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Abstract

Due to lowering price and increased functionality, the future could bring in a huge
number of UAVs flying in urban areas. In order to safely accommodate them, they
should be fundamentally safe to fly. Unfortunately, current rigid designs could cause
significant damage in case of a crash. To mitigate this problem, this report proposes
constructing soft UAVs using tensegrity structures in order to mitigate the impact
of collisions, effectively improving the safety of the vehicles and increasing public
confidence in the use of UAVs. In this paradigm, the frame of the vehicle is designed
using a tensegrity structure, a geometric structure composed of suspended elements
of pure compression and pure tension, which during a collision can better absorb
high stresses through elastic deformation. As a feasibility study we test this concept
on an actuated tensegrity kite in a custom physics simulator, designed to simulate
tensegrity structures with non-rigid rods, along with basic simulations of lift. Results
show that this concept is feasible and that the kite can change orientation by actively
changing the shape of the tensegrity structure.

1 Introduction

Current UAVs typically consist of rigid frames. This rigidity leads to well-understood
control policies and quick responses to inputs, but becomes a serious detriment in
the event of a collision. When a rigid UAV crashes it risks not only snapping its
frame and damaging critical electrical components inside, but also can damage the
object with which it collides. As an alternative to rigid designs, we propose designing
UAVs out of non-rigid tensegrity structures. These structures are lightweight and
compressible, which makes them prime candidates for use in novel aerial systems
when collision safety is a concern.

Tensegrity structures are three dimensional geometric constructions of rods bal-
anced and held in place by a network of tensioned cables. Recently, these structures
have gained popularity for their promising advances in the field of robotics ranging
from terrestrial locomotion to wearable exosuits. Aerial vehicles based on tensegrity
structures would be able to deform in flight as a steering mechanism, as well as
compress upon impact to reduce collision damage, giving them a significant safety
advantage over the classic rigid designs.

Unfortunately, the properties which make tensegrities advantageous for flight
also make them difficult to analyze using conventional methods. The goal of this
report is to detail the procedure for designing and controlling a preliminary model
for a tensegrity aerial vehicle (a tensegrity kite) in simulation. While the behav-
ior of these structures is not well understood, each component of the structure has
known behavior, and therefore can be modeled in simulation. We model each ba-
sic component and assemble them into the final structure to analyze as a whole,
giving an approximation of the entire system’s behavior. Currently available sim-
ulation software is not equipped to accurately model the complex dynamics of a
tensegrity structure and therefore efforts were made to expand the capability of our
previous rigid body physics simulation tool to include tensegrity components and
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simple airfoil aerodynamics such that it is capable of approximating the behavior
of soft-robotic aerial vehicles in real time. A by-product of this work is therefore
a platform for assisting in the design of tensegrity based unmanned aerial systems
(UAS) through visualizations of vehicle behavior, allowing for analysis of system
responses to changes in physical configuration and wind conditions.

2 Background

Tensegrity structures have been used in the past largely in artistic works and toys,
as they can be built in a variety of interesting shapes and often move in excitingly
unpredictable ways. Recent research has shown that these structures hold much
more promise than initially thought, and can be used effectively in a wide variety
of applications [1–5]. Most interestingly for this work, it has been shown that both
multi-rotor and kite-like vehicles based on tensegrity would exhibit some desirable
properties, and are theoretically feasible to build and fly [6]. We focus on the kite-
like vehicles in this work.

In order to simulate such a vehicle’s behavior, we need a tool capable of combin-
ing aerodynamic forces with rigid body dynamics to show evolution of the system
in real time. Current state of the art simulation methods include a host of tools
for computational fluid dynamics (CFD), capable of giving accurate insights about
flow around a surface or vehicle and the numerous forces involved. These methods
work incredibly well for tasks such as optimizing a wing shape, but do not lend
themselves well to the evolving real time dynamics we expect to see in a tensegrity
system. In addition, our work requires a significantly lower degree of accuracy than
CFD provides, as we seek to only approximate the behavior of the entire system
and don’t necessarily need every force involved to be accurate. Furthermore, any
aerodynamic approach would need to be combined with a rigid body physics simu-
lation environment, which can be used to approximate the dynamics of a number of
interacting bodies. When the number of bodies involved is small these tools can run
at many times faster than the real world, but can have inaccuracies in the forces in-
volved and do not provide any aerodynamic analysis whatsoever. In addition, these
systems are often limited to rigid bodies, and thus are difficult to use for simulating
tensegrity structures with flexible elements.

