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Abstract— We consider linear time invariant systems in
feedback with structured stochastic uncertainties. This setting
encompasses linear systems with both additive and multiplica-
tive noise. We provide a purely input-output treatment of
these systems without recourse to state space models, and
thus our results are applicable to certain classes of distributed
systems. We derive necessary and sufficient conditions for mean
square stability in terms of the spectral radius of a linear
matrix operator whose dimension is that of the number of
uncertainties, rather than the dimension of any underlying
state space models. Our condition is applicable to the case
of correlated uncertainties, and reproduces earlier results for
uncorrelated uncertainties.

I. INTRODUCTION

The setting we consider is that of a discrete-time Linear
Time Invariant (LTI) system G in feedback with gains �

1

,
. . ., �n (see Figure 3). These gains are random processes that
are temporally independent, but possibly mutually correlated.
The setting of LTI systems in feedback with structured
uncertainties is common in the robust controls literature
where the uncertainties are typically norm-bounded opera-
tors, real or complex deterministic gains [1]–[8]. The setting
where the uncertainties are stochastic has been relatively less
studied [9]–[12], but it is well known that the necessary
and sufficient condition for mean square stability in the
presence of structured stochastic uncertainties is a bound
on the spectral radius of a matrix of H2 norms of all the
subsystems of G.

Our aim is to provide a rather elementary and purely
input-output treatment and derivation of the necessary and
sufficient condition for mean square stability. In the process,
we define a new object, a linear matrix operator, which
captures how a feedback system amplifies covariances of
signals in a loop. A pleasant side effect is that the conditions
in the case of correlated uncertainties (which have been
unknown) are almost as easy to state as the ones for un-
correlated uncertainties. Those earlier results on uncorrelated
uncertainties are easy to reproduce from the conditions we
provide.

II. PRELIMINARIES

All the signals we consider are defined on the half-infinite,
discrete-time interval Z+ = [0, 1) ⇢ Z. The dynamical
systems we consider are maps between various signal spaces
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over the time interval Z+. This is done in contrast with the
standard setting over Z since stability arguments involve the
growth of signals starting from some initial time.

For any random variable (or vector) v, we use
�v := E {v⇤v} to denote its variance, and ⌃v := E {vv⇤}
to denote its covariance matrix. A stochastic process u is
a one-sided sequence of random variables {uk; k 2 Z+}.
We will thus denote by �uk := E {u⇤

kuk} the sequence
of its variances, and by ⌃uk = E {uku⇤

k} the sequence
of its inter-component correlation matrices. A process u is
termed second order if it has finite covariances ⌃uk for
each k 2 Z+. Although the processes we consider are
technically not stationary (stationary processes are defined
over the doubly infinite time axis), it can be shown that they
are asymptotically stationary in the sense that their statistics
become approximately stationary in the limit of large time,
or quasi-stationary in the terminology of [13]. This fact is
not used in our treatment here and the preceding comment
is only included for clarification.

A. Input-output definition of mean square stability

Let G be a linear time invariant (MIMO) system. The
system G is completely characterized by its impulse response
which is a matrix valued sequence {Gk; k 2 Z+}. The
action of G on an input signal u to produce an output signal
y is given by the convolution sum

yk =
kX

l=0

Gk�l ul. (1)

If the input u is a second order stochastic process, then
it is clear from (1) that yk has finite variance for any k,
even in the cases where this variance may be unbouded in
time. This leads to the following input-output definition of
Mean-Square Stability.

Definition 1: The linear time invariant system G is called
Mean-Square Stable (MSS) if for each second order white
input process u with uniformly bounded variance, the cor-
responding output process y = Gu has uniformly bounded
variance

�yk := E {y⇤
kyk}  M

✓
sup

k
�uk

◆
, (2)

where M is a constant independent of k and the process u.
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In this paper we deal exclusively with this kind of stability,
and we therefore refer to MSS stable systems as simply
stable.

A standard calculation shows that

�yk =
kX

l=0

|Gl|2�uk�l (3)

when u is a white process. A uniform bound can be deduced
from the following inequality

sup
k

�yk 
 1X

l=0

|Gl|2
!✓

sup
k

�uk

◆
. (4)

Such quantities will occur often in the sequel, so we adopt
the notation

k�yk1 := sup
k

�yk ,

and note that the bound (4) can be rewritten in terms of the
H2 norm of G as

k�yk1  kGk2

2

k�uk1. (5)

It is easy to see that equality holds when u has constant
variance. Conversely, if G does not have finite H2 norm,
equation (3) shows that any input with constant variance
causes �yk to grow unboundedly, and thus the bound (2)
will not hold for any finite M .

