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Abstract: We consider the problem of optimal distributed controller design of semi-
decentralized controllers for a special class of spatially distributed systems. This class
includes spatially invariant and distributed systems with an inherent temporal delay
in the interaction of distant sites. We consider the problem of optimal design of
distributed controllers where controller information passing is as fast or faster than
the plant. We show how the YJBK parametrization of such stabilizing controllers
yields a convex parametrization for this class.

1. INTRODUCTION

We consider spatially distributed systems where all
signals are functions of both spatial and tempo-
ral variables. The theory of such spatio-temporal
systems has been worked out in some detail. We
consider only spatially distributed systems with the
additional property that the dynamics are spatially
invariant. For recent work on this class and some
of the background for the present work, we refer
the reader to Bamieh et al. (2001); Paganini and
Bamieh (1998) and the references therein.
One of the major issues in the design of such dis-
tributed controllers is the communications require-
ments between individual controller sub-systems.
One of the applications of this design methodology
is to design controllers for large arrays of Micro-
Electro-Mechanical System (MEMS), in which there
are potentially tens of thousands of actuator/sensor
and imbeded control sub-systems. For systems of
this size and configuration, centralized controllers
are not an option. It turns out that optimally de-

signed centralized controllers have an inherent lo-
calization property which enables them to be im-
plemented using distributed control elements with
limited communication requirements Paganini and
Bamieh (1998). Several researchers have recently
been looking at the problem of explicity impos-
ing constraints on communication requirements be-
tween controller subsystems. Among these are ap-
procahes based on LMI’s and convex optimiza-
tion techniques (see Ayres and Paganini (2000);
D’Andrea (June 1998); Dullerud et al. (December
1998) and the references therein).
In this paper we show how the problem where
the controller is constrained such that informa-
tion is propagated with a delay dependent on dis-
tance between sub-systems (a structure we refer
to as “funnel”-causality), can be solved optimally
as a convex problem provided that the plant has
a similar funnel-causality structure. Before stating
this problem precisely we present some material on
spatio-temporal causality.
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2. SPATIO-TEMPORAL CAUSALITY

Our description of distributed systems will be in
terms of their spatio-temporal impulse and fre-
quency responses. A signal u(x, t) is a function of a
spatial variable x and a temporal variable t. In what
follows, x and t can be either discrete or continuous.
In the solution to the H2 problem later, we restrict
ourselves to discrete temporal and spatial variables.
Two signals, u and y are related by a spatially-
invariant distributed system if we can write

y(x, t) =
∫ ∫

h(x − ξ, t − τ) u(ξ, τ) dτ dξ,(1)

where h is the spatio-temporal impulse response.
For uniformity of notation, we use this convolution
integral to denote sums as well in the case when dτ
and dξ are discrete measures on the set Z. We will
restrict attention to the class of temporaly causal
impulse responses that have the following property,

sup
t∈[0,T ]

∞
∫

−∞

|h(x, t)| dx < ∞,

for any T > 0. This can be understood as requiring h
to be in L1 in the spatial coordinate, and in L∞

e (the
extended L∞ space) in the temporal coordinate.
This class is large enough to contain most temporaly
causal (but not necessarily stable) spatio-temporal
systems. The above bound allows for composition
and inversion of such systems.
The spatio-temporal impulse response h(x, t) can be
visualized as a function in the plane (x, t). Temporal
causality of h is equivalent to the requirement that
h(x, t) = 0 in the half plane t ≤ 0. Physical systems
have temporal causality, but not necessarily spatial
causality. As opposed to purely temporal systems,
where only one notion of causality is natural, there
are many possible notions of causality for spatio-
temporal systems. Systems that have a constant
finite propagation speed (e.g. the wave equation)
are such that h has its support in a “light cone”,
i.e.

h(x, t) = 0, for t < γx

(see figure 1.a), where 1/γ is the speed of prop-
agation. This type of causality maybe referred to
as “cone-causality”. We will be considering systems
who’s impulse response has support in slightly more
general domains.

