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Abstract—We consider a distributed average consensus algo-
rithm over a network in which communication links fail with in-
dependent probability. In such stochastic networks, convergence
is defined in terms of the variance of deviation from average.
We first show how the problem can be recast as a linear system
with multiplicative random inputs which model link failures. We
then use our formulation to derive recursion equations for the
second order statistics of the deviation from average in networks
with and without additive noise. We give expressions for the
convergence behavior in the asymptotic limits of small failure
probability and large networks. We also present simulation-
free methods for computing the second order statistics in each
network model and use these methods to study the behavior of
various network examples as a function of link failure probability.

Index Terms—Randomized consensus, distributed systems,
multiplicative noise, gossip protocols.

I. INTRODUCTION

WE consider the distributed average consensus problem
over a network with stochastic link failures. Each node

has some initial value and the goal is for all nodes to reach con-
sensus at the average of all values using only communication
between neighbors in the network graph. Distributed average
consensus is an important problem that has been studied in
contexts such as vehicle formations [1]–[3], aggregation in
sensor networks and peer-to-peer networks [4], load balancing
in parallel processors [5], [6], and gossip algorithms [7], [8].

Distributed consensus algorithms has been widely investi-
gated in networks with static topologies, where it has been
shown that the convergence rate depends on the second
smallest eigenvalue of the Laplacian of the communication
graph [9], [10]. However, the assumption that a network
topology is static, i.e. that communication links are fixed
and reliable throughout the execution of the algorithm, is not
always realistic. In mobile networks, the network topology
changes as the agents change position, and therefore the
set of nodes with which each node can communicate with
may be time-varying. In sensor networks and mobile ad-
hoc networks, messages can be lost due to interference, and
in wired networks, messages may be dropped due to buffer
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overflow. In scenarios such as these, it is desirable to quantify
the effects that topology changes and communication failures
have upon the performance of the averaging algorithm.

In this work, we consider a network with an underlying
topology that is an arbitrary, connected, undirected graph
where links fails with independent but not necessarily identical
probability. In such stochastic networks, we define conver-
gence in terms of the variance of deviation from average. We
show that the averaging problem can be formulated as a linear
system with multiplicative noise and use our formulation to
derive a recursion equation for the second order statistics of
the deviation from average. We also give expressions for the
mean square convergence rate in the asymptotic limits of small
failure probability and large networks.

Additionally, we consider the scenario where node values
are perturbed by additive noise. This formulation can be used
to model load balancing algorithms in peer-to-peer networks or
parallel processing systems, where the additive perturbations
represent file insertions and deletions or job creations and
completions, with the goal of equilibrating the load amongst
the participants. A measure of the performance of the averag-
ing algorithm in this scenario is not how quickly node values
converge to the average, but rather how close the node values
remain to each other, and therefore to the average of all values
as this average changes over time. This problem has been
previously studied in networks without communication failures
[10], [11], however we are unaware of any existing work that
addresses this problem in networks with communication fail-
ures. We show how our formulation for static-valued networks
can be extended to incorporate the additive perturbations and
give an expression for the steady-state deviation from average.
Finally, for both problem formulations, we present simulation-
free methods for computing the second order statistics of the
variance of the deviation from average, and we use these
methods to study the behavior of various network examples
as a function of link failure probability.

Although there has been work that gives conditions for
convergence with communication failures, to our knowledge,
this is the first work that quantifies the effects of stochastic
communication failures on the performance of the distributed
average consensus algorithm. We briefly review some of the
related work below.
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Related Work: The distributed consensus problem has been
studied in switching networks, where convergence is defined
in a deterministic sense. The works by Jadbabaie et al. [1]
and Xiao and Boyd [12] show that in undirected, switching
communication networks, convergence is guaranteed if there
is an infinitely occurring contiguous sequence of bounded time
intervals in which the network is jointly connected. The same
condition also guarantees convergence in directed networks, as
shown by Olfati-Saber and Murray [2] and Moreau [3]. Cao et
al. [13] identify a similar convergence condition for consensus
in directed networks based on an infinitely occurring sequence
of jointly rooted graphs. In addition to the identification of
convergence conditions, recent works have also studied the
convergence rates of averaging algorithms in switching net-
works. In [14], Olshevsky and Tsitsiklis give upper and lower
bounds on the convergence rate in a directed network in terms
of the length of the bounded time interval of joint connectivity,
and in [13], Cao et al. give bounds on the convergence rate
in terms of length of the interval of connectivity of the rooted
graph.

Convergence conditions for the distributed averaging al-
gorithm have also been investigated in stochastic networks.
In [15], Hatano and Mesbahi study the Erdős-Rényi random
graph model where each edge fails with identical probabil-
ity. The authors use analysis of the expected Laplacian to
prove that nodes converge to consensus with probability 1.
The work by Wu [16] considers a more general directed
random graph model where edge failure probabilities are not
necessarily identical and proves convergence in probability.
In [17], Porfiri and Stilwell study a similar model, a ran-
dom directed graph where each edge fails with indepen-
dent non-uniform probability, but additionally where edges
are weighted. The authors also use analysis based on the
expected Laplacian to show that in the case where edge
weights are non-negative, if the expected graph is strongly
connected, the system converges asymptotically to consen-
sus almost surely. For arbitrary weights, the authors show
that asymptotic almost-sure convergence is guaranteed if the
network topology changes “sufficiently fast enough”. Tahbaz-
Salehi and Jadbabaie [18] consider directed networks where
the weight matrices are stochastic i.i.d and give a necessary
and sufficient condition for almost sure convergence based on
the second largest eigenvalue of expected weight matrix. In
[19], Kar and Moura give sufficient conditions for mean square
convergence in undirected networks with non-uniform link
failure probabilities based on the second largest eigenvalue of
the expected weight matrix. Additionally, our recent work [20]
also gives sufficient conditions for mean square convergence in
undirected networks where links fail with uniform probability.
The analysis depends on reformulating the problem as a struc-
tured stochastic uncertainty problem and deriving conditions
for convergence based on the nominal component. We also
note that in [21], Kar and Moura study averaging algorithms
over a network with stochastic communication failures where
communication links are also corrupted by additive noise. In
order to achieve consensus in such a model, the weight of each
edge is decreased as the algorithm executes. This problem is
similar to the averaging algorithm with additive noise that is

described in this paper. However, in this work, we consider
additive perturbations at the nodes as opposed to in the
communication channels, and we consider algorithms where
the edge weights remain constant throughout the execution of
the algorithm.

