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Preface

These notes are an early draft. I have tried to be very careful with the writing and notation.
However, there will be the inevitable typos and some errors. If you find any, please email the author

at bamieh@ucsb.edu.
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Modeling of Dynamical Systems and Signals

“Dynamical systems” are those whose configurations described by positions, velocities, voltages, cur-
rents etc. vary with time. These variations and oscillations are modeled using systems of differential
equations, which constitute the dynamical model. These mathematical models predict the physical
behavior of the system. Many mechanical systems’ vibrations are very well modeled by systems of
masses, springs and dampers. It is quite remarkable how sometimes complex mechanical systems
can be modeled with just a few of those elements. The key point is that for engineering design, it is
not the highest fidelity models that are useful, but rather the most parsimonious models that capture
the phenomena and the design criteria.

For simple systems, models using Newton’s laws of motion, together with characterization of
spring and damper forces, suffice to write down the differential equations governing the system. For
more complexr systems with many mechanical degrees of freedom, especially those that move in 2D
and 3D, Lagrangian Mechanics is a more convenient (and expedient) modeling framework.

“Signals” are the functions of time describing the system’s configuration such as positions, ve-
locities, etc. In vibrations analysis, these are typically sinusoidal signals of varying amplitudes and
phases. Amplitude and phase relations between signals are crucial to understanding the underlying
dynamic phenomena. They are best captured by “phasor analysis”, which is basically the encoding of
trigonometric identities using the arithmetic of complex numbers. Therefore a thorough understand-
ing of and intuition for complex arithmetic is necessary for understanding these important amplitude
and phase relationships.
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Chapter 1

Dynamical Models: Masses, Springs and
Dampers

The fundamental physical property that causes mechanical vibrations is some type of “restoring force”
such as elasticity, or other forces that act similarly. It is surprising how many complex mechanical
systems with a variety of component parts can be effectively modeled using an idealization of a mass
connected to a fixed or moving structure via a simple spring and a damper. In this chapter, we will
explore this type of modeling, which ultimately leads to differential equations whose solutions give
the displacements, velocities and accelerations of mechanical vibrations. This chapter is concerned
mainly with dynamical modeling, i.e. given an arrangement of mechanical elements, derive the
differential equations describing the dynamics. We do not discuss how to solve those equations in
this chapter. Rather, subsequent chapters will explore solution properties of the types of equations
we encounter here.

1.1 Restoring Forces: Elastic Springs and Analogous Forces

The linear spring is the basic elastic element. The simplest version of a spring is characterized
by Hooke’s law® which states that the extension/compression A of a spring is proportional to the
applied force F'

Sk e F=kA & — =A, (1.1)

where k is the spring constant, which is also called the stiffness of the spring. The equation above
justifies the term “stiffness” since a higher force is needed to achieve the same deflection A if k is
increased.

The equation F' = kA says that k is a conversion factor from displacement to force, and therefore
k has units of force over distance. Values of F are typically given in Newtons/meter (N/m). Springs
come in all shapes and sizes, and spring constants can vary widely from tens of thousands of N/m
in vehicle suspensions to one-thousands N/um in MEMS devices.

The relation (1.1) is incomplete since it does not specify the directionality of deflection relative to
the forcing. The spring force always acts in a direction opposite to the spring’s deflection as shown
in Figure 1.1a. For a more precise description, we need to choose a coordinate system as shown
in Figure 1.1b. This figure assumes that motion is confined to a single dimension. The variable x
denotes the position of the movable end of the spring, while the other end is held in place. As the
figure shows, Hooke’s law states that the force exerted by the spring in this configuration is always
given by the formula

F= —k(z—z)), (1.2)

INamed after Robert Hooke, an English scientist who lived in the late 17th century and a contemporary of Newton.
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(a) The force exerted by a spring on an (b) Various coordinate systems can be used to express a spring’s deflection
object attached to it is shown in blue. It and the resulting force. Let Z denotes the coordinate of the spring’s movable
acts in a direction opposite to the spring’s end when uncompressed/unstretched, and z denote that coordinate in any
deflection away from its equilibrium (un- other configuration. The spring’s force is always given by F = —k(z — )

stretched /uncompressed) length L. If the regardless of the choice of coordinate system as shown above. However, de-

spring is compressed, the force is away from pending on the direction of the coordinate axis, negative or positive values of

the spring (push). If it is extended, the force x — & may imply either compression or extension. When possible, choosing

is towards the spring (pull). the origin of the coordinate system so that Z = 0 (bottom figure) gives the
simpler formula F' = —kz.

Figure 1.1: A linear (Hookean) spring exerts a force that is proportional to its deflection from its equilibrium
(uncompressed /unstretched) length. The constant of proportionality k is the “stiffness” of the spring. Various
coordinate systems can be used to characterize the spring’s forces. The reader should keep in mind that the forces
depicted are exerted by the spring, not the forces exerted on the spring (which would be equal and opposite to those
shown).

where T is the coordinate of the point of contact (between the spring and whatever it is acting on)
when the spring is unstretched and uncompressed, i.e. in so-called equilibrium. The formula (1.2)
holds regardless of the direction or the origin of the coordinate system. Three different choices are
shown in Figure 1.1b, and we make the following observations for each.

e Figure 1.1b top: The origin is at the fixed end of the spring, and Z is the position of the movable
end at equilibrium. Thus T is actually the equilibrium length of the spring. The quantity = — Z is
the spring’s extension, which is positive if the spring is extended, and negative if it is compressed
as shown in the diagram.

e Figure 1.1b middle: The origin is chosen arbitrarily, but once that choice is made, £ marks the
coordinate of the movable end at equilibrium. With this choice of the coordinate axis direction,
x — T is the spring’s compression, i.e. positive if the spring is compressed and negative if it is
extended.

e Figure 1.1b bottom: The origin is chosen so that z = 0, i.e. at equilibrium the movable end is at
x = 0, and therefore deviations from equilibrium are simply given by z. The force law then has
the simple form F(z) = —kuz.

The dynamics of bodies connected by springs can now be written down using Newton’s second
law, which leads to differential equations for positions and velocities. A mass is attached to a spring
as shown in Figure 1.2. We choose a coordinate system, and select any point on the mass to mark
its time-varying position by x(t). The “reference position” z is the coordinate of that point when
the spring is unstretched /uncompressed. The time-varying spring force is then F'(t) = —k(x(t) — E),
and Newton’s second law states that

mit) = —k (z(t) —2), (1.3)

Note that while the position z(t) is time-dependent, the reference position T is constant. This
equation can be simplified by defining a new position variable Z(t)

) = x(t) -7 = (t) = i(t) = mat) = —kit) (1.4)

This last differential equation is a little simpler to deal with than (1.3). Once this equation is solved,
the solution to the original differential equation can be reconstructed from

a(t) = &#(t) + .

DRAFT: VIBRATIONS, MARCH 2, 2025 © 2024, Bassam Bamieh
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Figure 1.2: A mass is attached to a spring and the origin of the coordinate system is chosen arbitrarily. Any point
on the rigid mass can be used to characterize its motion. Here the point chosen is the left end of the mass. That
point is marked as T when the spring is in equilibrium and exerts no force on the mass (left figure). In any other
configuration, the spring’s force is given by F = —k(x — &) since the difference  — Z is also the compression of the
spring.

Figure 1.3: Solutions of a differential equation of the form &(t) = —oax(t) (where o > 0) are oscillatory as a
g y

pure sinusoid with frequency /o rad/s. The amplitude and the phase of the sinusoid are determined from the
initial conditions z(0) and #(0, but the “natural frequency” wn = /a depends only on the parameter « in the

differential equations and not on the initial conditions. The figure depicts two different solutions from two different
initial conditions. The period of oscillation T is determined by the frequency as T = 27/y/a = 2w /wn = 1/f where
f = wn/2m is the frequency in cycles/second (i.e. Hz).

Alternatively, we can also choose the coordinate system from the start so that £ = 0, i.e. so that
x = 0 corresponds to the spring being in equilibrium. In this case we can immediately write down
an equation like (1.4), but for z(¢) rather than needing to define another variable

mi(t) = —kx(t)

) . _
o #(t) = —(k/m) a(t) & mi(t) + kx(t) = 0. (1.5)

The only difference between the solutions of (1.5) and those of (1.3) is the constant Z, which comes
from shifting the origin of the coordinate system by Z. The choice of coordinate systems can
significantly simplify the resulting differential equations for more complex systems with multiple
masses. This is discussed in detail in Section 1.2.

Equation (1.5) is our first differential equation describing vibrations of a mass connected to a
stationary anchor by a spring. You might recall from your differential equations courses that this
equation has oscillatory solutions (when m, k > 0, which is the case here), with oscillation frequency
of \/k/m. We will study such solutions and their properties in detail in Chapter 3, but for now we
state the general solution as

z(t) = A cos (wnt +0), wn = 4/ —, (1.6)

where the oscillation frequency (in rad/s) wy, is called the natural frequency of the system, A is the
oscillation amplitude and 6 is its phase. A and 6 are determined by initial conditions (initial extension
of the spring and initial velocity of the mass), while w, does not depend on initial conditions but
only on the system parameters k and m.

Remark 1.1. In Chapter 3 we will derive the solution of any second order differential equation of the
form

i(t) = —ax(t), (1.7)
where o > 0 is any positive number. The solution of such an equation is always of the form

z(t) = A cos (wnt +6), wn = Va, (1.8)

DRAFT: VIBRATIONS, MARCH 2, 2025 © 2024, Bassam Bamieh



10 1.1. RESTORING FORCES: ELASTIC SPRINGS AND ANALOGOUS FORCES

Figure 1.4: (Left) A picture of a torsional spring. (Right) Schematics of torsional springs. A torsional spring
produces a torque T that’s always opposite to its angle of deflection from equilibrium. A Hookean torsional spring
produces a torque that is proportional to the angle of deflection T = —kf. k is the stiffness of the spring and has
units of torque/angle, e.g. Nm/deg. The dashed line above represents the equilibrium angle of the spring.

where A and 0, the so-called amplitude and phase respectively of the solution, depend on the particular
initial conditions given for the problem. The solutions are always oscillatory with frequency w, = /&
regardless of the initial conditions. Two such solutions are shown in Figure 1.3. Note that the period
of oscillation 7 = 27 /w, = 27/+/a, where w,, is expressed in radians/second. Alternatively, 7 = 1/ f,,,
where f, = w, /27 = \/a/27 is the frequency expressed in cycles/second (i.e. Hz).

1.1.1 Torsional Springs

When considering rotary motion, the equivalent of the spring element is the torsional spring depicted
in Figure 1.4. For torsional springs, the “force law” is a relation between torques and angles. This
is the counterpart of the relation between force and distance for standard springs. A “Hookean”
torsional spring produces an opposing torque 7 that is proportional to the angle 6 of deflection from
equilibrium

T = —k@. (1.9)

The constant k is the “stiffness” of the torsional spring, and has units of torque per angle, such as
Newton meters per degree for instance.

Recall that for rotational motion, Newton’s second law relates angular acceleration é, mass
moment of inertia J, and the applied torque 7

JOo = 1.

Therefore if a structure with moment of inertia J is attached to a torsional spring with stiffness k&,
the differential equation that describes rotational motion is given by

JO@) = — ko) = 0(t) = — (k/J) 6(t). (1.10)
This equation is of the form (1.7), and therefore its solutions are of the form (1.8)
0(t) = A cos (wnt +0), wn = Vk/J,

where the natural frequency w, is now determined by the ratio of the torsional spring stiffness to
the body’s moment of inertia about the rotation point. Again, the amplitude A and phase 6 of the
oscillation are determined by the initial conditions 6(0) and (0).

Consider for example the configuration in Figure 1.4 where the rod connecting the mass m to
the torsional spring is assumed massless, and the dimensions of the mass m itself are negligible. The
moment of inertia then is simply J = ml?, where [ is the length of the rod. The equation of motion
is then

mi? 6(t) = —k6(t).

It should be noted that while a linear spring constant has units of force per linear length (e.g. N/m),
a torsional spring constant has units of torque per angle (e.g. Nm/rad).

The reader should now compare Equations (1.10) and (1.5). They are very analogous mathemat-
ically. The angular position coordinate 6 plays the same role as the linear position coordinate x, the
mass moment of inertia J plays the same role as the mass m, and & indicates stiffness (though of two
different types) in both cases. You would then expect the dynamical behavior of (1.10) to be exactly
the same as (1.5), only the names have changed. The next examples gives yet more analogies.

DRAFT: VIBRATIONS, MARCH 2, 2025 © 2024, Bassam Bamieh
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(a) A mass m connected to a pivot via an inextensible string or a
massless rod. The connecting element does not have its own dynamics
since it is massless, but kinematically insures that the mass travels
in a circular motion. Therefore the rod tension T' cancels the radial
component of gravity, and only the tangential component of gravity
determines tangential acceleration and rotational motion as shown in

(b) If the connecting element is a rigid body
with significant mass my, then its moment
of inertia J as well as its gravity torque
—myg (1/2)sin(f) must be taken into ac-
count to yield the force balance as expressed
in Equation (1.12).

the free-body diagram.

Figure 1.5: Two different models of the simple pendulum with the connecting element mass either ignored or
accounted for.

1.1.2 Pendula

A common system in which oscillatory motion occurs is the free-swinging pendulum, which has no
elastic forces, but gravity plays a role similar to spring forces. The pendulum is shown in Figure 1.5.
A string or a rigid rod connects a mass m to a free, frictionless hinge attached to a frame. We present
two different methods to derive the equations of motion depending on the assumptions about the
connecting element.

1. If the connecting rod or string is assumed massless, we can use linear force balance as shown
in Figure 1.5a. The rod/string is assumed inextensible. In this case, the motion of the mass is
circular, and therefore the rod/string tension T and the radial component of gravity cancel out.
The motion is then purely circular and completely determined by the tangential component
of gravity which for any angle 6 is given by

—myg sin(0)

as shown in the free-body diagram. Notice the negative sign. Whichever convention we use
for the angle orientation (i.e. positive for clockwise or positive for counter-clockwise), the
tangential component of gravity acts in the opposite direction to the deflection angle.

The equation of motion for this simple pendulum is then

m (10(t)) = —mg sin (0(t)) (1.11)

where 16 is the tangential acceleration of the mass.

2. If the rod has non-negligible mass m,, then we must use torque balance to account for the
moment of inertia J of the rod. The equation of motion is then

— mug (1/2) sin (6(t))

gravity torque of
the rod

(ml* +1J) 6(t) =

————
combined moment of
inertia of m and rod

— mg | sin (6(t))

gravity torque of
the mass m

= —gl(m+m/2) sin(0(t)), (1.12)
where [sin and (I/2) sin @ are the moment arms of the mass m and rod m, respectively. Note
that the torques have opposite signs to the angular acceleration. Also note that if m, = 0 and
J = 0 (massless rod assumption), Equation (1.12) reduces to Equation (1.11) after cancelling
the | common factor from both sides.

DRAFT: VIBRATIONS, MARCH 2, 2025 © 2024, Bassam Bamieh



12 1.1. RESTORING FORCES: ELASTIC SPRINGS AND ANALOGOUS FORCES

Most pendula are operated in the regime of small oscillations, say [#] < 10°. In this regime,
the approximation sin(#) =~ @ is quite good?, and can be used to significantly simplify the analysis
of the dynamics. For example, using this assumption, we can simplify (1.11) to give the linearized
dynamics

6(t) = —(g/1) O(t). (linearized dynamics for small 6) (1.13)

Although the simple pendulum has no springs, its dynamical behavior is exactly like a Mass-Spring
system.

1.1.3 Mathematical Analogies

You should note now that Equation (1.13) “looks” exactly like (1.10) and (1.5). Let’s compare the
dynamics of all three systems, the linear spring, the torsional spring, and the pendulum together to
see the analogy. Although each equation involves two constants, what really matters is the ratio of
these two constants

B(t) = —(k/m) x(t)
b(t) = —(k/J) 0(1)

—(g/1) 0(¢). (pendulum in rotational motion)

, (mass/spring in linear motion)
)

(mass/torsional-spring in rotational motion)

:
—~
~
=

Examine for instance the pendulum equation, where [ acts like the mass m in the first equation,
and gravitational acceleration g acts like the spring stiffness k. For small oscillations, the pendulum
can be thought of as comparable to a mass-spring system. Rotational motion of the pendulum away
from the downwards position elevates the mass, and gravity acts to restore the pendulum angle
to zero (downwards position) just like a spring tries to restore a mass’ position to its unextended
length. The same pendulum taken from earth to the moon, where g is smaller, will oscillate like a
mass connected to a weaker spring, and if taken to Jupiter, where g is much larger, will oscillate
like a mass connected to a much stiffer spring. Finally, note that the length of the pendulum acts
like an inertia term. The longer the pendulum arm, the more “apparent inertia” the pendulum has
to rotational motion.

The analogies above are useful for applying dynamical intuition from spring-
mass systems to other mechanical, or even electrical systems. To illustrate this
last point consider the circuit shown here where an initial charge across the
capacitor, or an initial current through the inductor ends up causing an oscil-
lation. Denote the voltage across the capacitor and inductor by V (they are
forced by the circuit wiring to have the same voltage across them), the current
through capacitor as I, and the current through the inductor as I,. Recall that
the voltage-current relationships for capacitors and inductors are C'V = I and
LI, = V. The circuit wiring implies that I = —I,. We can combine all three relations to get a
differential equation for the voltage, or for either of the two currents as follows

CV =l CV=-1, = CV=-I, = CV=-1V = V=-LV
LI, =V = . . . . .

I. = —1I, LI, =V = LI, =V = LI:%Ic = I:—%IL

(1.14)

Note that since I = —1I,, the last equation also gives I, = —% I.. Any of these three equations

have oscillatory solutions with frequency /1/LC whereby any initial charge across the capacitor
gets discharged as a current through the inductor, which then recharges that capacitor in an infinite
back-and-forth cycle in the absence of any resistance.

2Recall also that the Taylor series for sin(f) around 6 = 0 is sin(f) = 6 — %93 + ---. Thus this approximation is
just the first-order term in the Taylor series.
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Figure 1.6: (Left) A linear (Hookean) spring has a force law F(z) = —kx, where = is the change of the spring’s
length from its equilibrium. The “stiffness” k is the slope of this graph. The stiffer the spring, the larger the slope, and
consequently the higher the force produced by a certain deflection. Here k1 < k2 represents a “loose” spring compared
to ko which represents a stiffer spring. (Right) A canonical example of a “stiffening” spring is mathematically modeled
by the addition of a cubic term in the force law F(z) = —kx — ax3. For small deflections = & 0, the spring behaves like
a linear spring with F(z) ~ —kz. For large deflections, the slope becomes larger, and thus the spring becomes stiffer.
For small oscillations & := x — Z around a mean deflection of Z, the oscillations of the force F(z) — F(z) = F'(z)%
follow a linear spring, but with the higher stiffness F’(Z).

Equations (1.14) are exactly of the same form as the previous equations where the coefficient
1/LC plays the role of k/m in the linear mass-spring system for example. We will see later when
we study electrical /mechanical analogies (Chapter ?77) that one analogy is to regard L as an inertia,
and of 1/C as analogous to a spring’s stiffness® so that 1/LC = (1/C)/L . Alternatively, we can
regard C' as an inertia, and 1/L (sometimes called the inductor’s “reluctance”) as analogous to a
spring’s stiffness so that 1/LC = (1/L)/C. Although these analogies are purely mathematical since
they arise by examining the structure of differential equations, they are useful since they allow for
applying mechanical intuition to electrical circuits and vice versa.

1.1.4 Nonlinear Springs, Forces and Linearizations

Hooke’s law is usually only an approximation (although a very useful one) to elastic phenomena
in general. In reality, the behavior of a spring or other elastic elements can be more complicated.
Consider the graphical representation of Hooke’s law in Figure 1.6 (left). The force F(x) as a
function of position z is a linear function

with slope —k. Stiffer springs with higher values of k correspond to linear graphs with larger slopes.

Graphs like those shown in the figure can actually be obtained experimentally. A load-cell (which
measures force) can be attached to a spring, the spring gets pulled or pushed, the force recorded by
the load cell, and the resulting deflection can be measured. When done at many values of force and
deflection, one obtains the graph of force F'(x) versus deflection . One common type of force law
is that of a “stiffening spring”. A simple mathematical model of such a spring is given by adding a
cubic term to Hooke’s law

F(z) = —kz — a2®, (1.15)

where a > 0 is some constant. A graph of such a force law is shown in Figure 1.6 (right). For small
deflections z & 0, the spring acts like a Hookean spring with F(z) = —kx. This is because the linear
term dominates the cubic term around x = 0. For larger deflection, the cubic term dominates, and
higher forces are required to produce the same deflections, thus the term “stiffening” spring.

An insight into general force laws like that in (1.15) can be obtained considering small oscillations
around some large extension or compression Z. Suppose a mass m attached to a nonlinear spring is
subjected to an external, constant force Fi.. At equilibrium, the spring will have a deflection Z such

31n fact, the inverse 1/C' of capacitance is called “electrical elastance” precisely because of this analogy.

DRAFT: VIBRATIONS, MARCH 2, 2025 © 2024, Bassam Bamieh



14 1.1. RESTORING FORCES: ELASTIC SPRINGS AND ANALOGOUS FORCES

that the spring and constant external forces are balanced

F(z) = F..
Now consider small oscillations around z. Those oscillations are characterized by the “deviation
from 7 defined as Z := & — Z. Since #(t) = Z(t) we can write

m i(t) = F(z(t)) — F. (1.16)

The right hand side can be approximated by using the first two terms in the Taylor series expansion
of F around T

F(x) F(z) + F'(z) (x—2) + O((z—1)?)
= F(z)—-F(z) ~ F'(z) 7.

With this approximation, and keeping in mind that F(Z) = F., Equation (1.16) becomes
m z(t) = F'(z) &(t). (1.17)

Note that the derivative F'(Z) acts like a “stiffness” in this equation. Thus in regions of the graph
of F(x) where small oscillations are encountered, the derivative F’(x) acts like a “local stiffness”,
and the dynamic behavior (for small oscillations) is like a Hookean spring with stiffness F’(z). This
is illustrated in Figure 1.6 (right).

Linearization of General Nonlinear Forces

The linearization technique described for springs above is a general one. We now describe the
linearization procedure in general for single-degree-of-freedom systems where Newtown’s second law
takes the general form

M t) = F(q(t)), (1.18)

where ¢ is a “generalized coordinate” (e.g. a linear position coordinate such as z in (1.5), or an
angular coordinate 6 such as in the pendulum equation (1.11)). M is a “generalized mass” which
might be an actual mass or a moment of inertia. F(.) represents the total sum of conservative
forces, which must be a function of only the generalized coordinate gq. For linear systems, F(.) is
a linear function of ¢ (such as in the Hookean spring), but F(.) may be more general as we saw
in the “stiffening spring” example earlier. In the pendulum example (1.11), ¢ := 6, and .7:(9(75)) =
—mgsin (A(t)), which is clearly a nonlinear function of 6.

If there is a coordinate g such that the net force F(g) = 0, then this coordinate represents
an equilibrium of the system. This means that if the system starts (say at time ¢ = 0) at the
equilibrium coordinate ¢(0) = ¢, and with zero velocity ¢(0) = 0, then the system will stay there
so that ¢(t) = g for all t > 0. Now small oscillations around this equilibrium are described by the
“shifted coordinate”

q(t) == q(t) —q,

and their dynamics approximately obey the differential equation obtained from (1.18) by using the
Taylor series expansion of F around ¢ and ignoring all terms higher than first order

= d? _
M) = 3 (4 (a0~ )

= M §(t) (since g is constant in t)

= F(a(®))

= F(q) + F(q) (q(t) —q) + higher-order-terms

(Taylor series expansion of F around )

0
= M—«— F'(q) G(t) + higher-order-terms in ¢ (equilibrium < F(q) = 0)
= Mqt) ~ F(q) qt) (approximate equality since higher-order-terms ignored)
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Thus for small oscillations, the approximate dynamics are like a Hookean spring with stiffness F'(g).
This is precisely what we did with the stiffening spring (1.17), where the equilibrium is given by
the static balance between the nonlinear spring force and the external force F.. This was also done
in the pendulum example (1.13) where the equilibrium was due to having zero net forces on the
pendulum when it is in the downward position 6 = 0.

1.2 Coordinate Systems

Recall the change of variables from x(t) to Z(t) in Equation (1.4) for a Mass-Spring system. This
change of variables resulted in a simplified differential equation without constant terms. This is
a specific instance of a general method where we always choose coordinate systems so that the
differential equations are in their simplest form. In particular, we usually choose coordinate systems
to so that constant forces, i.e. those that do not vary with time and thus have no effect on vibration
analysis, are eliminated. Such constant forces may arise due to gravity for example, or due to pre-
compression or pre-extension of springs. The following basic rule serves as a guideline for how to
choose such convenient coordinate systems.

Rule 1.2. For any system of n masses connected by any number of springs, choose coordinate
systems for each of the masses positions z1,...,x, such that z1 = 0,..., z, = 0 correspond to
static equilibrium.

This rule is illustrated in the next few examples. The reader should now note that we are using
the term “equilibrium” in two different ways. The equilibrium length of a spring is the uncom-
pressed /unstretched length, i.e. the length where it produces zero force. On the other hand when
we say that a system of masses and springs is in static equilibrium, we mean that the sum of the
forces on each mass is zero, so that the system starting from that configuration will not move.

Example 1.3. Consider a Mass-Spring system with gravity as shown in Figure 1.7a. L denotes the
equilibrium length of the spring, and therefore its extension is x(t) — L. The system is in static equilib-
rium when the spring force is equal and opposite to gravity. If  denotes the mass's position at static
equilibrium, then

k(z—1L) = mg = kx = mg+ kL. (at static equilibrium) (1.19)

The dynamic equation is then

mi(t) = —k(z(t)—1) + mg (Newton’s 2nd law)
= —ka(t) + (kL +mg) (combining constants)
= —kxz(t) + kZx substituting from (1.
k k bstituting fi 1.19

= —k (2(t) - 2)
(1.

This equation looks exactly like (1.3), except that now Z is determined by the balance between gravity
and spring forces (1.19), as well as the choice of the coordinate system origin. We can again define a
new coordinate system with Z(t) := x(t) — Z, and the dynamical equation takes the simple form

mi(t) = —k z(t). (1.20)

As per Rule 1.2, if we are only interested in oscillations around static equilibrium, there is no
need to find the static equilibrium explicitly. We simply define the origin to be the static equilibrium
position (so that the static equilibrium Z is at the origin, i.e. & = 0) as shown in Figure 1.7a on
the right, and immediately write down an equation equivalent to (1.20). Gravity plays no role in
oscillations around static equilibrium in this case since it is a constant force?.

4Warning: This is only true for linear dynamics. In certain nonlinear dynamics, constant forces such as gravity, or
nonzero equilibrium extensions in nonlinear (stiffening) springs may actually alter the behavior of oscillations around
static equilibrium.
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(a) In static equilibrium, the spring is extended to bal- (b) A mass between two compressed springs whose unstretched
ance gravity. In the coordinate system on the left, the lengths are Ly and Lp respectively. The mass’ width is negli-
balance is given by k(Z — L) = mg, where L is the un- gible. In the coordinate system on top, the static equilibrium
stretched length of the spring. The coordinate system point is determined by the force balance ki(L — & — L1) —
on the right is chosen so that & = 0 corresponds to the k2(Z — L1) = 0 (compression means that (r2 — L2) < 0 and
static equilibrium point. In this coordinate system, the (L — % — 1) < 0). In the coordinate system at bottom where
net force on m is then —kZ. x = 0 implies static equilibrium, the net force on the mass is

simply is — (k1 + k2)z.

Figure 1.7: Examples of systems with both constant and dynamic forces. The constant forces can be eliminated
from the dynamical equations with the proper choices of coordinate systems.

Example 1.4. Consider the system shown in Figure 1.7b, which is a mass connected to two (possibly
pre-compressed) springs. The width of the mass is considered negligible, and the equilibrium lengths of
the springs are L, and Lo respectively. In the coordinate system shown, the lengths of springs k1 and k5
at any time ¢ are (£ — x(t)) and z(t) respectively. Their extensions are therefore

L—x(t) — L1, x(t) — Lo
respectively. The dynamics of the mass are then given by
m i) = k(L —a(t) —11) — ko(x(t) — L2). (1.21)

Note the signs on the forces. If k; is extended, i.e. (L —z(t) — L1) > 0, its force acts in the positive x
direction, thus the positive sign on k1 above. If ko is extended, i.e. (m(t) - L2) > 0, its force acts in the
negative x direction, thus the negative sign on k.

We want to change the origin of the coordinate system in order to rewrite Equation (1.21) without
the constant terms , 1 and Ls. This can be done by moving the origin to the point of static equilibrium
Z, which is characterized by

ki(L—%—11) — ko(Z—12) = 0. (1.22)

Now define the deviation from static equilibrium Z(t) := x(t) — Z, and the dynamics become

m f(t) = ]{51 (L —Ji(t) — L1) — k’g 1‘(t) —LQ)
= kl (L — (i’(t) + i’) — L1) — kz((if(t) + ff) — L2)

= —RE() — keF(t) + W (using (1.22))

= mz(t) = — (k14 ko) Z(t) (1.23)

Thus if we want to analyze the vibrations of this system, we simply analyze the differential
equation (1.23) and its solutions. Note that this differential equation does not depend on the
constant parameters L, L1, Ly. If an expression for the solutions in the original coordinate system is
needed, this is easy to do. Given any solution Z(t) of (1.23), the solution in the original coordinates
is simply given from the definition #(t) := x(t) — Z by

k)l(Lle)Jrk)ng

xz(t) = z(t) +z, where z = T h

(solving for Z from (1.22))
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Figure 1.8: (Left) Two masses with two springs in equilibrium. L; is the unstretched length of spring k1, W1 is the
width of mq, and similarly for Ly and Wa. (Right, top) If we use a single coordinate system for the positions of the two
masses, we have to account for all those constant dimensions in the resulting differential equations (1.24) and (1.25).
(Right, bottom) If we use different coordinate systems for each mass such that £; = 0 and x2 = 0 correspond to static
equilibrium, the resulting differential equations (1.27) have no constant terms.

Note that this amounts to only a constant shift by Z. The vibrational behavior of z(t) and Z(t) is
however the same.

Finally, it is interesting to compare the dynamics (1.23) to those of a single spring. Here both
springs act “in concert”, in that they both pull or push in the same direction at any one time.
Therefore their combined effect is that of a single spring with stiffness k; + k2. This is a specific
example of a more general fact about interconnections of multiple springs that we will explore in
detail in Section 1.5

1.2.1 Choice of Coordinates with Multiple Masses

Consider the system shown in Figure 1.8 where the equilibrium lengths L and Lo of the springs k;
and ko, as well as the widths W7 and W5 of the masses m; and ms respectively are explicitly shown.
If we insist on a single coordinate system for both masses as shown in (A), we will have to explicitly
account for the equilibrium lengths and masses’ widths. This is a cumbersome exercise which we
now illustrate, and then demonstrate how using two different coordinate systems in accordance with
Rule 1.2 yields a much easier derivation of the equations of motion.

For the single coordinate system shown in Figure 1.8 (A), the equation of motion for m; is

mq i‘l(t) = — k‘l ([L’l(t) — l‘g(t) — W1 — Ll). (124)

Note that (z1(t) — z2(t) — w1) is the instantaneous extension of spring k1, and therefore its force
—ky (xl(t) —xo(t) —wy — Ll) on m is given by subtracting the equilibrium length ;. As for mg, it
is subject to the same spring force as in (1.24), but in the opposite direction, as well as the spring
force from ks, which is the second term in the following equation

mg @2(t) = ki(@1(t) — 22(t) — w1 — L1) — ko(a2(t) — wa — L2). (1.25)

Again, (z2(t) — ws) is the instantaneous length of spring ko, and therefore its extension is (w2 (t) —
Wo — LQ), which produces a force —ko (1‘2 (t) —wag — Lg), i.e. in the rightwards direction when the
extension is positive (and vice versa when the extension is negative, i.e. when spring is compressed).

Equations (1.24) and (1.25) together describe the dynamics of the two coupled masses. The
constant terms L, L, W1, Ws make the equations a little cumbersome, and it would be nice to
eliminate them. Again, we can do this in two different ways. The first is to define new coordinates
by examining the equations, and seeing what is needed to “remove” the constant terms. Beginning
with Equation (1.25), define &5 := xo — Wo — Lo. As before we have Zo = 9, and the second term
in (1.25) will simply be —ksZs. To eliminate the constants in the first term (or equivalently in
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Figure 1.9: Example 1.5: A mass restricted to move without friction on a linear guide. The mass is connected with
a spring to a fixed pivot point as shown. While the mass’ motion is restricted to be one dimensional, the spring force
is a vector in 2D whose direction varies with z. The motion along the guide is governed by the component of the
spring force parallel to the guide.

\

Equation (1.24)), we have to define Z; so that #; — &3 becomes

T1— Ty = X1 —To— W1 — L1 = T1 = 1 —X9— W1 — L1+ 29
= 3?1—.’172—W1—L1+($2—W2—L2)

=z — (Wi + L1+ W + L).
In these new coordinates, the combined equations of motions have the simpler form

my #1(t) = — ki (@1(t) — Za2(1)),

mo i‘g(t) = k‘l (.fl (t) — i‘g(f)) + kg i‘g. (126)

The masses’ positions in original coordinates are obtained from

z1(t) = @(t) + (W1 + L1+ wa+ La),
l‘g(t) = i‘g(t) + (W2+L2).

Note that the constants L1, Lo, W1, Wo have no effect on the equations (1.26) or their solutions. Thus
knowledge of those constants is not needed to find the motion in the new coordinates. The constants
only provide a “bias” to the solutions when expressed in the original coordinates.

Alternatively (and more easily), we can choose two different coordinate system origins for x;
and x5 as shown in (B). First choose the origin for 25 so that 29 = 0 corresponds to spring ko in
equilibrium, and then choose the origin for x; such that z; = 0 and x2 = 0 corresponds to spring
k1 in equilibrium. We can then write the equations directly as

my &1 = —ki(x1 —x2) (1.27)
mo 5[:'2 = kl ($1 — 1’2) + k2 Z2

Note that these equations are identical to (1.26). Therefore with this scheme, we don’t really
need to know the equilibrium lengths of springs or widths of masses if we are only interested in
understanding the oscillations. Those parameters are only needed to reconstruct the solutions in
the original, common coordinate system.

1.2.2 Spring Forces in Higher Dimensions

When springs can extend in more than one dimension, more care is required to write down the
effective equations of motion. Aside from the higher complexity of the equations, new features
arise that are not there in purely one-dimensional problems. In particular, unlike the example of
Figure 1.7b, any precompression of springs may actually change the nature of vibrations as the next
example illustrates.

Example 1.5. Consider the Mass-Spring system shown in Figure 1.9. The mass is assumed to slide
without friction on a linear guide and connected to a fixed pivot point p with a spring k. While the
motion of the mass is in 1D, the spring force is a vector in 2D, and therefore care needs to be taken with
the geometry.
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Figure 1.10: A mass moving in 2D while connected with a spring k to a fixed pivot point p. The motion can be
analyzed in either a cartesian coordinate system (center), or the more convenient polar coordinate system (right).
The polar coordinate system is more convenient in this case since the spring force is always in the radial e, direction.

Let L be the equilibrium length of the Spring (which may be different from the distance I shown).
The spring's extension L (the increase of the spring’s length over its equilibrium length) is

L = a2+12-1L.

This is the quantity that determines the magnitude of the spring force, while its direction is completely
determined by the location z (see Figure 1.9 for the geometry)

F = —k(\/IQ—I—lQ—L) ( z§+l2 61—6—\/12[“2 €2>,

where e, e, are the unit coordinate vectors shown. The lateral motion of the mass is determined by the
e; component of the force, and therefore

m i = —k(\/x2+z2—L)¢m+W= —k(l—ﬁ) z. (1.28)

This is a nonlinear differential equation for x(t). It can be linearized for small oscillations where = < [.
The square root can then be approximated by v/x2 + [2 = [. The differential equation becomes

mi(t) = —k(1—LJl) x(t)
= mE(t) = — keg x(t), ket = 1—L/I.

Consider three cases depending on the relation between L and .

1. I > L: This means that the spring is stretched when = 0. Since L/l < 1, the effective spring
constant keg < k is smaller than the actual spring constant. The larger [ is (compared to L), the
more the spring is prestretched, and K.g is closer to the value of k.

2. I = L: In this case kog = 0. This means that up to first order in z, the spring exerts no force for
small displacements x.

