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Abstract—We consider distributed consensus and vehicular
formation control problems. Specifically we address the question
of whether local feedback is sufficient to maintain coherence in
large-scale networks subject to stochastic disturbances. We define
macroscopic performance measures which are global quantities
that capture the notion of coherence; a notion of global order that
quantifies how closely the formation resembles a solid object. We
consider how these measures scale asymptotically with network
size in the topologies of regular lattices in 1, 2, and higher dimen-
sions, with vehicular platoons corresponding to the 1-D case. A
common phenomenon appears where a higher spatial dimension
implies a more favorable scaling of coherence measures, with a
dimensions of 3 being necessary to achieve coherence in consensus
and vehicular formations under certain conditions. In particular,
we show that it is impossible to have large coherent 1-D vehicular
platoons with only local feedback. We analyze these effects in
terms of the underlying energetic modes of motion, showing that
they take the form of large temporal and spatial scales resulting
in an accordion-like motion of formations. A conclusion can be
drawn that in low spatial dimensions, local feedback is unable
to regulate large-scale disturbances, but it can in higher spatial
dimensions. This phenomenon is distinct from, and unrelated
to string instability issues which are commonly encountered in
control problems for automated highways.

Index Terms—Vehicular formation.

I. INTRODUCTION

T HE control problem for strings of vehicles (the so-called
platooning problem) has been extensively studied in the

last two decades, with original problem formulations and studies
dating back to the 60’s [1]–[5]. These problems are also inti-
mately related to more recent formation flying and formation
control problems [6]. It has long been observed in platooning
problems that to achieve reasonable performance, certain global

Manuscript received February 17, 2009; revised July 17, 2011 and December
14, 2011; accepted May 16, 2012. Date of publication June 01, 2012; date of
current version August 24, 2012. This work was supported in part by NSF grants
ECCS-0802008 and CMMI-0626170, and AFOSR FA9550-10-1-0143. Recom-
mended by Associate Editor M. Prandini.

B. Bamieh is with the Department of Mechanical Engineering, University of
California, Santa Barbara, CA 93106 USA (e-mail: bamieh@engr.ucsb.edu).
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information such as leader’s position or state need to be broad-
cast to the entire formation. A precise analysis of the limits
of performance associated with localized versus global control
strategies does not appear to exist in the formation control liter-
ature. In this paper we study the platooning problem as the 1-D
version of a more general vehicular formations control problem
on regular lattices in arbitrary spatial dimensions. For such prob-
lems, we investigate the limits of performance of any local feed-
back law that is globally stabilizing. In particular, we propose
and study measures of the coherence of the formation. These
are measures that capture the notion of how well the formation
resembles a rigid lattice or a solid object.

The coherence of a formation is a different concept from, and
often unrelated to, string instability. In the platooning case (i.e.,
1-D formations), which turns out to be most problematic, a lo-
calized feedback control law may posses string stability in the
sense that the effects of any injected disturbance do not grow
with spatial location. However, as we show in this paper, it is
impossible to achieve a large coherent formation with only lo-
calized feedback if all vehicles are subject to any amount of dis-
tributed stochastic disturbances. The net effect is that with the
best localized feedback, a 1-D formation will appear to behave
well on a “microscopic” scale in the sense that distances be-
tween neighboring vehicles will be well regulated. However, if
a large formation is observed in its entirety, it will appear to have
temporally slow, long spatial wavelength modes that are unreg-
ulated, resembling an “accordion” type of motion. This is not a
safety issue, since the formation is microscopically well regu-
lated, but it might effect throughput performance in a platooning
arrangement since throughput does depend on the coherence or
rigidity of the formation.

The phenomenon that we discuss occurs in both consensus al-
gorithms and vehicular formation problems. We therefore treat
both as instances of networked dynamical systems with first
order and second order local dynamics respectively. Both prob-
lems are set up in the -dimensional torus . We begin in Sec-
tion II with problem formulations of the consensus type and ve-
hicular formations, where we view the former as a first order
dynamics version of the latter. In Section III, we define macro-
scopic and microscopic measures of performance in terms of
variances of various quantities across the network. We argue that
the macroscopic measures capture the notion of coherence. We
also present compact formulae for calculating those measures
as norms of systems with suitably defined output signals.
These norms are calculated using traces of system Grammians,
which in turn are related to sums involving eigenvalues of the
underlying system and feedback gains matrices. Since the net-
work topologies we consider are built over Tori networks, these
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system matrices are multidimensional circulant operators, and
their eigenvalues are calculated as the values of the Fourier sym-
bols of the underlying feedback operators, thus allowing for a
rather direct relation between the structure of the feedback gains
and the system’s norms. Much of the remainder of the paper
is devoted to establishing asymptotic (in network size) bounds
for these performance measures for each underlying spatial di-
mension. Section IV establishes upper bounds of standard algo-
rithms, while Section V is devoted to establishing lower bounds
for any algorithm that satisfies a certain number of structural as-
sumptions including the locality of feedback and boundedness
of control effort. This shows that asymptotic limits of perfor-
mance are determined by the network structure rather than the
selection of parameters of the feedback algorithm. We pay par-
ticular attention to the role of control effort as our lower bounds
are established for control laws that have bounded control ef-
fort in a stochastic sense. Some numerical examples illustrating
the lack-of-coherence phenomenon are presented in Section VI,
as well as an illustration of how it is distinct from string in-
stability. The interested reader may initially skim this section
which numerically illustrates the basic phenomenon we study
analytically in the remainder of the paper. We end in Section VII
with a discussion of related work in which various versions of
this phenomenon were observed, as well as a discussion of some
open questions.

Notation and Preliminaries: The networks we consider are
built over the d-dimensional Torus . The 1-D Torus
is simply the set of integers with addition
modulo , and is the direct product of copies
of . Functions defined on are called arrays, and we use
multi-index notation for them, as in to denote
individual entries of an array. Indices are added in the
arithmetic as follows:

where is the operation . The set and the cor-
responding addition operation can be visualized as a “circu-
lant” graph in d-dimensional space with edge nodes connected
to nodes on corresponding opposite edge of the graph.