In summary, we can conclude that a linear time invariant
system G is MSS if and only if it has finite H2 norm, and in
that case the inequality (5) holds, with equality in the case
of the input having equal (in time) variance.

For a feedback interconnection, we define the MSS sta-
bility of the overall system in a manner parallel to the con-
ventional scheme of injecting exogenous disturbance signals
into all loops. Consider the feedback system 1 with d

1

and
d
2

being white second order processes, and G
1

and G
2

are
linear causal systems. We say that the feedback system is
MSS if all signals u

1

, u
2

, y
1

and y
2

have finite variance
uniformly in time.

d1

d2

G1

G2

u1

u2y2

y1

Fig. 1. MSS stability for a feedback interconnection

B. The MIMO case

When G is a MIMO system, the convolution input-output
description (1) still holds with u and y as vector signals and
{Gk} a sequence of matrices. Consider input signals that are
temporally white but with correlated components such as

E
�
uk1u

⇤
k2

 
= �k1�k2 ⌃uk1

,

where � is the Kroneker delta function, and ⌃uk is the time
varying, inter-component correlation matrix of uk. By think-
ing of the vector component index as a “spatial” variable,
we refer to such signals as temporally white and spatially
correlated.

A standard calculation then shows that for y and u related
by (1), their instantaneous correlations matrices are related
by

E {yky⇤
k} =: ⌃yk =

kX

l=0

Gk�l ⌃ul G⇤
k�l. (6)

C. Multiplication of processes

Given any two vector-valued stationary stochastic pro-
cesses u and h, their element-by-element product process

2

64
y
1

(k)
...

yn(k)

3

75 :=

2

64
h

1

(k) u
1

(k)
...

hn(k) un(k)

3

75

is also a stationary process.

III. SISO UNSTRUCTURED UNCERTAINTY

We now consider the simplest case of uncertainty analysis
depicted in Figure 2. G is a strictly causal LTI system, d

�

d

e

y

wz

u G

Fig. 2. LTI system in feedback with unstructured stochastic uncertainty

and w are exogenous white processes with uniform variance,
and � is a white process with uniform variance �� and
independent of the signals d and w. We assume G to have
finite H2 norm.

The stability conditions we derive follow from a type
of “small gain” analysis of the feedback interconnection in
Figure 2 based on the variances of the signals in the loop.
We therefore begin by deriving some basic relations between
those variances.

An important consequence of the independence of � and
the exogenous signals is that the � block “whitens” its input
signal e, i.e. even though e will in general be colored, z is
white. This can be seen by letting k

2

> k
1

and calculating

E {zk1zk2} = E {�k1ek1�k2ek2}
= E {�k1ek1ek2} E {�k2} = 0,

due to the independence of �k2 of the other signals. In fact, a
consequence of the strict causality assumption is that current
and future values �, d and w are independent of past values
of any of the internal signals. When k

1

= k
2

, we get

�zk = E
�
e2

k

 
= E

�
�2

k e2

k

 
= �� �ek . (7)
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Similarly, the signal u is also white as can be seen from the
following calculation with k

2

> k
1

E {uk1uk2} = E {(dk1 + zk1)(dk2 + zk2)}
= E {dk1zk2} + E {dk2zk1}
= E {dk1�k2ek2} + 0

= E {dk1ek2} E {�k2} = 0.

For the case of k
2

= k
1

we get

�uk = �dk + �zk = �d + ���ek . (8)

For the other summing junction we observe that even though
y is colored in general, it is uncorrelated with w, which
results in the relation

�ek = �yk + �w. (9)

Finally we recall the variance inequality (5) between the
signals u and y which follows from the assumption that G
is MSS together with the conclusion above that u is white.

We are now in a position to state the main stability result
for unstructured stochastic perturbations.

Lemma 3.1: Consider the system in Figure 2 with G a
stable LTI system and � a white process with variance �� .
The feedback system is Mean-Square Stable if and only if

kGk2

2

�� < 1.
Proof: We assume �� = 1. The general case follows by the
usual simple scaling.