3. I < L: In this case keg < 0 is negative! What does does mean? If you think physically, the spring
is actually compressed when = = 0. This is an example of an “unstable equilibrium”; an arbitrarily
small initial change in z will cause the mass to slide either left or right (depending on the initial
x), and it will not oscillate about the point 2 = 0. In this case we do not have small oscillations,
but rather large ones, and small z assumption breaks down. In this case we have to reconsider the
original differential equation (1.28).

Example 1.6. Consider a mass free to move in 2D while connected to a fixed pivot point by a spring k
as shown in Figure 1.10. The motion can be analyzed in either a cartesian or a polar coordinate system.
The equations are much simpler in the polar coordinate system since the spring force is always in the
radial e, direction. In the polar system, the spring's extension is simply (r — L) where L is the equilibrium
length of the spring. Since there is no tangential eg component of the spring force, the equations of
motion are simply

m 7 (t)
m 6(t)

—k (r(t) - L) :
0.

(1.29)
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(a) Dry, kinetic friction drag. N is the
surface-normal force, and the friction
force is Fx = —uN sign(z), where p
is the kinetic friction coefficient. Al-
though the magnitude |Fx| is not de-
pendent on velocity, the direction is.
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(b) Viscous (Stokes) drag is prominent
at low Reynolds numbers, i.e. either
low velocities or high viscosities such
as in motion lubricated with oil. It is
linearly proportional to velocity F, =
—c .

X
—>
E,
F, =~ -cy #*sign(i)
* T

(C) Aerodynamic drag is prominent at
high Reynolds numbers. It is approx-
imated as being proportional to the
square of the speed, with direction op-
posite to velocity F & —ca &2 sign(z‘).

Figure 1.11: The three main types of dissipative drag forces. All are a function of velocity, and their direction is
always opposite to velocity.

Thus the mass will oscillated like a 1D Mass-Spring system
in the radial direction, while it may be stationary or rotate
with constant angular velocity in the tangential direction as
illustrated in the diagram on the right. be

0 = constant

For comparison, we redo the analysis in cartesian coordinates. The spring's extension is given by

L = (/o2 +23 - L.

The vector of the spring force is then

_ 2 2 _ Ty T2

The differential equations for the cartesian coordinates x1(¢) and z2(t) are then
_ 7 L
k (1 L \/@) xI1,

—k (q/xf—i—x%—L) 7\/;{ng =
-, _ 2 2 _ T2 —_ _ T2
mis = —k (\/x1+x2 L> T k <1 L m) Z2,

where the argument ¢ has been suppressed for notational simplicity. Note that these are two coupled,
nonlinear differential equations which are much more difficult to analyze than the equations (1.29) written
in polar coordinates. The term coupled here means that the equation for x;(t) depends on x2(t) and
vice versa, thus the two equations have to solved together, unlike (1.29) where the two equations are
independent of each other. It is not even clear how one should linearize (1.30) or what “small oscillations”
could mean. Thus in some problems, a judicious choice of coordinate systems may significantly simplify
the analysis.

F =

m .’il =
(1.30)

1.3 Damping Forces

So far we have only considered conservative forces due to elasticity or gravity. In vibrations analysis,
it is also important to consider dissipative forces such as the various forms of drag and friction.
There are many types of dissipative forces in mechanics, but the three most important ones are (a)
Kinetic (Dry) Friction, (b) Viscous (Stokes) Drag, and (c¢) Aerodynamic Drag. They are described
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Figure 1.12: (Left) Schematic of a linear-motion viscous damper. Two rods are connected to a sealed cylinder and
a movable piston head respectively. The motion is linear. The piston head has small holes through which a viscous
fluid can pass back and forth between the two compartments. This creates resistance to motion, and the resulting
force between the two rods is proportional and opposite to their relative velocity. (Right) A similar concept creates
a rotary damper. A sealed cylinder contains a smaller, solid cylinder, and the gap between between the two is filled
with thin layer of a viscous fluid. The motion is rotational, and the differential torque between the two connecting
rods is proportional and opposite to the relative rotational velocity.

mathematically in terms of velocity & as follows®

Fx = — uN sign(), (dry, kinetic friction)
F, = —cz, (viscous drag)
F, = —cii — ¢y d? sign(i‘) ~o— g 32 sign(j:), (aerodynamic drag)

where for kinetic friction, NV is the force normal to a surface, and u is the kinetic friction coefficient
with that surface. The three different types of drag force laws are illustrated in Figure 1.11. The
viscous drag force law, also known as Stokes’ drag, is prominent at low Reynolds numbers, i.e. at low
velocities or high viscosities. It is sometimes referred to as viscous friction as might occur between
two surfaces with a viscous lubricant in between. In contrast, kinetic friction is sometimes called
“dry friction”. The aerodynamic drag force law is valid at high Reynolds numbers (e.g. cars and
planes in air), where the quadratic term dominates the linear term. The latter is often ignored in
that expression.

For vibration analysis of mechanical systems, the main drag force of concern is viscous drag, and
to a lesser extent dry friction drag. In fact, viscous drag elements called dampers are deliberately
introduced in mechanism to achieve certain vibration control specifications. Think about dampers
on doors or drawers as well as in vehicle suspension systems. The construction of a basic viscous
damper is illustrated in Figure 1.12. It is usually a sealed cylinder with a movable piston, and a fluid
(such as air, or some type of oil) that flows between two compartments through small holes. Unlike
a spring, this mechanism exerts no forces when stationary regardless of extension or compression.
The force it generates is well approximated by linear proportionality to velocity and opposite to its
direction

F, = —ci, (1.31)

where c is referred to as the damping coefficient. Since ¢ converts velocities to forces, it has units of
force per velocity, e.g. N/m/s. Typical vehicle shock absorber dampers have damping coefficients
in the range of 1000s N/m/s. A shock absorber is a combination of a spring and damper as shown
in Figure 1.13.

Figure 1.12 also shows a rotational damper that has a torque law which is similarly proportional,
but to rotational velocity

T = —cuw,

5The function sign(a) is defined as +1 if @ > 0, —1 if « < 0, and 0 if & = 0.
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Figure 1.13: (Left) A typical shock absorber is made up of a viscous-damper cylinder with a spring coiled around
it. It is represented schematically as a parallel connection of a spring and a damper. (Right) A mass m connected
to a fixed frame with both a spring and damper experiences a spring force —kz proportional to displacement, and a
damper force —ca proportional to its velocity.
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where w is the relative rotational velocity between the two ends. Figure 1.12 also shows schematic
symbols for dampers. The one for the linear motion damper is widely used. On the other hand,
there is no universally accepted schematic symbol for the rotational damper. The one shown is the
one chosen for this book.

Consider the mass m in Figure 1.13 connected to a fixed frame by a spring k and a damper with
coefficient ¢. Choose the origin = = 0 of the coordinate system such that the spring is in equilibrium.
The spring’s force is then simply —kz. The choice of origin does not effect the expression for the
damper’s force, which is —c&, and velocity & is independent of where the coordinate system’s origin
is. The equation of motion is therefore

mi(t) = —ka(t) — cit) & mi(t) + cat) + kat) = 0.] (1.32)

Note that the two forces are opposite to spring deflection and velocity respectively.

Comparing the differential equation (1.32) to (1.5) for a system with only a spring, we see that
it is also a 2nd order differential equation, but now we have a term that depends on the first time
derivative as well. We will study such equations in detail in Chapter 3. Unlike Equation (1.5) which
has only oscillatory solutions, Equation (1.32) may have non-oscillatory behavior in the so-called
“highly-damped” regime, or decaying (damped) oscillations in the so-called “lightly damped” case.
The relative values of the constants m, k, and ¢ determine which of those two regimes the system is
in.

In addition to spring and damper forces, we often have externally generated and possibly time-
varying forces. Consider the system illustrated in Figure 1.14, where a mass m is connected to a
fixed frame through a spring and a damper. In addition, the mass is subject to a possibly time-
varying external force f(t). Such forces can be generated by controlled actuator elements which
can generate forces whose magnitudes are controlled by some external mechanism (either electronic
or mechanical). f(t) can also model uncontrolled external forces such as the effect of wind gusts,
ground vibrations, and the like. The main new ingredient is that f(¢) can be time varying rather
than the constant forces we encountered earlier (e.g. gravity). To write down the equation of motion
for this system, we simply apply Newton’s 2nd law again with f(¢) added to the sum of the forces

mi(t) = —kz(t) — cz(t) + f(¥) & mZ(t) + c&(t) + kax(t) = f(t),| (1.33)

where we have assumed the mass to slide without friction with the supporting surface. Note that this
equations is valid provided the origin of the coordinate system is chosen so that z = 0 corresponds
to the spring in equilibrium. This will be our practice from now on without explicitly and repeatedly
stating it.

Tt is instructive to compare Equation (1.33) to Equation (1.32) which has no external forcing.
The latter is a homogenous 2nd order differential equation, while the former is the same differential
equation, but with a forcing term, i.e. an inhomogenous differential equation. In the context of
vibration analysis, the preferred terms are “free vibrations” (for (1.32)) and “forced vibrations”
for (1.33). More generally, we will refer to systems like (1.33) as a system with “an input”, since
forcing terms in the differential equation may be more general than forces, such as other displace-
ments, velocities or electronic signals. Differential equations like (1.33) will be studied in detail in
Chapters 4 and 6 for various types of inputs.
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Figure 1.14: A Mass-Spring-Damper system subject to an external, time varying force f(t). While the spring
and damper forces are determined by the mass’ configuration (position and velocity), the force f(t) is determined
“externally”, i.e. independently of the mass’ configuration. Such forces can model various phenomena, e.g. an
electronically controlled actuator which produces a force whose value is determined by an electronic command, or the
effect of external mechanical forces such as wind gusts or ground vibrations.

1.4 Mechanical Degrees of Freedom

Any mechanical system composed of an assembly of rigid bodies connected with either flexible or rigid
linkages has a certain number of “mechanical degrees of freedom”. Roughly speaking, the number of
degrees of freedom is the number of coordinates needed to uniquely describe the configuration of the
system. If the system has a single mass constrained to move in only one dimension (e.g. Figures 1.2
or 1.7), then a single coordinate = (or 6 in the case of the torsional spring of Figure 1.4 or the
pendulum) can be used to describe the motion of that mass. Note that this is the case regardless
of the number of springs or dampers the mass is attached to. Springs and dampers are typically
assumed massless®, and therefore do not add any additional degrees of freedom. For example, in
Figure 1.7b, a single mass is connected by two springs to two rigid anchors, and therefore this system
has a single degree of freedom, namely the position of the mass.

A system with two masses such as that of Figure 1.8 has two degrees of freedom, namely the
positions of each mass. Note that here, each mass is constrained to move in only one dimension
(since only lateral motion occurs in this example). Recall that when deriving the differential equa-
tions (1.26) for this system, we ended up with two, coupled, second order differential equations for
the whole system. This is a pattern we will see regularly. A system with n-Degrees-Of-Freedom
(n-DOF) will always be modeled using n coupled differential equations, each of second order. The
analysis of such systems is best done using matrix methods, which we will begin developing in
Chapter 7.

A single mass can also have multiple degrees of freedom if it can move in more than one co-
ordinate. A nice example of this is the modeling of automotive suspension systems illustrated in
Figure 1.15. A vehicle is typically considered as a single rigid mass. A hierarchy of dynamical
models can be developed as follows. In Figure 1.15b, the car is modeled as a single mass interacting
with the ground via a spring and damper, but the motion is just linear vertical motion described by
a single coordinate x. The differential equation describing the dynamics is the single second-order
equation (1.32) for a Mass-Spring-Damper system.

A more realistic suspension model is shown in Figure 1.15¢ sometimes referred to as the “half-car
model””. Here the car is assumed to be rigid body in the plane, which requires three coordinates
(z,y,0) to completely describe its motion (e.g. (x,y) for the location of the center of mass, and
6 for the rotation of the body about the out-of-plane axis). In suspension models, one is mainly
interested in vertical motion, and horizontal motion is assumed steady, therefore not contributing
to vertical vibrations. Thus the half-car model has two degrees of freedom (z,6) describing the
vertical displacement of the center of mass (we relabeled vertical displacement as x rather than y for
later notational consistency) and the rotation angle respectively. Alternatively (and equivalently)
we can use the vertical positions x1, 22 of the two contact points between the rigid body and the
support structure. Those represent another equivalent 2-DOF model. Whichever choice we make for
the coordinates of the half-car model, we would then expect two, coupled, second-order differential
equations to model this system. Those are derived in Section 1.7.2 for illustration.

An even more realistic suspension model is shown in Figure 1.15d. The car is still one single rigid

6or at least of much smaller masses than those of the rigid bodies they are attached to.
7This is also called the “sprung beam” model if the mass is thought of as a rigid beam rather than a vehicle.
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(a) A typical automotive suspension model assumes the shock ab-
sorber and suspension assembly at each tire to be modeled by a spring
and a damper. The car body is assumed to be a rigid body.

(b) A “quarter car” model is a 1 degree of freedom
model where the car is assumed to be s single mass

—

T

WM
WA

(C) A “half car” model is a 2 degree of freedom
model for motion of a supported rigid body in the
plane. The coordinate choices can be either the
vertical displacements (z1,x2) of the two support
points, or alternatively (z,0), where z is the ver-
tical position of the center of mass, and 60 is the
angle of rotation of the rigid body in the plane.

that can only move (not rotate) vertically with
vertical coordinate x.

(d) A “full car” model is a 3 degree of freedom model of the car as a
rigid body in three dimensions. One choice of coordinates is (z, 0, ¢)
for the vertical displacement of center of mass, the azimuthal 6§ and
polar ¢ angles of rotation respectively. Alternatively, the vertical
coordinates (z1,x2,z3,z4) of the four support points can be used.
However, those four variables have a single constraint, which is con-
sistent with the system having only 3 degrees of freedom.

Figure 1.15: A hierarchy of automotive suspension models with one, two and three mechanical degrees of freedom. A
common simplifying assumption in such vibration analysis is that all displacements are purely vertical, and horizontal
motion is steady, and therefore does not contribute to vertical vibrations.

body, but it can rotate in three dimensions. Again, our main interest is in vertical displacement and
body orientation, so one choice of coordinates would be (z, 0, ¢) describing vertical displacement of
the center of mass, the azimuthal # and polar ¢ orientation of the body. Equivalently, we can use
the vertical displacements (21,2, z3,24) of the four support points. However, because the body is
assumed rigid, there is actually a kinematic constraint on those four coordinates, which reduces the
number of degrees of freedom to 3 rather than 4. The details of this model, which is more involved
to derive, will be presented later.

In general, if we have n masses, where each can move in m coordinates, then the total mechanical
degrees of freedom of the entire system will be the product nm, and the model will consequently
require nm, coupled, second-order differential equations.

1.5 Connections of Multiple Springs and Dampers

When multiple springs and dampers are connected together, it is possible to aggregate their effects
into a smaller number of elements with different effective stiffness and damping coefficients. The
simplest such case is when they are connected in parallel as shown in Figure 1.16. Assuming that
both springs have the same equilibrium lengths, then regardless of the extension/compression of the
springs, both of their forces always act in this same direction. Similarly both damper forces act in
the same direction regardless of the mass’ velocity direction. Each set of forces then add up as

—k1x — kox = — (kl + kg) T = keg x = ket = k1 + ko, (134)

—c1& —cat = —(c14+ ) = cogp & = Ceff = €1+ Co. (1.35)

Thus the two parallel springs can be replaced by a single spring with stiffness keg = k1 + k2, and
the two parallel dampers can be replaced by a single damper with coefficient ceg = ¢1 + c2. We
again emphasize that the spring forces have the expression above only if the origin of the coordinate
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o - L g m— (1 + ea)i Ceff = €1 + C2
m | ks & iz
e " MM — —NMM—
k1 ~(ky + k2) kot = k1 + k
k12 4— A off = N1+ N2

Figure 1.16: When springs and dampers are connected in parallel, their resulting forces simply add up. This results
in an effective stiffness of keg = k1 + k2, and an effective damping coefficient of cog = ¢1 + c2.

system x = 0 is such that both springs are in equilibrium. If that is not the case, the conditions of
static equilibrium would have to be derived, and the origin of the coordinate system shifted so that
the equations above hold. This procedure is explored in Exercise 1.1.

A different configuration in which forces add up in the same manner is shown in Figure 1.7b,
where the two springs are on opposing sides of the mass. Although they are on opposite sides, when
one spring is in effective compression, the other one is in effective extension, and both forces act in
the same direction. Thus the effect of the forces add up as demonstrated by Equation (1.23), and
in this case we can also replace the two springs by an equivalent keg = k1 + k2. A similar argument
applies to two dampers connected on opposite sides of a mass.

An alternative way to connect spring and damper elements is in series, and it turns out that the
effective stiffness and damping coefficients behave differently in this case. To analyze this situation,
let’s first consider all the forces in a Mass-Spring-Damper system as shown in Figure 1.17a where the
“internal forces” on the spring and damper are shown. For simplicity, springs and damper elements
are assumed massless. A massless element simply “transmits” forces from one end to another as
shown in the diagram. To see this, suppose the element had a small mass ¢, and f/(t) refers to the
deviation of its length from equilibrium. Let F} and F; be the two forces acting on it at the left and
right edges respectively. Newton’s second law says

eL(t) = F + F.

If we let € — 0 to model the case of negligible mass, the left hand side is zero, and we get that
F = —F,, i.e. the forces on each side of a massless element are equal and opposite as claimed in the
diagrams of Figure 1.17a.

Now consider the two springs shown in Figure 1.17b. The two springs have internal forces of
k1L1 and ko Lo respectively, where L; and Lo are the deviations of the springs’ lengths from their
equilibrium®. Since the contact point between the two springs is also massless, those two forces
must be equal in magnitude, i.e. ki Ly = koLso. This equality implies that the extensions of the two
springs can not be arbitrary, but must be related by

kl L2
— = ==, 1.36
This means that if for example k; is stiffer than k5, then L, will be longer than L, since k9 is a
softer spring, and therefore will extend more than k1 when subjected to the same force.

The effective stiffness keg is determined by the requirement that the effective spring force keg (L1 +
L) is equal to the individual spring forces ki Ly = koLo. Using k1 L; for instance gives

lel kl
keg(L1 + Lo) = k1 L = ke = =
ot (L1 + La) 1L off I+ Lo 1+ Lo/L

(dividing top and bottom by L1)

k1
= —-— 1 1.
ey (using (1.36))
kiko
= keg = . 1.37
i ko + k1 (1.37)

81n this analysis we only keep track of force magnitudes, as their directions are explicitly shown in Figure 1.17b.
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(:eﬂr(ﬁl + Lz) Coff
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(a) Depicting all the internal forces in a Mass-Spring-Damper sys- (b) To find the effective damping and stiffness for

tem. Here the spring is in extension, and moving with a positive two elements connected in series, we must analyze
velocity. Therefore both damper and spring forces on the mass (in the internal reaction forces. Massless elements (as
blue) are negative. On the left side of the spring and damper, the the damper and spring are assumed to be) trans-
forces of the mass on the spring and damper are equal and opposite mit forces as shown. For the dampers diagram, all
respectively. The spring and damper elements are usually assumed forces shown are equal in magnitude, and similarly
massless, and therefore they simply transmit forces from one end to for the springs diagram. L; and Lo are the devia-
the other as shown. On the right side are the forces of the station- tions of the lengths of the respective elements from

ary frame on the spring and damper elements, which are equal and their equilibrium values.
opposite to the forces on those elements at the other end.

Figure 1.17: Analysis to reveal the effective stiffness kg and damping c.g when elements are connected in series.

For dampers, an exactly parallel analysis leads to a similar formula

; ; ; C1 L2 C1C2
L Lo) =c1L d —=-—+ = = —. 1.38
Cet(L1 + Lo) = c1L1  an e L Ceff o+ 1 ( )

The expressions (1.37) and (1.38) may look familiar. If we rewrite them as

_ kike
ket ky

1 1 C1C2 1 1 1
—+ Ci=——— & —=—F—,

@ -
ki ko’ co + e Ceff €1 C2

1
keff keff
we see a familiar expression from electrical circuits. In fact, springs and dampers add up in series
and in parallel exactly like capacitors and inductors add up in series and parallel connections®. Note
that resistors on the other hand add up in the opposite manner. These analogies with electrical
circuits will become clearer when we discuss Electrical-Mechanical analogies later on.

It is useful to remember some basic rules about parallel and series connections of springs and
dampers. A parallel connection (1.34) of two springs gives a keg which is stiffer than either spring.
On the other hand, a series connection (1.38) of two springs gives a keg which is softer than either
spring. This is useful for system design. If a connection needs to be stiffened, a spring must be
added in parallel. It it needs to be softened, a spring must be added in series. The exact constants
for the added springs can be calculated from the relations (1.34) or (1.37), along with the design
specifications. Similar statements apply to damping elements.

redo this in terms of compliance

A simple example of a series connection of two springs is shown in Figure 1.18 as a combined
model of an automotive suspension spring and tire stiffness. The interaction of a fully inflated
tire with a roadway can be modeled as a stiff spring k¢. A typical suspension system has spring
constants in the range ks ~ 20-30 KN/m (Kilo-Newtons/meter). The stiffness of a fully-inflated
tire interacting with a road surface is much higher, on the order of 200 KN/m. Ignoring the mass of
the tire, the two springs are essentially connected in series (as shown in Figure 1.18). The effective
spring constant is then given by (1.37) as

ik 20 KN/m 200 KN/m

= etk 20 KN/m+ 200 KN/m /m

Thus the effective stiffness is not much different from that of the softer spring ks. This is because
the tire spring is about an order of magnitude stiffer than the suspension spring, and therefore their

9For example, two capacitors C1 and Co in parallel have a net capacitance of C; + Ca2, but when connected in
series, their net capacitance is C1C2/(C1 + C2).
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Figure 1.18: A combined model of a suspension system stiffness ks, and the tire/road interaction which is modeled
as a much stiffer spring k¢ for a fully inflated tire. The two springs are in series, and because k¢ > ks, the series
connection has an effective stiffness keg which only slightly lower than kg, the softer of the two springs.

series connection is only slightly softer than the softer of the two springs. This is similar to the
connection of two resistors in parallel where one resistance is much higher than the other. The
effective resistance is then slightly lower than the low resistance path. Whether the effects of tire
elasticity can be ignored in vibration analysis depends on the purpose and accuracy of the analysis.
In either case, incorporating tire stiffness is a simple matter of altering the effective spring constant.

Finally, it might be natural to ask the question of what happens if two different types of elements,
like a spring and a damper are connected in series? This one is a little tricky and requires a finer
analysis as explored in Exercise 1.2.

1.6 The Energy Method

For systems with a single degree of freedom, we can find the natural frequency more quickly using
energy calculations. Let ¢(¢) be the “generalized” position coordinate of such a system (e.g. a linear
position or angular position coordinate), the kinetic energy of such a system is usually of the form

KE = e (¢)%

For example, for the Mass-Spring system (1.5) and the pendulum (1.11), their respective kinetic
energies are

KE = %m i? linear Mass-Spring system

KE = im (10)? = iml® 62 pendulum

Thus the coefficient ¢y is m in the first case and mi? for the second.

For systems where conservative forces are linear functions of position coordinates, the potential
energy (of the conservative forces) will be quadratic in the position coordinate!®, and thus of the
form

PE = %cp q2.

For example, for the Mass-Spring system, the spring potential energy is given by

PE = 1k 2*
On the other hand, for the pendulum system, the gravitational
potential energy written in terms of the angular coordinate 6 is
(see figure)

PE = mg (1 — cos(6)).

1Y
10Recall that for conservative forces, the force is the negative of the derivativ ith respect [tio position) of the
potential energy function. The derivative of a quadratic is linear. } I—1cos @
|
|
|

m
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This is not quadratic in 6, but if we expand the Taylor series for
cos(f) around 6 = 0 we get

l—cos(d) = 1—(1—46*+£0"—--)
= 20*— L0+ (1.39)

Now similar to what we did with linearizing forces to model small oscillations, this corresponds to
retaining up to quadratic terms in potential energy, we therefore approximate this potential energy
with its quadratic term

PE ~ %mgl 62.

Thus the coefficient ¢, for the pendulum is mgl.
Newtown’s second law for systems that have quadratic kinetic and potential energies of the form

E =1lad + 3¢ ¢
is written as (this also follows immediately from the Euler-Lagrange equations)

a G(t) = —cpq(t).

The natural frequency of such a system is then given by the ratio
wn = /¢p/ck (1.40)

We can think of cx as an effective inertia and ¢, as an effective stiffness. For the Mass-Spring system,
the formula gives the (by now) familiar w, = +/k/m. For the pendulum, it gives

wn = ek = Vmgl/mi? = +/g/l,

which is the result arrived at from the earlier calculation in (1.13). The formula (1.40) simplifies
some calculations as the next example will show.

A Metronome

A musical metronome is basically a pendulum designed so that it has a “tunable” oscillation fre-
quency that can be adjusted over a the range of frequencies required to “keep the beat” for any
particular musical practice performance. The main design requirement is that its frequency should
be “tunable”, and that its size not be too big (e.g. to fit nicely onto a desktop). If we attempt to use
a simple pendulum as a metronome, its natural frequency is wy, = \/gm as analyzed earlier. Clearly
g is not a design parameter, but the mass can be placed on a slider to make [ a tunable parameter.
We will see in the calculations at the end of this example that this is not a practical design for the
required range of frequencies. The pendulum length would be impractically long.

The metronome ingeniously solves this design problem. It has two masses rather than one, one
of which is on a slider, and both are rigidly connected, but free to rotate about a common pivot
point. See Figure 1.19 for a diagram. We will now analyze this system to show that it has a much
more tunable range of frequencies (with a small size) than the standard pendulum.

Although this system has two masses, it is really a single degree of freedom system. There is
only one position coordinate, namely 6 since the two masses are connected by a rigid rod that pivots
around a point in between the two masses. Using the energy method, it is not too hard to compute
the natural frequency of this system as a function of the masses and the two lengths. Assuming the
connecting rod to be massless, the kinetic energy is

KE = %(m2(l29)2 + ml(llé)z) = %(mglg—i—mllf) 6? =: %ck 62.
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Figure 1.19: (Left) A typical wind-up metronome (bottom mass not visible) and, (Right) a simplified mechanical
model. Although this system has two masses, both masses are connected by a massless rigid rod, and therefore it has
only one mechanical degree of freedom which is the (angular) position coordinate 6.

The potential energy is the sum of the two gravitational potential energies of the masses using the
quadratic approximation (1.39) of the cosine (see also Figure 1.19 for the geometry)

PE = mag 12(1 — cos(# ) — mag 11(1 - cos(@))
%mgg 1,6% — %mlg 1,0? = %g(mglg—mlll)HQ =: %cp 62.

Q

Note that each potential energy term is chosen with a constant offset so that each is zero at § = 0.
The formula (1.40) now gives the oscillation frequency of the metronome as

maly — mily

wn = r/epfek = /g (1.41)

mal3 +mql3’

It should be noted that this formula would have required more work to derive using free body
diagrams and force balances.

Now analyze (1.41) to see how it can be useful for design. First note that if mols < myla,
then the quantity under the square root is negative. This actually means that this system would
not oscillate under this condition. This is physically intuitive since this condition means that the
metronome system is “top heavy”, and the top mass will simply fall all the way to the bottom
instead of oscillating. Now in the metronome shown in Figure 1.19, my, mo,l> are fixed, and [; is
variable using the slider. Let’s make a simplifying assumption that ms = 10m; and write [; as a
multiple of [y

mo = 10m1 - o — m2l2 —mlll - 10m112 — mllg - g 10 — «
I = aly "N a2 T N\ tomB a2 miZ T i Viota2

The first factor /g /ls is constant, and the second factor /(10 — a)/(1 + a2) is tunable. If « is just
below 10, the natural frequency is very low w, = 0. This corresponds to the tunable mass being
at the topmost position in the metronome of Figure 1.19. Note that the scale on that metronome
is labeled in “Beats Per Minute” (BPM) (so 60 BMP corresponds to 1Hz). The other extreme is
when « is decreased to zero, which then means that /(10 — )/(10 + a2) — 1, and w, approaches
the maximum frequency possible which is /g/lz. If say la = 2cm, then /9.8 m/s2/0.02 m ~
22 rad/s = 3.5 Hz = 210 BPM.

Finally, we should compare the system of Figure 1.19, which is a pendulum with two unbalanced
masses, to the simple pendulum with one mass. The simple pendulum has a natural frequency of
wy = \/gTI To get a frequency range of say

wn = (40—-200)BPM =~ (2/3—-33)Hz ~ (4.2 —21)rad/s,
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we would need a length range of

2
1= L~ 9.8 “;/s ~ (0.56 — 0.02) m.
Wy, (4.2 — 21)" rad?/s?
The difficulty is at the lower end of the desired frequency range. If you want 40 BPM, then you
would need a simple pendulum of almost half a meter length, which is unwieldy, and certainly much
smaller than a typical metronome. With the unbalanced double mass design, one can reach the
lower end of the frequency with a device that essentially can be made as small as desired.

The Rayleigh-Ritz Method

The Energy Method described above is often referred to as the Rayleigh-Ritz Method in more general
systems. It is exact for single degree of freedom systems, but only approximate for system with higher
degrees of freedom, for which the method provides approximation to the “eigenvalues” of N-DOF
systems, and those eigenvalues in turn determine the several natural frequencies of vibrations. These
approximations can be surprisingly good especially for deformable bodies for which exact calculations
are often quite involved. This topic will be discussed in Chapter 10.

1.7 Further Examples

In this section we present further example that each demonstrate a physical system or an analysis
technique that will be covered in more depth in a later chapter. The first case is a simple 1-DOF
approximation to a clamped beam, which in reality is a continuum system of the type studied in
Chapters 9 and 10. The second is the so-called sprung-beam, or equivalently half-car model discussed
earlier. This a 2-DOF system that is best studied using matrix methods as developed starting in
Chapter 7.

1.7.1 Approximation of Cantilevered Beams

Vibration analysis of flexible and deformable bodies such as beams and plates is the subject of later
chapters (Chapters 9 and 10). Unlike mathematical models of rigid bodies which involve Ordinary
Differential Equations (ODEs), the analysis of flexible bodies require the use of Partial Differential
Equations (PDEs). However, in this section we present a simple rigid-body approximation of a
clamped-free beam as a single degree of freedom system with a torsional spring.

Consider the clamped-free beam shown in Figure 1.20. This beam has many “modes” (i.e.
shapes) of vibrations. In fact, it has an infinite number of such modes. Again, this will be studied
in detail in later chapters. Figure 1.20 (Left) shows the so-called “first mode” of vibration. We
will try to model this mode of vibration using the highly simplified model shown in Figure 1.20
(Middle), where the clamped-free beam is replaced by an equivalent (in mass and geometry) rigid
beam pivoting around a torsional spring. According to (1.10), the dynamics of such a system are
given by

JO(t) = —keg 0(0), (1.42)

where J = mL?/3 is the moment of inertia around the end point (m is the mass and L is the length
of the rigid-beam respectively), and keg is the (yet to be determined) effective torsional spring
constant.

How is kegr in (1.42) determined? One approximation is to think of the static deflection scenario
shown in Figure 1.20 (Right). In the static case, a force F' applied at the free end causes a vertical
deflection dy at that end given by the equation'!

1 L3
— = F,
EI 3
" This comes from solving the static beam equation ET y(*) (z) = 0, where y(x) is the vertical beam deflection at

location . The clamped-end boundary conditions are y(0) = 0, y(l)(O) = 0, and the free-end boundary conditions
are y( (L) =0, y®)N(L) = 7ﬁF.

Sy = (1.43)
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Figure 1.20: (Left) A full model of the vibrations of a clamped-free beam requires using a partial differential equation
to solve for the “modes” of vibration. Here, the first such mode is depicted. (Middle) A simplified approximate model
for a clamped-free beam is as a rigid beam pivoting around a torsional spring. (Right) To determine the effective
torsional spring constant, we can use the static deflection equation for a clamped-free beam which states that the
deflection dy = SL—; F, where F is the force applied at the free end. The effective torsional spring constant is
then obtained from the ratio of applied static moment FL to the resultant static angular deflection 66 ~ dy/L, i.e.

_ FL ., FL _
ket = 5 ~ 552 = 3EI/L.

where E is Young’s modulus and I is the beams cross-sectional “area moment of inertia” (not to
be confused with J above). Thus keg can be determined by comparing the static deflection of a
torsional spring model to that of the flexible beam

applied static torque FL . .
keg = = for the torsional spring model
off static angular deflection 60 ( priig )

~ (SF/IIJ/ (using 66 ~ sin(60) = dy/L for small §6)
Yy
FL? .
T 1 Lp (using (1.43))
EI 3

= 3EI/L.

Now using this (together with J = mL?/3) in (1.42) gives

mng i) = — %I 0t) o iy = — 2L g, (1.44)

Equation (1.44) implies that the natural frequency of oscillation of the torsional beam model is

| EI
wp = 3 o rad/s.

This is not too far off from the actual frequency for a clamped-free beam (as will be calculated
in Chapter 10) of 3.524/FI/mL3 rad/s. Depending on the application, this may or may not be a
reasonable approximation.

1.7.2 2-DOF Example: Sprung Beam or Half-Car Model

In this section we detail the modeling of the half-car model discussed earlier in Figure 1.15¢. This
system has two mechanical degrees of freedom, and the brief analysis we present here will serve as
a preview of the matrix methods developed later for vibrations analysis of n-Degree Of Freedom
(n-DOF) systems.

Two coordinate systems for the half-car model (also sometimes referred to as the (rigid) sprung
beam) are depicted in Figure 7.1. Let x be the vertical displacement of the center of mass, and 1
and xo be the vertical displacements of the support points. Assume the origin of the coordinate
systems for x1,x2 and 6 are chosen so that 1 =0, o = 0 and 6§ = 0 correspond to the two springs
being at equilibrium. Let m be the mass of the rigid body, then Newton’s second law for vertical
and rotational motions are

max = — kll‘l — k‘g.l?g — Cli‘l — CQjL‘Q,

.. ) ) (1.45)
Jo I (kix1 + 1) — o (k‘gl‘z + CQ!EQ) ,

where J is the moment of inertia about the center of mass. Note the signs on the torques Iy (k1z1 + ¢141)
and ls (kaxe + cod2) which are due to the sign convention on 6 being measured positively in the
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32 1.7. FURTHER EXAMPLES

Figure 1.21: (Left) Schematic of the “sprung-beam” or “half-car” model, which has two degrees of freedom. The
coordinates are either (r1,x2), the vertical displacements of the support points, or equivalently (z,6) the vertical
displacement of the center of mass and the rotation angle of the mass respectively. (Right) The kinematics used to
relate the two coordinate systems (z,6) and (z1,x2).

counter-clockwise direction. For example, when x; is positive, spring k; exerts a downwards force
on its support point, which is a positive torque on the mass. On the other hand, when x5 is positive,
spring ko exerts a downwards force, which results in a clockwise (negative) torque on the mass.

We need to rewrite the equations above in terms of only one set of coordinates, either (z,6)
or (x1,x2), but not both. The first option is to use the kinematics to express (r1,22) in terms of
(z,0). To do this, we make the simplifying assumption (reasonable for small oscillations in ) that
the springs and dampers move only vertically'? (see Figure 7.1 (Right) )

mx = —(kl + kg) T+ (killl — ]{izlg) 0

CL’—ll Sin9%$—l10 *(Cl +02) C.U+(Clll 702l2) 0
} J 0 = (kyly — kolo) & — (k113 + kol3) 6
(Clll — Cglg) T — (Cll% + Czl%) 9

T

To & r+lysinf ~ x + 150 (1.46)

Note an important feature of these two equations. The first one is for the derivative , but it depends
on both z and 6 and their derivatives. Similarly, the second equation is for é, but it also depends
on both = and 6 and their derivatives. The equations are therefore coupled. Each equation cannot
be solved separately, they have to be solved together. In the language of dynamics, the equations
for # and 6 describe vertical and rotational dynamics respectively. The fact that their equations
are coupled means that vertical vibrations effect rotational vibrations and vice versa. A very useful
technique that helps reveal the underlying structure of complex equations like (7.2) is to rewrite
them as a single matriz differential equation as follows.