The multidimensional Discrete Fourier Transform is used
throughout. All states are multidimensional arrays which we
define as real or complex vector-valued functions on the Torus

. The Fourier transform (Discrete Fourier Transform) of an
array is denoted with . We refer to indices of spatial Fourier
transforms as wavenumbers. Generally, we use and for
spatial indices and and for wavenumbers. For example, an
array has as the spatial index, while its
Fourier transform has the index as the
wavenumber. The wavenumber is simply a spatial frequency
variable. Some elementary properties of this Fourier transform
are summarized in Appendix A.

Convolution operators arise naturally over . Let be any
array of numbers (or matrices) over , that is
(or ). Then the operator of multi-dimensional circular
convolution with the array is defined as follows:

Note that and may be scalar or vector-valued (depending
on whether is scalar or matrix-valued respectively), and that
the arithmetic for is done in , i.e.
arithmetic in each index as described above.

It is important to distinguish between an array and the cor-
responding linear operator . The Fourier transform of the
array is called the Fourier symbol of the operator . It is a
standard fact that the eigenvalues of the operator are exactly
the values of the Fourier transform , i.e. the values of its Fourier
symbol. When is matrix valued, then the eignvalues of are
the union of all eigenvalues of as the wavenumber

runs through , i.e.

where refers to the spectrum of a matrix or operator (all
finite-dimensional in our case).

In this paper, we use the term dimension to refer exclusively
to the spatial dimension of underlying networks. To avoid con-
fusion with the notion of state dimension, we refer to the dimen-
sion of the state space of any dynamical system as the order of
that dynamical system.

The vector dimension of signals is mostly suppressed to keep
the notation from being cumbersome. For example, the state of
node in the d-dimensional Torus is written as

It is a scalar-valued signal for consensus problems, and vector-
valued (in ) signal for vehicular formation problems.

We use to denote the transpose of a matrix , and
to denote the complex-conjugate transpose of a matrix or the
adjoint of an operator . Although all operators in this paper
are finite dimensional, we sometimes refer to them as opera-
tors rather than matrices since we often avoid writing the cum-
bersome explicit matrix representations (such as in the case of
multidimensional convolution operators).

II. PROBLEM FORMULATION

We formulate two types of problems, consensus and vehic-
ular formations. The mathematical setting is analogous in both
problems, with the main difference being that vehicular models
have two states (position and velocity) locally at each site in
contrast to a scalar local state in consensus problem. This dif-
ference leads to more severe asymptotic scalings in vehicular
formations as will be shown in the sequel.

A. Consensus With Random Insertions/Deletions

We begin by formulating a continuous-time version of the
consensus algorithm with additive stochastic disturbances in the
dynamics [7], [8]. As opposed to standard consensus algorithms
without additive disturbances, nodes do not achieve equilib-
rium asymptotically but fluctuate around the equilibrium, and
the variance of this fluctuation is a measure of how well ap-
proximate consensus is achieved. This formulation can be used
to model scenarios such as load balancing over a distributed file
system, where the additive noise represents file insertion and
deletion, parallel processing systems where the noise processes
model job creation and completion, or flocking problems in the
presence of random forcing disturbances.
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We consider a consensus algorithm over undirected tori, ,
where the derivative of the scalar state at each node is deter-
mined as a weighted average of the differences between that
node and all its neighbors. One possible such algorithm is
given by

(1)

where we have used equal weights for all the differences.
The process disturbance is a mutually uncorrelated white sto-
chastic process. We call this the standard consensus algorithm
in this paper since it is essentially the same as other well-studied
consensus algorithms [9]–[13].

The sum in the equation above can be written as a multidi-
mensional convolution by defining the array

(2)
The system (1) can then be written as

(3)

where is circular convolution in .
We recall that we use the operator notation to

indicate the circulant operator of convolution with any array .
With this notation, a general spatially invariant consensus algo-
rithm can be written abstractly as

(4)

for any array defined over . Such algorithms can be re-
garded as a combination of open loop dynamics

with the feedback “control” , where the feedback oper-
ator array is to be suitably designed. With this point of view, con-
sensus algorithms can be thought of as first order dynamics ver-
sions of vehicular formation problems that we introduce next.

B. Vehicular Formations

Consider identical vehicles arranged in a -dimensional
torus, , with the double integrator dynamics

(5)

where is a multi-index with each , is the
control input and is a mutually uncorrelated white stochastic
process which can be considered to model random forcing. In
the sequel, we will also consider the consequences of the pres-
ence of viscous friction terms in models of the form

(6)

where is the linearized drag coefficient per unit mass.

Each position vector is a -dimensional vector with com-
ponents . The objective is to have the th
vehicle in the formation follow the desired trajectory :

...
...

...

which means that all vehicles are to move with constant heading
velocity while maintaining their respective position in a
grid with spacing of in each dimension. The situation of dif-
ferent spacings in different directions can be similarly repre-
sented, but is not considered for notational simplicity.

The deviations from desired trajectory are defined as

We assume the control input to be full state feedback and linear
in the variables and (therefore affine linear in and ), i.e.

, where and are the linear feedback operators.
The equations of motion for the controlled system are thus

(7)

We note that the above equations are written in operator form,
i.e. by suppressing the spatial index of all the variables.

Example: The operators and will have some very spe-
cial structure depending on assumptions of the type of feedback
and measurements available. Consider for example a feedback
control of the th vehicle (in a 1-D formation) of the following
form:

where the ’s and ’s are design constants. The first two lines
represent look-ahead and look-behind position and velocity
error feedbacks respectively. We refer to such terms as relative
feedback since they only involve measurements of differences.
On the other hand, terms in the last line require knowledge of
positions and velocities in an absolute coordinate system (a
grid moving at constant velocity), and we thus refer to such
terms as absolute feedback. For later reference, it is instructive
to write the feedback in the above example in terms of the state
variables and as

(8)

C. Structural Assumptions

We now list the various assumptions that can be imposed on
system operators and on the control feedbacks and . These
are structural restrictions representing the structure of open loop
dynamics and measurements, and the type of feedback control
available respectively.

