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T
he Rijke tube [1] is a classic experiment 
that is relatively simple and inexpensive 
to build in a typical university laboratory. 
Despite its construction simplicity, it can serve to 
illustrate a wide variety of mathematical modeling, em-

pirical identification, verification, and feedback control techniques. As 
such, it is suitable for use in both advanced undergraduate and graduate control laboratory courses.

The Rijke tube also serves as prototypical experiment for research and study of thermoacoustic phenom-
ena in which heat transfer and acoustics are dynamically coupled. This experiment is perhaps the sim-
plest illustration of the phenomenon of thermoacoustic instabilities, which typically occur whenever heat 
is released into gas in underdamped acoustic cavities. The heat release can be due to combustion or solid/
gas heat transfer. Under the right conditions, the coupling between the acoustic and heat release dynam-
ics in the cavity becomes unstable. This instability manifests itself as a sustained limit cycle resulting in 
audible, powerful pressure oscillations. Thermoacoustic instability phenomena are most often encoun-
tered in combustors [2], [3], where the resulting powerful pressure waves are undesirable due to the 
danger of structural damage as well as performance degradations. In this context, they are often referred 
to as combustion instabilities and are notoriously difficult to model due to the additional complexity of 
combustion dynamics [4], [5]. One advantage of the Rijke tube is that it generates thermoacoustic insta-
bilities without a combustion process. The absence of combustion renders the mathematical modeling 
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and subsequent system analysis problems significantly 
more tractable, yet many of the identification and feedback 
control issues involved in combustion instabilities are pres-
ent in the Rijke tube. Thus, this experiment provides an 
easily accessible platform within which to explore the 
myriad issues relevant to thermoacoustic instabilities and 
their control.

This article aims at introducing the Rijke tube as both an 
experimental and theoretical platform to explore thermoa-
coustic dynamics and their control. The first part is an 
experimental investigation of the dynamics of the Rijke 
tube using closed-loop identification and model validation. 
The second part details the derivation of a control-oriented 
model from the simplified thermoacoustic physics of one-
dimensional gas dynamics. This model is examined using 
linear time-invariant (LTI) system tools such as the root 
locus and the Nyquist criterion, giving insight into the 
open-loop instability and the effects of feedback control. 
The first part is an empirical approach that requires little 
knowledge of the underlying physics, and it is remarkable 
that rather useful and predictive models of the system can 
be obtained with this approach. In the courses at the Uni-
versity of California, Santa Barbara (UCSB), most students 
who have performed this experiment and subsequent anal-
ysis did not start out with any knowledge of thermoacoustic 
physics. Further insight is obtained by combining the 
results of the feedback control experiments with the theo-
retical models developed in the second part. The section on 
mathematical modeling has been made compact and self-
contained and is easily accessible to readers with a control 
engineering background. This perhaps distinguishes this 
article from other excellent treatments of the Rijke tube in 

the literature (such as [6]–[8] and the review article [9]), in 
that the self-contained presentation is written for a control 
engineering audience.

Prior to embarking on the two main components of this 
article, a brief description of how a typical Rijke tube exper-
iment is conducted, the observations that can be made, and 
the construction of the apparatus are given.

OBSERVATIONS OF THE RIJKE TUBE  
AND ITS CONTROL
By way of an introduction, some basic observations that 
can be quickly made in the laboratory are described. These 
observations set the stage for the many modeling, identifi-
cation, and control questions that can be subsequently 
posed and investigated. Figure 1(a) illustrates the basic 
operation of the Rijke tube. A heating element (typically a 
resistive coil) is placed in the bottom third of a vertical 
open glass tube; for details on the specific setup at UCSB, 
see “Construction of the Rijke Tube Apparatus.” If the coil 
is sufficiently hot, a steady upward flow of air is achieved. 
An increase in the power to the coil causes an increase in 
the air flow, and at some critical value of this power, the 
tube begins to emit a loud, steady “hum” like a pipe organ. 
A decrease in the power to the coil will cause the hum to 
die out. A measurement of the frequency of that sound, and 
assuming typical sound velocity in air at room tempera-
ture, shows the wavelength to be equal to twice the length 
of the tube. This is consistent with a half-wavelength stand-
ing wave in the tube.

The next step is to experiment with a simple active 
acoustic feedback scheme. A speaker is placed a slight dis-
tance under the tube and is powered by a variable gain 
amplifier with input from a microphone put near the top of 
the tube. This is illustrated in Figure 1(b), where the ampli-
fier is referred to as the controller. This arrangement can be 
thought of as simple proportional feedback. If the power to 
the coil is made sufficiently high, causing the tube to hum, 
the effects of the feedback gain can be investigated via 
experiments. If the sign of the feedback gain is chosen cor-
rectly, it is observed that as the gain is increased upward 
from zero, there is a critical value of the feedback gain that 
causes the loud hum to quickly disappear. A natural ques-
tion is whether this represents a stabilization of an unstable 
process or possibly some form of noise cancellation. A 
quick check of the control signal (speaker input) reveals 
that signal to be near zero, indicating that the speaker is 
indeed stabilizing the thermoacoustic instability rather 
than canceling the noise produced by it. This simple stabi-
lization scheme allows for closed-loop system identifica-
tion to be done, from which an empirically determined 
open-loop transfer function can be obtained.

After stabilization by simple proportional feedback, the 
next step is the investigation of the gain margin and what 
happens at high gains. It is observed that with further 
increase in the feedback gain, the tube begins to emit a 
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FIGURE 1 (a) The Rijke tube shown with a heating element placed 
toward the bottom (suspension mechanism for coil not shown). The 
upward arrow indicates steady air flow caused by the coil’s heat. (b) 
The Rijke tube with a microphone, speaker, and feedback controller. 
The external signal w  is used for closed-loop identification.
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loud screeching sound, at a different and higher frequency 
than the hum observed at the lower gain. A measurement 
of the screech frequency yields that it is roughly a harmonic 
of the originally observed hum frequency. Often it will be 
either the third or fifth harmonic, with other harmonics 
occurring less often. Exactly which of the harmonics it is 
depends on the microphone position and is an important 
feature of the problem that can be later used for the model 
validation component of the experiment. In summary, the 
instability at high feedback gains (the screech) occurs due 
to the right-half plane (RHP) zeros inherent in this system. 
The open-loop pole locations are determined by the tube’s 
acoustics and are largely independent of speaker and 
microphone position. However, the open-loop zero loca-
tions, which influence the high-gain instability, depend on 
the actuator and sensor locations.

EMPIRICAL INVESTIGATION OF THE RIJKE TUBE
The experimental exploration of the Rijke tube begins with 
establishing the conditions for the initial thermoacoustic 
instability as a function of heater power input. The effects of 
proportional acoustic feedback are then investigated 
through initial stabilization and then observing instabilities 
at high gains. Once a stable system is established, closed-
loop identification is performed, and a model from fre-
quency response data is obtained. A root locus analysis of 

the identified model is used to explain the basic thermoa-
coustic instability. Locations of the open-loop poles and 
zeros of the identified model play an important role in the 
dynamics, and root locus analysis is used to further validate 
the model using observations of the high-gain instabilities.

Observing the Thermoacoustic Instability
The initial operation of the Rijke tube is quite simple: the 
heater coil power supply is turned on and increased slowly. 
During this process, the upward flow of hot air can be felt by 
placing a hand slightly over the top of the tube. There is a 
critical heater power beyond which the tube will begin to 
hum loudly. The increase in sound level up to saturation 
occurs in a couple of seconds [see Figure 2(a)]. If the heater 
power is decreased and then increased again [see Figure 2(a)], 
a slight hysteresis phenomenon can be observed. The sound 
[see Figure 2(a)] frequency f  is easily measured with an 
oscilloscope, and using the speed of sound under standard 
conditions c 343=  m/s, its wavelength, / ,c fm =  is approxi-
mately equal to twice the length of the tube. This observa-
tion is consistent with a half-wavelength standing wave in 
the tube, which is the fundamental mode of a tube open at 
both ends, which for the setup used in this article has a fre-
quency of approximately 143 Hz; see Table 1 and “Construc-
tion of the Rijke Tube Apparatus.” The basic physics of that 
mode are illustrated in Figure 3.

Construction of the Rijke Tube Apparatus

T he particular Rijke tube hardware configuration used in the 
control laboratory at UCSB is described briefly. Details of this 

basic setup can be easily modified according to other specific 
laboratory facilities. The basic apparatus used for this experiment 
(see Figure S1) is composed of the following main components:

glass tube, length = 4 ft, internal diameter = 3 in (a high 
aspect ratio is necessary to achieve thermoacoustic insta-
bility with only moderate heater power)
heater coil (resistive Nichrome heater)
microphone and pre-amplifier (for example, a simple op-
amp circuit)
speaker
power amplifier (for speaker)
ac or dc variable power supply (for heater coil).
A data acquisition (DAQ) board and Simulink Real-Time Win-

dows Target are used to collect data. Either a simple op-amp 
circuit or a Simulink block can be used to realize the variable 
feedback control gain, with the former option illustrated in Fig-
ure S1. The glass tube is vertically mounted to a rigid frame, with 
the heater coil mounted about one-quarter of the way up from 
the bottom of the tube. The power supply is used to heat the coil. 
The microphone is mounted near the top and in the center of the 
tube’s cross section. The microphone signal (ac coupled) is fed 
via the DAQ board to Simulink, where it is recorded and mul-
tiplied with the variable gain. The test signal (used for system 

identification, see Figure 5) is also added there. The generated 
signal is then routed from the DAQ board to the audio amplifier 
to the speaker.
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FIGURE S1 A photograph and diagram of the UCSB Rijke tube 
experimental apparatus.
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While it is common to assume that every mode has a pres-
sure node exactly at the open end, in reality, the nodes are 
located slightly outside the tube. This discrepancy can be 
accounted for by using a tube length L L2D+  in the computa-
tions; the end correction LD  depends on the radius R  of the 
tube and the wavelength m  of the considered mode, but for 

R&m  it is approximately independent of : .L R0 61.m D  [10]. 
For the tube considered here, the difference is merely 8 Hz.