The remainder of this paper is organized as follows. In
Section II, we formally define our system model and the
distributed consensus algorithm. Section III gives our conver-
gence results for systems with no additive noise, and in Section
IV, we give an extension of the model and convergence results
for networks with additive noise. In Section V, we describe
our computational methods, and in Section VI, we present
computational results for different network scenarios. Finally,
we conclude in Section VII.

II. PROBLEM FORMULATION

We model the network as a connected, undirected graph
G = (V,E) where V is the set of nodes, with |V | = N ,
and E is the set of communication links between them. We
assume that each link (r, s) ∈ E has an independent, but not
necessarily identical probability p(r,s) of failing in each round.
If a link fails, no communication takes place across the link
in either direction in that round. A link that does not fail in
round k is active. The neighbor set of node r, denoted by
Nr(k) for round k, is the set of nodes with which node r has
active communication links in round k.

We consider the following simple distributed consensus
algorithm. Every node r has an initial value xr(0). The
objective of the algorithm is to converge to an equilibrium
where xr(k) = 1

N

∑N
s=1 xs(k) for all r ∈ V . In each round,

each node sends a fraction β of its current value to each
neighbor with which it has an active communication link. Each
node’s value is updated according to the following rule

xr(k + 1) = β
∑

s∈Nr(k)

xs(k) + (1− β|Nr(k)|)xr(k)

where β is the parameter that defines an instance of the
algorithm. This algorithm can be implemented without any
a priori knowledge of link failures.

In a network with no communication failures, this algorithm
can be expressed as an N ×N matrix, A := I − βL, where
L is the Laplacian matrix1 of the graph G. The evolution of
the system is described by the following recursion equation.

x(k + 1) = Ax(k). (1)

It is a well known result that the system converges to con-
sensus at the average of all node values if and only if the
magnitude of the second largest eigenvalue of A, λ2(A), is
strictly less than 1 [1], [9], [10], [22], [23], and that if the
graph is connected, it is always possible to chose a β that
guarantees convergence. In this work, we place no restriction
on the choice of β other than that the resulting A matrix is
such that |λ2(A)| < 1, which means that the diagonal entries
of A may be negative.

1Let E be the adjacency matrix of G and D be the diagonal matrix with
the diagonal entry in row j equal to the degree of node j. Then the Laplacian
of a graph G is defined as L := D − E .
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We now demonstrate how (1) can be extended to include
stochastic communication failures. We note that a similar
model for communication failures in directed graphs is given
in [24]. Let b(r,s) be the N -vector with the r’th entry equal
to 1, the s’th entry equal to −1 and all other entries equal to
0. B(r,s) is defined as

B(r,s) := β b(r,s)b
∗
(r,s). (2)

The system can then be described by the following recursion
equation

x(k + 1) =

A+
∑

(r,s)∈E

δ(r,s)(k)B(r,s)

x(k) (3)

where δ(r,s) is a Bernoulli random variable with

δ(r,s)(k) :=
{

1 with probability p(r,s)

0 with probability 1− p(r,s).

When δ(r,s) = 1, the edge (r, s) has failed. One can interpret
(3) as first performing the algorithm on the full underlying
network graph G and then simulating the failed edges by
undoing the effects of communication over those edges. In
essence, each B(r,s) matrix returns the values sent across edge
(r, s), yielding the state in which edge (r, s) did not play a
part.

We rewrite (3) in a form that is more convenient for our
analysis using zero-mean random variables. Let µ(r,s)(k) :=
δ(r,s)(k) − p(r,s) and observe that they are zero mean. The
dynamics can now be rewritten as

x(k + 1) = Ax(k) +
∑

(r,s)∈E

µ(r,s)(k)B(r,s)x(k) (4)

where Ā := A+
∑

(r,s)∈E p(r,s)B(r,s).
We measure how far the current state of the system is from

the average of all states using the deviation from average
vector x̃ whose components are

x̃r(k) := xr(k) − 1
N

(x1(k) + . . . + xN (k)) .

The entire vector x̃ can be written as the projection

x̃(k) = P x(k)

with P := (I− 1
N 11∗), where 1 is the N -vector with all entries

equal to 1.
We are primarily interested in characterizing the conver-

gence rate of x̃ to zero. Since the dynamics of x and x̃ are
stochastic, we use the decay rate of the worst-case variance
of deviation from average of each node r, E

[
x̃r(k)2

]
, as an

indicator of the rate of convergence.
Problem Statement 1: Consider a distributed consensus

algorithm over a connected, undirected graph where each link
fails with independent probability as modeled by the system
with multiplicative noise (3). For a given set of link failure
probabilities, determine the worst-case rate (over all initial
conditions, over all nodes) at which the deviation from average
E
[
x̃r(k)2

]
, r ∈ N converges to 0 as k →∞.

The key to addressing this problem is to study the equations
governing the second order statistics of the states of (4). To
this end, we define the autocorrelation matrices of x and x̃ by

M(k) := E [x(k)x∗(k)]
M̃(k) := E [x̃(k)x̃∗(k)]

and note that they are related by the projection P
M̃(k) = E [x̃(k)x̃∗(k)] = E [Px(k)x∗(k)P]

= P E [x(k)x∗(k)] P
= P M(k) P.

The variance of the deviation from average of each node r,
x̃r(k)2, is given by the diagonal entry of the rth row of M̃ ,
and the total deviation from average is given by the trace of
M̃ , ‖x̃(k)‖22 = tr(M̃(k)).