(A1) Spatial Invariance. All operators are spatially in-
variant with respect to . This implies that they are con-
volution operators. For instance, the operation can be
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written as the convolution (over ) of the array with an
array

(9)

where the arithmetic for is done in . For each , the
array element is a matrix ( is then an
operator). Note that in the absence of spatial invariance,
each term of the sum in (9) would need to be written as

. That is, one would require a two-indexed array of
matrices rather than a single-indexed array.
In the example above of a 1-D circular formation, the array
elements for position feedback are given by

.
(A2) Relative vs. Absolute Feedback. We use the term
Relative Feedback when given feedback involves only
differences between quantities. For example, in position
feedback, this implies that for each term of the form

in the convolution, another term of the form
occurs for some other multi-index . This

implies that the array has the property

(10)

We use the term Absolute Feedback when given operator
does not satisfy this assumption.
Note that in the example above, relative position feedback
corresponds to , and in this case, condition (10) is
satisfied.
(A3) Locality. The feedbacks use only local information
from a neighborhood of width , where is independent
of . Specifically

(11)

The same condition holds for .
(A4) Reflection Symmetry. The interactions between ve-
hicles have mirror symmetry. This has the consequence
that the arrays representing and have even symmetry,
e.g. for each nonzero term like in the array
there is a corresponding term . This in par-
ticular implies that the Fourier symbols of and are real
valued. In the example above, this condition gives
and .
(A5) Coordinate Decoupling. For , feedback con-
trol of thrust in each coordinate direction depends only on
measurements of position and velocity error vector compo-
nents in that coordinate. This is equivalent to imposing that
each array element and are diagonal matrices.
For further simplicity we assume those diagonal elements
to be equal, i.e.

(12)

This in effect renders the matrix-vector convolution in (9)
into decoupled scalar convolutions.

Assumptions (A1) through (A3) appear to be important for
subsequent developments, while assumptions (A4) and (A5) are
made to simplify calculations.

III. PERFORMANCE MEASURES

We will consider how various performance measures scale
with system size for the consensus and vehicle formations prob-
lems. Some of these measures can be quantified as steady state
variances of outputs of linear systems driven by stochastic in-
puts, so we consider some generalities first. Consider a gen-
eral linear system driven by zero mean white noise with unit
covariance

Since we are interested in cases where is not necessarily Hur-
witz (typically due to a single unstable mode at the origin rep-
resenting motion of the mean), the state may not have finite
steady state variances. However, in all cases we consider here
the outputs do have finite variances, i.e. the unstable modes of

are not observable from . In such cases, the output does have
a finite steady state variance, which is quantified by the square
of the norm of the system from to

(13)

where the index ranges over all “sites” in the lattice .
We are interested in spatially invariant problems over discrete

Tori. This type of invariance implies that the variances of all
outputs are equal, i.e. is independent of . Thus, if the
output variance at a given site is to be computed, it is simply the
total norm divided by the system size

(14)

where is the size of the system ( for -dimensional
Tori). We refer to quantities like (14) as individual output vari-
ances.

Next, we define several different performance measures and
give the corresponding output operators for each measure for
both the consensus and vehicular formation problems. In the
vehicular formation problem, we assume for simplicity that the
output involves positions only, and thus the output equation has
the form

i.e. , where is a circulant operator. A con-
sensus problem with the same performance measure has a
corresponding output equation of the form (with the same
operator)

Performance Measures: We now list the three different per-
formance measures we consider.
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(P1) Local error. This is a measure of the difference be-
tween neighboring nodes or vehicles. For the consensus
problem, the th output (in the case of one dimension) is
defined by

For the case of vehicular formations, local error is the
difference of neighboring vehicles positions from desired
spacing, which can equivalently be written as

The output operator is then given by , where
is the right shift operator, .

In the case of dimensions, we define a vector output that
contains as components the local error in each respective
dimension, i.e.

(15)

where is the right shift along the th dimension, i.e.
, and is

a convenient normalization factor. This operator is closely
related to the standard consensus operator in (2) by the
following easily established identity:

(16)

(P2) Long range deviation (Disorder). In the consensus
problem, this corresponds to measuring the disagreement
between the two furthest nodes in the network graph. As-
sume for simplicity that is even and we are in dimension
1. Then, the most distant node from node is hops
away, and we define

In the vehicular formation problem, long range deviation
corresponds to measuring the deviation of the distance be-
tween the two most distant vehicles from what it should
be. The most distant vehicle to the th one is the vehicle
indexed by . The desired distance between them
is , and the deviation from this distance is

(17)

We consider the variance of this quantity to be a measure
of disorder, reflecting the lack of “end-to-end rigidity” in
the vehicle formation.
Generalizing this measure to dimensions yields an output
operator of the form

(18)

i.e. the operator of convolution with the array1

.

1By a slight abuse of notation, we define the shifted Kronecker delta
, where for , and zero otherwise, is the standard Kronecker

delta. With this notation, is also the standard Kronecker delta.

(P3) Deviation from average. For the consensus problem,
this quantity measures the deviation of each state from the
average of all states

(19)

In operator form we have , where is the
array of all elements equal to .
In vehicular formations, this measure can be interpreted
as the deviation of each vehicle’s position error from the
average of the overall position error .

We note that performance measures (P1) through (P3) are
such that can be represented as a convolution with an array

which has the property . This condition
causes the mean mode at zero to be unobservable, and thus guar-
antees that all outputs defined above have finite variances.

We refer to the performance measure (P1) as a microscopic
error since it involves quantities local to any given site. This is
in contrast to the measures (P2) and (P3) which involve quanti-
ties that are far apart in the network, and we thus refer to these
as macroscopic errors. We consider the macroscopic errors as
measures of disorder or equivalently, lack of coherence. As we
will show in the sequel, both macroscopic measures scale sim-
ilarly asymptotically with system size, which justifies using ei-
ther of them as a measure of disorder.