0

b

|: Nm T+ (Cl + CQ) T — (Clll — 6212) 9+ (]fl + kg) xr — (klll — kglg) 0 :| _
Jo— (Clll — Czlg) T+ (Cll% + Czl%) 0 — (k‘lll — k‘glg) x + (k‘ll% + kgl%) 0
(1.47)
10
= ol
(

1.48)

o m 0 1’ i c1+ Co calos — 1y -T i k1 + ko kolo — k1l1| |
0o J 0 CQZQ — Clll Cll% + Cgl% 0 kglg — k?lll k‘ll% + kQZ% 0

The equation (7.3) is exactly the two equations (7.2) written as the two components of a vector.
This vector equation can be further rearranged into the matrix-vector equation (7.4) in which each
term represents all derivatives of a given order. Here the three terms collect derivatives of second,
first and zeroth orders respectively.

An alternate model is to rewrite equations (7.1) using the coordinates (z1,z2) by substituting
for (z,0) in terms of (z1,x2). First note that the mapping (z,6) — (21, 22) in (7.2) can be written
in matrix-vector form and inverted as follows

(lox1 + liza) /(L + 12)

T . 1 —ll X N X o 1 lg l1 T -

T2 1 Iy 0 0 L+l |—1 1] |z (1‘2 — l‘l)/(ll + lg)
12This is clearly not the case if the beam is assumed to be a rigid body. If z1 # z2, then the support points will

have to move laterally. This motion can be assumed negligible for small oscillations 6. An alternative way to view

this is that if we write the full two dimensional model that allows for lateral motion, then linearizing around 6 ~ 0
will give the model above that ignores lateral motion.
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Substituting these expressions for (z,0) in (7.1) gives

m (lod1 + l132) /(L + l2) = —k1x1 — kawa — 181 — cain
J (—ﬁf1 + Z‘g)/(h + lg) =1 (kll‘l + Cl.jfl) — g (kgl‘g + Cgig)

These equations can be reorganized into a matrix-vector form similar to (7.4) as follows
1 mlg mll Zi'l C1 Co L.Ul kl ]{12 T
—_— . . =0. 1.49
I+ 15 {—J J } [xz + ciliy —cala| |22 + kili  —kala| |22 (1.49)
n-DOF Mass-Spring-Damper System in Matrix Form

Note the similarity in the structures of the equations (7.4) and (7.5). They are both of the following
form

M | |zw] + | ¢ |law)| + | K ||z®]| = |o (1.50)

& ME{t) + Ci(t) + Ka(t) = 0, (1.51)

where x(t) is a wector of coordinates, and M,C, K are matrices of system’s coeflicients. Such
equations are the n-DOF generalizations of the single DOF equation (1.32). M is referred to as the
“mass matrix”, and similarly, C' and K are called the damping and stiffness matrices respectively.
Equations (1.50) and (7.6) are exactly the same. The first equation (1.50) graphically emphasizes
the dimensions of the matrices and vectors for illustration. The second equation is written in the
much more compact matrix-vector form, but the reader should always keep in mind that despite the
simplicity of writing it in that form, a lot of information is “coded into” the entries of the matrices
M, C, and K.

We will see in Chapter 7 how to write all n-DOF systems in the standard form (7.6), which will
then enable a unified method of analysis for all such systems.

Decoupling and Normal Modes

When analyzing n-DOF systems written in a matrix form like (7.6), certain coordinates are much
better than others. Take for example the equations (7.4) written in (x,6) coordinates, and assume
a special case where k1 = ko =k, ¢1 = ¢co = ¢, and [; = I3 = [. The equations then simplify to

m 0| |2 2c 0 T 2k 0 T

[0 J] M + [o 2012} M * [0 2kl2} M =0 (152)
Note that the matrices M, C and K are now diagonal (i.e. all off-diagonal entries are zero). This
matrix equation is therefore decoupled into two scalar equations

m &(t) + 2ci(t) + 2k x(t) = 0, (1.53)
JA(t) + 2 0(t) + 2kI2 6(t) = 0. (1.54)

Note that the differential equation for x(t) does not involve 8(t), and similarly, the differential equa-
tion for O(t) does not involve x(t). This means each differential equation can be solved independently
of the other. In this case we say that the dynamics of x and 6 are decoupled in the sense that they do
not influence each other. We call the motion of z(t) the vertical mode, and that of 6 the rotational
mode of vibration respectively. Those are the normal modes of vibration of this 2-DOF system. In
general, an n-DOF system will have n different normal modes of vibration.

Let’s make more simplifying assumptions to get some intuition for the distinction between vertical
and rotational vibrations. Assume no damping ¢ = 0, and that the support points of the sprung
beam in Figure 7.1 are at each end. Additionally, assume the beam is slender so that its moment of
inertia (about the center of mass) is that of a bar of uniform length 2/

J = m(20)?/12 = mi*/3
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o(t)

2 | | | | | 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Figure 1.22: Vibrations of the sprung beam model in the special case where vertical and rotational dynamics (7.8)-
(7.9) are decoupled. (Top) Both rotational 6(t) and vertical xz(t) vibrations are pure sinusoids, but with different
frequencies. The frequency of rotational vibrations 6(¢) is higher than that of vertical vibrations x(¢) as predicted by
the formulas (7.11) for their respective natural frequencies. (Bottom) The vibration of the support point z1(t) is a
superposition of the two modes (vertical and rotational) of vibrations.

With these assumptions, the rotational motion equation (7.9) becomes

mi?/30 + 2kI>6 = 0 = i+ %9 (1.55)
m

Now comparing the vertical motion equation (7.8) (with ¢ = 0) and the rotational motion equa-
tion (7.10), we see that they are both of the Mass-Spring type, but with two different natural
frequencies

vertical vibrations: wn = /2k/m

V6k/m = V3 \/2k/m.

Thus rotational vibrations have a natural frequency that is v/3 times higher than that of vertical
vibrations.

Any free vibrations of this 2-DOF system will be a superposition of those two modes of vibrations
with those two different frequencies. For example, the motion of one of the support points, say x1 (¢)
is linear combination of both z(t) and 0(t) since (recall (7.2))

wi(t) = x(t) — 10().

(1.56)

rotational vibrations: Wn

Figure 7.2 shows an example of the vibration of such a system. Note how vertical motion z(¢) and
rotational motion () are both pure sinusoids, but with different natural frequencies. The vibration
of x1(t) appears to be some superposition (a linear combination) of the two motions.

The fact that the matrix equation (7.7) involved only diagonal matrices is what led to the de-
coupling of the dynamics of x and 8 as described by the two mutually-independent equations (7.8)
and (7.9). Although this looks like a “lucky accident” due to the symmetry of the problem, there is
a general method to take any coupled matrix problem representing an n-DOF system, and find the
fundamental normal modes of vibration in a similar manner to what was done above. The mathe-
matical technique is based on matrix diagonalization, which in turn is based on finding eigenvalues
of eigenvectors of matrices. This is the topic of normal mode analysis developed in Chapter 7.2.
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Exercises

Exercise 1.1

Consider the diagram below where springs k1, ks have equilibrium lengths L1, Lo respectively.
(a) Find an expression for the mass’ position x at static equilibrium. (b) What is the natural
frequency of oscillation of this system, and how does it compare to the case when the two springs

have equal equilibrium lengths (i.e. when 11 = £9)?

A
8
(e S

Exercise 1.2
A spring and a damper in series. TBC

krq k Ccio c

ct—— P N—>ee——T—>

Exercise 1.3

Coordinate systems TBC

at static equilibrium

F > < F F > < F
mi ma
k1 ke ko
‘ |
1 T2 0
(a) blah
at static equilibrium -kyzq -ke(@1-22) ke(z1-22) -kaxo
my mo - my o N mao h
MAH MAMH T A W L NAANM T B
kl kc k2 1 kr; k2
| i 1 !
) i 21 |
' Iy o

(b) blah

Figure 1.23: blah

Exercise 1.4

Consider the rigid beam on a torsional spring shown here. The beam has uniform
density, mass m, length [, and torsional spring constant k. Gravity acts downwards
as shown. You may assume the small oscillations approximation of sin(6) = 6.

1. Derive a formula for the natural frequency of oscillation w;, of this beam in terms
of m, k, I, and g. Is the frequency higher or lower than that when ignoring

gravity?

2. What is the minimum stiffness k required so that the beam does not “fall over”?
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Chapter 2

Complex Numbers, Functions and Phasors

Vibration analysis of harmonically forced systems involves additions, differentiation and integration
of sinusoidal signals. Phasor analysis greatly simplifies these mathematical relations by representing
sinusoidal signals that have a common frequency as vectors in the complex plane. The amplitude
and phase of a signal is encoded as the magnitude and phase of the complex number, i.e. the phasor,
representing it. Many trigonometric identities are encoded in the arithmetic of complex numbers in
this manner, and the use of phasor analysis obviates the need for the complicated manipulation of
trigonometric identities. Familiarity with complex numbers is thus essential for vibration analysis,
and this chapter provides a quick introduction and review of complex arithmetic.

Introduction and Motivation

Under harmonic excitation, and after the effects of initial conditions have died down (i.e. asymp-
totically as t — 00), mechanical vibrations as well as voltage and current oscillations in AC circuits
are sinusoids' (sine and cosine functions, and combinations thereof). All such functions can be
represented as follows

z(t) = x cos(wt + 6), (2.1)

where x is the amplitude, w is the frequency (in rad/s), and 0 is the phase shift (which could be
positive or negative).

To analyze mechanical vibrations or electrical oscillations, we often have to add and subtract
sinusoids, as well as differentiate and integrate them. If you remember your trigonometric identities,
you will recall that adding two sinusoids gives another sinusoid. For example, we can use the identity

cos(a) + cos(B) = 2cos (aTHf) cos (#) to add two cosines with equal amplitudes but different

phases

z1(t) + x2(t) = xcos (wt + 61) + xcos (wt + 62) (2.2)
= 2x cos (wt + 8E2) cos (D522) (2.3)
= <2xcos<91;92)) cos (wt—&—%) (2.4)
=:y cos(wt+¢) =: y(t). (2.5)

We see that those two cosines add up to another cosine but with amplitude y := 2xcos (%5%) and
phase ¢ := (61 +02)/2. Note that if the amplitudes of the two original sinusoids were not equal, the
trigonometric identities needed would have been much more complicated. In general, the amplitude
and phase of the sum y(t) = z1(¢) + z2(t) will depend on amplitudes and phases of both z; and 5.

Many other formulas for combinations of different sinusoids can be derived using trigonometric
identities, but the procedures can quickly become a cumbersome algebraic nightmare! Here comes

1This will be demonstrated in Chapter 4.
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Figure 2.1: (Left) Two sinusoids of the same frequency, but different amplitudes and phases, x1 (t) = cos (10t + 40°)
and z2(t) = 1.8 cos (10t — 30°) are added together to form a third sinusoid z3(t) = z1(t) + xz2(¢). It is complicated
to derive an expression for x3(t) using trigonometric identities. The phasor representation considerably simplifies
this. Signals are represented as “phasors”, which are vectors in the complex plane where the complex number X;
“represents” the time function z;(t). (Right) The magnitude and phase of the phasor X3 (shown in black) representing
x3(t) is simply obtained by the vector addition in the complex plane of the phasors X1 (blue) and X2 (red) representing
x1(t) and x(2) respectively. The proof of this statement is in Section 2.3

in the concept of phasors, which allow for a very compact representation of sinusoids, and encode
all additive trigonometric identities simply in the arithmetic of complexr numbers! We will develop
this “phasor calculus” in this chapter, but as a preview, Figure 2.1 illustrates how two sinusoids
can be added as functions by simply adding their representing phasors as vectors in the complex
plane. Assuming the frequency w is fixed, each sinusoid of the form (2.1) is represented by a complex
number (its phasor representation), which is also a 2-vector in the plane (Figure 2.1, right). The
magnitude of the phasor is the length of the vector, and it is the amplitude x of the corresponding
sinusoid. The phase of the phasor as a complex number is the phase 6 of the sinusoid. The addition
of two sinusoids of the same frequency is another sinusoid with its own amplitude and phase, the
phasor representing that addition is just the addition of the two original phasors as complex numbers
(or equivalently as 2-vectors in the plane). In this way, phasors give a very convenient way of adding
sinusoids of the same frequency without invoking any trigonometric identities. We will also shortly
see that the phasor representation allows for very simple calculations involving differentiation and
integration of sinusoids. These nice differentiation and additive properties of phasors allow us to
easily analyze relationships between currents and voltages in AC circuits with RLC components, as
well as vibrations in complex mass-spring-damper systems.

To get good proficiency for this “phasor anlaysis” it is important to review and be fully proficient
with complex number arithmetic as done in Section 2.2.

2.1 Sinusoids, Phase and Time Shifts

Sinusoidal signals are specified by their frequencies or periods, amplitudes and phase or time shifts.
All sinusoids can be represented in either the “sine” or “cosine” form. They are periodic functions,
which means that the signal over all time is a repetition of some function defined over a fundamental
period. Time shifts of functions represent either time delays or advances, and these shifts can be
described as either time or phase shifts.

The “cosine” (or “sine”) Representation

We use the term sinusoid to refer to sine and cosine functions, and combinations thereof. All such
functions can be represented in the “cosine form”

u(t) = u cos (wt +6), (2.6)

where ¢ is the independent variable (usually interpreted as time). The sinusoid is completely specified
by its parameters, which are the constants u, w and 0. u is the amplitude, w is the frequency (in
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\/

\

Figure 2.2: A signal is periodic with period T (T-periodic) if it is uniquely determined by its values over a time
interval of length T". This also means that a T-periodic signal is generated from a function defined over an interval
of width T' (shown in red), and then repeating it an infinite number of times with shifts of multiples of T. A T-
periodic signal u has the property that for any ¢, the values of u at times that are “T" apart” are equal, i.e. for any t,
u(t +T) = u(t). The is illustrated above for two different times ¢; and ts.

rad/s or deg/s), and 0 is the phase shift (in rad or deg), which could be positive or negative. For
example, if we need to represent a sine, the identity

sin (wt) = cos (wt —90°) = cos (wt —7/2)

means that a sine is just a cosine with a —90° phase shift (called a 90° “phase delay” or “phase lag”
because it is negative). This also means that we could represent any sinusoid such as (2.6) in the
alternate “sine form”

u(t) = u sin (Wt + @),

where ¢ = @ — /2. The manipulations of signals (and their phasors) are exactly the same regard-
less of whether one chooses the sine or cosine forms, but the choice must be made upfront before
calculations are done. We will mostly use the cosine form.

Periodic Signals

The signal in (2.6) is a special case of a periodic signal. More generally, a signal u(t) is called periodic
(or more precisely 7-periodic) if it has the property

for all ¢, u(t) = u(t+ 1),

where the constant 7T is called the period. This is illustrated in Figure 2.2. A 7-periodic signal is
completely determined by its values over any time interval of length 7. In Figure 2.2 a particular
choice is made for this interval (shown in red), but any other interval can be taken provided it is of
length 7.

For a sinusoidal signal of the form (2.6), its period is determined by its frequency w. To find the
relationship between w and 7, recall that the cosine function is itself periodic with period 27 (or
360°) since for all «, sin(a + 27) = sin(a). Therefore wt has to advance by 27 for cos(wt + ) to
repeat, and we conclude that the period T of cos(wt + ) is given by

T = 27/w if w is given in rad/s,

T = 360°/w if w is given in deg/s.

Note that in order to make sense of cos(wt + ), the quantity wt must have units of radians or
degrees. Therefore w must have units of radians/time or degrees/time.

Another unit for measuring frequencies is Hz (Hertz), which are cycles/second. Cycle is another
name for the period T, so we can say that Hz = periods/second. Thus if f is measured in Hz, then
1/f is the period expressed as seconds per period (equivalently seconds per cycle)

1
f in (cycles/second)

T (in seconds/cycle) =
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\V/ |
i ug(t) := u(t-1q)

e oo >

Td [

Figure 2.3: Tllustration of time delays and time advances of signals, and the corresponding shifts of of their graphs.
The signal u(t) delayed by 74 is the signal ug(t) := u(t — 74). The graph of the time-delayed signal uy is exactly the
graph of the original signal u(t) but right shifted by the amount of time delay 74. The signal u, (t) := u(t + 74) is the
original signal u(t) advanced by 7, time units. Its graph is a left-shifted version of the graph of wu(t).

The relations between T', f in Hz and w in rad/s are thus

2 1
= — = —, w = 21 f,
w f f
with a similar relationship if w is given in deg/s. A simple way to remember that last formula is as
a unit conversion. There are 27 radians per period, so

FE) o () - e ().

Time and Phase Shifts

To understand phase shifts, it is important to understand time delays and time advances. Let u(t)
be a signal®. The signal “delayed” by 74 > 0 time units is u4(t) := u(t — 74), because e.g. the value
of the signal u at time 0 occurs in the signal ug at the later time 7. This is illustrated in Figure 2.3.
Note also that in terms of graphs of signals, the graph of uy is the same as the graph of u, but right
shifted by 74. Thus time delays correspond to right shifts of the signal graph. On the other hand,
the signal “advanced” in time by 7, > 0 time units is uq(t) := u(t + 7,). Note again for example
that the value of u at time ¢ = 0 occurs in u, at time ¢t = —7,, i.e. before ¢ = 0, and we can say
that u, is a time-advanced version of u. Figure 2.3 shows that a time advance corresponds to a left
shift of the signal’s graph.

When a signal is periodic, we can describe time shifts in terms of phase shifts. The phase shift
is defined as the time shift as a fraction of the period expressed in degrees or radians, i.e. for any
periodic signal

time shift 360°, if expressed in degrees,

phase shift := t.perloﬁft
e sulll o if expressed in radians.
period
Conversely, if a phase shift 8 of a T-periodic signal is given, the the corresponding time shift 7 is
0 0
= T = — T 2.7
T T 3600 or 27)

depending on the units in which 6 is given. Note that both time and phase shifts can be either
positive or negative. Now we consider a pure sinusoid and a “phase shifted” version of it (here
assumed given in radians)

vi(t) = Acos (wt)

vg(t) = Acos (wt +6) = Acos (w <t+z>) = Acos (w (f+297rT>> = v <f+297rT).

Thus vy is v; but with a time shift of %T. This is exactly (2.7) in this special case. This is illustrated
for the signal sin (27T10t) in Figure 2.4.

2The term signal is used to denote a function where the independent variable is time.
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cos (271' 10 t) =
sin (27 10 ¢ + 90°) sin (27 10 ¢) sin (27 10 ¢ — 210°)

1 1 1 1 1 1 J
-0.02 0.02 0.04 0.06 0.08 0.;1 0.12 0.14 01‘16 0.18

] |
| ]
| -— - — — — = 2 ———————————————— Pl —— —— - — - — — — — >l
T ! -210
T="_2 _ 01s = —210° ~ T = 058
¢ 360 s

Figure 2.4: The blue signal is sin (27 10 ¢). Its period can be measured as the time between upwards zero crossings,
which here appears to be 0.1s, and agrees with the formula T' = % = %. The red signal is cos (27r 10 t) which can be
written as sin (27r 10t + 900)7 so it has a phase lead of 90° over the blue signal. A phase lead is equivalent to a time
%T = i 0.1s = 0.025s, which is what the plot shows. A time advance corresponds to a left shift
of the signal’s plot. The signal in black is sin (27r 100t — 2100), thus it has a phase lag of 210° over the blue signal.
20T

advance of t =

A phase lag corresponds to a time delay, and in this case it is t =
right shift of the signal’s plot.

0.058s. A time delay corresponds to a

2.2 Background: Arithmetic of complex numbers

A complex number z is a tuple of real numbers z = (a, 3), where a and j are the real and imaginary
parts respectively. We normally write

z = a+jp,

where j2 := —1. We will use the notation R(z) and I(z) to refer to the real and imaginary parts of
a complex number, i.e.

z = a+jp & R(z) =«, I(2) = 8.

The definition j2 := —1 specifies the rules for adding and multiplying complex numbers as
z1t+20= (a1 +jB1) + (a2 +37B2) = (a1 +az)+7(B1+ B2) (2.8)
z1z0 = (o1 +jB1) (a2 +jB2) = aras + j2B1P2 + jai B + jasP
= (az = B1fB2) + j(a1 B2 + azp) (2.9)

Thus addition of two complex numbers is done by adding their real and imaginary parts respec-
tively. Multiplication however “mixes” the real and imaginary parts together. Both addition and
multiplication operations can be viewed geometrically as shown next.

A complex number is best visualized as a vector in two dimensions with cartesian components
(a, B8). The magnitude of z (written |z|) is the length of this vector, and its phase (written Zz) is the
angle the vector makes with the horizontal axis measured counter-clockwise. See figure 2.5a. From
basic trigonometry, the relations for the magnitude and phase of z = a4 j3 are

2] = a2+ 32, Lz = tan_lé
a
a = |z|cos(Lz), B = |z|sin(Lz)

Another convenient form with which to write complex numbers is the polar form. It is derived
using Euler’s formula e’ = cos(#)+j sin(f), which can be thought of as describing complex numbers
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2.2. BACKGROUND:

ARITHMETIC OF COMPLEX NUMBERS

(a) A complex number z = a + j8
can be considered as a 2-vector in
the plane with cartesian coordinates
(a, B). The length of the vector is the
magnitude |z| of the complex number,
and its phase Zz is the angle it makes
with the positive real axis (counter-
clockwise).

sin()

-J

(b) The wunit circle of the complex
plane is the set of all complex num-
bers with magnitude 1. Euler’s for-
mula says that all complex numbers
of the form €% = cos(0) + j sin(0) lie
on the unit circle as shown. The real
number 6 is the angle the vector el?
makes with the real axis.

- z = |zle

<,

(C) The polar form z = |z]e?“? of a
complex number can be interpreted as
follows. The unit-length vector e’<?
specifies z’s direction, and the real
scalar |z| specifies its length. =z is
then the product of those two. Note
that for any complex vector z, e/<7? is
another complex vector of the same
phase as z, but with unit magnitude.

4z

Figure 2.5: Complex numbers are identified with 2-vectors in the plane, which is why it is called the “complex
plane”. Complex numbers can be represented in either cartesian or polar forms. The polar form is best appreciated
if one understands Euler’s formula and its relation to the unit circle of the complex plane.

(a) Complex numbers add just like
2-vectors in the plane. The real and
imaginary parts of z; + z2 are the
sum of the real and imaginary parts
of z1 and z2 respectively.

23 = 2122
01+0, 21

0

61

(b) Multiplication of complex num-
bers is best visualized in their po-
lar form. The phases add up, i.e.
Z(z122) = £z1 + Zz2, and the mag-
nitudes (length of vectors) multiply

* A

o .
2 'z
v<_ ~
. ~ - -

N

‘ Nk
22 4%

(c) Conjugation of a complex num-
ber flips the sign of its imaginary
part. This can be nicely visualized
as a reflection about the real axis.

|z122| = |21]|22].

Figure 2.6: Geometric views of the addition, multiplication and conjugation of complex numbers.

on the unit circle of the complex plane (this is all complex numbers with magnitude of 1 as shown
in Figure 2.5b.) We can thus write any complex number z as

z = a+jB = |z|cos(L2) + jlz|sin(£L2) = |z| (cos(Lz) + jsin(Lz)) = |z| €147,

where again |z| is the magnitude and Zz is the phase. This is called the “polar” representation of
the complex number and is illustrated in Figure 2.5¢.

In (2.8) we saw that the sum of two complex numbers is easy to define with cartesian coordinates.
The product (2.9) however was a little more complicated. The product is easier to write in the polar
representation since magnitudes multiply and phases add

2129 = jLz1 |22| ejézz — |Zl‘ |22| ej(ézl—&-ézQ) )

|z1] e

Note that it is easiest to add complex numbers in the real/imaginary (cartesian) representation,
while it is easiest to multiply them in the polar representation. See Figure 2.6 for a geometrical view
of these operations.

Some other useful relations which can be demonstrated using the polar representation are (try
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these)
|z122] = |z1]|22| (the magnitude of the product is the product of the magnitudes)
L(z129) = Lz + ZLzo (the phase of the product is the sum of the phases)
z—; = :2: (the magnitude of the ratio is the ratio of the magnitudes)
/ <2> = Lz — Lzo (the phase of the ratio is the difference of the phases)
(2.10)
For example / (;) = Z(1)~ £(j) = 0°—90° = —90°. Note that 1 = —j.

Given a complex number z = a + jf its complex conjugate z* is defined by

*

2¥ = a—jp.
Euler’s formula immediately implies that in polar form, conjugation simply negates the phase, i.e.
(A eje)* = Ae°,

This has the geometric interpretation shown in Figure 2.6c. Conjugation reflects the complex number
about the real axis. It doesn’t change the length of the vector, but reverses its phase. This is
illustrated in Figure 2.6¢. It is easy to show that conjugation obeys the following rules

(21 —i—zz)* = 2] + 25
(2’12’2)* = 27z,
and that we can recover the real and imaginary parts from the complex number and its conjugate

z+25= 2R(2) (since z + 2* = (a + jB) + (a — jB) = 20)
-2 = 25 1(2) (since z — z* = (a + jpB) — (a — jB) = 2j3),

2.3 The Phasor Representation of Sinusoidal Functions

The basic idea behind phasor representations is to represent a sinusoidal signal of a given frequency
using a complex number, i.e. to encode the amplitude and phase of the sinusoid in the magnitude
and phase of the complex number respectively. First, recall Euler’s formula which implies that a
cosine can be written as the real part of an exponential with an imaginary argument

e’? = cos(¢) + jsin(¢) = cos(¢) = R(e/?) = cos (wt) = R(e?") .

The last equation shows that we can use Euler’s formula to write a cosine time function as the
real part of a complez-valued function of time e/*. “Complex-valued” means that for each ¢, the
function e/“! has its value as a complex number. Since for each ¢, the quantity e/“! is complex,
three dimensions are required to visualize the graph of such a function, one dimension for ¢, and
two dimensions for the (time-varying) complex number e/“!. This visualization is illustrated in
Figure 2.7.

Alternatively, another geometrically intuitive way to visualize this function is as a curve in the
complex plane parameterized by t. The function e/“! in particular traces a circular curve in the
complex plane that goes around the unit circle counterclockwise starting from 1. This is illustrated
in Figure 2.8. Since e/*! is a point on the unit circle at angle wt radians (counter-clockwise from 1),
the curve goes around the unit circle once every %’T time units. Thus the larger w is, the faster this
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Figure 2.7: The complex-valued function of time e/“* visualized as a helical curve in three dimensions. Two
dimensions are needed for the complex plane (shown here as the yellow plane), and the third dimension for ¢. At
t = 0, the function e/*? = ¢® = 1 starts at 1, and then rotates counterclockwise along the unit circle (depicted as the
solid black curve in the complex plane, with only the initial part of the curve shown for clarity). The full graph of eJwt
as a function of ¢ is the blue helical curve. Euler’s formula states that e/*? = cos(wt) + j sin(wt). The dashed curves
show the real and imaginary parts as the projections of the helical curve onto the planes (]I(ej“’t) ,t) and (]R(ej‘*’t) ,t),
which show the sin(wt) and cos(wt) functions respectively (in the left figure). The left figure depicts the function
eIwt  while the right figure depicts e/ (“t+7/4) which starts at e/™/4 at time t = 0. The imaginary and real parts of
the right figure show a sine and a cosine, but with phase shifts.

curve goes around the unit circle. The projection of this curve onto the real axis gives the real-valued
time function R(e/“") = cos(wt).

Now fix a frequency w, and consider a sinusoid of that frequency, but arbitrary amplitude x and
phase 6

z(t) = x cos (wt+0) :xR(ej(“’H'e)) = R(xe?’ /") = R(x "), where % := xe?. (2.11)
—_——

separate the time-dependent
from the time-constant factors

There are two factors in R (x e/“*), the time-function e/**, which involves the fixed frequency w, and
thus is the same for all sinusoids of that frequency. The complex number X = x /¢ now encodes the
amplitude and phase of the signal xcos (wt + 9) and uniquely represents it. This is illustrated in
Figure 2.8 where three different examples are shown. The reader should examine those figures while
imagining the evolution of the respective curves in the complex plane and their projections onto the
real axis which produce the signals as a time functions. We now make a formal definition.

Definition 2.1. Guwen a fized frequency w, the phasor representation of a time function of the form
x(t) = x cos(wt + 0) is the complex number X := xe’%. We write this representation as

z(t) = x cos (wt+0) = R(x /) — x = xel? = |5 (2.12)

A word of caution is needed here. When we say for example that a displacement or a voltage
signal z(t) = x cos(wt +0) is represented by the complex number x = xe??, it does not mean that the
voltage x(t) is complex. The voltage x(t) is always a real number! We are simply using the phasor
representation because we can add sinusoids by adding their phasor representation using complex
arithmetic, and therefore avoid the use of messy trigonometric identities as shown next.

Remark 2.2. [on notation] We will adhere to the following standardized notation. A sinusoidal signal
(a real-valued function of time) is always denoted by italic small font, e.g. x(t) = x cos(wt + 0).
Its amplitude (which is a positive real number) is always denoted by a sans-serif font x. The phasor
representing x(t) is a complex number which is denoted by a sans-serif font with a “hat”, e.g. % = xe’?.
Therefore the font choices for another signal denoted by w(t) would be

u(t) = u cos (wt + @) — i = uel?.
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R (el') = cos(wt) R (%e/") = |%] cos(wt + £X)

R (%e7F) = |%] cos(wt + £%)

t t t

Figure 2.8: (Left) The complez-valued function of time €7t is a circular curve in the complex plane that goes
around the unit circle counterclockwise starting from 1. Its real part is the function R(ej“’t) = cos(wt). (Middle and
Right) When multiplied by a complex number %, the function %e/*? also traces a circular curve in the complex plane,
but starting at % rather than 1, with a circle of radius |%|. The real part of this function is R (ke/*t) = || cos (wt+ £%),
where |X| and Z% are the magnitude and phase of the complex number X respectively. Thus for a fixed frequency w,
the time function xcos (wt + 0) is completely determined by the complex number X = xe/?, and thus we call x its
phasor representation.

Now consider two sinusoids of the same frequency, but different amplitudes and phases, and use
the complex represenation (2.12) for each of them

xz3(t) = x1(t) + z2(t) = xqcos (wt + 91) + xg cos (o.)t + 92)
- R(X1 ej<wt+el>) i R(X2 6j(wt+92>)7
= R(x ej‘*’t) + R(xe /'), (where %1 = x1e7%1 | %5 = x9e792)
= R(x e/ + %o /) (since the real parts add up)
R((%1 +%2) /) = R(%3 e/*) (where X3 = X1 + X2)
)

Thus the phasor x5 representing z5(t) = x1(t) + x2(t) is simply the sum (as a complex number
of the phasors X3 and X2 representing x1(t) and z2(¢) respectively. This is the concept that was
illustrated in the introduction in Figure 2.1, and we now state it as a theorem.

Theorem 2.3. Given a frequency w, the addition of two sinusoids of this frequency can be expressed
using their phasor representations as follows

x1(t) = xq cos (wt + 91) — %1 = x1e7%,
xo(t) = xgcos (wt + 92) — Xo = x067%2
xz3(t) = x1(t) + x2(t) = x3cos (wt + 93) — X1 + Xo = X3 = x3e7%3,

i.e. the amplitude x5 and phase 03 are obtained from the complex number addition
X3 = X1 + X9 = X3 el = X1 e 4 X9 e’02

Note that to arrive at x3 and 63 given x;,X, 61, 62, one typically has to convert x;e?%t and xpe??2
to cartesian form since complex addition is most easily done in that form, and then convert the
result back to polar form to obtain x3 and #3. Note that usually, these calculations are done by
calculator or software, which have complex arithmetic built in, but usually don’t have trigonometric
identities built in.

The phasor representation is not only useful for adding sinusoidal functions, but also for dif-
ferentiating and integrating them. This makes it particularly suited to treating certain types of
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differential equations that arise in harmonically-forced vibrations. This is the topic of Chapter 4,
but we give next a brief glimpse of this technique.

2.3.1 Phasor Representation of Sinusoidal Derivatives

If y(t) is a sinusoids with a given phasor representation, what is the phasor representation of its
derivative y(¢)? There is a simple answer to this question which will greatly simplify the analysis of
constant-coefficient ODEs with sinusoidal forcing. One way to calculate is as follows

y(t) =y cos(wt+0) — y =yel
= y(t) = —wy sin(wt +0)
—wy cos(wt 40 —90°) (since sin(¢) = cos(¢ — 90°) for any ¢)
= wy cos(wt + 6 —90° 4 180°) (since cos(¢) = — cos(¢ + 180°) for any ¢)

wy cos(wt + 0 + 90°).

Thus the amplitude of g is the amplitude of y multiplied by w, and the phase of ¢ is a 90° advance
over the phase of y. We can summarize this by the following relations

36
y(t)  — ye - (2.13)
= y(t) — wy el (0907,
Another way to arrive at the derivative relations is first to obtain the derivative of the complex-
valued exponential function e/“!. The time derivative of any complex-valued function is defined
using the derivatives of the real and imaginary parts as follows. First, let v be a complex-valued
function of the time variable ¢

u(t) = w(t) + Jjuw(t),

where wu,(t) and u;(t) are the (real-valued) functions representing the real and imaginary parts of
u(t) respectively. We define the time derivative of such a function as

% u(t) == (jtur(t)> +j (im(ﬂ) ;

i.e. by differentiating the real and imaginary parts individually. Now we apply this definition to find
the time derivative of e/“! by using Euler’s formula

d d

pn jot — pn (cos(wt) + jsin(wt)) = —wsin(wt) + j wcos(wt)
= jw (cos(wt) + jsin(wt)) = jw el (2.14)
= w JWtHT/2), (2.15)

where we used the fact that j = ¢/™/2 in the last equality. We can use this formula to take a time
derivative of the more general function u e7(“*+9) by

% (u ej(wt+9)> _ u% (ejwt ej@) — 639% (ejwt) — u e eIt = g elf T2 et
N % (u ej(wt+9)) — wu eIwtto+T/2)
(2.16)

Thus differentiation amplifies the amplitude by a factor of w, and increases the phase by 90°. Taking
the real parts of both sides of this last formula gives the same answer as was obtained earlier in (2.13).
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Examine the formula (2.14), and observe that it is the same as the classic formula %eat = ae™
when « is real. The formula is exactly the same when « is complex (in this case a = jw). We
demonstrate this for the function e** where z = (a + j3) € C is any complex number

d d
7 e o = o 7 (eo‘t(cos(ﬂt) + 3 sin(ﬁt)))

ae® cos(Bt) — Be* sin(Bt) + j (ae® sin(Bt) + Be™’ cos(Bt))
et (a cos(ft) — Bsin(Bt) + j (a sin(St) + ,Bcos(ﬁt)))

e (a+ jB) (Cos(,é’t) +7J sin(ﬁt))

e (a+jB) et = 2 et

2t _ ie(aﬂ‘ﬁ)t _ i (eatejﬁt) _

les e

[

where = follows from the product rule of differentiation of real functions, Zisa rearrangement, 3
follows from the product formula (2.9) for two complex numbers, and 2 is another use of Euler’s
formula.

In Chapter 4 we will see how these concepts can be used to greatly simplify the analysis of
arbitrary constant-coefficient differential equations with sinusoidal forcing terms. This will provide
us with a powerful technique to convert differential equations to algebraic equations. Those algebraic
equations will give the relations between the respective amplitudes and phases of forcing and response
terms, and define the so-called frequency response of any system. Concepts such as resonance,
and vibration isolation and suppression can be completely characterized in terms of the frequency
response.
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Single Degree of Freedom Systems

This part concerns analysis of systems with a single mechanical degree of freedom. The main math-
ematical tools used are solutions of scalar second-order differential equations. Unforced equations
model so-called “free vibrations”, which arise when systems are in an initial disequilibrium, and ex-
hibit vibrations as they return to equilibrium (rest). Such vibrations are characterized by the system’s
“natural frequency”, which is determined by its mechanical parameters.

Harmonically “forced vibrations” arise when systems are subjected to continuous oscillatory forc-
ing. This forcing can be actual mechanical forces due to wind, ground vibrations, actuation, etc.
Forcing can also occur due to one part of a mechanical system acting on another part through dis-
placements, velocities, etc. The key tool in analyzing forced vibrations is the “frequency response”
derived from phasor representations of oscillatory signals, or from “transfer function” descriptions
of the dynamics. These give a full understanding of the important phenomenon of resonance, which
occurs due to matching of the forcing frequency and the system’s natural frequency.