Proportional Acoustic 
Feedback
When the microphone, data 
acquisition (DAQ) board, and 
speaker are connected as shown 
in Figures 1(b) and S1, propor-
tional feedback can be applied 
to the Rijke tube. It is observed 
that as the gain of the power 
amplifier is increased, there is a 
critical gain value Kmin  above 
which the tube’s hum will 
quickly disappear; see Figure 
2(d). This is usually an impres-
sive demonstration of the power 
of feedback.

Since many students who 
perform this experiment are 
not familiar with acoustics, 
they are often unsure as to 
what is happening when the 
tube’s hum disappears. They 
often say that the tube’s noise 
has been “cancelled,” probably 
because of familiarity with 
noise-canceling headsets. How-
ever, the process here is funda-

mentally different. The feedback has stabilized the thermoa-
coustic instability that caused the limit cycle in the first place. 
To verify the distinction between stabilization and noise can-
cellation, it is sufficient to observe the control signal into the 
speaker terminals on an oscilloscope as the critical feedback 
gain is reached and the hum disappears. The oscilloscope will 
show that the control signal decays rapidly and hovers around 
zero as the critical stabilizing feedback gain value is reached; 
see again Figure 2(d). In contrast, a noise-canceling system 
would have a persistent nonzero control signal canceling the 
persistent noise. Interesting phenomena occur at higher gains. 
There is a critical higher gain value Kmax  above which a new 
instability is triggered. When that gain is reached, the tube 
will begin to screech loudly. A measurement of that screech 
frequency reveals it to be a harmonic of the initial fundamen-
tal hum frequency (as depicted in Figure  4). Exactly which 
harmonic causes the screech will depend on the details of the 
experimental setup (in the setup used at UCSB it is typically 
the third or fifth harmonic). This phenomenon is, however, 
repeatable if the experimental setup, the microphone, speaker, 
and heater locations, is unchanged. The screech frequency 
should be noted since it can be predicted from a root locus 
analysis of the identified system model and therefore can be 
used to validate that model.

Closed-Loop Identification
In this empirical approach to the Rijke tube, no physical 
modeling is done. Instead, system identification tools are 

Symbol Value Used

t Density 1.2 kg/m3

p Pressure 105 N/m2

c p
p
c=

Speed of sound 343 m/s

cp

cv

Specific eat
apacitiesc

h) 1008 J/(kg K)
718 J/(kg K)

/c cp vc = Adiabatic ratio 1.4

: 1c c= - — 0.4

c cR p v= - Ideal gas constant 290 J/(kg K)

L Tube length 1.219 m

thr Heat release time
constant

. 3.5 10-4 s

TABLE 1 Values of relevant parameters used for 
computations.
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FIGURE 2 A time trace of the (a) microphone signal at the onset of instability showing growth, and 
then saturation of the limit cycle. Linear growth on a (b) semilog plot of the signal’s envelope confirms 
initial exponential growth of its amplitude. A (c) zoomed-in picture shows the periodic, but nonsym-
metric, limit-cycle behavior. With appropriate proportional feedback, the limit cycle is stabilized as 
this trace of the (d) speaker’s input signal shows.
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used to obtain information about the dynamics. The Rijke 
tube with the heater on is an unstable system and therefore 
must be identified while operating in a stabilizing closed 
loop. Stabilization can be achieved by a proportional con-
troller implemented by a speaker, a microphone, and ampli-
fiers. These components have dynamics that will appear as 
being lumped with the Rijke tube dynamics, as shown  
in the conceptual block diagram in Figure 5. However, 
because they are designed for the human hearing range 
(20–20,000 Hz), their contribution over the frequencies of 
interest in this experiment (typically 100–1,000 Hz) will be 
small. The test signal w  is generated externally, in Simulink 
for example, and then added to the control signal; it is the 
input for the closed-loop system identification process.

Closed-Loop System Identification
Care needs to be taken when identifying systems in a closed 
loop, since simply recording the plant input and output and 
applying open-loop identification techniques, ignoring the 
fact that the input is the result of feedback, might yield wrong 
results. In particular, the closed loop system loses the prop-
erty of consistency, meaning that infinite data will no longer 
result in an exact identification of the underlying system. The 
reason is that most identification techniques start from a 
system model of the form ( ) ( ) ( ),y t Fu t to= +  where o  repre-
sents measurement noise and F  is the transfer function of the 
system to be identified, and it is assumed that the noise and 
input are uncorrelated. However, if the system operates in 
closed loop, the input ( )u t  is determined from the measured 
output and hence now correlates with the measurement noise. 
The simplest work-around, and the one chosen here, is the 
indirect method. As shown in the conceptual block diagram in 
Figure 5, an exogenous test signal w  is added into the loop. 
The structure of the model then is ( ) ( ) ( ),y t T w t to= +  but T  
is the closed-loop transfer function, and w  and o  are indeed 
uncorrelated. Its frequency response ( )T ej~  can then be identi-
fied with any open-loop technique, and the open-loop 
response ( )F ej~  can be recovered by simple algebra. For more 
background and more sophisticated methods see, for exam-
ple, [11] and [12]. Here, the closed-loop transfer function from 
the test signal w  (added into the input of the power amplifier) 
to the microphone output y  is

,T KF
KF

1=
-

where K  is the aggregation of 
all the gains of the other com-
ponents (assumed to be inde-
pendent of frequency) in the 
loop. Once T  is identified, F  is 
obtained by inverting the 
above relation

 .F K T
T1

1=
+
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FIGURE 3 A diagram of the fundamental acoustic mode of the Rijke 
tube showing its half-wave nature. In the top three rows, the spatial 
waveforms are shown. In the first row, acoustic pressure is shown 
in color, and the acoustic velocity at the ends is illustrated as 
arrows. The bottom row depicts one period of the temporal wave-
form of the velocity at the bottom of the tube. In phase (a), the pres-
sure just started increasing in the center of the tube due to the air 
rushing in, which in (b) has led to the pressure achieving a maxi-
mum at the center, while, simultaneously, the velocity has been 
decreased by the resulting pressure gradient. In (c), the pressure 
gradient has inverted the velocity, so that air now starts rushing out 
of the tube with (d) increasing velocity, until (e) the pressure 
reaches a minimum in the center and the gradient leads to (f) air 
being sucked in again, until (a) pressure moves toward its maxi-
mum again and the cycle repeats.
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FIGURE 4 A depiction of the effects of proportional feedback on the 
Rijke tube. A minimum feedback gain Kmin  is necessary to stabilize 
the unstable fundamental mode. There is then a critical higher gain 

,Kmax  beyond which a higher harmonic mode of the tube becomes 
unstable, yielding a high-pitched screech.
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FIGURE 5 An equivalent block diagram of the Rijke tube with acoustic feedback. The speaker, micro-
phone, and pre-amp transfer functions are lumped together with that of the Rijke tube. The controller is 
simply regarded as a variable gain. The external test signal ~  is used for closed-loop identification.
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It would be very difficult to obtain a value for ,K  which, for 
instance, incorporates the unknown conversion factor from 
pressure to voltage output by the microphone, but the 
above equation shows that the poles and zeros of F  can be 
identified from those of T  without knowing .K  In other 
words, F  is identified up to an unknown gain factor / .K1

Despite the issues mentioned, the “direct method” of 
simply applying open-loop techniques to the plant input u
and the output y  might be a viable alternative in practical 
applications, in particular when the controller K  is very 
complex or unknown. An external signal w  should still be 
used to ensure rich-enough frequency content in .u  For 
example, in [13] and [14], such methods are applied success-
fully to the Rijke tube.

Open-Loop Identification Method
The dynamics underlying the Rijke tube are a combination of 
acoustics and heat transfer and are thus of relatively high 
order (in fact, they are infinite dimensional). Nonparametric 
frequency-domain identification schemes are better suited to 
those types of systems than time-domain based ones since a 
model order does not have to be selected a priori. Instead, the 
frequency response ( )T ej~  is identified directly, and then a 
least-squares-based method is used to fit a model of appropri-
ate order over the identified frequency range. Spectral meth-
ods (see, for example, [15, Ch. 6]) estimate the frequency 
response as the ratio of the cross-spectrum ( )yw ~U  of output 
and test signal and the spectrum ( )w ~U  of the test signal. The 
Matlab System Identification Toolbox [16] offers two imple-
mentations of these methods, spa and spafdr. While both 
estimate the cross spectrum and input spectrum by applying 
a smoothing window to what roughly amounts to the discrete 
Fourier transforms of input and output data, spa performs 
the windowing in the time domain, whereas spafdr applies 
the window in the frequency domain. The expected sharp 
peaks in the frequency response require fine resolution in fre-
quency; since a narrow frequency-domain window, which is 
what is required, corresponds to a wide time-domain window, 
using spafdr allows for specifing a small (frequency-do-
main) window, resulting in a drastic decrease in computation 
time compared to the large (time-domain) window that would 
have to be specified to achieve the same resolution using spa. 
(Another important distinction between spa and spafdr is 
that the latter allows for frequency-dependent resolution 
(hence the name), but this feature was not used here). The 
least-squares fit is then performed using the function cls-
fits from the FREQID Toolbox for Matlab [17].

Test Signal
A test signal should have rich frequency content, while, due 
to actuator and sensor limitations in physical systems, 
amplitudes should be kept reasonably small. Popular 
choices include white noise, Schroeder-phased sinusoids 
[18], and sine sweeps (also known as chirp signals). After 
experiments with all three types of signals, sine sweeps, 
which have been found to be beneficial in the identification 
of acoustic systems [19], emerged as the most effective 
choice; all shown data was collected using a sweep over the 
shown frequency range.