Formulae for Variances: Since we consider spatially in-
variant systems and in particular systems on the discrete Tori

, it is possible to derive formulae for the above defined
measures in terms of the Fourier symbols of the operators ,

and . Recall the state space formula for the norm
defined in (13)

When , and are circulant operators, traces can be
rewritten in terms of their respective Fourier symbols [see (47)]
as

(20)

(21)

where the individual integrals are defined as

(22)

If is Hurwitz, then can be obtained by solving the Lya-
punov equation

(23)

For wavenumbers for which is not Hurwitz, is still
finite if the non-Hurwitz modes of are not observable from

. In this case we can analyze the integral in (22) on a case by
case basis.
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TABLE I
SUMMERY OF ASYMPTOTIC SCALINGS OF UPPER BOUNDS IN TERMS OF THE THE TOTAL NETWORK SIZE AND THE SPATIAL DIMENSIONS . PERFORMANCE
MEASURES ARE CLASSIFIED AS EITHER MICROSCOPIC (LOCAL ERROR), OR MACROSCOPIC (DEVIATION FROM AVERAGE OR LONG RANGE DEVIATION). THERE

ARE FOUR POSSIBLE FEEDBACK STRATEGIES IN VEHICULAR FORMATIONS DEPENDING ON WHICH COMBINATION OF RELATIVE OR ABSOLUTE POSITION OR
VELOCITY ERROR FEEDBACK IS USED. QUANTITIES LISTED ARE UP TO A MULTIPLICATIVE FACTOR THAT IS INDEPENDENT OF OR ALGORITHM PARAMETER

The Lyapunov equations are easy to solve in the Fourier do-
main. Equation (23) is a scalar equation in the Consensus case
and a matrix equation in the Vehicular case.2 The two
respective calculations are summarized in the next lemma. The
proof is given in the Appendix.

Lemma 3.1: The output variances (13) for the consensus and
vehicular problems satisfying assumptions (A1)–(A5) are given

(24)

(25)

where is the real part of is the Fourier symbol of the
output operator corresponding to the performance index under
consideration, and , and are the Fourier symbols of the
consensus operator (4), and the position and velocity feedback
operators (12) respectively.

These expressions can then be worked out for the variety of
output operators representing the different performance mea-
sures defined earlier. The next result presents a summary of
those calculations for the six different cases.

Corollary 3.2: The following are performance measures
(P1), (P2) and (P3) expressed in terms of the Fourier symbols

, and , of the operators , , and defining vehicular
formations and consensus algorithms which satisfy assump-
tions (A1)–(A5). The array is that of the standard consensus
algorithm (2).

1) Consensus
a) Local Error:

(26)

b) Long Range Deviation:

(27)

2Note that in dimensions, the transformed state vector is of dimension
for each wavenumber .

c) Deviation from Average:

(28)

2) Vehicular Formations
a) Local Error:

(29)

b) Long Range Deviation:

(30)

c) Deviation from Average:

(31)

IV. UPPER BOUNDS USING STANDARD ALGORITHMS

In this section we derive asymptotic upper bounds for all
three performance measures of both the consensus and vehic-
ular problems. These bounds are derived by exhibiting simple
feedback laws similar to the one in the standard consensus al-
gorithm (2). In the case of vehicular formations, we make a dis-
tinction between the cases of relative versus absolute position
and velocity feedbacks, and derive bounds for all four possible
combinations of such feedbacks.

The behavior of the asymptotic bounds has an important de-
pendence on the underlying spatial dimension . For the purpose
of cross comparison, all of the upper bounds derived in this sec-
tion are summarized in Table I.

For later reference, we note that the Fourier transform of the
array in (2) is a quantity that occurs often, and calculated as

(32)
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A. Upper Bounds in the Consensus Case

We consider the standard consensus algorithm (1). In this case
the array is exactly , and thus expression (26) for the local
error immediately simplifies to

which then implies the following upper bound for the individual
local error at each site

Thus, the individual local error measure for the standard con-
sensus algorithm is bounded from above for any network size in
any dimension .

The derivation of the macroscopic error upper bounds are a
little more involved. First we observe that . This
is easily seen since first, the sums in (27) and (28) involve terms
that are all of the same sign (since ), and second, that
the sum in (27) is taken over a subset of the terms in (28). It
therefore suffices to derive the upper bounds for .

We begin with a simplifying observation. Because the arrays
we consider are real, their Fourier symbols have even sym-

metry about all the mid axes of . More precisely

for any of the dimension indices . Assume for simplicity that
is odd, and define . The even symmetry property
implies that the discrete hyper-cube can be divided into
hyper-cubes, each of the size of , and over which the values
of can be generated from its values over by appropriate
reflections. Consequently, a sum like (28) can be reduced to

We now calculate an upper bound on the deviation from av-
erage measure (28) for the Fourier symbol (32) of the standard
consensus algorithm

(33)

where the first equality follows from reflection symmetry, and
the inequality follows from (49), and noting that the denomi-
nator is made up of terms of the form

where the inequality is valid in the range .

The asymptotics of sums in (33) are presented in Appendix B.
Using those expressions, we calculate the individual deviation
from average measure at each site

(34)

where we have used , and is a constant that depends
on the dimension , but is independent of or the algorithm
parameter . We note that the upper bounds have exactly the
same form when written in terms of the network size .