In order to address the issues listed above, we build the AirTens platform by
extending a lightweight rigid body simulation tool to include simple aerodynamic
elements as well as flexible rods. The result is a platform capable of simulating
in close to real time a kite-like tensegrity vehicle composed of bending rods and
airfoils in a realistic way, allowing for analysis of various interesting behavioral
characteristics which otherwise would not be possible without physically building
the vehicle.
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3 Methods

3.1 Vehicle Design

Our experimental vehicle was a tethered tensegrity kite composed of two bending
rods, one lengthwise and one crosswise, suspended in a roughly diamond shape by
four cables connecting their ends. Two additional cables on the bottom suspended
the rods in such a way that they were roughly perpendicular to each other. The
kite has two main foils, one large wing in front and one smaller wing in the rear for
stabilization.

(a) Front View
(b) Angled View

(c) Side View

Figure 1: Design of the Tensegrity Kite. Kite is composed of bendable rods (red),
connected with inelastic cables (yellow). Airfoils (gray) are stretched between ends
of rods.

3.2 Experiments

We evaluate our simulation by simulating a tensegrity based kite, modifying the
configuration and subjecting it to different wind conditions to assess realism of the
entire system’s behavior. We run a number of experiments by initializing the kite
at different positions and orientations in space while subject to different wind con-
ditions to see if the vehicle can achieve an equilibrium state in a seemingly realistic
manner. Analysis is performed visually where we are mainly looking for physically
impossible or unlikely motions and any severe deformations in the vehicle. The ve-
hicle is also actuated in a number of conditions to steer left and right and to achieve
new equilibrium positions, also to be visualized in real time for unexpected behav-
iors. The two main experiments discussed in the paper are a stability experiment
and a subsequent steering experiment.

3.2.1 Kite Size and Stability

The stability of the kite tends to increase with its size. To determine the smallest kite
with reasonable stability characteristics, we perform a set of experiments. In these
experiments we scale the initial kite design to different sizes while maintaining the
same geometry. For each scaling factor, we divide all linear stiffness and damping
constants by the scaling factor, while multiplying all rest lengths and torsional
stiffness constants by the same scaling factor. Mass is kept constant at 1.2 kilograms.

3



This results in a kite that maintains the original geometry, but at a different size.
In these experiments the wind velocity is stochastic on a uniform distribution from
5 to 7 m/s.

3.2.2 Steering

In the next experiment we simulate actuating the cables of the kite. In this sim-
ulation the motor actuates the cables connecting the center rod to the lateral rod,
pulling one wing tip towards the rear while the opposite reaches towards the front of
the vehicle. This causes the kite to bank. The effectiveness of this turning method is
determined qualitatively through visual inspection, and quantitatively by measuring
the relative angle between the kite tether and the wind.

Figure 2: A Tensegrity Kite Banking Left

3.3 Simulation

We build our simulation platform by extending the open source cannon-es and
three.js frameworks, which perform physics integration and rendering, respectively
[7, 8]. Our work involves packaging the two frameworks into a cohesive platform
which gave the user control over simulation speed and other high level character-
istics. In addition, we create a number of custom objects which can be added to
the simulated world with more interesting behaviors than previously allowed under
the existing frameworks. The majority of this work was split between implement-
ing reasonably accurate bending rod physics (see Appendix A) and simulating lift
and drag on flat aerodynamic foils (see Appendix B), which together allowed for
tensegrity based kites to be assembled and flown in the simulated world. This is
accomplished by constructing novel physics objects based on rigid bodies and im-
plementing custom update steps to achieve the desired object behavior, in our case
realistic bending forces and simple aerodynamics.

4 Results

The simulation of the tensegrity kite has promising results, including visually real-
istic flight, elastic response to collisions, and successful flight control through cable
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actuation.

4.1 Kite Stability

During flight, the simulated tensegrity kite often begins oscillating once reaching its
equilibrium position. We can not determine the exact mechanism that causes the
oscillations, although the period and magnitude of oscillation is heavily influenced
by the size of the kite. These oscillations determine the stability of the kite, and as
discussed in the previous section we desire to find the smallest kite size where the
random noise of the wind, as opposed to the oscillation, is the main contributing
factor to the flight path of the kite.

The oscillations of various kite sizes are seen in Figure 3. The oscillations are
measured through the horizontal distance between the center of mass of the kite, and
the line that passes through the anchor point of the kite in the direction of the mean
wind. The horizontal lines in the 2.9 meter and 3.3 meter kites indicate collisions
with the ground that flip the kites upside down, ceasing flight. The irregular shape
of the 3.9 meter kite oscillation is due to two collisions with the ground where flight
continued. The movement of the mean position of the 5.8 meter kite is due to
the random noise introduced to the wind overcoming the small oscillations of the
kite. From this data, we concluded that 5.8 meters is roughly the smallest kite that
can maintain stability in simulation, and thus we choose it as the main design for
actuation experiments.

4.2 Steering

The kite successfully steers itself by using a simulated motor to change the cable
properties, resulting in a change in geometry that affected the flight path. The steer-
ing angle is measured by projecting the tether of the kite and the wind direction to
the horizontal ground plane, then measuring the angle between the two projections
using the dot product. This allowes the measurement of the steering angle to be
decoupled from the vertical angle caused by the lift. This steering angle is seen in
Figure 4 for a wind speed of 6 meters per second, with and without noise.

