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Consensus and Coherence in Fractal Networks
Stacy Patterson, Member, IEEE and Bassam Bamieh, Fellow, IEEE

Abstract—We consider first and second order consensus algo-
rithms in networks with stochastic disturbances. We quantify the
deviation from consensus using the notion of network coherence,
which can be expressed as an H2 norm of the stochastic system.
We use the setting of fractal networks to investigate the question
of whether a purely topological measure, such as the fractal
dimension, can capture the asymptotics of coherence in the large
system size limit. Our analysis for first-order systems is facilitated
by connections between first-order stochastic consensus and the
global mean first passage time of random walks. We then
show how to apply similar techniques to analyze second-order
stochastic consensus systems. Our analysis reveals that two
networks with the same fractal dimension can exhibit different
asymptotic scalings for network coherence. Thus, this topological
characterization of the network does not uniquely determine
coherence behavior. The question of whether the performance
of stochastic consensus algorithms in large networks can be
captured by purely topological measures, such as the spatial
dimension, remains open.

Index Terms—distributed averaging, autonomous formation
control, networked dynamic systems

I. INTRODUCTION

D ISTRIBUTED CONSENSUS is a fundamental problem
in the context of multi-agent systems and distributed

formation control [1], [2]. In these settings, agents must reach
agreement on values like direction, rate of travel, and inter-
agent spacing using only local communication, A critical ques-
tion is how robust these systems are to external disturbances,
and in particular, how this robustness depends on the network
topology. In the presence of stochastic disturbances, a network
never reaches consensus, and the best that can be hoped for is
that certain measures of deviation from consensus are small.

In this work, we investigate the performance of systems
with first-order and second-order consensus dynamics in the
presence of additive stochastic disturbances. In particular, we
study algorithm performance for two classes of self-similar
networks with non-integer topological dimension. We use an
H

2

norm as a measure of deviation from consensus, which
thus quantifies a notion of network coherence. For systems
with first-order dynamics, it has been shown that this H

2

norm
can be characterized by the trace of the pseudo-inverse of the
Laplacian matrix [3]–[6]. This value has important meaning
not just in consensus systems, but in electrical networks [7],
[8], random walks [9], and molecular connectivity [10]. For
systems with second-order dynamics, this H

2

norm is also
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determined by the spectrum of the Laplacian, though in a
slightly more complex way [5].

Several recent works have studied the relationship between
network coherence and topology in first-order consensus sys-
tems. Young et al. [4] derived analytical expressions for
coherence in rings, path graphs, and star graphs, and Zelazo
and Mesbahi [11] presented an analysis of network coherence
in terms of the number of cycles in the graph. Our earlier
work [5] presented an asymptotic analysis of network coher-
ence for both first and second order consensus algorithms in
torus and lattice networks in terms of the number of nodes
and the network dimension. These results show that there
is a marked difference in coherence between first-order and
second-order systems and also between networks of different
spatial dimensions. For example, in a one-dimensional ring
network with first-order dynamics, the per-node variance of
the deviation from consensus grows linearly with the number
nodes, while in a two-dimensional torus, the per-node variance
grows logarithmically with the number of nodes. Even more
importantly, this work shows that these coherence scalings are
the best achievable by any local, linear consensus algorithm.
Thus, in lattice and torus graphs, the network dimension im-
poses a fundamental limitation on the scalability of consensus
algorithms.

A natural question is whether the same dimension-
dependent limitations exist in networks with different struc-
tures, namely graphs that do not have an integer dimension.
As a first step towards answering this question, we analyze
the coherence of first-order and second-order consensus algo-
rithms in self-similar, tree-like fractal graphs. For first-order
systems, we draw directly from literature on random walks
on fractal networks [12], [13] to show that, in a network with
N nodes, the network coherence scales as N1/df where d

f

is the fractal dimension (also the Hausdorff dimension, in our
case) of the network. We then show how the techniques used
for the analysis of random walks can be extended to analyze
the coherence of second-order consensus systems, and we
present asymptotic results for the per-node variance in terms
of the network size and fractal dimension. An interesting and
perhaps unexpected result of our analysis is that the fractal di-
mension does not uniquely determine the asymptotic behavior
of network coherence. We show that two self-similar graphs
with the same fractal dimension exhibit different coherence
scalings. We note that a preliminary version of this work,
without mathematical derivations, appeared in [14].

The remainder of this paper is organized as follows. In
Section II, we present the models for first-order and second-
order noisy consensus systems and give a formal definition of
network coherence for each setting. We also present several
properties from other domains that are mathematically similar
to network coherence. In Section III, we describe the fractal
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graph models, and in Section IV we present analytical results
on the coherence scalings for these fractal graphs. Section V
provides a discussion of the relationship between graph dimen-
sion and coherence, followed by our conclusions in Section VI.

II. NETWORK COHERENCE

We consider local, linear first-order and second-order con-
sensus algorithms over a network modeled by an undirected,
connected graph G with N nodes and M edges. We denote
the adjacency matrix of G by A, and D is a diagonal matrix
where the diagonal entry D

ii

is the degree of node i. The
Laplacian matrix of the graph G is denoted by L and is defined
as L := D �A.

Our objective is to study the robustness of consensus algo-
rithms when the nodes are subject to external perturbations and
to analytically quantify the relationship between the system
robustness and the graph topology. We capture this robustness
using a quantity that we call network coherence. We now
formally define the system dynamics and the notion of network
coherence (Sections II-A and II-B). We then present some
mathematically related properties that we can leverage in our
robustness analysis (Section II-C).

A. Coherence in Networks with First-Order Dynamics

In the first-order consensus problem, each node j has a
single state x

j

(t). The state of the entire system at time t is
given by the vector x(t) 2 RN . Each node state is subject to
stochastic disturbances, and the objective is for the nodes to
maintain consensus at the average of their current states.