“if ”) This is similar to standard sufficiency small gain
arguments, but using variances rather than signal norms. First
observe that (8) yields

k�uk1  k�ek1 + �d,

while (9) with (5) yields

k�ek1  kGk2

2

k�uk1 + �w.

These two bounds can be combined as

k�uk1  kGk2

2

k�uk1 + �w + �d

k�ek1  kGk2

2

k�ek1 + kGk2

2

�d + �w.

Combining these bounds with the condition kGk2

2

< 1 gives
bounds for the internal signals u and e in terms of the
exogenous signals d and w

k�uk1  1

1 � kGk2

2

(�w + �d) ,

k�ek1  1

1 � kGk2

2

�
kGk2

2

�d + �w

�
.

In addition, the remaining internal signals z and y also have
bounded variances as follows from (7) and (5) respectively.

“only if”) We assume that kGk2

2

� 1 and show that if d
is a white, constant variance process and w = 0, then �uk is
an unbounded sequence.

From (8), (9), and (5) we have

�uk =
kX

l=0

G2

k�l�ul + �d.

Consider any time horizon k̄, and note that the quantity
↵ :=

P
¯k
l=0

G2

l can be made arbitrarily close to kGk
2

� 1.
The monotonicity of the sequence �u gives the following
lower bounds

�unk̄
�

n¯kX

l=0

G2

n¯k�l�ul + �d

�
n¯kX

l=(n�1)

¯k

G2

n¯k�l�ul + �d

�

0

@
¯kX

l=0

G2

l

1

A min
(n�1)

¯kln¯k
�ul + �d

= ↵ �u(n�1)k̄
+ �d.

This is a difference inequality (in n) which has the initial
condition �u0 = �d (this follows from the strict causality of
G). A simple induction argument gives

�n¯k � (↵n + · · · + ↵ + 1) �d. (10)

Now if kGk
2

> 1, then we can choose a time horizon k̄
such that ↵ > 1, and (10) shows that �unk̄

(and thus �uk )
is a geometrically increasing sequence. The case kGk

2

= 1
is slightly more delicate. We can choose k̄ such that ↵ is as
close to 1 as desired. For ↵ < 1 we also have that

lim
n!1

(↵n + · · · + ↵ + 1) =
1

1 � ↵
.

Thus n can be chosen such that

�n¯k � 1

1 � ↵
� ✏

for any ✏ > 0. Now given any lower bound B, choose k̄ and
n such that ↵ is sufficiently close to 1 and ✏ is sufficiently
small so that

�n¯k � 1

1 � ↵
� ✏ > B.

This proves that �u is an unbounded sequence even though
it may not have geometric growth.

Two remarks are in order regarding the necessity part of
the previous proof. First is that we did not need to construct
a so-called “destabilizing” perturbation as is typical in worst
case perturbation analysis. Perturbations here are described
statistically rather than members of sets, and variances will
always grow when the stability condition is violated. Second,
the necessity argument can be interpreted as showing that
kGk

2

� 1 implies that the transfer function (1 � G(z)) has
a zero in the interval [0, 1), and thus (1 � G(z))�1 has
an unstable pole. The argument presented above however is
more easily generalizable to the MIMO case we consider in
the sequel.

IV. STRUCTURED UNCERTAINTY

We now consider the situation where the uncertainty � is
diagonal as in Figure 3, i.e.

� = diag(�
1

, . . . , �n).
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2

4
�1

. . .
�n

3

5

Gd u y

wez

Fig. 3. A feedback system with a structured, diagonal perturbation

Assume the �i’s to be temporally white, but possi-
bly mutually correlated. Let �(k) denote the vector
�(k) :=

⇥
�
1

(k) · · · �n(k)
⇤T . The instantaneous

correlations of the �’s can be expressed with the matrix

⌃� := E {�(k) �⇤(k)} ,

which we will assume to be independent of k.
For later reference, we will need to calculate quantities

like E {�M�} for some matrix M

E {�M�⇤} = E

8
<

:

2

4
�
1

. . .
�n

3

5M

2

4
�
1

. . .
�n

3

5

9
=

;

= ⌃� � M,

the Hadamard (element-by-element) product of ⌃� and M .
Thus, if e and z are the input and output signals (respectively)
to the � block then

⌃zk = E {�keke⇤
k�⇤

k} = ⌃� � ⌃ek .