Definition 1. A scalar valued function f(x) is said
to be a propagation function if f is non-negative,
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Fig. 1. (a) Cone causality (b) Funnel causality

f(0) = 0 and such that {f(x), x ≥ 0} and {f(x), x ≤ 0}
are concave functions respectively.

Definition 2. A system is said to have the property
of funnel-causality if its impulse response is such
that

h(x, t) = 0, for t < f(x),

where f(x) is a propagation function. In other
words, if its impulse response is supported in a
funnel shaped region (see figure 1.b).

Intuitively, any effect in a funnel-causal systems
takes at least f(x) time units to travel a distance x.
The reason for restricting the propagation function
c to have concave segments is that such a class of
systems turns out to be closed under convolutions.
This latter property will be useful in establishing the
convexity of controller design problems later on.
We now state a result on the composition of two
funnel-causal systems. If h is a spatio-temporal
system, we use the same symbol h to refer to
its spatio-temporal impulse response (the function
h(x, t)), and we use the expression supp (h) to refer
to the region in the (x, t) plane where h(x, t) is
supported. If f is a propagation function, we denote
by Sf the set

Sf := {(x, t); t ≥ f(x)} .

Sf is the set “above” the curve c in figure 1.b.

Lemma 1. Let h1 and h2 be two funnel-causal sys-
tems such that

supp (h1) ⊂ Sf , supp (h2) ⊂ Sf ,

where f is some propagation function. Then the
composition h3 = h1 ∗ h2 is such that

supp (h3) ⊂ Sf .

The preceding lemma characterizes an important
property of funnel-causal systems. The composition
of two such systems is also a funnel-causal system
where effects propagate as fast as the fastest of the
two systems. To make this precise, let h1 and h2

be systems whose support is such that supp (h1) ⊂



Sf1 and supp (h2) ⊂ Sf2 , where Sf1 ⊂ Sf2 . This
means that effects in h2 propagate faster than in h1.
Lemma 1 then implies that supp (h1 ∗ h2) ⊂ Sf2 .
Lemma 1 implies that for a given propagation func-
tion, the class of funnel-causal systems is closed
under compositions. It is a trivial fact that this class
is closed under additions as well. Furthermore, it can
also be shown that this class is closed under inver-
sions. Taking all three properties together, i.e. clo-
sure under additions, compositions and inversions,
we conclude that the class of funnel-causal systems
is closed under general linear fractional transforma-
tions with coefficients that are themselves funnel-
causal. This then implies that the YJBK param-
eterization can be used to nicely parameterize all
funnel-causal stabilizing controllers.

3. PROBLEM DEFINITION AND YJBK
PARAMETRIZATION

In the design of distributed controllers for spatio-
temporal systems it is often desired to impose some
decentralized structure on the controller. A fully
centralized controller is often impractical in large
scale systems though it has the best performance.
Explicit decentralization is a notoriously difficult
control problem. Perhaps an indication of the diffi-
culty of this problem is that the set of all achievable
closed loop maps with decentralized control is not in
general a convex set. However, we will now consider
controllers with prescribed funnel-causality which
yield convex closed loops for certain plants.
Let a propagation function f be given, and denote
by Lf the set of all linear spatially invariant systems
with impulse responses that have support in Sf .
Consider the standard configuration for disturbance
attenuation in Figure 2 where the plant G and the
controller K are spatially and temporally invariant
systems. A central observation in this paper is that
if supp (g22) ⊂ Sf for some propagation function
c, then the problem of designing controllers with
support in Sf is convex.

Problem definition: Consider the standard prob-
lem in figure 2 with G22 such that supp (g22) ⊂ Sf

for some propagation function f . Find the optimal
feedback controller with the same funnel-causality
constraint as G22, i.e.

inf
K stabilizing

K ∈ Lf

∥F(G;K)∥, (2)

where the norm in question is any norm defined on
spatio-temporal systems.
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Fig. 2. The Standard Problem

Convexity of the set of closed loops

In order to employ the YJBK paramterization for
the case of an unstable G22 we will assume the
existence of a co-prime factorization. We will as-
sume that we can factor G22 = NM−1, and that
there exists X and Y that solve the Bezout identity
XM−Y N = I, where N,M,X, Y are stable spatio-
temporal systems. The next results shows that for
a funnel-causal system, if a co-prime factorization
can be found with funnel-causal factors, then the
decentralization constraints on K transform to con-
vex constraints on the Youla parameter Q, which in
turn produces a convex set of achievable closed loop
maps. In the next section we explain how we can
find Bezout identity factors that are funnel causal
for a class of spatio-temporal systems.