The dynamics of this system are given by,

ẋ(t) = ��Lx(t) + w(t), (1)

where � is the gain on the communication links, and w(t)
is a size N disturbance vector with zero-mean, unit variance,
and uncorrelated second-order processes. As is well known for
linear systems driven by second-order processes [15]–[17], one
can work directly with signal correlations without explicitly
writing stochastic differential equations, and we interpret the
above equation in this sense.

In the absence of the disturbance processes, the system
converges asymptotically to consensus at the average of the
initial states [2]. With the additive noise term, the nodes do
not necessarily converge to consensus, but instead, node values
fluctuate around the average of the current node states.

The concept of network coherence captures the variance of
these fluctuations in the first-order consensus system.

Definition 2.1: The first-order network coherence is defined
as the mean (over all nodes), steady-state variance of the
deviation from the average of the current node states,

HFO := lim

t!1

1

N

NX

j=1

var

(
x
j

(t)� 1

N

NX

k=1

x
k

(t)

)
.

We define the output of the system (1) to be

y(t) = Jx(t), (2)

where J is the projection operator J := I� 1

N

11⇤, with 1 the
N -vector of all ones. It is well known that HFO is given by
the H

2

norm of the system defined in (1) and (2),

HFO =

1

N
tr
✓Z 1

0

e��L

⇤
tJe��Ltdt

◆
.

It has been shown that HFO is s completely determined by the
spectrum of L [3]–[5]. Let the eigenvalues of L be denoted
0 = �

1

< �
2

 . . .  �
N

. The first-order network coherence
is then equal to,

HFO =

1

2�N

NX

i=2

1

�
i

. (3)

B. Coherence in Networks with Second-Order Dynamics

In the second-order consensus problem, each node j has
two state variables x

1,j

(t) and x
2,j

(t). The state of the entire
system is thus captured in two N -vectors, x

1

(t) and x
2

(t).
Nodes update their states based on local feedback, i.e., the
states of their neighbors in the graph, and they are also subject
to random external disturbances that enter through the x

2

(t)
terms. The dynamics of the system are,


ẋ
1

(t)
ẋ
2

(t)

�
=


0 I

��L ��L

� 
x
1

(t)
x
2

(t)

�
+


0

I

�
w(t), (4)

where w(t) is a 2N disturbance vector with zero-mean, unit
variance, and uncorrelated second-order processes.

These system dynamics arise in the problem of autonomous
vehicle formation control (e.g., see [5]). Here, x

1

(t) contains
the vehicles’ positions and x

2

(t) contains the vehicles’ veloc-
ities. The vehicles attempt to maintain a specified formation
traveling at a fixed velocity while subject to stochastic external
perturbations. The non-zero entries of L specify the communi-
cation links of the formation, i.e., if L

ij

= �1, then node i can
observe the position and velocity of node j, and vice versa.
It has been shown that similar system dynamics also arise in
problems in phase synchronization in power networks [18].

The network coherence of the second-order system (4)
is defined in terms of x

1

(t) only, and as with first-order
coherence, it captures the deviation from the average of x

1

(t).
Definition 2.2: The second-order network coherence is the

mean (over all nodes), steady-state variance of the deviation
from the average of x

1

(t),

HSO :=

1

N

NX

j=1

lim

t!1
var

(
x
1,j

(t)� 1

N

NX

k=1

x
1,k

(t)

)
.

In the vehicle formation problem, this quantity captures the
deviation of the vehicle positions from a rigid formation
traveling at the average position.

We define the output for the system (4) as

y(t) =
⇥
J 0

⇤  x
1

(t)
x
2

(t)

�
, (5)

where J is again the projection operator. The second-order
network coherence is given by the H

2

norm of the system de-
fined by (4) and (5). This value is also completely determined
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by the eigenvalues of the Laplacian matrix [5], specifically,

HSO =

1

2�2N

NX

i=2

1

(�
i

)

2

. (6)

C. Related Concepts

The eigenvalues of the Laplacian are linked to the topology
of the network, and therefore, it is not surprising that these
eigenvalues play a role in many graph problems. In fact, the
sum,

S :=

NX

i=2

1

�
i

(7)

that appears in the expression for first-order coherence in (3)
is an important quantity, not just in the study of consensus
algorithms, but in several other fields. We can leverage work
in these fields to develop analytic expressions for network
coherence for different graph topologies. We briefly review
these related properties below.

1) Effective resistance in an electrical network: Let the
graph represent an electrical network where each edge is a
unit resistor. The resistance distance r

ij

between two nodes
i and j is the potential distance between them when a one
ampere current source is connected from node j to node i.
The total effective resistance of the network, also called the
Kirchoff index [7], [8], is the sum of the resistance distances
over all pairs of nodes in the graph. It has been shown [19]
that the total effective resistance depends on the spectrum of
the Laplacian matrix as R = 2NS.

2) Global mean first passage time of a random walk: In a
simple random walk on a undirected graph, the probability of
moving from a node i to a neighboring node j is 1

di
where

d
i

is the degree of node i. The first passage time f
ij

is the
average number of steps it takes for a random walk starting
at node i to reach node j for the first time. The global mean
first passage time is the average first passage time over all
pairs of nodes. It has been shown that, for a connected graph,
the mean first passage time between nodes i and j and the
resistance distance are related as f

ij

+ f
ji

= 2Mr
ij

, where
M is the number of edges in the graph [9]. The global mean
first passage time is therefore related to the effective resistance
as

F =

M

N(N � 1)

R =

2M

N � 1

S. (8)

If the graph is a tree, then M = N � 1, and the global mean
first passage time is simply F = 2S.

3) Quasi-Wiener index: The Wiener index is a measure
of molecular connectivity [20]. Here, the graph represents
a molecule where nodes are atoms and edges are chemical
bonds, and the distance between two atoms is the length
(number of edges) of the shortest path between them. The
Wiener index is the sum of the distances between all pairs
of non-hydrogen atoms. If the molecular graph is acyclic,
this value is exactly S in (7) [10]. If the graph contains
cycles, the Wiener index is no longer equal to the sum of
lengths of the shortest paths. However, this quantity is still
utilized in mathematical chemistry and is called the quasi-
Wiener index [21].