In the special case where the perturbations are uncorrelated
and all have unit variance, then ⌃� = I , and we get the
simple expression

⌃zk = diag (⌃ek) ,

where diag (M) is a diagonal matrix made up of the diagonal
entries of the matrix M . Observe that if the �’s are white and
mutually uncorrelated, then the vector signal z is temporally
and spatially uncorrelated even though e may have both types
of correlations. In other words, a structured perturbation with
uncorrelated components will “spatially whiten” its input.

The key to the mean square stability analysis of the
system in Figure 3 is to consider the deterministic system
of evolution of covariance matrices in Figure 4. The signals
in this feedback system are matrix-valued and they take
values in the cone of positive semi-definite matrices. We now
give the main result of this paper which is the mean square
stability condition for the system in Figure 3. The proof of
this result is contained in the paragraphs of the remainder of
this section. The specialization of this result to uncorrelated
uncertainties which recovers the standard result is shown in
Appendix D.

Ʃu Ʃy

Ʃz Ʃe

Ʃd

Ʃw

kX

l=0

Gk�l⌃ulG
⇤
k�l

⌃� � ⌃ek

Fig. 4. The feedback dynamics of the covariance matrices. The forward
path is a matrix convolution operation while the feedback path is a
memoryless matrix-valued gain represented by the Hadamard product with
⌃� . When signals are considered to take values in the cone of positive semi-
definite matrices, then this feedback system can be shown to be monotone.

Theorem 4.1: Consider the system in Figure 3 and the
linear matrix operator

L(X) := ⌃� �
 1X

l=0

GlXG⇤
l

!
, (11)

where ⌃� is correlation matrix of the uncertainties and {Gk}
is the matrix-valued impulse response sequence of the LTI
system G. The system is Mean Square Stable (MSS) if and
only if

⇢ (L) < 1.
We note that L is a finite-dimensional object, it is a on

operator mapping n ⇥ n matrices to n ⇥ n matrices. It has a
finite number of eigenvalues. In the absence of any additional
structure, this calculation involves at worst the calculation of
the eigenvalues of an n2 ⇥n2 matrix as follows. Let vec (X)
denote the “vectorization” operation of converting a matrix
X into a vector by stacking up its columns. It is then not
difficult to show that (11) can be equivalently written as

vec (L(X)) =

 
diag

⇣
vec (⌃d)

⌘ 1X

l=0

Gl ⌦ Gl

!

| {z }
matrix representation of L

vec (X) .

Therefore, the eigenvalues (and corresponding eigenmatri-
ces) of L can be found by calculating the eigenvalues/vectors
of its n2 ⇥ n2 representation above using standard meth-
ods. However, with special structure, this calculation can
be significantly simplified (as in the case of uncorrelated
uncertainties. See Appendix D).

We now present the proof of this theorem. It amounts
to small gain calculations for the arrangement in Figure 3.
Expressing ⌃uk by following signals in the loop

⌃uk = ⌃d + ⌃zk = ⌃d + ⌃� � ⌃ek

= ⌃d + ⌃� � (⌃w + ⌃yk)

= ⌃d + ⌃� �
 

⌃w +
kX

l=0

Gk�l⌃ulG
⇤
k�l

!
,(12)

where the last equation follows from (6) and the fact that uk

is temporally white. Since ⌃ul is a non-decreasing sequence
we can bound the summation by

kX

l=0

Gk�l⌃ulG
⇤
k�l 

kX

l=0

Gl⌃ukG⇤
l .
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A Theorem of Schur [14, Thm 2.1] implies that for any
matrices M

1

 M
2

and H � 0, we have H�M
1

 H�M
2

.
The last two facts allow us to replace (12) with the bounds

⌃uk  ⌃� �
 

kX

l=0

Gl⌃ukG⇤
l

!
+ ⌃d + ⌃� � ⌃w

 ⌃� �
 1X

l=0

Gl⌃ukG⇤
l

!
+ ⌃d + ⌃� � ⌃w.

Note that now all quantities other than ⌃uk are independent
of k and the next step is see under what conditions this last
bound gives a uniform bound on the sequence ⌃uk . The key
is to rewrite the above bounds in the following form

⇣
I � L

⌘
(⌃uk)  ⌃d + ⌃� � ⌃w,

where L is the linear matrix operator

L(X) := ⌃� �
 1X

l=0

GlXG⇤
l

!
.

