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Abstract—We develop a first-principles model of the
regenerator component of a generic Stirling engine.
The model is based on the Euler equations of one
dimensional gas dynamics coupled with its convec-
tive/conductive heat transfer with the embedded mesh
material. We investigate various methods for deriving
simpler and low order control-oriented models from
this first principles model. The basic criterion being
high fidelity representation of the dynamics of the re-
generator when coupled to other dynamic components
of the engine. We identify several non-dimensional pa-
rameters that potentially categorize different modes of
operation, and investigate the corresponding time-scale
separation. A hierarchy of singularly perturbed models
are derived in which acoustic dynamics are eliminated,
periodic mesh dynamics are averaged, and the shape of
the distributed regenerator gas state is approximated
respectively. In addition, since the reduced model is to
be operated cyclically when connected to other parts
of the engine, we develop such a feedback-aware model
reduction algorithm based on a Proper Orthogonal De-
composition (POD) with a chirped signal input (chirp-
POD). This algorithm yields reduced models that are
accurate over a range of engine operating frequencies.

I. Introduction

Stirling devices are energy conversion devices which
can be operated as heat engines or as heat pumps. In
engine mode, they can operate using any heat source
such as external combustion, waste heat, or solar thermal
power. Although the basic Stirling engine design has been
around for over two centuries, newer varieties continue
to be periodically invented, with the Free Piston Stirling
Engine [1] being the most widely-known modern example.
Due to their ability to use any heat source, there has been a
resurgent interest in using Stirling engines for utilization of
Solar Thermal power [2]–[4], as well as in micro Combined
Heat and Power (µ-CHP) applications [5]–[8] (with at least
one recent commercial offering by Whispergen R©, which
produces household-scale, Stirling engine based µ-CHP
units). On the research side, there has also been a recent
surge of interest in the dynamics and control of Stirling en-
gines [5], [9]–[15]. Given the important role that electronic
controls have had in improving the performance of the
Internal Combustion Engine in the past few decades [16], it
is arguable that control engineering can have a significant

impact on performance of analogously modern versions of
the Stirling engine.

Of particular interest to the authors is the new con-
cept of the actively controlled Stirling engine [9], [11]
in which actuator control of the displacer piston allows
for significant freedom in the design of the engine’s limit
cycle. Potential improvements in both power density and
efficiency can be substantial [9], although more reliable
control designs will likely require higher fidelity models of
the engine’s dynamics than the commonly used idealized
Schmidt model. To this end we devote the present paper to
control-oriented modeling of arguably the most important
component of a Stirling engine, namely the regenerator. As
a historical aside, Stirling’s original patent was not for the
Air Engine (which was known at the time), but rather for
the regenerator [17] (which he termed, the “economizer”).

The regenerator acts as a type of thermal capacitor
that stores and retrieves thermal energy to the work-
ing gas during different phases of the engine’s cycle. A
detailed description of its operation is provided in the
next section. It is made up of a porous matrix of high
thermal capacitance material through which the working
gas flows. The working gas and the matrix interact via
convective heat transfer. Thus a model of these dynam-
ics involves the equations of compressible flow together
with convective heat transfer through porous media. The
partial differential equations modeling these processes are
computationally intensive to simulate and difficult to use
for control design. We therefore develop a hierarchy of
reduced models in this paper which ultimately yield low
order models with high fidelity for the typical frequencies
of cyclic operation.

There is a significant challenge that arises in the present
model reduction problem which is also relevant in a wider
context. The regenerator operates in feedback with the
dynamics of the remaining parts of the engine, which
are assumed to be lumped. Thus the reduced model
needs to approximate not only the regenerator’s open-
loop behavior, but more importantly, the behavior of the
overall coupled system. This is an instance of closed-
loop (or “feedback-aware”) model reduction, which arises
in the problem of controller reduction [18]–[21], but also
in another contexts such as large-scale model reduction
with the requirement to preserve certain properties such
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as passivity [22]–[24]. In this paper, we argue that since
the regenerator will ultimately operate periodically when
coupled to the remainder of the engine, a chirp-POD
technique (a Proper Orthogonal Decomposition (POD)
technique with a chirp signal as the input) over the fre-
quency range of potential operation provides an effective
method for this nonlinear model reduction problem.

The paper is organized as follows. In section II we
first introduce and summarize the basic operation of the
regenerator in a Stirling engine. We then develop a one
dimensional PDE model using the Euler equations of gas
dynamics coupled with gas/mesh heat transfer. There are
4 fields in this coupled system of PDEs, 3 for the gas state
(our choice is density, velocity and pressure) and an addi-
tional field for the mesh matrix temperature. In Section III
these equations are non-dimensionalized to uncover four
non-dimensional parameters that indicate potential time-
scale separations. While one of those parameters is the
well-known Mach number, the other three are lesser known
and are specific to convective heat transfer between an
oscillating gas and a mesh material. These parameters
characterize various types of possible engines, and we pay
special attention to this characterization. In Section IV
we develop a hierarchy of singularly perturbed models
by taking the respective small parameter limits, as well
as averaging the mesh dynamics under the additional
assumption of periodic operation. It turns out that the
most useful and accurate model for typical operation is the
one where the fast acoustic dynamics are removed, and we
reduce that particular model further using a chirp-POD
technique in Section V. We end with some conclusions
about the utility of these model reduction techniques in
active control design for Stirling engines.

II. Modeling

Figure 1 is a diagram a generic Stirling engine. A
sealed working gas shuttles back and forth through the
regenerator between the cold and hot sections, each section
being in thermal contact with external cold and hot heat
exchangers respectively. This movement of the gas is pri-
marily caused by the displacer piston, and while the power
piston’s motion has some effect on the gas movement, it is
a smaller effect than that due to the displacer, and can be
neglected for a preliminary understanding of the engine’s
operation. The role of the regenerator will be explained
below, but it can temporarily be thought of as simply
a low-pressure-loss connection between the hot and cold
sections.

A Stirling engine is a special type of air engine. The basic
operating principle of an air engine is simple. At any one
time, the hot and cold sections of the engine are at roughly
the same pressure, and that pressure is dependent on the
average temperature across those sections. As the working
gas shuttles back and forth between the two sections,
more or less of its volume is contained in either the hot
or cold sections, and therefore the average temperature
oscillates, which in turn causes the pressure to oscillate.

load kinematic/dynamic 
linkages

regenerator

displacer

power piston

Fig. 1. A conceptual diagram of a generic Stirling engine. The
displacer piston shuttles gas (through the regenerator) between the
hot and cold sections. This causes the average temperature (and con-
sequently the pressure) of the working gas to oscillate. These pressure
oscillations drive the power piston which performs mechanical work
on a load. Depending on the type of engine, kinematic or dynamic
linkages use a small amount of that work to in turn drive the displacer
piston, thus setting up a limit cycle. The geometry shown for linkages
is conceptual.

These pressure oscillations then drive the working piston
to perform mechanical work on a load.

The cycle described above is driven by the displacer’s
movement. In traditional Stirling engines displacer motion
is induced through kinematic linkages from the power
piston. Little power is required to drive the displacer since
the working gases at either side of it are roughly at the
same pressure. Linkages designed so that displacer and
power pistons are approximately 90o out of phase will
typically produce a stable oscillation [25]. Alternatively,
in Free Piston Stirling Engines [1], the displacer and
power piston are dynamically (rather than kinematically)
linked through a gas spring (the so-called bounce space).
Figure 1 shows these kinematic/dynamic linkages only
conceptually since they differ from one type of Stirling
engine to another.

A more recent concept is that of the Actively Controlled
Stirling Engine [9], [11], where the displacer’s motion is
directly actuated by a control actuator whose motion can
be designed to optimize the engine [9].

One of the motivations of the present work is that a
more realistic active control design will probably require a
better dynamical model than the commonly used idealized
Schmidt model. An additional goal is to develop a mod-
eling framework for a generic Stirling engine, i.e. largely
independent of the presence or type of piston/displacer
linkages. We therefore emphasize the most dynamically
complex, and arguably the most important part of the
engine, that is the regenerator.

