ME 155B HW 1 Solutions ! Fall 2008

1. (2.2) Two systems in cascade (series). We assume for simplicity that D; =0, D, = 0.

_ - e - - — —

The connections here imply
U = U, Uz = Y1, and y = y.

This gives the following equations

i?l = Alel + Blu'l = Alxl + Bl’U,
Ty = Axxy + Baus = Axxy + Bayr = Aswy + ByCizy = ByCizy + Aoz
y = y2 = Cozy

Putting these equations in “block matrix” notation
jzl _ Al 0 I Bl
2lelss s ll2] (]
— Z1
o ez]

(2.3) Two systems in feedback. We assume for simplicity that D; =0, D, = 0.

The connections here imply
U = U — Yo, Y = y1, and us = y;.

This gives the following equations

t; = Az + Biuy = A1z + Bi(u—92)
Ty = Ayzy + Bauy = Azzy + Boys
y1 = Cizy
y2 = Cazy
Yy = U
which imply
j}l = Alml + Bl(u — 021132) = Alml — Blczirz + B]_’U,
Ty = Ayzy+ ByCizy
y = Cizy

!Please email Chunkai at ckgao@engr .ucsb. edu if you find any typos in the solutions. Thanks.



Putting these equations in “block matrix” notation
i)l _ Al _Bl C'2 Z1
&y | | B2Ch Ay T2
— Z1
o o[z

2. (2.5) Servo with flexible shaft

) wy = 92
Jwy = K(61 — 62) (Assuming no load torque)
11) mem = Tm — %K(é’l —92)

Note the defined directions and the signs corresponding to the spring torques here.

iii) Electrical subsystem
de

|+

L—+ Rt = v — Kpwm

dt

Note also: T,,, = Kt (Torque generated by motor is proportional to current)

andwm = N91 = Nw1

Now, defining A := 6; — 6, and Q = A, and using 02, A, wq, , 1 as state variables and v as input
b = ws
Wy = ?(91—92) = ?A
A =@
Q = w—w = %wm Ws N—L(sz %A)—%A
%z’ —7t + %v - Tmel —%i + % - @(Q—i—wg)

A
62
Q
w2
1

0 0 1 0 0 A 0

0 0 0 1 0 6 0
~K(5+270) O 0 0 e Q| +1]0|w

£ 0 0 0 0 ws 0

If we choose as outputs 61, 83, wi,w2, ¢, the output equation is

6, 11000 A
0 01 0 0O 05
w1 = 0 01 10 Q
Wo 0 0010 Wy
1 0 0 0 01 1



Below is the MATLAB code used to do this problem.

% Define constants
Km = 0.05; R=1.2; L = 0.05; Jm = 8e-4; J = 0.02;
N = 12; K = 500;

o\

Define A, B, C matrices

A= [0010 0;
0001 0;
“Kx ((1/J)+(1/(N"2+xJm))) 0 0 O (Km/ (JmxN)) ;

K/J 00 0 0;
0 0 -Km*N/L -KmxN/L -R/L];

B = [0; 0; 0; O0; 1/L];

C =-eye(d); C(1,2) = 1; C(3,4) =1;
D = zeros(5,1);

o\

Construct input using STEPFUN function (see below)
= 0:0.01:4;

= 3 % ones(size(T));

=V - 6 x stepfun(T,2);

<< H

% Simulate
SYS = ss(A,B,C,D); X0 = zeros(5,1);
Y = 1lsim(SYS,V,T,X0);

plot (T, Y)

o\

>> help stepfun

o° o

STEPFUN Unit step function.

o

o\°

STEPFUN (T, TO), where T is a monotonically increasing vector,
returns a vector the same length as T with zeros where T < TO
and ones where T >= TO.

o\°

o\

The result of this simulation is shown in figure 1.

Note how the trajectories of §; and 8, are almost identical. The same holds for w; and w,. The reason for this
is that the torsional spring constant of K = 500 is a very large constant (compared with the other parameters
in this system). This represents a very inflexible shaft. The natural frequency of oscillation of the shaft is
very high, and the corresponding amplitude is very small. This can be seen if we zoom in on a part of the
plot for w; and w, as shown in figure 1.