It is easy to show that this operator maps positive semi-
definite matrices to positive semi-definite matrices. It is thus
“cone-invariant” in the terminology of [15] for the cone of
positive semi-definite matrices. It then follows [15, Thm. 4]
that we can bound

(1 � ⇢(L)) ⌃uk 
⇣
I � L

⌘
(⌃uk)  ⌃d + ⌃� � ⌃w.

We thus arrive at the sufficient condition

⇢(L) < 1

for the MSS of the feedback system. This gives the uniform
(in k) bound

⌃uk  1

(1 � ⇢(L))
(⌃d + ⌃� � ⌃w) .

The stability of G then implies in addition that all other
signals in Figure 3 have bounded covariances.

For the converse, we assume w to be zero and recall
equation (12)

⌃uk = ⌃� �
 

kX

l=0

Gk�l⌃ulG
⇤
k�l

!
+ ⌃d

� ⌃� �
 

kX

l=0

Gk�l⌃d G⇤
k�l

!
+ ⌃d. (13)

The lower bound follows from the fact that ⌃ul is monotonic,
⌃u0 = ⌃d, and the previously invoked theorem of Schur
stating that ⌃� � M

1

� ⌃� � M
2

whenever M
1

� M
2

. To
study (13) we define the sequence of linear matrix operators

Lk (X) := ⌃� �
 

kX

l=0

Gk�lX G⇤
k�l

!
. (14)

This sequence is itself non-decreasing, in the sense that
Lk(X)  Lk+1

(X) for any symmetric X . It has been
shown [16] that this implies that ⇢(Lk)  ⇢(Lk+1

). The
operator L := L1 (replacing the upper limit in the sum

in (14) with infinity) is clearly an upper bound, i.e. for any
k

Lk  L ) ⇢(Lk)  ⇢(L).

Since ⇢(Lk) is thus a non-decreasing sequence of real
numbers with an upper bound, it must converge to some
real number which can be shown to be ⇢(L).

We conclude that ⇢(Lk) is a monotonic sequence with

⇢(L) = lim
k!1

⇢(Lk).

Now we complete the necessity proof in a similar manner to
that in Lemma 3.1. If ⇢(L) > 1, then 9 k̄ such that ⇢(L

¯k) =
↵ > 1. Furthermore, there exists a non-zero semidefinite
eigenmatrix X such that [17]

L
¯k(X) = ⇢(L

¯k) X = ↵X. (15)

Referring back to (12) we obtain the following bounds

⌃unk̄
= ⌃� �

0

@
n¯kX

l=0

Gn¯k�l⌃ulG
⇤
n¯k�l

1

A+ ⌃d

� ⌃� �

0

@
n¯kX

l=(n�1)

¯k

Gn¯k�l⌃ulG
⇤
n¯k�l

1

A+ ⌃d

� L
¯k

⇣
⌃u(n�1)k̄

⌘
+ ⌃d.

A simple induction argument shows that if we use the
eigenmatrix X from (15) for ⌃d, we obtain

⌃unk̄
� (↵n + · · · + ↵ + 1) X.

Since ↵ > 1 and X is a non-zero semidefinite matrix, then
⌃u is a geometrically growing sequence.

We note that the above argument produces a sort of worst
case covariance ⌃d as the eigenmatrix of the operator L. The
significance of this is yet to be investigated.

REFERENCES

[1] M. Dahleh and Y. Ohta, “A necessary and sufficient condition for
robust bibo stability,” Systems & control letters, vol. 11, no. 4, pp.
271–275, 1988.

[2] A. Megretski, “Necessary and sufficient conditions of stability: A
multiloop generalization of the circle criterion,” Automatic Control,
IEEE Transactions on, vol. 38, no. 5, pp. 753–756, 1993.

[3] B. Bamieh and M. Dahleh, “On robust stability with structured time-
invariant perturbations,” Systems & control letters, vol. 21, no. 2, pp.
103–108, 1993.

[4] J. Doyle, J. Wall, and G. Stein, “Performance and robustness analysis
for structured uncertainty,” in Decision and Control, 1982 21st IEEE
Conference on, vol. 21. IEEE, 1982, pp. 629–636.

[5] M. Khammash and J. Pearson Jr, “Performance robustness of discrete-
time systems with structured uncertainty,” Automatic Control, IEEE
Transactions on, vol. 36, no. 4, pp. 398–412, 1991.