The regenerator is an open connection between the cold
and hot sections which is filled with a metal (or graphite)
mesh of material. It acts like a porous channel for gas
flow, but yet significant convective heat exchange occurs
between the flowing gas and the mesh. The purpose of the
regenerator is to act as a“thermal capacitor”. For example,
without the regenerator, as hot gas flows into the cold
section, most its excess heat will be rejected to the cold
exchanger. The regenerator retains some of that thermal
energy in the mesh material, and the gas enters the cold
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section colder than it would have otherwise been without
a regenerator. In the other half of the cycle, the gas
flowing back to the hot section retrieves some of the heat
stored in the mesh, and arrives at a higher temperature
than it would otherwise be at (without the regenerator),
thus needing to extract less thermal energy from the hot
exchanger to reach the hot side temperature. This concept
of a thermal capacitor was the basis of Stirling’s original
patent [17] which referred to it as the “Economizer”.
Without the regenerator, an air engine would have very
low efficiency and power ouptut.

We begin this section with a distributed one dimen-
sional Partial Differential Equation (PDE) model of the
regenerator based on the Euler equations of gas dynamics
together with mesh/gas heat exchange. We then describe
a standard lumped model for the thermodynamics of
each gas section, and finally the dynamics and possible
kinematic linkages of the pistons are described. These
three separate pieces of the model are schematically shown
in Figure 2.

gas sections (lumped)

regenerator
(distributed)

piston dynamics
(lumped)

load

displacer 
actuation

⇢0, ⇢(0) ⇢1, ⇢(1)

V0, V̇0 V1, V̇1

P1P0

v(0) v(1)

Fig. 2. A block diagram of the various components of our Stirling
engine model. The displacer actuation input is only relevant to the
case of the actively controlled engine. The piston dynamics block has
the positions and velocities of the pistons as states (together with
any kinematic constraints), while the gas sections blocks have the
pressures and densities of each section as states. Lines with the port
symbol (•−) indicate interactions whose directions switch depending
on the sign of velocity at the boundaries. The only block with a
distributed state is that of the regenerator, to which we apply the
model reduction techniques described in this paper.

A. Distributed Regenerator Model

The regenerator consists of channel through which the
working gas flows back and forth between the hot and cold
gas section. This channel is typically filled with a mesh (a
metal or graphite) material which runs lengthwise down
the tube. The gas and the mesh material exchange heat as
the working gas flows back and forth through the channel.

0 L
x

metal mesh

gas flow

hot
gas

section

cold
gas

section

Fig. 3. A diagram of the first-principles model of the gas sections
and regenerator interactions. Each gas section is considered as a
well-mixed compartment with a lumped state. The regenerator is
modeled using the Euler equations of one-dimensional compressible
gas dynamics interacting through convective heat transfer with a
spatially distributed metal mesh. The spatial coordinate axis is used
for the distributed regenerator state only and not the lumped gas
sections.

The main feature of our model of the regenerator is that
due to gas flow being mainly in the axial direction, all vari-
ables are well approximated as being constant along axes
perpendicular to the flow. For the gas, this leads to the
Euler equations of one dimensional gas dynamics, while
the mesh material’s temperature can be modeled by the
one dimensional heat equation. The thermal interaction
between the mesh and the gas is captured by a simple
model of convective heat transfer.

The geometry of the one dimensional model is depicted
in Figure 3. The dynamics of the gas are given by the one
dimensional Euler equations which reflect the conservation
of mass, momentum and energy respectively

ρt = − (ρv)x , (1)

(ρv)t = −
(
ρv2 + p

)
x

− βv, (2)

Et = − ((E + p) v)x + kg (Φ− T ) , (3)

where ρ, v, p, E, T , Φ are the spatially distributed gas’
density, velocity, pressure, energy, temperature, and mesh
material temperature respectively. All of these fields are
functions of space x and time t which are suppressed
for notational simplicity. The terms in the last column
represent the non-conservative effects of viscous friction
and mesh-gas heat exchange respectively. The latter term
represents a simple Fourier law of heat exchange between
the gas and mesh with a heat transfer coefficient of kg.
It is a simplification which combines the effects of con-
ductive and convective heat transfer in a single velocity-
independent coefficient [12].

The variables ρ, p, T and E are not independent, but
rather algebraically constrained by the following thermo-
dynamic relations

p = ρ R T, (4)

E =
1

2
ρv2 + ρ cvT. (5)

The first is the ideal gas law, and the second expresses
total energy (per unit length) as the sum of kinetic and
internal thermal energy for a “calorically perfect” gas with
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specific heat capacity cv. These two relations imply that
the state of the gas can be described by several choices of
3 out of the 5 fields (ρ, v, p, T, E). Common choices include
either (ρ, v, p) or (ρ, v, T ), which means using either p or
T to express the energy balance. These two choices are
somewhat equivalent in terms of their utility. For brevity,
we present here the choice of (ρ, v, p) as states, and rewrite
the mass, momentum and energy conservation equations
respectively asρtvt

pt

 = −

v ρ 0
0 v 1

ρ

0 γp v

ρxvx
px

−
 0

β vρ

γ̄kg

(
p
Rρ − Φ

)
− βv2


(6)

where γ := 1 + R
cv

and γ̄ := R
cv

= γ − 1. Note that
internal thermal energy is expressed in terms of the pres-
sure by E = γ̄p. The conversion from equations (1-3)
to equations (6) using the relations (4-5) involves only
algebraic manipulations and the chain rule, and is detailed
in Appendix A. Note that these equations have the form

Ψt = F (Ψ,Ψx) +
[
0 0 1

]T
Φ,

where we’ve denoted the gas state Ψ :=
[
ρ v p

]T
. The

mesh temperature field Φ can be regarded as a distributed
input, while the gas temperature field T can be regarded
as an output of this system using the ideal gas law
T = R ρ/p. The gas dynamics are in feedback with the
mesh temperature dynamics which are governed by the
heat equation with the gas/mesh thermal exchange acting
as a distributed input

cmρm Φt = kmΦxx + kg(T − Φ), (7)

where cm, ρm and km are the (specific) heat capacity, den-
sity and heat conduction coefficient of the mesh material
respectively. This coupling between the gas dynamics and
the mesh thermal state is depicted in Figure 4.

(⇢, v, p)

�

kg(T � �)

gas dynamics

mesh temperature 
dynamics

convective/conductive
heat exchange

Fig. 4. A diagram depicting the coupling of one dimensional gas
dynamics (eqs. (6)) with the distributed mesh temperature dynamics
(eq. (7)) through spatially distributed convective and conductive heat
exchange. Although the gas temperature T is not explicitly a state of
the gas dynamics, it can be considered as an output using the ideal
gas law T = R ρ/p.

Boundary Conditions and Numerical Methods for Gas
Dynamics: One of the important features of Gas Dynam-
ics is the switching nature of boundary conditions. The
pressures at both ends of the regenerator are set equal
to the pressure in the adjacent gas sections. However,

the density at either end is set equal to the density of
the adjacent section only if the gas is flowing into the
regenerator at that end (otherwise no boundary condition
on density is enforced at that end). Thus the density
boundary conditions turn on and off based on the sign
of the velocity at the respective boundary. Formally the
boundary conditions are

p(0, t) = ph(t), p(1, t) = pc(t),

ρ(0, t) = ρh(t), if v(0, t) ≥ 0
ρ(1, t) = ρc(t), if v(1, t) ≤ 0.

(8)

Thus there are 4 possible combinations of boundary condi-
tions depending on whether the gas is flowing in or out of
each end of the regenerator. This “state-dependent switch-
ing” of boundary conditions presents a special challenge in
modeling and numerical approximations of this system.