Proposition 1. Let G22 ∈ Lf for some propagation
function f . Let G22 = NM−1 and XM − Y N =
I with N,M,X, Y ∈ Lf and stable. Then all
stabilizing controllers K such that K ∈ Lf are given
by

K = (Y + MQ)(X + NQ)−1, (3)

where Q is a stable system in Lf .

With the above parametrization, problem (2) be-
comes

inf
Q stable
Q ∈ Lf

∥H − UQV ∥, (4)

where H, U , V are stable maps that depend only
on G. Now since the set of stable Q ∈ Lf is
a linear subspace, and the mapping Q )→ (H −
UQV ) is linear affine, then problem (4) is a convex
problem, in particular, it is a minimum distance to a
subspace problem. The difficulty of such a problem
and whether it is finite or infinite-dimensional will
depend on the norm used and the nature of the set



Lf (equivalently, the type of propagation function
f).

4. FACTORIZATIONS

Co-prime factorizations and Bezout identities can
be developed for spatio-temporal systems in a very
similar manner to those for finite dimensional sys-
tems. Our interest however is to ensure that the
factors and corresponding Bezout identity elements
satisfy the same funnel-causality constraints as the
plant. Rather than develop the most general pro-
cedure for doing co-prime factorization, we con-
centrate on the special case of plants where de-
centralized proportional feedbacks can be used to
obtain stablizing state feedback and observer gains.
This covers a large class of spatio-temporal systems
derived from physical partial differential equations.
To begin with, let the input-output distributed
system y = Gu be given by a state space realization

∂tψ = Aψ + Bu
y = Cψ

, (5)

where ψ, u, and y are spatio-temporal signals, and
A, B, C are translation invariant operators. We
refer the reader to Bamieh et al. (2001) for the
background and some of the results we later use
related to such systems.
We now illustrate how to find co-prime factoriza-
tions and solve Bezout identities for such systems.
The procedure is very similar to the finite dimen-
sional case. The Bezout identity is Zhou et al. (1996)

XM − Y N = I,

where G = NM−1, and N , M , X and Y are stable
systems. State space realizations for elements of the
Bezout identity are given by

[

X −Y
]

=
[

A + LC −B L
K I 0

]

,

[

M
N

]

=

⎡

⎣

A + BK B
K I
C 0

⎤

⎦ , (6)

where the spatial operators K and L are chosen such
that A+BK and A+LC generate stable evolutions.
The difficulty with obtaining good co-prime fac-
torizations for the problem of funnel-causality is
that even if the original system is funnel-causal,
the feedback gains K and L used to form the Be-
zout identity may destroy this property. We present

below a criterion which avoids this problem when
simple proportional gains K and L are used.

Proposition 2. Let a spatio-temporal system be
given by the state space model (5) such that the im-
pulse responses etAB, CetA and CetAB are funnel-
causal. If there exists proportional gains K and L
(i.e. decentralized feedbacks) such that A+BK and
A + LC are stable, then all elements of the Bezout
identity (6) are funnel-causal.

The result above can be easily generalized to the
case when the gains K and L are local spatial oper-
ators (e.g. spatial derivatives of any order), but we
will not need this generality here. Although it is re-
strictive to assume that one can find stabilizing de-
centralized state feedbacks and observer gains, this
property seems to hold for a large class of spatio-
temporal systems with distributed control. This is
illustrated with several examples in later sections.
We note that for vector-valued input and output
signals, a non-commutative version of lemma 1 can
be stated. This has the standard form Vidyasagar
(1995), and we do not repeat the formulae here.