Single degree-of-freedom systems are highly idealized, and most mechanical system are more com-
plex with many degrees of freedom. None the less, the analysis of these simple systems are ex-
tremely useful for many engineering design problems. Those include the design of vibration isola-
tion/attenuation systems, vibrometers and accelerometers.
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Chapter 3

Free Vibrations

The term “free vibrations” refers to the setting when no external oscillatory forces are acting on a
system. In this case, the vibrations are entirely due to initial extensions of springs or initial velocities
of masses, i.e. due to non-equilibrium initial conditions. The motion in these cases is obtained from
solutions of homogenous constant-coefficient differential equations. For single degree of freedom sys-
tems, the solutions are characterized by the locations of two possibly complex roots of a characteristic
equation. Underdamped oscillations occur when roots are complex-conjugate pairs, and overdamped
motion occurs when the the roots are real. A complete characterization of the oscillation frequency,
its amplitude and phase, as well as oscillation decay is possible in terms of system parameters. A
particularly important non-dimensional parameter, the “damping ratio”, characterizes similar oscil-
lations in a wide variety of mechanical systems. After a quantitative analysis of free vibrations, it
is possible to infer some system parameters such as damping/mass and spring-stiffness/mass ratios
from time-resolved experimental measurements of positions or velocities.

Background from Constant-Coefficient Differential Equations
We begin by recalling the main technique for solving constant-coefficient, homogenous (i.e. unforced)
Ordinary Differential Equations (ODEs) of the form

an () + apg ™Y 44 a2 ) + agx(t) = 0. t>0. (3.1)

Let’s parse this notation carefully. A term like 2(*)(t) denotes the k’th derivative of the function
z(t). The n + 1 numbers «ay, ..., a, are the coefficients of this equation. Note the indexing of the
coefficients in comparison to the order of derivative in each term. Equation (3.1) is called an n’th
order differential equation since the highest derivative that occurs in this equation is x(”)(t). This
equation has n + 1 terms unless some of the coefficients {ay}, _, are zero, in which case it will have
less. For example, consider our Mass-Spring equation

m &(t) + kxz(t) = 0. (3.2)

This equation is of the form (3.1). It is 2nd order since the highest derivative that appears in it is
Z(t). Note that for this equation

mi(t) + kx(t) =0 & 22 (1) + a1z (t) + apz(t) = 0

= ag =k, a1 =0, ag =m,

where oy = 0 since there is no first order derivative term.
Now the steps for solving an equation of the form (3.1) are as follows

1. Form the characteristic polynomial of this equation from its coefficients «y, ..., ay,
P(s) == aps® +an 8"t - +ais+s. (3.3)

This is just a polynomial in the variable s.
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2. Find the n roots of this polynomial, and call them s1,...,5,. Note that some of them may
be complex, and since the coefficients {oy, } are real, any complex roots must come in complex
conjugate pairs.

3. Any solution of (3.1) must be a linear combination of the (possibly complex) exponential
functions {e’'}, i.e.

z(t) = ap e+ + a, e, (3.4)

where 51,...,5, are the roots found earlier, and ai,...,a, are constants that depend on the
particular initial conditions. If there are any complex roots, they must be complex conjugates,
e.g. 5, = §;. The corresponding constants a; and a; are generally complex, and must also be

complex conjugates, i.e. 5, =§; = a;=a;j.

4. Note that since we have n unknown constants, we need n initial conditions (on x(0) and its
derivatives up to the n — 1 derivative) to uniquely solve for the unknown coefficients. The
constants ay, ..., a, can be obtained from the initial conditions by solving a system of n linear
equations.

In this chapter we apply the above procedure for single-degree-of-freedom systems with and
without damping. Single degree of freedom means that the differential equation is of 2nd order, and
therefore there are only two roots of the characteristic polynomial. The analysis largely depends on
whether the roots are complex conjugates or both real. The analysis also consists of two main steps
outlined below.

1. Complex conjugate roots of the characteristic polynomial correspond to undamped or under-
damped vibrations. The locations in the complex plane of those roots determine the vibration
frequency as well as the decay rate of vibrations. Alternatively, when both roots are real, the
observed behavior is a decaying response with no oscillations. This analysis applies to any set
of initial conditions, i.e. the conclusions here are independent of the initial conditions.

2. To determine exactly the amplitude and phase of vibrations, one needs to solve the differential
equations for given initial conditions. We will derive explicit formulas for this. The derivations
can be a little involved, but the final answers are useful for solving certain problems.

It is worth emphasizing the step 1 above is more important than step 2, especially for design
problems, where the frequency and decay rate of vibrations is to be “tuned”. The exact solutions
in step 2 can always be obtained from numerical simulations, although the formulas we will derive
can be useful for some simple design problems as well.

3.1 Undamped Free Vibrations

The free vibrations of a Mass-Spring system are mathematically described by the solutions of Equa-
tion (3.2) from given initial conditions. Since this is a 2nd order differential equation, finding the
solution requires two initial conditions 2:(0) and #(0), i.e. the initial position and velocity of the
mass. We now determine the general form of a solution in terms of the parameters m and k, as well
as the initial conditions using the general procedure for solving ODEs outlined in the introduction.
Although there are two coefficients m and k in the the differential equation (3.2), it is only the
ratio of those two coefficients that matters to the solution since we can divide through by m
mi(t) + kx(t) =0 & i(t) + Za(t)=0 (3.5)
to obtain an equivalent differential equation depending on only k/m. The characteristic polynomial
of this equation is easy to factor as follows

E o sip=4jy/E (3.6)
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The coefficients m and k represent the two physical properties of mass and stiffness, both of which

by definition are always positive. The ratio —k/m is therefore a negative number, and thus we have

two purely imaginary roots of the characteristic polynomial which are complex conjugates.
According to the general form (3.4), solutions of Equation (3.5) are of the form

2(t) = ael@nt 4 g% emdent, Wy = /%. (3.7)

They are purely oscillatory solutions with frequency wy := y/k/m which is called the natural fre-
quency of the system. The constants a and a* are complex conjugate numbers (recall that the
notation a* stands for the complex conjugate of a), which are determined by the initial conditions
x(0) and %(0).

The solution (3.7) is written as the sum of two complex-conjugate functions of ¢, and is therefore
a real function of ¢, which can be rewritten in two equivalent ways. The first follows from recalling
the fact that for any complex number z, z 4+ 2* = 2R(z), and therefore

a(t) = aelnt 4 a%e int = aednt 4 (aedn!)” = 2R(a ) = 2|a| cos (wat+Za), (3.8)

where |a| and Za are the magnitude and phase of the complex number a. Now we see perhaps more
clearly that the solution is purely oscillatory with a frequency of w, = \/k/m rad/s.

A slightly different form of (3.8) can be written down to conform with phasor representations of
sinusoids by absorbing the factor of 2 into the constants as follows

z(t) = 2R(a ') = 2a| cos(wnt+ Za) = [X| cos (wnt+ £%) = R(x /") (3.9)

where we simply redefined the complex number X = 2a. Note that a and x have the same phase.

Another way of writing the solution (3.9) in terms of only real functions is obtained by expressing
the complex number X = a + j 5 in terms of its real and imaginary parts o and 8 respectively, and
using Euler’s formula as follows

z(t) = R(x /) = R((a+4B) (cos(wnt) + jsin(wyt)))
= « cos(wnt) — B sin(wyt). (3.10)

This solution is a sum of two sinusoids, both of the same frequency w,. Recall that such a sum is
always another sinusoid of the same frequency, but different magnitude and phase, which is precisely
the form (3.9).

We have so far obtained the solution in three different forms which we now summarize

1 (x edont 4 x* emdwnt) wo = Sk (determined by )
z(t) =< || cos (wnt + 45() ,  where ! / system-parameters (3.11)
. . . determined by
a cos(wnt) — B sin(wnt) x=a+jp (initial conditions )
Which of those three equivalent forms we end up using is a matter of convenience, and is usually
determined by what further analysis is to be done.

The constants X = a + j5 in (3.11) are determined from the initial conditions x(0) and #(0) by
solving a system of 2 linear equations. We now derive that relation in order to rewrite the solutions
directly in terms of initial conditions. First, write the initial conditions in terms of the complex
constant X

2(0) = § (x &/t + KFeI)| | = (x+%%) /2

()A(e]wnt + )A(*e—jwnt>

— % ()A( jwnejwnt g jwne—jwnt)’ _ ()A( jwn — K jwn) /2

dt t=0

t=0
This system of equations can be written in matrix-vector form and solved as follows

-l AIB) - B2 R - e A

#(0)] 2 [jwn  -jwn] [X* T jwn [dwn 1] [(0) = 2(0) — jL i(0)

x>
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3.1.

UNDAMPED FREE VIBRATIONS

(a) A mass starting from an initial
positive extension z(0), and at rest
(#(0) = 0). The motion is z(t) =
2(0) cos(wnt), i.e. the phase is zero,
and the amplitude of oscillation is ex-
actly the magnitude of the initial ex-
tension.

A

(b) A mass starting with no initial
extension (z(0) = 0), but with posi-
tive initial velocity ©(0). The motion is
z(t) = Asin(wnt) = Acos(wnt — 90°).
The amplitude of oscillation is A =
#(0)/wn = #(0)y/m/k. Thus smaller
inertia or stiffer spring imply a smaller
oscillation amplitude for a given initial
velocity.

(C) A mass with non-zero initial ex-
tension and velocity. The oscillation
z(t) = Acos(wnt + 0) has amplitude A
and phase 6 that depend on values of
both z(0) and #(0) according to (3.14).
Note that since the initial spring force
and velocity are in the same direction,
the oscillation amplitude is larger than
the initial extension.

Figure 3.1: Tllustration of the free vibrations of a Mass-Spring system starting from three different initial conditions.
The mass’ position is given by Theorem 3.1 as x(t) = A cos (wnt + 9), where the amplitude A and phase 6 depend on

initial conditions, but solutions always oscillate with the natural frequency wn = \/k/m rad/s, which is independent
of the initial conditions. Note the scaling of the time axes. The equilibrium position of the mass is indicated by the
vertical dashed line.

We have therefore obtained the real and imaginary parts of X in terms of the initial conditions. Since
a and § in (3.11) are those parts respectively

B = _%(0)

x = a+js = 2(0) — j5- (0) = a = z(0), wn !

we have therefore obtained explicit expressions for the solution in all its forms. We summarize this
in the next statement.

Theorem 3.1. Consider a differential equation of the form

Bt) = —w? a(t), (3.12)

with initial conditions x(0) and (0). The solution is given in either of the following two equivalent
forms
x(t) = z(0) cos(wnt) + %S) sin(wyt), (3.13)
£(0)
wn z(0) "

= x cos (wyt +0), 0 = —tan™ (3.14)
Remark 3.2. We can apply this theorem to problems other than the Mass-Spring system. Recall the
mathematical analogies from Chapter 1 where differential equations of three different systems were

compared

i(t) = —(k/m) x(t), (mass/spring in linear motion)
0t) = —(k/J) 6(t), (mass/torsional-spring in rotational motion)
ot) = —(g/1) 6(t). (pendulum in rotational motion)

All three equations are of the form (3.12) where in each case wy, is equal to \/k/m, \/k/J and \/g/l
respectively. More generally, the theorem applies to any second order equation that can be rearranged in
the form Z(t) = —a x(t), where a > 0 maybe some combination of coefficients. In this case wy, in (3.12)
would just be /a.

Figure 3.1 illustrates the vibrational motion of a Mass-Spring system starting from three different
initial conditions. Each case demonstrates some property of the solutions as follows.
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e Figure 3.1a: When a mass is released from rest (i.e. #(0) = 0) from an initial extension of z(0),
the solution is a pure cosine with zero phase

z(t) = x(0) cos (wnt).

In this case, the amplitude of oscillation is |x(0)|, which is exactly the magnitude of the initial
extension or compression.

e Figure 3.1b: When a mass has positive initial velocity #(0) > 0 starting at the equilibrium location
of the spring (i.e. 2(0) = 0). The motion is given by

.I‘(t) = %S) sin (wnt) = 1‘(0) % COS (wnt—QOO).

Note that the mass starts from zero extension, and then oscillates with an amplitude that depends
not only on the initial velocity, but also on m and k. For a given initial velocity, the larger the
mass’ inertia m, the larger the amplitude, and the higher the stiffness k, the smaller is the resulting
amplitude. This makes physical sense since an initial velocity with a large m means a large initial
kinetic energy, and we expect the oscillations to be bigger. This will be made precise with the
energy analysis below.

e When a mass has both non-zero initial extension and velocity, the amplitude and phase are given
by (3.14). The amplitude in particular will always be larger than the initial extension. This
follows from the formula for x in (3.14) which implies that x is always larger than x(0) if #(0) # 0.
It can be clearly seen in Figure 3.1c.

Velocity Amplitude and Phase
Consider the general solution (3.14) for the mass’ position, from which we get the velocity by simply

differentiating that formula

1 (0
wyn z(0)?

z(t) = x cos (wnt +0), x=4/22(0) + = © 0 = —tan

&(t) = —x wy sin (wnt + 9)
= Xwy sin (wyt + 6+ 180°) (because — sin(z) = sin (x £ 180°))
= Xwy cos (wnt+ 0+ 180° —90°) = x wy cos (wnt + 6+ 90°)  (sin(z) = cos (z — 90°))

Two things are worth noting here. First, the the velocity amplitude is the position amplitude x
multiplied by the frequency w,. This is physically intuitive, if the mass is oscillating back and forth
very rapidly (with high frequency wy,), then even for small position oscillations with amplitude x,
the velocity amplitude x w, can be quite large, and vice versa if w, is small (i.e. slow oscillations
mean relatively low velocities). The ratio of displacement to velocity amplitudes is

velocity amplitude WnX
= — = W
displacement amplitdue X "

The stiffer a system is (larger w, is referred to as “stiffer”), the larger the velocity amplitudes are
relative to displacement.

The other important observation is that position and velocity are always 90° out of phase. In
particular, velocity has a 90° phase lead over position (recall that phase leads are equivalent to time
advances). This is just an instance of the fact that the derivative of any sinusoid always has a 90°
phase lead over it. This 90° phase difference is clearly seen in Figure 3.2. An intuitive interpretation
to keep in mind is that since velocity has a phase lead over position, then velocity “anticipates”
position, i.e. can predict where the mass will be 90° later, which is equivalent to 7'/4 in time units,
where T is the period.
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wn = 0.05 Hz =~ 0.3 rad/s, wn = .5 Hz =~ 3 rad/s,
T =2s £=ul~.09 T =2s £=uwrog

4 T T T

= position: z(t)
velocity: &(t) |4

= position: z(t)
2 = velocity: @(t) |1 2

—P. E.: kz%(t)/2
—_—K. E.: milt)/2
= Total E.

—P. E.: k2%(t)/2 4
—_—K. E.: mit)/2]- 4t
= Total E.

F igure 3.2: A comparison of the position and velocity oscillations for two systems with a low natural frequency wy
(left), and a high wy (right). Note that the velocity signal always “leads” the position signal by a 90° phase shift.
The bottom plots show the kinetic and potential energy oscillations over time. The sum of the two energies is always
constant (in time) since this is a conservative system with no damping.

Energy

The total mechanical energy of the Mass-Spring system is the sum of the spring potential energy
and the mass’ kinetic energy

E(t) = V() + T(t) == Lk 2®@t) + im i%(¢), (3.15)

thus it depends on both position and velocity. Equation (3.14) shows that oscillation amplitudes

depend on both initial position z(0) and initial velocity #(0). This expression can be rewritten in

terms of the initial total energy E/(0) which is the sum of the initial kinetic energy 7'(0) := im #2(0)

2
and initial spring potential energy V/(0) := 3k 2*(0). Starting from (3.14)
= 20+ TP = 2O+ 5 = 7 (3k220) + jm 2(0))
= %(V(OHT(O)) = 2 F(0). (3.16)

Note that the factor 2/k does not depend on the initial conditions. Thus the amplitude x depends
only on the total energy E(0) of the initial conditions rather than the details of velocity versus
position. This explains why the peak extension/compression in Figure 3.1c (which is equal in
magnitude to the amplitude x) is larger than the initial extension. Since the initial velocity is non-
zero, the total initial energy E(0) is larger than the initial spring potential energy V'(0), the latter
being determined by the initial spring extension.

The Spring-Mass system is subject to only the spring force, which is a conservative force. We
therefore expect total energy to be conserved. We can verify that directly without actually solving
the differential equation as follows. If E(t) is conserved, then it must be constant in time, i.e.
E(t) = E(0). To show that, simply take the time derivative

ip) = 4 (%k 22(t) + im gb?(t)) (3.17)
= kx(t) &) + m @(t) &(¢) (using the chain rule)
= ka(t) &(t) — k 2(t) () = 0. (substituting from the diff. eq. m& = —kz)

Therefore E(t) is constant in time. The calculation we just went through is a very important one.
In fact, it is such an important technique that it bears repeating that we did not need to solve the
differential equation mZ + kx = 0 in order to conclude that E(t) is conserved. We just needed
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the differential equation as well as the definition of energy. We will encounter such calculations
again in Section 3.4 on state space representations, where we will see that they are useful even for
non-conservative systems.

3.2 Damped, Free Vibrations

In this section we examine the free vibrations of a system with damping. As the name suggests,
the effect of damping will make any free oscillations decay. We will identify two regimes called
the underdamped and the overdamped cases respectively. In the underdamped regime, oscillations
decays exponentially with decay being faster the higher the damping. In the overdamped regime,
the responses also decay exponentially, but with no oscillations due to the higher value of damping.
The boundary between the two regimes is referred to as the critically damped case. Those regimes
will be identified using the value of a non-dimensional parameter ( called the damping ratio .

Recall the differential equation for a single mass connected to a spring and damper. Although
it has three parameters m, ¢ and k, only two ratios matter since we can divide any two of the
parameters by a third. The typical choice is to divide by the mass m

mi(t) + ci(t) + kat) = 0 & it) + < 2@ +E a(t) = 0. (3.18)

The characteristic polynomial of this equation is a little more complicated than that of (3.5). Its
roots can be found using the quadratic formula

2

F+Ls+E=0 o @ §sao=-5tE/S -k (3.19)

T 2m 4m?2 m

Any solution is thus a sum of two, possibly complex, exponentials

z(t) = a; e’ 4+ ay et

where the coefficients a; and ay are determined from initial conditions. Note however that the
exponents in e and e*2' are determined by the system parameters m, ¢, and k, and are thus
independent of initial conditions. We will typically be interested characterizing the vibrations of
a system from any initial conditions, and therefore the behavior of the functions e51! and e%2! will
deserve a detailed analysis.

Although it is easy to write down formula (3.19), it is a little difficult to see how the roots change
as we change the three parameters m, ¢, and k. It turns out that there is another set of equivalent
parameters that more easily characterize the behavior of the roots. First consider some special cases.

1. When there is no damping ¢ = 0, we have two purely imaginary roots
c=0 = S12 = EjVE/m = *jw,
as we saw earlier in (3.6).

2. When ¢ is small, the discriminant in (3.19) is negative, which gives two complez-conjugate
T001S.

3. When c is large, the discriminant in (3.19) is positive, and therefore there are two real roots.

Given observations 2 and 3, there must be a special intermediate value of ¢ for which there are two
repeated real roots. This value is referred to as “critical damping” c. and is characterized by the
discriminant being 0

c? k
—— =0 = cc = 2vVmk.
4m?2  m

When the damping is critical, the roots are repeated and real, and are given by
_ c 2v/mk &
C=Ce = S12 = — 5 - = — om = —\/; = —Wn.
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Notice the reappearance of the natural frequency wy, in the special case of critical damping. The
behavior of the roots appears to be largely dependent on whether the damping is above or below the
critical value. It is very useful to define a non-dimensional parameter that captures this fact. This
parameter is called the damping ratio, and it is simply the ratio of actual damping ¢ to the critical
damping value c,

c c

¢ : o = ¢ Wy
Note that ¢ is “unitless” since it is the ratio of two damping parameters that have the same units.
If ¢ < 1, the damping is below c.. If ( = 1, the then damping is critical ¢ = ¢, and if { > 1, the
damping is above the critical value ¢ > c..
We now rewrite the formula (3.19) for the characteristic roots in terms of the parameters ¢ and
wy. First note that (3.20) gives the ratio ¢/m as

— R ko
(= ey = i 24\/; = 2Cwy. (3.21)

Using this, the differential equation (3.18) can be rewritten as

B(t) + £ a(t) + 2 x(t) =0 & B(t) + (2Cwn) @(t) + w? x(t) = 0, (3.22)

(3.20)

and the characteristic roots rewritten as

512 =-5 1/ %-% < 81,2 = Cwn = v/ Cwi-w?
o 51a= (fg +./c2 1) Wn, (3.23)

where the roots are now expressed in terms of only two parameters, the damping ratio ¢, and the
natural frequency w,. With this last expression, we see more clearly the effect of { on the roots.
Figure 3.3 shows the locations of the roots in the complex plane as ¢ ranges from 0 to co. There are
two main regimes, the so-called “overdamped” (when the roots are real), and the “underdamped”
(when the roots are complex), with the boundary between them as the critically damped case. We
now investigate the details of the three cases.

e Overdamped: ( >1 = ((?2-1>0 = (%2 —1 is a real number. In this case, the two
characteristic roots in (3.23) are both negative real numbers!, and any solution is therefore a sum
of two decaying exponentials

x(t) = a3 oSt T+ ay 6§2t, S10= (742‘: /CQ _ 1) W, (3.24)

The two exponentials e¥1? and e%2! are called the modes of the system. The exact linear combina-
tion of these two modes in any particular response depends on the initial conditions.

There is an important relation between the two roots in that their product is independent of ( as
can be seen from

515y = (f<+ V- 1) (—C -V - 1) whp = (G- (C-1))wi = i
This means in particular that there is a reciprocal relation between them
52 = w?l/El.

Now suppose we keep w, fixed, and increase ¢ from 1 to co. The expression (3.23) implies that
59 = —( — /(%2 — 1 — —o0, and the reciprocal relation therefore implies 5; — 0. In this case we
call e%2! the fast mode (since it decays quickly), and we call 51! the slow mode (since it decays
slowly). Therefore, for heavily damped systems, the response is always a combination of a slow
and fast mode. Usually, it is the slow mode that “dominates” the response since the fast mode
decays quickly enough that its contribution to the overall response is negligible after a short time.
Such a response and its two slow and fast components is shown in the last panel of Figure 3.4.

INote that 5 is clearly a negative number. 52 is negative since 1/¢2 — 1 < ¢ when ¢ > 1.
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(=l jwn
. /x: 7777777 1 jwd
Jwn SN
S0 N | sin(0) =¢
T S
- sin(f) = ¢ /\/l )
¢=>1 Cw NN
. -QW oL .
. " x ”””” + - JWd

-jWn
- “Wn oz 2/%
5o N5 = wy/5

(a) A depiction of how the roots 51,2 “move” in the complex plane (b) (Top): In the underdamped case, the imag-

as ¢ changes from 0 to co. The underdamped case corresponds to inary part wg of the roots gives the oscillation
0 < ¢ £ 1, and the roots are complex conjugates that lie on a semi- frequency, while the real part —(w, gives the
circle of radius wy. The critically damped case is when ¢ = 1, which decay exponent. (Bottom): In the overdamped
corresponds to a double root on the real axis at —wy. The over- case, the two real roots have a reciprocal rela-
damped case is when ¢ > 1, and the roots are both real, and as tion 52 = wi/ﬁl. This implies that as ¢ — oo,
¢ — oo, one roots limits to —oo, while the other limits to 0, as 51 — —oo, while 52 — 0 as shown in (a) by the
shown by the green arrows. green curves.

Figure 3.3: The locations in the complex plane of the characteristic roots 31,2 (denotes by the red crosses) of
damped vibrations for various values of the damping ratio ¢ = ¢/cc (where cc is the critical damping value), while
the undamped natural frequency wy is held constant.

o Critically Damped: ¢ = 1, and therefore 51 2 = —wy,, i.e. a double, negative real root. The general
form of the solution corresponding to a double root at 5; 5 = —wy, is
z(t) = ap e™“" 4 ag te™ !, (3.25)

where the coefficients a; and a5 are determined by initial conditions. In this case, the modes are
really a single exponential mode e~“n?, but with an additional term of te~“nt. Both of those terms

decay exponentially with exponent —wy,.

e Underdamped: ( <1 = (?-1<0 = ¢? — 1 is imaginary. Therefore 52 are two
complex-conjugate roots. Figure 3.3b illustrates this case. Let’s see what the real and imaginary

parts are in terms of the parameters ¢ and wy,

510 = (~CEVI=C)un = =G = jVI-Cw, (3.26)

=: —(wy, *+ jwg (defining the damped frequency wq := wn/1 — ¢?)

The imaginary part wq := wy+/1 — (2, which determines the oscillation frequency of the solution,
is naturally called the “damped” oscillation frequency?. It is always smaller than the natural
frequency wy, (the frequency of oscillation if there were no damping) as seen in Figure 3.3b. The
real part —(w, determines an “exponentially decaying envelope” for the oscillations. To see both
of the above facts, start from the expression 5; 2 = —(wy £ jwq for the characteristic roots, and

2The oscillation frequency wq is sometimes referred to as the “damped natural frequency”, or the “damped circular

frequency”.
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Figure 3.4: The effect of the damping ratio ¢ on the qualitative shape of the response. The undamped case (¢ = 0),
three underdamped cases (¢ < 1), the critically damped (¢ = 1), and an overdamped ({ > 1) case are shown. Both
the characteristic roots locations in the complex plane (left), and the time responses (right) are shown. The “decay
envelops” of the underdamped cases are shown. The overdamped case shows the slow/fast component modes (dashed
red lines). The time axis has the same limits in all of the above cases for the sake of comparison.
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the general form of the solution
a(t) = ael~Contiwa)t 4 g% o(~Con—jwa)t (3.27)
= e Cwnt (a elwat 4 g% e*j“’dt)
= e Cwnt ZR(a ej‘*’dt)
= e~ %“nt 9la|cos (wat + Za)

= x(t) = x e~ Cwnt cos (wdt + 6) , x:=2a|, 0:=Z/a,
. —
SXpo nentially sinusoid with frequency wq
decaying envelope and phase 0

(3.28)

where again the constants x = 2|a| and § = Za are determined by initial conditions.

As already stated, the rate of exponential decay is determined by the real part —(w, of the
roots. If w, is held constant, then as ( increases from 0 to 1, the response decays faster. This
is illustrated in the various panels of Figure 3.4 which the reader should now contemplate. The
oscillation frequency wq is always smaller than the natural frequency w, as can be seen from the
relation

wqg = wy V1-—C2 (3.29)

However, for typical values of ¢ which range between 0 and say 0.3, the relative difference is difficult
to perceive as you can see from Figure 3.4. For example, at ¢ = 0.3, the quantity /1 — (2 = 0.95,
and thus the two frequencies differ by only about 5%. Even in the case of ( = 0.5 shown in
Figure 3.4, it is difficult to distinguish the oscillation frequency from that of the case { = 0.01
visually.

There is an interesting geometry in the underdamped case. As already mentioned, the roots lie
on a semicircle of radius wy,. To see that, examine their magnitude (as complex numbers)

|§1,2| = ’(—Cijm)wn = m Wn = Wn.

Therefore, as ( changes from 0 to 1, the two complex conjugate roots move along this semicircle
until they “meet” at —w, at the critical damping values ¢ = 1. This “path” is illustrated in
Figure 3.3a. A particularly nice geometric interpretation of ¢ is that it is the sine of the angle the
roots make with the imaginary axis as shown in Figure 3.3b and follows from

sin(f) = ("::Jn =C
cos(f) = % = wnivi_@ = 1-¢2

Remark 3.3. There is an important property of the damping ratio { that needs to be emphasized.
Since this quantity is dimensionless, it allows for comparing vibration behavior across a large variety of
mechanical systems as shown in the table of Figure 3.5. In some sense, ( is the equivalent of the “Reynolds
number” for vibration analysis. Just like the Reynolds number in fluid flow allows for comparison of flow
behavior over varying spatial scales, viscosities and velocities, the damping ratio { characterizes vibrational
behavior across systems with differing materials, construction and sizes as illustrated by the examples in
the table.

Remark 3.4. For a system with any damping ¢ > 0, the characteristic roots always have negative
real part, or equivalently they lie strictly in the left half of the complex plane. This can be seen from
Figure 3.3a, as well as the expressions (3.23) and (3.26) in the overdamped and underdamped cases
respectively. This means that any response (from any initial condition) will always decay exponentially.
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Mechanical System Typical Damping Ratio ¢ ‘
Metals (in elastic range) < 0.01
Continuous Metal Structures 0.02 —0.04
Metal Structures with Joints 0.03 — 0.07
Aluminum/Steel Transmission Lines ~ 0.0004
Small Diameter Piping Systems 0.01 —0.02
Large Diameter Piping Systems 0.02 — 0.03
Automotive suspension (sedans) 0.2—-0.25
Automotive suspension (sports cars) 0.3 —0.25
Rubber 0.05
Large Buildings during Earthquakes 0.01 —0.05

Figure 3.5: Typical damping ratio values for a variety of mechanical systems. Since the damping ratio ¢ is a
non-dimensional number, it can serve as a metric for comparison across a wide variety of mechanical systems.

Data from Orban, F. ”Damping of materials and members in structures.” Journal of Physics: Conference Series.
Vol. 268. No. 1. IOP Publishing, 2011.

This property is referred to as “stability” in dynamical systems. For the Mass-Spring-Damper system,
it holds when m, ¢,k > 0 as is always the case. Note that the case of undamped vibrations ¢ = 0 is a
mathematical idealization. All physical systems have some amount of damping, even if microscopic. For
extremely lightly damped systems where ( = 0, the exponential decay can be so slow so as not to be
significant over the time length of the experiment. In this case, the mathematical idealization of ¢ = 0
is useful and convenient.

Solutions in terms of Initial Conditions

Equations (3.24), (3.25), and (3.28) give the form of the solutions for the three cases respectively.
The important qualities of these solutions such as oscillation frequencies and decay rates are given in
terms of only ¢ and wy, which depend on the system parameters, but not on initial conditions. It is
less important, but convenient to derive explicit expressions for the coefficients that appear in those
formulas as a function of initial conditions (0) and #(0). For the sake of completeness, formulas for
these solutions are included in Appendix 3.A.

3.3 Inferring Parameters from Experimental Data

When dealing with a complex mechanical system, it is usually difficult to obtain a detailed description
of every part’s mechanical properties such as dimensions, masses, spring constants and the like. For
example, suppose we have an automotive suspension system which we model as a Mass-Spring-
Damper system. The details of the system are unknown but we can conduct an experiment where
the system is given an initial displacement and the subsequent position (or velocities or accelerations)
are measured as a function of time. Given this data, is it possible to find the mass, spring constant,
and damping coefficient of the system?

To answer the above question, consider a typical set of experimental data as shown in Figure 3.6
which shows the position of a mass (versus time) that is oscillating due to some non-equilibrium
initial condition. This data could for example be collected from a position sensor (e.g. strain gauge,
optical encoder, etc.) over time. The trajectory looks like a typical Mass-Spring-Damper system in
the under-damped regime, i.e. it is a signal of the form (3.28)

z(t) = xe ! cos (wdt + 0), wq = 27/ T. (3.30)

From the data, we can easily infer the oscillation period T by either measuring the time between
zero crossings (provided we remove any constant offset in the signal), or the time between peaks.
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Figure 3.6: An example of the use of experimental data to infer system parameters. The signal shown could
be recorded position measurements of a Mass-Spring-Damper system’s free vibrations from a non-equilibrium initial
condition (velocity or acceleration measurements also yield similar signals). From the data, one can readily obtain
the period of oscillation T" as well as the logarithmic decrement § defined as the logarithm of the “ratio of successive
peaks” & := In (pg/pr+1). The system’s damping ratio ¢ and its undamped natural frequency wy can be obtained
from the simplified relations ¢ ~ §/27 and wn &~ 27 /T, which are reasonable approximations for the range ¢ < 0.3.

In Figure 3.6, it is assumed that the constant offset has been removed and we simply measure the
time between zero crossings, which then gives the signal’s period 7. From the period we can find
the damped oscillation frequency by

wg = 27/T (because cos(wqt + 0) is periodic with period T = 27/wq)

We can also find the decay rate of the envelope from measuring the “decay” of successive peaks
in the signal. Those peaks are labeled pi, ps, ps, ... in Figure 3.6. Since the envelope is of the form
Ae~¢“nt we can get information about ¢ and wy, from the ratio of any two successive peaks (which
are a period T apart in time) as follows

_Cwnf _Cwnf
Pk _ X e _ X e _ eCWnT

_ 27TCWn/Wd 3 _
Pk+1 x e~ Cwn(t+T) X e—Comt g—ComT =e€ (since T = 27 /wq)

— o27¢//1-¢
: Wn 1
(since g = i by (3.29))
Note that the ratio pg/pg+1 of two successive peaks is independent of which two successive peaks we
choose (i.e. it is the same for any k). This leads us to define the logarithmic decrement §, which is a
number readily obtained from experimental data by simply measuring the ratio of any two successive
peaks

Pk & Pk _ ¢t = 0=2m

1
Dk+1 Dk+1 V1=

Thus the logarithmic decrement gives the damping ratio ¢ by solving for it from the above relation

d:=1In

1)
Vo2 + 42

Note that both § and ¢ are non-dimensional. Note also he limiting behaviors at the two extremes

¢ = (3.31)

(=0 = 0—=0 = Pr/Pr+1 — 1 = peaks don’t decay
¢—1 = 0 — o0 = Dk/Pk+1 — 00 = peaks decay rapidly

Once we find ¢ from the data, ¢ can be obtained from (3.31). Next, the undamped natural
frequency wy, can be found from the damped frequency wq (which is determined from the period T)
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by using (3.29) again

2 1
wy = —4__ 2o (3.32)

/1—¢2 T /11— CQ'
The relations (3.31) and (3.32) can be simplified by observing that for ¢ < 0.3 (which is a

typical range for many mechanical systems), the approximation /1 — (2 ~ 1 is reasonable. The
relations (3.31) and (3.32) then simplify to

‘ ¢ ~ §/2m, wn & wg = 27/T. ‘ (an approximation for the range ¢ < 0.3) (3.33)

Thus we can directly go from (8, 7) to ({,wy) using those simplified relations.
Is it possible to determine m,c, and k from ¢ and w,? Clearly not, since again it is only the
ratios ¢/m and k/m that determine dynamic behavior

mi(t)+ci(t)+kx(t) = 0 & E(t)+Si(t)+Ea(t) =0 o F(t)+(2Cwn ) (t)+wia(t) = 0.

m

Thus the ratios can be obtained from the definitions of ¢ and w, as
- 2Cwy, .
m

Remark 3.5. The formulas given above for the calculation of system parameters from experimental data
are approximate, but useful none the less. When more accurate estimation of system parameters is desired,
the better approach is to do a regression fit of the experimental data to the system model. This type of
regression is commonly used in engineering design, and goes by the name of “system identification”.

Remark 3.6. The same technique presented above can be used if alternatively velocity or acceleration
measurements are available. Indeed, if the position trajectory is of the form (3.30), then velocity is
obtained by differentiation using the product rule

8
—

~
=

x e~ ¥t cos (Wdt + 9)
= i(t) = (—xCwn) e cos (wat +0) — (xwa) e <" sin (wat + 0)
= —x e Cwnt (Cwn cos (wqt +0) + wq sin (wqt + 9))
= (—xwn) e~ cos (wat + ¢), (3.34)

where ¢ is some phase angle determined by the other parameters*. Thus velocity is of the same form as
position; it is a decaying sinusoid with the same frequency and decay envelope as position, but with a
different amplitude and phase. Since only the envelope decay rate and the oscillation frequency determine
¢ and wy, then we could use a velocity measurement to determine system parameters using exactly the
same method described earlier for position measurements.

Finally, if we differentiate velocity to get acceleration, the derivative of (3.34) will be of the form

i(t) = xw? e ¢! cos (wat + V),

for some phase 1. This is again of the same form as the position signal, with yet another amplitude and
phase, but with the same oscillation frequency and decay envelope. Therefore, acceleration measurements
(which are typically the easiest to obtain with modern accelerometers) can alternatively be used to
determine system parameters.

3For example, if ¢ = 0.3, then /1 — ¢2 = 0.95, thus the approximation has a 5% error, which is likely similar to
the experimental error in measuring the peak ratios py/pr41-

4Note that cos(wqt + 0) and sin(wqt + ) are two sinusoids of the same frequency, thus any linear combination of
them is a sinusoid of the same frequency and some phase ¢. Since they are exactly 90° out of phase, the amplitude

of their linear combination is easy to calculate by Pythagoras as y/(2w2 + w?i = /w2 where the last equality follows

from the relation (3.29) which implies w2 = w2(1—¢?2). The phase ¢ of the sum can also be calculated, but is irrelevant

to the current argument.
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Figure 3.7: The setting of Example 3.7. A suspension system starts from a non-equilibrium position at zero vertical
velocity (e.g. after having encountered a bump, and reaching its maximum extension at zero velocity, which is marked
by the peak po). After n cycles, the peak ratio po/pn = €™ is given by the logarithmic decrement § as

The logarithmic decrement is also useful for quick calculations even when the system parameters
are known as the next example demonstrates.