The method we use to simulate such systems is the
Essentially Nonoscillatory (ENO) scheme, which is com-
monly used to for compressible flow equations. The ENO
scheme will not be covered here, but interested readers
are referred to [26]–[28]. An important feature of the ENO
scheme is that it is able to account for the state dependent
switching of the boundary conditions. It does so by using
an “upwinding” scheme, where the direction of upwinding
switches with the sign of the velocity. Thus the ENO
scheme is able to capture this state-dependent switching
automatically.

B. Lumped Gas Sections Models

Each of the two gas sections are modeled as a well-mixed
lumped system with a spatially uniform temperature and
pressure. The thermodynamic variables describing the i’th
compartment (i = 0, 1, for the hot and cold sections
respectively) are its volume Vi, density ρi, temperature
Ti, pressure Pi, and internal thermal energy Ei. The
kinetic energy due to gas velocity is neglected in this
lumped model as it is much smaller than variations in
thermal energy. As mentioned earlier in discussing gas
dynamics, these time varying thermodynamic variables are
not independent, but are related by

Pi = ρiR Ti,
Ei = cvTiρiVi

, i =

{
0, hot section,
1, cold section.

(9)

The first is the ideal gas law, and the second is the
expression for the gas internal thermal energy.

The dynamics of each lumped section as it interacts
with its boundaries can be derived from the conservation
of mass and energy. First, note that the total mass in each
section is Viρi, and therefore

d

dt
(V0ρ0) =

{
−a0 ρ0 v(0) if v(0) > 0
−a0 ρ(0) v(0) if v(0) < 0

(10)

d

dt
(V1ρ1) =

{
a1 ρ(L) v(L) if v(L) > 0
a1 ρ1 v(L) if v(L) < 0

, (11)

where a0, a1 are the cross sectional areas of the boundaries
between the hot and cold sections respectively and the
regenerator. v(.) and ρ(.) are the velocity and density fields
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as determined by the gas dynamics model of the regener-
ator. Note the switching nature of the above equations. If
the velocity v(0) at the boundary between the hot section
and the regenerator is positive, then the hot section is
losing mass of density ρ0, the density of the mass already
in the hot section. If v(0) is negative, then it gains mass of
density ρ(0), i.e. the density of the gas at the left boundary
of the regenerator.

To make the subsequent notation significantly more
compact, the following “switching selection” functions are
defined

S0

(
a, b; c

)
:=

{
a, if c > 0
b, if c < 0

S1

(
a, b; c

)
:=

{
b, if c > 0
a, if c < 0

,

and assume the regenerator to have length L = 1 (this
choice is made without loss of generality as we will non-
dimensionalize the model’s variables in the next section).
Equations (10)-(11) can now be written more compactly

d

dt
(Viρi) = (−1)i+1aiv(i) Si

(
ρi, ρ(i); v(i)

)
, i = 0, 1.

The energy dynamics can also be compactly written
using the switching function. The rate of change of energy
for each section is

Ėi = (−1)i+1aiv(i)

Si
(
cvTiρi + ρi

v2(i)

2
, cvT (i)ρ(i) + ρ(i)

v2(i)

2
; v(i)

)
+ (−1)i+1aiPiv(i)− PiV̇i +Ki(Hi − Ti), i = 0, 1.

(12)

which is equal to the rate at which (thermal+kinetic)
energy is flowing in/out of the section, plus the work
rate of pressure forces, minus the mechanical work done
by the gas on its surroundings due to volume changes,
and the last term represents the conductive heat transfer
(with coefficient Ki) between the heat exchanger at the
walls of the section which are assumed kept at constant
temperatures Hi. Note that T (i), ρ(i) and v(i) are the
boundary values of fields determined by the distributed
regenerator model described in the previous section.

We finally note the number of state variables and inputs.
Both volume and volume change rate Vi and V̇i can
be regarded as inputs imposed by the pistons’ positions
and velocities. The boundary velocities v(i) can also be
regarded as inputs imposed by the regenerator model. The
remaining variables Ti, ρi, Pi and Ei are dynamic state
variables that are constrained by 2 (for each section) static
algebraic relations (9), and therefore one can choose only
2 state variables for each lumped section. The pressure of
each section can then be considered as an output effecting
both the pistons’ as well as the regenerator dynamics by
imposing the pressure boundary conditions on the latter.
This is summarized in Figure 2.

A particularly convenient choice of the sections’ state
variables are densities and pressures. Since pressure
boundary conditions do not undergo switching, the final

form of these equations takes the following form which is
simpler than that written with temperatures instead of
pressure s

Vi ρ̇i = −V̇iρi + (−1)i+1ai v(i) Si
(
ρi, ρ(i); v(i)

)
Vi Ṗi = (−1)i+1ai

γ̄

2
v3(i) Si

(
ρi, ρ(i); v(i)

)
+ (−1)i+1γai v(i)Pi − γ PiV̇i + γ̄Ki

(
Hi −

Pi
ρiR

)
Note that these equations are of the form[

ρ̇i
Ṗi

]
= Fi

([
ρi
Pi

]
, v(i), ρ(i), Vi, V̇i

)
,

where v(i), ρ(i), Vi and V̇i are regarded as inputs.

C. Piston Dynamics and Kinematics

The case of the actively controlled Stirling engine cor-
responds to having no kinematic linkages in Figure 1, and
the displacer is driven directly by an external input u. In
this case, the pistons’ equations of motion are

mpẍp = ap [P1 − Pex]− cpẋp,
ẋd = u
V0 = V̄0 + adxd,
V1 = V̄1 + apxp − adxd,

(13)

where xp and mp are the position and mass of the power
piston respectively, P1 − Pex is the pressure difference
between the cold section and the external side of the
power piston, cpẋp a viscous dissipation term which models
the power dissipated in the load, xd is the displacer’s
position whose velocity is assumed directly assignable by
an external control input u. The time-varying section
volumes V0 and V1 and their derivatives V̇0 and V̇1 can be
considered as outputs of this dynamical system as shown
above (the equations for V̇0, V̇1 are not shown) with ad,
ap the pistons’ cross sectional areas, and V̄0, V̄1 as the
respective volumes when xp = 0, xd = 0.

In beta-type kinematically linked Stirling engines, there
are further algebraic constraints. The displacer and power
piston are connected to a flywheel which provides the
feedback necessary for a stable limit cycle to form. The
kinematics for the beta engine can be expressed using the
geometrical relations from Figure 5 as follows

mpẍp = ap [P1 − Pex]− cpẋp − Fp, (14)

Iθ̈ = Fprp sin(θ − φ)− adrd(P1 − P0) sin(θ), (15)

xd = −rd cos(θ), (16)

xp = −rp cos(θ − φ), (17)

V0 = V̄0 + adxd, (18)

V1 = V̄1 + apxp − adxd, (19)

where I and θ are the moment of inertia and angular
position of the flywheel respectively, Fp is the reaction
force between the power piston and the flywheel, φ is the
phase difference between the two pistons, rp and rd are the
radial attachment locations of the pistons on the flywheel.
The equations above assume that the displacer and arms
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connecting the pistons to the flywheel are massless. The
latter are also assumed to be sufficiently long so that the
forces they exert on the flywheel and pistons are essentially
horizontal.

rp

rd

P1P0 Pex

✓

�

Fig. 5. Conceptual diagram of a beta-type Stirling engine with
flywheel kinematic connections. P0 and P1 are the pressures in the
hot and cold sections respectively, while Pex is the pressure on the
external side of the power piston.

Note that although there are 4 states in (14)-(15), the
two algebraic constraints (16)-(17) reduce the number of
state variables in this model to 2. We choose θ and θ̇ as
coordinates for these states.

The parameters used in the sequel for numerical exam-
ples for both the mechanical model and the section models
are based on the work of [29], where a martini type Stirling
engine is modeled. The engine modeled here is a simplified
version of that engine. The choice of wall temperatures,
helium as the working gas, approximate dimensions, and
nominal pressure are all taken from this source.

