 �I0�x;u�, it follows that j

P
j2I0�x;u� �

jmj�u� Åu�j >
0, so that X

j2I0�x;u�

�jmj � 0

It follows that I0�x;u� 2 D. Hence�� X
j2I0�x;u�

�jmj
�� > �; 8� 2 �I0�x;u�

Now take any g 2 @uf�x;u� � cofmj j j 2 I0�x;u�g (co denotes ªcon-

vex hullº). There exists a � 2 �I0�x;u� such that g � P
j2I0�x;u� �

jmj .

But then jgj > � by the inequality above. This proves the claim and,

hence, completes the proof of the Corollary. �

Continuity of the value function when U�x� � fu j �x; u� 2 Zg.

In this section we investigate continuity of the value function for the

constrained linear quadratic optimal control problem P�x�; in fact we

establish continuity of the value function for the more general prob-

lem where the cost is continuous rather than quadratic. We showed in

Chapter 2 that the optimal control problem of interest takes the form

V0�x� �min
u
fV�x;u� j �x;u� 2 Zg

where Z is a polyhedron in Rn � U where U � Rm is a polytope and,

hence, is compact and convex; in MPC problems we replace the control

u by the sequence of controls u and m by Nm. Let u0 : Rn � Rm be

de®ned by

u0�x� :� argmin
u
fV�x;u� j �x;u� 2 Zg

and let X be de®ned by

X :� fx j 9u such that �x;u� 2 Zg
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so that X is the projection of Z � Rn�Rm onto Rn. Let the set-valued

function U : Rn �Rm be de®ned by

U�x� :� fu 2 Rm j �x;u� 2 Zg

The domain of V0��� and of U��� is X. The optimization problem may

be expressed as V0�x� � minufV�x;u� j u 2 U�x�g. Our ®rst task is

establish the continuity of U : Rn �Rm.

Theorem C.33 (Continuity ofU���). Suppose Z is a polyhedron inRn�U
where U � Rm is a polytope. Then the set-valued function U : Rn �Rm

de®ned above is continuous in X.

Proof. By Proposition C.27, the set-valued map U��� is outer semicon-

tinuous in X because its graph, Z, is closed. We establish inner semi-

continuity using Corollary C.32 above. Let x;x0 be arbitrary points in

X and U�x� and U�x0� the associated control constraint sets. Let S be

any open set such that U�x�\ S �; and let u be an arbitrary point in

U�x�\ S. Because S is open, there exist an " > 0 such that u� "B � S.
Let "0 :� "=K where K is de®ned in Corollary 1. From Corollary C.32,

there exists a u0 2 U�x0� such that ju0 � uj � Kjx0 � xj which im-

plies ju0 � uj � " (u0 2 u � "B) for all x0 2 X such that jx0 � xj � "0
(x0 2 �x � "0B� \X). This implies u 2 U�x0� \ S for all x0 2 X such

that jx0 � xj � "0 (x0 2 �x � "0B� \ X). Hence U�x0� \ S � ; for all

x0 2 �x � "0B� \X, so that U��� is inner semicontinuous in X. Since
U��� is both outer and inner semicontinuous in X, it is continuous in
X. �

We can now establish continuity of the value function.

Theorem C.34 (Continuity of the value function). Suppose that V : Rn�
Rm ! R is continuous and thatZ is a polyhedron inRn�UwhereU � Rm

is a polytope. Then V0 : Rn ! R is continuous and u0 : Rn � Rm is

outer semicontinuous inX. Moreover, if u0�x� is unique (not set-valued)

at each x 2 X, then u0 : Rn ! Rm is continuous in X.

Proof. Since the real-valued function V��� is continuous (by assump-

tion) and since the set-valued function U��� is continuous in X (by

Theorem C.33), it follows from Theorem C.28 that V0 : Rn ! R is

continuous and u0 : Rn � Rm is outer semicontinuous in X; it also
follows that if u0�x� is unique (not set-valued) at each x 2 X, then
u0 : Rn ! Rm is continuous in X. �
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Lipschitz continuity when U�x� � fu j �x; u� 2 Zg. Here we estab-

lish that V0��� is Lipschitz continuous if V��� is Lipschitz continuous

and U�x� :� fu 2 Rm j �x;u� 2 Zg; this result is more general than

Theorem C.29 where it is assumed that U is constant.