III. SELF-SIMILAR GRAPHS

Ideally, one would like to find an analytical expression for
network coherence that depends on the graph topology. While
it is a difficult problem to characterize the spectrum of the
Laplacian matrix for a general graph, for graphs with special
structure, it is sometimes possible to find a closed form for
the either the eigenvalues themselves or for the sum of their
inverses. For example, for d-dimensional torus and lattice net-
works, the Laplacian is a circulant operator. Its eigenvalues can
be determined analytically using a Discrete Fourier Transform,
and analytical expressions that relate coherence to the network
size and dimension have been derived [5], [22], [23].

To extend this type of analysis to other graph topologies,
we require that such graphs have both a dimension and a
prescribed method of increasing the graph size that preserves
this dimension. A class of graphs that exhibits these properties
is the class of self-similar graphs. Informally, a self-similar
graph is one which exhibits the same structure at every scale.
For a more formal definition, we refer the reader to [24].
One notion of dimension of a self-similar graph is the fractal
dimension, which is defined as follows [25].

Definition 3.1: Let G = (V,E) be an infinite, connected,
undirected graph where each vertex has finite degree. Let v 2
V be an arbitrary vertex, and define B(r) to be the of radius
r, centered at v, i.e.,

B(r) = {u 2 V : d(u, v)  r},

where d(u, v) denotes the length (number of edges) in the
shortest path between u and v in G. The fractal dimension of
G is

d
f

:= � lim sup

r!1

ln(|B(r)|)
ln(r)

.

Other notions of dimensions include the Hausdorff dimen-
sion and the box counting dimension. For self-similar graphs
of the type we study in this work, the values of these three
dimensions are equivalent [24].

Torus and lattice graphs are both self-similar graphs, and
their fractal dimensions are equivalent to the natural dimension
definition, e.g., a 2-dimensional torus has d

f

= 2. In this work,
we give coherence analysis for two classes of self-similar
graphs that have fractional dimensions, tree-like fractals and
Vicsek fractals. We now describe the construction of these
graphs.

Tree-Like Fractals: Each family of tree-like fractal graphs
is parameterized by a positive integer m. The graphs are
constructed in an iterative manner, and each iteration yields
a new graph generation. This generation 1 graph consists of
two vertices, or nodes, connected by a single edge. Given a
graph of generation g, denoted G

g

, the graph of generation
g + 1 is formed by replacing each edge with a path of length
2. In other words, each edge (i, j) in G

g

, is replaced by two
edges (i, k) and (k, j) where k is a new node (not existing in
graph G

g

). Then, m additional new nodes are added to every
new node k. The generation g graph thus has (m + 2)

g

+ 1

nodes. The process is illustrated in Fig. 1 for m = 2. This
tree-like fractal model encompasses several well-known fractal
graphs including the T-graph (m = 1) [26] and the Peano basin
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g = 1!
g = 2!

g = 3!

Fig. 1. First three generations of the tree-like fractal for m = 2.

g = 1!

g = 2!
g = 3!

Fig. 2. First three generations of the Vicsek fractal for v = 4.

fractal (m = 2) [27]. The tree-like fractal graph has a fractal
dimension of d

f

= log(m+ 2)/ log(2) [12].
Vicsek Fractals: The family of Vicsek fractal graphs is

also parameterized by a positive integer v, and each family is
constructed in an iterative manner [28], [29]. The generation
1 graph is a star graph with v + 1 nodes. The graph for
generation g + 1 is generated from the generation g graph by
making v copies of G

g

and arranging them in a star around
G

g

. These copies are connected to G
g

by adding edges from
the v corners of the G

g

, each one linking to a corner of a
copy. Thus, the generation g graph has N

g

= (v+1)

g nodes.
We illustrate the first three generations of the Vicsek fractal
for v = 4 in Fig. 2. The Vicsek fractal has a fractal dimension
of d

f

= log(v + 1)/ log(3).

IV. COHERENCE ANALYSIS
In this section, we present our analysis of network coherence

for the families of fractal graphs described in the previ-
ous section. Several recent works have analyzed the global
mean first passage time of a random walk for these graph
families [12], [13], [29]. Using the relationship described in
Section II-C, we can extend this analysis to derive asymptotic
scalings for network coherence in systems with first-order
noisy consensus dynamics. Below, we briefly summarize the
analytical techniques used in previous works and formally
state the asymptotic scalings for first-order network coherence
in fractal networks. We then derive expressions for network
coherence in fractal networks with second-order dynamics.

A. Coherence in Tree-Like Fractals
In their recent work, Lin et al. analyze the global mean first

passage time in tree-like fractals [12]. Their approach is based
on first deriving a recursion for the characteristic polynomial
of the Laplacian matrix. They then show that the sum S in
(7) can be obtained by solving for several coefficients of this
characteristic polynomial. We first review the construction of
this polynomial and then show how it can be used to derive
expressions for network coherence.

Let G
g

be the graph of generation g with N
g

nodes, and
let L

g

denote its Laplacian. The characteristic polynomial for
L
g

is
P
g

(x) = det(L
g

� xI
g

). (9)

Here I
g

is the N
g

⇥ N
g

identity matrix. As we are only
interested in the non-zero eigenvalues of L

g

, we instead
consider a modified version of the characteristic polynomial,

P
g

(x) =
1

x
P
g

(x). (10)

The modified characteristic polynomial P
g

can be written as,

P
g

(x) =

Ng�1X

i=0

p(i)
g

xi

= p(Ng�1)

g

Ng�1Y

i=1

(x� ¯�
g,i

), (11)

where p
(i)

g

denotes the coefficient of the term xi and ¯�
g,i

,
i = 1 . . . (N

g

� 1), are the roots of P
g

(x).
In the remainder of Section IV-A, we show how to deter-

mine network coherence from coefficients of (11).
1) First-order network coherence: For systems first-order

dynamics, network coherence depends on the sum of the roots
of (10),

S
g

=

NgX

i=2

1

�
g,i

=

Ng�1X

i=1

1

¯�
g,i

,

where �
g,i

, i = 1 . . . N
g

are the roots of P
g

(x). Lin et al. [12]
show that the sum S

g

can be expressed in terms of the zeroth
order and first order coefficients of (11),

S
g

= �p
(1)

g

p
(0)

g

. (12)

Therefore, to find this sum, one only needs to determine these
two coefficients.