For the identification experiment, the tube is first 
brought to a hum. Then, the feedback with a stabilizing 
gain is turned on, and the test signal is added to the feed-
back signal, as shown in Figure 5. The microphone signal is 
recorded for the duration of the experiment (the data used 
here was collected over 120 s), and together with the applied 
test signal forms an input–output pair, which is all the data 
needed to obtain a spectral estimate. To minimize the 
effects of random noise, this procedure is repeated several 
times, and an average of the estimated frequency responses 
is formed. Figure 6 shows an averaged closed-loop 
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FIGURE 6 The closed-loop frequency response obtained with a 
sine sweep over the range of (a) 0–2.5 kHz and (b) 0–900 Hz. The 
response below 20 Hz, which is outside the audible range, and above 
1 kHz is likely dominated by microphone and speaker distortions. The 
range 0–1 kHz, however, exhibits typical wave-like dynamics with 
resonances occurring at multiples of the fundamental frequency. 
Note that here and in all Bode plots that follow, a linear frequency axis 
is used to emphasize the pattern of a fundamental frequency with 
harmonics.
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frequency response along with the individual experiments. 
This response, with several very lightly damped modes at 
integer multiples of a fundamental frequency, has the sig-
nature of wave-like dynamics. The fundamental frequency 
corresponds very closely to the frequency of the hum 
observed in the nonstabilized Rijke tube.

To perform the least-squares fit of a finite-dimensional 
transfer function model for T  to the estimated frequency 
response, a value for the model order needs to be selected. 
Figure 7 shows a 12th-order transfer function fit, which nicely 
captures the first six harmonics in the frequency response.

To obtain the transfer function ,F  which is a parametric 
model of the open loop, the fitted model T  is then plugged 
into (1). Of course, it is also possible to apply (1) to the non-
parametric estimated frequency response at each fre-
quency, thereby obtaining a nonparametric model of the 
open loop. Both of those possibilities are compared in 
Figure 8. They are in close agreement, which is encourag-
ing. Note that while the phase at the first peak of the closed-
loop T  drops by 180°, indicating a stable pole slightly to the 
left of the imaginary axis, it increases by 180° in the open-
loop response, indicating a pole slightly in the RHP.

Model Validation: Root Locus Analysis
The model F  of the open loop obtained in the previous 
section can now be used to explain the experimental 
observations. The root locus explains why proportional 
feedback initially stabilizes the thermoacoustic instability 
and why a higher-frequency mode becomes unstable at 
high gains. It will also give a quantitative prediction of 
that higher frequency, a prediction that can be used to 
validate the model.

Figures 8 and 9 show the root locus of the identified 
open-loop dynamics. The pole pattern resembles that of a 
damped wave equation, with imaginary parts of the 
poles being integer multiples of a fundamental frequency 
and the real parts having successively higher damping as 
the mode frequency increases. As promised, the funda-
mental mode is unstable, having a positive real part. The 
imaginary part of the fundamental mode corresponds to 
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the hum frequency heard when the tube is initially  
powered on.

This system also has multiple RHP zeros that ultimately 
attract a subset of the initially stable open-loop poles into 
the RHP, thus causing instability to reoccur at high gains. 
Figure 10(a) shows the locus and the pole locations at the 
value of the gain sufficient to initially stabilize the funda-
mental mode (denoted Kmin  in Figure 4); all poles are in the 
left-half plane. However, due to the presence of RHP zeros, 
some poles will eventually cross into the RHP as the gain is 
increased. Figure 10(b) indicates that, for this particular 

identified model, it is the fifth harmonic mode that becomes 
unstable at higher gain (denoted Kmax  in Figure 4). The fre-
quency of this mode must correspond to the frequency of 
the screech heard in the experiment as the system becomes 
unstable again at high feedback gains, which is indeed what 
was observed on the setup used to collect the identification 
data. This serves as a useful method of model validation.

Common Problems in the Identification Process
Often, the phase of the open-loop frequency response will 
also drop, instead of increase, by 180° at the first peak, that 
is, the open loop is identified as stable, while it is known 
from the initial experiment that the open loop must be 
unstable. The stability of the open loop is very sensitive to 
the amplitude and phase of T  at the first peak. This is most 
easily explained with an argument based on the Nyquist 
criterion. From (1), it is seen that F  has the same poles as T  
in negative unity feedback, so the stability of F  can be 
assessed through the Nyquist criterion. For T  to encircle 
the critical point ( , ),j1 0-  requires | |T 1>  and T 180c+ =-  
at the same frequency. Inspecting Figure 6 again, for the 
presented data, the first peak reaches only about 2 dB, and 
the range for which it exceeds 0 dB is only about 1 Hz wide. 
Hence, if the peak is “cut off,” the identification will result 
in a stable open loop. Likely culprits are insufficient fre-
quency resolution and too much smoothing during the 
spectral estimation. This situation is detailed in Figure 11. 
If increasing the resolution and decreasing the smoothing 
do not help, a different speaker might be the solution; 
speakers were found to have quite different frequency 
responses, and some added considerable phase lag.

It also might happen that 
the root locus predicts the 
higher harmonic instability 
incorrectly. This again indi-
cates that the initial closed-
loop identification step was 
inaccurately performed (such 
as insufficient or noisy fre-
quency response data or the 
order selected for the model 
fit is too low). A repeat of the 
identification step with more 
care will typically resolve this 
issue, and the more carefully 
identified model will then 
yield the correct prediction of 
the high gain instability.

Finally, if experiments are 
run for a long time, the tube 
walls, especially around the 
heater, absorb a lot of heat. If 
the identification is stopped 
and restarted for a new run, 
there might be no initial 
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humming, due to the tube walls heating the air around the 
heater to the point where the heat transfer between air and 
heater is insufficient to support the humming. In that case, 
it is necessary to wait for the tube to cool off or, if the setup 
admits, increase the power to the heater to increase the coil 
temperature.

Microphone Position
The microphone position generically influences only the 
location of the zeros, not the poles, which is why its exact 
position was never stated. However, there are special loca-
tions that do yield interesting results. Figure 12 shows the 
identified open loops if the microphone is placed at three 
quarters, and at half the length of the tube. Doing so appears 
to remove peaks. In the former case, it would be every 
fourth and in the latter case every even-numbered one.

This is relatively easily explained with the physical 
model of the transfer function developed in the modeling 
section, but there is also a very intuitive explanation. Each 
peak corresponds to a mode, that is, a standing pressure 
wave in the tube. The standing wave corresponding to the 
first peak is a half-wave, for the second peak a full wave, 
and so on. Placing the microphone at, for example, the 
center means placing it where all the even-numbered modes 
have a pressure node, and hence their contribution is not 
registered by the microphone, which is a pressure sensor.

This observation would not be surprising for a tube 
without a heater, but the fact that it still holds true with the 
heater indicates that the thermoacoustic effect is pulling 
the first mode into the RHP and that regular acoustics 
dominate the response.

Estimating the Wire Temperature
Having an estimate of the heating coil’s temperature is 
useful regarding the choice of materials to be used and in 
the physical modeling process. It is straightforward to obtain 
a rough estimate from measurements of voltage supplied to, 
and current drawn by, the heating coil by using the tempera-
ture dependence of the electrical resistance of the wire. The 
resistance R  of a wire is commonly assumed to depend on 
its temperature  T  affinely

( ) ( ) ,R T R T T10 0a= + -^ h
where R0  is the resistance at ,T0  a known point of reference, 
and a  denotes the (linear) temperature coefficient, which is 
tabulated for different materials. Typically,  ,0>a  that is, 
the resistance increases as the material heats up; for the 
Nichrome wire used here, .1 76 10 4.a -  1/K. The relation-
ship can be inverted to give

.T T R
R R

0
0

0

a
= +

-

For the reference point ( , ),R T0 0  room temperature 
T 2930 =  K is assumed. The resistance R0  at room tempera-

ture is estimated by setting the power supply to a small 
voltage and recording current and voltage across the coil; 
then the supplied power is increased until the instability 
sets in, and current and voltage are again recorded. Since 
current measurements are very noisy, in particular at low 
voltages, where the signal-to-noise ratio is smaller, aver-
ages over relatively long times are taken. An example time 
trace is shown in Figure 13, resulting in the estimate

C K.T 660 933wire c. =

It is worth pointing out that while resistive thermometers 
are based on the same principle, the wire temperature here 
can by no means be used as a measurement of the gas tem-
perature. For that to be the case, the thermal inertia of the 
wire would need to be several orders of magnitude smaller, 
which is why resistive thermometers use extremely thin 
wires and different materials.

PHYSICAL MODELING OF THE RIJKE TUBE
The remainder of this article is devoted to physical and 
mathematical modeling of the Rijke tube at several levels 
of fidelity. The objective is to develop the most parsimo-
nious model from a systems and controls perspective 
that can explain experimental observations of thermoa-
coustic instabilities as well as the identification and 
feedback stabilization results. The key is to model the 
acoustic dynamics of the tube cavity, which are LTI, and 
the heat release at the coil, which contains a memoryless 
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ously difficult to identify.
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nonlinearity, separately. The feedback between those 
two physical phenomena is responsible for the thermoa-
coustic instability. As in the experimental section, it will 

be seen that LTI systems tools can explain much of the 
above phenomena.

A summary of the modeling results and their predic-
tions about the instability is given next. This summary sec-
tion can be largely read on its own; it assumes certain 
models for acoustics and heat transfer that are interpreted 
and motivated physically. Detailed derivations are post-
poned to subsequent sections for those readers interested 
in delving deeper.

Summary of Modeling and Analysis Results
A control-oriented model and physical description of the 
basic thermoacoustic dynamics can be summarized using 
two descriptive diagrams. Begin with Figure 14, where 
“tube acoustics” represents the dynamics of the velocity 
and pressure fluctuations vu  and .pu  These are the fluctua-
tions of the actual flow velocity v  and pressure p  about the 
nominal values vr  (the steady upward velocity) and pr  
(atmospheric pressure), respectively. These fluctuations are 
also referred to as “acoustic velocity” and “acoustic pres-
sure.” Both velocity and pressure fluctuations are fields 
that vary along the length of the tube, while the nominal vr  
and pr  are assumed to be constant in both time and space. 
As demonstrated later, the dynamics of ( , )v pu u  are described 
by a one-dimensional wave equation with the speaker 
(actuator) input modeled as a pressure boundary condition, 
while the microphone signal is the value of the pressure 
field at the microphone location. These acoustic dynamics 
constitute an LTI (though infinite-dimensional) system.

