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Abstract

In this paper we consider the problem of distributed controller design in spatially invariant systems for which communication
among sites is limited. In particular, the controller is constrained so that information is propagated with a delay that depends
on the distance between subsystems—a structure we refer to as “funnel” causality. We show that the problem of optimal
design can be cast as a convex problem provided that the plant has a similar funnel-causality structure, and the propagation
speeds in the controller are at least as fast as those in the plant. As an example, we consider the case of the wave dynamics
with limited propagation speed control.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

We consider spatially distributed systems where all
signals are functions of both spatial and temporal vari-
ables. The theory of such spatio-temporal systems has
been worked out in some detail. We consider only spa-
tially distributed systems with the additional property
that the dynamics are spatially invariant. For recent
work on this class and some of the background for
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the present work, we refer the reader to[2–5] and the
references therein.
One of the major issues in the design of such

distributed controllers is the communications require-
ments between individual controller sub-systems.
One of the applications of this design methodology
is to design controllers for large arrays of micro-
electro-mechanical system (MEMS), in which there
are potentially tens of thousands of actuator/sensor
and imbedded control subsystems. For systems of this
size and configuration, centralized controllers are not
an option. It turns out that optimally designed central-
ized controllers have an inherent localization property
which enables them to be implemented using dis-
tributed control elements with limited communication
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requirements[5]. Several researchers have recently
been looking at the problem of explicity imposing
constraints on communication requirements between
controller subsystems. Among these are approaches
based on LMIs and convex optimization techniques
(see [1,3,4] and the references therein). The same
structure of controllers as the plant is imposed and a
relaxation is used to obtain stability and performance
conditions via LMIs. More recently, an interesting al-
gebraic characterization of plant-controller structures
that leads to convex maps has been provided in[7].
The work in[7] nicely generalizes the classes of con-
vex structural problems presented earlier in[9].
In this paper, we consider the case of spatially in-

variant systems, where the controller is constrained so
that information is propagated with a delay that de-
pends on the distance between subsystems—a struc-
ture we refer to as “funnel” causality. We show that
the problem of optimal design can be castexactlyas
a convex problem provided that the plant has a simi-
lar funnel-causality structure. We also provide explicit
constructions of the appropriate coprime factors that
lead to a convex model matching formulation for im-
portant classes of problems such as the control of sys-
tems governed by the wave equation. This work gen-
eralizes some of the results in[10] where a special
case of funnel causality, termed as cone causality, is
considered.

2. Spatio-temporal causality

We begin our exposition by presenting some ma-
terial on the many possibilities for spatio-temporal
causality. Our description of distributed systems will
be in terms of their spatio-temporal impulse and fre-
quency responses. A signalu(x, t) is a function of a
spatial variablex and a temporal variablet. In what
follows, x andt can be either discrete or continuous.
Two signals,u andy are related by a spatially in-

variant distributed system if we can write

y(x, t) =
∫ ∫

h(x − �, t − �) u(�, �)d�d�, (1)

whereh is the spatio-temporal impulse response. For
uniformity of notation, we use this convolution inte-
gral to denote sums as well in the case when d� and
d� are discrete measures on the setZ. We will restrict

Fig. 1. (a) Cone causality, (b) funnel causality.

attention to the class of temporally causal impulse re-
sponses that have the following property:

sup
t∈[0,T ]

∫ ∞

−∞
|h(x, t)|dx <∞

for anyT >0. This can be understood as requiringh
to be inL1 in the spatial coordinate, and inL∞

e (the
extendedL∞ space) in the temporal coordinate. This
class is large enough to contain most temporally causal
(but not necessarily stable) spatio-temporal systems.
The above bound allows for composition and inversion
of such systems.
The spatio-temporal impulse responseh(x, t) can

be visualized as a function in the plane(x, t). Tem-
poral causality ofh is equivalent to the requirement
that h(x, t) = 0 in the half planet�0. Physical sys-
tems have temporal causality, but not necessarily spa-
tial causality. As opposed to purely temporal systems,
where only one notion of causality is natural, there are
many possible notions of causality for spatio-temporal
systems. Systems that have a constant finite propaga-
tion speed (e.g. the wave equation) are such thath has
its support in a “light cone”, i.e.

h(x, t) = 0, for t < �x,

(seeFig. 1a) where 1/� is the speed of propagation.
This type of causality maybe referred to as “cone
causality”. We will be considering systems where the
impulse response has support in slightly more general
domains.