If instead we consider a more flexible shaft (representing one that is longer, or made of a more compliant
material), say with X = 50, then the oscillations are more pronounced. Such a simulation is shown in
figure 2. Note how the oscillations have larger amplitude and a lower frequency.
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Figure 1: Simulation with X = 500
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Figure 2: Simulation with X = 50




3. (2.19)

(a) First approach: through away the higher order terms at the very beginning.

Following example 2.9, we write the approximate Lagrangian for the two pendula as the real La-
grangian minus terms that are higher than second order. This means that we throw out terms of order
three or higher from the series expressions for the sin and cos functions. This yields

1. 1 . . 1 . . 1 1
L = 5M;z:2 + 5m(ac+1191)2 + 5m(ac+12¢92)2 — (Vo +mgly(1 - 5é)i)) — (Vo +mgly(1 — 593))

Now we evaluate the six partial derivatives required to form the Euler Lagrange equations

0L = Mi + m(@+hé) + m(E+h6) L = g
% = mily(z +ll€.1) ) %Té = mgli6; .
% = mly(2 + 1262) os, = kb

The E-L equations are then

g [ M+ m(z +161) + m(z + 126,) 0 F
E ml1($ + lle.l) — mgl191 = 0 y
mly (2 + 1262) mglafs 0
which give
[Mi+m(i+l€1)+m(i+l292)-| { 0 {F‘I
((E +1 91) — m91191 = 0 .
[ mis (& + 1265) J [ mgls0; J [ 0 J

To rewrite these equations in state space form, we need to identify the state variables. As in any me-
chanical system, the states are the positions and velocities of all masses. In this case, they are z, 6,
05, v =z, w; = §; and wy := . The first three equations in the state space descrlptlon will be the
definitions of velocities, and the last three equations will be expressions for z, 6, and 65 in terms of the
state variables. The E-L equations above are not quite in that form yet. In order to convert to that form
we need to solve for %, §; and 65 in terms of state variables (and input). To do this, we rewrite the E-L
equations as

M+2m mly miy z 1 0 0 F
ml1 ml% 0 91 = 0 mgl1 0 91
mly 0 mi2 6, 0 0 mgl, 6,

These equations can be solved for &, 6; and 6, either by hand or using some symbolic mathematics
package like Mathematica or Maple. MATLAB has a symbolic math package which is basically an
interface to Maple. I used it to solve these equations. Below is the MATLAB code I used (it inverts the
matrix on the left hand side of the equation above and multiplies the result by the matrix on the right) :

syms Mm 11 12 g % Declare symbolic variables

Solve for second derivatives of x, theta 1 & 2 in terms of
state and input variables

o\

o\

H = [(M+2+m) m*11l m*12; mx1l m*11"2 0; mx12 0 m*12"2];
G = inv(H) % [1 0 0; O mxgx1ll 0; 0 O m*xgxl2];
pretty (G)



The last command simply prints out a symbolic expression in a more readable form. The result is

[ m g mg ]
[ 1/M - -]
[ M M ]
[ ]
[ 1 (M + m) g m g ]
[~ = ]
[ 11 M 11 M 11 M ]
[ ]
[ 1 m g (M + m) gl
[~ —— e ]
[ 12 M 12 M 12 M ]

z 0 0 0 100 z 0
o, 0 0 0 01 0/|]g 0
d| e, 0 0 0 00 1 0, 0
a|l v | |0 (]\;:lﬁg) -5 000 v | T ﬁl F
m)g m
Wy O .M I\llll\gd O O 0 Wy ]Wlll
wy 0o pmg WM g o0 0 | [ w M
Using the values M = m = 1 gives a slightly simpler form
z 0 O 0 1.0 0 z 0
6 00 0 010 6, 0
dle]| |0 0o 0 001 6, 0
v | |0 =g g0y T 1 |F
2 1
Wy 0 ﬁ é% 0 00 wo -
wa 0 % f 0 00 w2 -1

This state space model is already in linear form (around the upright position for both arms), we do not
need further linearization.