III. Time Scale Separations

The Euler equations of gas dynamics contain several
phenomena and time scales. The fastest scale corresponds
to acoustic waves. Other scales are induced by the periodic
oscillation and interaction with the lumped gas sections,
as well as thermal exchange with the mesh material.
Various types of engines will have differing time scale
separations. The systematic method to uncover potential
time scale separation is to first rewrite the equations in
non-dimensional form. Both time and space, as well as the
dynamic fields are normalized as follows

t̃ :=
t

Tb
= ωbt, x̃ :=

x

L
,

ρ̃ :=
ρ

ρ̄
, ṽ :=

v

v̄
, p̃ :=

p

p̄
, Φ̃ :=

Φ

Φ̄
, T̃ :=

T

T̄
, (20)

where ρ̄, p̄, are nominal gas density and pressure, Φ̄ is
nominal mesh temperature, ωb and v̄ are the engine’s
frequency (Tb is the engine’s period) and nominal ad-
vection speed. The latter two parameters are typically
not known in advance, but can be estimated based on
other parameters and the engine’s geometry. Note that in
the nondimensional variables, the ideal gas law becomes
simply p̃ = ρ̃T̃ .

With the nondimensional variables and the use of the
chain rule and some algebraic manipulations, the gas and

mesh thermal dynamics can be rewritten as

ωb
v̄/L

∂ρ̃

∂t̃
=− ∂

∂x̃
(ρ̃ṽ), (21)

ωbv̄

c2/L
ρ̃
∂ṽ

∂t̃
=− v̄2

c2
ρ̃ṽ
∂ṽ

∂x̃
− 1

γ

∂p̃

∂x̃
− 1

γ

βLv̄

p̄
ṽ, (22)

ωb
v̄/L

∂p̃

∂t̃
=− ṽ ∂p̃

∂x̃
− γp̃ ∂ṽ

∂x̃
(23)

+
γ̄Lkg
Rρ̄v̄

(
Φ̃− p̃

ρ̃

)
+ γ̄

βLv̄

p̄
ṽ2, (24)

cpρmωb
∂Φ̃

∂t̃
=
km
L2

∂2Φ̃

∂x̃2
+ kg

(
p̃

ρ̃
− Φ̃

)
where c =

√
γ P̄ρ̄ is the speed of sound. The following

potentially small parameters are immediately recognizable
in the equations above

ε1 :=
ωb
v̄/L

=
L/v̄

Tb
=

advection time through regenerator

engine oscillation period

ε2 :=
v̄

c
= Mach number

εf :=
βLv̄

p̄
=

head loss through regenerator

nominal pressure

εm :=
kg

cpρmωb
=

Tb
cpρm/kg

=
engine oscillation period

mesh thermal time constant

ε1 is the ratio of the advection time (average time it takes
the gas to advect from one end of the regenerator to
the other) to the engine’s period. This ratio is less than
one for a well designed engine, otherwise motion reversal
in the regenerator occurs before gas has shuttled from
one section to the other. The Mach number ε2 is the
smallest of the above parameters and is typically much
less than 1. A reasonably efficient engine would also have a
much smaller head loss (through the regenerator) than the
nominal operating pressure, and therefore εf is typically
much less than 1. Finally, the mesh material is designed
to have a high thermal capacity, and therefore the mesh
thermal time constant cpρm/kg is typically much longer
than the engine’s period Tb.

Using the definitions of the small parameters above, and
simplifying subsequent notation by dropping the ’̃s on all
variables, the equations become

ε1 ρt = − (ρv)x ,

ε1ε
2
2 ρvt = −ε22 ρvvx −

1

γ
px −

1

γ
εf v,

ε1 pt = −vpx − γpvx +
γ̄Lkg
Rρ̄v̄

(
Φ− p

ρ

)
+ γ̄εf v

2.

Φt = εm

(
km
kgL2

Φxx +

(
p

ρ
− Φ

))
(25)

It is now clear that the first three equations are candidates
for a singular perturbation type of model reduction, while
the last equation may be simplified using an averaging
technique. These simplifications are detailed in Section IV.
We close this section with a further discussion on which
properties of a particular engine determine how small each
of the parameters are.
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Estimating the Small Parameters

In order to justify that assumption that the ε’s are small,
they need to be expressed in terms of easily measurable
engine parameters. This allows them to be quickly ap-
proximated for a given engine design. Estimating the flow
speed is arguably the most difficult and will be tackled
first. Conservation of mass for the hot section yields

Ṁh = ρ̇hVh + ρhV̇h = ρhvhrAhr, (26)

here Mh is the mass in the hot section, ρh is the density,
Vh is the volume, vhr is the velocity of the flow in or out
of the section, and Ahr is the cross-sectional area of the
regenerator void volume. Differentiating the ideal gas law
produces

Ṗh = ρ̇hRTh + ρhRṪh. (27)

If the gas is assumed to be in perfect thermal contact
with the wall, as is done in the popular Schmidt analysis
of Stirling engines, then Ṫh can be assumed to be zero.
Solving for ρ̇h and substituting it into the mass equation
results in

Ṗh
P
Vh + V̇h = vhrAhr. (28)

Assuming that the volume and the pressure in the hot
section both vary sinusoidally and are in phase then they
can be expressed as

Ph(t) =Pa sin(ωt) + P0, (29)

Vh(t) =AdRd sin(ωt) + Vh0
, (30)

where Ad is the cross sectional area of the displacer,
and Rd is the amplitude of the motion of the displacer.
Plugging these in and simplifying results in[

sin(ωt) +
Vh0
AdRd

sin(ωt) + P0

Pa

+ 1

]
cos(ωt)

AdRd
Ahr

ω = vhr(t). (31)

For most engines, all of these parameters are generally
known or easily estimated. Keeping in mind that ω =
2πωb, it should be simple to get an approximation for
the maximum value of vhr(t) for a given engine. If further
simplification is desired, one can assume that the dead
volume in the hot section is close to zero which makes

Vh0
AdRd

close to one. The maximum possible value for Pa is P0 and
the minimum value for Pa is zero, this implies that the
maximum possible value for the velocity at the regenerator
and hot section boundary can be approximated as

v̄hr = k
AdRd2πωb

Av
, k ∈ [1, 2]. (32)

If the velocity throughout the regenerator is approximately
uniform, then this maximum velocity can be used as an
estimate for the maximum velocity in the regenerator, v̄ ≈
v̄hr. The small parameters ε2 and ε1 can now be expressed
in terms of engine parameters as

ε2 =
v̄

c̄
≈ 2πkAdRdωb

Azr

√
γ P̄ρ̄

, (33)

and

ε1 =
L/v̄

Tb
≈ LAzr

2πkAdRd
=

Vr
πkVs

, (34)

where Vr is the void volume in the regenerator, and Vs is
the volume displaced by the displacer during one stroke of
the engine.

Next is εf = βLv̄
p̄ . It can be shown that β is given by

β =
8

R2
r

µ, (35)

where Rr is the pore radius in the regenerator and µ is
the dynamics viscosity of the gas. Since v̄ has already been
estimated, εf can be expressed as

εf =
βLv̄

p̄
= k

16πµAdRdLωb
p̄R2

rAzr
. (36)

Given these approximations, it is possible to justify
the assumption that all of the epsilons are small. If the
flow speed in the regenerator does not become supersonic,
which should be the case for most Stirling engines, then
ε2 = v̄

c̄ will be less than one. If the void volume (Vr) is less
than the stroke volume (Vs) then ε1 = Vr

πkVs
must be less

than one. This should also be the case for most Stirling
engines as a well designed Stirling engine minimizes the
dead volume (volume that is not part of the expansion
or compression process) throughout the engine, which the
regenerator volume is considered to be. Because of the
large thermal inertia of the matrix material, the engine
frequency is much faster than the matrix temperature
dynamics. Therefore, Tb

cpρm/kg
will be small. The final small

parameter εf = βLv̄
p̄ should also be less than one since

βLv̄ = ∆p where ∆p is pressure difference across the
regenerator. Most Stirling engine assumptions, including
the common Schmidt assumptions, assume the pressure
difference across the regenerator is negligible compared to
the nominal pressure. Thus, it is safe to assume that for
most Stirling engines these values will all be less than or
much less than one.