Definition 1. A scalar valued functionf (x) is said to
be a propagation function iff is non-negative,f (0)=
0 and such that{f (x), x�0} and {f (x), x�0} are
concave functions, respectively.

Definition 2. A system is said to have the prop-
erty of funnel causalityif its impulse response is
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such that

h(x, t) = 0, for t < f (x),

wheref (x) is a propagation function. In other words,
if its impulse response is supported in a funnel-shaped
region (seeFig. 1b).

Intuitively, any effect in a funnel-causal systems
takes at leastf (x) time units to travel a distancex.
The reason for restricting the propagation functionf to
have concave segments is that such a class of systems
turns out to be closed under convolutions. This latter
property will be useful in establishing the convexity
of controller design problems later on.
We now state a result on the composition of two

funnel-causal systems. Ifh is a spatio-temporal sys-
tem, we use the same symbolh to refer to its spatio-
temporal impulse response (the functionh(x, t)), and
we use the expression supp(h) to refer to the region
in the (x, t) plane whereh(x, t) is supported. Iff is a
propagation function, we denote bySf the set

Sf := {(x, t); t�f (x)}.
Sf is the set “above” the curvef in Fig. 1b.

Lemma 1. Let h1 and h2 be two funnel-causal sys-
tems such that

supp(h1) ⊂ Sf , supp(h2) ⊂ Sf ,

where f is some propagation function. Then the com-
positionh3 = h1 ∗ h2 is such that

supp(h3) ⊂ Sf .

Proof. We begin with

h3(x, t) =
∫ ∫

h1(x − �, t − �) h2(�, �)d�d�.

Since supp(h1) ⊂ Sf and supp(h2) ⊂ Sf , we have
thath1(�, �)=0 for �<f (�) andh1(x−�, t − �)=0
for t − �<f (x − �) (i.e. t − f (x − �)< �). Thus the
limits of integration can be adjusted to

h3(x, t) =
∫ ∫ t−f (x−�)

f (�)
h1(x − �, t − �)

× h2(�, �)d�d�.

Fig. 2. The functionf (x − �) + f (�).

From this we can in particular conclude that

h3(x, t) = 0 if ∀�, t − f (x − �)�f (�). (2)

To see for whicht this condition is valid, note the
following implication

∀�, t�f (x − �) + f (�) ⇐
t� inf

�
(f (x − �) + f (�)). (3)

We now claim that the concavity off implies that

inf
�
(f (x − �) + f (�)) = f (x). (4)

To see this, assume for simplicity thatx >0, and note
that over each of the three intervals� ∈ (−∞,0], or
[0, x] or [x,∞) the function

(
f (x − �) + f (�)

)
is the

sum of two concave functions (seeFig. 2). Therefore,
over each of the three intervals separately, the function
(f (x − �) + f (�)) is concave, and its infimum must
then be achieved at the boundaries, i.e. at� = 0 or
� = x. In either case, we have Eq. (4), which when
combined with (3) and (2) gives

h3(x, t) = 0 for t < f (x),

which is the desired conclusion.�

The preceeding lemma characterizes an important
property of funnel causal systems. The composition
of two such systems is also a funnel-causal system
where effects propagate as fast as the fastest of the
two systems. To make this precise, leth1 andh2 be
systems whose support is such that supp(h1) ⊂ Sf1
and supp(h2) ⊂ Sf2, whereSf1 ⊂ Sf2. This means
that effects inh2 propagate faster than inh1. Lemma
1 then implies that supp(h1 ∗ h2) ⊂ Sf2.
Lemma 1 implies that for a given propagation func-

tion, the class of funnel-causal systems is closed under
compositions. It is a trivial fact that this class is closed
under additions as well. Furthermore, it can also be
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shown that this class is closed under inversions. The
proof of this latter fact is relegated to the appendix.
Taking all three properties together, i.e. closure under
additions, compositions and inversions, we conclude
that the class of funnel causal systems is closed un-
der general linear fractional transformations with co-
efficients that are themselves funnel causal. This then
implies that the Youla et al.-Kucera (YJBK) parame-
terization (e.g.,[8]) can be used to nicely parameterize
all funnel-causal stabilizing controllers.