It is well known that the autocorrelation matrix of a system
in the form of (4) with zero-mean multiplicative noise [25]
obeys the following recursion equation

M(k+ 1) = AM(k)A+
∑

(r,s)∈E

σ2
(r,s)B(r,s)M(k)B(r,s), (5)

where σ2
(r,s) := var

[
µ(r,s)(k)

]
. This is a discrete-time

Lyapunov-like matrix difference equation. However, the addi-
tional terms multiplying σ2

(r,s) in (5) make this a nonstandard
Lyapunov recursion. The matrix M̃(k) satisfies a similar
recursion relation which we derive in the next section and
then study its convergence properties.

III. CHARACTERIZING CONVERGENCE

In this section, we first derive a recursion equation for
M̃(k), the autocorrelation of E [x̃(k)x̃∗(k)], which has the
variance of deviation from average of each node as its diagonal
entries. We then characterize the decay rate of these variances
in terms of the eigenvalues of a Lyapunov-like matrix-valued
operator. An exact computational procedure for these eigen-
values is given in Section V, while in this section, we give
expressions for the asymptotic cases of small, uniform link
failure probability p and large network size N .

Lemma 3.1: The matrices M̃(k) satisfy the recursion

M̃(k + 1) =
(PAP) M̃(k)

(PAP)
+

∑
(r,s)∈E

σ2
(r,s)B(r,s)M̃(k)B(r,s). (6)

Proof: First, we note that the following equalities hold
for the action of P on any of the matrices B(r,s)

B(r,s)P = β b(r,s)b
∗
(r,s) (I− 1

N
11∗) = β b(r,s)b

∗
(r,s) = B(r,s),

where the second equality follows from 1∗b(r,s) = 0 for any
edge (r, s). Similarly P B(r,s) = B(r,s). The second fact
needed is that L, and consequently A and Ā, commute with
the projection P . This follows from the fact that 1 is both a
left and a right eigenvector of L. Using these facts and noting
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that P = P2, (6) follows from multiplying both sides of (5)
by P as follows

M̃(k + 1)
= PM(k + 1)P
= PAM(k)AP +

∑
(r,s)∈E

σ2
(r,s)PB(r,s)M(k)B(r,s)P

= P2AM(k)AP2 +
∑

(r,s)∈E

σ2
(r,s)B(r,s)PM(k)PB(r,s)

= PAPM(k)PAP +
∑

(r,s)∈E

σ2
(r,s)B(r,s)M̃(k)B(r,s)

= PAP2M(k)P2AP +
∑

(r,s)∈E

σ2
(r,s)B(r,s)M̃(k)B(r,s)

=
(PAP) M̃(k)

(PAP)+
∑

(r,s)∈E

σ2
(r,s)B(r,s)M̃(k)B(r,s).

If all edges have an equal probability of failure p in each
round, we can derive a simpler form of the recursion equation
for M̃(k).

Corollary 3.2: If each edge fails with uniform probability
p, the matrices M̃(k) satisfy the recursion

M̃(k + 1) =
(
Ã+ pβL

)
M̃(k)

(
Ã+ pβL

)
+(p− p2)

∑
(r,s)∈E

B(r,s)M̃(k)B(r,s) (7)

where Ã := PAP .
Proof: Note that from the definitions of the matrices

B(r,s), their sum is proportional to the graph’s Laplacian, i.e.∑
(r,s)∈E B(r,s) = βL. Ā is then simply

Ā = A + p
∑

(r,s)∈E

B(r,s) = A + pβ L.

Additionally, note that σ2
(r,s) = p− p2 for all (r, s) ∈ E.

Therefore, for uniform failure probability p, (6) simplifies
as follows

M̃(k + 1) = PAPM̃(k)PAP
+

∑
(r,s)∈E

σ2
(r,s)B(r,s)M̃(k)B(r,s)

= P(A + pβ L)PM̃(k)P(A+ pβ L)P
+ (p− p2)

∑
(r,s)∈E

B(r,s)M̃(k)B(r,s)

= (Ã+ pβ L)M̃(k)(Ã+ pβ L)

+ (p− p2)
∑

(r,s)∈E

B(r,s)M̃(k)B(r,s).

A. The Decay Rate

To study the decay or growth properties of the matrix
sequence M̃(k), we define the Lyapunov-like operator

A(X) := (PAP)X(PAP) +
∑

(r,s)∈E

σ2
(r,s)B(r,s)XB(r,s).

(8)

The linear matrix recursion (7) can now be written as

M̃(k + 1) = A
(
M̃(k)

)
. (9)

Since this is a linear matrix equation, the condition for
asymptotic decay of each entry of M̃(k) is

ρ(A) < 1,

where ρ(A) is the spectral radius of A, which we call the
decay factor of the algorithm instance. Since each entry of
M̃(k) has the asymptotic bound of a constant times ρ(A)k,
then so does its trace and consequently E

[‖x̃(k)‖22
]
. And, in

fact, it can be shown that this upper bound on the decay rate
is tight.

We summarize these results in the following theorem.
Theorem 3.3: Consider a distributed consensus algorithm

where links fail with independent probability p(r,s) as modeled
by the system with multiplicative noise

x(k + 1) =

A+
∑

(r,s)∈E

δ(r,s)(k)B(r,s)

x(k)

where δ(r,s) are Bernoulli random variables with

δ(k) :=
{

1 with probability p(r,s)

0 with probability 1− p(r,s).

1) The total deviation from average E
[‖x̃(k)‖22

]
converges

to 0 as k →∞ if and only if

ρ(A) < 1

where A is the matrix-valued operator defined in (8).
2) The worst-case asymptotic growth (over all initial con-

ditions) of any E
[
x̃r(k)2

]
, r = 1 . . . N is given by

E
[
x̃r(k)2

] ≤ ηρ(A)k,

where η is a constant. This upper bound is tight.
Proof: As A is a matrix-valued linear recursion, it is

well known that the decay rate of each entry of M̃(k) is
proportional to the spectral radius of A, and this is true for
all initial conditions M̃(0). What remains to be shown is that
this worst-case decay rate holds when M̃(0) is restricted to be
a covariance matrix, or equivalently, when M̃(0) is positive
semidefinite. The proof of this is given in the appendix.