The coefficients can be found by first deriving a recursion
for P

g

(x), as follows. Let Q
g

be the characteristic polyno-
mial of the (N

g

� 1) ⇥ (N
g

� 1) submatrix of L
g

formed
by removing a single column and row corresponding to an
outermost node. Let R

g

be the characteristic polynomial of
the (N

g

�2)⇥ (N
g

�2) submatrix of L
g

formed by removing
columns and rows corresponding to two outermost nodes.
The following equations capture the relationship between the
modified characteristic polynomials for L

g

and L
g+1

,

P
g+1

(x) =(m+ 2)[Q
g

(x)]m+1P
g

(x) + (m+ 1)[Q
g

(x)]m+2

(13)
Q

g+1

(x) =[Q
g

(x)]m+2

+ (m+ 1)xR
g

(x)[Q
g

(x)]m+1

+ (m+ 1)xR
g

(x)[Q
g

(x)]mP
g

(x)) (14)
R

g+1

(x) =2R
g

(x)[Q
g

(x)]m+1

+ (m+ 1)x[R
g

(x)]2[Q
g

(x)]m

+mx[R
g

(x)]2[Q
g

(x)]m�1P
g

(x). (15)
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To find p
(0)

g

, first let q(0)
g

and r
(0)

g

be the constant terms for
Q

g

(x) and R
g

(x) respectively (when written in the form like
(11)). One can then write recursions on these constant terms
as,

p
(0)

g+1

= (m+ 2)[q(0)
g

]

m+1p(1)
g

+ (m+ 1)[q(0)
g

]

m+2

q
(0)

g+1

= [q(0)
g

]

m+2

r
(0)

g+1

= 2r(0)
g

[q(0)
g

]

m+1.

Given the initial values for the generation 1 graph, p
(0)

1

=

�m� 3, q(0)
1

= 1, and r
(0)

1

= 2, one can solve for p(0)
g

, q(0)
g

,
and r

(0)

g

. Using a similar approach, one can also solve for
p
(1)

g

and, therefore, for the entire expression S
g

(see [12] for
details).

With these results, Lin et al. arrive at the following expres-
sion for the asymptotic order of the global mean first passage
time in a tree-like fractal of generation g with N

g

nodes,

F
g

= 2

NgX

i=2

1

�
g,i

⇠ N1+log(2)/ log(m+2)

g

.

By using the relationship between F
g

and S
g

defined in
Section II-C , we can easily obtain an analytical expression
for the coherence of first-order consensus algorithms in tree-
like fractals.

Theorem 4.1: For a tree-like fractal with N nodes, param-
eterized by the integer m, the first-order network coherence
of the system with dynamics defined in (1) is given by

HFO ⇠ 1

�
N log(2)/ log(m+2)

=

1

�
N1/df ,

where d
f

is the fractal dimension of the graph.
2) Second-order network coherence: We now show how

we extend the work above to derive an expression for second-
order network coherence in tree-like fractals. In this case, for
the generation g graph, we are interested in a sum of the form,

Ng�1X

i=1

1

�
¯�
g,i

�
2

. (16)

Using equation (11) and Vieta’s formulae, we can express this
sum in terms of coefficients of P (x). For a tree-like fractal of
generation g with N

g

nodes, the sum is,

Ng�1X

i=1

1

�
¯�
g,i

�
2

=

 
p
(1)

g

p
(0)

g

!
2

� 2

p
(2)

g

p
(0)

g

, (17)

The values for p(0)
g

and p
(1)

g

were derived by Lin et al. [12]
in their analysis of the global mean first passage time. What
remains is to solve for p

(2)

g

. To do this, we first find the
recursion equations for the coefficients corresponding to the
first-order term in R

g

in (15) and the second-order terms in

P
g

and Q
g

in (13) and (14), respectively,

r
(1)

g+1

= 2[q(0)
g

]

m+1r(1)
g

+ 2(m+ 1)r(0)
g

[q(0)
g

]

mq(1)
g

+ (m+ 1)[r(0)
g

]

2

[q(0)
g

]

m

+m[r(0)
g

]

2

[q(0)
g

]

m�1p(0)
g

(18)

p
(2)

g+1

= (m+ 2)[q(0)
g

]

m+1p(2)
g

+ (m+ 1)(m+ 2)[q(0)
g

]

mq(2)
g

p(0)
g

+

m(m+1)(m+2)

2

[q
(0)

g

]

m�1

[q
(1)

g

]

2p
(0)

g

+ (m+ 1)(m+ 2)[q(0)
g

]

mq(1)
g

p(1)
g

+ (m+ 1)(m+ 2)[q(0)
g

]

m+1q(2)
g

+

(m+1)

2
(m+2)

2

[q
(0)

g

]

m

[q
(1)

g

]

2. (19)

q
(2)

g+1

= (m+ 2)[q(0)
g

]

m+1q(2)
g

+

(m+1)(m+2)

2

[q
(0)

g

]

m

[q
(1)

g

]

2

+ (m+ 1)r(1)
g

[q(0)
g

]

m+1

+ (m+ 1)

2r(0)
g

[q(0)
g

]

mq(1)
g

+ (m+ 1)[q(0)
g

]

mp(0)
g

r(1)
g

+m(m+ 1)r(0)
g

p(0)
g

[q(0)
g

]

m�1q(1)
g

+ (m+ 1)r(0)
g

[q(0)
g

]

mp(1)
g

. (20)

We then solve for these coefficients. The full derivation is
given in Appendix A.