3. Optimal performance and YJBK
parametrization

In the design of distributed controllers for spatio-
temporal systems it is often desired to impose some
decentralized structure on the controller. A fully cen-
tralized controller is often impractical in large-scale
systems though it has the best performance. Explicit
decentralization is a notoriously difficult control prob-
lem. Perhaps an indication of the difficulty of this
problem is that the set of all achievable closed-loop
maps with decentralized control is not in general a
convex set. However, we will now consider controllers
with prescribed funnel causality which yield convex
closed loops for certain plants.
Let a propagation functionf be given, and denote

by Lf the set of all linear spatially invariant systems
with impulse responses that have support inSf . Con-
sider the standard configuration for disturbance atten-
uation inFig. 3 where the plantG and the controller
K are spatially and temporally invariant systems. Let
g22 denote the impulse response ofG22, the part ofG
that mapsu to y. A central observation in this paper is
that if supp(g22) ⊂ Sf for some propagation function
f, then the problem of designing controllers with sup-
port in Sf is convex. The problem of interest is cast
as follows.

Optimal performance problem: Consider the stan-
dard problem inFig. 3withG22 such that supp(g22) ⊂
Sf for some propagation functionf. Find the opti-
mal feedback controller with the same funnel-causality
constraint asG22, i.e.

inf
K stabilizing

K∈Lf

‖F(G;K)‖, (5)

Fig. 3. The standard problem.

where the norm in question is any norm of the closed-
loopF(G;K) defined on spatio-temporal systems.

3.1. Convexity of the set of closed loops

In order to employ the YJBK paramterization for
the case of an unstableG22 we will assume the exis-
tence of a co-prime factorization. We will assume that
we can factorG22 = NM−1, and that there existsX
andY that solve the Bezout identityXM − YN = I ,
whereN,M,X, Y are stable spatio-temporal systems.
The next results shows that for a funnel-causal system,
if a co-prime factorization can be found with funnel-
causal factors, then the decentralization constraints on
K transform to convex constraints on the Youla param-
eterQ, which in turn produces a convex set of achiev-
able closed-loop maps. In the next section we explain
how we can find Bezout identity factors that are fun-
nel causal for a class of spatio-temporal systems.

Proposition 1. Let G22 ∈ Lf for some propagation
function f. LetG22 = NM−1 and XM − YN = I

withN,M,X, Y ∈ Lf and stable. Then all stabilizing
controllers K such thatK ∈ Lf are given by

K = (Y + MQ)(X + NQ)−1, (6)

where Q is a stable system inLf .

Proof. All stabilizing (possibly without the structure)
controllersK are given byK=(Y+MQ)(X−NQ)−1,
whereQ is a stable system without any additional
structure. This follows from the standard YJBK ar-
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gument [8]. Now the classLf is closed under ad-
ditions, compositions and inversions. These facts
guarantee thatQ ∈ Lf in (6) implies thatK ∈ Lf .
Conversely, since for any stabilizing controllerK,
we haveQ:=(XK − Y )(M − NK)−1, then again
K,M,N,X, Y ∈ Lf imply thatQ ∈ Lf . �

With the above parametrization, problem (5)
becomes

inf
Q stable
Q∈Lf

‖H − UQV ‖, (7)

whereH, U, V are stable maps that depend only onG.
Now since the set of stableQ ∈ Lf is a linear sub-
space, and the mappingQ �→ (H − UQV ) is linear
affine, then problem (7) is a convex problem. In par-
ticular, it is a minimum distance to a subspace prob-
lem. The difficulty of such a problem and whether
it is finite or infinite-dimensional will depend on the
norm used and the nature of the setLf (equivalently,
the type of propagation functionf). A manageable

instance of this problem can be found in[10] where
the H2 problem is solved in the case of a relaxed
version of cone causality.

4. Some specific factorizations

Co-prime factorizations and Bezout identities can
be developed for spatio-temporal systems in a very
similar manner to those for finite-dimensional sys-
tems. Our interest however is to ensure that the fac-
tors and corresponding Bezout identity elements sat-
isfy the same funnel-causality constraints as the plant.
Rather than develop the most general procedure for
doing co-prime factorization, we concentrate on the
special case of plants where decentralized proportional
feedbacks can be used to obtain stablizing state feed-
back and observer gains. This covers a large class of
spatio-temporal systems derived from physical partial
differential equations.