The second ingredient is to model the interaction 
between the heater coil and the surrounding air. In a steady 
situation with constant upward flow, heat is transferred 
from the heater to the upward-flowing gas conductively as 
well as convectively. The convective heat transfer is a func-
tion of flow velocity: the higher the velocity, the more heat is 
transferred from the coil to the gas. If flow velocity near the 
heater is fluctuating (in time), then the amount of heat trans-
ferred from coil to gas also fluctuates in response. This is 
shown in Figure 14 as a green wavy arrow depicting veloc-
ity fluctuations and red waves depicting fluctuations of heat 
released from the coil. The block labeled “coil-to-gas heat 
release” represents the effect of local velocity fluctuations 

( , )v t xou  on fluctuations ( )Q tu  in the amount of heat released. 
On the other hand, as will be demonstrated later, ( )Q tu  acts 
as a source term in the gas dynamics (10) and can therefore 
be considered as an input to the acoustic part of the model. 
Within the “tube acoustics” block, there is an acoustic feed-
back path from ( )Q tu  back to ( , )v t xou  that, as explained ear-
lier, drives ( )Q tu  through the heat release mechanism.

Figure 15 describes this feedback mechanism in a little 
more detail. The center block G  is the LTI 2 × 2 transfer 
function matrix of the acoustics from the inputs to the out-
puts, as depicted in Figure 14. This matrix is made up of 
transcendental transfer functions, since the underlying 
dynamics are infinite dimensional. For example, with 
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FIGURE 14 A block diagram depiction of the internal and input–output 
dynamics of the Rijke tube. The “tube acoustics” block models the 
spatially distributed velocity vu  and pressure pu  fluctuations. Speaker 
and microphone signals are ideally modeled as pressure fluctuations 
pu  at the bottom end x 0=^ h and mic position ,x xm=^ h  respectively. 
The fluctuations Qu  of heat released from coil to gas act as a source 
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coupling between acoustics and heat release dynamics is the cause of 
the thermoacoustic instability.
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undamped acoustics, coil location / ,x L 4o =  and micro-
phone position / ,x L 4>m  the matrix is

( )

( ) ( )
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for values and explanations of the involved parameters, see 
Table 1. ( )G s  is derived in the remaining sections, in par-
ticular “Transfer Function Computation for Two-Point 
Boundary Value Problems.”

The transfer function ( )G s22  is important for under-
standing the thermoacoustic instability since it is in feed-
back with the heat release dynamics. Note that on the 
imaginary axis

,cosh cosc
L j c

L
2 2~ ~=` `j j

and therefore G22  has infinitely many poles on the imagi-
nary axis at

( ) , ,n L
c n2 1 Zk !~ r= -

that correspond to the odd acoustic modes of a tube with 
two open ends, that is, standing waves with wavelengths of 

, / , / ,L L L2 2 3 2 5  and so on. The fundamental mode corre-
sponds to n 1=  and is the one depicted in Figure 3. If 
damping and/or radiative effects were to be included, 
those poles would be shifted to the left in a similar manner 
to those in Figure 9; this issue is further elaborated in 
“Wave Dynamics with Diffusion and Damping.” The 
important fact to keep in mind is that G22  has many very 
lightly damped poles arranged at integer multiples of a funda-
mental frequency.

The heat release dynamics in the bottom blocks of 
Figure 15 combine two effects, with the simpler one being a 
first-order lag with time constant thr  representing the 
“thermal inertia” of the boundary layer surrounding the 
coil. The second effect is the square-root dependence of 
heat release on velocity. This is known as King’s law [20], 
and it reflects that convective heat transfer is enhanced by 
increasing velocity, but the “enhancement rate” decreases 
as velocity increases. This effect of diminishing returns of 
heat release is responsible for the fact that an instability in 
the feedback loop between G22  and heat release ultimately 
produces a stable limit cycle. This is similar to what occurs 
in linearly unstable loops containing a saturation-type 
memoryless nonlinearity. The exponentially growing 
response due to the instability ultimately saturates, pro-
ducing a stable limit cycle.

Hence, the heat release dynamics constitute a feedback 
from acoustic velocity to heat transfer. It is very important to 
distinguish this feedback from the stabilizing proportional 
feedback of the preceding section. On the one hand, the heat 
release process can be interpreted as an internal feedback loop 
because it connects two signals not accessible to measure-
ment or direct manipulation. On the other hand, the stabiliz-
ing feedback is an external controller. Thus, the open loop 
identified in the previous section corresponds to the transfer 
function from ( )p 0u  to ( )p xmu  in Figure 15, which includes the 
closed loop of G22  and heat release. The above qualitative 
arguments hint that the key to quantitative understanding 
of the thermoacoustic instability is analyzing the lineariza-
tion of this internal feedback loop, consisting of ,G22  the 
first-order lag, and the linearization of the heat release 
square-root law, which can be modeled as a variable linear 
gain. It turns out that a root locus analysis accurately 
describes the effect of this gain, as is demonstrated next.

The open-loop transfer function of the linearization of 
the lower feedback loop in Figure 15 is
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FIGURE 15 The nature of the feedback between acoustics and heat 
release depicted in Figure 14. The linear time-invariant acoustic 
dynamics transfer functions G sij ^ h have lightly damped modes, 
which are in feedback with a first-order lag and a memoryless 
square-root-type nonlinearity characterizing convective heat 
release. As a mapping from vu  to Qu , the nonlinearity can appear as 
either high or low feedback gain at small or large amplitudes of ,vu  
respectively. At small vu  amplitudes, the lightly damped modes of 
the acoustics are destabilized by the high “effective gain” of heat 
release. As amplitudes of vu  increase, the effective feedback gain 
decreases so that conditions for a stable limit cycle are achieved.
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where ( )f vl r  is the derivative of the square-root nonlinear gain 
at the steady upward flow velocity ;vr  see also (8) and (14). This 
represents a linear positive feedback gain that depends on the 
operating condition vr . Thus, the stability of the linearized 
closed-loop system can be completely characterized using the 
(negative gain) root locus of the transfer function

 ( ) .
cosh

L s

c
L s t s
2

1
1

1
hr

=
+` j  (4)

Since this transfer function has infinitely many poles, a little 
care is needed in generating the root locus. Figure 16 shows 
the locus of the zeros of ( )kL s1 +  using a continuation 
(Newton) method in the positive real parameter .k  The open-

loop poles are the acoustic ones lying on the imaginary axis 
together with one pole on the negative real axis correspond-
ing to the first-order lag in heat release dynamics. In reality, 
the acoustics have some damping and the corresponding 
poles lie slightly to the left of the imaginary axis, as for exam-
ple in Figure 9. Therefore, the open-loop dynamics are stable 
but have an array of very lightly damped poles. With the pos-
itive feedback from coil heat release, half of the acoustic poles 
eventually move into the RHP. The first pole (pair) to cross 
into the RHP corresponds to the fundamental frequency and 
is depicted by the red branches in Figure 16. Its imagi-
nary-axis-crossing frequency of 141 Hz corresponds almost 
exactly to the frequency of the hum recorded at the onset of 
thermoacoustic instability. Once this instability is triggered, 

Transfer Function Computation for Two-Point Boundary Value Problems
unified way to treat linear two-point boundary value problems 
can be described by using the first-order form, which is a state-

space realization with space x  as the independent variable

 ( ) ( ) ( ) , [ , ],x x F x G x x r x x xd
d

o i f!} } d= + -  (S2)

 ( ) ( ) .N u N x N xu i i f f} }= +  (S3)

The first equation is the differential equation, while the second 
expresses general linear boundary conditions. The inputs r  and 
u can be regarded as parameters. The objective is to obtain a 
formula for the solution ( )x}  as a function of r  and u. The matri-
ces F  and G may depend on other parameters (for example, the 
Laplace transform variable s), and the formula obtained applies 
to such cases as well.

The presence of ( )x xod -  in the r  input term implies that the 
solution ( )x}  could have a discontinuity at xo  but is continuous 
everywhere else. As shown in Figure S2, the upper and lower 
limits at the jump point ,xo  

( ) : ( ), ( ) : ( ),lim limx x x xo
x x

o
x xo o

} } } }= =
4 3

+ -

satisfy the relation [which follows from (S2)]

 ( ) ( ) .x x G ro o} }= ++ -  (S4)

The solution over each of the intervals [ , ]x xi o  and [ , ]x xo f  can 
be propagated from each end

 ( )
( , ) ( ), [ , ]
( , ) ( ), [ , ],x
x x x x x x
x x x x x x

i i i o

f f o f

!
!

}
}
}

U
U

= )  (S5)

where ( , )x x e ( )F x x
1 2

1 2U = -  for the constant coefficient ODE (S2). 
The jump relation (S4) can now be rewritten by first observing 
that (S5) gives

( ) ( , ) ( ),
( ) ( , ) ( ),
x x x x
x x x x
o o i i

f f o o

} }

} }

U

U

=

=

-

+

which, combined with (S4), yields a relation between ( )xi}  and 
( )xf}  as a function of the input r

 ( ) ( , ) ( , ) ( ) .x x x x x x G rf f o o i i} }U U= +^ h  (S6)

The given boundary conditions (S3) can now be combined 
together with (S6) in the following matrix-vector form

( , ) ( )
( )

( , )
.

x x
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N
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U U-
=; = ; ;E G E E

Finally, this permits rewriting the solution (S5) in terms of the 
inputs r  and u as

( )
( , ) ,

( , ) ,

[ , ],

[ , ],
x

x x
r
u

x x
r
u

x x x

x x x

0

0

i

f

i o

o f

!

!
}

U C

U C
= 6
6 ;

;
@
@
E
E

Z

[

\

]]

]]

where

( , ) ( , )
.

x x
N N

x x G
N

I
0

0f i

i f

f o

u

1

C
U U

=
- -; ;E E

Depending on the system structure, the value of }  at xo  might 
be discontinuous. The average value at the point xo  is written as

 ( ) ( , ) ( , ) .x x x x x
r
u2

1
av o o i o f} U U C= 6 ;@ E  (S7)

Note that the basic computation is that of ( , ),$ $U  which can 
be done analytically with computer algebra routines for systems 
of order four or lower. This corresponds to PDEs in which the 
spatial derivative order is four or lower, which is the case for the 
wave equation studied in this article.
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+xo
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FIGURE S2 An illustration of the jump point at xo .
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the system exhibits growing oscillations and leaves the linear 
regime (remember, the :u variables need to be small). Intui-
tively, the square-root term then offers diminishing returns, 
that is, at higher acoustic velocities, it almost saturates, and 
even larger oscillations in velocity are not supported by the 
enhanced heat transfer. The system is brought into a limit 
cycle, the shape of which can be seen in Figure 2(c).