Example 3.7. Consider an idealized suspension system as shown in Figure 3.7 which is starting from a
non-zero deflection with zero velocity. This initial deflection is marked as pg in the Figure. The system
parameters w;, and ¢ are known. One question that can be asked is how many periods of oscillation does
it take for the peak deflection to be reduced to less than 1% of the initial deflection? In the figure, this
is labeled as peak p,, where n is unknown and is to be determined. Using the logarithmic decrement, we
can express the ratio of pg to p, as

Po _ POPL  Pn2Pnl _ 5 5 _ e
Pn D1 P2 Pn—1 DPn N
n times

Note that there are n oscillation periods between peak py and peak p,, (see Figure 3.7).
If we demand that p,, should be 1% of pg, then by taking In of both sides of the above

In(e™) = m(m) . - (151n<p0> _ In(100) _ In(100) 073 s ome)

If for example ¢ = 0.2 (which would be a rather “soft” automotive suspension system), then

n ~ — = 3.65.
0.2
Thus it would take 4 oscillation periods to suppress the initial deflection to less than 1% of its value.
Note that we did not need knowledge of w, for the calculation above. That is because the question
is asked in terms of “number of oscillation periods” as the unit. If the question were “how much time
does it take ...", then knowledge of w, would be necessary.

3.4 Analysis in State Space

So far we have viewed position and velocity solutions of the MSD system as functions of time as
shown for example in Figure 3.2. There are other ways to view the motion of this system which
reveal additional information not easily visible in time plots. This brings us to the concept of “state
space”. We begin first with some plots to develop intuition.

Figure 3.8 shows a plot of the solutions of a typical MSD system. The full solution is given for
both position and velocity (z(t),#(t)) as a function of time. Since there are 3 variables z, & and ¢,
a plot of this solution is a curve in 8 dimensional space as shown in Figure 3.8a. Note the helical
shape, which a signature of position and velocity oscillating alternately, as well as the decay of the
helix towards the time axis, which is a signature of the decay of oscillations due to damping. This
plot has all the information about the systems solutions. Projection of the helix onto the (z,t) plane

DRAFT: VIBRATIONS, MARCH 2, 2025 © 2024, Bassam Bamieh



68 3.4. ANALYSIS IN STATE SPACE

(b) A plot of the “trajectories” of the MSD
(a) The full picture of the solutions requires a 3D plot. The coordinates system in state space. This is a plot of ve-
here are z(t), #(t) and time t. A damped system will typically produce locity @(t) versus position z(t), which are the
a helical curve that decays towards the time axis. Projections of this coordinates in the 2-dimensional state space.

curve onto the (z,t) plane give the standard position vs. time plot, and The time information is lost in this plot. A
projections onto the (&,¢) plane give velocity versus time. Projections damped system will typically have trajectories
onto the (z,2) plane give the state space trajectories plot shown in part that “spiral inwards” from the initial condition
(b). (red dot) towards the origin.

Figure 3.8: Different ways of visualizing the solutions of a Mass-Spring-Damper (MSD) system either in the 2-
dimensional state space of velocity versus position, or in 3D using (¢, z, %) as coordinates. The 3D plot contains all
the information, and the three different projections of it give the standard position vs. time, velocity vs. time, as well
as the state-space trajectories plot.

gives the position-vs-time plot, while projection onto the (&,¢) plane gives the velocity-vs-time plot.
In addition, projection of the helix onto the (x,) plane gives a new kind of plot of velocity-vs-
position as shown in Figure 3.8b. Such a plot shows features that are not readily visible in plots
versus time such as those in Figure 3.2. In particular, we see more clearly how velocity and position
“alternate in amplitude”, i.e. as velocity increases, position gets close to zero and vice versa. This
is of course due to the repeated exchange of kinetic and potential energies. The fact that the curve
in Figure 3.8b “spirals inwards” towards the zero point (0,0) reflects the decay of trajectories due
to damping. While the time information is lost in this plot, the other features just mentioned are
more clearly visible when solutions are represented in the (z, ) plane.

The 2-dimensional plane (z, &) is called the state space of the MSD system®, and curves (z(t), &(t))
in this plane representing solutions from any particular initial condition are called trajectories in this
state space. Figure 3.8b shows one such trajectory from one particular initial condition.

Given any dynamical system described by differential equations, a very useful concept is that
of the state of that system. The state at any time is informally defined as the “minimal quantity”
needed to predict the evolution of the system going forward in time without knowledge of the past
history of the system. For example, consider a second-order differential equation of the form

mE(t) +ci(t) +kx(t) = 0. (3.35)

If we know the position and velocity (m(f),x(f)) at any time ¢, then we can solve the equation
forward and compute positions and velocities (x(t), @(t)) for all future time ¢ > ¢, i.e. we can regard
(z(f), (%)) as initial conditions ans obtain the solutions forward in time for £ < ¢ < oo. Note that
we do not need to know the past of the trajectory (history) {(z(t),#(t)), ¢t <}, we only need to
know the 2-vector ((f),&(t)) at time £.

5In the physics literature, the state space is alternately termed the “phase space”, and when it’s two dimensional,
it is called the “phase plane”. This use of the term “phase” should not be confused with the phase of sinusoids or the
phase of a complex number, which are unrelated. In this book we only use the terms “state” and “state space” for
this concept.
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With the above informal definition of the state, we see that the state of (3.35) at time ¢ must
be the vector (x(t),#(t)) of position and velocity. The second-order differential equation (3.35) can
then be rewritten as a vector, first-order differential equation as follows. We first define 21 (t) := x(t)
and zo(t) := #(t) as our “state variables”. This means that 2;(t) = 22(t) by definition, and the
original system differential equation (3.35) gives another differential equation

a0 =20 - | (3.36)

zo(t) := &(t) —Ez2(t) = L2(t)]

where we have written two scalar differential equations as a single vector differential equation. The
second equation for 25 in (3.36) is a rewriting of the original equation (3.35) using the new variables
z1 and z9

B(r) = —ka(t) ~ £i(t) = B(1) = hlt) = —Ealt) - Sal).

An important feature of (3.36) is that it is a “first-order” equation, i.e. no variables are differ-
entiated more than once, while the original equation (3.35) is second order. The conversion of a
scalar, 2nd-order equation to a vector, lst-order equation is achieved at the expense of using two
variables 21 (t), z2(t) rather than the single original variable x(t). Note that the It is a fact that all
state-space models are of the form of vector, 1st-order differential equations as we will see in later
chapters when we discuss state-space models for N-DOF systems.

When the dynamics are linear, i.e. when the differential equations describing the dynamics
involve only linear combinations of variables and their derivatives, the state-space model (3.36) can
be written in a nice matrix-vector form as follows

d |?”1 (t) o 0 1 z1 (t)

a0 [5 ] (20 230
The reader should now convince themselves that this matrix-vector equation is exactly the same as
the vector differential equation in (3.36). The state-space model (3.37) is for a single MSD system.
It is a special case of more general state-space models for linear dynamical systems, and in particular
for larger N-DOF mechanical systems which we will study in later chapters. The most general models
take the form

él(t) Zl(t)
= 4 : & 0= 4 | |z0], (3.38)
Zn(t) 2 (t)

where z(t) is an n-dimensional “state vector” (typically containing all positions and velocities in a
mechanical system), and A is matrix determined by the parameters of the system (such as damping
coefficients, masses, spring constants, etc.). We will see later that all dynamical properties of such
systems are determined by linear-algebraic properties of the matrix A such as its eigenvalues and
eigenvectors. A short glimpse of this general analysis will be given at the end of this section for the
special case of the single MSD system (3.37).

State space models are also useful for understanding the evolution (in time) of energy in me-
chanical systems as we explore next.

Energy

Recall the definition of mechanical energy from (3.15) earlier as the sum of potential and kinetic
energies

E(t) == V(@) +T(t) = 3k 2*(t) + sm *(¢). (3.39)

Note that as a function of current position z(t) and current velocity &(t), total energy is a quadratic
function @ of position and velocity

Q(z, 1) =L (kz® + mi?) = E(t) = Q((t), (t)).
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Figure 3.9: Depicting the position and velocity trajectories of an undamped MSD system in the state space (x, ).
The dashed curves are the level sets of the energy function which are ellipses. The solid curves are the trajectories
starting from the initial condition ((0),4(0)) = (1,1) (shown as the black dot). Trajectories for an undamped system
always trace out a level set (i.e. an ellipse) of the energy function. The trajectories in the above cases evolve clockwise.
According to (3.40), eccentricity of the ellipses is determined by wn. On the left is the case wn = .3, while the right
figure shows the case wy, = 3.

For an MSD system with no damping, energy is conserved (as shown in (3.17)), and therefore any
trajectory (z(t),#(t)) in state space must evolve on level sets of the quadratic energy function Q(.,.)

E(t) = Q(z(t),#(t)) = constant = E(0).

Level sets of quadratic functions in the plane are ellipses, and we therefore expect these trajectories
to trace out ellipses in state space as shown in Figure 3.9, where level sets of () are shown as dashed
curves, and trajectories from a specific initial conditions are shown solid curves.
Trajectory ellipses can be characterized in terms of system parameters by rewriting @) in terms
the natural frequency wy, as follows
Qz,2) = 3 (k; x2+mx'2) = Z (ﬁ mz—i—jsg) = 2 (wﬁ x2+ﬂb2).

m

Thus the level sets of @ are characterized by

Q(z, %) = constant & w2 x? 4+ 4% = constant. (3.40)
This is the equation of an ellipse whose eccentricity is determined by the coefficient w,, where if
wy < 1, the major axis of the ellipse is horizontal, while if w, > 1, the major axis is vertical. This
is confirmed in Figure 3.9 for the two cases w, = .3 and wy, = 3.

We can also study the evolution of energy in damped MSD systems. The damper’s force is non-
conservative and actually dissipates mechanical energy. Over time, the mechanical energy (sum of
spring potential and mass kinetic energies) will be converted to heat (due to viscous friction) inside
the damper. Recall that in (3.17) we showed energy conservation by taking the time-derivative of
the energy function and showed that derivative to be zero. In the damped case, we can go through
a similar exercise and calculate exactly at what rate mechanical energy is being lost. Starting again
from the definition of mechanical energy (3.39), we can take its derivative with respect to time and
use the system dynamics to substitute

AE() = 4 (5 20+ dm ()

= kx(t) ©(t) + m &(t) &(t) (using the chain rule)
= kax(t) ©(t) — @(t) (kx(t) + ci(t)) (substituting from the diff. eq. m# = —(kx + ci))
= —c@?(t). (3.41)

For a damped system, the constant ¢ > 0 is always positive, and the term #2(t) > 0. Therefore
the derivative of energy is always negative (or if velocity is zero). The rate of energy dissipation is
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Figure 3.10: Examples of trajectories in state space (,4) for a damped system. The dashed curves are the level
sets of the mechanical energy function (the sum of spring-potential energy and the mass’ kinetic energy). In contrast
to the undamped cases of Figure 3.9, the trajectories of a damped system no longer trace the energy level set, but
rather “descend” along those level sets since energy is being continuously dissipated as heat in the damper. The larger
the damping ratio ¢, the faster the trajectories limit towards the zero state (x,2) = (0,0). The “inward spiraling” of
the trajectories indicate decaying oscillations of both position and velocity.

proportional to the product ci?(t) of the damping coefficient ¢ and the square of the velocity, the
higher this product, the faster mechanical energy is converted into heat.

Figure 3.10 illustrates this energy dissipation for three different values of ¢ (which trends in the
same manner as c if we keep m and k fixed). The level sets of mechanical energy are also plotted
for comparison. We see that the trajectories do indeed “descend” on the energy level sets, with
the descent being faster the larger { is. Observe also that the trajectories “spiral inwards” towards
the zero state. This inwards spiraling reflects decaying oscillations along the position and velocity
coordinates.

In the study of stability and control design, this kind of “dissipation analysis” we just went
through is generalized through the concept of so-called “Lyapunov functions”. The key point is that
we did not have to actually solve the differential equations of the system in order to obtain the
dissipation rate (3.41) above, we simply substituted the form of the differential equations without
solving them.

Linear Algebra Methods for State-Space Models

We close this section with an illustration of how linear algebra methods, namely using eigenvalues
and eigenvectors can be used to obtain (or characterize) solutions to state-space models like (3.37).
This can be thought of as a “geometric view” of solutions of differential equations, and in essence
provides a geometric method for solving differential equations qualitatively. This discussion can
also be considered a brief preview of the matrix methods of normal mode analysis used for N-DOF
systems in Chapter 7, but is not necessary for the remainder of the single DOF analysis chapters.
Consider again the MSD system of (3.37), and rewrite its “A-matrix” in terms of w, and ¢

0 1 0o 1
U AR b

The eigenvalues of A are obtained from the “characteristic polynomial” of the matrix A

det (s — A) = det { 52 1 ] (s +2Cwy) +w? = 5% 4+ 20wy s + w?

wi s+ 2Cwy
= (5 —51)(5s—52) = 82 — (5, + 52) s + 552,

where 51 5 are the roots of this polynomial obtained from the quadratic formula as

S10= (—( +/C2 - 1) Wn, also note that 5150 = w2, 51 + 59 = —2Cwy.
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(b) The vector field of a 2-dimensional linear system @ = Az in which A has two negative-real eigenvalues.
The red and blue dashed lines show the one-dimensional subspaces spanned by the two eigenvectors respectively.

Note how the vector field points straight in the direction of zero along those subspaces. Thus any initial condition
lying in either subspace will evolve in that subspace for all time as per (??). Those two subspaces are referred as
the invariant subspaces. The dotted black curves represent trajectories from various initial conditions, with dots
representing the trajectories’ positions at a uniform grid in time. Note that large spacing between successive

dots represents a “fast moving” trajectory.

Figure 3.11: Modal and state-space analysis of an overdamped system.

Note that these are exactly what we called the “characteristic roots” of the 2nd order differential
equation derived earlier (3.23)°.

The roles played by the eigenvalues and eigenvectors is best illustrated by the overdamped ex-
ample of Figure 3.11. In the overdamped case ¢ > 1, and the roots 31 » are two (negative) real roots.
In this example, they are at —1 and —7, and therefore we know from (3.24) that all solutions must

be of the form

z(t) = aje T 4aze .

The function e, e~7* are called the “modes” (or “pure modes”) of the system, and this equation
says that all solutions are linear combinations of the pure modes of motion. The exact values of

the linear combination coefficients a1, as depend on the initial conditions. Figure 3.11a illustrates
this for two different sets of initial conditions. Since the e~"* mode decays much faster than the e~
mode, they are referred to as the “fast” and “slow” modes respectively. Beyond an initial transient
period after which the effects of the fast mode e~"* become negligible, the solution z(t) is dominated
by by the slow mode e~?.

Evolution of the state as a vectorin R™: Another insight can be obtained by plotting the trajectories
of z(t) as curves in the 2-dimensional state space of &(t) versus x(¢). This is shown in Figure 3.11b.

6Note that we used the term “characteristic polynomial” for an ODE (3.3), and also for a matriz here. Tt can be
shown in general that the matrix A of a state-space model of an ODE has exactly the same characteristic polynomial

as the ODE it came from, thus justifying this terminology.

DRAFT: VIBRATIONS, MARCH 2, 2025 © 2024, Bassam Bamieh



CHAPTER 3. FREE VIBRATIONS 73

Relabel x(t) =: x1(t) and %(t) =: z2(t), and write the state-space model as

T A N 0 P A P

This vector differential equation is fully described by the wvector field shown in Figure 3.11b. At
each point x in the plane, a vector equal to Az is drawn. Geometrically, for any trajectory x(t),
the vector &(t) is the tangent vector to the trajectory at the point @(t). The geometric meaning of
the differential equation @(t) = Ax(t) is that any trajectory must follow the vector field, i.e. at any
point x(t), its tangent vector &(t) must equal the vector Azx(t). This gives a “graphical method” of
solving the differential equation. Starting from any initial condition x(0), simply follow the vector
field to obtain the trajectory for ¢ > 0. Several such trajectories are shown by the dotted curves in
Figure 3.11b.

The eigenvectors of A play a special role in the state-space picture. Denote the eigenvectors of
the eigenvalues 5, = —1, 5, = —7 by vy, vy respectively’. Those two eigenvectors (more precisely,
“eigen-directions”) are shown as the dotted blue and red lines in the figure. It can be shown that
if we use those two eigenvectors as new coordinates, then any trajectory can be written in the new
coordinate system as

lx(t)] = are”’ |:'Ul:| +oage ™ |:'U2:| . (3.43)

The coefficients a1, as depend on the initial conditions. This form of the solution shows an important
property. If for example the initial condition (0) lies anywhere on the line spanned by vy, then
ag = 0, and the trajectory will remain along that line for all ¢ > 0, i.e.

lw(0>]=a1 H = [w(t)]:ale—t H £ 0.

Similarly, if the initial condition lies on the line spanned by vs, then the trajectory stays on that
line, but will decay towards zero like e~ instead. This can also be seen in the figure by observing
how the vector field directions do not change as you move along each of those lines. Along those
lines, all the vectors point directly at the origin.

Thus the two eigenvectors of A represent very special directions in state space where trajectories
starting along those lines will always remain along those lines. All other trajectories will decay along
curves towards the origin. This phenomenon justifies naming the eigenvalues/vectors pairs (51, v1)
and (S2,v3) as “pure modes” of motion (also called “normal modes”). If the initial condition starts
purely in one of those two directions, it will stay in that direction for all time. All other initial
conditions have solutions which are “mixtures” of those two pure modes as in (3.43). We will see
in later chapters how similar decompositions of motions and vibrations into several normal modes
provides a powerful analysis method for understanding complex systems.

Appendix

3.A Solutions in Terms of Initial Conditions

The formulas (3.24), (3.25), and (3.28) give the form of the solutions in the overdamped, critically
damped, and underdamped cases respectively. To obtain explicit expressions for the coefficients in
terms of the initial conditions, we simply substitute the initial conditions z(0) and 4(0) in each of
the formulas, and solve for the coefficients in terms of x(0) and &(0).

"In the case of a MSD system of the form (3.42), the eigenvectors can be found analytically. However, for more
general systems, eigenvectors can only be found with numerical methods. How exactly the eigenvectors are found is
irrelevant to the present discussion.
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Overdamped Case (¢ > 1)

To find the coefficients a; and ay in terms of the initial conditions x(0) and #(0), we have to solve
a linear system of equations starting from

2(0) = a1’ +age™| = a1 +ay

d _ _
%(0) = 7 (aleslt + 32682t> = a1 §1taz 8

= (31 §1€slt + as 52682t)

t=0

This system of equations can be written in matrix-vector form and solved as

o=l -2 )

We can now write the general solution in either of the two following forms

2(t) = e ({5267 = 16™) () + (¢ - ) 3(0))
= 1 (E(0) ~ (0) M+ (~512(0) + £(0)) )

S2 — 51

Critically Damped Case

Here we see immediately that a; = 2(0). To obtain ag, we differentiate

d _ _ _ _ _
I(O) = % (31€St + athSt) o = (21568t + 3268t + 32t§65t) }t:() = a15+ax = IE(O) S+ aq
= ay = (0)—2(0)5

In summary

Underdamped Case

To find the amplitude and phase of the response (3.28) in terms of initial conditions it is easiest to
begin with the complex expression (3.27)

z(0) = a e(—Cwntijwa)t 4 g% o(=Cwn—jwa)t

= a+a",
t=0

d . )
x(O) = df (a 6(7Cwn+'jwd)t —+ a* e(fchwnfﬂwd)t)

t t=0
= (a (—Cwn + jwa)e et 4 a* (—(wy —jwd)e(fcw“fjwd)ﬂ

t=0

a (_Cwn +jwd) + a* (_Cwn _jwd)

This system of equations can be written in matrix-vector form and solved as

[zggﬂ - |:_<wnijwd -Cwnl-jwd} La*} ~ [aa*] - ﬁ [_gs:-_jgj _11] [ﬁgﬂ
= 2 = (=i +1)a(0) - L ()
2(0) — j Sen @20 (3.44)

wq

where the last expression shows the real and imaginary parts of 2a.
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Now recall that we can write a complex-conjugate exponential function like (3.27) in two equiv-
alent real forms

x(t) = 3 e(—CUJn"l‘de)t + a* e(—Cwn—jwd)t
= e ' x cos (wat + ¢), x=2la|, ¢=Za
= e Gwnt (a cos(wat) — f sin(wdt)> , a=oa+jB.

Comparing this last form to (3.44), we immediately read off the real and imaginary parts of a and
write

x(t) _ e—{wnt (1’(0) COS(Wdt) + Swn z(0) + #(0) Sin(tddt)) . (345)

wd

To obtain the other real form, we need to compute |a| and Za. The expressions are a little too messy
to be useful, but we include them here for completeness

x = 2|a| = 11_42 z2(0) + iiéo) JrQW%:E(O)i(O)
— — _tapl [ Swn z(0)+2(0)
¢ = Za = —tan (x(o) o T-g?)

=t (\/f—@ tove ﬁgg;)

Note that in the no damping case (¢ = 0), these expression reduce to the previously calculated ones
in (3.14).
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Chapter 4

Harmonically Forced Vibrations: Frequency
Response and Resonance

Harmonic forcing of a mechanical system is when it is subject to additive, sinusoidal forcing of
some frequency. The response of the system to such a forcing will typically also be sinusoidal of the
same frequency, but with a possibly different amplitude and phase relative to the forcing. Phasor
analysis provides a very compact method for quantifying the relations between the amplitudes and
phases of the forcing and the response. These relations are termed the “frequency response” of
the system. Resonances occur when the forcing is in a range of frequencies close to the unforced
system’s natural frequencies. Around resonance, response amplitudes can be much larger than at
other frequencies. Resonance phenomena are easily understood in terms of graphs of the frequency
response. This analysis motivates an input-output point of view of mechanical vibrations where the
“forcing” may also be sinusoidal displacements rather than actual forces. This input-output analysis
is a powerful tool for systems described by constant-coefficient ODEs using representations of their
“transfer functions”.

Introduction and Motivation

In this chapter we study the behavior of systems with ezternal forcing such as the forced Mass-
Spring-Damper system in Figure 1.14. The differential equation for this system is

mi(t) + cx(t) + kax(t) = f(b).

The dynamic (time-varying) force f(t) is termed “external” to distinguish it from the “internal”
spring and damper forces —kxz(t) and —ci(t). We restrict our attention in this chapter to “harmonic
forcing”, i.e. when the forcing is a pure sinusoid of some frequency w, amplitude f and phase ¢

m () + ci(t) + ka(t) = f(t) = f cos (wt+¢). (4.1)

Figure 4.1 illustrates a typical displacement response x(t) for a sinusoidal forcing f(¢). Figure 4.1a
in particular shows that the response looks a little complicated initially, but after a “transient period”
the response appears to be a pure sinusoid of the same frequency as the forcing f(¢), but with possibly
a different amplitude and phase. Mathematically, it can be shown that if the parameters m, ¢,k > 0
are positive (which is the case for all mechanical systems), then (4.1) is a “stable” system, which
means that effects of transients and initial conditions decay exponentially (recall Remark 3.4). The
steady-state part of the response is of the form (Appendix 4.A describes this in detail)

lim 2(t) =: Zsteady—state(t) = X cOs (wt—l—@), (4.2)

t—o0

for some amplitude x and phase # which will depend on the system parameters m,c, k as well as
the parameters w, f, ¢ of the forcing. The term “steady state” refers to the long term response, and
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(a) A typical example of a forcing input (top) and the corresponding response (bottom). After an initial “transient

time”, the response limits to a pure sinusoid of the same frequency as the forcing input, but with a different

amplitude and phase, and is referred to as the “steady-state response”.
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(b) The full response can be decomposed as the sum of two responses, the “transient response” (top) and the
“steady-state” response (middle). The transient response is of the same frequency wq as the unforced system,
and decays to zero asymptotically. The steady-state response is a persistent pure sinusoid of the same frequency
as the input. The bottom panel compares the full response (which is the sum of the transient and the steady-
state) to the steady-state response.

Figure 4.1: Comparisons of the full and steady-state responses of the forced Mass-Spring-Damper system (4.1). If
only long-time behavior is important, then only the steady-state response needs to be analyzed, and the transients
can be ignored.

is defined mathematically in terms of the limit in (4.2). Figure 4.1b shows that the full response is
decomposed as the sum of a transient (a decaying function) and a steady-state responses

1’(t) - 5L’t‘,ralflsicnt(t) + ZL’stcadyfstatc(t)a tli}Igoxtransicnt(t) = 0.

It is not difficult to show' that the decay rate of the transient response is the same as that of an
unforced system, i.e. it is bounded by an exponentially decaying envelope proportional to e~“»¢ t,
Thus transients decay faster in a highly damped system compared to a lightly damped one.

In harmonically forced systems that operate “persistently” (i.e. over long periods of time), the
transient responses are much less important than steady-state responses. In this chapter we will
ignore the transient response and develop tools to characterize the steady-state response which from
now on will be denoted simply by z(t) (rather than Zgeady—state(t)). Phasors provide a powerful
method for calculation of those steady-state responses. This phasor analysis will also motivate an
“input-ouput” point of view of mechanical systems. Equation (4.1) can be regarded as a dynamical
system in the following sense; for each forcing function f(¢) and each set of initial conditions, the
ODE gives a unique solution z(t). In steady state, the effects of initial conditions disappear, and
we can therefore regard the differential equation (4.1) as an “algorithm” that produces an “output”
z(t) given an “input” f(t).

IThe transient response can be expressed as a homogenous solution of (4.1), and therefore it is equivalent to the
response of an unforced Mass-Spring-Damper system for some choice of initial conditions. Again, those details are in
Appendix 4.A.
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(a) At slow forcing frequencies (rela-
tive to the system’s natural frequency),
the response is similar to the static
loading case where the mass’ dis-
placement follows the force’s direction
closely, i.e. they are “in phase”.

Click for animation.
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(b) When forcing at the natural fre-
quency, oscillations build up until large
amplitudes (relative to forcing at fre-
quencies away from wy) are reached in
steady state. Displacement appears to
lag about 90° behind forcing.

Click for animation.
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(C) At high forcing frequencies,
displacement amplitude is relatively
small, and the mass barely moves due
to its inertia. Displacement appears to
lag by almost 180° behind forcing, i.e.
they are completely “out of phase”.
Click for animation.

Figure 4.2: Tllustrations and animations of the motion of a harmonically forced MSD system with forcing frequencies
below (w = 0.3wn), at (w & wn), and above (w &~ 1.5wy) the system’s natural frequency wy (here wy = 1 and ¢ = 0.1).
The same forcing amplitudes is used in all three cases, and all plots have the same axis limits for comparison. In all
cases, displacement oscillates harmonically at the same frequency as the forcing after an initial transient period has
passed (the transients decay time constant here is 1/{wn &~ 10s). A “resonance” phenomenon is clearly seen when
the forcing frequency w is near the system’s natural frequency wy.

Before describing the analysis technique, we describe the physical phenomena that occur when the
system (4.1) is forced with a variety of frequencies w. The natural frequency wy, of free vibrations does
play an important role in characterizing the response in harmonically forced vibrations. In particular,
forcing below (w < wy), at (w & wy), or above (w > wy) the natural frequency will exhibit different
response phenomena. Figure 4.14 illustrates the response of the system for various frequencies.
Slow forcing frequencies are similar to the static loading case, and the mass’ displacement follows
the forcing phase closely (with amplitudes that are close to the static sag). When forcing with
w & wy, we see a clear “resonance phenomenon” where the mass’ oscillations build up until large
amplitudes are reached in steady state. We also observe that the mass’ oscillations lag about 90°
behind those of the forcing. At high forcing frequencies, the mass barely moves due to its inertia,
which tends to “average” out the forcing oscillations. We also observe that forcing and displacement
are completely “out of phase” (i.e. 180° phase difference).

We will develop a simple but powerful mathematical analysis tool, namely the frequency response,
which quantifies the phenomena observed in the previous example, and is applicable to more general
systems. The frequency response is an “input-output” point of view as depicted in the following
block diagram

f(t) = f cos(wt + @) system: x(t) = x cos(wt + 6)
(@,f.9) mi +ci +kr = f (., 0)

(4.3)

Unlike the case of free vibrations studied in Chapter 3, the vibrations we now study are the response
(output) to harmonic (sinusoidal) forcings (inputs). Note that in the diagram (4.3) the forcing f(t)
and the response z(t) are completely characterized the frequency w (which is the same for both f
and x), as well as (f, ¢) and (x,0), their respective amplitudes and phases. What we need to do is
quantify the systems’ response (f,¢) — (x,6), i.e. how to obtain the amplitude and phase (x,0)
of the response given (f, ), the amplitude and phase of the forcing. This relation will vary with
frequency w, and this is the “frequency response” of the system, i.e. the relation (f,¢) — (x,0) as
a function of frequency w.

Given that the steady-state response is of the form (4.2), its amplitude x and phase 6 can in
principle be found by substituting the form (4.2) of the solution into the differential equation (4.1)
as follows

d2

m@(xcos(wt+ﬁ)) + c%(xcos(wt+9)) + k(xcos(thr&)) —

= —m w? xcos(wt+9) — cwxsin(wt+9) + kxcos(wt+0) =

f cos (wt + qﬁ)
feos (wt + ¢) (4.4)
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If the system parameters m,c, k and the forcing parameters w,f,¢ are all given, then the only
unknowns in this equation are x and . It is possible to use trigonometric identities to manipulate
this equation and solve for them. This is the hard way to go about this solution, and if you want to
see how messy this calculation is, see Appendix 4.B where it is illustrated in all of its ugliness.

We will instead employ a much simpler method using phasors, by combining the amplitudes and
phases of the forcing and the response as complex numbers, i.e. f:=fel? and % := = xe/?, and then
deriving the relation f — % between these two complex numbers. This relation will be very simple.
It will be a multiplication by another complex number H(w), i.e.

% = H(w) f,

where H(w) is a complex number for each w that can be easily obtained from the system parameters.
This quantity H(w) as a function of w is the frequency response of the system.

We will first derive the method for the forced single Mass-Spring-Damper (4.1), and use it to do
a thorough analysis of this system. Section 4.3 will then generalize this method to a much larger
class of system that are described by higher-order, constant-coefficient forced ODEs.

4.1 Phasor Analysis of the Mass-Spring-Damper System

Recall the phasor representation of sinusoids of Section 2.3. Since both the forcing f(t) in (4.1) and
the steady-state solution (4.2) are cosines, and any cosine function can be written as the real part
of a complex function, then we can write both f(¢) and x(t) as

o) = feos(wt +) = B[t M), S
z(t) = xcos (wt+6) = R(x /), % x ed?

Note that the complex numbers f := f /¢ and % := x €/ “encode” the amplitudes and phases of
f(t) and z(t) respectively, i.e.

P e f = o i x = [X|
f=fe? o {d)l(%)’ x = xe? o {94(2). (4.5)

The procedure for phasor analysis is to now use the complex-valued functions of time f it as
the forcing function and x e/“? as the response, substitute those forms into the differential equation,
and then solve for the complex number X (which completely describes both the amplitude and phase
of the response). First recall the formula for the derivative of a complex-valued exponential function
from Section 2.3.1 which we repeat here for convenience

4 ewt = 4 (cos(wt) + jsin(wt)) = —w sin(wt) + jw cos(wt)
= jw (cos(wt) + jsin(wt)) = jw e, (4.6)

where Euler’s formula is used in the first and last equality. Thus differentiation of e/“?* is equivalent
to multiplying it by jw. The second time derivative can now obtained by applying the above formula
twice

57; e = % (jw ejm) Jw % 9t = (jw)? &t = —w? eIt
Now we are ready to substitute f(t) = f /' and x(t) = % ¢/“* in the differential equation (4.1)
m g (k) 4 e (xe) 4k (xer) = Fo (4.7)
= m X (jw)2 vt 4 ek (jw) IOl 1 g Wt — F edwt (48)
= f((—mwz—l-jcw—i—k)wf:?wf (4.9)
- X = L f. (4.10)
(k —mw?) +j (cw)
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This is an expression for the response’s phasor X in terms of the forcing’s phasor f, the system
parameters m, ¢, k, and the forcing frequency w. Note that the denominator has been rearranged to
explicitly show its real and imaginary parts. It is important to note that the fact that both f(#)
and z(t) have the same frequency w allowed for the “removal” of the time dependence in the above
relations by cancelling the common function of time e/** from both sides.

Equation (4.10) is truly remarkable! The original differential equation between f(t) and z(t) is
now replaced by an algebraic equation between the phasors fand x. It is a simple algebraic relation
involving only the product of the (frequency-dependent) complex number 1/ ((k — mw?) +j (co.)))

with f. This relation is important enough that it deserves its own name, which is referred to as
the complex frequency response from the forcing f to the response x. This “complex” frequency
response gives the amplitude and phase responses directly from the magnitude and phase of the
complex number as we now describe in more detail.

To obtain the amplitude x and phase 6 of the steady-state displacement oscillation z(t) =
xcos (wt + ), we simply take the magnitude and phase of X in (4.10)

1 A

T Ii:‘(lc—w’é>)+y' (w) | ‘(k—mw2)+j () f (recall |21 22| = |21]|22])
1 ) 4 o
-| (k= me?) 1 (cw) | (snce | = |f e3¢ = £ 55T
1 1
- f = f recall |1/z| =1/|z
|(k—mw2) +3J (Co.))’ \/(k—mw2)2—|—(cw)2 ( [1/2] =1/lz])

1 . 1 )
e Jjo | — Jjo
0 = 5= L ) = (i) +46)
(recall L(z122) = Lz1 + Lz2)

—Z ((k: —mw?) 4 j (cw)) + ¢ = —tan"! (cw) + ¢ (recall £(1/z2) = —Z/z)

k — mw?

Note the use of magnitude and angle relations from (2.10). The reader should contrast the relative
simplicity and compactness of these calculations with those based on trigonometric identities in
Appendix 4.B.

We now summarize the above calculations and their implications

X _ @ B 1 (the ratio of response amplitude to forcing
f H - Vk —mw?)? + (cw)? amplitude: Dynamic Compliance)
A cw (the “phase shift” from forcing to response. (4.11)
Z(%) — £(f) = —tan™ <k‘2) Negative phase shift is a time delay (lag).
— mw
)

The ratio x/f has units of distance/force. To give intuition for what this ratio means, consider first
the case when a a static force f is applied to a spring k. The resulting static deflection is x = f/k
(by definition of the spring constant), and the ratio x/f = 1/k is called the compliance of the spring
(i.e. the “compliance” 1/k is the reciprocal of the “stiffness” k). Under dynamic conditions such
as sinusoidal forcing, the ratio x/f in (4.11) depends not just on k, but also on m,c as well as the
frequency w of forcing (dynamic loading). We can therefore think of the ratio x/f as a Dynamic
Compliance. It is no longer a single number, but changes with the frequency of forcing.

One example of the ratio x/f and phase shift relations are illustrated in Figure 4.3, which the
reader should now examine carefully. The numbers for this example are as follows

= 1 Kg, T N
ﬂlz =10 i - {wn = 3.16 %, forcing frequency N (k—mw?)2 4 (cw)? 0.49 X
€= '25%7 ¢ =004 w=0.9 wn tan—! (kf;?iwz) ~ 20.8°.

Examining the figure, we see that the amplitude ratio x/f is about 1/2 as predicted by the formula.
Note the transient time needed to reach steady state in first panel, which is roughly about 20 s. The
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Forcing and response of Mass-Spring-Damper System
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Figure 4.3: Depiction of the amplitude amplification ratio x/f and phase shift §# — ¢ of the steady-state response
given by Equations (4.11). (Top) The amplitude amplification ratio x/f is the ratio of the forcing function amplitude
to the resulting response amplitude in steady state. It can be larger or smaller than one (it is about 1/2 here), and it
has units of position/force. (Bottom) A zoomed-in view after transients have decayed (after about 20 s). The response
sinusoid typically “lags” in time behind the forcing input’s sinusoid. This lag is represented in terms of degrees, which
is the difference between the forcing input’s phase ¢ and the response’s phase 6. Here the phase shift is approximately
20°. Since a cycle is 360°, and in terms of time units, a cycle is one period T, then the lag in terms of time units is
o—¢ T, which in this case is approximately 0.0567, i.e. about 5% of one period. Note that both the forcing input and

360°
the steady-state response have the same frequency (i.e. the same period T').

second panel shows a “zoomed in” view after steady state has been reached. The time and phase
delays are clearly visible in the second panel. The time delay between forcing and displacement can
be estimated from the figure to be approximately? 0.124 s. To compare that to the predicted phase
delay of 20.8°, we need to convert the phase delay to a time delay. For this, we need the period of
oscillation (this is the period of the forcing, which is w = 0.9 wy, for the simulation in Figure 4.3)

. 27 27 rad 9.9 ~ time shift phase shift . 20.8°
= —= — X . s fg fg
w  (0.9x3.16%2d) 360° 360°

2.2s = 0.127s.