Example: The wave equation

We illustrate the forgoing ideas using the wave
equation. The partial differential equation

∂2
t ψ(x, t) = c2∂2

xψ(x, t) + u(x, t), (7)

is the standard wave equation with a distributed
input. Its transfer function is given by G(s, k) =

1
s2+c2k2 . This system can not be stabilized by pro-
portional decentralized output feedback alone. A
realization of this system has the form (5) as

∂t

[

ψ1

ψ2

]

=
[

0 I
c2∂2

x 0

] [

ψ1

ψ2

]

+
[

0
I

]

u

ψ =
[

I 0
]

[

ψ1

ψ2

]

.

Following Bamieh et al. (2001), this system can be
analyzed by taking a Fourier transform in the spatial
variables. Denoting the spatial Fourier variable by
k (the wave number), the Fourier representation of
the above system is

d

dt

[

ψ1(k, t)
ψ2(k, t)

]

=
[

0 1
−c2k2 0

] [

ψ1(k, t)
ψ2(k, t)

]

+
[

0
1

]

u(k, t)

ψ(k, t) =
[

1 0
]

[

ψ1(k, t)
ψ2(k, t)

]

,



where for simplicity of notation we use the same
symbol to denote a signal ψ(x, t) and its spatial
Fourier transform ψ(k, t). To see that the system (7)
has funnel causality, we compute etA. Note that the
2 × 2 matrix A can be diagonalized by

[

0 1
−c2k2 0

]

=
[

1 1
ick −ick

] [

ick 0
0 −ick

]

⎡

⎢

⎢

⎣

1
2

−i

2ck

1
2

i

2ck

⎤

⎥

⎥

⎦

,

with c > 0. This diagonalization then implies that

exp
{

t

[

0 1
−c2k2 0

]}

=

=
[

1 1
ick −ick

] [

eikct 0
0 e−ikct

] [

1/2 −i/2ck
1/2 i/2ck

]

=
1
2

[

eikct + e−ikct 1
ick

(

eikct − e−ikct
)

ick
(

eikct − e−ikct
)

eikct + e−ikct

]

=

⎡

⎢

⎣

1
2

(

eikct + e−ikct
)

t sinc(kct)

−c2k2 t sinc(kct)
1
2

(

eikct + e−ikct
)

⎤

⎥

⎦

As is well known, the symbol e−ickt is the Fourier
representation of the operator Tct of right transla-
tion by distance ct. Multiplication by t sinc(kct) rep-
resents convolution with the “rectangular” function
1
2c rec( 1

ctx), where 1

rec(x) :=
{

1 |x| ≤ 1
0 |x| > 1 .

If we denote by Rct the operation of spatial con-
volution with rec( 1

ctx), then we can represent etA

as

etA =
1
2

[

Tct + T−ct
1
c
Rct

c∂2
x Rct Tct + T−ct

]

.

Now, ∂2
x is a local operator, while Tct, T−ct and Rct

are non-local. However, they are all funnel causal
with propagation function f(x) = 1

c t (i.e. they are
cone causal). To see this, note that their respective
impulse responses are

(Tct) (x, t) = δ(x − ct), (T−ct) (x, t) = δ(x + ct),

(Rct) (x, t) = rec(
1
ct

x),

all of which are supported in the region {(x, t); ct > x}.

1 This is obtained from the Fourier transform pair:
rec( 1

α x) ↔ 2α sinc(αk)

We have thus established that all elements of etA

are funnel-causal. Since B and C are constants,
this system satisfies the first set of assumptions
of proposition 2. We now show how to easily find
stabilizing proportional state feedback and observer
gains. First, to find a suitable state feedback gain
K

A + BK =
[

0 1
−c2k2 0

]

+
[

0
1

]

[

k1 k2

]

=
[

0 1
−c2k2 + k1 k2

]

.

We set k1 = 0. Then, the eigenvalues of A +
BK for each wave-number k are given by k2 ±
1
2

√

k2
2 − 4c2k2. Thus for k2 < 0, the spectrum of the

operator A+BK is the set
[

3
2k2,

1
2k2

]
⋃

(k2 +jR),
which has negative real part if k2 < 0. Similarly, to
find the observer gain, note that

A + LC =
[

l1 1
−c2k2 + l2 0

]

.