Note that in the case that links do not fail, when p(r,s) = 0
for all (r, s) ∈ E, we have

A : X 7→ (PAP)X (PAP)

and ρ(A) is precisely (ρ(PAP))2, the square of the eigenvalue
of A with the second largest modulus, as is well known.
However, when failures occur with non-zero probability, the
additional terms in the operator A play a role. The opera-
tor A is no longer a pure Lyapunov operator of the form
X 7→ ÃXÃ but rather a sum of such terms. Thus, one does
not expect a simple relationship between the eigenvalues of A
and those of the constitutive matrices as in the pure Lyapunov
operator case.



5

B. Perturbation Analysis
One important asymptotic case is that of small, uniform

link failure probability p. We can analyze this case by doing
a first order eigenvalue perturbation analysis of the operator
A in (8) as a function of the parameter p. We first recall the
basic setup from analytic perturbation theory for eigenvalues
of symmetric operators [26].

Consider a symmetric, matrix-valued function A(p,X) of
a real parameter p and matrix X of the form

A(p,X) = Ao(X) + p A1(X) + p2 A2(X).

Let γ(p) and W (p) be an eigenvalue-eigenmatrix pair of
A(p, .) as p varies, i.e.

A(p,W (p)) = γ(p)W (p).

It is a standard result of spectral perturbation theory that for
isolated eigenvalues of A(0, .), the functions γ and W are well
defined and analytic in some neighborhood p ∈ (−ε, ε). The
power series expansion of γ is

γ(p) = λ + c1p + c2p
2 + · · ·

where λ is an eigenvalue of Ao. The calculation of the
coefficient c1 involves the corresponding eigenmatrix V of
λ and is given by

c1 =
〈V,A1(V )〉
〈V, V 〉 . (10)

Note that we are dealing with matrix-valued operators on
matrices, and the inner product on matrices is given by
〈X,Y 〉 := tr (X∗Y ).

In order to apply this procedure to the operator A in (8), we
first note that, when all links have uniform failure probability
p, σ2

(r,s) = p− p2 for all (r, s) ∈ E. A can then be written as

A = Ao + p A1 + p2 A2

where

Ao(X) = ÃXÃ

A1(X) = βLXÃ + βÃXL +
∑

(r,s)∈E

B(r,s) X B(r,s)

A2(X) = β2LXL −
∑

(r,s)∈E

B(r,s) X B(r,s).

To investigate the first order behavior of the largest eigenvalue,
we observe that the eigenmatrix corresponding to the largest
eigenvalue of Ao is

V = ww∗

where w is an eigenvector, with ‖w‖ = 1, corresponding
to the second smallest eigenvalue of the Laplacian L, also
called the Fiedler vector. Note that w is also an eigenvector
corresponding to the largest eigenvalue of Ã (equivalently, the
second largest eigenvalue of A).

Applying formula (10) to this expression for V yields the
first order term in the expansion of the largest eigenvalue of
A to be

c1 = tr
(
βww∗Lww∗Ã + βww∗Ãww∗L

)
+

∑
(r,s)∈E)

(w∗B(r,s)w)2. (11)

Since w is an eigenvector of Ã, the following equality holds

w∗Ã = λ(Ã)w∗ (12)

where λ(Ã) denotes the largest eigenvalue of Ã. w is also an
eigenvector of L. Therefore the following equality also holds

w∗L = λ(L)w∗ (13)

where λ(L) denotes the second smallest eigenvalue of L.
Noting that A = I − βL, it follows that [27], [28] for

β ≤ 1
2∆ , where ∆ is the maximum node degree of the graph,

we have the following relationship between λ(Ã) and λ(L)

λ(L) =
1
β

(
1− λ(Ã)

)
.

This equality allows us to rewrite (13) as

w∗L =
1
β

(1− λ(Ã))w∗. (14)

Using (12) and (14), (11) can be further simplified as
follows

c1 = 2λ(Ã)
(

1− λ(Ã)
)

tr ((ww∗ww∗)

+
∑

(r,s)∈E)

(w∗B(r,s)w)2

= 2λ(Ã)− 2
(
λ(Ã)

)2

‖w‖2 +
∑

(r,s)∈E)

(w∗B(r,s)w)2

= 2λ(Ã)− 2
(
λ(Ã)

)2

+
∑

(r,s)∈E)

(w∗B(r,s)w)2 (15)

Applying this identity and noting that ρ(Ao) = (ρ(Ã))2,
we arrive at following expression for ρ(A) which is valid up
to first order in p

ρ(A) = ρ(A0) + c1p

= λ(Ã)2

+

2λ(Ã)− 2
(
λ(Ã)

)2

+
∑

(r,s)∈E

(
w∗B(r,s)w

)2 p.

(16)

In the special case of a torus network, λ(Ã) can be com-
puted analytically [27], [28]. For completeness, we state this
result here.

Theorem 3.4: In a d-dimensional torus or d-lattice with
N nodes, the asymptotic expression for the second largest
eigenvalue of the weight matrix A λ2(A) (equivalently λ(Ã))
is given by

λ2(A) = 1 − β
8π2

N2/d
+ O

(
1

N4/d

)
.

Proof: The proof is given in the appendix.
With this result, we are able to derive an analytic form for the
decay factor in tori networks.

Theorem 3.5: For a d-dimensional torus with N nodes, the
first order expansion (in p) of the decay factor is given by

ρ(A) = 1 − (1− p)β 16π2

N2/d
+ O

(
1

N3/d

)
. (17)
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Proof: We first note that, by substituting the value for
λ(Ã) given by Theorem 3.4 into (16), we arrive at the
following expression for ρ(A)

ρ(A) = 1 − (1− p)β 16π2

N2/d

+ O

(
1

N4/d

)
+ p

∑
(r,s)∈E

(
w∗B(r,s)w

)2
.(18)

We now prove the theorem by showing that the term containing
the summation of B(r,s) matrices is of order O

(
1

N3/d

)
.