Theorem C.35 (Lipschitz continuity of the value functionÐU�x�). Sup-

pose that V : Rn�Rm ! R is continuous, that Z is a polyhedron inRn�U
where U � Rm is a polytope. Suppose, in addition, that V : Rn�Rm ! R

is Lipschitz continuous on bounded sets.8 Then V0��� is Lipschitz contin-
uous on bounded sets.

Proof. Let S be an arbitrary bounded set in X, the domain of the value

function V0���, and let R :� S�U; R is a bounded subset of Z. Let x;x0
be two arbitrary points in S. Then

V0�x� � V�x; ��x��
V0�x0� � V�x0; ��x0��

where V��� is the cost function, assumed to be Lipschitz continuous

on bounded sets, and ����, the optimal control law, satis®es ��x� 2
U�x� � U and ��x0� 2 U�x0� � U. It follows from Corollary C.32

that there exists a K > 0 such that for all x;x0 2 X, there exists a

u0 2 U�x0� � U such that ju0 � ��x�j � Kjx0 � xj. Since ��x� is

optimal for the problem P�x�, and since �x; ��x�� and �x0; u0� both lie

in R � S � U, there exists a constant LR such that

V0�x0�� V0�x� � V�x0; u0�� V�x; ��x��
� LR�j�x0; u0�� �x; ��x��j�
� LRjx0 � xj � LRKjx0 � xj
� MSjx0 � xj; MS :� LR�1�K�

Reversing the role of x and x0 we obtain the existence of a u 2 U�x�
such that ju � ��x0�j � Kjx � x0j; it follows from the optimality of

��x0� that

V0�x�� V0�x0� � V�x;u�� V�x0; ��x0��
� MSjx � x0j

where, now, u 2 U�x� and ��x0� 2 U�x0�. Hence jV0�x0� � V0�x�j �
MSjx � x0j for all x;x0 in S. Since S is an arbitrary bounded set in X,
V0��� is Lipschitz continuous on bounded sets. �

8A function V��� is Lipschitz continuous on bounded sets if, for any bounded set S,
there exists a constant LS 2 �0;1� such that jV�z0��V�z�j � LS jz�z0j for all z; z0 2 S.
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C.4 Exercises

Exercise C.1: Nested optimization and switching order of optimization

Consider the optimization problem in two variables

min
�x;y�2Z

V�x;y�

in which x 2 Rn, y 2 Rm, and V : Rn �Rm ! R. Assume this problem has a solution.

This assumption is satis®ed, for example, if V is continuous and Z is compact, but, in

general, we do not require either of these conditions.

De®ne the following four sets

X�y� � fx j �x;y� 2 Zg Y�x� � fy j �x;y� 2 Zg
B � fy j X�y� �;g A � fx j Y�x� �;g

Note that A and B are the projections of Z onto Rn and Rm, respectively. Projection

is de®ned in Section C.3. Show the solutions of the following two nested optimization

problems exist and are equal to the solution of the original problem

min
x2A

 
min

y2Y�x�
V�x;y�

!

min
y2B

 
min

x2X�y�
V�x;y�

!

Exercise C.2: DP nesting

Prove the assertion made in Section C.1.2 that ui � fu;ui�1g 2 U�x; i� if and only if

�x;u� 2 Z, f�x;u� 2 X�i� 1�, and ui�1 2 U�f �x;u�; i� 1�.

Exercise C.3: Recursive feasibility

Prove the assertion in the proof of Theorem C.2 that �x�j�;u�j�� 2 Z and that f�x�j�;
u�j�� 2 X�j � 1�.

Exercise C.4: Basic minmax result

Consider the following two minmax optimization problems in two variables

inf
x2X

sup
y2Y

V�x;y� sup
y2Y

inf
x2X

V�x;y�

in which x 2 X � Rn, y 2 Y � Rm, and V : X�Y! R.