B. Upper Bounds for Vehicular Formations

To establish upper bounds in this case, we use a feedback con-
trol law which is similar to (8). This law can be most compactly
written in operator notation as

where is the operator of convolution with the array defined
in the consensus problem (2). Note that in the multi-dimensional
case, all signals are -vectors, and thus above is our notation
for a diagonal operator with in each entry of the diagonal.
The last two terms represent absolute position and velocity error
feedbacks respectively. The first two terms represent a feedback
where each vector component of is formed by a law like (1)
from the corresponding vector components of and and all

immediate neighbor sites in the lattice.
With the above feedback law, the closed loop system (7) has

the following expressions for the Fourier symbols of and

(35)

where is the Fourier symbol (32). We impose the additional
conditions that and since otherwise the closed
loop system will have an increasing number of strictly unstable
modes as increases. When (respectively, )
we refer to that feedback as using absolute position (respec-
tively, velocity) feedback. There are four possible combinations
of such feedback scenarios.

We now use these expressions for the symbols and to
calculate upper bounds on performance measures (P1), (P2) and
(P3) for all four feedback scenarios. We begin with the local
error (29) which in this case is given by

(36)

In the case of relative position and velocity error feedback,
which corresponds to and , the sum in (36)
becomes . This has the same form as in
(28) for the standard consensus problem, and thus will grow
asymptotically as derived in (34). For this scenario, the final
answer is listed as in Table I after multiplying by the
extra factor. In the case of relative position and absolute
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velocity feedback, the sum in (36) becomes .
Each term is bounded from above by
since and . Thus the entire sum has an upper
bound that scales like , which yields a constant bound for
the individual local error once divided by the network size .
An exactly symmetric argument applies to the case of absolute
position but relative velocity feedback. Finally, in the case of
both absolute position and velocity feedback and
implying a uniform bound on each term in the sum. Similarly
the entire sum scales like and thus is uniformly bounded
upon division by the network size. All of these four cases for
the local error scalings are summarized in Table I.

We now consider the case of the deviation from average mea-
sure (31) which for our specific algorithm is

When and , each term in the sum is bounded
and the entire sum scales as . Thus, the individual deviation
from average at each site is bounded in this case. When either

or , then the sums scale like (since
the other factor in the fraction is uniformly bounded), i.e. like
the deviation from average in the consensus case (34).

The only case that requires further examination is that of rel-
ative position and relative velocity feedback . In
this case

where the inequality is derived by the same argument used in
deriving the inequality (33). Dividing this expression by the net-
work size and using the asymptotic expressions (52) yields

,
(37)

where is a constant depending on the dimension but in-
dependent of or the algorithm parameter . Rewriting these
bounds in terms of the total network size gives the
corresponding entries in Table I, where the other cases are also
summarized.

We finally point out that due to an argument
identical to that employed in the consensus case. We thus con-
clude that the upper bounds just derived apply to the case of the
long range deviation measure as well.

The Role of Viscous Friction: It is interesting to observe that
in vehicular models with viscous friction (6), a certain amount of
absolute velocity feedback is inherently present in the dynamics.
The model (6) with a feedback control of the form (8) has the
following Fourier symbol for the velocity feedback operator

We conclude that even in cases of only relative velocity error
feedback (i.e. when ), the viscous friction term

provides some amount of absolute velocity error feedback.
Thus, in an environment which has viscous damping, perfor-
mance in vehicle formation problems scale in a similar manner
to consensus problems. These comments are also applicable to
the lower bounds developed in the next section.

The Role of Control Effort: A common feature of all the
asymptotic upper bounds of the standard algorithms just pre-
sented is their dependence on the parameter . If this param-
eter is fixed in advance based on design considerations, then the
algorithm’s performance will scale as shown in Table I. How-
ever, it is possible to consider the redesign of the algorithms
as the network size increases. For example, it is possible to in-
crease proportionally to in consensus algorithms to achieve
bounded macroscopic errors even for 1-D networks. As can be
seen from (1), this has the effect of increasing the control feed-
back gains unboundedly (in ), which would clearly be unac-
ceptable in any realistic control problem. Thus, any considera-
tion of the fundamental limits of performance of more general
algorithms must account for some notion of control effort, and
we turn to this issue in the next section.

V. LOWER BOUNDS

A natural question arises as to whether one can design
feedback controls with better asymptotic performance than the
standard algorithms presented in the previous section. In this
section we analyze the performance of any linear static state
feedback control algorithm satisfying the structural assump-
tions (A1)–(A5), and subject to a constraint on control effort. A
standard measure of control effort in stochastic settings is the
steady state variance of the control signal at each site

(38)

which is independent of due to the spatial invariance assump-
tion. We constrain this quantity and derive lower bounds on the
performance of any algorithm that respects this constraint. The
basic conclusion is that lower bounds on performance scale
like the upper bounds listed in Table I with the control effort
replacing the parameter . In other words, any algorithm with
control effort constraints will not do better asymptotically than
the standard algorithms of Section IV-B. This is somewhat
surprising given the extra degrees of freedom possible through
feedback control design, and it perhaps implies that it is pri-
marily the network topology and the structural constraints,
rather than the selection of the algorithm’s parameters that
determine these fundamental limitations.

We now turn to the calculation of lower bounds on both mi-
croscopic and macroscopic performance measures. For brevity,
we include only the calculations for the deviation from average
macroscopic measures. These calculations are a little more in-
volved than those for the upper bounds since they need to be
valid for an entire class of feedback gains. However, the basic
ideas of utilizing norms are similar, and this is what we do in
the sequel. In addition, a new ingredient appears where the con-
trol effort bound, combined with the locality property, implies
a uniform bound on the entries of the feedback arrays. This is
stated precisely in the next lemma whose proof is found in the
Appendix. These bounds then finally impose lower bounds on
the performance of control-constrained local algorithms.
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Lemma 5.1: Consider general consensus (4) and vehicular
formation (7) algorithms where the feedback arrays , and
posses the locality property (A3). The following bounds hold:

(39)

where , and are constants independent of the network
size.

A. Lower Bounds for Consensus Algorithms

We start with the deviation from average measure for a stable
consensus algorithm subject to a constraint of bounded control
variance at each site

(40)

We first observe a bound on that can be established
from the definition of the Fourier transform

where the last equality is a consequence of the condition
. For lower bounds on , upper

bounds on are needed. Observe that

where the second inequality follows from (48). The last quantity
can be further bounded by recalling the locality property (11),
which has the consequence

Now the locality property can be used again to bound the above
sum using the the control effort bounds (39) and (40)

(41)

Putting the above together gives

where the last inequality follows from (50), and is a constant
independent of .