Recall that each B(r,s) matrix is of the form βb(r,s)b
∗
(r,s)

where b(r,s) is a vector of all zeros, excepting the rth and
sth components which are equal to 1 and −1 respectively.
Therefore, the following equivalence holds for the summation∑

(r,s)∈E

(
w∗B(r,s)w

)2 = β2
∑

(r,s)∈E

(wr − ws)4
, (19)

where wr and ws are the rth and sth components of w. w is the
eigenvector corresponding to the second largest eigenvalue of
A, or equivalently, the eigenvector corresponding to the largest
eigenvalue of Ã.

In the case of a d-dimensional torus, there is an analytical
expression for the eigenvectors A. Let n be such that N = nd.
Each eigenvector of A is associated with a multi-dimensional
index (m1, ...,md), for 0 ≤ mi ≤ (n − 1). The components
of such an eigenvector are given by

v
(m1,...,md)
(j1,...,jd) = e−i

2π
n (j1m1+···+jdmd)

for ji = 0 . . . (n− 1).
The eigenvector corresponding to the largest eigenvalue of

A occurs when m1 = m2 = ... = md = 0. The second largest
eigenvalue has multiplicity d with d independent eigenvectors;
each has one mi equal to 1 and all other mi’s equal to 0. We
compute the asymptotic expression for (19) for the eigenvector
with m0 = 1 and m2 = . . . = mn−1 = 0. The computation
for the other d− 1 eigenvectors is similar.

Let w be the eigenvector with multi-index (1, 0, ..., 0); its
components are given by

w
(1,0,...,0)
(j1,...,jd) = e−i

2π
n j1

for mi = 0 ... (n−1). Substituting this expression for the rth

and sth components of w in (19), we obtain

β2
∑

(r,s)∈E

(
w

(1,0,...,0))
(r1,...,rd) − w(1,0,...,0))

(s1,..,sd)

)4

=

β2
∑

(r,s)∈E

(
e−i

2π
n r1 − e−i 2πn s1

)4

.

Since (r, s) is an edge in the torus, we know that if nodes r
and s share an edge in the first dimension then |r1 − s1| = 1.
Otherwise |r1−s1| = 0. Therefore, for all (r, s) ∈ E, we have

e−i
2π
n r1 − e−i 2πn s1 ≤ 2π

n
|r1 − s1|.

Applying this bound to (19) and using the fact that in d-
dimensional torus with N nodes, there are n edges in each
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Fig. 1. log(1− ρ(A)) as function of the logarithm of the network size.

dimension, we get the following bound on the summation term∑
(r,s)∈E

(
w∗B(r,s)w

)2 ≤ (2π)4

n3
=

(2π)4

N3/d
.

Therefore the summation term of B(r,s) matrices is of order
O
(

1
N3/d

)
which gives the result in (17).

It is interesting to note that for large N , the leading order
behavior of the decay factor is

1 − (1− p)β 16π2

N2/d
.

Recall that β is the fraction that is sent across each link.
Therefore for large N , the failure of links with probability
p has the same effect on the convergence rate as decreasing β
by a factor of 1− p.

C. Simulations

In this section, we demonstrate through simulations that
the relationship between network size and dimensionality and
link failure probability in tori networks stated in Theorem
3.4 appears to hold even for smaller networks and a larger
probability of link failure. Specifically, we demonstrate that,
for a fixed failure probability, the leading order of the decay
factor is related to the network size and dimension as follows

ρ(A) = 1−O
(

1
N2/d

)
. (20)

In order to evaluate whether this relationship holds for
varying network sizes, we simulate the protocol in one-
dimensional tori (ring) networks with sizes ranging from 10 to
1000 nodes and in two-dimensional tori networks with sizes
ranging from 36 to 1764 nodes. For all simulations we let
links fail with a uniform probability of 0.1. In tori networks,
the variance of deviation from average is the same at each
node, and therefore, by Property 1 of Theorem 3.3,

E
[‖x̃(k)‖22

N

]
∝ ρ(A)k
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or equivalently

log
(‖x̃(k)‖22

N

)
∝ k log (ρ(A)) .

To estimate the decay factor, ρ(A), for each network size, we
run the protocol and record the log of the per node variance as
a function of time. In order to guarantee that the simulations
exhibit the worst case decay behavior, the initial matrix M̃(0)
must be such that it is not orthogonal to the eigenmatrix Y
associated with the largest eigenvalue of A, or equivalently we
must have tr(M̃(0)Y ) 6= 0. Since Y is positive semidefinite
and Y 6= 0 (see the proof of Theorem 3.3), any covariance
matrix M̃(0) will satisfy this property so long as E

[
x̃r(0)2

] 6=
0 for all r ∈ V . We achieve this by choosing each xr(0)
uniformly at random from the interval [0,100].

We run each simulation until the plot of log(‖x̃(k)‖22/N)
is linear, indicating that largest eigenvalue of the A operator
dominates the decay rate. We then find of the slope of this
linear plot which gives us an estimate of log (ρ(A)). If the
relationship between the decay rate, the network dimension,
and the number of nodes as described in (20) holds, then a plot
of log(1−ρ(A)) as a function of log(N) should be linear for
each network structure. For 1-dimensional tori, this line should
have a slope of -2, and for a 2-dimensional tori, the slope
should be -1. Figure 1 gives a plot of log(1 − ρ(A)) versus
log(N) using estimates of ρ(A) generated by the procedure
described above for various network sizes and for network
dimensions 1 and 2. For each type of network, the slope of the
linear fit is very close to what is predicted by (20), -1.9792 for
the 1-dimensional networks and -1.0011 for the 2-dimensional
networks. These results indicate that the relationship in (20)
holds even for smaller network sizes.

IV. INCORPORATING ADDITIVE NOISE

In this section, we extend our analysis to a network model
where node values are perturbed by a zero-mean additive noise
in each round. Let u(k) be a zero-mean stochastic process with
the autocorrelation matrix R defined by

R := E [u(k)u(k)∗] .

We assume that the additive noise processes are not correlated
with the state nor with the stochastic processes governing
communication failures. This type of noise can be used to
model random insertions and deletions from the participating
nodes in a distributed file system or data center.