IV. Singularly Perturbed Models

In this section we develop a hierarchy of singularly
perturbed models in progressing order of coarseness. The
first model (42) is concerned with only the gas’ states,
but eliminates acoustic dynamics. This is applicable to low
Mach number conditions, which is typical for Stirling en-
gines. The second model involves (Bogoliubov) averaging
of the mesh matrix dynamics motivated by its relatively
large thermal inertia and periodic operation. This leads to
the conclusion that the solid mesh temperature profile is
linear (50). We also present a Quasi-Steady State (QSS)
model that parametrizes the temperature, pressure and
density distributions across the regenerator with a small
number of parameters that are algebraically related to the
boundary conditions.
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A. Model without Acoustic Dynamics

As defined in the previous section, ε2 is the Mach num-
ber, which is low in typical Stirling engines. Furthermore,
ε2 appears squared in equation (25) which means that
ε22 it is by far the smallest parameter. Setting ε2 = 0 in
equation (25) gives the following

ε1 ρt = − (ρv)x , (37)

0 = −px − εfv, (38)

ε1 pt = −vpx − γ pvx +
γ̄Lkg
Rρ̄v̄

(
Φ− p

ρ

)
+ γ̄εfv

2. (39)

The second equation implies that v is simply proportional
to the pressure gradient v = − 1

εf
px. This can be used to

eliminate v from the other two equations to arrive at

ε1εf ρt = (ρpx)x, (40)

ε1εf pt = γ(ppx)x + εf
γ̄Lkg
Rρ̄v̄

(
Φ− p

ρ

)
(41)

The above equations represent flow, compression and
thermal exchange with the mesh at the advective time
scale. The much faster acoustic dynamics have been re-
moved from this model.

To understand the above model better we rewrite the
equations in the following equivalent form

ε1εf ρt = pxρx + pxxρ,

ε1εf pt = γ
2 (p2)xx + εf

γ̄Lkg
Rρ̄v̄

(
Φ− p

ρ

)
,

(42)

which follows from 2(ppx)x = (p2)xx. We note that the
dynamics of p are primarily diffusive with the temperature
difference (Φ − T ) as a distributed source term. The
dynamics of ρ on the other hand are advective (with the
advection velocity − 1

εf
px = v, and a regenerative term

proportional to pxx).
Boundary Conditions and Numerical Method for the No-

Acoustics Model: The pressure equation in (42) is of the
diffusive type with boundary conditions given at both
ends. It can therefore be easily discretized using a central
difference scheme. The density equation however is of
the advection type with switching boundary conditions
according to (8) (note that v(x, t) = −px(x, t)/εf , and
therefore the switching boundary conditions on ρ depend
on p in the no-acoustics model). We therefore use a
standard first-order upwinding scheme to discretize ρx,
where at each grid point, the direction of upwinding is
based on the local velocity −px(x, t)/εf .

B. Averaging the Mesh-Matrix Dynamics

Recall equation (25) for the mesh thermal dynamics
(and substitute T = p

ρ for the gas temperature)

Φt = εm

(
km
kgL2

Φxx + (T − Φ)

)
. (43)

Averaging analysis [30] tells us that the difference between
the solution to the T periodic system ẋ = εf(t, x, ε)
and the solution to ẋav = εfav(xav) (where fav =
1
T

∫ T
0
f(t, x, 0)dt ) is of order ε. Assuming that the engine

has reached steady state, averaging equation (43) and the
pressure dynamics in (42) over one period of the limit cycle
(T̃b) results in

0 = 1
T̃b

∫ T̃b
0

[
km
kgL2 Φxx + (T − Φ)

]
dt,

0 = 1
T̃b

∫ T̃b
0

[
γ
2 (p2)xx + εf

γ̄Lkg
Rρ̄v̄ (Φ− T )

]
dt

. (44)

The gas and mesh temperature during steady state can be
decomposed as

T (x, t) = Tp(x, t) + Tav(x),
Φ(x, t) = Φp(x, t) + Φav(x),

(45)

where Tp(x, t) and Φp(x, t) are periodic in t and have zero
mean over one cycle. Using these substitutions yields

0 = km
kgL2 Φavxx + (Tav − Φav) ,

0 = 1
T̃b

∫ T̃b
0

[
γ
2 (p2)xx

]
dt+ εf

γ̄Lkg
Rρ̄v̄ (Φav − Tav)

. (46)

Solving for (Tav − Φav) in one equation substituting it into
the other results in the relation

εfΦavxx = − c1
T̃b

∫ T̃b

0

[
(p2)xx

]
dt, (47)

where c1 = γRρ̄v̄L
2γ̄km

. Expressing the pressure profile as
p(x, t) = p0(t) + εfp∆(x, t) equation (47) then becomes

Φavxx = − c1
T̃b

∫ T̃b

0

[
2p0(t)p∆(x, t) + εfp

2
∆(x, t)

]
xx
dt.

(48)
Given that pxx = p∆xx, and that equation (38) implies
that pxx = −εfvx, the integrand above can be expressed
as

− 2εf
[
p0(t)vx(x, t) + εfp∆(x, t)vx(x, t) + ε2fv

2(x, t)
]
.

(49)
Setting ε2 equal to zero earlier removed the fast acoustic
phenomena from the system, which includes the ability for
shocks to form. This implies that v(x, t) will be relatively
smooth and vx(x, t) will be reasonable in size. Thus, as εf
becomes very small so does the integrand in equation (48)
and the average mesh profile can be assumed to be

Φav(x) = Φ0 + Φ1x, (50)

where Φ0 and Φ1 are constants of integration determined
by the boundary conditions. In our case the ends of the
mesh are assumed to be in thermal contact with the section
walls and as such, the boundary conditions are that the
temperature at the ends of the mesh must be equal to the
temperature of the section walls. As was mentioned at the
start of this section, averaging analysis indicates that the
difference between this and the true limit cycle is of order
εm. Therefore, the matrix material will be assumed to be
a fixed linear profile which interpolates between the two
wall temperatures.

As an aside, we note that the linear temperature pro-
file (50) would have also been a consequence of assuming
that the thermal conductivity of the mesh (km) is much
greater than the combined conduction and convection
coefficient between the gas and the mesh (kg). However, a
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large km/kg essentially implies a “thermal short” between
the hot and cold exchangers through the regenerator,
which leads to low efficiency. Therefore, a well-designed
engine would not have a large km/kg ratio, and we did
not invoke this assumption here.

C. Quasi-Steady State (QSS) Model

In engines where the product ε1εf can be considered
small (e.g. low head loss through regenerator and/or slower
engine frequency than advection time through regenera-
tor), a significant simplification occurs in the equations. It
turns out that the regenerator states depend algebraically
on the boundary conditions. We term this the Quasi-
Steady State (QSS) model since it represents a situation
where the regenerator dynamics are much faster than the
remaining engine’s dynamics.

Starting from the no-acoustics model (42), we set the
product ε1εf equal to zero (we only assume ε1 = 0) and
obtain

0 = (ρpx)x,

0 = γ(ppx)x + εf
γ̄Lkg
Rρ̄v̄

(
Φ− p

ρ

)
. (51)

There are two immediate consequences of this simplifica-
tion. The first equation implies that ρpx is constant in x,
so we define it as the scalar variable

α(t) := ρ(x, t) px(x, t) = − εf ρ(x, t) v(x, t), (52)

where the second equality follows from (38).
The second simplification is in the reduction of the num-

ber of possible combinations of boundary conditions (8) on
ρ. Observe that since ρ is always positive, equation (52)
implies that v(x, t) has the same sign for all x at any
one time t. This means that velocity throughout the
regenerator can only be either positive or negative at any
one time. This reduces the number of possible boundary
conditions on ρ to the two mutually exclusive possibilities

ρ(0, t) = ρ0(t) if
(
α(t) < 0 ⇔ v(x, t) > 0

)
, (53)

ρ(1, t) = ρ1(t) if
(
α(t) > 0 ⇔ v(x, t) < 0

)
, (54)

p(0, t) = p0(t),

p(1, t) = p1(t),

where we have also listed the pressure boundary conditions
as well.