Finally, utilizing (51) and dividing by the network size
, a lower bound on the deviation from average is obtained

(42)

where by a slight abuse of notation, we use to denote different
constants in the expressions above. We observe how the lower
bounds (42) have the same asymptotic form as the upper bounds
for the standard consensus algorithm (34), but with the control
effort bound replacing the parameter .

B. Lower Bounds for Vehicular Formations

We recall the development of the upper bounds for vehic-
ular formations in Section IV-B. The Fourier symbols of general
feedback gains and have a similar form to (35), and as

(43)

where , and , are the absolute and relative feedback
terms respectively. As before, we impose the conditions that

. We assume that we have a control effort constraint
of the form (40).

The case of absolute position and absolute velocity feedback
has upper bounds which are finite, and the question of lower
bounds is moot. For the other three cases, lower bounds on (31)
are established using upper bounds on the symbols and
which can be derived as follows:

where the inequalities follow from (46), the locality property,
and (39), respectively. For we similarly have
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Consider now the case of relative position and absolute ve-
locity feedback. A lower bound is established by

Now a lower bound on the sum can be established in exactly the
same manner as (42) in the consensus case since is a symbol of
a local relative feedback operator. The case of relative velocity
and absolute position feedback is similar with the exception that
the factor of is replaced by .

The final case to consider is that of relative position and rela-
tive velocity feedback. One can repeat the same arguments made
in the consensus case up to (41) for both and to state

where and are some constants independent of and .
The asymptotic behavior of this expression (divided by the net-
work size) was given earlier in (37). We thus conclude that the
lower bounds in this case are exactly like the upper bounds
shown in Table I for relative position and relative velocity feed-
back, but with the term replaced by .

VI. EXAMPLES AND MULTISCALE INTERPRETATION

Numerical simulations of cases where macroscopic measures
grow unboundedly with network size show a particular type of
motion for the entire formation. In the 1-D case, it can be de-
scribed as an accordion-like motion in which large shape fea-
tures in the formation fluctuate. Fig. 1 shows the results of a
simulation of a 100 vehicle platoon with both relative position
and relative velocity error feedbacks. This corresponds to a con-
trol strategy of the type for which upper bounds were calculated
in Section IV-B with .

An interesting feature of these plots is the phenomenon of
lack of formation coherence. This is only discernible when one
“zooms out” to view the entire formation. The length of the for-
mation fluctuates stochastically, but with a distinct slow tem-
poral and long spatial wavelength signature. In contrast, the
zoomed-in view in Fig. 1 shows a relatively well regulated ve-
hicle-to-vehicle spacing. In general, it appears that small scale
(both temporally and spatially) disturbances are well regulated,
while large scale disturbances are not. An intuitive interpretation
of this phenomenon is that local feedback strategies are unable
to regulate against large scale disturbances.

In this paper, we have not directly analyzed the temporal and
spatial scale dependent disturbance attenuation limits of perfor-
mance. However, it appears that our microscopic and macro-
scopic measures of performance do indeed correspond to small
and large scale (both spatially and temporally) motions respec-
tively. We next outline a more mathematical argument that con-
nects these measures.

Fig. 1. Vehicle position trajectories (relative to vehicle number 1) of a 100 ve-
hicle formation all of which are subjected to random disturbances. Top graph
is a “zoomed out” view exhibiting the slow accordion-like motion of the entire
formation. Bottom graph is a zoomed in view showing that vehicle-to-vehicle
distances are relatively well regulated.

Mode Shapes: To appreciate the connection between
norms and mode shapes in our system, consider first a general
linear system driven by a white random process

When is a normal matrix, it is easy to show (by diagonalizing
the system with the orthonormal state transformation made up
of the eigenvectors of ) that the steady state variance of the
state is

where the sum is taken over all the eigenvalues of . Thus we
can say that under white disturbance excitation, the amount of
energy each mode contains is inversely proportional to its dis-
tance from the imaginary axis. In other words, slower modes
are more energetic. Now, all the systems we consider in this
paper are diagonalizable (or block-diagonlizable) by the spatial
Discrete Fourier Transform. In addition, for the standard algo-
rithms, we have the situation that slow temporal modes corre-
spond to long spatial wavelengths. This provides an explanation
for the observation that the most energetic motions are those that
are temporally slow and have long spatial wavelengths.

String Instability: While string instability is sometimes an
issue in formation control, the phenomenon we study in this
paper is distinct from string instability. The example presented
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Fig. 2. Vehicle position trajectories (relative to leader) of the first few of a
100 vehicle formation. Only lead vehicle is subjected to random disturbances.
Vehicle trajectories exhibit regulation against that disturbance, indicating the
absence of string instability.

in this section is that of a formation that does posses string sta-
bility. For illustration, we repeat the simulation but with dis-
turbances acting only on the first vehicle. The resulting vehicle
trajectories are shown in Fig. 2. It is interesting to note that tem-
porally high frequency disturbances appear to be very well reg-
ulated, and do not propagate far into the formation, while low
temporal frequency disturbances appear to propagate deep into
the formation. What is not shown in the figure is that low fre-
quency disturbances are eventually regulated for vehicles far
from the first. This is consistent with the intuitive notion dis-
cussed earlier that local feedback is relatively unable to regulate
large scale disturbances.

Multi-Scale Properties of Disturbance Rejection: An in-
triguing explanation of the above example and our scaling
results is as follows. The macroscopic error measures capture
how well the network regulates against large-scale distur-
bances. In large, 1-D networks, local feedback alone is thus
unable to regulate against these large-scale disturbances, and
global feedback is required to achieve this. This seems rather
intuitive. Perhaps surprisingly, in large networks with higher
spatial dimensionality, local feedback alone can indeed regulate
against large-scale disturbances. This follows for networks for
which the macroscopic error measure is bounded irrespective
of network size. The “critical dimension” needed to achieve
this depends on the order of the node dynamics as well as the
type of feedback strategy as shown in Table I (e.g. dimension
3 for relative position and absolute velocity feedback, and
dimension 5 for relative position and velocity feedback in cases
of vehicular formations).