As we are interested in the asymptotic behavior of HSO,
we consider only the highest order terms of the coefficients in
(17), which are given by,

p(0)
g

⇠ �(m+ 2)

g

p(1)
g

⇠ 2

g

(m+ 2)

2g

p(2)
g

⇠ �2

2g

(m+ 2)

3g.

Thus, the order of the sum in (16) is,
Ng�1X

i=1

1

�
¯�
g,i

�
2

⇠ 2

2g

(m+ 2)

2g ⇠ N2+2 log(2)/ log(m+2)

g

.

Here, the last expression follows from the fact that the gener-
ation g tree-like fractal graph has N

g

= (m+ 2)

g

+ 1 nodes.
We then substitute the expression for this sum into HSO in

(6) to arrive at the following theorem.
Theorem 4.2: For a tree-like fractal with N nodes, param-

eterized by the integer m, the second-order coherence of the
system with dynamics as defined in (4) is given by

HSO ⇠ 1

�2

N1+2 log(2)/ log(m+2)

=

1

�2

N1+(2/df ),

where d
f

is the fractal dimension of the graph.

B. Generalized Vicsek Fractals

To analyze the network coherence in Vicsek fractals, we
exploit a different technique that was used in the analysis of
the global mean first passage time. As with tree-like fractals, it
is not straightforward to find a closed form for the individual
eigenvalues of the Laplacian matrix of a Vicsek fractal. In
their recent work [13], Zhang et al. determined a closed-form
expression for the sum S in (7). With this sum, we can easily
obtain the first-order network coherence. We first summarize
the results for first-order coherence, and we then show how we
can use a similar approach to obtain a closed-form expression
for second-order coherence.
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1) First-order network coherence: This analysis makes
use of several previously derived properties relating to the
eigenvalues of L

g

for Vicsek fractals [29]–[31], which we
restate here convenience.

Property 4.1: Let L
g

be the Laplacian matrix for a gen-
eration g Vicsek fractal. The eigenvalues of L

g

satisfy the
following:

1) The non-degenerate eigenvalues of L
1

are 0 and v + 1.
L
1

has one degenerate eigenvalue with value one and
multiplicity v � 1.

2) Every eigenvalue of L
g

is also an eigenvalue of L
g+1

.
As a result, eigenvalues preserve their degeneracy in
subsequent generations.

3) For L
g

, the multiplicity of the one eigenvalue is,

�

g

:= (v � 2)(v + 1)

g�1

+ 1. (21)

A degenerate eigenvalue that appears for the first time
at generation j has multiplicity �

g�j

.
4) Each non-zero eigenvalue �

g,i

in L
g

produces three new
eigenvalues in L

g+1

according the relation,

�
g+1,i

(�
g+1,i

� 3)(�
g+1,i

� v � 1) = �
g,i

. (22)

To find the sum S
g

, Zhang et al. [13] consider the sums
for degenerate and non-degenerate eigenvalues separately. Let
⌦

ND

g

be the set of non-degenerate eigenvalues of L
g

, exclud-
ing 0, and let ⌦D

g

be the set of degenerate eigenvalues. Thus
S
g

is equivalent to,

S
g

=

X

�2⌦

ND
g

1

�
+

X

�2⌦

D
g

1

�
.

In the generation 1 graph, there is a single non-degenerate,
non-zero eigenvalue, v + 1. This eigenavalue produces three
non-degenerate eigenvalues in generation 2, according to (22).
These eigenvalues are the first-generation descendants of v+1.
The first generation descendants yield 3

2 second-generation
descendants (also non-degenerate), and so on. Let �

ND

i

be
the sum of the reciprocals of the ith generation descendants of
v+1. By employing the recursion on the eigenvalues defined
by (22) in Property 4.1, Zhang et al. obtain the following
closed-form expression for �ND

i

,

�

ND

i

=

X

�2(⌦

ND
i �⌦

ND
i�1)

1

�
= 3

i

(v + 1)

i�1. (23)

They then sum over the generations of descendants, i =

0, . . . , g � 1, to find the sum of the inverses of the non-
degenerate eigenvalues of L

g

,

X

�2⌦

ND
g

1

�
=

g�1X

i=0

�

ND

i

=

1

v + 1

3

g

(v + 1)

g � 1

3v + 2

. (24)

A similar approach can be used to find a closed-form
expression for the sum of reciprocals of the ith generation
descendants of a single degenerate eigenvalue 1,

�

D

i

= 3

i

(v + 1)

i. (25)

This expression can then be combined with the multiplicity of
the degenerate eigenvalues defined in Property 4.1 to find the
sum of the inverses of the degenerate eigenvalues of L

g

,

X

�g,i2⌦

D
g

1

�
g,i

=

g�1X

i=0

�

g�i

�

D

i

=

1

2

(v � 2)(v + 1)

g+1

(3

g � 1) +

2(v + 2)

v + 1

3

g

(v + 1)

g � 1

3v + 2

.

(26)

It is then straightforward to add (23) and (26) to obtain S
g

,

S
g

=

(v � 2)(v + 1)

g�1

(3

g � 1)

2

+

v + 2

v + 1

3

g

(v + 1)

g � 1

3v + 2

.

Using the facts that the number of nodes in generation g graph
is N

g

= (v + 1)

g and that 3g = N
log(3)/ log(v+1)

g

, the sum S
g

can be shown to be of the following order,

S
g

⇠ N1+log(3)/ log(v+1)

g

= N
1+1/df
g

.