[6] J. Shamma, “Robust stability with time-varying structured uncer-
tainty,” Automatic Control, IEEE Transactions on, vol. 39, no. 4, pp.
714–724, 1994.

[7] M. Fan, A. Tits, and J. Doyle, “Robustness in the presence of mixed
parametric uncertainty and unmodeled dynamics,” Automatic Control,
IEEE Transactions on, vol. 36, no. 1, pp. 25–38, 1991.

[8] J. Doyle, “Structured uncertainty in control system design,” in Deci-
sion and Control, 1985 24th IEEE Conference on, vol. 24. IEEE,
1985, pp. 260–265.

1502



[9] J. Lu and R. Skelton, “Mean-square small gain theorem for stochastic
control: discrete-time case,” Automatic Control, IEEE Transactions on,
vol. 47, no. 3, pp. 490–494, 2002.

[10] N. Elia, “Remote stabilization over fading channels,” Systems &
Control Letters, vol. 54, no. 3, pp. 237–249, 2005.

[11] D. Hinrichsen and A. Pritchard, “Stability radii for infinite dimensional
systems with stochastic uncertainty,” in Proc. 3rd. European Control
Conf. Citeseer, 1995, pp. 3291–3293.

[12] A. El Bouhtouri and A. Pritchard, “Stability radii of linear systems
with respect to stochastic perturbations,” Systems & control letters,
vol. 19, no. 1, pp. 29–33, 1992.

[13] L. Ljung, System identification. Wiley Online Library, 1999.
[14] R. Horn and R. Mathias, “Block-matrix generalizations of schur’s

basic theorems on hadamard products,” Linear Algebra and its Ap-
plications, vol. 172, pp. 337–346, 1992.

[15] P. Parrilo and S. Khatri, “On cone-invariant linear matrix inequalities,”
Automatic Control, IEEE Transactions on, vol. 45, no. 8, pp. 1558–
1563, 2000.

[16] H. Tigelaar, “On monotone linear operators and the spectral radius
of their representing matrices,” SIAM Journal on Matrix Analysis and
Applications, vol. 12, p. 726, 1991.

[17] A. Berman and R. Plemmons, Nonnegative matrices in the mathemat-
ical sciences. Society for Industrial Mathematics, 1994, vol. 9.

APPENDIX

Misc facts

A.

Given C � 0 and A � B, then

tr (AC) � tr (BC) .

This can be seen by using the dyadic decomposition of C.

B.

If u and y are inputs and outputs respectively, then

⌃uk+1 � ⌃uk � 0 ) ⌃yk+1 � ⌃yk � 0

C.

For any two symmetric matrices A and B

�
min

(A) tr (B)  tr (AB)  �
max

(A) tr (B) .

The roles of A and B in the above formula can of course
be reversed.

D. The operator X 7! diag (
P

k GkXG⇤
k)

First, consider the following operator on square matrices

D(X) := diag (GXG⇤) .

The eigenmatrices of this operator must clearly be diagonal
matrices, so we can restrict attention to understanding its
action on diagonal matrices. Let V := diag (v

1

, . . . , vn) be a
diagonal matrix, then W = diag (GXG⇤) is also a diagonal
matrix and can thus be written as W := diag (w

1

, . . . , wn).
Evaluating element-by-element leads to the following equa-
tion between the entries of V and W

2

64
w

1

...
wn

3

75 =

2

64
g2

11

· · · g2

1n
...

. . .
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· · · g2

nn
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Thus, when restricted to diagonal matrices, the operator D
has as its matrix representation the matrix G�G, the element-
by-element square of the matrix G.

D is clearly a linear operator, and thus the ma-
trix representation (on diagonal matrices) of the operator
diag (G

1

XG⇤
1

)+diag (G
2

XG⇤
2

) is simply G
1

�G
1

+G
2

�G
2

.
Clearly this fact also holds for any finite or infinite sum, e.g.
the matrix representation of the operator

X 7! diag

 
X

k

GkXG⇤
k

!
(16)

on diagonal matrices X is
X

k

Gk � Gk. (17)

In particular, the (possibly non-zero) eigenvalues of the
operator (16) are simply the eigenvalues of the matrix (17).
Furthermore, since the matrix (17) is non-negative, its spec-
tral radius is achieved by a real positive eigenvalue. This
statement is of course also valid for the operator (16).
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