To begin with, let the input–output distributed sys-
temy = Gu be given by a state space realization

�t� = A� + Bu,

y = C�, (8)

where�, u, and y are spatio-temporal signals, and
A, B, C are translation invariant operators. These are
operators overL2 spaces over spatial domainsRn,
Zn or cross products thereof.B andC are bounded
operators, whileA is a possibly unbounded operator
defined on a dense domain ofL2, and we assume that
it generates aCo (not necessarily stable) semi-group.
We refer the reader to[2] for the background and some
of the results we later use related to such systems.
We now illustrate how to find co-prime factoriza-

tions and solve Bezout identities for such systems.
The procedure is very similar to the finite-dimensional
case. The Bezout identity is[11]

XM − YN = I,

whereG = NM−1, and N, M, X, andY are stable
systems. State space realizations for elements of the
Bezout identity are given by

X −Y =
A + LC −B L

K I 0
M

N
=

A + BK B

K I
C 0

,

(9)

where the spatial operatorsK andL are chosen such
thatA+BK andA+LC generate stable evolutions.
The difficulty with obtaining good co-prime fac-

torizations for the problem of funnel causality is that
even if the original system is funnel causal, the feed-
back gainsK andL used to form the Bezout identity
may destroy this property. We present below a crite-
rion which avoids this problem when simple propor-
tional gainsK andL are used.

Proposition 2. Let a spatio-temporal system be given
by the state space model(8) such that the impulse re-
sponsesetAB, CetA andCetAB are funnel causal. If
there exists proportional gains K and L(i.e. decentral-
ized feedbacks) such thatA + BK andA + LC are
stable, then all elements of the Bezout identity(9) are
funnel causal.

Proof. Weconsider the right factor in the Bezout iden-
tity. Funnel causality of the left factor can be shown
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Fig. 4. Feedback decomposition.

similarly. We simply note that the “strictly proper”
part (i.e. without theD operator) of this factor can be
realized in the feedback diagram shown inFig. 4. By
assumption, the upper part of the feedback diagram
is funnel causal, and so isK since it is a decentral-
ized proportional gains. Since funnel-causal systems
are closed under compositions, additions and inver-
sions, then any well-posed feedback interconnection
of funnel-causal systems is also funnel causal.�

The proof above can be easily generalized to the
case when the gainsK andL are local spatial opera-
tors (e.g. spatial derivatives of any order), as well as
when they are any funnel-causal system, but we will
not need this generality here. Although it is restric-
tive to assume that one can find stabilizing decentral-
ized state feedbacks and observer gains, this property
seems to hold for a large class of spatio-temporal sys-
tems with distributed control. A characteristic exam-
ple is illustrated in the next subsection. We also note
that for vector-valued input and output signals, a non-
commutative version of Proposition 1 can be stated.
This has the standard form[8], and we do not repeat
the formulae here.

Example 1 (The wave equation). We illustrate the
forgoing ideas using the wave equation. The partial
differential equation

�2t �(x, t) = c2�2x�(x, t) + u(x, t), (10)

is the standard wave equation with a distributed input.
Its transfer function is given byG(s, k)=(1/s2+c2k2).
This system cannot be stabilized by proportional de-
centralized output feedback alone. A realization of this

system has the form (8) as

�t
[
�1
�2

]
=

[
0 I

c2�2x 0

] [
�1
�2

]
+

[
0
I

]
u,

� = [ I 0]

[
�1
�2

]
.

Following [2], this system can be analyzed by taking
a Fourier transform in the spatial variables. Denoting
the spatial Fourier variable byk (the wavenumber),
the Fourier representation of the above system is

d

dt

[
�1(k, t)

�2(k, t)

]
=

[
0 1

−c2k2 0

] [
�1(k, t)

�2(k, t)

]

+
[
0
1

]
u(k, t),

�(k, t) = [ 1 0]

[
�1(k, t)

�2(k, t)

]
,

where for simplicity of notation we use the same sym-
bol to denote a signal�(x, t) and its spatial Fourier
transform�(k, t). To see that system (10) has funnel
causality, we compute etA. Note that the 2× 2 matrix
A can be diagonalized by