Setting l2 = 0, we find that the spectrum of A +
LC has negative real part if l1 < 0. Choosing
l1 = k2 = −1, we obtain stabilizing gains

K =
[

0 −1
]

, L =
[

−1
0

]

.

Now we compute the co-prime factors using formu-
lae (6)

[

X −Y
]

=

⎡

⎣

−1 1 0 −1
−c2k2 0 −1 0

0 −1 1 0

⎤

⎦ ,

[

M
N

]

=

⎡

⎢

⎢

⎣

0 1 0
−c2k2 −1 1

0 −1 1
1 0 0

⎤

⎥

⎥

⎦

.

We compute the factors to be

M =
s2 + c2k2

s2 + s + c2k2
,

N =
1

s2 + s + c2k2
,

X =
s2 + 2s + c2k2 + 1

s2 + s + c2k2
,

−Y =
−c2k2

s2 + s + c2k2
.

The funnel-casuality of all the above factors is
guaranteed by proposition 2.
A closed loop mapping such as sensitivity can then
be written in terms of the Q parameter as

(I + GK)−1 = XM + NM Q.



Inner-outer factorizations

In linear quadratic minimum distance problems
such as H2 and H∞, inner-outer factorizations play
an important role. We now illustrate how to perform
inner-outer factorizations for spatio-temporal sys-
tems. The following is applicable to spatio-temporal
system with discrete or continuous spatial and
temporal variables, however for simplicity we will
present the case of discrete time and discrete space.
Certain stable spatio-temporal systems can be con-
sidered as mappings on L2. If a system H can be
described in terms of an impulse response like (1), it
is called L2-stable if it is a bounded linear mapping
on L2(Z2). A combined temporal Laplace transform
and spatial Fourier transform gives a transfer func-
tion description of the system (1) by

y(k, t) =
∑

−∞<l<∞

∑

0≤i<∞
h(k − l, t − i) u(l, i)

⇕
Y (θ,λ) = H(θ,λ)U(θ,λ),

where the combined transform of any signal is
defined by

Y (θ,λ) :=
∑

k

∑

t

y(k, t) λt
(

ejθ
)k

=
∑

k

∑

t

y(k, t) λtzk

∣

∣

∣

∣

∣

z=ejθ

,

where θ ∈ [0, 2π], and λ ∈ C in the appropriate
region of convergence of the transform. Note that
λ is the temporal transform variable, while z is
the spatial transform variable. This definition em-
phasizes the fact that there is no spatial causality
structure in such systems, and only the value of the
transform at z = ejθ is important.
A spatially invariant system H which is L2 stable is
said to have an inner-outer factorization if it can be
decomposed as

H = Hi Ho,

where Hi is an isometry on L2, and Ho is causally
invertible on L2. Now, given a transfer function
H(θ,λ) of a spatio-temporal system, an inner-outer
factorization of H can be obtained from the inner-
outer factorization at each θ. In other words, for
every θ ∈ [0, 2π] we can decompose

H(θ,λ) = Hi(θ,λ) Ho(θ,λ),

where for each θ, the above is an inner-outer factor-
ization of the temporal system H(θ, .). Now, it is a

consequence of Parseval’s equality that the spatio-
temporal system {Hi(θ,λ)} is an isometry, and that
the system {Ho(θ,λ)} is causally invertible.
As in the temporal case, the isometry property can
be recast as

H∼(θ,λ) H(θ,λ) = I,

where

H∼(θ,λ) := H∗(θ,
1
λ

),

and H∼ is also an isometry, though not necessarily
a causal system.

5. CONCLUSION

We considered optimal feedback control for spatially
invariant distributed systems with an inherent tem-
poral delay in the interaction of neighbouring sites.
The type of delay structure that leads to convex
optimal control problems has been characterized
using the concept of funnel causality. We have shown
how to constructively convert such optimal feedback
control problems to model matching problems using
special versions of the YJBK parameterization.
Applications of this theory to specific H2 problems
will be presented in the final version of this paper.
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