
ME 155B Fall 2008 Final Exam

Instructions:

1. This exam is open book and notes.

2. Write your name on this answer booklet.

3. Please, please, please write legibly.

4. To receive full credit you must show your work and explain clearly what you are doing.

NAME: SOLUTIONS
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Problem 1 20%

1. Consider the following nonlinear system which is an approximate model for a damped pendu-
lum

θ̈(t) + βθ̇(t) + sin(θ(t)) = 0,

where the damping constant is such that β > 0.
Note that θ = 0 corresponds to the downward position.

By making an appropriate choice of states, rewrite the dynamics
in nonlinear state space form ẋ = f(x).

b

theta

Solution: As usual, we define positions and velocities as states

x1 := θ, x2 := θ̇.

This gives the following state space model

ẋ1 = x2

ẋ2 = − sin(x1) − βx2
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2. Find all equilibrium points of the damped pendulum.

Solution: Equilibrium conditions are:

0 = x2

0 = − sin(x1) − βx2 = sin(x1) ⇒ x1 = 0 + kπ, k integer

Thus the equilibrium points of this system are[
x1

x2

]
=

[
kπ
0

]
, k integer

3. Classify all the equilibrium points you found as either stable or unstable by linearizing at each
equilibrium and examining the stability of the linearized systems. Use your physical intuition
as a guide, but you must provide this mathematical proof for stability/instability.

Useful fact: A second order polynomial aλ2 + bλ + c has both roots with negative real part if
and only if a > 0, b > 0 and c > 0.

Solution: Each equilibrium is indexed by the integer k, and the corresponding linearization at that
equilibrium is given by[

ẋ1

ẋ2

]
=

[
0 1

−cos(kπ) −β

] [
x1

x2

]
=

[
0 1

−(−1)k −β

] [
x1

x2

]
.

The eigenvalues of each linearization are the roots of the following polynomial

λ(λ+ β) + (−1)k = λ2 + β λ + (−1)k

This is a second order polynomial and since β > 0, it has roots in the LHP if and only if
(−1)k > 0, which happens when k is even.
Thus the equilibrium points[

x1

x2

]
=

[
kπ
0

]
,

are stable when k is even and unstable when k is odd.
Note that k even means that θ = 0, which is the downward position, and k odd means
that θ = π, which is the upright position.

3



Problem 2 20%

1. Write down a state space realization of the following system

1/s

+

2
1/s

1/s

+ +

u

y

-1

1/s x2

x3x1

x4

Solution: With the choice of states shown above, the realization can be derived as

d

dt


x1

x2

x3

x4

 =


0 0 −1 −1
0 0 −1 −1
1 1 2 2
1 1 2 2



x1

x2

x3

x4

+


1
1
1
1

u

y =
[

0 0 1 1
] 

x1

x2

x3

x4



4



2. Find all unobservable states of this system.

Hint: You can do this in either of two ways (a) by using the observability matrix, or (b) by
examining the diagram and discovering non-zero initial conditions that produce zero output.
Note that each integrator can have a different initial condition.

You should do both (a) and (b) as a cross check.

Solution: (a) The observability matrix is computed to be

O =


C
CA
CA2

CA3

 =


0 0 1 1
2 2 4 4
8 8 12 12
24 24 32 32


By inspection, we can immediately conclude that this matrix has rank 2 since the
first two columns and the last two columns are identical respectively.

The unbobservable states are the states nulled by O. We can find these by inspec-
tion. Observe that

O


α
−α
0
0

 = 0, O


0
0
β
−β

 = 0,

and any linear combination of those two vectors will also be nulled by O. We thus
conclude that the null space of O (the “unobservable” subspace) is

span




1
−1
0
0

 ,


0
0
1
−1


 .

Another way to say this is that any initial state such that

x1(0) = − x2(0), and x3(0) = − x4(0),

will produce zero output.

(a) We could reach this conclusion by analyzing the block diagram. Imagine a scenario
where the initial condition on the x1 integrator is the negative of the initial condition
on the x2 integrator (and the initial conditions on the other integrators is zero).

The outputs of those two integrators are added, which then produces a zero signal.
With zero initial conditions on the remaining integrators and the absence of an input,
all other signals in the system are then zero, and the output is zero for all time. A
similar scenario shows that initial condtions x3(0) = −x4(0) , x1(0) = x2(0) = 0,
also produce zero output.
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Problem 3 10%

Is the following system controllable?

1/s

1/s

+u y

Give both a mathematical reasoning using the controllability test, as well as an intuitive reasoning
using the diagram above (e.g. starting from zero initial conditions, what target states can or cannot
be reached regardless of the choice of input u?).