While in the literature, the Rijke tube is typically mod-
eled as consisting of two or three compartments—a cold 
zone below the heater, a hot zone above it, and sometimes a 
small zone in which the heat exchange takes place—and the 
heater is introduced as causing a discontinuity in the veloc-
ity field [9], the tube is modeled in one piece in the following 

derivation. This approach avoids explicit introduction of 
time delays to account for sound waves traveling through 
cold and hot zones [13], [21], [22]. The hyperbolic functions 
can be interpreted in (3) to contain delays but, as will be seen, 
they result naturally from the spatially distributed modeling 
process; see also “One-Dimensional Compressible Gas 
Dynamics” and “Transfer Function Computation for Two-
Point Boundary Value Problems.”

Acoustic Dynamics from Mass,  
Momentum, and Energy Balances
The basic features of the Rijke tube experiment can be 
captured using a simplified model of one-dimensional 

Wave Dynamics with Diffusion and Damping
dding thermal diffusion, viscosity, and wall friction to the 
equations in the right-hand column of Table S1, linearizing, 

and rewriting in nondimensional form as outlined in “Dimension-
less Quantities,” gives
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   (S8)

where /Pr o a=  is the Prandtl number, the ratio of kinematic 
viscosity and thermal diffusivity, z  is a dimensionless diffusion 
strength parameter, and b  quantifies the amount of friction; for 
details on the derivation, see [34].

The complexity of the model has increased significantly: 
(S8) is of second order, due to diffusion, and in three states, 
since the density ru  is not decoupled anymore. In principle, the 
procedure of “Transfer Function Computation for Two-Point 
Boundary Value Problems” can still be applied, but the obtained 
transfer functions are too unwieldy to learn anything from them. 
However, the poles of any derived transfer function will be a 
subset of the spectrum of the right-hand-side operator, analo-
gously to the situation in finite-dimensional LTI systems. Hence, 
instead of transfer function computations, the spectrum of the 
right-hand-side operator is computed numerically using Cheby-
shev spectral methods. For details on and more applications of 
such methods, refer to the excellent book [35].

Figure S3 shows the significant part of the spectrum obtained 
using N 192=  grid points, along with some of the pressure modes 
for a specific set of the parameters Ma, Pr, z, and b  representa-
tive of the conditions in the Rijke tube experiment. As expected, 
the spectrum is located very close to, but to the left of, the imagi-
nary axis, with modes corresponding to a standing half-wave and 
its harmonics; poles corresponding to higher frequencies are 
farther left, indicating more damping. It is important to note that, 
in particular, the parameters z and ,b  which are known only to 
within maybe an order of magnitude, appear to have very well-

defined effects. Increasing the amount of diffusion z will bend the 
spectrum, that is, the parabola shape will become narrower, while 
increasing the amount of friction b  will shift the entire spectrum 
toward the left. These numerical computations validate the claim 
made during the analysis of the root locus in Figure 16, namely that 
the poles located on the imaginary axis would be shifted toward 
the left if neglected diffusion and/or damping effects were retained.
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FIGURE S3 A numerical computation of the spectrum of the spa-
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left. Higher frequencies are damped more but still lightly damped 
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compressible gas dynamics. A brief description and 
derivation of the Euler equations of gas dynamics in one 
dimension is included in “One-Dimensional Compressible 
Gas Dynamics.” These are partial differential equations 
(PDEs) that describe conservation of mass, momentum, and 
energy, respectively. They can be written in several forms, 
and the form chosen here is the one that relates the time-
varying density ( , ),t xt  velocity ( , ),v t x  and pressure ( , )p t x  
distributions along the axial dimension x  of the tube. The 
one-dimensional model is a reasonable approximation to the 
true three-dimensional physics since the Rike tube has a high 
aspect ratio, and therefore the important fluctuations of , ,vt  
and p are primarily in the axial direction. The equations are
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where ( , )q t x  denotes the external heat power added per 
unit volume and acts as an input (source term). The nonlin-
ear equations are written in a matrix-vector form that is 
convenient later for linearization. Depending on the steady 
conditions about which these equations are linearized, the 
resulting linearization is a one-dimensional linear PDE 
that looks like a wave equation and thus describes acoustic 
wave propagation. The linearization of the above equations 
will form the “tube acoustics” block in Figures 13 and 14.

Actuation and Sensing
The Rijke tube has both ends open, which is typically mod-
eled by having pressure boundary conditions held at the 
ambient atmospheric pressure. The bottom end, however, 
is very close to the actuating speaker, and while a true 
model of the influence of the speaker involves accounting 
for inward radiating waves, a simple and reasonable 
approximation is to assume the speaker signal causes pres-
sure fluctuations at the bottom end. Thus, the pressure 
boundary conditions for the system (5) are

 
( , ) ( ),

 ( , ) ,
p t p u t
p t L p

0 0

0

= +

=
 

(6)

where p0  is the ambient pressure, and ( )u t  is the speaker 
signal. A correction term could be introduced into the 
boundary conditions to account for the fact that, in reality, 
the nodes lie slightly outside the tube [10]. Since the effect of 
the end correction is small, an additional complication is 
avoided by neglecting this.

Note that ( )u t  acts as an input to the gas dynamics, but 
it is not distributed. The same holds for the measurement 
through a microphone, which is a pressure sensor whose 
output is (proportional to) the pressure ( , )p t xm  at the 
microphone location .xm  The controller used to stabilize 
the tube connects those two signals via a proportional con-
trol feedback loop.

Heat Transfer
The Euler equations (5) have an external heat input ( , )q t x  
as a source term, which can be used to model heat released 
from the coil into the gas. If the coil is assumed to be located 
in a very narrow section at location ,xo  then a reasonable 
approximation to this distributed input is

  ( , ) ( ) ( ),q t x A x x Q t1
od= -  (7)

where d  is the Dirac impulse with units 1/m, ( )Q t  is the 
heat power released from the coil in W, and A  is the tube 
cross section.

The next key step is to quantify the dependence of coil-
to-gas heat power released ( )Q t  on the flow velocity ( , )v x to

near the wire. Heat is transferred from a solid to a gas due 
to both conduction and convection. Convection depends on 
the velocity v  of the gas, whereas conduction does not; both 
depend on the temperature difference. King’s law [20] is a 
commonly used approximation for these dependencies, 
and in the current context it states that in steady flow, the 
heat power transfer QK  of a hot circular wire of length lw  in 
a colder fluid flow is

 | | ( ),Q l v T Twire gasK w vl l= + -^ h  (8)

where l  is the fluid’s thermal conductivity, and vl  is a con-
stant that is largely empirically determined. The first term is 
Fourier’s law of heat conduction, while the second term 
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FIGURE 16 The root locus for the feedback interconnection of G s22 ^ h 
and the linearized heat release dynamics in Figure 15. The plot should 
be interpreted as if it were shifted slightly to the left, as would be the 
case if realistic damping effects were included. The branch shown in 
red corresponds to the thermoacoustic instability. Assuming standard 
conditions on air, its crossover point is at 141 Hz, very close to the fre-
quency of the observed hum and the 144 Hz predicted by the identified 
model; see Figure 10. See Table 1 for the parameter values used.
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One-Dimensional Compressible Gas Dynamics
coustic phenomena occur in compressible fluids. In full gen-
erality, the dynamics of such fluids are often modeled by 

the Euler equations of gas dynamics. Since the Rijke tube has a 
high aspect ratio, the geometry is simplified so that all variations 
of pressure, density, and velocity can be assumed to occur only 
along the axial direction. Therefore, a simpler one-dimensional 
mathematical model of compressible gas dynamics is sufficient 
to describe thermoacoustic phenomena in the Rijke tube. The 
three physical laws of 1) conservation of mass, 2) momentum 
balance, and 3) energy balance can be used to derive three 
PDEs for one-dimensional gas dynamics as shown here. To 
begin with, consider a one-dimensional medium with a con-
trol volume between x1  and x2  as illustrated in Figure S4. Let 

( , )t x}  and ( , )t xz  be two spatially distributed fields that satisfy 
a flux-type relationship

d
d ( , ) d ( , ) ,t t x x t x

x
xx

x 2

11

2
} z=c m#

which states that the time rate of change of the total quantity 
of }  in [ , ]x x1 2  is given by the value of z  at the boundaries x1  
and .x2  Dividing the above equation by ( )x x2 1-  and taking the 
small-volume limit of ( )x x 02 1 "-  results in the PDE

( , ) ( , ) .t x t xt x2
2 2

2
} z

=

This accounting procedure can now be performed for the gas 
density ( , ),t xt  momentum ( , ) ( , ),t x v t xt  and internal energy 

( , ) ( , )t x U t xt  distributions. For a calorically perfect gas that 
also satisfies the ideal gas law, the internal energy (which 
accounts for the energy stored in molecular motion and vibra-
tion) can be expressed in terms of the pressure field by 

( , ) ( , ) ( / ) ( , ),t x U t x c R p t xvt =  where cv  and R  are the specific 
heat capacity and universal gas constant, respectively. The deri-

vation of the three physical laws is outlined in Table S1 in a simpli-
fied setting that neglects effects such as heat conduction within 
the gas, its viscosity, and external forces. These effects can be 
easily added to that derivation as needed.

An exercise in algebra and the product rule of differentia-
tion allows rewriting the PDEs of Table S1 in the following more 
standard form
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where : /R c1 vc = +  is the heat capacity ratio of the gas ( .1 4c =   
for diatomic gases like air), : ,1c c= -r  and ( , )q t x  denotes the 
heat power added per unit volume. These equations are the 
one-dimensional version of the Euler equations of gas dynam-
ics; the matrix-vector form they are written in is particularly con-
venient for linearization.

v(x1) v(x2)

p(x2)p(x1)

x1 x2 x

q

FIGURE S4 A small control volume used to account for density, 
momentum, and energy balances in a one-dimensional model. 
The time rate of change of a quantity inside the volume ,x x1 26 @ 
is equal to the flux through the boundaries x1  and x2  of quanti-
ties that influence it.
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TABLE S1 A derivation of the basic partial differential equations of one-dimensional gas dynamics.
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expresses that convective heat transfer occurs at a rate pro-
portional to | | .v  The formula suggests that heat transfer 
is enhanced by flow velocity, regardless of direction, but the 
“rate of enhancement” tapers off as velocity increases.