We now come to the second equation in (51) which we
rewrite (using the definition of α) as

0 = γ (ppx)x + εf
γ̄Lkg
Rρ̄v̄

(
Φ− ppx

α

)
.

Utilizing the identities (p2)x = 2ppx and (p2)xx = 2(ppx)x,
this equation can be further rewritten as

0 = γα(t)
(
p2
)
xx

+ εf
γ̄Lkg
Rρ̄v̄

(
2α(t)Φ(x)− (p2)x

)
. (55)

Note that at each t, this is a second order linear differential
equation (in x) for p2 with Φ as a forcing function. It is
a two point boundary value problem given the values of

the pressure at each end. Thus for each t, it can be solved
in terms of an integral (in x) of Φ. For the special case in
this paper where the averaging analysis has shown that Φ
can be well approximated (50) as an affine function of x,
an analytical solution to equation (55) can be given as a
linear combination of the boundary conditions p0, p1, H0,
H1 and the parameter α as follows

p2(x) =

kt
β

(
−x2 − 2(1−β)

β x+ 2−β
β

eβ(x−1) − e−β
1− e−β

)
(H0 −H1)

+ 2
kt
β

(
x − eβ(x−1) − e−β

1− e−β
)
H1

+ p2
0 −

(
eβ(x−1) − e−β

1− e−β
)(

p2
0 − p2

1

)
, (56)

where

β :=
kt
α

:=
εf
γ

γ̄Lkg
Rρ̄v̄

1

α
.

The details of this derivation are in Appendix A.
Equation (56) gives p(x, t) as a function of the time vary-

ing boundary conditions p0(t), p1(t), but it also requires
the parameter α(t). One can solve for the latter from its
definition and enforcing the density boundary conditions
ρ0 or ρ1

α(t)ρ0 = px(0, t) or α(t)ρ1 = px(1, t). (57)

The choice of which boundary to use is dictated by the
conditions (53) and (54). Equations (56)-(57) form a cou-
pled system that can be solved for α using a root finding
routine. This is done at each time step, with the value
of α at the previous time step used as the starting point
for root finding. In more detail, note for example the case
αρ0 = px(0). Differentiating (56) with respect to x gives
the condition

α ρ0 = px(0) = f (p0, p1, α) ,

for some function f which is a combination of polynomials
and exponentials in α. Therefore, given the values of ρ0,
p0, p1, a root finding routine can be used at each time step
to solve for the corresponding α.

We finally note that once p and α are solved for at each
t, velocity and density can then be determined from

v(x, t) = − 1

εf
px(x, t), equation (38)

ρ(x, t) =
α(t)

px(x, t)
, definition of α,

while the temperature follows from the ideal gas law.
Numerical Results for QSS Model: A comparison was

carried out of the above QSS model and the full model
of Section II using the ENO scheme. For each of the
models, the gas sections had 2 states each and the flywheel
dynamics had 2 states giving a total of 6 states for the
lumped portion of the engine. The ENO scheme for the full
model used 100 grid points, while the QSS model of the
regenerator is memoryless. Therefore the total state count
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is 4 · 100 + 6 = 406 for the full model and 6 for the QSS
model, giving a significant reduction in state dimension.

For comparison, both beta engine models were given the
same initial condition and simulated until a steady state
limit cycle was reached. Figure 6 shows a comparison of
the limit cycles of the sections’ states (the profiles of the
fields in the regenerator are not shown). The trajectories
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Fig. 6. A qualitative comparison of time histories of the sections’
states for both the full (blue) and Quasi-Steady State (QSS) models
(red). The top diagram is for the case of a moderate value of ε1εf
for which the QSS model is a crude approximation, while the bottom
diagram is for a smaller value of ε1εf , for which the QSS model is a
relatively more accurate approximation.

show that the QSS model is very close to the full model
for small values ε1εf while still being qualitatively close
for moderate values of ε1εf .

Further Remarks on the QSS Model: The results showed
that the simplified QSS model performed similarly to that
of the finite difference model as long as the product ε1εf
was small. A natural question would be if a higher order
perturbation approximation would yield a better match.
This is not the case for this application. It turns out that
higher order perturbation approximations require that the
time derivatives of the inputs to the perturbed model
(boundary conditions) be known. The calculation of the
time derivatives of the inputs (the section states) requires
the use of the lower order approximations of the regenera-
tor profiles. As such these time derivatives will differ from
that of the unreduced system. Via experimentation, it was
discovered that the higher order profile approximations
are very sensitive to errors in these time derivatives. As
a result, the higher order approximation performed worse
than the lower order approximation. In the case that the
inputs to this regenerator model are not states but instead
predetermined time histories whose time derivatives are
known, then a higher order approximation of these profiles
would likely yield better results. However, this was not the
case for this application.

V. Model Reduction using chirp-POD

In this section we investigate a Principal Orthogonal
Decomposition (POD) numerical method for model re-
duction of the no-Acoustics model of section IV-A. The
main idea behind our particular POD method is in the
choice of simulation conditions used to obtain the time
traces from which POD modes are extracted. Since the
regenerator will operate in a time-periodic manner once
connected to other components of the engine, our approach
is to generate snapshots from a simulation where all signals
follow a chirp profile (a sinusoid with a linearly time-
varying frequency) with a frequency range representative
of the engine’s potential operating frequency range. This
approach has some commonality with that used in [31],
[32], and we term it a “chirp-POD” technique.

The POD technique we use is a standard one with
appropriate weightings. The no-Acoustics model (42) is
simulated and the resulting density and pressure time se-
ries are collected in two matrices Yρ and Yp whose columns
represent time instants, and rows represent the values of
density and pressure at the grid points respectively, more
precisely

(Yρ)kl = ρ̃(xk, tl)
(Yp)kl = p̃(xk, tl)

,

where {tl} and {xk} are the time instances and the grid
point locations respectively. The fields ρ̃ and p̃ are the
fluctuations of density and pressure from the nominal
solution corresponding to zero displacer motion.

A weighted POD method finds the singular values and
left singular vectors of the matrix

W
1
2Y,

where Y is the data matrix and W is a diagonal weighting
matrix. Equivalently, one finds the eigenvalues and eigen-
vectors of

[ΦW ,Λ] = eig
(
YWY T

)
.

The POD modes are then obtained from the columns of
the matrix

Φ = W−
1
2 ΦW . (58)

The above procedure is applied to the density and pressure
data separately.

The reduced model is then obtained by choosing a
model order N , the first N POD modes (in terms of
decreasing size of singular values of W

1
2Y ) as a basis set,

and expressing density and pressure fluctuations in the
subspace spanned by that basis

ρ̃(x, t) ≈ ∑N
k=1 φ

ρ
k(x) ak(t),

p̃(x, t) ≈ ∑N
k=1 φ

p
k(x) bk(t),

where {φρk} and {ψpk} are the first N columns of the
corresponding matrix Φ in (58) expressed as functions of
a continuous variable (by e.g. interpolation). The reduced
regenerator model then has 2N states. We will refer to this
reduced model as the chirp-POD model.
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A. chirp-POD Reduction of a beta-type Engine

We now present results of the chirp-POD model reduc-
tion technique performed using snapshots from a simu-
lation of the no-Acoustics regenerator model (42) con-
nected to the beta-type engine model. In order to generate
trajectories with a time-varying instantaneous frequency
(i.e. a chirp), an input is needed. This was done in the
beta engine model (14)-(19) by imposing a time-varying
trajectory {θ(t)} on the flywheel. To do this, the dynamics
of the flywheel/power piston assembly (equations (14)-
(15)) were removed form the model, and the imposed θ
trajectory was used to generate piston motions from (16)-
(17).