[
0 1

−c2k2 0

]
=

[
1 1
ick −ick

] [
ick 0
0 −ick

]

×
[ 1

2 −i/2ck
1
2 i/2ck

]

with c >0. This diagonalization then implies that

exp

{
t

[
0 1

−c2k2 0

]}
=

[
1 1
ick −ick

]

[
eikct 0
0 e−ikct

] [ 1
2 −i/2ck
1
2 i/2ck

]

= 1

2

[
eikct + e−ikct 1

ick

(
eikct − e−ikct

)
ick

(
eikct − e−ikct

)
eikct + e−ikct

]

=
[ 1

2

(
eikct + e−ikct

)
tsinc(kct)

−c2k2t sinc(kct) 1
2

(
eikct + e−ikct

)
]

As is well known, the symbol e−ickt is the Fourier
representation of the operatorTct of right translation
by distancect. Multiplication by t sinc(kct) repre-
sents convolution with the “rectangular” function
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(1/2c)rec((1/ct)x), where1

rec(x) :=
{
1 |x|�1,
0 |x|>1.

If we denote byRct the operation of spatial convolu-
tion with rec((1/ct)x), then we can represent etA as

etA = 1

2

[
Tct + T−ct

1
c
Rct

c�2xRct Tct + T−ct

]
.

Now, �2x is a local operator, whileTct , T−ct andRct

are non-local. However, they are all funnel causal with
propagation functionf (x)= (1/c)t (i.e. they are cone
causal). To see this, note that their respective impulse
responses are

(Tct )(x, t) = �(x − ct), (T−ct )(x, t) = �(x + ct),

(Rct )(x, t) = rec

(
1

ct
x

)
,

all of which are supported in the region{(x, t); ct > x}.

We have thus established that all elements of etA

are funnel causal. SinceB andC are constants, this
system satisfies the first set of assumptions of Propo-
sition 2. We now show, how to easily find stabilizing
proportional state feedback and observer gains. First,
to find a suitable state feedback gainK, note that

A + BK =
[

0 1
−c2k2 0

]
+

[
0
1

]
[ k1 k2 ]

=
[

0 1
−c2k2 + k1 k2

]
.

We setk1 = 0. Then, the eigenvalues ofA + BK for

each wavenumberk are given byk2± 1
2

√
k22 − 4c2k2.

Thus fork2<0, the spectrum of the operatorA+BK

is the set
[
3
2k2,

1
2k2

]
∪ (k2 + jR), which has negative

real part ifk2<0. Similarly, to find the observer gain,
note that

A + LC =
[

l1 1
−c2k2 + l2 0

]
.

Settingl2 = 0, we find that the spectrum ofA + LC

has negative real part ifl1<0. Choosingl1=k2=−1,

1 This is obtained from the Fourier transform pair:
rec((1/�)x) ↔ 2� sinc(�k).

we obtain stabilizing gains

K = [ 0 −1] , L =
[−1

0

]
.

Now we compute the co-prime factors using
formulae (9)

X − Y =
−1 1 0

− c2 k2 0 −
−
0

0 −1 1 0
,

−0 1 0

0

− c2 k2 0
0
1 0

−1 1
1

.

 
M
N

=

(11)

We compute the factors to be

M = s2 + c2k2

s2 + s + c2k2
, X = s2 + 2s + c2k2 + 1

s2 + s + c2k2
,

N = 1

s2 + s + c2k2
, −Y = −c2k2

s2 + s + c2k2
.

The funnel-casuality of all the above factors is guar-
anteed by Proposition 2.
A closed-loop mapping such as sensitivity can then

be written in terms of theQ parameter as

(I + GK)−1 = XM + NMQ.

Example 2 (Illustration of funnel causality). The pre-
ceding example involved a system whose impulse re-
sponse is supported in a cone. An example in which
the support set is more complex can be constructed
from the wave-equation as follows. Consider the ad-
dition of two wave-equation-like systems:

�2t �1(x, t) = c21�
2
x�1(x, t) + u(x, t), (12)

�2t �2(x, t) = c22�
2
x�2(x, t) + u(x, t − T ), (13)

�(x, t) = �1(x, t) + �1(x, t),

whereT is a given time delay. The impulse response
of this system is simply the sum of the impulse
responses of the individual subsystems (12) and
(13). The response of (12) is supported in the cone
{(x, t); c1t�x} while that of (13) is supported in
{(x, t); c2(t − T )�x}. Thus, the entire system from
u to � has an impulse response supported in the set
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Fig. 5. The impulse response support set of Example 2.

shown inFig. 5. The figure illustrates the case when
c1<c2, i.e. when the speed of the�1 system is slower
than that of�2.