(a) Show that the values are ordered as follows

inf
x2X

sup
y2Y

V�x;y� � sup
y2Y

inf
x2X

V�x;y�

or, if the solutions to the problems exist,

min
x2X

max
y2Y

V�x;y� �max
y2Y

min
x2X

V�x;y�

Ahandymnemonic for this result is that the player who goes ®rst (inner problem)

has the advantage.9

9Note that different conventions are in use. Boyd and Vandenberghe (2004, p. 240)

say that the player who ªgoesº second has the advantage, meaning that the inner prob-

lem is optimized after the outer problem has selected a value for its variable. We say

that since the inner optimization is solved ®rst, this player ªgoesº ®rst.
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(b) Use your results to order these three problems

sup
x2X

inf
y2Y

sup
z2Z

V�x;y; z� inf
y2Y

sup
z2Z

sup
x2X

V�x;y; z� sup
z2Z

sup
x2X

inf
y2Y

V�x;y; z�

Exercise C.5: Lagrange multipliers and minmax

Consider the constrained optimization problem

min
x2Rn

V�x� subject to g�x� � 0 (C.30)

in which V : Rn ! R and g : Rn ! Rm. Introduce the Lagrange multiplier � 2 Rm

and Lagrangian function L�x; �� � V�x�� �0g�x� and consider the following minmax

problem

min
x2Rn

max
�2Rm

L�x; ��

Show that if �x0; �0� is a solution to this problem with ®nite L�x0; �0�, then x0 is also

a solution to the original constrained optimization (C.30).

Exercise C.6: Dual problems and duality gap

Consider again the constrained optimization problem of Exercise C.5

min
x2Rn

V�x� subject to g�x� � 0

and its equivalent minmax formulation

min
x2Rn

max
�2Rm

L�x; ��

Switching the order of optimization gives the maxmin version of this problem

max
�2Rm

min
x2Rn

L�x; ��

Next de®ne a new (dual) objective function q : Rm ! R as the inner optimization

q��� � min
x2Rn

L�x; ��

Then the maxmin problem can be stated as

max
�2Rm

q��� (C.31)

Problem (C.31) is known as the dual of the original problem (C.30), and the original

problem (C.30) is then denoted as the primal problem in this context (Nocedal and

Wright, 2006, p. 343±345), (Boyd and Vandenberghe, 2004, p. 223).

(a) Show that the solution to the dual problem is a lower bound for the solution to

the primal problem

max
�2Rm

q��� � min
x2Rn

V�x� subject to g�x� � 0 (C.32)

This property is known as weak duality (Nocedal and Wright, 2006, p. 345),

(Boyd and Vandenberghe, 2004, p. 225).
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(b) The difference between the dual and the primal solutions is known as the duality

gap. Strong duality is de®ned as the property that equality is achieved in (C.32)

and the duality gap is zero (Boyd and Vandenberghe, 2004, p. 225).

max
�2Rm

q��� � min
x2Rn

V�x� subject to g�x� � 0 (C.33)

Show that strong duality is equivalent to the existence of �0 such that

min
x2Rn

V�x�� �00g�x� � min
x2Rn

V�x� subject to g�x� � 0 (C.34)

Characterize the set of all �0 that satisfy this equation.

Exercise C.7: Example with duality gap

Consider the following function and sets (Peressini, Sullivan, and Uhl, Jr., 1988, p. 34)

V�x;y� � �y � x2��y � 2x2� X � ��1;1� Y � ��1;1�
Make a contour plot of V��� on X�Y and answer the following question. Which of the

following two minmax problems has a nonzero duality gap?

min
y2Y

max
x2X

V�x;y�

min
x2X

max
y2Y

V�x;y�

Notice that the two problems are different because the ®rst one minimizes over y and

maximizes over x, and the second one does the reverse.

Exercise C.8: The Heaviside function and inner and outer semicontinuity

Consider the (set-valued) function

H�x� �
8<:0; x < 0

1; x > 0

and you are charged with deciding how to de®ne H�0�.

(a) Characterize the choices of set H�0� that make H outer semicontinuous. Justify

your answer.

(b) Characterize the choices of set H�0� that make H inner semicontinuous. Justify

your answer.

(c) Can you de®ne H�0� so that H is both outer and inner semicontinuous? Explain

why or why not.
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