This is close enough to the graphically-estimated delay of 0.124 s.

Dynamic, Frequency-dependent Stiffness and Compliance

As already mentioned, the frequency relations (4.11) have nice interpretations in terms of dynamic
stiffness and compliance. Recall that in the static case, the stiffness of a mechanical system is
the ratio of applied force to resulting displacement. Its compliance is the reciprocal, namely the
ratio of displacement to applied force. The quantity x/f in (4.11) is the ratio of displacement
to forcing amplitudes under periodically time-varying forcing, and thus can be interpreted as the
dynamic compliance of the system. In the dynamic case however, this compliance changes with
forcing frequency unlike the static case which is just a single number.

To understand dynamic compliance in the Mass-Spring-Damper system, it is useful to graph the
quantities (4.11) as a function of applied force frequency w. Figure 4.4 shows such a graph for a
typical underdamped system. The behavior of the dynamic compliance relation

X 1
dynamic compliance := - = 4.12
Y f V (k= mw?)? + 2w? (4.12)

can be roughly roughly divided into three main frequency regions.

2This can be determined for example by using the “data cursor” in Matlab.
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Figure 4.4: A typical graph of the frequency-dependent, dynamic compliance x/f for an underdamped system. Three
different frequency regimes can be identified. The low frequency (almost static) regime is dominated by spring effects
where the compliance is approximately 1/k, similar to static compliance. Large compliance ratios x/f &~ 1/cw are
possible when the forcing frequency w is near the system’s free-vibrations natural frequency wyn. This is the region
of resonance, where the compliance ratio is largely dominated by damping effects. Lower damping implies larger
resonances. In the high frequency regime, inertial effects dominate, and the mass’ inertia “averages out” the effects
of rapid forcing variations to near zero.

1. Low frequency (spring effects): In this region the dynamic compliance simplifies to

~0 x 1
w =~ = f ~ i

The spring stiffness (or equivalently its compliance 1/k) dominates the behavior. Intuitively,
the low frequency regime is almost like the static regime. Since damping effects are velocity
dependent, and the mass’ inertia is related to acceleration, both of these effects are small in the
low frequency regime. Thus the spring force is dominant at low frequencies.

2. Near resonance (damping effects): When the term k — mw? in the denominator of (4.12) is near
zero, the compliance is near its maximum. This happens when the applied forcing frequency
w &~ \/k/m =: wy is close to the systems natural frequency wy of free vibrations. This is the
phenomenon of resonance; when the compliance is high, small forces produce large displacements.
The compliance near resonance is approximately

wr\k/m = kE—mw?~0 = E%L.
f cw
This number is approximately the height of the resonance peak in the graph of dynamic compli-
ance. It is inversely proportional to the damping coefficient ¢, and can be very large for systems
with very low damping. Near resonance, the applied force pumps large amounts of power into
the system producing increasingly larger oscillations until velocities are sufficiently high that the
average power lost in the damper equalizes the average power delivered by the external force. In
the absence of any damping, these oscillations can grow without bound. This will be analyzed
quantitatively in the next section that studies power flows in this system.

3. High frequency (inertia effects): At very high frequencies, the compliance is dominated by the
inertia term (mw?)? under the square root

1 1
~ = “2 ).

W — 00 = §
f (mw2)2 m w?

This is physically intuitive. At high forcing frequencies, the inertia of the mass implies that it is
effected by roughly the average of the applied force over the very short periods of oscillation. In
other words, as the force oscillates between positive and negative, the mass’ inertia prevents it
from reacting instantly to those rapidly varying forces. The net result is very little compliance
in the high frequency range.
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A simple spring (with no mass or damper) reacts “instantly” to a force applied to it. The
spring deflection x given a certain static force f is simply its compliance x/f = 1/k. If the force
is time-varying, the ratio of deflection amplitude x to forcing amplitude f is still 1/k. Thus for a
simple spring by itself (without a mass or a damper), its compliance does not change with frequency.
This idealization is never true in reality since any spring has some mass (and even some internal
molecular damping). Thus for any mechanical system, its compliance is a function of the frequency
of the applied force. In fact, plotting this frequency-dependent compliance (which in many cases
can also be obtained experimentally) is one way to characterize the dynamic behavior of complex
mechanical systems.

Non-dimensionalized Form of 2nd Order Frequency Response

It is very useful to rewrite the relations (4.11) in “non-dimensional” form so as to make comparisons
across Mass-Spring-Damper systems with widely varying parameters using a single expression. Recall
from the study of free vibrations that the natural frequency w, := 1/k/m and the damping ratio
C=gmor = 5 \/l;cim played a significant role in characterizing free vibrations. Similarly, they will play
a significant role in studying the frequency response and its resonances.

Rewriting® the parameters m, ¢, k in Equation (4.10) in terms of w, and ¢

1 1 1

(k —mw?) + j(cw) k((l—%uﬂ)—i—j(%w)) B k((l—(w/wn)2)+j2C(w/wn))

1 1
D ES T Q= w/wy, (4.13)

—>| X>

where we have defined a non-dimensional frequency €2, the ratio of the forcing frequency w to the
natural frequency wy of the system without forcing. The expression above involves also the damping
ratio ¢ = ¢/c. (c. is the “critical damping” value), which is another non-dimensional number. The
amplitude ratio x/f = |%/f| however has dimensions of distance/force. It is sometimes useful to also
rewrite the amplitude ratio in a non-dimensional form as follows

k (1-92)+j 200 = fk - Q- rjel (4.14)

X
f

The magnitude |f/k| = f/k of the denominator has units of distance. It is sometimes referred to as
the static sag, which is the magnitude of spring compression/extension (it is defined to always be a
positive number) when a constant force of magnitude f is applied. A constant (static) applied force
corresponds to zero forcing frequency* Q = w/w, = 0, and indeed if Q = 0 in the above expression,
we get R/(F/k) =1, i.e. the amplitude is precisely the static sag in the zero forcing frequency (i.e.
static applied force) case.
f(/(]e/k)‘ = x/(f/k) of the quantity %/(f/k) in (4.14) is non-dimensional since it is
a ratio of distances. It is best understood as (x/f) /(1/k), the ratio of dynamic-to-static compliance.
At any given frequency, it is the amplitude of a mass’ displacement relative to the displacement that
an equal, but static force causes.

A summary of the above non-dimensional quantities, as well as plots of the frequency responses
for various values of the damping ratio ¢ are given in Figure 4.5. Examine the plots carefully and
note the following observations.

The magnitude

1. (Behavior at low frequencies). Beginning with the magnitude plot, we see that at low frequencies
Q ~ 0, the non-dimensional amplitude ratio x/(f/k) = 1. That is expected from the definition
since it is the ratio of dynamic to static displacement amplitudes, and €2 = 0 corresponds to
static loading.

3The relation that’s needed here is 7= 2 vkm 'kkm =20/ = 2(%.

4Note that w = 0 corresponds to f(t) = fed% = f), i.e. a signal with zero frequency is just a constant signal.
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) ) w w
forcing frequency relative to natural frequency = Q = — = ——
o  Shim
c c
damping relative to critical damping: damping ratio = ( = — = ——
Cc 2V km
amplitude of dynamic (at frequency Q) displacement || 1
constant displacement due to static force (static sag) N |f’|/k - (1— QQ)Q + (QCQ)2
_ x/f _ dynamic compliance
" 1/k  static compliance
Q
phase shift from forcing to response = 0 —¢p = — tan~! (2{ 1 QQ>

(a) A summary of non-dimensional quantities used in the dynamic analysis of an MSD system.

5 3 3.5 4

0 0.5 1 1.5 2 25 3 35 4 0 0.5 1 15 2 2.
Q:=w/w, Q:i=w/w,

(b) The frequency response from forcing input to displacement output of the Mass-Spring-Damper system for various
values of the damping ratio ¢. (Left) The non-dimensional ratio x/(f/k) = (x/f)/(1/k) of dynamic-to-static compliance
as a function of the normalized forcing frequency  := w/wy,. The case w — 0 corresponds to static loading, where by
definition x/(f/k) = 1. Resonance occurs near Q &~ 1 (w = wy), where the response amplitude becomes infinite in the
limit of no damping (¢ — 0). For moderate values of ¢, resonance manifests as a “peak” in the response ratio around the
natural frequency. Note that for ¢ > 0.5, the resonance peak is barely perceptible. For very rapidly oscillating forcing
(w — o0), the dynamic response amplitude tends to zero. (Right) The phase response represents the “phase shift”
from forcing to displacement phases respectively. Here, it is a negative phase shift, implying that displacement “lags
in time” after the forcing. The phase shift increases with frequency w, but it is always —90° at resonance (w = wy).
For very lightly damped systems (¢ = 0), there is a sharp transition around resonance from a near zero phase shift to
almost —180°.

Figure 4.5: A summary of the definitions and behavior of the frequency response of the single Mass-Spring-Damper
system.

2. (Resonance). For low damping ratios ¢ < 1, there is a very large peak in the magnitude plot
around Q = 1 (w &~ wy,). This is the phenomenon of resonance: when the forcing frequency
closely matches the system’s natural frequency, large amplitude gains are exhibited. To see
that mathematically, consider the magnitude response in the extreme case of zero damping

¢=0
N 1
ffl/k 11—

This gain clearly goes to infinity when @ — 1 (w — wy,). This means that without any
damping, if the system is forced at its natural frequency, the displacement oscillations build
up and increase without bound as ¢ — co. In any real system, there is always some damping
¢ > 0, no matter how small. Resonance in this case means that the displacement oscillations
will build up to some large, but finite, steady-state amplitude. This is demonstrated in the
responses shown in Figure 4.6.

Note that for large damping ¢ > 0.5, resonance is barely visible in magnitude frequency
response plot, and indeed large damping inhibits resonance phenomena.

3. (Phase delay). The phase plot shows a negative phase shift from forcing to displacement at all
frequencies. This means that the displacement response always “lags behind” the forcing. The
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phase shift ranges from just below zero for low frequencies, which means that displacement
is almost “in sync” with forcing if the forcing is sufficiently slow. As the forcing frequency
becomes very high (2 — 00), there is an almost 180° phase delay from forcing to displacement.
Note that the phase shift is exactly —90° at resonance 2 = 1, and this is the case for any value
of damping (. The meaning of this will become clearer when we study velocity and energy
relations at resonance. This exact —90° phase shift will be shown to mean that the “timing”
of the forcing in this case produces the largest energy transfer from the applied force to the
mass’ motion.

Along with the frequency response plots of Figure 4.5, it is useful to examine the time-response
plots shown in Figure 4.6. The system is forced at three different frequencies, at half resonance
w = wy /2, full resonance w = wy, and at twice the resonance frequency w = 2wy. The reader should
examine those figures and their captions carefully to see the relations between the frequency-response
plots and the time-response plots at various forcing frequencies. The basic idea is that all the features
of the time-response plots (such as amplitude gain and phase/time shifts) are predictable from the
frequency-response plots if interpreted correctly.

4.2 Energy and Power in Periodic Motion

To understand the phenomenon of resonance more thoroughly, it is useful to examine the energy
flow in this system. There are 3 different forces acting on the mass

fe(t) :  external force applied to mass
fs(®) = —ka(t) : spring force
fa(t) = —c&(t) : damper’s force

Note that we now use the term “external” and the notation f. for the input force f in (4.1) to
distinguish it from the “internal” forces fs and fq.

Now let F(¢) designate any one of those three forces. They each perform work on the mass. At
any instant of time, the instantaneous power (time-rate of work) delivered to the mass by the force
F(t) is the product of the mass’ velocity and the force applied to it. When both v(t) and F(t)
are periodic with the same period T, the average power is defined as the normalized integral of the
instantaneous power over any one cycle5

P(t) = v(t)F (1), P,y = % /fHTv(T)F(T) dr v(t) = @(t). (4.15)
instantaneous power —_—

energy delivered to mass
in one period

Over any one cycle, instantaneous power P(t) can be positive at certain times and negative at others.
The average power can also have either sign. When P, is positive, the force is delivering net energy
to the mass, and when it is negative, the force is extracting net energy from the mass. We will
use the notation PS,, PS, and P4 for the average power delivered by the external f., spring fs and
damper’s fq forces respectively.

When a single mass is undergoing periodic motion (e.g. such as the forced Mass-Spring-Damper
system in steady state), there is a conservation law of net energy or equivalently average power. For
the mass subject to the three forces fo, fs and fq it can be shown (Theorem 4.1 below) that the

sum of average powers is zero
Py, + Py + Py = 0. (4.16)

Since the spring force is a conservative force, the net power delivered by it to the mass P, = 0 is
zero. This then implies that the relation (4.16) reduces to

P;v = _Pd

av)y

5Note that since both v(t) and f(t) are T-periodic, then so is their product v(t)f(t), and the integral in (4.15) is
independent of the starting point ¢, and thus average power P, does not depend on ¢.
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Figure 4.6: The time responses of a Mass-Spring-Damper system with ¢ = 0.15. Three forcing frequency scenarios
of below, at, and above resonance are shown. The top panel shows the frequency-response plots of this system, with
the red dashed lines marking the three frequencies of forcing used for the time-response plots in the panel below. In
each of the three cases, the forcing has the same amplitude f = 1, but the response steady-state amplitude varies
depending on the frequency of the forcing.

i.e. the net power delivered by the external force to the mass is equal to the net power delivered by
the mass to the damper. Thus in steady state, the externally supplied power is all used to counteract
the power dissipated in the damper. On the other hand, the power exchange between the mass and
the spring has a net value of zero over any one cycle.

The conservation law (4.16) follows from applying Newton’s 2nd law to a single mass undergoing
periodic motion. This is a special case of the following more general statement.

Theorem 4.1. Let m be a single mass moving in one coordinate labeled x, and subject to n time-
varying forces f1(t), ..., fn(t) where the mass’ position x(t) and all forces are periodic with a common
period. If PX denotes the average power supplied by each force fi, then the sum total of average
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88 4.2. ENERGY AND POWER IN PERIODIC MOTION

power provided by all forces is zero Y ._, PX, = 0.

The theorem can be understood to mean that under periodic motion, if some forces deliver net
power to the mass, that same amount of power must be extracted from the mass by other forces.
In the case of the MSD system, the external force delivers net power, while all of that power is
extracted from the mass by the damper.

We next specialize to the case when the motion is not just periodic, but also a sinusoid of a single
frequency. Much more can then be said about power flows, and we will see that relative phases play
a central role in them.

4.2.1 Energy, Power and Velocity in Sinusoidal Steady State

In “steady state” (i.e. as ¢ — 0o) all signals in the Spring-Mass-Damper system are sinusoids of the
same frequency. In particular z(t) is a sinusoid of the same frequency as fo(t), and therefore also
the derivative Z(t) is a sinusoid of the same frequency as fo(t) and x(t). Thus in steady state, all
quantities listed above are sinusoids of the same frequency as the forcing f.(t), but they each have
their own amplitude and phase. The average power can be quantified in terms of the amplitudes
and relative phases of v(¢) and any force F(t) as follows

F(t) = F cos(wt + ¢), v(t) = v cos(wt+ )

1 pt+T
= P = ;/ F cos(wr 4+ ¢) vcos(wT +0) dr
t

vF T
= %/ (COS(2w7—|—9 + o)+ COS(&—QS))CZT (cos(¢1) cos(g2) = (cos(p1 + ¢2) + cos(¢1-¢2))/2)
t
vF T the integral of a sinusoid over any multiple of its
= % \ COS(G - ¢)d7— ( period is always zero: fttJrTcos (22%7' + B) dr =0 )

F t+T
= ;—T cos(f — ¢) dr

Jt

= P,y

1VF cos(f — ¢). (4.17)

Thus power is a function of not only the amplitudes v and F (as would be expected), but also of the
relative phasing between velocity and force. It is maximum when 6 = ¢, and equals its minimum,
zero net power, when force and velocity are 90° out of phase. Figure 4.7 illustrates graphically the
relationships between velocity, force and power for various phasings.

The formula (4.17) is expressed in terms of the amplitudes v, F and phases 6,¢ of the signals v(t)
and F(t) respectively. It can also be equivalently written in terms of their phasors as follows

P, = % vF cos(f — ¢) = % R(VF ej(9_¢)> = % R(veﬂ’) Fe_jd))
= % ]R(veje (Fej¢)*) (using A (ej¢)*>
= |Py =1 R(O ﬁ*) : (4.18)

Thus average power can also be obtained by taking the real part of the product of the two complex
numbers v, the phasor of v(t), and F*, the complex conjugate of the phasor F of F(t). Note that
R(VF*) = vF cos(d — ¢) is also equal to the dot product of the two vectors v and F when viewed as
vectors in the plane. When the two vectors are aligned (equivalently, the phasors are “in phase”),
this quantity is maximal, and it is zero when the two vectors are orthogonal (equivalently, when the
phasors are 90° out of phase).

Now let’s examine the average power delivered to the mass by each of the three forces fs, fq
and the external force f.. Begin with the spring force. It is proportional to displacement, which is
always 90° out of phase with velocity, i.e. fs and v are always 90° out of phase, resulting in zero net
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Figure 4.7: Various cases where velocity and force have relative phasings § — ¢ in the range 0° to 180°. The shaded
areas represent the time-integral of power, i.e. energy, where green represents positive energy delivered to the mass by
the force, and grey represents positive energy extracted from the mass to the applied force. The average power is the
total area under the power curve in one cycle divided by the period. When velocity and force are in phase § — ¢ = 0,
maximum power is delivered to the mass. As the phase difference 6 — ¢ increases, the net power delivered is reduced.
At 0 — ¢ = 90°, the force does work on the mass in one half of the cycle, while the mass does an equal amount of
work on the force in the other half of the cycle, resulting in a net power transfer of zero. For 90° < 0 — ¢ < 180°, the
force extracts a positive net work from the mass rather than the other way around.

s 6
2
S5
5

power flow
fs(t) = —ka(t),
x(t), v(t) = z(t) are 90° out-of-phase = fs(®), v(t) = z(t) are 90° out-of-phase

= P, =0.

This is not surprising since the spring force is a conservative force. Note that over half the cycle, the
spring does positive work on the mass, but over the other half of the cycle, the mass does an equal
amount of work on the spring resulting in zero net work. This corresponds to the panel § — ¢ = 90°
in Figure 4.7.

The damper’s force on the other hand extracts power from the mass

fa(t) = —ci(t) = —cu(t), = fa(t), v(t) are completely out-of-phase (6 — ¢ = 180°)
= Pl =-Lvfy =—%v(w) =-3%cV

This is again not too surprising since the damping force is a dissipative force. The average power
extracted from the mass by the damper is proportional to the damping coefficient ¢ and the square
v2 of the velocity amplitude. Note also that because v(t) and fq(t) are 180° out of phase, the damper
extracts power from the mass at all times, and at no time puts power back into the mass, unlike the
spring force.

The conservation law (4.16) and the fact that average spring force power PS5 = 0 is zero imply
that the average power supplied by the external force must be exactly the power dissipated in the
damper

P = —P =—-1cV (4.19)
This expression should be interpreted carefully. At first glance it seems that external power is
proportional to the damping ¢. However, keep in mind that the velocity amplitude v also depends
on ¢, so the dependence on the damping coefficient is not clear from this equation. In order to
investigate this further, we should determine how v depends on both ¢ and on the frequency of the
input.
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Root Mean Squared (RMS) “amplitude”

The formula (4.17) holds for sinusoidal functions with non-zero frequency. For constant (i.e. zero
frequency) velocity and force the formula for average power is slightly different

constant velocity v(t) = v
and force "F(t) = F

sinusoidal velocity  v(t) = v cos(wt + ¢)
and force " F(t) = F cos(wt + 0)

1 rt+T
- Pav:f/det: vF
TJt

= P,y = $VF cos(0 — ¢).

Note the factor of 2 difference between the two formulas. This is similar to the difference between
AC and DC power formulas in electrical circuits. To avoid potential confusion (or maybe create
more confusion), and have one single formula that applies to both oscillating and constant forces, it
is common to define the Root Mean Square (RMS) amplitude of a signal v(t) as follows

1 pt+T
Vims = 7/ v2(t) dt
TJt

If v(t) is a sinusoid of amplitude v, then its RMS amplitude is v/v/2 because
o(t) = v cos(wt) = Vi = f/ (cos(wt)) 7/ (1 + cos(2wt)) dt

1 7
:v2%7/0dtzv = vrms:v/\@.

In terms of the RMS amplitudes of sinusoidal forcing and velocity, the power formula (4.17) now
becomes

P,y = Vims Frms cos(0 — ¢) = % v F cos(6 —9¢) |

Note that for constant signals, the RMS amplitude is just the regular amplitude, and therefore this
single formula in terms of RMS amplitudes applies to both sinusoidal or constant signals. For this
reason, RMS amplitudes of signals are used for power calculations. We should note however that
this use more compelling for electrical circuits because they can operate in either DC or AC mode.
In mechanical vibrations however, it is rare to consider constant forcing and velocity (no vibrations),
thus the case for the use of RMS amplitudes for velocity and forcing is less compelling.

4.2.2 Velocity and Power Frequency Responses

To examine the dependence of PS, = —P3 on forcing frequency, we need the relation between f,
and the mass’ velocity v = &. Again, phasor analysis makes this very easy. We already know
the frequency response (4.13) from force to displacement. Since velocity is the time derivative of
displacement, the velocity phasor is simply the displacement phasor multiplied by jw (recall the the
derivation (4.6) or the material in Section 2.3.1, which we now restate for the present case below)

z(t) =: v(t) (velocity is the derivative of position)
if x(t) = x cos(wt+0) — x = xel
then w(t) = —wx sin(wt + 0)
= wx cos(wt + 6 + 90°) — U = wxel0+90°) — 7907, (xeje) = jw X
= V = jwX

We can now combine this with (4.13) to obtain the (complex) frequency response from f, to v as

1 1

E((1-92)+j2¢Q)°
1

_ Yn J w/wn _ jiQ o = -
TR (-4 2%0) T VEm ((1-90) +; 2Q) n = VH/ (4.20)

= JUJ% = jw Q:ZW/wn

o <

DRAFT: VIBRATIONS, MARCH 2, 2025 © 2024, Bassam Bamieh



CHAPTER 4. HARMONICALLY FORCED VIBRATIONS: FREQUENCY RESPONSE AND RESONANCE

91

<

(a) The wvelocity frequency response of the Mass-Spring-Damper system for various values of the damping ratio
¢. The plots have many features that are similar to the displacement frequency response shown in Figure 4.5,
namely resonance peaks at wy, as well as the 180° change in phase around w,. However, the amplitude response
goes to zero for w — 0, and the phase plot goes from +90° at low frequencies to —90° at high frequencies. The
three frequencies marked by dashed red lines are the frequencies used for the simulations shown in the panels
below. The fact that the phase difference is always in the range —90° < 6 — ¢ < 90° means that net power

delivered to the system is always positive.

This is a consequence of the Mass-Spring-Damper system being a

“passive” mechanical element, i.e. it can only absorb energy, it cannot create it.
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(b) Forcing input and velocity output for three different forcing frequencies. The panels show the signals over
a longer period of time as well as zoomed in views to highlight the phase shifts more easily. These simulations

are done for the case ¢ = 0.15.

Figure 4.8: Frequency responses from-forcing-to-velocity of the Mass-Spring-Damper system, as well as three time
response plots for below, at, and above resonance cases.

The magnitude and phase of this frequency response are shown in Figure 4.8 for various values of (.
The magnitude frequency response is qualitatively similar to that for displacement with resonance
peaks appearing around €2 = 1. The main difference is that the response goes to zero for low forcing
frequency €2 — 0. This is intuitive since for static loading, the steady state velocity is zero, and for
very slowly varying forcing, the mass motion will also have very low velocity.
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Figure 4.9: When a Mass-Spring-Damper system is forced at resonance, oscillations build up until they reach steady
state. Forcing input and velocity response are completely in-phase at resonance, but that only occurs in steady state.
Here the transient behavior is shown more clearly. It takes velocity a few cycles to get in-phase with forcing (top)
during which average power increases with every cycle (bottom left). Even though in steady state instantaneous power
is always non-negative (at resonance), it could be negative during certain parts of the cycle during the transients
(bottom right) until the velocity locks in-phase with the forcing input. This simulation was started form non-zero
initial conditions, and therefore there is a small mount of initially stored kinetic and potential energy in the Mass-
Spring-Damper system. This results in a clearer transient exchange of energies between it and the applied force.

One notable difference between the displacement and velocity frequency responses is the phase
plots. They are identical except for a 90° difference at all frequencies (again, this follows from
V= jwx = V= /x+90° i.e. multiplying by j rotates a complex number by 90° counterclockwise).
The velocity frequency response starts at 90° phase advance over forcing for low €2 ~ 0 frequencies.
It then decreases to exactly 0° at resonance 2 = 1. This means that at resonance, forcing and
velocity are perfectly in phase as shown in the time response plots of Figure 4.8. Recalling the
power relation (4.17), we conclude that maximum power delivered to the mass by f. occurs when
forcing at resonance. At either low (2 — 0) or high (2 — o0) forcing frequency, the phase difference
approaches 90°, and the power relation (4.17) implies that very little average power is delivered to the
mass. This is consistent with velocity oscillation amplitudes being close to zero in those frequency
ranges. Note that the phase difference is always (at any frequency) in the interval [—90°,90°].
The Mass-Spring-Damper is not an “active” mechanical element, it only absorbs energy, it cannot
generate it, which means that the phase difference can never be more than 90° or less than —90°.

The previous statements are true under steady state conditions. Any mechanical system subject
to forced vibrations exhibits some transients before it reaches steady state. Figure 4.9 shows the
behavior of instantaneous power at initial times before steady state is reached. The main observation
is that until velocity “locks into phase” with the applied forcing (which is what it does in steady
state when forced at resonance), instantaneous power can be both positive or negative until steady
state is reached, where it will always be non-negative.

Now we calculate PS, quantitatively as a function of frequency 2. Equation (4.20) gives the

phasor v in terms of the phasor fe, and Equation (4.18) gives average power in terms phasors.
Combining the two

e _ 1 QA* =1 ! JQ f fe
P, = iR(v ) 2R<<m((1—92>+1‘2<9) fe) fe)

f2 Q) ‘ 1 o
N 2Vkm R<] ((1 — %)+ 2CQ)) (since fof¥ = |fc|2 _ ff)
. f2Q 200 i
T 2vhm (1-2) + (200 (R(/2) = 1(z) /|+?)
q 02 )

= PS

= f 4.21
Yo VEm (1-Q2) 40202 ¢ (4.21)

Note the use of the following complex number identities which simplified the calculation above. For
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Figure 4.10: When a system with no damping ¢ = 0 (¢ = 0) is forced exactly at resonance w = wp, the response
(either displacement or velocity) is unbounded as ¢t — oco. The amplitude grows linearly in time without bound.
Therefore, there is no steady state in this case. In any real system however, there is always some damping ¢ > 0 no
matter how small. In the case of very small ¢, the response amplitude will grow linearly initially (top) , but then will
eventually “saturate” to level out at some steady state amplitude (bottom). Note the different time spans between
the two plots.

any complex number z = «a + jf

R(jz) = R(j(a +jB)) = R(jo — B) = —I(z)
1 * j 1 * —I(z* I
=2 = =" = R(L)=-1({-)=-1(Z.)= () _1(z).
z |2 z z |22 |2[? |22
The average externally supplied power (4.21) has a similar dependence on frequency as the
velocity with some important differences. Pg, goes to zero at low and high frequencies, and has a
peak exactly at resonance. It is easy to verify by differentiation that the maximum power in (4.21)
occurs at 0 = 1, and therefore has value

1
ACVEm

L o

— f2. (with forcing at resonance w = wy) (4.22)

1 2
lec [k ./ fe - 2¢ ¢

This expression implies that the lower the damping ¢, the higher the average external power trans-
ferred to the mass. This explains why the expression (4.19) is misleading since as ¢ increases, the
velocity amplitude v decreases®.

The nonphysical case ¢ = 0 deserves an explanation. The formula (4.22) seems to imply that
maximum power flow into the system is infinite. The key to understanding this apparent paradox
is that when ¢ = 0, there is no steady state. In fact the response of the system grows unboundedly
in this case. Recall the statement earlier that under the assumptions k, m,c > 0, the system has a
steady state response. This assumption is violated when ¢ = 0. Figure 4.10 shows the displacement
response when a system with no damping ¢ = 0 (equivalently ¢ = 0) is forced at exactly the resonance
frequency. At every cycle, the external force transfers energy to the system to keep the oscillation
magnitude growing unboundedly as ¢ — co. Any real system has some amount of damping ¢ > 0, no
matter how small, and thus this process of energy absorption will eventually reach an equilibrium
where the average power delivered by the input is balanced by the power dissipated in the damper,
and the amplitude of oscillations will reach some (possibly large) limit.

e __ 2 _
max Py, = fy =

4.2.3 Energy from Force-Displacement Diagrams

Another way to visualize the work done in a system undergoing periodic motion is through force-
versus-displacement diagrams. If an applied force f(¢) on a mass and the resulting displacement

61t can be seen from (4.20) that at resonance 2 = 1, the velocity amplitude is proportional to 1/c, i.e. v? is

proportional to 1/c2, and therefore the expression cv? in (4.19) is actually proportional to 1/c, just like the expression
above for maximum power at resonance.
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(a) Under periodic motion, the force versus (b) Force-displacement curves for the harmonically forced Mass-Spring-
displacement trajectory (f(t),z(t)) forms a  Damper system forced at three different frequencies. Since f(t) and xz(¢)
closed curve in a plane. The area enclosed are sinusoids of the same frequency, the curves are all ellipses. A forcing
clockwise by the curve is the total positive amplitude of 1 is used in all three cases for comparison. The highest work
work done by the force over one cycle. done in one cycle is when forcing is at resonance w = wy,.

Figure 4.11: For a system undergoing periodic motion, the work done in one cycle can be visualized using a closed
curve in a force-versus-displacement graph.

z(t) are periodic with a common period, then plotting f(t) versus z(t) in the plane over any one
period will always yield a closed curve. This is illustrated in Figure 4.11a. The work done by the
force is the integral of force times incremental displacement

work in one cycle = f fdx = / / dx df = area of region A enclosed (clockwise) by (x(t), f(t)) curve,
A

where = follows from Green’s theorem. Thus we can visualize the work done as the enclosed area.
Note that if the curve is oriented clockwise, then the work is positive, and negative if the curve is
oriented counterclockwise.

For the externally forced Mass-Spring-Damper system in steady state, both f(¢) and z(t) are
sinusoids of the same frequency. It is not difficult to show that for such a case, the force-versus-
displacement curve is the boundary of an ellipse. The orientation, eccentricity and enclosed area of
the ellipse depend on the amplitudes and relative phases of f(¢) and z(t). Figure 4.11b shows three
such cases for forcing below, at and above resonance. The figure shows that the largest enclosed
area, which represents the highest amount of work done over one cycle, corresponds to forcing at
resonance.

4.3 Phasor Analysis of General Systems

The methods of the previous section are quite powerful and generalize to a much larger class of
systems that the single Mass-Spring-Damper. In this section we develop the general method for any
system that is described by a constant-coefficient ODEs with a harmonic input. These could be
mechanical, electrical or other types of systems.

Consider the following p’th order differential equation for a function y(t)

oy y P (1) + po1 yPO@) + o+ ar y D) + ag y(t)
= B uD(t) + B u@I(E) + - + B uM(E) + Boult), (4.23)

where u(t) is a harmonic forcing function (i.e. a sinusoid of some frequency, amplitude and phase).
The numbers p and ¢ are the highest order of differentiation that appears in the equation for z
and f respectively. We typically assume ¢ < p, and call p the “order” of the system. The notation
y®)(t) stands for the k’th derivative of y(t), and similarly for u(t). Note also how the indices of
the coefficients {ay} and {8} are chosen to match the order of differentiation for each term. For
example, the equation (4.1)

mi(t) + cit) + kat) = f(t)
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is a special case of (4.23). We see that the order of (4.1) is p = 2, and ¢ = 0 since there are no
differentiations of the input f, and therefore this is 2nd order system. In this case ag = m, a3 = ¢
and a9 = k. For the right hand side, 5y = 1 and all other § coefficients are zero.

Equation (4.23) is general enough to model an incredibly large variety of physical dynamical
systems. In AC electrical circuits, u could be a harmonic input voltage, and the equation can model
a circuit with a large number of RLC components. In vibrations, u could be some applied harmonic
force or the displacement of some mechanical element, and the equation models the dynamical
response of a complex interconnection of masses, spring and damping elements. The larger the
number of elements, the larger the order p of the equation. Typically, the order p equals twice the
number of mass elements in the system. For circuits, p equals the total number of capacitors and
inductors (the number of resistors does not contribute to the order p).

We now describe phasor analysis for the equation (4.23). Under the condition that its dynamics
are stable, i.e. that transients decay in time, it is not difficult to show (as was seen in the Mass-
Spring-Damper system) that if the forcing is a pure sinusoid of some frequency w, then the steady
state response x will also be a sinusoid of the same frequency w, but with possibly a different
amplitude and phase, i.e.

u(t) = ucos (wt+ ) = tlggo y(t) = ycos (wt+0).
The task is to find an expression for the amplitude y and phase 6 of the signal y(t) as a function of
the system (4.23) parameters and input frequency w.
As in the Mass-Spring-Damper system case, we start with writing the forcing and steady-state
response (we now refer to the latter as just y(¢)) as the real parts of complex functions by

<
—

~
=

u cos (wt+ gb) = R(ﬁ ej“t) ., where 0 = u /%,

. . 4.24
y(t) = ycos(wt+6) = R(y /"), wherey=y elf. (4.24)

The idea of phasor analysis is to solve the differential equation for the complex-valued functions
Ge/@t and ye’*? instead of the real-valued ones. To justify this idea, we state it formally.

1. Substitute the complex-valued functions u(t) = G e/“! and y(t) = ¥ €/“! in the differential
equation (4.23).

2. From the resulting algebraic equation, find y in terms of 0.

3. It then follows that the real-valued functions u(t) = R(i e/“*) =[] cos (wt + £0) and y(t) =
R(y e/“') = |y| cos (wt + £¥) solve the same differential equation (4.23).

To justify that last statement, rewrite the differential equation in the following compact form and
observe that if u(t) = 0 /** and y(t) =y e/** satisfy the differential equation

p q
D g (7€) = D B g (0 €)
n=0 m=
p q
= R(Z on g (¥ ej“t)> =R( > B g (@ ej"”))
n=0 m=0
q

p
= Zozn %R(y ej“’t) = Z Bm %R(ﬂ ej‘*’t) ,
n=0

m=0

o

where the last implication follows from the facts that the real part of a sum is the sum of real parts,
the coefficients a,, 3, are real so e.g. R(a, f(t)) = o, R(f(t)), and finally that the real part of a
derivative is the derivative of the real part.

We now follow this procedure to derive the algebraic equation relating 0 and y. Substituting
u(t) = G e/t and y(t) = § €/ in the differential equation (4.23) and using the fact %ej‘*’t =
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(jw)kelwt gives
o i 5 ) 4ok 0 () = By (8 6) 4ok )
= apy (Jw)? &+ 4 agy €0 = Byl (jw)? € 4 - 4 Bol 7
= (ap (Jw)P + -+ +ao) y et = (ﬁq (Jw)? + -+ +/30) 0 /!

N o B ()4 B (Jw) + Bo g
YT e, Gt an (jw) T ag

Note again that the appearance of e/ on both sides of the equation (since u and y have the same
frequency) allows for the removal of that factor, resulting finally in a purely algebraic relation. We
summarize this formally in the next statement.

Theorem 4.2. Consider the following input-output ODE with constant coefficients

ap y P () + apa y® V() + o+ ary V() + ag y(t)
= By u D) + Bya w9V + - 4+ B uV(t) + Bo ult), (4.25)

where {oy,} and {Bi} are real coefficients. If the input is a pure harmonic of the form u(t) = ucos (wi+
qb), then the steady-state output is also a pure harmonic with the same frequency

lim y(t) = ycos (wt+6),

t—o0

where the output’s amplitude y and its phase 6 are given by

y = [Hw) u,  (amplitude amplification),} e - Hw (4.26)

0 = ZH(w) + ¢, (phase shift),
where H(w) is the complex frequency response of the system (4.25) defined by

_ Bew)? + - + Bi(jw) + Bo
Hw) = ap(jw)P + - 4+ a1(jw) + ao (4.27)

The non-negative real-valued function |H(w)| is called the amplitude frequency response, and the
function ZH(w) is called the phase frequency response.