The expression for network coherence in Vicsek fractals
with first-order consensus dynamics immediately follows from
S
g

and is formally stated in the following theorem.
Theorem 4.3: For a generalized Vicsek fractal graph with

N nodes, parameterized by the positive integer v, the first-
order coherence of the system with the dynamics defined in
(1) is given by

HFO ⇠ 1

�
N log(3)/ log(v+1)

=

1

�
N1/df ,

where d
f

is the fractal dimension of the graph.
2) Second-order network coherence: To find the second-

order network coherence, we also determine a recursion over
the eigenvalues of L

g

, in this case, a recursion over the sum
of the squares of the inverses of the eigenvalues.

As the first step in this analysis, we consider the relationship
between the eigenvalues of L

g

and L
g+1

. Let �
g,i

be a non-
zero eigenvalue of L

g

. This eigenvalue produces three new
eigenvalues in L

g+1

, according to (22), which we denote by
�
g+1,i1 , �

g+1,i2 , and �
g+1,i3 . We want to define the sum of

the squared inverses of these three eigenvalues in terms of the
parent eigenvalue.

We first expand the expression for the sum of squared
inverses, as follows,

1

(�g+1,i1 )
2 +

1

(�g+1,i2 )
2 +

1

(�g+1,i3 )
2 =

⇣
1

�g+1,i1
+

1

�g+1,i2
+

1

�g+1,i3

⌘
2

� 2

⇣
�g+1,i1+�g+1,i2+�g+1,i3
�g+1,i1 ·�g+1,i2 ·�g+1,i3

⌘
. (27)

Then, leveraging the analysis in Zhang et al. [13] for S
g

, we
obtain a recursive expression for the first term on the right-
hand size of (27),

⇣
1

�g+1,i,1
+

1

�g+1,i,2
+

1

�g+1,i,3

⌘
2

=

(3(v+1))

2

(�g,i)
2 . (28)

For the second term, we use the following equivalences,
obtained by application of Vieta’s formulae to (22),

�
g+1,i1 · �g+1,i2 · �g+1,i3 = �

i,g

(29)
�
g+1,i1 + �

g+1,i2 + �
g+1,i3 = (v + 4). (30)
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With these equivalences, we can rewrite the second term on
the right-hand size of (27) as,

�2

✓
�
g+1,i1 + �

g+1,i2 + �
g+1,i3

�
g+1,i1 · �g+1,i2 · �g+1,i3

◆
=

�2(v + 4)

�
i,g

. (31)

Combining (28) and (31), we obtain to following relation-
ship between �

g,i

and the sum of the squared inverses of its
children,

1

(�g+1,i1 )
2 +

1

(�g+1,i2 )
2 +

1

(�g+1,i3 )
2 =

(3(v+1))

2

(�g,i)
2 � 2(v+4)

�g,i
. (32)

We now use the expression (32) to find a recursion over
the sum of the squared inverses of the eigenvalues of L

g

.
As in [13], we consider the non-degenerate and degenerate
eigenvalues separately.

Recall that v + 1 is the single, non-zero, non-degenerate
eigenvalue of L

1

. Let ⇥ND

i

be the sum of the squared inverses
of the ith generation descendants of v + 1, i.e.,

⇥

ND

i

=

X

�2⌦

ND
i �⌦

ND
i�1

1

�

2 .

Using (32), we obtain a recursion over this sum,

⇥

ND

i

=

X

�2⌦

ND
i �⌦

ND
i�1

⇣
(3(v+1))

2

�

2 � 2(v+4)

�

⌘

= (3(v + 1))

2

⇥

ND

i�1

� 2(v + 4)�

ND

i�1

.

We then substitute in the expression for �

ND

i�1

in (23) and
obtain a closed-form expression for ⇥ND

i

,

⇥

ND

i

=

7v�12

9(v+2)(v+1)

2 3
2i

(v + 1)

2i

+

2(v+4)

3v+2

3

i�1

(v + 1)

i�2.
(33)

The full derivation of this expression is given in Appendix B.
By summing over the generations i = 0, . . . , g� 1, we can

find the sum of the squared inverses of the non-degenerate
eigenvalues of L

g

. As we are interested in the asymptotic
behavior for second-order coherence, we only consider the
highest order term, which is as follows,

X

�2⌦

ND
g

1

�2

=

g�1X

i=0

⇥

ND

i

⇠ 3

2g

(v + 1)

2g. (34)

We now consider the descendants of a degenerate eigenvalue
of L

g

with value 1. Using the recursion (32), we can obtain
a similar expression for the ith generation descendants of this
eigenvalue,

⇥

D

i

=

⇣
1� 2(v+4)

3

4
(v+1)

3
(v+2)

⌘
3

2i

(v + 1)

2i

� 2(v+4)

3v+2

(3(v + 1))

i�3.

The full derivation of this expression is given in Appendix B.
Then, incorporating the multiplicity of the degenerate eigen-
values as stated in Property 4.1, we can find the sum of the
squared inverses of the degenerate eigenvalues,

X

�2⌦

D
g

1

�2

=

g�1X

i=0

�

g�i

⇥

D

i

⇠ 3

2g

(v + 1)

2g. (35)

Finally, we combine the results in (34) and (35) to find the
sum of the squared inverses of the non-zero eigenvalues of
L
g

,
NgX

i=2

1

(�
g,i

)

2

⇠ 3

2g

(v + 1)

2g

= N2+2 log(3)/ log(v+1)

g

.

From this result and the definition of second-order network
coherence in (6), we arrive at the following theorem.

Theorem 4.4: For a generalized Vicsek fractal graph with
N nodes, parameterized by the integer v, the second-order
coherence of the system with the dynamics defined in (4) is

HSO ⇠ 1

�2

N1+2 log(3)/ log(v+1)

=

1

�2

N1+(2/df ),

where d
f

is the fractal dimension of the graph.

