
ME 155B HW 3 Solutions 1 Fall 2008

1. (3.7)

(a) Plot x1(t) and x2(t) vs. t, given x(0) = [1; 1]T , which is shown on the left in Figure 1.
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Figure 1: The plot of x1(t) and x2(t) vs. t with initial condition x(0) = [1; 1]T (left), and the plot of x2(t) vs. x1(t)
for the same x(0) (right).

(b) Plot x2(t) vs. x1(t) for the same x(0) = [1; 1]T , which is shown on the right in Figure 1.

(c) The two eigenvalues are �1 = �1 and �2 = �3, and the corresponding eigenvectors are v1 = [0:7071;�0:7071]T
and v2 = [�0:3162; 0:9487]T . The plots are shown in Figure 2 and Figure 3.

0 1 2 3 4 5 6 7 8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t

 

 
x

1

x
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

x
1

x 2

Figure 2: The plot of x1(t) and x2(t) vs. t with initial condition x(0) = [0:7071;�0:7071]T (left), and the plot of
x2(t) vs. x1(t) for the same x(0) (right).

(d) This is my MATLAB code.

1Please email Chunkai at ckgao@engr.ucsb.edu if you find any typos in the solutions. Thanks.
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Figure 3: The plot of x1(t) and x2(t) vs. t with initial condition x(0) = [�0:3162; 0:9487]T (left), and the plot of
x2(t) vs. x1(t) for the same x(0) (right).

% Problem 3.7
A=[0 1; -3 -4]; B=[0;0]; C=eye(2); D=[0;0];
mysys=ss(A,B,C,D)

X0=[1;1];
Tfinal=8;
[Y,T,X]=initial(mysys,X0,Tfinal)

% a)
figure;plot(T,X);legend(’x_1’,’x_2’);grid on;xlabel(’t’);

% b)
figure;plot(X(:,1),X(:,2));xlabel(’x_1’);ylabel(’x_2’);grid on;

% c)
[V,D] = eig(A)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
X0=V(:,1); Tfinal=8;
[Y,T,X]=initial(mysys,X0,Tfinal);

% a)
figure;plot(T,X);legend(’x_1’,’x_2’);grid on;xlabel(’t’);

% b)
figure;plot(X(:,1),X(:,2));xlabel(’x_1’);ylabel(’x_2’);grid on;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

X0=V(:,2); Tfinal=8;
[Y,T,X]=initial(mysys,X0,Tfinal);

% a)
figure;plot(T,X);legend(’x_1’,’x_2’);grid on;xlabel(’t’);

% b)
figure;plot(X(:,1),X(:,2));xlabel(’x_1’);ylabel(’x_2’);grid on;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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2. (3.8)

(a) Plot x1(t) and x2(t) vs. t, given x(0) = [1; 1]T , which is shown on the left in Figure 4.
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Figure 4: The plot of x1(t) and x2(t) vs. t with initial condition x(0) = [1; 1]T (left), and the plot of x2(t) vs. x1(t)
for the same x(0) (right).

(b) Plot x2(t) vs. x1(t) for the same x(0) = [1; 1]T , which is shown on the right in Figure 4.

(c) The two eigenvalues are �1 = �1 and �2 = 1, and the corresponding eigenvectors are v1 = [�0:7071; 0:7071]T
and v2 = [0:7071; 0:7071]T . The plots are shown in Figure 5 and Figure 6.
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Figure 5: The plot of x1(t) and x2(t) vs. t with initial condition x(0) = [�0:7071; 0:7071]T (left), and the plot of
x2(t) vs. x1(t) for the same x(0) (right).
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Figure 6: The plot of x1(t) and x2(t) vs. t with initial condition x(0) = [0:7071; 0:7071]T (left), and the plot of x2(t)
vs. x1(t) for the same x(0) (right).

3. (3.14) Servo with flexible shaft

Below is the MATLAB code we used in Homework 1 to calculate the state space model.

% Define constants
Km = 0.05; R = 1.2; L = 0.05; Jm = 8e-4; J = 0.02;
N = 12; K = 500;

% Define A, B, C matrices
A = [0 0 1 0 0;

0 0 0 1 0;
-K*((1/J)+(1/(Nˆ2*Jm))) 0 0 0 (Km/(Jm*N));
K/J 0 0 0 0;
0 0 -Km*N/L -Km*N/L -R/L];

B = [0; 0; 0; 0; 1/L];

C = eye(5); C(1,2) = 1; C(3,4) = 1;
D = zeros(5,1);
SS = ss(A,B,C,D);

Where the states are (�; �2;
; !2; i)0. To calculate the transfer function of �1=v and �2=v, we need set �1 and
�2 as the output of our system. So we continue with the following MATLAB codes:

newC=C(1:2,:);
newD=D(1:2,:);
[num,den]=ss2tf(A,B,newC,newD,1);

% tf theta_1
tf(num(1,:),den)

%tf theta_2
tf(num(2,:),den)

We get by MATLAB
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Transfer function:
1.421e-014 sˆ4 - 1.819e-011 sˆ3 + 104.2 sˆ2 + 1.397e-009 s + 2.604e006
----------------------------------------------------------------------

sˆ5 + 24 sˆ4 + 2.94e004 sˆ3 + 7.042e005 sˆ2 + 1.562e006 s

Transfer function:
-3.553e-015 sˆ4 + 3.638e-012 sˆ3 + 1.63e-009 s + 2.604e006
----------------------------------------------------------
sˆ5 + 24 sˆ4 + 2.94e004 sˆ3 + 7.042e005 sˆ2 + 1.562e006 s

which says essentially

tf(�1; v) =
104:2s2 + 2:604 � 106

s5 + 24s4 + 2:94 � 104s3 + 7:042 � 105s2 + 1:562 � 106s
;

tf(�2; v) =
2:604e006

s5 + 24s4 + 2:94e004s3 + 7:042e005s2 + 1:562e006s
:

4. (3.23)

(a) Calculate eAt
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Let x� = [1; 1]T , then CeAtx� = 0, for all t � 0.
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