The frequency response H(w) as a function of w is completely determined by the coefficients
ag,...,ap and By, . .., By of the differential equation. In other words, the frequency response function
H(w) can be“read off” directly from the differential equation (4.25). The quantities |H(w)| and
/H(w) are called the magnitude frequency response and the phase frequency response respectively.
Figure 4.5 derived earlier is a specific example of such responses. Observe how elegant and simple
the relations (4.26) are. They state that at each input frequency w, the magnitude |[H(w)| of the
complex number H(w) is the “amplitude amplification” from input to output, while its phase ZH(w)
is the “phase shift” from input to output.

The significance of Theorem 4.2 cannot be overstated. The system (4.25) is originally described
as a differential equation with a forcing “input”. This is called the time domain description of the
system. When the inputs are sinusoids, the relation between the phasors of the input and output is
the very simple algebraic relation (product of complex numbers)

y = H(w) u
~—~ ——— ~~
phasor of complex p}}asor of
output frequency response input

This is called the frequency domain description of the system. Clearly a much simpler relation
than solving differential equations in the time domain. The time domain versus frequency domain
descriptions are illustrated in Figure 4.12.
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time-domain description:

u(t) = u cos(wt + @) apy® () + - - + oy D (t) + aoy(t) ‘ y(t) = y cos(wt + 0)
(w,u, ®) = ﬂq“(Q)(t) +oot ﬁlu(l)U) + Bou(t) (w,y,0)

frequency-domain description:

Gmu Ll R Bl e BilGe) + o
T (WPt -+ () + ao

Figure 4.12: (Top) Any ODE with an input u describes an “input-output” system since for any function u(t) there
is a unique steady-state solution y(¢). Thus u(t) can be considered an input, and for each such input there is a
unique output, namely the solution y(t) of the differential equation. The differential equation can thus be thought
of as an “algorithm” for generating y(t) given u(t). (Bottom) When the equation has constant coefficients and we
are concerned with only steady-state outputs (i.e. long-time behavior), effects of initial conditions disappear, and
the relations between the input and output phasors (0 and y respectively) is the simple complex-number product
y = H(w) G. This is called the frequency domain description of the system, and the quantity H(w) as a function
of frequency w is called the (complex) frequency response. The frequency response function H(w) can be “read off”
directly from the coefficients of the differential equation without the need for any calculations.

4.3.1 Mass-Spring-Damper with Displacement as an Input

As already mentioned, inputs are more general than just forces. We now use Theorem 4.2 directly to
find the frequency response of the system shown in the figure on the right. Here d(t) is the position
(not a force) of a “displacer” attached to one end of a spring and

damper whose other ends are attached to a mass. The mass’ — |
position is measured by z(t). We want to find the effect of the -
motion d(t) of the displacer on the motion z(¢) of the mass.

Clearly as d(t) moves relative to z(t), the spring and damper < j :
are stretched or compressed, exerting forces on the mass. Thus o (t) d(t)

as d(t) varies, it produces forces on the mass, but indirectly,
and those forces depend on z(t) as well. We first derive a differential equation for this system.
Let © be the equilibrium length of the spring, then

m i(t) = —k(x(t) —d(t) — 1) — c(@(t) — d(t)).
The constant term L is eliminated by redefining the origin of the coordinate system for = by
Z(t) := z(t) — L.
Substituting x(t) = Z(t) + L in the original differential equation yields a differential equation for

mi(t) = —k(&(t) —dt)) — (@) —d(t))
= mit) + cit) + ki) = cd(t) +kd(?), (4.28)

where we rearranged the equation so that all terms that involve the “input” d(t) are on one side,
and the terms involving the “output” Z(t) are on the other side. This is in the standard general
form (4.23) introduced earlier. Comparing this system with the Mass-Spring-Damper system (4.1)
with an actual force as an input, we see a distinction that here the input d(t) appears with its deriva-
tive d(t), while the input f(¢) in (4.1) is not differentiated. This has some important consequences
for the shape of the frequency response in the high frequency regime as we will see shortly.

To find the frequency response, there is no need to repeat the phasor analysis for this case from
scratch. We can simply apply Theorem 4.2 to the second order system (4.28) (note that it is of a
form for which the theorem is applicable). It simplifies things a bit to first divide by the mass, and
the notation is simpler if we relabel Z to x

B(t) + Zi(t) + Eat) = Sdb) + Ed)
e El) + Awni(t) + wia(t) = 2wnd(t) + w2 d(t), (4.29)
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Figure 4.13: The frequency responses from displacer position d(t) to mass position z(t) of the system with dis-
placement (rather than force) input. It shares many features of the force-input system’s frequency response depicted
in Figure 4.5 earlier. Namely that resonance occurs around 2 = 1, with more pronounced resonance peaks for lower
damping ratios (. The main difference is with the phase relations. In the high frequency region, the phase plots vary

significantly depending on the damping ratio.

r(t)
i%
z(t)
éé

(a) At slow forcing frequencies the
mass movement follows that of the dis-
placer with approximately the same
amplitude. The spring/damper link
between the two appear to be almost
like a rigid link.

o 5 10 15 20 2 30 3 0 5

(b) Near resonance, the mass’ oscil-
lation amplitudes steadily grow until
they are much larger than the dis-
placer’s oscillations.
Click for animation.

= OO =

o 5 10 15 20 25 0 B a0 5

(C) At high forcing frequencies, the
mass’ oscillations are small relative
to the displacer’s. In this frequency
regime, inertia dominates. The mass
and displacer oscillations appear to be
approximately “out of phase”.

Click for animation.

Click for animation.

Figure 4.14: Tlustrations and animations of the motion of a displacement-input MSD system with input frequencies
below (w ~ 0.5wy), at (w & wn), and above (w &= 1.5wy) the system’s natural frequency wy (here wn, = 1 and
¢ = 0.05). All plots have the same axis limits for comparison, but the displacer’s amplitudes are different for each
plot. Note the relative amplitudes of displacer and mass in each case.

where ¢ and w, are defined as before. Applying Theorem 4.2 to this last equation, the complex
frequency response is given as
J2¢ wiwy +1

TR E

J 2wy w+ w?
(w2 —w?)+ 7 2¢w, w

2Cwy (]w) + W121

(Jw)? + 20wn (jw) +wi

2¢ Q+1
= J 20 0t (using normalized frequency Q := w/wy,)

1—02)+j20Q
(4.31)

Q| X

This is the frequency response from displacer to mass positions. A plot of its magnitude and phase
is shown in Figure 4.13 for various values of (.

The behavior of this system can be understood by examining (4.31) in the low and high frequency
regimes, as well as at resonance. For low €2, the frequency response X/ d~ 1, which means that the
mass’ position follows that of the displacer. This is illustrated in Figure 4.14a. Thus in the low
frequency regime, the spring/damper link between the displacer and mass acts almost like a “rigid
link”. Near resonance €2 &~ 1, the expression (4.31) for the mass’ phasor is

j2¢+1 | o1
—— U —j -0
J2¢ 2¢
Thus the amplitude scales inversely with the damping ratio and can become arbitrarily large as
¢ — 0. Because of the —j factor, the mass’ oscillations lag with 90° behind the displacer input.
Figure 4.14b illustrates the resonant case and shows how the mass’ oscillations build up to large

amplitudes (relative to the displacer amplitude) until it reaches steady state.

when ¢ < 1. (4.32)
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When d(t) oscillated rapidly (i.e. much faster than wy,), then € > 1, and the frequency response
limits to

J2AQ+1 jxe

DRSS 2 - g (when Q> 1) (4.33)

o X>

Thus for large €2, the amplitude x is much smaller than the input amplitude d. This is again due to
the mass’ inertia which dominates the response in the high frequency regime. All of the phenomena
mentioned so far are very similar to the case of force input analyzed earlier in Section 4.1. However,
for this displacement input case we see somewhat different behavior in the high frequency region.
The following two phenomena can be seen from (4.33) and the frequency response in Figure 4.13.

o Effect of ¢ on the high frequency behavior: While a very lightly damped system (¢ < 1) has higher
resonance peaks near {2 & 1, its high frequency response is actually lower with smaller ¢ as evident
from Equation (4.33) and Figure 4.13. This is in contrast to the high frequency behavior when
the input is a force (see Figure 4.5b), which is largely independent of ¢. The effect of ¢ on high
frequency behavior will have important implications for the design of vibration isolation platforms
as will be studied in Section 5.1.3.

e From (4.33) we see that for high © > 1, the phase difference is about Z(—j) = —90° (unlike
the force input case where the high frequency phase difference is 180°). Examining the phase
frequency plot in Figure 4.13 confirms this, but we also see that the “rate” at which the phase
approaches 90° for €2 — oo depends significantly on (. For lightly damped systems, the phase
actually dips to almost 180° before it eventually limits to 90° as {2 — oco.

Appendix

4.A Decomposition of Responses: Transients and Steady State

If you recall what you learned about Ordinary Differential Equations (ODEs) with forcing (the
so-called non-homogenous ODEs)

ma(t) + ca(t) + k() = f(t), z(0) = a, £(0) = b, (4.34)

you may remember that the solution is obtained as the sum of two solutions, a homogenous solution
and a particular solution. The terminology can be confusing because the role of initial conditions is
not always explicitly stated, so let’s state things precisely.

For each set of given initial conditions z(0) = a, ©(0) = b, Equation (4.34) has a unique solution.
Thus if we vary the initial conditions over all possible numbers a and b, we get an infinite set of
solutions parameterized by (a,b). Each such solution is called a particular solution. More formally

Definition 4.3. A function x,(t) is called a particular solution of (4.34) if it is a solution for
some pair of initial conditions a and b. Equivalently, if it satisfies (4.34) without regard to initial
conditions, i.e. if

m Z,(t) + cdp(t) + kazp(t) = f(1).

Notice that we say a particular solution rather than the particular solution since there are many of
them.

Now if we have two different particular solutions x},1(t) and zp2(¢). They both satisfy the
differential equation (4.34) each with different sets of initial conditions

m L'C'p’l(t) +c "tp’l(t) + k l'p’l(t) = f(t) I,L'p’l(O) =aq, !’tpﬁl(O) =
m S.C.pg(t) +c ifp,z(t) + k I’pvg(t) = f(t) I’pvg(O) = as, I.p72(0) =

blu
bs.

DRAFT: VIBRATIONS, MARCH 2, 2025 © 2024, Bassam Bamieh



100 4.A. DECOMPOSITION OF RESPONSES: TRANSIENTS AND STEADY STATE

Response with non-zero ICs, but zero forcing Response with non-zero ICs, but zero forcing Transients
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Figure 4.15: Decomposition of the full response (solution) of the Mass-Spring-Damper system into various pieces.
(a) Shows the response due to Initial Conditions (ICs), the response due to forcing (with zero ICs), and the forcing
input. (b) The response due to forcing can be further decomposed into a transient (middle) and a steady state
(bottom) part. (c) The full solution and the steady-state solution are shown (bottom). The difference of those two
functions would be the transient (top), which is the sum of the two transients in (b).

Because these equations are linear, we can subtract them and obtain a so-called homogenous equation
(i.e. with no forcing)

(.0 (020 (1 (0204 (s () =p2(0)) = 0. G0} Sy = e

Thus any two particular solutions of (4.34) differ by a solution zy,(t) of the homogenous equation
m En(t) + can(t) + kan(t) = 0, 2h(0) = a1 — ag, ©p(0) = by — bo.

Another way to say this is that the solution can be written as the sum of a particular solution and
a homogenous solution, provided the initial conditions satisfy a certain relationship. More precisely

Theorem 4.4. Let x(t) be the unique solution of the differential equation (4.54) for some given
forcing function f(t) and initial conditions a and b. z(t) can be written as the sum of two functions
x(t) = zp(t) + xn(t), each of which solve the following differential equations

mg'éh(t) + Ci‘h(t) + k ach(t) = 0, {Eh(O) = Qp, xh(O) :b}17 (435)
miy(t) + ciylt) + kay(t) = f(2), 2,(0) = ap, 3(0) = by, (4.36)

provided that ay + ap = a and by, + b, = .

Therefore the unique solution can be decomposed into pairs of homogenous and particular solu-
tions in many different ways. The utility of this theorem is that certain particular solutions are easy
to obtain, as in the case of the “steady-state” solution derived in Section 4.1. Once an easy particular
solution z,(t) has been found, we can find the initial conditions of its corresponding homogenous
problem by

an = a — x,(0), bn = b —ip(0),

where a and b are the given initial conditions of the problem. The homogenous problem (4.35) can
then be solved.

In problems of linear dynamical systems such as those that occur in vibrations and AC circuit
analysis, there are two different decompositions into particular and homogenous solutions that are
used. The decomposition we already encountered in Figure 4.1 is a decomposition into a steady-state
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A homogenous solution + A particular solution

L. Transient Transient | Steady-state |
Initial/Forced - I | 4

. . initial-conditions + forced + forced |

Decomposition response response | response 1

. Transient Transient | Steady-state |
Transients/Steady-state . I " | A

o . initial-conditions | 4~ forced + forced |

Decomposition response response | response 1

Figure 4.16: The solution of any ODE with given initial conditions can be decomposed into “a homogenous solution”
and “a particular solution” in an infinite number of ways. Here we depict two of the most common decompositions.
The decomposition used in this chapter is where the steady-state solution is the particular solution, while transients
of two types are combined together as the homogenous solution. The utility of this decomposition is that initial
conditions do not effect the steady-state solution, and can therefore be ignored to greatly simplify the calculations.

and transient solution. Since we were only interested in the steady-state solution, we didn’t have
to compute the corresponding initial conditions for either. Another commonly used decomposition
(which we do not use in this chapter) is into the response due to initial conditions and no forcing, and
the response due to forcing but with zero initial conditions. More precisely, given the problem (4.34),
the homogenous and particular solutions in this case are

m L'U'h(t) + c i‘h(t) + k xh(t) = 0, .’Eh(O) = a, $h(0) =b,
(response due to initial conditions)

m Ep(t) + cdp(t) + kap(t) = f(t), xp(0)=0, ,(0)=0. (response due to forcing)

Note that the initial conditions for the homogenous problem are the same as the original problem,
while those for the particular problem are zero. This decomposition is illustrated in Figure 4.15.a.

An examination of Figure 4.15.a shows that the response due to forcing has some transients in
it, even though the initial conditions for that response are zero. That response due to forcing can
be further decomposed into another pair of particular and homogenous solutions where the steady
state is the particular solution, and the transient is the homogenous solution. This decomposition is
illustrated in Figure 4.15.b. In this case, the initial conditions for the homogenous problem (which is
the “transient” part of the forced solution) are not the same as the original (true) initial conditions.
They will be some “fictitious” initial conditions obtained just for that particular decomposition.

In Section 4.1 we derived the steady-state response by regarding it as a particular solution, and
we used a method that did not depend on the initial conditions. It helped that we knew that the
solution was of the form A cos (wt+ 9), and we solved for A and 6 such that the differential equation
was satisfied.

The two different types of decompositions are illustrated in figure 4.16.

4.B Solution of (4.4) Using Trigonometric ldentities
Recall Equation (4.4)
—m w® xcos (wt 4+ 0) — cw xsin (wt+6) + kxcos (wt+6) = fcos (wt), (4.37)

and that we want to solve for x and € in terms of the other parameters. We can disentangle the sine
and cosine functions using the trigonometric identities

cos (wt +60) = cos (wt) cosd — sin (wt) sin 6
sin (wt + 0) = sin (wt) cos 0 + cos (wt) sin 6.
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Substituting these expressions in (4.37) (and dividing through by x) gives
—mw? ( cos(wt) cos § — sin(wt) sin 9) —cw ( sin(wt) cos 6 + cos(wt) sin 9)
+k ( cos(wt) cos § — sin(wt) sin 9) = ; cos(wt).
Now collect terms with cos(wt) and sin(wt) separately
( — mw? cos @ — cwsinf + k cos 0) cos(wt) + (mw2 sinf — cw cos 6 — ksin 6) sin(wt) = ; cos(wt).

(4.38)

This equation has to hold for all times ¢, and since the cosine and sine functions are “independent””,
then we must have

f
—mw? cosf — cwsinf + kcosh = —, (4.39)
X
mw?sinf — cwcosf — ksinh = 0. (4.40)
These equations can be rearranged into a matrix-vector equation for cos and sin 6
(k — mw?) —cw cosf|  |f/x
—cw —(k—mw?)| [sinf| — | 0|’
which can be rewritten using the inverse of the matrix as
—(k—mw?)
|:CF)S 9} _ -1 [_(k — mw?) “ ] [f/x} _ | f (4.41)
sin 0 (k — mw?)? + (cw)? cw (k—mw)] | O e=ma?)? 5 (e)? |

We can eliminate # using the identity cos? 6 + sin? @ = 1 which implies

1 = cos?0+sin?6 = ( (k — mw?)? + (cw)? >f2
((k = mw?)2 + (ew)2)®  ((k —mw?)? + (aw)?)® ) X

_ (k — mw?)? + (cw)? ﬁ _ ( 1 ) ﬁ
((k — maw?)? + (cw)2)2 x2 (k — mw?)? + (cw)? ) x2’

and we finally obtain

1
V (k= mw?)? + (cw)?
To obtain 6, we again use (4.41) to find tan 6 by

tan g — sinf B cw
~ cosh (k —mw?)’

Note that the above two expressions are identical to (4.11) derived using phasor analysis.

4.C Proof of Theorem 4.1

Theorem 4.5. Let m be a single mass moving in one coordinate labeled x, and subject to n time-
varying forces f1(t), ..., fn(t) where the mass’ position x(t) and all forces are periodic with a common
period. If PX, denotes the average power supplied by each force fi,, then the total average power is
zero

zn: PE = 0.
k=1

"For example, evaluating (4.38) at t = 0 gives (4.39), and evaluating it at t = % gives (4.40).
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Proof. Newton’s 2nd law states

mi(t) = Y fult). (4.42)

k=1

Applying formula (4.15) to the sum of the powers, we obtain for the integral over any one period

n n 1 t+7.’ 1 t+T n
;Pg}fv = Z(T/t (1) fr(7) dT) = ;/t () (;fﬂﬂ) dr

k=1
m [T
= ;/ (1) &(7) dr (using Newton’s 2nd law (4.42))
¢
m N m [T
= - &(7) (1) . ) &(r) @(r) dr

(integration by parts)

2

t+T '
= z/t i) () dr 2 i) )| = #0)

where = follows from the previous equation by regrouping terms (and cancelling the common factor

m/T), and 2 follows from the fact that motion is T-periodic, which implies that

t+T
&*(7)

= #2(t+T1)—2%(t) = 0. (since T-periodic implies #(t) = (¢t + T) for any ¢)0]
t

Note the critical role that periodicity of motion played in the above proof. The theorem does
not necessarily hold if the motion is not periodic.
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Chapter 5

Harmonically Forced Vibrations: Applications

The frequency response enables analysis and design in a variety of applications of vibrations theory.
The vibrations in mechanical machinery caused by rotation of unbalanced masses can be effectively
modeled as periodic forcing with frequency related to the rotation rate. Design guidelines for vibration
attenuation and suppression platforms, or seismic vibrations in general can be informed by studying
the frequency response of systems subject to displacement inputs. Vehicles traveling on undulating
roads experience resonant vibrations in the suspension system depending on the vehicles velocity
and the road’s undulation wavelength. Accelerometers use the vibrations of an internal proof mass
to estimate acceleration in an inertial frame. In all of these vibrations problems, system design is
informed by analysis of the respective frequency response. Some systems need to operate below res-
onance (e.g. rotating imbalance, vehicles, accelerometers), while others (e.g. vibration attenuation)
need to operate above resonance.

Introduction

In the previous chapter, we introduced frequency response analysis as a powerful tool for studying
forced vibrations in single degree of freedom (1-DOF) systems such as the Mass-Spring-Damper.
Despite its simplicity, this method is widely used in engineering analysis and design. In this chapter,
we explore some applications of frequency response analysis to gain valuable insights and design
principles. Although the models used in this chapter are highly simplified, they still provide useful
guidelines.

To illustrate the effectiveness of frequency response analysis, we will consider four different phys-
ical systems in this chapter: (Section 5.1.1) rotating machinery imbalance and its effect on support-
ing platforms, (Section 5.1) vibration control and attenuation such as in vibration-isolation optical
tables, (Section 5.2) suspension system vibrations when traveling on undulating roads, and (Sec-
tion 5.3) accelerometer design. By examining the frequency responses in these systems, we can derive
useful design guidelines. However, it is important to note that the interpretation of the frequency
response in each problem will be different. For example, in rotating imbalance, the natural frequency
of the support platform needs to be higher than any potential imbalance frequency, which means
the system needs to operate below resonance. On the other hand, in floor vibration isolation, the
natural frequency of the support platform needs to be lower than any possible floor vibrations, i.e.,
the system needs to operate above resonance.

While the examples we consider in this chapter are based on 1-DOF systems, it is important to
note that more complex systems may require additional tools presented in later chapters for n-DOF
systems. Nonetheless, the concepts and principles discussed in this chapter provide a foundation for
understanding frequency response analysis and its application to engineering design.
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(a) Rotating imbalance is typically caused by (b) A simplified model of rotating imbalance is shown here where

—A\—

VA e

unbalanced rotating machinery anchored to a only vertical motion is possible. A mass M (which is the sum
platform or other piece of machinery that is it- of the platform’s mass and the “balanced” portion of the rotat-
self connected to a rigid platform (here shown as ing mass) is constrained (shown here as constrained by vertical
ground) by flexible attachments (here depicted “guides”) to move only vertically. (Left) The imbalance is mod-
as a spring and damper). Unbalanced rotation eled as a mass m constrained to move in a circular path of radius
is caused by the rotating element being slightly I around the point connecting M and m. [ is the radius of gy-
off-center, depicted here as an unbalanced mass ration of the unbalanced mass. (Right) With the reaction force
in red. analysis below, it is possible to replace the rotating mass m with

an effective time-varying force f(t) on M.

€, = -sin(0)€, + cos()e,

(C) Free Body Diagrams of M and m showing only (d) R, can be found by modeling the centripetal acceleration of m
the reaction forces R, and R, exchanged between relative to M. (Top) Since the motion of m relative to M is con-
them. The connecting rod is assumed rigid, and strained to be circular with constant é, then the acceleration (7,,,,/1\,1
therefore it just transmits those reaction forces
from M to m. Since M is constrained to move
vertically, only R, is needed to model the effects
of rotating imbalance.

of m relative to M is purely centripetal and is equal to —16? &,.
The acceleration @p; of M is constrained to be purely vertical. (Bot-
tom) The moving radial coordinate unit vector &, can be expressed
in terms of the stationary cartesian coordinate unit vectors &, €y,
and the angle coordinate 6.

Figure 5.1: Rotating imbalance and a simplified version of its analysis.

5.1 Vibration Control

In this section we look at simple examples of vibration control in the form of suppression or atten-
uation. This is a topic of wide applicability in industrial and laboratory settings, as well as in the
analysis of seismic effects on structures and buildings.

5.1.1 Rotating Imbalance

Rotating imbalance is a type of mechanical vibration caused by uneven distribution of mass around
an axis of rotation. This results in a time-varying force acting on the rotating body. A familiar
example to most readers would be unbalanced rotation of a washing machine drum, which may
cause excessive vibrations (and even a “walking behavior”) if the resonance conditions are just
right. Rotating imbalance in industrial settings can lead to excessive wear, decreased efficiency, and
reduced lifespan of components. It is typically corrected by re-balancing the rotating assembly to
distribute mass more evenly, but that may not always be possible, and a full understanding of the
phenomenon requires a vibration analysis using the tools developed so far.

We consider the simplified set up shown in Figure 5.1. The first Figure 5.2 shows a platform whose
support structure is modeled as a spring/damper combination. An unbalanced rotating element is
attached to the platform. In the following analysis we replace the rotating unbalanced mass with
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an effective time-varying reaction force (see Figure 5.1b). The setting then becomes a Mass-Spring-
Damper (MSD) system with an externally applied harmonic force whose frequency can be related to
the angular velocity of the rotating element. This is the setting of harmonically forced MSD systems
analyzed in the previous chapter, and thus the tools we developed are applicable to this problem.
The following assumptions are made to simplify the analysis.

1. The assembly (platform and rotating mass) can only move vertically in the y direction. This
means the lateral balance of forces need not be analyzed.

2. The rotating mass m rotates with uniform angular velocity 6 = w = constant. This means that
the motion of m relative to M is purely circular. Those two assumptions together imply that
the acceleration @,,,, of m relative to M is purely centripetal, and therefore (see Figure 5.1d)

—

Tjpg = G —py = — 16 €. (5.1)

Now for the modeling

e The effect of the rotating mass m on the mass M is completely described by the vertical reaction
force R, since lateral motion is zero. We need to find R, in terms of the acceleration of the
rotating mass.

e Refer to Figure 5.1d to see that the moving radial unit vector €, can be written in terms of the
stationary cartesian unit vectors €, €, and the angular coordinate ¢ as

e (t) = —sin(6(t)) €& + cos(6(t)) &, (5.2)

The vertical acceleration of m is is obtained from (5.1) and (5.2) as follows

@, = dy — 10%é,

m

i(t) e, — 16 (—sin (6(t)) & + cos (6(1)) gy)

= (162sin(00)) & + (i(t) — 10% cos((1)) ) &,

o The vertical component of the acceleration @,, must be provided by the vertical reaction force R,
and the Newton’s 2nd law for the small mass m states

m(gj(t)flézcos(ﬂ(t)n - -R,

o The same vertical reaction force R, acts on the mass M (along with the spring and damper), and
Newton’s 2nd law for M is

Mig(t) = —kyt) — cy(t) + Ry
“ky(t) — eg(t) —m (gj(t) 142 cos(e(t)))

Now substituting § = w and 6(t) = wt and gathering terms

(M 4+m)ij(t) + cyt) + ky(t) = mlw? cos(wt)

. . 2 _ m 2 . k — c
= ) + 2w Y(t) + wyy(t) = 375w cos(wt), Wn =\ 31 €= P Tt (5.3)

Equation (5.3) is that of a harmonically forced MSD system with mass M + m. Note that the
forcing term has factor of w? in it, i.e. the forcing amplitude increases with increasing frequency. This
has a physical explanation. The term [ cos(wt) is the vertical position of m relative to M. Therefore
—lw? cos(wt) is the vertical acceleration of m relative to M, and consequently mlw? cos(wt) is the
reaction force on M producing that relative acceleration. We can therefore say that the system (5.3)
is driven by the acceleration of m.
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Figure 5.2: The frequency response (5.4) of the rotating imbalance problem, where y is the platform’s oscillation
amplitude. To as low y as possible, operation in the regime 2 < 1 is needed. This implies that the resonant frequency
wn of the platform’s supports needs to be much higher than the operating imbalance frequency wy. In this low
frequency range, the response is very well approximated by Q2 as shown.

Analysis of the Frequency Response

Since (5.3) has a pure sinusoid as an input, the platform’s steady-state oscillation is also a sinusoid
of the same frequency

y(t) = y cos(wt +6).

The amplitude of oscillations y is obtained from the frequency response (4.14) (note that mlw? is
the amplitude of the forcing) as

1 1 5 1 w? /w2 5
y = — mlw® = — ml wy, (Q = w/wn)
k\/(1-02)2+4¢202 k/(1—02)2 +4202
2 2
_ 1 {2 ml A = L mi (5.4)

Eya—o2)2raczaz Mmoo A Q22 yaceqr Mim

This frequency response is shown in Figure 5.2. The main features are that the frequency response
goes to zero for low € (it behaves like Q2 for Q < 1), and in that range, it is relatively insensitive to
the choice of ¢. Thus a design guideline emerges. The operating condition should be below resonance,
i.e. in the regime

Q= wi <1 = imbalance frequency : w << Wy, : platform’s natural frequency
n
If the angular velocity of the rotating imbalanced element is fixed. This fixes w, and we therefore
need to make the resonant frequency wy, high so that the system is excited much below resonance.
Since w, = \/k/(M + m) this means either making M small (perhaps not a feasible option) or
“stiffen” the support structure thus making k large.
As Figure 5.2 indicates, for low {2 the magnitude frequency response is well approximated by

y = @ 37, Q<0.5.

This is the regime of typical design. As the log-log plot shows, to achieve a factor of 100 reduction
in amplitude y, the natural frequency w, needs to increase by a factor of 10. If the masses are fixed,
then the only design freedom is k (w2 = k/(m + M)). Thus for a 100-fold reduction in amplitude,
the support’s £ would have to be stiffened by a factor of 100 also.

5.1.2 Transferred Force

An important consideration in the design of heavy machinery is quantifying the various forces that
support structures are subjected to during operation. Consider the simple system shown in Fig-
ure 5.3a where some unbalanced rotating machinery is mounted on a platform that is in turn
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anchored by a support structure to the ground. As in Section 5.1.1, the rotating imbalance can
be modeled as a periodically time-varying force on an equivalent mass. This force will cause the
platform to vibrate, and in turn the spring and damper modeling the support structure will exert
forces on both the platform as well as the ground. It is important to quantify those forces since in
some situations, they could be sufficiently strong to damage the ground anchors.

The analysis of this system will demonstrate another use for phasor analysis, namely when
the output to be analyzed is not a displacement or velocity, but rather a force, which is a linear
combination of both. Referring to Figure 5.3a again, note that the ground force f, is the sum of
the spring and damper forces. Combine this with the differential equation for the system developed
earlier, and rewrite them in terms of ¢ and w,

mi(t) + ci(t) + kz(t) = fu(t) E(t) + 2Cwy 2(t) + wi 2(t) = = fu(t), (5.5)
fa(t) = ci(t) + kx(t) L fo(t) = 2¢wn 2(t) + w2 z(t).  (5.6)

We are interested in the frequency response from fi, to f, rather than to the displacement z.
However, since f, is a linear combination of x and its derivatives, the phasor analysis done earlier
for displacement is useful. Let the forcing f,(t) be a sinusoid of frequency w, then we know that the
steady state response z(t) will be a sinusoid of the same frequency, and consequently both &(t) and
fe(t) will also be sinusoids of that same frequency. Specifically

fo(t) = 11, cos(wt)
1/m
(Jw)? + 2¢wn (jw) + wi

% ‘i?g‘ = ‘ZCwn (jw) f(—l—wzf(

= ;C(t) = XCOS(wt + 9)7 X = |)2| = ‘ b (frequency response f}, — )

fa(t) = fg cos(wt + ), %fg

(from (5.6), phasor of & is (jw)x)

— [2€wn () + w2 ¥

The above two equations together give the amplitude frequency response from f;, — f as the product
of the response fi, — x with the response x — f, (note the cancellation of the common factor m)

Vwd +4CCw2 w?

V(@2 —0?)® + 4022 o2

1442 Q2 B
N \/(1 - 92)2 +4¢2 Q2 Q:=w/wn. (5.7)

fé _ 2¢wn (jw) + w121

i (jw)? + 20w (jw) + wi

A plot of this frequency response is shown in Figure 5.3b for various values of 0 < ¢ < 1. It is
interesting to examine how this response serves as a design guide. If large support forces are to be
avoided at all frequencies, then we should have a lot of damping with ( — 1. In this case however,
the transfer ratio is close to 1 over a large range of frequencies (including those above resonance).
If it is desired to keep the transfer ratio significantly less than 1, then wy should be lower than the
operating machinery frequency w (i.e Q = w/w, > 1, and ¢ should be less than 1. This would give
a significant reduction in the transfer ratio as seen in the frequency response plot. However, this
comes with a risk. If for some reason the operating frequency w is reduced to near resonance, the
support anchors will experience much larger forces than if ( &~ 1. This is a design tradeoff that
needs to take into account realistic operating conditions as well as contingencies. Having frequency
response graphs like that of Figure 5.3b enables a systematic approach to design tradeoffs.

We now compare the above design guidelines with those in the previous subsection for platform
vibrations due to rotating imbalance. For platform vibrations reduction, the guidelines are the
opposite of what we have here, i.e. that we should make wy higher than the operating frequency
(by stiffening the supports). However, this leads to transferring larger forces to the ground. Thus
the two guidelines are conflicting! If we want to minimize transferred forces, we will have to live
with larger platform vibrations. If we want to minimize platform vibrations, we need to insure that
ground supports are sufficiently strong to withstand the large transferred forces.
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(a) Any structure anchored to ground and sub- (b) Magnitude frequency response of the “transfer ratio’ fg/fi, between
ject to forces that cause vibrations will “trans- the two forces. At very low frequencies Q &~ 0 the ratio is one since the
fer” some of those forces to its ground support. spring simply transfers the static loading on m to an equal static loading
Here a rotating imbalance subjects the platform on the ground support. At resonance, the ratio can be much larger than
to a force f,. The ground attachment of the one. At very high frequencies Q2 — oo, the ratio goes to zero, but much
platform is then subjected to the transferred more “slowly” as ¢ — 1. There is a sort of “waterbed effect”; if ¢ is used as
force fg. a design parameter, then increasing ¢ reduces the ratio at resonance, but
it increases it at frequencies higher than resonance. Note that the ratio
fg/fo = 1 at exactly two frequencies Q2 =0 and Q = V2.

Figure 5.3: Analysis of the transferred force from a vibrating machine to the ground support of a platform.

5.1.3 Vibration Isolation/Attenuation

In an earthquake, the ground moves beneath your feet. The ground is no longer an inertial frame, but
rather a moving platform. We have already encountered this setting with “displacement forcing”
in Section 4.3.1, and we recap it here in the context of vibration attenuation and isolation. For
seismic applications, it is important to quantify the effect of ground movement on a structure.
On a smaller scale in laboratory settings, certain sensitive equipment and experiments need to be
mounted on a vibration isolation platform, i.e. a specially designed tabletop that reduces the effect
of floor vibrations on the equipment mounted on the tabletop. Optical experiments for example are
particularly susceptible to such floor vibrations, and vibration control platforms for such experiments
are called “optical tables”.

A simple 1-DOF vibration isolation set up is shown in Figure 5.4a, where a spring and damper
element model the support structure of a platform. The vertical ground motion w(t) is the input
to this system, and the analysis goal is to characterize the dynamic effects of ground vibrations on
the platform vibrations x(t). We will see that by appropriately designing m, k, ¢, we can achieve a
certain level of ground vibration attenuation but only in certain frequency ranges. Figure 5.4b show
a more sophisticated system where an electronically controlled actuator produces a force in addition
to the spring and damper. Such a system performs what is generally termed “active” vibration
attenuation. Other vibration attenuation and isolation schemes involve multiple masses, and those
will be considered in later chapter when analyzing systems with multiple degrees of freedom.

The mathematical model for the system in Figure 5.4a is written down as follows. The vertical
axis shows the coordinates in an inertial frame. The ground’s position is u(¢) (in this case, the
ground is no longer an inertial frame), and the platform’s position is x(t). If the spring is assumed
to have an equilibrium length of L, then Newton’s 2nd law for the platform reads

m @(t) = —k(z(t) —u(t) — L) — c(@(t) —u(t)).

where z(t) — u(t) — L is the extension of the spring length above equilibrium. The constant factor
of L can be eliminated by defining the new position variable

which is a simple offset from the platform’s position. The differential equation above can now be
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(a) When a platform is mounted on a floor or ground
that is vibrating, both coordinates of the platform as
well as ground have to be measured in an inertial frame
as shown here. This diagram depicts a passive vibration
attenuation system which in a 1-DOF model consists of
a spring and a damper.

clix
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vibration attenuation region
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Q:=w/w,

(C) The frequency response from ground vibrations ampli-
tude u to platform motion amplitude x. The vibration at-
tenuation region where the amplitude ratio is < 1 is for fre-
quencies Q > /2. Note that higher damping ratios ¢ gives
lower x/u ratios in the vibration attenuation region at the
expense of higher resonance peaks.

fa

LWIGE

(b) Active vibration attenuation systems have an “actuator” (de-
picted here in green) in addition to the passive components mod-
eled as a spring and damper. The actuator exerts a force f, on the
platform that is typically electronically controlled through some
feedback mechanism that measures the platform’s vibrations and
reacts using an active vibration feedback control algorithm.
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(d) For quantitative analysis and design, the frequency re-
sponse is best viewed on log-log plots (also known as Bode
plots) as shown here. For example, if ( = .15 and vibra-
tion attenuation by at least a factor of 100 is desired, then
€ > 30. Since the floor vibration is not a design parameter,
the systems resonance frequency w, must be 30 times lower

than any expected floor vibration frequency.