The dynamics of this system are governed by an extension
of the recursion equation in (3) that includes both multiplica-
tive and additive noise,

x(k+1) =

A+
∑

(r,s)∈E

δ(r,s)(k)B(r,s)

x(k)+u(k). (21)

As in the first problem formulation, we are interested in
the second order statistics of the deviation from average,
E
[||x̃(k)||22

]
. However in a system with additive noise, the

average of all node values at time k,
∑N
r=1 xr(k), drifts

in a random walk about the average of the initial values∑N
r=1 xr(0). Additionally, since node values are perturbed in

each round, one can no longer expect the nodes to converge to
consensus at the current average, or equivalently, each x̃r does
not converge to 0. In this extended model with additive noise,
we do not measure the algorithm performance in terms of the
convergence rate. Instead, performance is measured using the
steady-state total variance of the deviation from average,

TVss := lim
k→∞

E
[‖x̃(k)‖22

]
which is the sum of the variances of the deviation from
the current average at each node. We are interested in the
network conditions under which TVss is bounded as well as
in quantifying that bound.

Problem Statement 2: Consider a distributed consensus
algorithm on a network where each link (r, s) ∈ E fails with
independent probability p(r,s), and where node values are per-
turbed by a zero-mean stochastic process, as modeled by the
system with additive and multiplicative noise (21). For a given
input noise covariance R, determine the steady-state total
variance of the deviation from average, limk→∞ E

[‖x̃(k)‖22
]
.

Again, we study E
[‖x̃(k)‖22

]
by analyzing the recursion

equation for the matrices M̃(k) := E [x̃(k)x̃(k)∗], noting that
TVss is related to M̃(k) as follows

TVss = lim
k→∞

tr (E [x̃(k)x̃(k)∗]) = lim
k→∞

tr
(
M̃(k)

)
.

Using the same approach by which we derived the recursion
equation (7), we can derive a recursion equation for the system
with additive noise.

Lemma 4.1: The matrices M̃(k) for the system (21) satisfy
the recursion

M̃(k + 1) = PAPM̃(k)PAP
+

∑
(r,s)∈E

σ2
(r,s)B(r,s)M̃(k)B(r,s) + PRP

= A
(
M̃(k)

)
+ PRP

where A is the matrix-valued operator defined in (8).
If the operator A is asymptotically stable, this recursion has

a limit
M̃ss := lim

k→∞
M̃(k)

and the limit M̃ss satisfies the following Lyapunov-like equa-
tion

M̃ss = A(M̃ss) + PRP.
These facts lead to the following theorem relating to the
second order statistics of the system (21).

Theorem 4.2: Consider the distributed consensus algorithm
with random link failures as modeled by the system with
multiplicative and additive noise (21).

1) The total variance of the deviation from average
E
[‖x̃(k)‖22

]
has a steady-state limit if and only if

ρ(A) < 1.

2) This limit is equal to the trace of M̃ss, TVss = tr(M̃ss),
where M̃ss satisfies the equation

M̃ss = A(M̃ss) + PRP.
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This theorem implies that if the consensus protocol results
in convergence to the average in a network with random link
failures, the same protocol executed on the same network with
link failures and additive noise has a finite steady-state limit
for the total deviation from average.

V. COMPUTATIONAL PROCEDURES

We present computational methods for calculating the exact
second order statistics of the deviation from average for
systems with random communication failures. For the static-
valued system model, the procedure involves computing the
largest eigenvalue of a matrix-valued operator. For systems
with additive noise, one must compute the trace of a solution
of a Lyapunov-like equation.

A. Computing the Decay Factor
The decay factor of the static-valued system (3) is the spec-

tral radius of the linear operator A defined in (8). Therefore,
it is not necessary to perform Monte Carlo simulations of the
original system (4) to compute decay factors. However, A
is not in a form to which standard eigenvalue computation
routines can be immediately applied. We present a simple
procedure to obtain a matrix representation of A which can
then be readily used in eigenvalue computation routines.

Recall that the Kronecker product of any two m × n and
r × s matrices C and D respectively is the mr × ns matrix

C ⊗D :=

 c11D · · · c1nD
...

. . .
...

cm1D · · · cmnD

 .
Let vec(X) denote the “vectorization” of any m × n matrix
X constructed by stacking the matrix columns on top of one
another to form an mn×1 vector. It then follows that a matrix
equation of the form Y = CXD can rewritten using matrix-
vector products as

vec(Y ) = (C ⊗D) vec(X).

Thus, using Kronecker products, A in (8) has a matrix
representation of the form

A =
(PAP)⊗ (PAP)+

∑
(r,s)∈E

σ2
(r,s)B(r,s) ⊗B(r,s).

For a graph with N nodes, A is an N2 × N2 matrix. This
matrix representation can be used to find ρ(A) via readily
available eigenvalue routines in MATLAB. However, we note
that this matrix is not sparse, and so this computational
procedure will not scale to large networks on a single machine.
The development of an efficient method to compute ρ(A)
remains an open problem.

B. Computing the Steady-State Total Variance
Recall that the steady-state total variance of the deviation

from average TVss is the trace of M̃ss where M̃ss satisfies
the Lyapunov-like equation

M̃ss =
(PAP) M̃ss

(PAP)
+

∑
(r,s)∈E

σ2
(r,s)B(r,s)M̃ssB(r,s) + PRP

where R is the covariance matrix of the additive noise process
u(k).

We again use Kronecker products to find an expression for
M̃ss

vec(M̃ss) =
(PAP)⊗ (PAP) vec(M̃ss)

+

 ∑
(i,j)∈E

σ2
(r,s)B(r,s) ⊗B(r,s)

 vec(M̃ss)

+ vec(PRP)

=

(
I −

((PAP)⊗ (PAP)
+
∑

(i,j)∈E

σ2
(r,s)B(r,s) ⊗B(r,s)

))−1

vec(PRP).

Using this expression, vec(M̃ss) can be computed directly for
any given algorithm instance and covariance matrix R. One
can then reassemble M̃ss from vec(M̃ss) and find its trace.

In the next section, we use our computational procedures
to calculate the decay factor and steady-state total deviation
from average for various network examples.