The chirp input consisted of increasing the flywheel’s
speed linearly in time from 40 to 600 rad/s. This frequency
range was chosen to include 80 rad/s, which is the nominal
operating frequency of this engine model. It was found that
a choice of truncation order of N = 3 produced very good
results, while N < 3 resulted in unrealistic trajectories.
This assessment was carried out as follows. The chirp-POD
modes were obtained from simulations with a forced fly-
wheel trajectory, while the comparison of trajectories was
done with dynamics of the beta engine (14)-(19) connected
to the regenerator models. These models were simulated
until stable limit cycles emerged, and the comparison is
displayed in Figure 7 (Left) showing a very close match.
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Fig. 7. (Left) Time histories of the hot section states for full (with-
Acoustics, in blue) and chirp-POD reduced model (in dashed red)
with 3 regenerator states. The two sets of trajectories are indistin-
guishable. (Right) The trajectories produced when the same chirp-
POD reduced model is coupled to gas sections with wall conduc-
tion/convection coefficients of twice the magnitude of the sections
used to generate model reduction POD trajectories. Note that despite
the increase in engine frequency, the reduced models still match
closely, indicating the efficacy of the chirp-POD technique over a
wide range of engine parameters. The cold sections’ states are not
shown, but their behavior is similar to the above.

The reduced model was further tested by connecting
it with a sections’ model that has double the wall heat
transfer coefficient compared to that used in obtaining
the chirp-POD modes. The results are shown in Figure 7
(Right), and indicate that the technique of using chirped
inputs appears effective in capturing POD modes that
work for a large frequency range rather than a single
operating condition.

B. chirp-POD Reduction and Frequency Response of a
Driven Engine

In the previous subsection we compared the reduced
and full model by comparing trajectories in two operat-
ing regimes. The Driven Stirling Engine model however
offers the possibility of performing a more comprehensive
comparison since it has a natural input, and therefore
one can compare input-output behavior. Since the an-
ticipated operation is periodic, it is natural to attempt
to quantify this input-output behavior using a notion of
frequency response. For nonlinear systems, a full frequency
response would require analyzing the full harmonic content
input-output periodic pairs at all possible amplitudes.
We instead use a simpler notion of a frequency response
assuming inputs to be pure sinusoids. The details are
described below.

First we describe the POD step. In the previous subsec-
tion, the kinematically linked engine was forced to have
a flywheel trajectory which followed a chirp signal. For
the driven engine, the displacer motion is a direct input,
and we therefore used the displacer position as a chirped
input with the same range as previously stated, 40 rad/s
to 600 rad/s. We used the driven model (13) where the
displacer velocity was chosen so that the displacer motion
is the required chirp signal. A POD analysis was done
on the resulting data and a reduced model using the first
four modes was chosen. These POD modes are shown in
Figure 8.
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Fig. 8. The first four POD modes for the density (left) and
pressure (right) profiles of the driven engine model. These modes
were obtained with a chirp input driving signal. The horizontal
axis is the element number in the spatial discretization of the no-
Acoustics model of section IV-A. Note the approximate odd reflection
symmetry (between pressure and density) of modes 1 and 2, and the
approximate even reflection symmetry of modes 3 and 4.

The “frequency response” comparison between the full
and reduced model was performed as follows. Both models
were simulated with the same pure sinusoid as input. The
outputs were then periodic signals with several harmonic
components. The amplitude of each of those harmonics
was found, and this analysis was repeated for a range of
input signal frequencies. Figure 9 (Top) shows the results
where only the first four harmonics of the outputs are
shown (higher harmonics’ amplitudes were too small to
be relevant). As the results show, the first two or three
harmonics match up quite well and deviation only begins
once the spectral content has dropped by at least an
order of magnitude. Because both models are nonlinear,
changing the amplitude of the input signal may result in
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a different frequency response. To test this, the displacer
amplitude was increased by 50 percent and the experiment
was repeated with the same POD modes used previously.
Those results are shown in Figure 9 (Bottom) and indicate
similarly good reduced model fidelity.
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Fig. 9. Frequency response comparison of the full (blue) and a 4
state chirp-POD model (red). The horizontal axes are the frequency
of the displacer input, which is a pure sinusoid. The vertical axes
are the amplitudes of the first 4 harmonics of the respective outputs.
The bottom figure is the response of the systems to an input with
amplitude 50% larger than the top figure. The two figures would
not necessarily be similar since this is the frequency response of a
nonlinear system.

It is worth mentioning that this reduced chirp-POD
model of the driven engine has a total state dimension
of 15 (8 states for the regenerator model, 4 for the two gas
sections and 3 for the piston dynamics). This model gives
trajectories that are essentially indistinguishable from the
full order 406 states model. In addition to a smaller state
dimension, the reduced model also runs much faster. For
a particular displacer motion, one cycle of the actuated
engine was simulated with the original regenerator model,
the acoustic removed version, and the reduced chirp-POD
model. The simulation time for the original model was
1203 seconds, the acoustics removed version took 72 sec-
onds, and the reduced chirp-POD model took 12 seconds
(100 times faster). Most of this time savings comes from
the fact that the time stepping routine can now take larger
steps, as there are no longer fast acoustic phenomena that
require a very small time step to accurately capture.

VI. Conclusions

We have shown that effective and significant model
order reduction is possible for Stirling engine regenera-
tors. Depending on the operating regime of the engine,
reductions from model orders in the hundreds to single
digits is possible. More generally, our main contribution
is the development of a methodology for model reduction

of systems with compressible gas dynamics. By identify-
ing several non-dimensional parameters that characterize
different types of engines, we used singular perturbation
methods to obtain a hierarchy of simplified models.

The regenerator has distributed dynamics, while the
remaining sections of the engine have lumped models.
We therefore had to address the issue of how one does
POD, or balanced truncation type model reduction, with
the objective that the reduced model works well when
connected with the remainder of the engine. This might be
thought of as a feedback-aware model reduction objective.
For the Stirling engine, it appears that the chirp-POD
technique we used is particularly suited since the overall
system operates eventually in a limit cycling mode. We
anticipate that this technique might be useful for other
cyclically operating devices common in energy harvesting
and thermoacoustics. In particular, when the limit cycle
itself is to be designed such as in Optimal Periodic Control,
reduced models such as the ones we presented can signif-
icantly reduce the computational complexity of optimal
control calculations, while retaining the requisite fidelity
in dynamics. This is the intended application for this work.

Finally we note that although this paper is primar-
ily concerned with Stirling engine regenerators, much of
our model reduction work is likely applicable to the re-
generators (stacks) of thermoacoustic engines and heat
pumps [33]–[36]. The underlying physical mechanisms are
quite similar, though the operating regimes in parameter
space might be different.
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Appendix

Appendix

Equation (2) is simplified by using equation (1) as
follows

(vρ)t = −
(
v2ρ
)
x
− px − β v,

vtρ + vρt = −2vvxρ− v2ρx − px − βv,
vtρ + v (−vρx − vxρ) = −2vvxρ− v2ρx − px − βv,

vtρ = −vvxρ− px − βv,
vt = −vvx −

1

ρ
(px + βv) ,

where we have used equation (1) to go from the 2nd line
to the 3rd. The rest follows from the chain rule.

For notational simplicity we will replace the matrix/gas
heat exchange term with the variable q. We start from
equation (3) and use equation (1) and (2) (4th line
below) as follows(

ρcvT +
ρv2

2

)
t

= −
(
v

(
ρcvT +

ρv2

2

)
+ pv

)
x

+ q,
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(ρcvT )t +
1

2

(
ρv2
)
t

= − (vρcvT )x −
1

2

(
ρv3
)
x

− (pv)x + q,

(ρcvT )t +
1

2

(
ρtv

2 + 2ρvvt
)

= − (vρcvT )x

− 1

2

(
ρxv

3 + 3ρv2vx
)
− (pxv + pvx) + q,

1

2

(
(−vxρ− vρx) v2 + 2ρv

(
−vvx −

1

ρ
(px + βv)

))
+ (ρcvT )t = − (vρcvT )x −

1

2

(
ρxv

3 + 3ρv2vx
)

− (pxv + pvx) + q,

(ρcvT )t −
1

2

(
v2vxρ+ v3ρx

)
− v2vxρ− pxv − βv2

= − (vρcvT )x −
1

2

(
ρxv

3 + 3ρv2vx
)

− (pxv + pvx) + q,

(ρcvT )t −
3

2
v2vxρ−

1

2
v3ρx − pxv − βv2 = − (vρcvT )x

− 1

2
ρxv

3 − 3

2
ρv2vx − (pxv + pvx) + q,

(ρcvT )t = − (vρcvT )x − pvx + q + βv2.