King’s law does not include any temporal dynamics. How-
ever, if the gas velocity fluctuates, there are important 
dynamic effects to be considered, and it will turn out that 
their inclusion is crucial to correctly predicting the frequency 
of the hum. These dynamics are mainly due to a boundary 
layer forming around the wire, which has its own thermal 
inertia. Figure S3 and “Boundary-Layer Effect on Heat 
Release” explain this effect. An intuitive picture is to imagine 
this boundary layer as a blob of stagnant air, through which 
the heat needs to be conducted before reaching the free stream 
of gas outside the boundary layer. The conclusion is that this 
boundary-layer effect introduces a first-order lag into the heat 
release process, which now can be modeled by

 ( ) ( ) ( ),t Q t Q t Q thr K=- +o  (9a)
 ( ) ( ) | ( , ) | .Q t l T T v t xK w wire gas v 0l l= - +^ h  (9b)

Note how the mapping from ( , )v xo$  to QK  in (9b) is the 
memoryless nonlinearity in the bottom loop of Figure 15, 
while (9a) represents the first-order lag.

Equation (9) tacitly assumed that Tgas  is constant, but in 
reality it fluctuates together with pressure and density. It is 
shown in a subsequent section (see Figure 17) that this effect 
is much less significant than the dependence on velocity 
fluctuations, and therefore Figure 15 has only the velocity 
fluctuations as an input to the heat release mechanism.

Linearization of the Acoustics
The full system is described by the gas dynamics (5), the 
boundary conditions (6), and heat input (7), which are in 

Boundary-Layer Effect on Heat Release
hen heat is transferred from a hot surface to a gas in steady 
relative motion, the heat transfer coefficient’s dependence on 

gas velocity is captured by King’s law 

 heat transfer coefficient | | .vv+ l l+  (S9) 

When gas velocity is not constant but fluctuating, this depen-
dence has dynamics as well, as discussed in Figure S5. Light-
hill [33] analyzed these dynamics in great detail; incidentally, the 
author was inspired to conduct this investigation by the Rijke 
tube. Whenever flowing fluid comes into contact with a solid, a 
boundary layer is formed, and it is found that the thermal inertia of 

the boundary layer around the wire can be modeled by a simple 
first-order lag, that is, a transfer function of the form / ( ) .t s1 1hr +  
An estimate for the corresponding time constant is given by [33]

. 5 steady fre tream velocity
diameter of the wire .t v

d0 2 e-shr
wire

$
= =r

Cascading the static and dynamic dependence of the heat 
transfer on the velocity leads to the model (9).

As has been observed in [33] already, this lag, even if it is very 
small, is crucial for the model to be valid. In the current setting, 
this can be demonstrated nicely by considering the root locus for 
the model without lag (corresponding to t 0hr / ), shown in Fig-
ure S6. This root locus predicts a humming frequency of roughly 
282 Hz, which is twice what is observed in experiments.

Boundary Layer

Ts
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Qb"f
Qs"b

Wire

Tr

v + vr u

FIGURE S5 An illustration of the boundary layer’s effect on coil-
to-gas heat transfer. Intuitively, the boundary layer depicted by 
the orange ellipse can be imagined as a blob of stagnant air. 
Heat transfer from the boundary layer into the free stream, 
denoted by ,Qb f"  reacts instantly to changes in the free stream 
velocity v v+r u  according to King’s law (S9), but heat Qs b"  trans-
ferred from the wire needs to propagate through the boundary 
layer before reaching the free stream, leading to a first-order lag 
from flow velocity vu to heat release qu  fluctuations.
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FIGURE S6 What the root locus of Figure 16 would look like if the 
wire’s thermal boundary-layer effect was ignored. This amounts 
to assuming t 0hr =  or equivalently ignoring the first-order lag in 
the heat-release response. The fundamental frequency branch 
that moves into the right-half plane is now incorrectly predicted 
to be twice what is observed in experiments. This illustrates that 
including the first-order lag is crucial to correctly predict ther-
moacoustic instabilities.
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feedback with the heat release model consisting of King’s law 
(9b) and the first-order lag (9a) of the boundary-layer effect. 
The two subsystems of gas dynamics and heat release can be 
linearized separately. The linearization of the former yields 
linear acoustic dynamics, and while the linearization of the 
latter is straightforward, an analysis of the involved parame-
ters reveals that velocity fluctuations are significantly more 
important than pressure and density fluctuations in the feed-
back path.

Linearization of the nonlinear model (5) requires know-
ing the steady-state conditions. An accurate calculation of 
the steady state requires incorporating buoyancy effects (to 
model steady upward flow due to steady heat release from 
the coil) as well as the steady temperature and density vari-
ations along the tube length (for example, gas in the upper 
section is hotter than that in lower section). However, since 
the important parameter in acoustic dynamics is the speed 
of sound, and the above variations have relatively minor 
effect on the speed of sound, an alternative and much sim-
pler equilibrium can be used for the acoustic linearization. 
This simple equilibrium assumes spatially constant density, 
velocity, and pressure fields, which trivially satisfy the non-
linear PDEs, if there is no heat input q 0/^ h and no speaker 
actuation .u 0/^ h  Denoting a steady state by a bar   :r  and 
small deviations from it by a tilde ,:u  a linearization is 
obtained by plugging ( , ) ( , )t x t xt t t= +r u  and so on into the 
nonlinear equations and discarding all terms of second or 
higher order in the deviation variables. Applying this pro-
cess to (5) leads to
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which very closely resembles (5) with the important differ-
ence that the “ A-matrix” is now a constant matrix and 
hence, (10) is a linear, but infinite-dimensional, state-space 
description of the gas dynamics with the state .v p Ttu u u6 @  Fur-
thermore, from (6) it follows immediately that ,p p0=r  and 
that ( , ) ( )p t u t0 =u  and ( , ) .p t L 0=u

A further simplification is due to the upward flow vr  
being very small (relative to the speed of sound). Rewriting 
the model in dimensionless quantities shows that if ,v c%r  
where /c pc t= r r  is the velocity of sound in steady state, 
then vr  can be neglected. For details see “Dimensionless 
Quantities.” Setting v 0=r  leads to the dynamics of (10) 
being decoupled: the density tu  does not couple into the 
pressure and velocity dynamics and can be dropped from 
consideration. Therefore, the linearization of the gas 
dynamics yields the following wave equation with the heat 
fluctuations Qu  as a source term at x xo=  
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The boundary conditions (6) on pressure and the speaker 
signal u  can be written in the general form
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The two equations (11) and (12) represent the LTI dynamics 
of acoustics driven by the two scalar inputs Q tu ^ h and  .u t^ h  
The remaining task is to find an expression for the transfer 
functions from those two inputs to the pressure and velocity 
at any location within the tube as outputs. A standard tech-
nique is to apply the Laplace transform to (11) and (12) and 
rearrange so that the spatial derivative is on the left-hand 
side of the equation. The result is an ordinary differential 
equation (ODE) with boundary conditions
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(13)

where ( , ),s xV  ( , ),s xP  ( ),sU  and ( )sQ  are the Laplace 
transforms (in t ) of ( , ), ( , ), ( ),v t x p t x u tu u  and ( ),Q tu  respec-
tively, and differentiation in x  is denoted by prime, for 
example, ( , ): / ( , ) .s x d dx s xV V=l  The Laplace transform 
variable s  can be simply regarded as a parameter in the 
above differential equation, which can now be treated as 
an ODE (in x ) with two point boundary conditions. A 
general formula (S7) for the solution of this two-point 
boundary-value problem is derived in “Transfer Function 
Computation for Two-Point Boundary Value Problems.” 
Application of this procedure to (13) yields the transfer 
function matrix (3).

Linearization of the Heat Release
To facilitate interconnection of heat release and acoustic 
models, the temperature T  in King’s law (9b) can be 
expressed in terms of the state variables of acoustics p  and 
t  by using the ideal gas law /( )T p Rt= ; note that now, Tgas  
is not initially assumed to be constant, but it is shown in 

1
thr s + 1Q̃(t) ṽ(t, xo)

˜

pr
f(v)Tr r

tr
f(v)Tr r

f'(v)(Twire- T)r r

t(t, xo)

p̃ (t, xo)
-

FIGURE 17 A signal flow diagram of the linearized heat-release model. 
The analysis in “Dimensionless Quantities” shows that the gains of the 
local acoustic pressure ,p t xqu ^ h and the local density variation ,t xt qu^ h 
are much smaller than the gain of the local acoustic velocity , ,v t xqu^ h  
hence they may be neglected.
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“Dimensionless Quantities” that its contribution (expressed 
with pressure and density) can be neglected. As in the pre-
ceding section, all variables are then expressed as steady 
state plus deviation, for example, ,v v v= +r u  and the linear-
ized version of (9b) takes the three-input form

 ( ) ( ) ( ) ( ) ,Q f v T f v T T f v
p
T v

p
wireK

t

t

= - -lu r
r
r

r r

u

u

u
; >E H  (14)

conveniently written as a vector gain multiplying the 
acoustic states. /( )T p Rt= r r  is the steady-state temperature 
and simply a parameter, and ( ): ( | |)f v l vw vl l= +  is the 
velocity-dependent heat transfer coefficient according to 
King’s law (8).