From the figure it can be seen that the controlled turn results in a significant de-
viation in the equilibrium position of the kite, between 7.5 degrees and 33 degrees in
an environment with wind noise, and approximately 17.5 degrees in an environment
without wind noise. Visually, this results in the kite steering towards the desired
direction and maintaining a new equilibrium position for the duration of the turn.
This demonstrates successful control of a tensegrity aerial vehicle in simulation.

4.3 Kite Properties

Some properties of the final 5.8 meter kite design include a 1.2 kilogram mass, cable
tensions under 300 Newtons, and cable stiffnesses under 500 Newtons per meter.
These can be altered without significantly changing the flight characteristics of the
kite, although less tension in the design makes it less stiff and less robust towards
collisions. The tension of the various cables during the execution of a turn can be

5



Figure 3: A graph of the oscillations of the kite depending on its size, subjected to a
wind velocity of 6m/s with some random noise. Horizontal lines indicate collisions
with the ground that ceased flight.

seen in Figure 5. The extreme behavior at the very beginning of the graph is caused
by the convergence of the bending rods to their equilibrium positions.

5 Conclusion

Through our experiments and analysis, we show that our tensegrity based kite ve-
hicle can be actuated relatively easily to steer by changing the shape of the vehicle.
This makes the tensegrity based kite a promising steps towards an untethered UAV
with tensegrity design principles.

Further research needs to be done on verifying the results of the simulation
on a real life tensegrity kite prototype. This would evaluate the accuracy of our
experiments and our simulation platform. We also believe that design principles
from our kite like vehicle could be adapted into an untethered UAV system, which
would allow for use in some of the settings currently dominated by small scale rigid
UAVs.

In our efforts to approximate the behavior of experimental vehicle we also created
a novel simulation platform which can be used for rapid design and experimentation
on tensegrity based aerial vehicles, a capability which other platforms lack. We are
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Figure 4: The deviation angle of the tensegrity kite during the execution of a turn,
with and without random noise on the wind.

largely confident that this tool is realistic at least as a first degree approximation,
and can give useful insights about vehicle behavior at a high level, even though the
forces involved might not be exactly accurate. Our developed software platform can
allow for researchers to quickly test related ideas in a simulated environment to cut
prototyping costs and gain insights quickly.
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Figure 5: Kite cable tensions during a turn.

Appendix A

Bending Rod Approximation

The tensegrity kite required the inclusion of structural rods subjected to large
bending displacements. These rods would also be subjected to multiple outside
forces along the length of the rod. This presented a computational challenge for a
couple reasons. First, the physics simulation library that was used only simulates
rigid bodies, so any implementation of bending would need to operate in a manner
that is compatible with rigid bodies in the simulation. Second, it was desired for the
simulation to run at close to real time. Typical analysis of bending components is
usually done with linear approximations for small displacements, or complicated and
intensive finite element analysis for large displacements and more accurate results.
Since a tensegrity kite was composed of multiple bending rods connected together
in a tension network, implementing an accurate finite element method would be
excessively complicated and computationally intensive. However, the goal was not to
create a highly accurate simulation of all the forces involved, but rather to simulate
approximated behavior, so a faster, less accurate approach was used.

The approach taken was to discretize the bending rod into multiple spherical
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rigid bodies, and then simulate linear springs between those bodies to create the
correct behavior of tension and compression. Torsional springs were simulated be-
tween those same bodies to create the correct behavior of bending. Linear springs
were included by the physics library and so they were easy to implement. Each
neighboring pair of bodies in the rod had their own duplicate linear spring that
worked together to create the behavior of tension and compression. Discretizing the
linear springs allowed the same rod to experience tension at one part and compres-
sion at another. Torsional springs were not included in the library, and had to be
implemented by hand. Each set of three neighboring bodies had their own duplicate
torsional spring, and together, they created the behavior of bending. Discretizing
the torsional springs allowed the same rod to have different curvature at different
points. For a rod discretized into N points, N − 1 linear springs and N − 2 torsion
springs were created.

A.0.1 Torsion Spring Implementation

The implementation of a torsional spring for three neighboring bodies, nA, nP , and
nB required knowledge of their positions, points A, P , and B, as well as a desired
torsional stiffness k. From these, effective forces on each body, ~FA, ~FP , and ~FB can
be found.