Solution: A state space realization for this system is given by[
x1

x2

]
=

[
0 0
0 0

] [
x1

x2

]
+

[
1
1

]
u

y =
[

1 1
] [ x1

x2

]
.

The controllability matrix is

C =
[
B AB

]
=

[
1 0
1 0

]
,

which clearly has rank 1, and thus the system is not controllable.

The reachable subspace is the column span of C, which is just the span

{[
1
1

]}
.

Another way to obtain the set of reachable states is to consider the block diagram with
zero initial conditions on all integrators. Both integrators have exactly the same input
signal, and therefore, their outputs will be equal for all time. In other words, regardless
of the input, for zero initial conditions, the state vector will have equal components for
all time[

x1(t)
x2(t)

]
=

[
f(t)
f(t)

]
= f(t)

[
1
1

]
, t ≥ 0

where the function f will depend on the input chosen.
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Problem 4 20%

Consider the single state unstable system

ẋ(t) = 2 x(t) + u(t).

We would like to design a state feedback controller to stabilize it, and minimizes the following
performance objective function

J =

∫ ∞
0

(
x2(t) + α2 u2(t)

)
dt,

where the parameter α2 > 0 represents the “weight” of the control effort in the objective function.

1. Find the optimal state feedback gain, and the corresponding closed loop system eigenvalue as
a function of the parameter α.

Solution: This is a particularly simple LQR problem, where the Ricatti equation can be easily solved
since it is a scalar equation.

A∗P + PA − PBR−1B∗P + Q = 0,

becomes

4p − 1

α2
p2 + 1 = 0,

in this case.
Using the quadratic formula to find the two possible solutions

p =
−4 ±

√
16 + 4/α2

−2/α2
=
−4 ±

√
(4 − 2/α)2

−2/α2
=
−4 ± |4 − 2/α|

−2/α2

= 2α2 ∓ |2α2 − α| =


2α2 − |(2α− 1)α| =

{
2α2 − (2α− 1)α = α, α ≥ 1/2
2α2 − (−2α + 1)α = 4α2 − α, α ≤ 1/2

2α2 + |(2α− 1)α| =

{
2α2 + (2α− 1)α = 4α2 − α, α ≥ 1/2
2α2 + (−2α + 1)α = α, α ≤ 1/2

.

To ascertain which of the two choices give the stabilizing solution, we form the closed
loop “A” matrix Acl = A+BK = A+B (−R−1B∗P ) . For α ≤ 1/2, the choices are

Acl =


2 − 1

α2 (4α2 − α) = − 2 + 1
α2

2 − 1
α2α = 2 − 1

α

,

and the second choice is the stabilizing one. For α ≥ 1/2, the choices are reversed. We
conclude that

for α ≤ 1
2
, p = α, k = − 1

α
, Acl = 2− 1

α2

for α ≥ 1
2
, p = 4α2 − α, k = − 4 + 1

α
, Acl = − 2− 1

α
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2. (a) The case when α → 0 is called the “cheap control” case. Explain this terminology, and
examine the location of the closed loop system eigenvalue in this case.

Solution: When α is very small, the control signal size contributes very little to J , and thus large
controls are “tolerated” by the objective in the sense that they do not contribute as much
as the regulation term.
As α→ 0, we expect the control gain to be large, and indeed since

k = − 1

α
,

we have a high gain controller in this case. On the other hand, the closed loop eigenvalue
Acl = 2− 1

α2 , and thus

Acl → −∞.
This is consistent with state regulation being heavily weighted, implying that the state
will decay rapidly towards zero.

(b) The case when α→∞ is called the “expensive control” case. Explain this terminology,
and examine the location of the closed loop system eigenvalue in this case. How does it
compare with the open loop eigenvalue?

Solution: When α is very large, the control signal is heavily weighted in J , and and we don’t expect
the controls to be large. Let’s investigate. As α→∞,

k = − 4 +
1

α
,

and k → − 4. On the other hand, Acl = − 2− 1
α

, and thus

Acl → − 2.

This shows something interesting when the open loop system is unstable. Even when
control is very expensive, an optimal LQR controller must at least stabilize the system,
and k = 0 will not do. The gain k = −4 is the least expensive gain (in the LQR sense)
required to stabilize the system.
It’s interesting to observe also that the closed loop eigenvalue (at -2) in this case is the
“reflection” of the unstable open loop eigenvalue at +2. This is actually a special case
of a more general theorem: For any unstable system, the expensive control LQR limit
produces a closed loop system that has the same stable eigenvalues as the open loop
system, but also has the reflection (across the imaginary axis) of the unstable open loop
eigenvalues.
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