VI. EXAMPLES

We examine the second order statistics of the deviation
from average for the consensus algorithm as a function of
uniform link failure probability p. For static-valued networks,
we give computational results for different network topologies
and values of β to illustrate the relationship between the
probability of failure, the structure of the network, and the
choice of β. For networks with additive noise, we give results
that consider all three of these factors and, in addition, we
also explore the effects of the variance of the additive noise
process on the variance of the deviation from average. For
each class of problems, MATLAB was used to produce results
according to the computational procedures described in the
previous section.

A. Decay Factors

We first investigate the behavior of the decay factor ρ(A)
in systems with no additive noise. For each network topology,
we compute the decay factor for several values of β, including
the value which is optimal for each graph when there are no
communication failures. This optimal β is the edge weight
that yields the smallest decay factor in networks with reliable
communication links. The value is given by the following [10],

β∗ =
2

λ(L) + λ(L)

where λ(L) and λ(L) are the second smallest and the largest
eigenvalues of the Laplacian matrix of the graph, respectively.

Figures 2 and 3 give the decay factors for a ring network
with 9 nodes, and a 2-dimensional discrete torus with 25
nodes. For each topology, we compute the decay factors using
the optimal β, a β that is larger than optimal, β = 1

∆ , where
∆ is the degree of each node in the network, and a β that
is smaller than optimal, β = 1

2∆ . For the ring network, the
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Fig. 2. Decay factor for varying link failure probabilities in a 9 node ring
network.

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Probablity of Link Failure

D
ec

ay
 F

ac
to

r

 

 

β = 0.25
β = optimal
β = 0.125

Fig. 3. Decay factor for varying link failure probabilities in a 25 node
2-dimensional torus.

larger β is 0.5, the optimal β is approximately 0.4601, and the
smaller β is 0.25. For the 2-dimensional torus, the larger β is
0.25, the optimal β is approximately 0.2321 and the smaller
β is 0.125.

As expected, in both networks, when there are no link
failures, the decay factor is smallest for the optimal β.
Surprisingly, for the maximum β, the decay factors decrease
for small probabilities of failure, and this edge weight yields
better performance than the optimal weight. The decay factor
continues to decrease until the failure probability reaches
approximately 0.1 and then steadily increases. For the case
where β = 1

2∆ , the decay factor is consistently larger than
that for the optimal β. Similar trends can be observed in the
decay factors larger networks, however the difference for the
various choices of β is not as pronounced.

We also compute the decay factors for an Erdős-Rényi (ER)
random graph [29] of 50 nodes where each pair of nodes is
connected with probability 0.25. The graph has 319 edges and
a maximum node degree of 20. The decay factors are given in
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Fig. 4. Decay factor for varying link failure probabilities in a 50 node ER
random graph.

Fig. 4. The optimal β is approximately 0.071. We also show
decay factors for values of β that are larger and smaller than
optimal, β = 0.081 and β = 0.061 respectively. As in the
results for the tori networks, the optimal β yields the smallest
decay factor when there is zero probability of edge failure,
and when failures are introduced, the decay factor initially
decreases for the larger value of β, where it actually results
in faster convergence than the optimal β.

We conjecture that link failures reduce the effective weight
of the values that are sent across each edge over a large number
of rounds. In the case where β is larger than the optimal
choice, the introduction of failures decreases the effective
weight to approach the optimal β, and thus the algorithm
performance actually improves. These results demonstrate that
there is a relationship between the failure probability and the
choice of β, and therefore it seems possible to select a β that
optimizes performance for a given failure probability.

B. Steady-State Total Variance

We next examine the steady-state total variance for sys-
tems with communications failures where the state values are
perturbed by additive noise. While we do not know of any
analytical result for the optimal choice of β for these systems
when there are no communication failures, it has been shown
that the optimal edge weight can be bounded above and below
as follows [30]

1
λ(L)

≤ β∗ < 2
λ(L)

.

Figure 5 shows the results for 64 node tori networks of
dimension 1, (d = 1), 2 (d = 2), and 3 (d = 3). For all
networks, the variance of the additive noise is 10. For each
network, we select β to be the lower bound of the optimal
value, β := 1

λ(L)
. In a torus, this value corresponds to 1

2∆

where ∆ is the degree of each node in the graph. So, for d = 1,
we have β := 1

4 , for d = 2 we have β := 1
8 , and for d = 3,

we have β := 1
12 . While the magnitude of TVss is different

for each of the three networks, the effect of increasing the
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Fig. 5. Steady-state total variance of the deviation from average in 64 node
tori networks of dimensions 1, 2, and 3.
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Fig. 6. Steady-state total variance of the deviation from average for various
link failure probabilities in a 9 node ring network.

probability of communication failure is the same regardless of
the dimension of the torus. In fact, it appears that, for all three
networks, the variance grows as 1

1−p , which is also shown in
the figure.

In Fig. 6, we show the steady-state total variance for a
9 node ring network. The node values are perturbed by a
zero-mean additive noise with a variance of 10. We use both
the upper bound on the optimal value of β, βUB , which is
approximately 0.2578, and the lower bound on the optimal
value, βLB , which is approximately 0.5155. We observe that
for βUB , introducing a small probability of communication
failure decreases the steady-state total variance. Just as the
introduction of communication failures can decrease the de-
cay factor in systems with no additive noise, this result
demonstrates that communication failures can also improve
performance by decreasing variance in systems with additive
noise.

Finally, in Fig. 7, we show the steady-state total variance
for an ER random graph with 30 nodes, where an edge exists
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Fig. 7. Steady-state total variance of the deviation from average for various
link failure probabilities in a 30 node ER random graph.

between each pair of nodes with probability 0.25. The graph
has 132 edges and a maximum node degree of 15. We use both
the upper and lower bounds on the optimal β, βUB ≈ 0.1167
and βLB ≈ 0.0584. We show results for systems with zero-
mean additive noise with variance of 1, 10, and 100. As in
the previous scenarios, a small probability of communication
failure decreases the total variance for βUB in all cases. An
interesting observation is that the variance of the additive noise
process does not affect the relationship between the probability
of communication failure and the steady-state total variance.
For all three additive noise processes, the behavior of the
steady-state total variance is the same with respect to the
probability of failure. Additionally, after the initial decrease,
the variance appears to grow as 1

1−p for all network instances.