(b) Second approach: derive the nonlinear system first and then linearize it.
The total kinetic energy is

1 1 . . 1 . .
T = 5Ma‘c2 + 5m[(:& 41181 cos61)* + (1161 sin61)%] + 5m[(:t + 1265 cos 82)* + (1262 sin 62)?]

Suppose V} is the potential energy of the two bodies for §; = 8, = 7, then

V = Vo + mgly cos 8, + mgl, cos 8.

Thus,
L=T-V
1

1 . . . .
= 5M;i:2 + §m[(m 4 1161 cos 81)? + (1161 5in81)% + (2 + 1265 cos 62)2 + (126 sineg)z] — Vo — mg(ly cos 81 + I3 cos 6s).

The only nonconservative force if . We are ready to write Lagrange’s equations:

oL . .

% =Mz + m[2:z: + 1191 cos 91 + 1292 Ccos 92]

oL

Z_0

Oz
d 0L . . - FND 3 N2
a(aim) =Mz + m[2:z: + 1191 cos 91 — 11(91) s1n91 + l292 Ccos 92 — l2(92) sin 92]



We have, consequently
(M 4 2m)z + m[l16; cos 8y — 11(61)? sin 6y + 156, cos 6, — I5(6;)? sinfy] = F (1)

For 8,, we have

oL .
37 = mliZcosb + mlfel
1
oL .
% = —mli61zsinf; + mgly sin 6
1
d 8L . .
ﬁ(aT) = mllx cOos 01 — mlleldz Sil’lel + mlfel
1

The equation pertaining to 8, is
miliZcosf; — mlle'li sinf; + mlf@ul + mllélz'c sinf; — mgl;sind; =0

or equivalently
rcosfy +1,0; —gsinf; =0 (2)

Similarly, the equation pertaining to 8, is

£cos by + lnfy — gsinf; =0 (3)
Define the following relations
v=2 (4)
wy =6, (5)
wy = 6 (6)

Putting together Equations (1)-(6), we have the following

0 0 0 M+2m mlicosf; mlycosbs z F + mliw? sin 6; + mlyw? sin 6,

0 0 0 cosb; I 0 6, gsinf,

0 0 0 «cosb, 0 Iy 9'2 _ gsinf, %
1 0 0 0 0 0 U v

010 0 0 0 Wt wy

001 0 0 0 W w

Invert the 6 by 6 matrix to get

T 0 0 0 100 F + mlyw? sin 8; + mlyw? sin 6,
o : : TEREE gsin
9.2 = _ 1 m cos 61 m cos 62 0 0 O gsin 92
Y vg M—2 KV (cos 62)° V‘g ) v
. cos - —<Mm—1+m(Cos U m COs cos
w1 W111 Wiy 1\; le% : 2 000 w1
; [} [} [} — M —2m+m(cos
w2 i C.[(/);lzz _m COSVV1lZCOS 2 le 1 0 0 O ] U_}z
®)
where W = —M — 2m + m(cos 6;)? + m(cos 62)%. This is the nonlinear state-space model of the two-
pendula.

To linearize system described by Equation (8) around the equilibrium, we substitute in Equation (8) the
approximations cos§; = cosfy = 1, sinf; = 1, sinfy = 62, w? = w2 = 0. We get

z 0 0 0 1 0 0 F
4, 0 0 0 01 0| g8
6| | o o 0o 00 1] g6
o | = ﬁl J% -m 0 0 0 v ©)
wa ~wmi; Mz om0 00 w2



Write Equation (9) in standard state-space model format

& 0 0 0 100 i 0
6, 0 0 0 0104 0

' 0 0 0 00 1] 0

9.2 = 0 _mg _mg 00 0 2 + 1 F (10)
1.1 (M+I¥In)g mj\gl v Ml

w1 0 M, Ml 0 00 w1 Mll1

W 0 g Mims g g o || w — i

This is the linearized model of the two-pendula.