P

B

A

~rA/P

~rB/P

θ

The relative positions between the bodies, along with their corresponding unit
vectors are described by the following:

~rA/P = A− P

~rB/P = B − P

r̂A/P =
~rA/P∣∣~rA/P

∣∣
r̂B/P =

~rB/P∣∣~rB/P

∣∣
The angle θ between the vectors can be found by:

θ = cos−1
(
r̂A/P · r̂B/P

)
The rest angle for a rod is π, so the angle φ for the simulated torsion spring is

as follows:

φ = θ − π

The moments generated by the spring could then be found:
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M̂A =
r̂B/P × r̂A/P∣∣r̂B/P × r̂A/P

∣∣
~MA = −kφM̂A

~MB = − ~MA

Note that

M̂A =
r̂B/P × r̂A/P∣∣r̂B/P × r̂A/P

∣∣
is undefined when

r̂B/P × r̂A/P = 0

This only occurs when the relative positions of the bodies are collinear, and thus
the desired torque would be 0 when the relative positions are opposite eachother,
and unknown when in the same direction. This is mitigated in the implementation
by generating no force in this scenario.

Moving on, the forces on the bodies ~FA and ~FB are generated by dividing the
moment by the lever arm

~FA =
1∣∣~rA/P

∣∣ ~MA × r̂A/P

~FB =
1∣∣~rB/P

∣∣ ~MB × r̂B/P

And lastly, following Newton’s third law:

~FP = −
(
~FA + ~FB

)
For a rod made up of N point particles, bending can be emulated by implement-

ing these torsion springs for sets of three neighboring point particles. Note that this
requires that N ≥ 3.

A.0.2 Limitations

There are many limitations to this method of simulating bending rods. The bending
of real rods depends on the geometry and material of the rod, which this method ig-
nores, although it could possibly be similar by choosing clever values for k. Precision
errors for large values of N create divergent behavior for the torsion springs that
in practice seem to require the time step of the physics simulation to be inversely
proportional to N for large N .

A damped torsion spring could not be found this way. In order to create damping,
the rate of change of the angle between r̂A/P and r̂B/P must be known. This is
difficult to simulate without numerical derivatives. To see why, note that:

d

dt

(
r̂A/P · r̂B/P

)
=

d

dt
(cos (θ))
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˙̂rA/P · r̂B/P + r̂A/P · ˙̂rB/P = − sin (θ)
dθ

dt

˙̂rA/P · r̂B/P + r̂A/P · ˙̂rB/P

− sin (θ)
=
dθ

dt

This creates undefined behavior when sin (θ) is equal to 0, and bad behavior
when sin (θ) is close enough to 0 to create precision errors. This could not be
ignored like it was for the moment vector, because the rate of change of the angle
could be significant in this scenario. This scenario is also common, as it is the
desired rest angle of the bar.

P BA ~rA/P ~rB/P

θ = π

Another limitation encountered was that implementing bending rods through
multiple torsion springs created wave-like effects through the bar as each time step
of the physics simulation would propagate a displacement to neighboring torsion
springs. Normal bending rods do propagate waves, so this can create correct behav-
ior if the time step of the simulation was dependent on the speed of sound of the
rod, but since this was not the case (as doing so carried a large computational cost)
it created undesired behavior as the wave speed was heavily dependent on the time
step. This effect was prevalent due to the lack of damping in the torsion springs.

The last limitation encountered was divergent behavior for large values of N
and φ. Each point particle had a mass inversely proportional to N . If there was a
large angular displacement φ for that particle, it would create a large force applied
to a light object. This introduced precision errors, which typically created a larger
than desired displacement. This large displacement would then propagate as a
wave, creating even larger displacements that would compound and break the rod
in spectacular fashion.

A.0.3 Mitigations

Since the focus was on similar behavior as opposed to accurate behavior, non stan-
dard solutions could be applied to the implementation of these bending rods.

To mitigate the error caused by the lack of angular damping, dampers were
created that connected the ends of the rods. These dampers were linear springs
that had zero stiffness, but high damping constants. As waves propagated through
the rod, they would reach the ends of the rod where the energy would then be
absorbed by these dampers. Increasing the damping to the linear springs between
the point particles also helped mitigate this effect.

Implementing multiple linear and torsion springs to create a bending rod also
created an issue of coupling. It was desired for the bending rod to have uniform
behavior and mass distribution. This simplified a bending rod to six parameters (not
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including angular dampers). Each linear spring was the same, with the characteristic
equation

F = −c (x− l)− dẋ (A1)

where F is the generated force

c is the spring constant

x is the relative distance between the two bodies

l is the rest length of the spring

d is the damping constant

ẋ is the projected relative velocity of the two bodies

And each torsion spring was the same, with the characteristic equation

T = −kφ (A2)

where T is the generated torque

k is the torsion spring constant

φ is the relative angle between two bodies

Thus the physics of a bending rod created through this implementation required
six input parameters, namely:

N = number of points in the rod

M = total mass of the rod

L = linear rest length of the rod

C = linear spring force constant of the rod

D = linear spring damping constant of the rod

K = torsion spring constant of the rod

To reduce coupling between the behavior of the rod and the number of points
used to discretize the rod, it was necessary for the characteristics of the component
bodies to depend on the number of bodies. This allowed the rod to converge towards
a single behavior as the number of points got larger.