VII. CONCLUSION

We have presented an analysis of the distributed average
consensus algorithm in networks with stochastic communica-
tion failures and shown that the problem can be formulated
as a linear system with multiplicative noise. For systems with
no additive noise, we have shown that the convergence rate of
the consensus algorithm can be characterized by the spectral
radius of a Lyapunov-like matrix recursion, and we have
developed expressions for the multiplicative decay factor in
the asymptotic limits of small failure probability and large
networks. For systems with additive noise, we have shown
that the steady-state total deviation from average is given by
the solution of a Lyapunov-like equation. For both models,
we have presented simulation-free methods for computing
the second order statistics of the deviation from average.
Using these methods, we have computed these second order
statistics for various network topologies as a function of link
failure probability. These computations indicate that there is
a relationship between the network topology, the algorithm
parameter β, and the probability of failure that is more
complex than intuition would suggest. In particular, we show
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that for certain choices of β, communication failures can
actually improve algorithm performance.

As the subject of current work, we are investigating the
extension of our model and analysis to incorporate commu-
nication failures that are spatially and temporally correlated.
Such extensions will enable the study of other realistic network
conditions such as network partitions and node failures.
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APPENDIX

A. Proof of Theorem 3.3

Proof: In order to prove the existence of a covariance
matrix M̃(0) for which the decay factor of the linear recursion
(6) is precisely ρ(A), we show that every eigenvalue of
A has an associated positive semidefinite eigenmatrix. By
setting M̃(0) to be the eigenmatrix associated with the largest
eigenvalue of A, the worst case decay rate is achieved.

We first show that every for every eigenvalue-eigenmatrix
pair (γ,W ) of A , there exists a symmetric matrix Z such
that (γ, Z) is also an eigenvalue-eigenmatrix pair of A. Let Z
be the symmetric matrix Z = W +W ∗. Then, we have

A(Z) = PAP(W +W ∗)PAP
+

∑
(r,s)∈E

σ2
(r,s)B(r,s)(W +W ∗)B(r,s)

= PAPWPAP
+

∑
(r,s)∈E

σ2
(r,s)B(r,s)WB(r,s) + PAPW ∗PAP

+
∑

(r,s)∈E

σ2
(r,s)B(r,s)W

∗B(r,s)

= γW + γ∗W ∗

Since A is self-adjoint, all of its eigenvalues are real, and so
γ = γ∗, giving

A(Z) = γ(W +W ∗) = γZ.

If Z is the symmetric eigenmatrix assoiciated with γ, the
largest eigenvalue ofA, then the decay factor of theA operator
acting on an initial state of Z is precisely |γ|. We note that as
Z is symmetric, it can be decomposed as Z = Z++Z−, where
Z+ and Z+ are positive and negative semidefinite respectively.
By the linearly of A, we have

Ak(Z) = Ak(Z+ + Z−) = Ak(Z+) +Ak(Z).
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Therefore the decay rate of A with the initial conditions Z is
equivalent to the maximum of the decay rates of A with the
initial condition Z+. and A with the initial condition Z−. This
implies that there exists a covariance (positive semi-definite)
matrix M̃(0) such that the decay factor of the A operator
acting on the initial M̃(0) is the spectral radius of A.

B. Proof of Theorem 3.4

Proof: We consider an N node tori network of dimension
d as a d-dimensional n-array where nd = N . The distributed
average consensus algorithm is given by the following recur-
sion equation

x(j1,...,jd)(k + 1) = α x(j1,...,jd)(k) +
β
(
x(j1−1,...,jd)(k) + x(j1+1,...,jd)(k) + · · ·
+x(j1,...,jd−1)(k) + x(ij ,...,jd+1)(k)

)
,

where each jh ranges from 0 to n− 1.
Each node communicates with its two neighbors along each

of the d axes in each round. The numbers α and β then must
satisfy α + 2d β = 1. The sum in the equation above can
be written as a multidimensional convolution by defining the
array

a(j1,...,jd) =

 α j1 = · · · = jd = 0,
β jl = ±1, and jm = 0 for l 6= m,
0 otherwise.

We can then express the averaging operation defined above as

x(k + 1) = Ma x(k),

where Ma is the circulant operator associated with the array
a. The N = nd eigenvalues of Ma can be determined using
the Discrete Fourier Transform, with mh := 0 . . . n − 1, for
j = 1 . . . d,

λ(m1,...,md) =
∑

k1,...,kd∈Zn

a(k1,...,kd) e
−i 2πn (k1m1+···+kdmd)

= α + β
(
e−i

2π
n m1 + ei

2π
n m1 + · · ·

+ e−i
2π
n md + ei

2π
n md

)
= α+ 2β

(
cos
(

2π
n
m1

)
+ · · ·+ cos

(
2π
n
md

))
.

The largest eigenvalue occurs when all mj’s are zero, and this
eigenvalue is 1. The next largest eigenvalue occurs when all but
one of, and the non-zero mj is 1. This eigenvalue corresponds
to

α + 2β(d−1) + 2β cos
(

2π
n

)
= 1−2β

(
1− cos

(
2π
n

))
.

(22)
When N and consequently n are large, cos

(
2π
n

)
can be

expressed as

cos
(

2π
n

)
= 1−

(
2π
n

)2

+O

(
1
n4

)
.

Substituting this equivalence into (22) and using the fact that
n = N1/d, we obtain the following expression for the second
largest eigenvalue of Ma

λ2(Ma) = 1 − β
8π2

N2/d
+ O

(
1

N4/d

)
.

In the case of a lattice network, the protocol matrix is Toeplitz
rather than circulant. However, the spectrum of the protocol
matrix for a d-lattice and d-dimensional torus are equivalent
in the limit of large N [31], [32]. Therefore, the convergence
results can be applied to lattice networks as well as tori.