VII. DISCUSSION

A. General Networks

The networks considered in this paper are ones which can be
built on top of a Torus network. Some concepts, such as coher-
ence and microscopic and macroscopic errors are easily gener-
alized to arbitrary networks. The correct generalization of the
concept of spatial dimension however is more subtle.

For any network of dynamical systems for which a distance
metric is defined between nodes (e.g., from an imbedding of
the network in ), the notion of long range deviation can be
defined as done in this paper. The calculation of that quantity
involves system Grammians and may even be written in terms
of the underlying system matrices for certain structures. Thus

coherence measures can be calculated numerically for such net-
works. However, more explicit calculations to uncover scaling
laws as network size increases will clearly require more analyt-
ical expressions for the system norms in such networks.

To generalize the present results, one would require a notion
of how to grow the network size while preserving certain topo-
logical properties such as the spatial dimension. Preliminary re-
sults on self-similar and fractal networks have been obtained
[14]. The proper notion of spatial dimension to capture coher-
ence in general graphs remains a research topic at this time.

B. Distributed Estimation and Resistive Lattices

The results presented here have a strong resemblance to re-
sults on performance limitations of distributed estimation al-
gorithms based on network topology [15], [16], where asymp-
totic bounds similar to (34) first appeared in the controls lit-
erature (see also [17] where a consensus problem with noisy
observations is analyzed yielding performance bounds like the
consensus upper bounds we have in the present paper). In that
work, the arguments are based on an analogy with effective
resistance in resistive lattices and certain imbeddings of their
graphs in d-dimensional space [18]. It is not clear how the re-
sistive analogy can be generalized to cover the case of second
order dynamics (i.e. vehicular formations), or the lower bounds
on more general control laws. We have therefore avoided the re-
sistive network analogy in this paper by directly using the mul-
tidimensional Fourier transform and reducing all calculations to
sums of the form (51) resulting in a self-contained argument.

It is interesting to note that the original arguments for the
asymptotic behavior in resistive lattices [19] in the physics lit-
erature are based on approximations of the Green’s function of
the diffusion operator in -dimensions, for which the underlying
techniques are approximations like (54).

C. Order of Local Dynamics

We have attempted to keep the development general enough
that it is applicable to networked dynamical systems whose dy-
namics are not necessarily those of vehicles in any particular
physical setting. What we refer to in this paper as consensus and
vehicular formations problems respectively represent networks
where the local dynamics (at each site) are first and second order
chains of integrators respectively. The dynamical models are
such that the stochastic disturbance enters into the first inte-
grator, and the performance objectives involve variances of the
outputs of the last integrators at each site. One generalization
of this set up is where the local dynamics is a chain of inte-
grators. It is then possible to show that [by retracing the argu-
ments for the vehicular formations case and generalizing (52)]
the cutoff dimension to have bounded macroscopic measures
with only local relative state feedback is .

D. LQR Designs

It was observed in [20] that optimal LQR designs for vehic-
ular platoons suffer from a fundamental problem as the platoon
size increases to infinity. These optimal feedback laws are al-
most local in a sense described by [21], where control gains
decay exponentially as a function of distance. The resulting op-
timal feedbacks [20] suffer from the problem of having under-
damped slow modes with long spatial wavelengths. Thus, the
same incoherence phenomenon occurs in these optimal LQR
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designs where the performance objective is composed of sums
of local relative errors (leading to feedback laws with exponen-
tially decaying gains on relative errors).

E. Measuring Performance in Large Scale Systems

In spatial dimensions where performance scalings are
bounded, the underlying system eigenvalues still limit towards
zero, suggesting ultimate instability in the limit as .
However, measures of performance remain bounded in these
cases. In such cases the locations of internal eigenvalues are
not a good indication of the system’s performance in the limit
of large networks.

Take the consensus problem over as an example. The
“least damped eigenvalue” (other than zero) quantifies the con-
vergence time of deviation from average (in the absence of sto-
chastic disturbances), and it scales as

(44)

as can be shown by explicit eigenvalue calculations [12], [13].
If we use this quantity as a measure of performance, it indicates
that performance becomes arbitrarily bad (in the limit of large

) in any spatial dimension . On the other hand, consider the
use of a macroscopic error measure like the variance of the de-
viation from average (19) in the presence of stochastic distur-
bances. That quantity can be expressed in terms of the system
eigenvalues as

(45)

where the sum is taken over all the system’s eigenvalues other
than zero. Note that this sum is just (28) rewritten to emphasize
the contrast with (44).

The important observation is that (44) indicates that as net-
work size increases, the system eigenvalues approach the sta-
bility boundary, indicating an eventual catastrophic loss of per-
formance in any spatial dimension . On the other hand, (45)
is uniformly bounded in dimensions (as shown in (34)),
thus implying well behaved systems as quantified by the macro-
scopic performance measures. A similar point to the above has
been recently made [22].

The least damped eigenvalue is traditionally used as an im-
portant measure of performance. The examples in this paper
demonstrate that for large scale systems, it is not a very mean-
ingful measure of performance, and that the general question of
how to measure performance in large scale systems is a subtle
one.