The mass m of a component body in a rod can be found as:

m =
M

N

Since N − 1 component linear springs were created, and the expected behavior
on the input parameter was for the behavior of the rod as a whole, the rest length
l for each component linear spring is given by:

l =
L

N − 1
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and the linear spring stiffness c and linear spring damping d is given by:

c = C (N − 1)

d = D (N − 1)

Similarly, because N − 2 component torsion springs were created, the torsion
spring constant k for each component torsion spring is given by:

k = K (N − 2)

This allows for tuning of the value of N to creates sufficient accuracy of the
bending rod for the application, as increasing N would now cause the rod to converge
to a single behavior (for a sufficiently small time step).

The easiest mitigation strategy for most divergent behavior found was decreas-
ing the time step, but this carried with it a large computational cost. It was found
that most of the accuracy was needed for the beginning of the simulation, as the
component bodies of the rod when placed poorly would move erratically to their
equilibrium position. Thus, finding a good initial position for the component bod-
ies of the rod increased performance by allowing the time step to increase while
maintaining convergent behavior.

All the bending rods in a tensegrity kite are part of a tension network that cause
the rod to bend into an arched curve. Finding the correct curvature of that arch to
place the component bodies is a difficult problem, and using that curvature to solve
for the equidistant positions of each component body is an even harder problem, so
the curve was approximated as a parabolic segment.

x

y

y = Ax2 −B

(
−w

2 , 0
) (

w
2 , 0
)

l

L = l (N − 1)

l
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The rods in a tensegrity kite are usually bent in such a way that it creates similar
behavior to a rod bent by a taut cable, such as in a bow. Thus the only known
values are the length of the rod L, and the length of the taut cable w. To create
the desired effect of symmetry, the chosen parabolic curve needed to be symmetric
about the y-axis, and have a chord length of w between the points that crossed the
x-axis. Thus, for A ≥ 0, B ≥ 0, the general parabolic equation is:

y = Ax2 −B

A and B are unknown, and need to be determined by the properties of the cable
and the rod.

If S(x) denotes the arc length of the parabolic segment from (−w
2 , 0) to the point

(x,Ax2−B), then the total arc length of the parabolic segment can be approximated
as

S
(w

2

)
≈ L

Using the formula for the arc length of a curve,

S(x) =

∫ x

−w
2

√
1 + 4A2t2dt

Integrating, it’s found that

S(x) =
Aw
√

(Aw)2 + 1 + 2Ax
√

(2Ax)2 + 1 + arsinh (Aw) + arsinh (2Ax)

4A

Substituting in the known arc length for the whole segment and simplifying it’s
found that:

L =
Aw
√

(Aw)2 + 1 + arsinh (Aw)

2A

It’s difficult to solve this for A, so a numerical approach using Newton’s method
was taken to find the solution. The function U(V ) was defined:

U(V ) =
V
√

(V )2 + 1 + arsinh (V )

2V

Note that

L

w
= U (Aw)

U ′(V ) =
V
√

(V )2 + 1− arsinh (V )

2V 2

This information was used to implement Newton’s method, that would solve
U(V ) using the known value L

w and find the unknown value Aw that can be easily
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solved for A. Once A is known, it’s known from the definition of this parabolic
segment that

0 = A
(
±w

2

)2
−B

Thus

B =
Aw2

4

The approximating curve of the bending rod is now known. To find the positions
of the component bodies, it’s known that at the equilibrium position of the rod, the
component bodies are equidistant from eachother due to having the same linear
and torsional spring characteristics. Thus, for each node ni with unknown starting
position (xi, yi), the arc length of the parabolic segment to that position is given by
the known value:

S(xi) =
iL

N − 1

Using the first fundamental theorem of calculus,

S′(x) =
√

1 + 4A2x2

Newton’s method can now be employed to solve for the x positions of each
component body, and the y positions can be found based on the definition of the
parabolic segment

y = Ax2 −B

An initial position for each component body can now be found in two dimensions,
which can then be projected into three dimensions for the simulation. The compu-
tational cost for using Newton’s method for solving the parabolic curve and each
component position is minimal. Overall, it saves computational power by providing
a good initial position for the rod’s component bodies. This allows for convergent
behavior upon initialization without requiring exceedingly small time steps.