5. Conclusion

We considered optimal closed-loop design for spa-
tially distributed control where the propagation speeds
in the controller are at least as fast as the plant. By
characterizing this type of spatio-temporal causality as
funnel causality, we have shown these optimal design
problems to be convex. For important classes of prob-
lems, an explicit construction for deriving the corre-
sponding model matching problem from the original
plant data was provided using the YJBK parametriza-
tion and state space formulae for the required
Bezout identity. This construction guaranteed that
the elements of the Bezout identity have the required
funnel-causality structure as well. This allows us to
handle a large class of spatially distributed unstable
systems.
These convex optimal design problems are in gen-

eral infinite dimensional. Developing efficient proce-
dures for solving or approximating the solutions of
these problems is a significant question, and is the
subject of current research.
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Appendix. Closure of funnel-causal systems under
inversions

In order for the inversion operation to be well de-
fined, we restrict ourselves to the class of temporally
causal impulse responses such that for anyT �0,

sup
t∈[0,T ]

∫ ∞

−∞
|h(x, t)|dx <∞. (14)

This class includes possibly unstable systems.
The class of temporally causal systems is closed

under composition. Consequently, ifH is temporally
causal, thenHn is temporally causal for anyn. It is
then tempting to define inverses using the Neuman
series(I − H)−1 = (I + H + H 2 + H 3 + · · ·), and
conclude that(I −H)−1 must be temporally causal if
it exists.
To make sense of the preceeding argument, we must

show that the Neuman series converges in some sense.
To this end, we can employ a bound similar to that
used to show the convergence of successive iteration
schemes for Volterra operators[6]. Let hn denote the
impulse response obtained by convolvingh with it-
self n times. The following bound onhn(x, t) can be
established by induction onn:∫

|hn(x, t)|dx� t (n−1)

(n − 1)! sup
�∈[0,t]

(∫
|h(x, �)|dx

)n

.

(15)

The induction argument follows from the following
calculation:∫

|hn(x, t)|dx

=
∫

dx

∣∣∣∣
∫ t

0

∫
hn−1(x − �, t − �)h(�, �)d�d�

∣∣∣∣
�

∫ t

0

∫
dx

∫
|hn−1(x − �, t − �)| |h(�, �)|d�d�

�
∫ t

0

(∫
|hn−1(x, t−�)|dx

)(∫
|h(x, �)|dx

)
d�

�
∫ t

0

tn−2

(n − 2)! sup
�∈[0,t]

(∫
|h(x, �)|dx

)n−1

× sup
�∈[0,t]

(∫
|h(x, �)|dx

)
d�

= t (n−1)

(n − 1)! sup
�∈[0,t]

(∫
|h(x, �)|dx

)n

,
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where the second inequality follows from the fact that
for the L1 norm ‖f ( g‖�‖f ‖‖g‖, and the second
inequality is the induction step.
Bound (15) implies that the Neuman series con-

verges for anyH whose impulse response satisfies (14)
to an operator that satisfies (14) over finite time in-
tervals. Note that no bounds on the norm ofH were
needed (indeed sinceH is possibly unstable, it may
have infinite gain), but causality is necessary. By a
simple scaling, the above arguments imply that we can
invert any temporally causal system which is of the
form (�I +H), where� �= 0 is a scalar. All the cases
in which we apply this result are of this form.
The preceeding arguments imply that the Neuman

series can be used to characterize inverses of tempo-
rally causal systems. Now, if a systemH is in addition
funnel causal, then Lemma 1 implies thatHn is fun-
nel causal for anyn. Therefore, the Neuman series for
inversion ofH has all terms which are funnel-causal,
and consequently, the inverse ofH is funnel causal.
We note that in this case, since a component of the
identity is added to the series, then the “funnel” must
include the support of the delta function, i.e. the point
(x, t) = (0,0). An equivalent characterization is that
the propagation function must be such thatf (0) = 0.
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