We now use the relation cvρT = cv
R p, which is derived from

the ideal gas law, and we arrive at

pt = −γpvx − vpx + γ̄q + βv2,

which is the desired result.
Recall equation (55)

γα(t)
(
p2
)
xx

+ εf
γ̄Lkg
Rρ̄v̄

(
2α(t)Φ(x)− (p2)x

)
= 0,

and rewrite in the form(
f ′′ − kt

α
f ′
)

= −2ktΦ (59)

kt :=
εf
γ

γ̄Lkg
Rρ̄v̄

, (60)

where f := p2, and the boundary conditions are f(0) =
p2

0 and f(1) = p2
1. In addition, observe that the matrix

temperature

Φ(x) = H1 + (H1 −H0)x,

satisfies the following ODE

Φ′′(x) = 0,

with the boundary conditions Φ(0) = H0 and Φ(1) = H1.

d

dx


Φ
Φ′

f
f ′

 =


0 1 0 0
0 0 0 0
0 0 0 1

−2kt 0 0 kt
α




Φ
Φ′

f
f ′



H0

H1

p2
0

p2
1

 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0




Φ
Φ′

f
f ′


0

+


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0




Φ
Φ′

f
f ′


1

where the second equation represents the 4 boundary
conditions as algebraic constraints.

The above equations are of the form of the Two Point
Boundary Value State Space Realization (TPBVSR)

d

dx
ψ(x) = A ψ(x)

u = Niψ(xi) + Nfψ(xf ) (61)

where the vector u (the boundary conditions) can be
thought of as an input. The following formula for the
solution is easily derived by (a) combining the relation
ψ(xf ) = eA(xf−xi)ψ(xi) with (61) to solve for ψ(xi) and
ψ(xf ) in terms of u, and then (b) expressing ψ(x) =
eA(x−xi)ψ(xi) = eA(x−xf )ψ(xf ) as an average of the two
equal quantities

ψ(x) =
1

2

[
eA(x−xi) eA(x−xf )

] [−eA(xf−xi) I
Ni Nf

]−1 [
0
u

]
.

This implies that p(x) in particular must have the form

p2(x) =
[
cH0

(x) cH1
(x) cp0(x) cp1(x)

] 
H0

H1

p2
0

p2
1

 ,
where the functions c are a combination of exponentials, x
and x2 in the variable x, while α appears as a parameter.
In more detail

cH0(x) = α
(
−x2 − 2(α−kt)

kt
x+ 2α−kt

kt
eβ(x−1)−e−β

1−e−β

)
cH1(x) = α

(
x2 + 2α

kt
x− 2α+kt

kt
eβ(x−1)−e−β

1−e−β

)
cp0(x) = 1− eβ(x−1)−e−β

1−e−β

cp1(x) = eβ(x−1)−e−β
1−e−β

where

β := kt/α.

Note that these equations can be written in a compact
form in terms of the differences H0 − H1 and p2

0 − p2
1 as

follows

p2(x) =

α

(
−x2 − 2(α−kt)

kt
x+ 2α−kt

kt

eβ(x−1) − e−β
1− e−β

)
(H0 −H1)

+ 2α

(
x − eβ(x−1) − e−β

1− e−β
)
H1

+ p2
0 −

(
eβ(x−1) − e−β

1− e−β
)(

p2
0 − p2

1

)
(62)

An important consideration is the dependence of these
functions on the parameter α in the limit as α→ 0, which
is equivalent to β →∞. Each term in the above functions
goes to a finite limit as β →∞. However, the dependence
on p2

0−p2
1 limits to a function that may have a discontinuity

at x = 1. Note however that α = 0 implies that px(x) =
0, which in turn implies that p2

0 − p2
1 = 0, and therefore

in that case the solution is continuous, constant function
p(x) = p0 = p1.
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[3] Granados, F. J. G., Pérez, M. A. S., and Ruiz-Hernández, V.,
2008. “Thermal model of the eurodish solar stirling engine”.
Journal of Solar Energy Engineering, 130(1), p. 011014.

[4] Tsoutsos, T., Gekas, V., and Marketaki, K., 2003. “Technical
and economical evaluation of solar thermal power generation”.
Renewable Energy, 28(6), pp. 873–886.

[5] Conroy, G., Duffy, A., and Ayompe, L., 2013. “Validated
dynamic energy model for a stirling engine µ-chp unit using field
trial data from a domestic dwelling”. Energy and Buildings.

[6] Li, T., Tang, D., Li, Z., Du, J., Zhou, T., and Jia, Y., 2012.
“Development and test of a stirling engine driven by waste gases
for the micro-chp system”. Applied thermal engineering, 33,
pp. 119–123.

[7] Barbieri, E. S., Spina, P. R., and Venturini, M., 2012. “Anal-
ysis of innovative micro-chp systems to meet household energy
demands”. Applied Energy, 97, pp. 723–733.

[8] Wu, D., and Wang, R., 2006. “Combined cooling, heating and
power: a review”. progress in energy and combustion science,
32(5), pp. 459–495.

[9] Craun, M., and Bamieh, B., 2015. “Optimal periodic control of
an ideal stirling engine model”. Journal of Dynamic Systems,
Measurement, and Control, 137.

[10] Hofacker, M. E., Tucker, J. M., and Barth, E. J., 2011.
“Modeling and validation of free-piston stirling engines using
impedance controlled hardware-in-the-loop”. ASME.

[11] Gopal, V. K., Duke, R., and Clucas, D., 2009. “Active stirling
engine”. In TENCON 2009-2009 IEEE Region 10 Conference,
IEEE, pp. 1–6.

[12] Hofacker, M., Kong, J., and Barth, E., 2009. “A lumped-
parameter dynamic model of a thermal regenerator for free-
piston stirling engines”. ASME.

[13] Riofrio, J. A., Al-Dakkan, K., Hofacker, M. E., and Barth, E. J.,
2008. “Control-based design of free-piston stirling engines”. In
American Control Conference, 2008, IEEE, pp. 1533–1538.

[14] Ulusoy, N., 1994. “Dynamic analysis of free piston stirling
engines”. PhD thesis, Case Western Reserve University.

[15] Mueller-Roemer, C., and Caines, P., 2013. Isothermal energy
function state space model of a stirling engine. Preprint,
Submitted to ASME J. of Dynamic Systems, Measurement and
Control, March.

[16] Guzzella, L., and Onder, C., 2009. Introduction to modeling and
control of internal combustion engine systems. Springer Science
& Business Media.

[17] Daub, E. E., 1974. “The regenerator principle in the stirling and
ericsson hot air engines”. The British Journal for the History of
Science, 7(03), pp. 259–277.

[18] Landau, I. D., Karimi, A., and Constantinescu, A., 2001. “Di-
rect controller order reduction by identification in closed loop”.
Automatica, 37(11), pp. 1689–1702.

[19] Zhou, K., D’Souza, C., and Cloutier, J. R., 1995. “Structurally
balanced controller order reduction with guaranteed closed loop
performance”. Systems & control letters, 24(4), pp. 235–242.

[20] Anderson, B. D., and Liu, Y., 1987. “Controller reduction: con-
cepts and approaches”. In 1987 American Control Conference,
pp. 1–9.

[21] Rivera, D. E., and Morari, M., 1987. “Control-relevant model re-
duction problems for siso h2, hấLd̄, and µ-controller synthesis”.
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