Figure A1: A red rod bent by a taut yellow cable. The left image shows the initial
positions of the component bodies as determined by the parabolic approximation.
The right image shows the bending rod after reaching equilibrium through the tor-
sion and linear springs.
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Appendix B

Aerodynamics Approximation

The aerodynamics of the tensegrity kite was heavily approximated. Aerodynam-
ics was only simulated for the cloth of the kite, and ignored for the thin structural
components. The cloth was split into four triangles, two large triangles at the front
providing the main lift, and two small triangles at the back providing some stabi-
lization. Aerodynamic calculations were performed on each triangle independently
of one another, allowing each triangle to have the same implementation. The imple-
mentation of the aerodynamic calculations was inspired by the vortex lattice method
but used aerodynamic equations specific for kites.

The application of the aerodynamics was split into three problems: calculating
the forces of lift and drag, determining the center of pressure of the triangle, and
then using the center of pressure to decompose the total force into equivalent forces
on the triangle’s anchor points. This implementation allowed creating aerodynamics
that would apply to already existing simulated bodies, and would utilize the discrete
implementation of the bending rods to create internal structural forces caused by
the aerodynamic load.

B.0.1 Finding lift and drag

To find the forces of lift and drag, the problem was simplified using a set of assump-
tions. First, it was assumed that the relative air velocity ~w was constant and did
not significantly change relative to the triangle. Following from that assumption, it
was also assumed that the problem could be projected into two dimensions where
simple formulas for the aerodynamic forces could be applied, and then integrated
back into three dimensions to find the total aerodynamic force.

Based on the implementation of the bending rod, it was known that the kite was
going to be attached to three bodies, A, B, C, with positions A, B, C, velocities ~vA,
~vB, ~vC , and respective masses mA, mB, mC . A constant wind velocity ~w needed to
be given, and the relative air velocity ~W could be calculated using that velocity and
the average velocity of the three particles. Relative rotational velocity was ignored
for this part of the problem.

A

B

C

~rB/A

~rC/B

~rA/C
~W
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It was assumed that the drag force acts in the direction of the air velocity, and
the lift force acts perpendicularly to the drag in the plane formed by the normal
and the air velocity. Projecting this three dimensional problem into two dimensions
would need to make use of those assumptions. It was also assumed that the wind
was not normal to the triangle. From those assumptions, a new coordinate frame
could be created that would be used for the purposes of projecting the problem into
two dimensions.

First, we found the normal of the triangle ~n:

~n = ~rB/A ×~rA/C .

Note that we assumed that
~n · ~W 6= 0.

Now we can choose the normal to the triangle ~N as the normal that is in a similar
direction as the air velocity ~W:

~N =
~n · ~W∣∣∣~n · ~W∣∣∣~n.

The two other vectors defining the coordinate frame will be ~B which will be referred
to as the binormal, and ~T which will be referred to as the tangent. We can define
them as the following:

~B = ~W × ~N

~T = ~N× ~B

The problem can now be rotated to a new coordinate frame formed by N̂, B̂, and
T̂ where:

N̂ =
~N∣∣∣~N∣∣∣

B̂ =
~B∣∣∣~B∣∣∣

T̂ =
~T∣∣∣~T∣∣∣

It’s also useful to define

Ŵ =
~W∣∣∣ ~W∣∣∣
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A

B

C

�

~W

T̂

N̂

B̂

L̂

D̂α

With this rotation, the problem can now be projected into two dimensions. The
angle of attack is constant for each projection, and is given by

α = sin−1
(
N̂ · Ŵ

)
.

The directions of the drag force D̂ and lift force L̂ is the same for each projection
and is given by:

D̂ = Ŵ

L̂ =
N̂−

(
N̂ · D̂

)
D̂∣∣∣N̂− (N̂ · D̂
)

D̂
∣∣∣

Now, to find the magnitudes of the lift and drag force, we need to find the
coefficient of lift cl and the coefficient of drag cd. To find these values, it’s necessary
to find the aspect ratio a of the kite. This is defined by:

a =
s2

As

where s is the wing span of the kite, defined by

s = max
(
|~rB/A · B̂|, |~rC/B · B̂|, |~rA/C · B̂|

)
and As is the surface area of the kite, defined by

As =
1

2

∣∣~rB/A ×~rA/C

∣∣
It’s assumed that the coefficients of lift and drag for the triangle kite can be

found by the following equations that use the now defined aspect ratio a:

clo = 2πα

cdo = 1.28 sin (α)

cl =
clo

1 +
clo

πa
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cd = cdo +
c2l

0.7πa

The magnitude of the lift force |~L| and the drag force |~D| can be found by the
lift and drag formulas:

|~L| = 1

2
clAsρ| ~W|2

|~D| = 1

2
cdAsρ| ~W|2

Finally, the lift and drag force vectors can now be found.

~L = |~L|L̂

~D = |~D|D̂

B.0.2 Finding center of pressure

Creating the coordinate frame

To make finding the center of pressure easier, we will define a new coordinate frame
formed by the previously calculated orthonormal vectors B̂, T̂, and N̂.