F. Detuning/Mistuning Designs

It is shown in [23] that spatially-invariant local controllers for
platoons have closed loop eigenvalues that approach the origin
at a rate of . A “mistuning” design modification is pro-
posed [23], resulting in spatially-varying local controllers where
the closed loop eigenvalues approach the origin at the better
rate of . In this paper, we have not used the real part
of the least damped eigenvalue as a measure of performance
but rather the variance of certain system outputs. This amounts

to using an norm as the measure of performance. It was
shown in [21] that for spatially-invariant plants, one can not im-
prove performance with spatially-varying controllers. The
resulting controllers however have exponentially decaying gains
rather than completely local gains. The problem of designing
optimal controllers with a prescribed neighborhood of inter-
action remains an open and non-convex one. It is an interesting
and open question as to whether mistuning designs for the
measures we use in this paper can yield local controllers with
better asymptotic performance than spatially-invariant ones. It
was also shown [23] that a mistuning design can improve
performance for platoon problems. This shows that there is per-
haps an important distinction between and measures of
performance for large scale systems. A point that is worthy of
further investigation.

APPENDIX

A. Multidimensional Discrete Fourier Transform

We define the Discrete Fourier Transform for functions
over by

where . The inverse transform is
given by

where . An immediate consequence of the definitions
are the following bounds:

(46)

Let be the Kronecker delta on . It’s transform is the array
, which is the array of all elements equal to 1. The transform of
is . We use the symbol to denote the array of all elements

equal to .
If denotes the circulant operator of circular convolution

with , then the eigenvalues of are just the numbers ,
and consequently the trace of is given by the sum

(47)

B. Bounds and Asymptotics of Sums

The following facts are useful in establishing asymptotic
bounds.

1) For any and any

(48)

(49)

2) Given integers

(50)
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Proof:

Using , we get the bound

3) In the limit of large ,

(51)

.
(52)

(53)

where is notation for

for some constants and and all for some .
Proof: We begin with (51). Upper and lower bounds on this

sum can be derived by viewing it as upper and lower Rieman
sums for the integral

over the region for the lower bound, and
for the upper bound. Here , and the asymptotic

behavior is determined by the lower limit on the integrals, so
both upper and lower bounds behave the same asymptotically.

Using the grid points , and using
the volume increment , we get

(54)

Now the integral can be evaluated using hyperspherical coordi-
nates by

where is a constant that depends only on the dimension
(and can be expressed in terms of the volume of the unit sphere
in ). Evaluating this integral, using and (54) gives
the result (51).

The proof of (52) is very similar to the above, with the excep-
tion that one approximates the integral of

instead. The details are omitted for brevity.

C. Proof of Lemma 3.1

For the consensus problem, the state equation is (4), and thus
the Lyapunov (23) becomes

where we have used (and the choice of depends on
the particular performance measure being considered). Since all
quantities are scalars, this equation is immediately solved for

for . In the case , we look
at the integral definition (22), conclude that implies that

. Thus, the sum (21) is calculated to be (24).
For the vehicular problem, the state equation is (7) with the

output equation . The Lyapunov (23) becomes

where each of the submatrices is of size . From the above,
we extract the following matrix equations:

(55)

(56)

Since we are only interested in the quantity

then only (55) and (56) are relevant. The coordinate decoupling
assumption (A5) on the operators , and implies that the
matrices , and are all diagonal. It follows that ,
and are also diagonal, and the above matrix equations are
trivial to solve. has the solution:

Similarly, (56) is solved to yield

for . For the unstable mode at , the integral (22) can
be easily evaluated to yield (since for all the
performance measures we consider). Adding in the assumption
that all matrices are diagonal with equal elements, we obtain in
summary the total norm of the vehicle formation problem
(7) is given by

(57)

where the multiplicative factor of comes from taking the trace
of .
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Proof of Corollary 3.2:
1) Consensus: The local error measure output operator

is given by (15), for which by the identity
(16). Combining this with Lemma 3.1 gives the result for .

The long range deviation measure has the output operator de-
fined in (18), which has the Fourier symbol

from which we conclude that

.

Combining this with Lemma 3.1 gives the result for .
The deviation from average output operator is
, or equivalently, the convolution operator . The cor-

responding Fourier symbol is the Fourier transform of the array
, which gives

.

Putting this in the general formula (24) yields the result for
.
2) Vehicular Formations: The derivations for this case are

very similar to those for the consensus problem and are therefore
omitted for brevity.

Proof of Lemma 5.1: We rewrite the dynamics of the con-
sensus algorithm so that is an output

The present task is then to calculate the norm from to .
Applying formula (24) with as the operator yields

after observing that is real and . Furthermore, our
stability condition requires that for all , , implying
that the sum above is the -norm of . Putting this together
with the bound (46) gives

(58)

In the vehicular formations case, the dynamics are given by
(7) together with the output equation

Formula (25) is not applicable here since the output depends on
all states, but the norm for this system can be calculated in
a manner similar to the proof of Lemma 3.1. They Lyapunov
equation in this case becomes

from which we extract the matrix equations

Only the first and last equation need be solved since we are only
interested in . All of the above are diagonal matrices
with equal entries, so we solve the equations in terms of a single
entry as

The norm of the system is then

where the last equation follows from the stability conditions
, . This inequality has two consequences after

observing that and using (46)

(59)

(60)

The second inequality can be used to bound as follows.
First

An upper bound on is derived from

where the last inequality follows from the locality assumption
on . Combining these last two bounds with (60) yields

which when combined with (59) gives
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Mihailo R. Jovanović (S’00–M’05) received the
Dipl. Ing. and M.S. degrees from the University of
Belgrade, Belgrade, Serbia, in 1995 and 1998, re-
spectively, and the Ph.D. degree from the University
of California, Santa Barbara, in 2004.

Before joining the University of Minnesota,
Minneapolis, he was a Visiting Researcher with the
Department of Mechanics, the Royal Institute of
Technology, Stockholm, Sweden, from September to
December 2004. Currently, he is an Associate Pro-
fessor of electrical and computer engineering at the

University of Minnesota, where he serves as the Director of Graduate Studies
in the interdisciplinary Ph.D. program in Control Science and Dynamical
Systems. His expertise is in modeling, dynamics, and control of large-scale and
distributed systems and his current research focuses on sparsity-promoting op-
timal control, dynamics and control of fluid flows, and fundamental limitations
in the control of vehicular formations.
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