V. COHERENCE AND GRAPH DIMENSION

The coherence scalings for several families of self-similar
graphs are presented in Table I. We note that for the fractal
graphs studied in this paper, the coherence expressions for
both first-order and second-order systems exhibit the same
scalings a one-dimensional torus or lattice, i.e., coherence
scales as N1/df for first-order systems and N1+2/df for
second order systems. This is true even for the fractals with
fractal dimension greater than or equal to two. These results
demonstrate that the fractal dimension does not uniquely
determine the scaling behavior of network coherence. The
Peano Basin Fractal and the two-dimensional lattice both
have fractal dimension equal to two but exhibit strikingly
different coherence scalings. Therefore, it seems that there
other characteristics of the graph that affect the asymptotic
scalings of network coherence.

One possible characterization is the spectral dimension,
which is defined as follows [32].

Definition 5.1: Let ⇢(x) be the eigenvalue counting func-
tion of L, i.e., ⇢(x) is the number of eigenvalues of L that have
magnitude less than or equal to x. The spectral dimension of
the graph is

d
s

:= 2 lim

x!1

log(⇢(x))

log(x)
.

For torus and lattice graphs, the fractal dimension is equal to
spectral dimension, and therefore all of the previous coherence
results are the same for the fractal and spectral dimensions.
For the families of fractal graphs studied in this paper, the
spectral dimension and the fractal dimension are related as
d
s

= (2d
f

)/(d
f

+ 1) (see [33]). With this relationship, we
can derive expressions for network coherence in terms of
the spectral dimension. For first order-systems the network
coherence is HFO ⇠ N2/ds�1, and for second order systems,
it is HSO ⇠ N4/ds�1. We note that the fractals considered
in this paper all have spectral dimension less than two.
Therefore, by considering the spectral dimension, we eliminate
the conflicting coherence results we obtained for graphs with
fractal dimension equal to two.

In general, there is not a straightforward relationship be-
tween the fractal and spectral dimensions, and while the fractal
dimension is defined in terms of the graph topology, the
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TABLE I
EXAMPLES OF SELF-SIMILAR GRAPHS WITH N NODES AND THEIR DIMENSIONS AND COHERENCE SCALINGS.

Network Fractal Dimension HFO HSO

1-dimensional torus 1 1

�N
1

�2 N
3

Generalized Vicsek Fractal with v = 4

log(5)

log(3)

⇡ 1.46 1

�N
log(3)/ log(5)

1

�2 N
1+2(log(3)/ log(5))

T Fractal (tree-like fractal with m = 1) log(3)

log(2)

⇡ 1.58 1

�N
log(2)/ log(3)

1

�2 N
1+2(log(2)/ log(3))

Peano Basin Fractal (tree-like fractal with m = 2) 2

1

�

p
N 1

�2 N
2

2-dimensional torus 2 1

� logN 1

�2 N

relationship between the topology and the spectral dimension
is not generally understood. In addition, it is not yet known
whether the spectral dimension plays the same role in deter-
mining network coherence for families of graphs beyond those
studied in this work. The question of how to generalize our
results to other graph structures is an open problem and a
subject for future work.

VI. CONCLUSION

We have investigated the relationship between the topologi-
cal dimension of a graph and the per node variance of the devi-
ation from consensus in systems with noisy consensus dynam-
ics. In first-order systems, the coherence measure is closely
related to concepts in electrical networks, random walks, and
molecular connectivity. Drawing directly from literature on
random walks in fractal graphs, we have derived asymptotic
expressions for first-order coherence in terms of the network
size and fractal dimension. We have then extended this line
of analysis to derive asymptotic expressions for second-order
coherence for several families of fractal graphs. Our analysis
shows that the fractal dimension does not uniquely determine
the asymptotic behavior of network coherence, and in fact, two
self-similar graphs with the same fractal dimension exhibit
different coherence scalings. We conclude that the question
of whether performance of stochastic consensus algorithms
in large networks can be captured by purely topological
measures, such as the network’s fractal dimension, remains
open.

The algorithms analyzed in this paper are standard diffusive-
type consensus algorithms common in the literature. An im-
portant question for further research is whether the asymptotic
scalings we obtained for these algorithms can be improved
by more sophisticated consensus algorithms. Earlier work in
lattice-type networks [5] has shown corresponding asymptotic
bounds to be tight for a large class of local interactions.
Whether similar conclusions can be made for the present case
of self-similar networks remains to be investigated.

APPENDIX A
DERIVATIONS FOR SECOND-ORDER NETWORK

COHERENCE IN TREE-LIKE FRACTALS

First we find the characteristic polynomials for the matrices
for the generation 1 graph, P

1

, Q
1

and R
1

. We then find the
coefficients that we need to solve the recursions (18) - (20).
For P

1

, we have,

P
1

(x) = (�(m+ 3) + x)(1� x)m+1.

Note that this is the modified characteristic polynomial defined
in (10). The coefficient corresponding to the second order
terms (in x) is

p
(2)

1

= �(m+ 1)� (m+3)(m+1)m

2

. (36)

For Q
1

, the characteristic polynomial is

Q
1

(x) = (1 + (�m� 3)x+ x2

)(1� x)m.

The coefficient for the second order term (in x) is

q
(2)

1

=

3

2

m2

+

5

2

m+ 1. (37)

For R
1

, the characteristic polynomial is

R
1

(x) = (2 + (�m� 3)x+ x2

)(1� x)m�1.

The coefficients for the first order term (in x) is

r
(1)

1

= �3m� 1. (38)

We now solve the recursion equation for r
(1)

g

. Substituting
the expressions for p

(0)

g

, q
(0)

g

, r
(0)

g

, and q
(1)

g

from [12] into
(18), we obtain,

r
(1)

g+1

= 2r(1)
g

� 2

g+1

(m+ 1)(m+ 2)

g�1

[1� 2

g

+ 2

g

(m+ 2)]

+ (m+ 1)2

2g

+m2

2g

(�(m+ 2)

g � 1)

= 2r(1)
g

+

�2m

2�5m�2

(m+2)

2

2g

(m+ 2)

g

� 2(m+1)

(m+2)

2

g

(m+ 2)

g

+ 2

2g.