J ′

K ′

L′

�

T̂

B̂

N̂

The translation and rotation of a point Q in the original coordinate frame to
the point Q′ in the new coordinate frame can be calculated through the following
operation:

R =

B̂x B̂y B̂z

T̂x T̂y T̂z

N̂x N̂y N̂z


Q′ = R~rQ/K

where ~K is the vector representing the point in the old coordinate frame that
becomes the origin of the new coordinate frame. The vector representing the point
P in the original frame can be calculated from its respective vector representing the
point P ′ in the new frame by the following operation:
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~P = RT ~P′ + ~K

Now, we can rename the vertices of the triangle ABC to the equivalent triangle
JKL, where the vertex K will lie at the origin of the new coordinate frame. We
can then translate and rotate the triangle JKL to J ′K ′L′ by:

J ′ = R~rJ/K

K ′ = R~rK/K

L′ = R~rL/K

Thus, subject to the order in which the vertices are renamed:

J ′ =

J ′BJ ′T
0

K ′ =

0
0
0

L′ =

L′BL′T
0


J ′B ≤ 0 < L′B

Note that the third N -coordinates are all zero because K ′ is placed at the origin,
and by definition of the normal,

~rJ/K · N̂ = 0

~rL/K · N̂ = 0

Assumptions

We know that the total force ~F on triangle ABC is given by:

~F = ~L + ~D

We can define ~F′ as:

~F′ = R~F

We assume that this total force can be found by summing a distributed force
about the whole triangle. In other words, if ~F′(b, t) is the force generated at point
(b, t, 0) on the triangle J ′K ′L′, then∫∫

A

~F′(b, t)dA = ~F′ (A1)

We also assume that the distributed force always acts in the same direction. In
other words:

F̂′ =
~F′

|~F′|
=

~F′(b, t)

|~F′(b, t)|
(A2)
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We assumed earlier that the force of drag acts in the direction of the air velocity,
and that the force of lift acts perpendicular to the force of drag in the plane formed
by the triangle normal and the wind. Thus the rotated force vector F̂′ can be
decomposed into its coordinates:

F̂′ =

 0
fT
fN

 (A3)

Note that the B-coordinate is zero because no force acts in the B̂ direction.
Next, we make two assumptions about the lift and drag for a cross section of the

triangle J ′K ′L′ in the B̂ direction, with boundary points

u =

 b
ub
0

 , v =

 b
vb
0



J ′

K ′

L′

ub

vb

p

�
T̂

B̂

N̂

�
T̂

N̂

B̂

ub vbp

~F′b

First, we assume that the magnitude of the force ~F′b generated by that cross-
section is proportional to the length of the cross section. Thus, for some constant
c:

|~F′b| = c(vb − ub)

If we combine this with assumption A2, we find that,

~F′b = c(vb − ub)F̂ (A4)

Second, we assume that the center of pressure p of this cross section has a T -
coordinate that is a k-ratio away from the leading edge. In practice, k will be equal
to 1

4 , so that the center of pressure for the cross section will be 1
4 the length from

the leading edge. Therefore:

p =

 b
pb
0


pb = k(vb − ub) + ub (A5)
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Calculating the center of pressure

We’ll define the center of pressure P for the triangle as

P =

Px

Py

Pz


This point is what we’ll be solving for. We can define P ′ as the equivalent point in
the rotated coordinate frame, with:

P ′ = R~rP/K =

P ′BP ′T
P ′N


We know that the moment about the center of pressure caused by the aerody-

namic forces is zero, so using assumption A1 for the triangle J ′K ′L′:∫∫
A

(~r− ~P′)× ~F′(b, t)dA = 0

where

~r =

bt
0


Based on the construction of triangle J ′K ′L′, there is a discontinuity at the

origin. Therefore the integral needs to be split into two separate areas:

J ′

K ′

L′

u1(b)

v(b)

u2(b)

A1

A2

∫∫
A1

(~r− ~P′)× ~F′(b, t)dA+

∫∫
A2

(~r− ~P′)× ~F′(b, t)dA = 0

If we define u1(b) as the line from J ′ to K ′, u2(b) as the line from K ′ to L′, and
v(b) as the line from J ′ to L′, then the limits of integration can be found:

u1(b) =
J ′T
J ′B

b
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u2(b) =
L′T
L′B

b

v(b) =
L′T − J ′T
L′B − J ′B

(b− L′B) + L′T∫ 0

J ′
B

∫ v(b)

u1(b)
(~r− ~P′)× ~F′(b, t)dtdb+

∫ K′
B

0

∫ v(b)

u2(b)
(~r− ~P′)× ~F′(b, t)dtdb = 0

We can decompose ~F′(b, t) to its magnitude and direction

~F′(b, t) = |~F′(b, t)|F̂′(b, t)

and use assumption A2 and A3 to get:

~F′(b, t) = |~F′(b, t)|

 0
fT
fN


Using that to simplify the cross product the integral becomes:∫ 0

J ′
B

∫ v(b)

u1(b)
|~F′(b, t)|

(t− PT )fN − fTPN

−(b− PB)fN
(b− PB)fN

 dtdb+∫ K′
B

0

∫ v(b)

u2(b)
|~F′(b, t)|

(t− PT )fN − fTPN

−(b− PB)fN
(b− PB)fN

 dtdb
It can be shown that to evaluate the integral with respect to t, only two key integrals
need to be found: ∫ v(b)

u(b)
|~F′(b, t)|dt∫ v(b)

u(b)
t|~F′(b, t)|dt

From assumption A4 it follows that∫ v(b)

u(b)
|~F′(b, t)|dt = c(v(b)− u(b))

Using assumption A5 as the center of pressure for a segment with respect to t, and
undergoing a similar integral process it can be shown that:∫ v(b)

u(b)
t|~F′(b, t)|dt = c(v(b)− u(b))p(b)

where p(b) is the pb from assumption A5 evaluated at the bounds u(b) and v(b).
Enough information is now known to evaluate the integral and solve for the center

of pressure. A symbolic math computer package was used to find and simplify the
solution. Many of the introduced terms cancel out in the operation, and the center
of pressure in the new coordinate frame P ′ is found to be:

P ′ =


JB + LB

3
JBJT − LBLT + 2JBLTk − 2LBJTk

3(JB − LB)
0


This can be converted back to P in the original coordinate frame using RT .
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B.0.3 Force Decomposition

We now know the resultant force and location of the aerodynamic load on the
triangle. However, the triangle is created by three anchor bodies, and thus the force
at the center of pressure needs to decomposed to an equivalent three forces at the
anchor bodies. This is done by treating the three anchor bodies as a singular rigid
body, finding the linear and angular acceleration of the rigid body caused by the
aerodynamic forces, then finding the linear acceleration of each anchor body that
composes the rigid body, and converting that linear acceleration into an equivalent
force to be applied to the anchor body. This approach works because the internal
forces between the anchor bodies are already simulated by the tensegrity structure,
allowing the anchor bodies to be treated as a virtual rigid body at each time step.

A

B

C

G
P

~F

A

B

C

G

M~aG

Ī ~α

A

B

C

G

~FA
~FB

~FC

The first step is to treat the anchor bodies as components of a rigid body. This
rigid body has a total mass of M with

M = mA +mB +mC

The position of the center of pressure is the mass weighted average of the center of
mass of the three bodies

~G =
mA

~A +mB
~B +mC

~C

M

We can then define ~a, ~b, ~c as the positions of bodies A, B, C, relative to the center
of mass, and ~p as the position of the applied force relative to the center of mass.

~a = ~A− ~G

~b = ~B− ~G

~c = ~C− ~G

~p = ~P− ~G

We can now find the moment of inertia about the center of mass Ī

Īxx = mA(a2y + a2z) +mB(b2y + b2z) +mc(c
2
y + c2z)

Īyy = mA(a2x + a2z) +mB(b2x + b2z) +mc(c
2
x + c2z)

Īzz = mA(a2x + a2y) +mB(b2x + b2y) +mc(c
2
x + c2y)
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Īxy = mAaxay +mBbxby +mCcxcy

Īyz = mAayaz +mBbybz +mCcycz

Īxz = mAaxaz +mBbxbz +mCcxcz

Ī =

 Īxx −Īxy −Īxz
−Īxy Īyy −Īyz
−Īxz −Īyz Īzz


Now we know enough to solve the linear acceleration of the triangle body ~aG.

~aG =
~F

M

The angular acceleration ~α can be solved by solving the matrix equation

Ī ~α = ~p× ~F− ~ω × Ī ~ω

where ~ω is the rotational velocity of the triangle. With those known, the expected
acceleration of each body caused by the aerodynamic load can be calculated

~aA = ~aG + ~α× ~a

~aB = ~aG + ~α× ~b

~aC = ~aG + ~α× ~c

Those expected accelerations can then be converted into applied forces:

~FA = mA~aA

~FB = mB~aB

~FC = mC~aC

Through this method, the calculated aerodynamic force can now be applied at the
center of pressure, and decomposed to equivalent forces at the three anchor bodies
of the sail for the physics simulation.

B.0.4 Limitations

This is a heavily approximated method of generating aerodynamic forces. The
analysis ignores turbulence, ignores the local effects on the wind that the sails would
create, and ignores many other aerodynamic factors. A lot of the formulas used
depended on small angle approximations, which we ignored. We did attempt to
mitigate the effect of a lack of turbulence in our analysis by introducing random
noise to the wind vector in each step of the physics simulation. We did not have a
strong background in aerodynamics, so we do not know how to quantify the error of
our methods. Thus, we could only measure the success of the aerodynamics through
visual inspection.
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