This representation of the heat release dynamics illus-
trates nicely that while all three state variables influence 
the heat transfer process, they do so with different gains, 
and so it is no surprise that this model can also be simpli-

fied substantially by considering the relative sizes of those 
gains. Careful dimensional analysis of the linearization 
shows velocity fluctuations to be the main driver of heat 
release dynamics when the flow is very subsonic (that is, 

);v c%r  for details, see “Dimensionless Quantities.” It is 
thus reasonable to proceed with the single-input linearized 
version of (9b)

( ) .Q f v T T vK s= -lu r u^ h
Figure 17 depicts this reduction graphically. For the 
range of steady velocities vr  in the Rijke tube experiment, 
the nonlinear heat release dynamics (the bottom loop  
of Figure 15) are only a function of velocity fluctuations, 
and the linearization is represented compactly by the 
transfer function

 ( )
( ) ( )

B s t s
f v T T

1hr

s
=

+

-l r
 (15)

Dimensionless Quantities

I  t is common practice in fields such as fluid dynamics or heat 
transfer to express physical relationships in terms of dimen-

sionless quantities, and for good reasons: it often leads to a 
reduced number of parameters, allows comparing relative sizes 
more easily, and leads to aesthetically more appealing equations.

In the model equations for the Rijke tube, there are three 
dependent variables, namely , ,vt  and p, and the two indepen-
dent variables x  and .t  Variables are nondimensionalized by set-
ting them in relation to some reference value; a natural reference 
value for the pressure p would be its nominal value, the atmo-
spheric pressure ,p p0 = r  similarly for t . The situation is different 
for the velocity v . It is expected that the nominal velocity vr  is very 
small, hence scaling v  by vr  would lead to a large quantity, not 
comparable to the scaled pressure and density. In other words, 
while the percentage change in p and t  will be small, the per-
centage change in v  will be large. Thus, the velocity is scaled by 
c, the speed of sound, and the set of scaled variables is

: / , : / , and : / .p p m v c r} t t= = =r r

Similarly, scaling the spatial variable x  by the tube length L  
and time t  by the time it takes sound to propagate through the 
entire tube yields

: / , : / ,x L ct Lp x= =

and
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Rewriting, for example, the conservation of momentum 
equation (see Table S1) using dimensionless variables and the 
relation /c p2 c t= r r  leads to
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2

x p c p
}
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Rewriting the state-space model (10) in terms of the dimen-
sionless variables yields the more appealing dimension-
less form
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where :u  signifies deviation from steady state, Ma: /v c=  is the 
Mach number, and : ( / )q L pc qc=c r r  simply lumps q  with several 
parameters to obtain a dimensionless input.

Using (S1), the case for neglecting the diagonal elements 
in (10) can now be made more rigorous: without computation 
or measurement, it is clear that Ma ,1%  whereas c  is of order 
unity, hence compared to ,Ma .0.c

Similarly, rewriting (14) using the dimensionless variables 
gives

( ) ( ) ( ) ( ) .Q f v T cf v T T f v T
r
mwireK

}
= - -lu

u
u

u
r r r r r r8 >B H

A comparison of the gains of ru  and ,}u  on the one hand, and 
,mu  on the other, leads to
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If all terms except for Ma can be expected to be of order 
unity or less, then it is justified to neglect the contributions of 
density and pressure variations to the heat transfer. The only 
term in question is / ( )vvl l r  the ratio between conductive and 
convective heat transfer; these are typically comparable (see 
[20, Tables V, VI] and note that velocities are measured in cm/s),  
and hence this term is also of order unity.
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between local velocity fluctuations ( , )v t xou  and heat released 
into the gas ( );Q tu  see also Figures 14 and 17.

It should be stressed here that the significance of the 
steady buoyancy-induced upward velocity vr  is very differ-
ent for the heat release than for the gas dynamics. The 
wave-like equation (11) for the gas dynamics was obtained 
by assuming v 0.r  with the justification that the dynamics 
would not change much if vr  were nonzero but small. For 
the heat transfer, however, assuming no steady upward 
component in the velocity would result in an invalid linear-
ization, since the derivative of | |$  is discontinuous at 
zero. The importance of the offset in velocity lies in moving 
to the “linearizable part” of the square root function, as 
depicted in the bottom block in Figure 15.

Comparison of Modeling and Empirical Results
Finally, the previous modeling efforts can be used to test 
how closely the physical model (3) corresponds to reality 
(or rather the identified model as a proxy for reality) beyond 
explaining the thermoacoustic oscillations. It is important 
to understand first the relationship between the modeled 
and identified transfer functions. The open-loop Bode plot 
of Figure 8 corresponds to the identified response ( )F ej~  of 
pressure fluctuations, as measured by the microphone, to 
pressure fluctuations induced by the speaker. In the model 
depicted in Figure 15, this Bode plot would correspond to 
the transfer function from ( )p 0u  to ( )p xmu  (with w  and K  set 
to zero), including the (linearized) heat release feedback 
loop. For clarity, this is illustrated in Figure 18. (The identi-
fied response F  also includes dynamics of the audio  
components; see Figure 5. By neglecting them in the model-
ing process, it is implicitly assumed that those components 
can be modeled as pure gains, and this assumption is justi-
fied, since the frequency range of interest is well within the 
audible range of human hearing.)

Comparisons need to be made between the identified
open loop ( )F ej~  and

( ) ( ) ( ) ( )
( ) ( ) ( )

.F s G s G s B s
G s B s G s

111
22

12 21
= +

-
s

There remain, however, several unknown parameters in 
the model: an overall gain due to the unknown conversion 
factors of speaker and microphone, the microphone posi-
tion ,xm  and the linear gain and time constant thr  of the 
heat-release feedback ( ) .B s  Additionally, the assumptions 
about friction, diffusive effects, and the steady upward 
flow that were made during the modeling of the gas 
dynamics, because they lead to a very simple model (11) 

and transfer function (3), also lead to system poles moving 
onto the imaginary axis, which made necessary the less-
than-rigorous argument that, intuitively, the neglected 
damping would move the poles toward the left (rendering 
them stable) and presents a clinical case that makes com-
parisons difficult. “Wave Dynamics with Diffusion and 

G11(s) G12(s)
G21(s) G22(s)R \
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FIGURE 18 The modeled transfer function between speaker input 
and microphone output signals can be represented—with linear-
ized heat release—as a lower linear fractional transformation 
F G11= +s / ( ) .G BG G B112 21 22-

This experiment is perhaps the simplest illustration of the  
phenomenon of thermoacoustic instabilities.
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FIGURE 19 Bode plots of open-loop K 0=^ h and closed-loop (with a 
stabilizing K 0! ) frequency responses derived from the physical 
model of Figures 18 and 14. Note the opposite signs of the 180° phase 
increase near the fundamental mode indicating open-loop instability 
and closed-loop stability of that mode.
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Damping” addresses the issue numerically, and Figure S6 
suggests that the poles lie on a parabola shape.

If the damping effect is imitated by considering 
j 0 1

2~ f f ~+ +  instead of ,j~  and choices of the unknown 
heat release time constant, heat-release gain, and feedback 
gain are made judiciously, the responses shown in Figure 19 
are obtained. Remarkably, despite employing very simple 
devices to treat the aforementioned difficulties, these 
responses qualitatively capture the most important features 
of Figures 6 and 7: resonant peaks, a phase increase of 180° at 
the first peak for the unstabilized open loop ,Fs   and phase 
drops of the same amount at the higher-order peaks for Fs  and 
at all peaks for the stabilized closed loop   /( ) .F KF1 +s s  That it 
is easy to find a wide range of parameter values that generate 
responses with these features after only a few manual itera-
tions can be seen as evidence that the physical model indeed 
captures the important structures of the underlying physics.

SUMMARY
The Rijke tube experiment has been presented from a con-
trol engineer’s perspective. To emphasize this perspective, 
the first part of the article showed how the experiment can 
be approached using “black box” techniques, such as system 
identification and model validation. Although a great deal of 
insight can be obtained from these generic systems tech-
niques, a thorough understanding of the underlying  
dynamics is achieved by physical modeling from first prin-
ciples in the second part of the article. As is typical in any 
control-oriented modeling exercise, choices must be made as 
to the right level of “granularity” of various pieces of the 
model. In this article, these choices were guided by the find-
ings in the empirical part of the investigation. A notable ex-
ample is modeling the boundary-layer effect on heat release 
from the coil, without which the root locus arguments pre-
sented would fail to explain the observed limit cycle fre-
quencies in the experiment. While a full-fidelity model of 
that boundary layer would be rather complex, it was shown 
the a first-order lag model for that boundary layer is suffi-
cient to produce consistent predictions. This back-and-forth 
cross validation between modeling and experiment can 
serve as an instructive pedagogical device.

Thermoacoustic effects are mostly known within the 
control community as undesirable phenomena that need to 
be regulated [2], [23], [3], [24]–[26], [6], [27]. There is, how-
ever, another perspective in which these effects can be 
regarded as an energy conversion mechanism. In the Rijke 

tube, the thermoacoustic instability produces a limit cycle 
that can be thought of as a mechanism for converting some 
of the steady heater power into acoustic power radiated 
from the tube. This is only one example of several types of 
thermoacoustic engines in which powerful, internally con-
tained acoustic waves perform the mechanical work in the 
energy conversion process [28], [29]. Thus, acoustic waves 
replace the traditional pistons, cranks, and turbines typi-
cally used in traditional heat engines and can therefore 
potentially have very high efficiencies. With some notable 
exceptions [30]–[32], these devices have not received much 
attention from control engineers. Although the Rijke tube 
is not a useful heat engine, the underlying energy conver-
sion mechanisms are sufficiently similar to thermoacoustic 
engines to render it a simple and useful experimental test 
bed for active control of thermoacoustic phenomena.

ACKNOWLEDGMENT
This work was partially supported by NSF awards CMMI-
1363386 and ECCS-1408442.

AUTHOR INFORMATION
Jonathan P. Epperlein (jpe@engineering.ucsb.edu) was 
awarded the Dipl.-Ing. degree in engineering cybernet-
ics from Otto-von-Guericke Universität, Magdeburg, Ger-
many, in 2008 and the M.Sc. in electrical and computer engi-
neering from the University of California, Santa Barbara, 
in 2011, where he is currently pursuing a Ph.D. degree. He 
has also spent time at the Hamilton Institute in Maynooth, 
Ireland, Yale University, and Harvard Medical School. His 
current research interests include modeling and control of 
thermoacoustic systems, spatially invariant distributed-
parameter systems, and optimal periodic control. He can 
be contacted at the Department of Mechanical Engineer-
ing, Building Eng. II, Room 2355, University of California, 
Santa Barbara, Santa Barbara, CA 93106-5070 USA.