Then, using the value for r(1)
1

in (38), we obtain a closed-form
expression for the above recursion,

r(1)
g

= 2

g�1r
(1)

1

+

(�2m

2�5m�2)

(m+2)

2

g

g�1X

i=1

(2(m+ 2))

i

� 2(m+1)

(m+2)

2

g

g�1X

i=1

(m+ 2)

i

+ 2

g

g�1X

i=1

2

i

= 2(�3m� 1)� 2m

2
+5m+2

2m+3

2

2g

(m+ 2)

g�1

+

4m

2
+10m+4

2m+3

2

g � 2

g+1

(m+ 2)

g�1

+ 2

2g.

The highest order term of r(1)
g

is thus,

r(1)
g

⇠ �2

2g

(m+ 2)

g.

Next, we solve the recursion for q(2)
g

, which is given by,

q
(2)

g+1

= (m+ 2)q(2)
g

+D
g

, (39)
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where

D
g

=

(m+1)(m+2)

2

[q
(1)

g

]

2

� ((m2

+ 2m+ 2)(m+ 2)

g

+ 1)2

gq(1)
g

+ 2

g

(m+ 1)p(1)
g

� (m+ 1)(m+ 2)

gr(1)
g

.

Note that the closed-form expressions for p
(1)

g

and q
(1)

g

are
given in [12]. Solving the recursion (39), using the initial value
of q(2)

1

in (37), we find the following closed-form expression,

q(2)
g

⇠ (m+ 2)

g�1

�
3

2

m2

+

5

2

m+ 1

�

+ (m+ 2)

g

g�1X

i=1

(4(m+ 2))

i.

The highest order term of q(2)
g

is thus,

q(2)
g

⇠ 2

2g

(m+ 2)

2g

Finally, we consider the recursion for p(2)
g

,

p
(2)

g+1

= (m+ 2)p(2)
g

+ E
g

, (40)

where

E
g

= (m+ 1)(m+ 2)(�(m+ 2)

g � 1)q(2)
g

+

m(m+1)(m+2)

2

(�(m+ 2)

g � 1)[q
(1)

g

]

2

+(m+ 1)(m+ 2)p(1)
g

q(1)
g

+(m+ 1)(m+ 2)q(2)
g

+

(m+1)

2
(m+2)

2

[q
(1)

g

]

2.

Using the initial value of p(2)
1

in (36), we obtain a closed-form
expression for p(2)

g

,

p(2)
g

= (m+ 2)

g�1p
(2)

1

+

P
g�1

i=1

(m+ 2)

g�iE
i

.

The highest order for of p(2)
g

is thus,

p(2)
g

⇠ �2

2g

(m+ 2)

3g.

We can now find the asymptotic order of the desired sum
in (17),

NgX

i=2

1

(�
i

)

2

=

✓
p

(1)
g

p

(0)
g

◆
2

� 2

p

(2)
g

p

(0)
g

⇠ 2

2g

(m+ 2)

2g.

APPENDIX B
DERIVATIONS FOR SECOND-ORDER NETWORK

COHERENCE IN VICSEK FRACTALS

Here we show the details of the derivation of ⇥ND

i

in (33).
The recursive expression for ⇥ND

i

is,

⇥

ND

i

=

X

�2⌦

ND
i �⌦

ND
i�1

⇣
(3(v+1))

2

�

2 � 2(v+4)

�

⌘

= (3(v + 1))

2

⇥

ND

i�1

� 2(v + 4)�

ND

i�1

.

We solve the above recursion to obtain,

⇥

ND

i

= (3(v + 1))

2i

⇥

ND

0

� 2(v + 4)

i�1X

j=0

(3(v + 1))

2(i�j�1)

�

ND

j

. (41)

Recall that v+1 is single, non-degenerate, non-zero eigen-
value of L

1

. Therefore, ⇥ND

0

=

1

(v+1)

2 . Substituting this and
the value for �ND

j

given in (23), we simplify (41) as follows,

⇥

ND

i

= (3(v + 1))

2i

1

(v+1)

2

� 2(v+4)

v+1

i�1X

j=0

(3(v + 1))

2(i�j�1)

(3(v + 1))

j

)

= 3

2i

(v + 1)

2i�2

� 2(v + 4)3

2(i�1)

(v + 1)

2i�3

i�1X

j=0

(3(v + 1))

�j

= 3

2i

(v + 1)

2i�2

� 2(v+4)

3v+2

�
3

2i�1)

(v + 1)

2i�2 � 3

i�1

(v + 1)

i�2

�

=

7v�12

9(v+2)(v+1)

2 3
2i

(v + 1)

2i

+

2(v+4)

3v+2

3

i�1

(v + 1)

i�2.

For the degenerate eigenvalue of 1 of L
1

the closed-form
expression for the recursion over its descendants is the same
as for the non-degenerate eigenvalue (v + 1),

⇥

D

i

= (3(v + 1))

2i

⇥

D

0

� 2(v + 4)

i�1X

j=0

(3(v + 1))

2(i�j�1)

�

D

j

. (42)

We note that ⇥D

0

= 1, and the closed-form expression for �D

j

is given in (42). By substituting these values into (42), we
obtain the following closed form expression for ⇥D

i

,

⇥

D

i

= (3(v + 1))

2i

� 2(v + 4)

i�1X

j=0

(3(v + 1))

2(i�j�1)

(3(v + 1))

j

)

= (3(v + 1))

2i

� 2(v+4)

3v+2

�
(3(v + 1))

2i�3 � (3(v + 1))

i�3

�

=

⇣
1� 2(v+4)

3

4
(v+1)

3
(v+2)

⌘
3

2i

(v + 1)

2i

� 2(v+4)

3v+2

(3(v + 1))

i�3.
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