Bassam Bamieh is a professor of mechanical engineer-
ing and associate director of the Center for Control, Dynam-
ical Systems, and Computation at the University of Califor-
nia, Santa Barbara (UCSB). He received the B.Sc. degree in 
electrical engineering and physics from Valparaiso Uni-
versity, Indiana, in 1983 and the M.Sc. and Ph.D. degrees 
in electrical and computer engineering from Rice Univer-
sity, Houston, Texas, in 1986 and 1992, respectively. Prior to 
joining UCSB in 1998, he was an assistant professor in the 
Department of Electrical and Computer Engineering and 

The root locus explains why proportional feedback initially stabilizes  
the thermoacoustic instability and why a higher-frequency mode  

becomes unstable at high gains.



APRIL 2015 « IEEE CONTROL SYSTEMS MAGAZINE 77

the Coordinated Science Laboratory at the University of Illi-
nois at Urbana-Champaign (1991–1998). His research inter-
ests are in robust and optimal control; spatially distributed 
systems; and problems at the interface between control, 
fluid mechanics, and statistical physics. He is a past recipi-
ent of the IEEE Control Systems Society G.S. Axelby Out-
standing Paper Award (twice), the AACC Hugo Schuck Best 
Paper Award, and a National Science Foundation CAREER 
award. He was elected a Distinguished Lecturer of the IEEE 
Control Systems Society (2005) and a Fellow of IEEE and the 
International Federation of Automatic Control.

Karl J. Åström was educated at The Royal Institute of 
Technology (KTH) in Stockholm. During his studies, he 
worked on inertial navigation for Swedish defense agencies. 
He joined IBM in 1961 to work on computer control. In 1965 
he was appointed professor of the new chair of automatic 
control at Lund Institute of Technology/Lund University, 
where he established a new department. From 2000 to 2009 
he was professor of mechanical engineering at the Univer-
sity of California, Santa Barbara. He is now senior professor 
at Lund University. He has broad interests in control, has an 
Erdös number of 3, and is a Life Fellow of IEEE. He has been 
awarded many honors, including the 1985 ASME Rufus 
Oldenburger medal, the 1987 Quazza Medal from IFAC, the 
1990 IEEE Control Systems Award, and the 1993 IEEE Medal 
of Honor. He is a member of the Royal Swedish Academy 
of Science, the Royal Swedish Academy of Engineering Sci-
ence, and the U.S. National Academy of Engineering.

REFERENCES
[1] P. L. Rijke, “Über eine neue Art, die in einer an beiden Enden offenen 
Röhre enthaltene Luft in Schwingungen zu versetzen,” Annalen der Physik, 
vol. 183, no. 6, pp. 339–343, 1859.
[2] J. Hathout, A. Annaswamy, M. Fleifil, and A. Ghoniem, “A model-based 
active control design for thermoacoustic instability,” Comb. Sci. Technol., vol. 
132, no. 1, pp. 99–138, 1998.
[3] A. Annaswamy, M. Fleifil, J. Rumsey, R. Prasanth, J. Hathout, and A. 
Ghoniem, “Thermoacoustic instability: Model-based optimal control de-
signs and experimental validation,” IEEE Trans. Control Syst. Technol., vol. 
8, no. 6, pp. 905–918, 2000.
[4] A. McIntosh, “Flame resonance and acoustics in the presence of heat 
loss,” Lect. Appl. Maths, vol. 24, pt. 1, pp. 269–301, 1986. 
[5] A. McIntosh, “On flame resonance in tubes,” Comb. Sci. Technol., vol. 69, 
nos. 4–6, pp. 147–152, 1990.
[6] A. P. Dowling and A. S. Morgans, “Feedback control of combustion oscil-
lations,” Annu. Rev. Fluid Mech., vol. 37, pp. 151–182, Jan. 2005.
[7] M. Juniper, “Triggering in the horizontal Rijke tube: Non-normality, 
transient growth and bypass transition,” J. Fluid Mech., vol. 667, pp. 272–308, 
Jan. 2011.
[8] M. Heckl and M. Howe, “Stability analysis of the Rijke tube with a 
Green’s function approach,” J. Sound Vib., vol. 305, nos. 4–5, pp. 672–688, 
2007.
[9] R. Raun, M. Beckstead, J. Finlinson, and K. Brooks, “A review of Rijke 
tubes, Rijke burners and related devices,” Progr. Energy Comb. Sci., vol. 19, 
no. 4, pp. 313–364, 1993.
[10] H. Levine and J. Schwinger. (1948, Feb.). On the radiation of sound from 
an unflanged circular pipe. Phys. Rev. [Online]. 73, pp. 383–406. Available: 
http://link.aps.org/doi/10.1103/PhysRev.73.383
[11] I. Gustavsson, L. Ljung, and T. Söderström, “Identification of processes 
in closed loop—Identifiability and accuracy aspects,” Automatica, vol. 13, 
no. 1, pp. 59–75, 1977.

[12] U. Forssell and L. Ljung, “Closed-loop identification revisited,” Auto-
matica, vol. 35, no. 7, pp. 1215–1241, 1999.
[13] A. S. Morgans and A. P. Dowling. (2007). Model-based control of com-
bustion instabilities. J. Sound Vib. [Online]. 299(1–2), pp. 261–282. Available: 
http://www.sciencedirect.com/science/article/pii/S0022460X06006079
[14] S. J. Illingworth, A. S. Morgans, and C. W. Rowley. (2011). Feedback con-
trol of flow resonances using balanced reduced-order models. J. Sound Vib. 
[Online]. 330(8), pp. 1567–1581. Available: http://www.sciencedirect.com/
science/article/pii/S0022460X10007169
[15] L. Ljung, System Identification: Theory for the User. Upper Saddle River, 
NJ: PTR Prentice Hall, 1999.
[16] L. Ljung, “System identification toolbox for use with MATLAB,” Math-
Works Inc., Natick, MA, 2007.
[17] R. de Callafon and P. M. van den Hof, “FREQID—Frequency domain 
identification toolbox for use with MATLAB,” Select. Topics Identif. Model. 
Control, vol. 9, pp. 129–134, Dec. 1996.
[18] D. Bayard, “Statistical plant set estimation using Schroeder-phased 
multisinusoidal input design,” Appl. Math. Comput., vol. 58, no. 2, pp. 169–
198, 1993.
[19] J. Burgess, “Chirp design for acoustical system identification,” J. Acoust. 
Soc. Amer., vol. 91, no. 3, p. 1525, 1992.
[20] L. V. King, “On the convection of heat from small cylinders in a stream 
of fluid: Determination of the convection constants of small platinum wires 
with applications to hot-wire anemometry,” Philos. Trans. Royal Soc., vol. 
214, pp. 373–432, 1914. 
[21] A. P. Dowling, “Nonlinear self-excited oscillations of a ducted flame,” 
J. Fluid Mech., vol. 346, pp. 271–290, Sept. 1997.
[22] N. Olgac, R. Cepega-Gomez, U. Zalluhoglu, and A. S. Kammer, “An 
unconventional perspective in thermoacoustic instability using a novel 
mathematical tool,” Dept. Mech. Eng., Univ. Connecticut, Storrs, CT, Tech. 
Rep., 2013. 
[23] A. Banaszuk, K. B. Ariyur, M. Krstíc, and C. A. Jacobson, “An adaptive 
algorithm for control of combustion instability,” Automatica, vol. 40, no. 11, 
pp. 1965–1972, 2004.
[24] J. E. Tierno and J. C. Doyle, “Multimode active stabilization of a Rijke 
tube,” in Proc. ASME Winter Annu. Meeting Active Control Noise Vibration, 
1992, vol. 38, pp. 65–68. 
[25] B. Zinn and Y. Neumeier, “An overview of active control of combustion 
instabilities,” in Proc. 35th Aerospace Sciences Meeting Exhibit, 1997, vol. 461. 
paper no.  97-0461.
[26] S. Candel, “Combustion dynamics and control: Progress and challeng-
es,” Proc. Combust. Inst., vol. 29, no. 1, pp. 1–28, 2002.
[27] M. Heckl, “Active control of the noise from a Rijke tube,” J. Sound Vib., 
vol. 124, no. 1, pp. 117–133, 1988.
[28] S. Garrett and S. Backhaus, “The power of sound,” Amer. Sci., vol. 88, 
no. 6, p. 516, 2000.
[29] H. Madarame, “Thermally induced acoustic oscillations in a pipe. I—
Oscillations induced by plane heat source in air current,” JSME Int. J. Ser. B, 
vol. 24, pp. 1626–1633, Sept. 1981.
[30] Y. Li, B. L. Minner, G. T.-C. Chiu, L. Mongeau, and J. E. Braun, “Adaptive 
tuning of an electrodynamically driven thermoacoustic cooler,” J. Acoust. 
Soc. Amer., vol. 111, no. 3, pp. 1251–1258, 2002.
[31] Y. Li, G. T.-C. Chiu, and L. Mongeau, “Dual-driver standing wave tube: 
Acoustic impedance matching with robust repetitive control,” IEEE Trans. 
Control Syst. Technol., vol. 12, no. 6, pp. 869–880, 2004.
[32] Y. Li, M. A. Rotea, G. T.-C. Chiu, L. Mongeau, and I.-S. Paek, “Extremum 
seeking control of a tunable thermoacoustic cooler,” IEEE Trans. Control 
Syst. Technol., vol. 13, no. 4, pp. 527–536, July 2005.
[33] M. J. Lighthill, “The response of laminar skin friction and heat transfer 
to fluctuations in the stream velocity,” Proc. Royal Soc. London A, Math. Phys. 
Sci., vol. 224, no. 1156, pp. 1–23, 1954.
[34] J. P. Epperlein, “Topics in modeling and control of spatially distributed 
systems,” Ph.D. dissertation, Univ. California, Santa Barbara, CA, Dec. 2014. 
[35] L. N. Trefethen. (2000). Spectral methods in MATLAB. Soc. 
Ind. Appli. Math. [Online]. Available: http://epubs.siam.org/doi/
abs/10.1137/1.9780898719598

 