Figure 5.4: Analysis of the effects of floor vibrations on a platform. Typically vibration attenuation ratios of much
less than 1 are needed. This means that the platform’s m, k, ¢ should be designed so that its resonance wn is lower
than the expected ground vibration frequency. This makes for heavy platforms (large m) and lower spring constants
k as is the case for optical tables.

rewritten in terms of Z and u as

(t) =
(t
()

The system (5.8) has the ground displacement «(t) as an input, and platform displacement ()
as an output. To find the frequency response, we note that it is in a form to which Theorem 4.2

directly applies. The “transmission ratio” of ground-to-platform vibrations is given by the Theorem
as

IS1H

m 2(t) +c 2(t)
2(t) + 2¢wn (1) +

_l’_
~ 3
=

=

~—

=]

=

&
I
[N}
~
&

=]

(5.8)

1+ 4¢2 Q2
(1—02) +4¢2 02

‘ 20w (jw) +wi
(Jw)? + 2¢wn (jw) +wi

0= w/wy, (5.9)

where the last equality follows from observing that this fraction is mathematically exactly the same
as that in Equation (5.7). Only in this case, it is a ratio of displacements rather than a ratio of
forces as in (5.7).

The frequency response of x/u is shown in Figure 5.4c (note that it is exactly the same as that of
Figure 5.3b, but interpreted now as ratio of displacements rather than forces). The purpose of this
system is to insure that platform vibrations are smaller in amplitudes than ground vibrations. If
that were not a requirement, we can simply connect the platform with a rigid structure to ground,
and then x = u. The design requirement is therefore that x/u < 1, i.e. “vibration attenuation”. By
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Figure 5.5: (Left) A suspension system where the length L is the distance between the road surface and some
designated point on the vehicle’s body at equilibirum. (Right) The vertical elevation of a terrain is described by a
function h(z) where z is the horizontal coordinate. A vehicle moving at constant velocity o is at location = = ot at
time ¢t. To the vehicle, the road surface appears to be a time-varying function u(¢) = h(@t), and the suspension spring
extension is then y(t) — u(t) — L, where y(¢) is that designated point on the vehicle’s body.

looking at Figure 5.4c we see that this is only possible in the region Q > /2 which we label as the
“vibration-attenuation region”. Since the frequency range of vibration attenuation is higher than
the natural frequency of the platform, we say that the system must operate above resonance. This is
in contrast to the rotating imbalance problem, where the system must be designed to operate below
resonance.

It is important to note that the the frequency of ground vibrations w = Qw, is not a design
parameter but rather a design specification. To suppress ground vibrations in a particular frequency
range, the platform’s parameters m,c, k must be designed so that the natural frequency is signifi-
cantly below that frequency range. For instance, in large buildings where a laboratory optical table is
to be housed, vertical floor vibrations are in the range of 5-50 Hz. Therefore, the natural frequency
of the platform should be below 2 Hz, which requires platforms with large masses m and rather
soft springs k. It is also worth noting that lower damping ratios ¢ provide better attenuation in the
vibration-attenuation frequency region shown in Figure 5.4. However, if a very low damping ratio
is used, one must ensure that there is no possibility of floor vibrations at the resonance frequency,
as lower damping ratios produce higher resonance peaks.

5.2 Vehicles over Undulating Terrains

Certain roads are designed with regularly spaced features, such as expansion joints between segments
on concrete highways, typically spaced 10-30 meters apart. After some time, the road may experience
buckling which causes those segments to deform slightly in the vertical direction. This produces a
road terrain with a slight vertical oscillation with a well-defined spacing or “wavelength” A. A
vehicle traveling at constant velocity © on such a road will experience these undulations as a vertical
time-varying force of temporal frequency v/A. Indeed, to travel a distance A (e.g. in meters) at
velocity @ (e.g. in meters/second) takes a time of A\/? seconds. This is the period of the apparent
force, so its frequency would be /A Hz. If this frequency is close to the natural frequency of the
suspension system, then resonance phenomena occur where the vehicle will bounce up and down
uncomfortably. The reader may have experienced this phenomenon first hand.

We consider a simple analysis of this setting as illustrated in Figure 5.5. The following quantities
are used in the modeling.

e y(t): Height of vehicle relative to absolute ground (i.e. in an inertial frame).

e h(x): Height of terrain (relative to absolute ground) as a function of the horizontal coordinate x.
e 7: Constant forward velocity of the vehicle = the vehicle’s horizontal position at time t is z = vt.
e [: Equilibrium length of the suspension’s spring.

As the vehicle moves with position = ot, the height of the terrain as s function of time is h(0t).
Assume a sinusoidal terrain

h(z) = h cos((2m/A) z)
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The spatial wavelength of the terrain is then A. A vehicle moving with constant velocity ¥ over such
a terrain will experience this as a time-varying height

u(t) = h(vt) = h cos((27/A)v t) = u cos (wt), w:=27 T/, (5.10)

with frequency w := 27 /.
Given the definitions above, the suspension’s extension (positive extension means upward move-
ment) is given by (y(t) — u(t) — L). Newton’s 2nd law for the vehicle is then (ignoring gravity)

m i) = —k ((0) ~ult) ~ L) ~ e (y(t) ~u(t) ~ L)
= —k(y(t) —u(®)— L) —c(y(t) —ut)).

To analyze the vehicle’s vibrations and in particular to asses their effects on passenger comfort, we
need the vehicle’s position in an inertial frame. If we define a new vertical position variable

y(t) = y() - L,

then () is y(¢) in a new inertial frame with a shifted origin. However, Equation (5.11) now simplifies
to

(5.11)

my(t) = —k(§(t) —u(t)) —c(y(t) —at))
S mi) + i) + k) = ca(t) + ku(?)
(now divide by m and rewrite in terms of ¢ and wy)

= G(t) + 2Cwy (1) + w? G(t) = 2Cwn a(t) + w? u(t) (5.12)

This equation represents a dynamical system whose input is the road undulation u(t), and the output
is the vehicle’s vertical displacement in an inertial frame g(t). Observe that Equation (5.12) has
exactly the same form as Equation (5.8) encountered earlier in modeling floor vibration attenuation.
This is not surprising since both equations are modeling very similar physical settings, namely the
effect of a vibrating ground on the vibrations of a supported mass.

If u(t) is sinusoidal, then §(t) is sinusoidal with the same frequency, and the amplitude ratio y/u
is given by the amplitude frequency response, which we have already calculated (Equation (5.9)) in
the previous section as

VA S U Q= w/ewn. (5.13)
\/(1 _ 92)2 4 4C2 02

The frequency response is the same as that shown in Figure 5.4. If the road undulations and the
vehicle’s speed conspire so that the forcing frequency w is at resonance w,, then we expect large
amplitude of oscillation for §. Let’s do a quick calculation. Assuming a suspension system with
damping ratio of { ~ 0.25, the amplification near resonance (w =w, < Q=1)is

_ V1+4¢  V/1+4(025)°

Ulo—y VAC? \/4(0.25)2

To see what that means for a typical vehicle, we use the following parameters

C |<

<<

~ 2.24. (if ¢ ~ 0.25)

_ miles 1 hr 1609 m m
U= X 5500 < T~ 0
k = 80,000 N/m (assuming k = 20,000 N/m at each of the 4 tires)
m = 2,000 Kg (:> Wy = \/k/m =6.32rad/s = 1 Hz)

Now using the relation (5.10) w = 27 5/ we see that at a velocity of 65 miles/hr resonance will occur
when A is approximately
v 30 m/s

Ares ~ 21 — = op 2 & 30
T o 7 6.32 rad/s "
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Figure 5.6: The amplitude frequency responses from road undulations u to (top) vertical vibrations § and (bottom)
vertical jerk z. In each figure, the bottom axis (in blue) shows the normalized frequency Q = w/wy, while the top axis

(in red) shows the equivalent vehicle speed v = % w = %wn € in miles/hour assuming road undulations wavelength

of A = 30 m, which results in a “resonance velocity” of approximately 65 miles/hr. It is the jerk amplitude z, rather
than the vibrations amplitude § that quantifies passenger comfort. The jerk plot demonstrates that the only way to
reduce passenger discomfort is to lower the vehicle’s velocity. The damping ratio ¢ = 0.25 is used for these plots.

Thus if traveling at 65 miles/hr on a road whose undulations have wavelength of 30 m, the road
undulations will be amplified by a factor of two in the vibrations of the suspension system. A
road height variation of say 10 cm (which is relatively small) will cause the vehicle to oscillate
10cm x 2.24 = 22cm vertically with a frequency of 1 Hz (i.e. up, down and up again in 1 second).
This can make for a rather uncomfortable ride.

When faced with such a road, the only way to reduce the vibrations is to move away from the
resonance condition. The only control the driver has over the parameters is the vehicle’s velocity .
Should the vehicle go faster or slower to avoid resonance? Recall that the frequency of u(t) is given
by

w = 2w U/

Thus the faster the vehicle the higher the frequency and vice versa. Let’s set the road undulations
wavelength to 30 m, and vary the vehicle’s velocity instead. Figure 5.6 (top) shows the frequency
response with axes labeled by velocity v as well as normalized frequency 2. It shows that the
higher the frequency above resonance, the lower the vibration amplitude of § would be, implying
that perhaps the vehicle should go faster. However, Figure 5.6 also shows that at low frequencies,
the amplitude frequency response y/u is close to 1. This is similar to the static case; if the road
height moves up by a certain amount, then so does the vehicle’s vertical position in an inertial
frame. However, this would not be considered uncomfortable by any passenger. The reason for this
“apparent paradox” is that we are using the wrong criterion for passenger comfort as explained next.

In suspension system design, passenger comfort is most directly related not to the amplitude of
displacement, but rather to the jerk, which is the derivative of acceleration

d3
tical jerk: t) == — y(t).
vertical jerk: z(t) s g(t)
We therefore need to find the frequency response from road undulations u to the resulting vertical
jerk z. A differential equation for the jerk can be derived directly from the equation (5.12) for § by
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differentiating both sides three times

(1) + 20wn §(t) +wi G(t) = 2Cwn w(t) + wp u(t)

= 7O + 2w 7Y O + i 7P () = 20wn WD (t) +wf P (2)
(differentiating both sides 3 times)

= 5(t) 4 2Cwn 2(t) + w2 2(t) = 2Cwn uP () + w2 u® (1) (5.14)

This is an input-output differential equation of the form to which Theorem 4.2 is applicable, and we
can therefore write down the complex frequency response directly as

2wy (jw)t + w? (jw)? 2wy (jw) + w?

v4 o
i _ "
g (Jw)? + 2(wn (jw) + wi () (jw)?2 + 2w, (jw) + w?

— 3 . 3 o .

- - dividing by

Jw (OJE —oﬂ) + 7 2Cwn w Jw (1— WQ/WI%) + j 2C w/wn (dividing by w?)
1 j 2¢ Q
= _ng Q3 + J C (Q ::w/wn = w:an)

1—02) + 209

Taking the magnitude of this complex ratio gives the amplitude frequency response (the phase
response is not relevant here since we are only interested in the amplitude of the jerk)

5 2 ()2
z |Z] 3 3 V1 4+ 402 Q (5.15)

_ = — = W

u o dl /022 a2

Observe that the fractional part of this frequency response is exactly the same as the response to §
calculated earlier in (5.13). The response to jerk calculated above has an extra factor of Q3 which
is not surprising since the jerk is the 3rd derivative of position. Note that the ratio z/u above has
dimensions of acceleration over distance 1/s?, as are the units of w?.

The frequency response (5.15) is shown in Figure 5.6 (bottomn). It is different from the frequency
response to position § shown in the same figure. The extra factor of Q3 keeps the response very low
at low frequencies as might be expected from physical intuition. Low vehicle velocities produce lower
jerks. Another notable difference is that the jerk response keeps increasing beyond the resonance
frequency 2 = 1, unlike the position response which decreases beyond resonance. This also makes
physical sense. Although the position response y/u decreases above resonance, the frequency is
also higher above resonance, and since the jerk is the 3rd derivative, its amplitude (relative to
displacement) is much higher due to differentiating a high frequency signal three times. The jerk
response shown in Figure 5.6 implies that the only way to reduce uncomfortable vibrations is to
lower the vehicle’s speed to below resonance.

5.3 Accelerometers and other Vibration Sensors

An accelerometer is a device that measures acceleration using the motion of a suspended proof mass
inside an enclosure. Imagine you are in a car or a plane that is accelerating at a constant rate (this
is of course only true for short times such as when the plane is taking off). Without looking outside,
you can estimate the acceleration by holding up a pendulum and observing the angle the pendulum
makes with the vertical axis. More sophisticated arrangements are required when measuring rapidly
time varying accelerations as is possible with modern MEMS accelerometers. We begin by using
basic vibration theory to examine the simplest possible accelerometer model, and then give a brief
introduction to high-performance accelerometer design using the the principle of “force balance”
feedback.

Consider the arrangement shown in Figure 5.7a. An enclosure (shown in blue) contains a “proof
mass” m connected to the enclosure through a spring and damper!. In our simple model we assume

1Often the connection is through some elastic element like a flexure, which has some small inherent damping, but
actual damping elements are typically not used.
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D 2 D 2

(a) A mass m is suspended inside an enclosure (b) Much better performance is possible when the accelerometer is oper-
and the position x(t) := p(t) — z(t) of the mass ated using the “force balance” principle. An actuator (shown in green)
relative to an enclosure can be measured by some exerts a force f(t) between the enclosure and the proof mass. The
type of sensor. This relative distance obeys the force is generated by some feedback algorithm on the sensed distance
dynamics (5.17) of an MSD system “forced” by z(t) = p(t) — z(t) such that z(t) is kept as close to equilibrium as pos-
the inertial acceleration 2(t). Over a certain fre- sible. The inertial acceleration can then be “read off” from the force
quency range (called the bandwidth of the sen- f(t) required to keep the mass motionless relative to the enclosure. This
sor), the signal z(t) is proportional to the signal scheme increases both the sensitivity and the bandwidth of the accelerom-
Z(t). eter.

Figure 5.7: Simplified schematics of accelerometers which use the motion of a “proof mass” inside an enclosure to
estimate the acceleration Z of the enclosure in an inertial frame. The coordinate axis outside the enclosure represents
an inertial frame (inaccessible to direct measurements), and the coordinate inside the accelerometer is the position of
the proof mass relative to the enclosure, which is something that can be readily measured.

motion in only one dimension. The coordinate of the enclosure in an inertial frame is denoted by z.
The purpose of this device is to measure the inertial acceleration Z(t) of the enclosure, even though
we don’t have access to an inertial position measurement like z(¢). Inside the enclosure however, we
can measure the relative distance p(t) — z(t) between the two inertial coordinates p(t) of the proof
mass and z(t) of the enclosure. This can be implemented by a variety of schemes depending on the
type of device?.

Now since p(t) is the position of the mass in an inertial frame, Newton’s 2nd law says

mp(t) = —k(p(t) —z2(t) — c(l) - 2()), (5.16)

where we have assumed the origin of the coordinate system for measuring p — z inside the enclosure
is such that p — 2z = 0 corresponds to the spring’s equilibrium. The only thing we can directly
measure is the relative position p(t) — z(t), so let’s rewrite the equations in terms of this quantity

a(t)=p(t)—=(t) < pt)=xz(t)+ =)
= Equation (5.16) becomes m (&) +2(1) = —ka(t) — cz(t).

Rearranging this equation so that 2(t) is the input and dividing my m so that the parameters are
expressed in terms of ¢ and wy,

mi(t) + ci(t) + ka(t) = —mi(t)
= B(t) + 20w &(t) Fwi z(t) = —alt), a(t) := 2(t). (5.17)
The inertial acceleration Z(t) has been relabeled as a(t) to emphasize that it is the quantity to be
estimated rather than z(t).
Equation (5.17) represents an MSD system where the inertial acceleration a(t) is the input and
the (measurable) relative distance is the output. The complex frequency response of this system is
-—1 -1 —1/w?
(Jw)? + 2wn(jw) +wi (Wi —w?)+j 20wnw  (I-w?/wi)+75 20 w/wn

| X>

The input to this system is the inertial acceleration a(t) that we want to estimate, but what is
directly measured is the output x of the system. In the low frequency region 2 < 1, this relation is

2For example, some MEMS accelerometers use “capacitive sensing” where the distance between two capacitor
plates is measured by measuring the capacitance electrically.
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(a) The frequency response from acceleration 3 to its es- (b) ‘With proportional force-balance feedback, the estimate of ac-

timate a. = wﬁf( based on the proof mass displacement celeration ac(t) = f(t)/m is obtained from the force f(t) required

% (relative to enclosure). In the frequency range where to keep the proof mass motionless. This scheme amounts to adding

the response is “flat”, a.(t) is an “undistorted” estimate “virtual stiffness” to the system and therefore increases the band-

of a(t). In this scheme, the flat region is primarily de- width. It does however reduce the damping ratio, as can be seen

termined by the system’s natural frequency wy,. from the larger resonance peak. This may cause stability problems
inside the sensor.

Figure 5.8: Frequency responses from actual inertial acceleration a to its estimate a. for (a) an accelerometer without
force balance, and (b) an accelerometer with proportional force balance. The shaded areas represent the frequency
regions over which the response is “flat”, which is a requirement for the estimate of ae(t) to be an undistorted version
of a(t). The range of such frequencies is called the bandwidth of the sensor.

approximately a static gain, which can be inverted

-1
for Q < 1, x(t) = — aft) = ae(t) = —w? x(t), (5.18)
wn

ae(t) := estimate of true acceleration a(t)

Now the frequency response from actual acceleration a to its estimate a. is

. 2 *1/‘”3 o 1
T U — 2w 1 2wl (L—w?e?) + ) 2C wfewn

[N
| X>

This frequency response is shown in Figure 5.8a. In the low frequency regime, this frequency response
is approximately 1, which means that the signal a.(t) will be similar to the signal a(t) with little
distortion. The frequency range over which this relationship is accurate is called the bandwidth of
this sensor. This is the region where the frequency response is almost “flat”, i.e. the gain is the same
for all frequencies in this region. To fully understand this point requires understanding of system
responses for more complex signals than just pure sinusoids. We will study this in Chapter 6 where
we will demonstrate a beautiful relationship between the frequency response of a system and the
Fourier transform of its input and output signals. For the time being, the point to keep in mind
is that for high fidelity sensing in a certain frequency range, the frequency response of the sensor
needs to be flat. For signals with frequency content beyond the flat region, the reconstruction of
ae(t) using (5.18) will result in a “distorted” version of a(t).

Figure 5.8a shows the flat region of the frequency response to be approximately 2 < 0.4. Modern
day MEMS accelerometers have a nominal natural frequency in the low KHz, about 1-5 KHz, which
then restricts the bandwidth to approximately 0.4-2 KHz. One way to increase this bandwidth is
of course is to increase the system’s natural frequency wy, by stiffening the spring or decreasing the
mass. There is always a limit to how high w;,, can be (even if its possible to fabricate such a device)
due to noise considerations which we now briefly discuss.

We can demonstrate the effect of noise on the reconstruction formula (5.18) as follows. Recall that
the relative distance z(t) is measured by some sort of sensing device which converts that quantity
to a voltage, e.g. capacitive sensing in MEMS accelerometers. There is always a certain amount of
electronic noise in any measurement, and we can model that as an additive noise signal

am(t) = 2(t) + n(t),

where x(t) is the true relative position, n(t) is unknown measurement noise (i.e it cannot be measured
directly), and z, (¢) is the measured relative position. Since zy,(t) is the only measurement we have,
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we can try to reconstruct a(t) using the formula (5.18) applied to it (instead of x(¢), which we don’t
have). Thus the estimate aS(t) of the true acceleration a(t) is

al(t) = wy zm(t) = wn (2(t) +n(t)) = wnz(t) + wan(t) = alt) + wy n(t)

The term wyn(t) is therefore the error in the estimate of a(t), which is the quantity of interest. If w,
is chosen too high, then this reconstruction formula will significantly amplify the noise to produce
large errors in the estimate.

Remark 5.1. There are further issues with the reconstruction of acceleration just described which are
beyond the scope of the current discussion. We describe them briefly for a larger context.

1. The phase frequency response of the sensor’'s frequency response has not been examined. The
phase response also plays a role in whether the estimate of acceleration is distorted or not. For the
flat regions shown in Figures 5.8, the phase response is rather minimal.

2. The reconstruction of acceleration can be further enhanced over a somewhat larger bandwidth
than described above by “deconvolution”. This is a signal processing technique which “inverts”
the frequency response over a slightly larger frequency bandwidth than those shown in Figures 5.8.
It uses a frequency dependent version of the inversion formula (5.18), but implemented in the time
domain. However, this comes at the expense of a time-delay in the estimate. Whether this delay is
acceptable or not depends on the application. For data gathering such as characterizing a structure
or other system identification applications, delays are tolerable. If the accelerometer is used as a
sensor in a feedback control system, delays may be very detrimental to the stability of the system
being controlled.

5.3.1 Accelerometers with Force Balance

The performance of the accelerometer can be greatly enhanced if operated with force-balance feed-
back. The force-balance principle is an ingenious idea that has been rediscovered many times over.
In the case of the accelerometer, it operates as illustrated in Figure 5.7b. An actuator applies an
additional force f(t) to the proof mass. This force is determined by a feedback algorithm that senses
the relative motion z(¢) and applies the force necessary to keep it at zero. In other words, it tries to
keep the mass motionless relative to the enclosure, and the force required for this must be propor-
tional to the acceleration of the enclosure. In this scheme, the estimate of a(t) is actually obtained
from the force f(t) required to keep x(t) near zero. At first, this scheme might seem to be unneces-
sarily circuitous, as well as needing the expense of an additional component (the actuator), and the
design of the feedback algorithm. It does however have two very significant advantages; it improves
the sensitivity and accuracy of the sensor (see Appendix 5.A), and it can increase its bandwidth
by sometimes an order of magnitude. As already mentioned, many MEMS accelerometers have a
natural frequency wy, ~ 1 — 5 KHz, which results in a usable bandwidth of ~ 0.4 — 2 KHz when
operated without feedback. High performance MEMS accelerometer that use force-balance feedback
can easily achieve bandwidths in the 20-30 KHz range.

In this subsection, we will carry out the analysis to show how the accelerometer bandwidth can
be increased using two different feedback schemes. This will also serve as an introduction to the
analysis of composite dynamical systems that have more than one component. We will show how
various frequency responses of “subsystems” can be combined using “block diagrams” to obtain
descriptions of an overall composite system.

The proof mass subject to the additional force f(¢) (Figure 5.7b) has the following dynamics

mi(t) + cz(t) + kx(t) = —mz(t) + f(t)
= B(t) + 2Cwad(t) + wiz(t) = —a(t) + Lf(t), a(t) == Z(¢). (5.19)
The task of this force is to “cancel” the effects of inertial acceleration, so if f(¢)/m is equal to a(t),

then the mass will be motionless. Thus a read out of f(t)/m would give the inertial acceleration. As
already mentioned, the actuator force is determined by some feedback scheme on the displacement
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2(t). The simplest such scheme is to have it proportional to the mass’ motion as a “restoring force”

ft)

where g is some constant called the feedback gain. This kind of scheme is called proportional feedback.
Note that x(¢) is a position measurement typically obtained electronically, and the actuator force
f(t) is determined by an electronic signal (e.g. a voltage command to an actuator), and therefore the
constant g in (5.20) is typically the “gain” of some electronic amplifier (e.g. built with an Op-amp).
Note the similarity of the force law (5.20) to that of a spring (Hook’s law) where g is analogous to
a spring constant The feedback scheme (5.20) can therefore be thought of as a “virtual spring”, i.e.
an electronically simulated spring force.

Now we combine the proof mass dynamics (5.19) with the feedback scheme (5.20) to analyze the
overall dynamics

—g z(t), (5.20)

E(t) + 2wnd(t) +wlz(t) = —a®)+Eft) = —alt)+ L gz (5.21)

= E(t) 4+ 2Cwn 2(t) + (wi 4+ B)z(t) = —al(t)
= B0 +2 (¢ ) wgat) + el at) = —alt), e
(5.22)

Note how the constant g enters the coefficients of this equation as “spring constant” equivalent to
an additional spring in parallel to k. Equation (5.22) is that of an MSD system forced by a(t) and
having a new natural frequency of w, and a new damping ratio of {(wn/wg). Either g or wg can be
considered a “design parameter” since specifying one determines the other

wli=wl4+ £ & g=m (W] —w}).

The estimate of a(t) is obtained from the feedback force f(t). If the actuator force insures the mass
is nearly motionless, then the terms on the right hand side of equation (5.22) must add up to nearly
zero, i.e. f(t)/m must be almost equal to a(t) to cancel it. Thus we define f(t)/m as the estimate

aq(t) of the actual acceleration a(t)
ac(t) == Lf(t) (estimate of inertial acceleration a(t) when using force-balance feedback f(t))

The next question is how should w, (or equivalently the feedback gain g) be designed to improve
the performance of the accelerometer? To answer the question, we need to find the frequency response
from a(t) to a.(t) and see what role the constant g plays. First note that a.(t) is proportional to
the relative displacement z(t)

alt) = L 1(t) = — % gat).
The frequency response from a(t) to z(t) can be read off from (5.22) and combined with this pro-
portionality relation to give

2 2
—g -1 Wy — wy

M G a2 (e o) bed () 42 () wg () + 2

> | X>

(5.23)

where the last equality g/m = w? — w? follows from the definition (5.22) of wg. This is a frequency

response of MSD system with natural frequency ws. Recall that the bandwidth of such a system is
largely determined by its natural frequency (refer to Figure 5.8a). This gives a design guideline; to
increase the sensor’s bandwidth by a factor of «, choose g such that w, = cwy,. Note however that
if the natural frequency is increased by a factor of «, then the damping ratio ((wn/wg) = (/a is
actually decreased by the same factor of .

Figure 5.8b shows this frequency response when w, is chosen to be a factor of 10 times wy, for an
attempt to increase the bandwidth by a factor of 10. Note that the bandwidth in indeed increased,
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but since the damping ratio has also been decreased by also a factor of 10, a higher resonance peak
is seen, which tends to reduce the range where the frequency response is flat. In this case the
bandwidth appears to have increased by about a factor of 7, which is still significant. Note also that
the “low frequency gain”

~ = 1= ~ 1
a, w2 10%w? 100 "

l

. 0 (fe/m)  w2—wl  10%w? —w? 100 — 1
at w =~ U, ~

which also holds approximately in the flat frequency range. Thus over the usable bandwidth, the
estimate a. is almost identical to the actual acceleration a.

Analysis of Force-Balance Feedback Schemes Using Block Diagrams

It is now useful to “zoom out” to get a better idea of the system “architecture” to really understand
what we are doing. The “block diagram” illustrated in Figure 5.9 will be a useful guide. We will
repeat the derivation of the overall frequency response (5.23) using this block diagram, and this
analysis will be useful for any other more elaborate feedback scheme such as the Proportional-
Integral (PI) feedback presented later. Block diagram analysis is a very useful tool, so it is worth
spending some time on it using the accelerometer example as a motivation.

The proof mass dynamics (5.19) and its frequency response can be rewritten as follows (recall

that ac(t) = L f(t))

= 3, —a

(s
o)X >

F(t) + 2Cwnd(t) + w2z(t) = ul(t) (jw)QHCin(ijwg =: M(w)

The frequency response M(w) is to be regarded as a system that takes the input 0 = &, — 3 to
produce the output X. The system M(w) is represented in Figure 5.9 as the grey block. Its output
is labeled %, and note how the summing junction forces its input to be 0 = a — a.. The signal a
(the inertial acceleration) is provided externally, while the signal 4. (the acceleration estimate) is fed
back from the output of the overall system. Each block in a block diagram represents an equation.

For example

(represented by the summing junction)

= (jw)2 T 2Cwn(jw) n wg = M(w) 54 X = M(w) G (represented by the grey block)

The remaining blocks in Figure 5.9 are the force equation (5.20) and the estimate equation

f(t) =g z(t) & f=Fw) % F(w):=g  (green block F(w)) (5.24)

ae(t) = % f(t) & a. = % f (green block %)

The phasor relations in this case are simple since force equation F(w) := g is just a multiplication by
the the constant g (proportional feedback). However, we defined it here more generally as a possibly
w-dependent multiplication to analyze more elaborate force feedbacks in the next scheme.

The feedback diagram 5.9 gives some intuition. The quantity a. — a is the estimation error since
it is the difference between the acceleration estimate a. and the true acceleration a. If a. is higher
than &, then the error 4. — a positive. This positive error is then amplified in the “forward loop” first
by going through the mass dynamics M (w), and then going through F(w) = —g. Thus it becomes a
“negative feedback” that reduces a. as a corrective action. Let’s test this intuition mathematically
by calculating the frequency response from a to a., which is the frequency response of the overall
system depicted as the dashed block in the figure. The following calculation will be done for a
general force law F(w) which will be useful in analyzing more elaborate feedback schemes.
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Force balance

Proof mass dynamics feedback algorithm
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a f ae

Figure 5.9: Any force-balance feedback scheme for the accelerometer can be represented using a block diagram.

\

x>

Each block in this diagram represents the frequency response of an input-output system. Each of the labels &, x, Ff7
de represent the phasors of the signals a(t), z(t), f(¢), and ac(¢t) respectively. The summation junction (depicted as
the circle with the + sign) models the input to the proof mass dynamics which is “estimation error” 4 — . between
the actual acceleration a and its estimate .. The description of the overall system as a feedback between subsystem
blocks M(w) and F(w) guides the calculation of the overall “closed-loop” frequency response from a to 3. depicted as
the blue dashed block.

To obtain the frequency response from a to a., begin with the output signal 4. and “work
backwards” through each of the blocks as follows

de = 2 f = LFwx =1 Fw Muw) (3-8 = LFwMw) dc — LF(w)M(w) a
N (k%F(w)M(w))ée = — LF(w)M(w) a
ac —LF(w)M(w)
= 3 - W (5.25)

This elegant and simple formula gives the frequency response of the overall feedback system from

the frequency responses of the subsystems’ blocks M(w), F(w) and % Note that the analysis leading

to this formula is quite general since it didn’t depend on the details of the systems M(w) or F(w).
Applying formula (5.25) to the proportional feedback scheme

. 1 (- 1 g/m
A Tm U8 GoyiatunGoter  _ Ge)PiXenGe)twl g/m
A - 1 1 - - . 2 . 2
a 1-— m (‘g) (G@) 2+ 2Cwn (jw) f w2 1+ (jw)2+2%£;7:(jw)+w,2] (]W) + 2<wn(]w) +wy + g/m
2 _ 2
= g th (w2mw2+ &= &+ & = k)

(jw)? + 2Cwn (jw) +wg

This is precisely the frequency response (5.23) obtained earlier. However the calculations used earlier
to arrive at (5.23) were only possible because of the simple nature of the proportional feedback
scheme. For more elaborate feedback laws (such as the PI feedback discussed next), it is necessary
to use the formula (5.25).

Force Balance with Proportional-Integral (Pl) Feedback

The force-balance proportional feedback scheme presented earlier is not the best one. More elab-
orate schemes can actually do much better, and those are indeed employed in high-performance
accelerometers. One such scheme is described in this subsection.

A common feedback control scheme is the so-called Proportional-Integral (PI) control, which for
the force-balance feedback would be of the form

10 = = (e o®) + & [ () ar). (5.26)

where the “proportional gain” g, and the “integral gain” g; are design parameters to be determined.
This feedback scheme has the following intuitive interpretation. The first term —g,z(¢) is a restor-
ing force proportional to the instantaneous position deviation z(t). The second term represents a
restoring force that is proportional to the integral of position deviation, i.e. the “past history” of
this deviation. This gives better behavior of the feedback at slow frequencies. If the deviation ()
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- T
— 3./a without force feedback
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Figure 5.10: A comparison of the frequency response of the accelerometer without force-balance feedback (blue
curve) and with Proportional-Integral (PI) force-balance feedback (green curve). The bandwidth is clearly increased
by more than an order of magnitude without increasing the resonance peak that the proportional-feedback scheme
of Figure 5.8b suffers from. The resonance peak of the PI scheme is in fact smaller than that without any feedback.
The useful bandwidth of the PI feedback accelerometer is about 1.5 orders of magnitude than without feedback.

is small, but lasts a long time without switching sign, then the integral term will be large (despite
z(t) being small) and therefore result in a larger overall restoring force.

To understand the performance of this scheme, we need to look at the overall frequency response.
For this we need the frequency response from measurement x to actuator forcing f. We know how
to compute frequency responses for input-output systems described by ODEs. The relation (5.26)
however involves an integral. This can be easily converted to a differential equation by differentiating
both sides of (5.26) once to arrive at

ft) = —g @) — g a(t).

This is an input-output ODE to which Theorem 4.2 is applicable, and the (complex) frequency
response from x to f is readily obtained as

_& (W) + & (5.27)

"= )

X> | =h>

Note that in contrast to the case of proportional feedback (5.24), F(w) is no longer constant in w,
but it is frequency dependent. It is this additional design freedom that gives it superior properties.

To obtain the frequency response of this system, we simply use formula (5.25) using F(w)
from (5.27) and M(w) from the mass dynamics

G _ —mF@M@w) ~ (_ Bl gi) P TR o TR
@ TeaF@Me) (‘ gp((j;g)+gi) G TGy TR
_ gp (Jw) + g
m(jw) ((jw)+2Cwn(jw) + w%) + gp(jw) + g
gp (Jw) + g

m (jw)? + 2muwn (jw)? + (mwy + gp) (Jw) + g

Note that the denominator of this response is 3rd order in w. This is because the differential
equation for the mass is 2nd order, while the differential equation for the force feedback is 1st order.
It can be shown that in a composite system, the order of the overall differential equation is the sum
of the orders of the differential equations of all subsystems, which in this case is 2 + 1 = 3. This
results in a 3rd order frequency response.

The design parameters in this scheme are the proportional and integral gains g, and g; respec-
tively. This is a standard exercise in feedback control system design and is beyond the scope of the
current discussion. By way of illustration, Figure 5.10 shows an example design with g, = 100
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Figure 5.11: A force or pressure measurement device (e.g. load cell) operates on the principle of measuring the
deflection of an elastic element in response to an applied force. Deflection can be measured with a variety of sensors
such as strain gauges, interferometers, optical encoders, etc. (Left) A model of such a device is a (nonlinear spring)
whose deflection « can be related to the applied force using a calibrated (z, f) curve (right) describing the deflection as
a function of the applied force. The (z, f) curve has the typical characteristics of a “stiffening spring”. The sensitivity
of this force sensor is given by dz/df, where it is highest in the “linear regime” where small deviations in f give the
largest possible deviation in x (since the accuracy of sensing is determined by the displacement sensors). For such
a sensor, good accuracy is in general not guaranteed when large forces are applied. The sensor thus has a limited
“dynamic range”.

and g; = 1000. The figure clearly shows a significant bandwidth increase of about 1.5 orders of
magnitude over the case of no feedback. Unlike the case of pure proportional feedback, the increase
in the resonance peak that occurs with that scheme is avoided here. In fact, the PI scheme reduces
the resonance peak as well as increases the bandwidth simultaneously.

Appendix

5.A The Force-Balance Principle

The force-balance principle is a method for enhancing the performance of sensors. It is an ingenious
technique that has been rediscovered repeatedly in many different types of sensors. The basic idea is
summarized here for force/acceleration sensors, but other instances of its use are briefly mentioned
towards the end to emphasize that this is a widely applicable method.

A common force sensor is the “load cell”. It is basically a relatively stiff elastic element which
deforms under the application of a force, its deformation is measured by a displacement sensors (e.g.
a strain gauge), which then gives an indirect measurement of the force. A schematic of such a sensor
is shown in Figure 5.11. The elastic element is modeled as a (nonlinear) spring. When a force f is
applied, it deforms by = amount. The applied force can then be obtained from the deformation z
using a calibrated (z, f) curve (shown on the right in the figure) for that particular elastic element.

The (z, f) curve shown in Figure 5.11 has the typical behavior of a “stiffening” spring, the larger
the displacement, the larger the incremental force ¢ f required for an incremental displacement dzx.
If this sensor is to be operated over a large range of possible forces, the entire (x, f) curve needs to
be known by some calibration procedure.

A key consideration in the design of any sensor is its sensitivity. Referring to the (z, f) curve, if
a force of value f is applied, the spring will deform with displacement Z given by the (z, f) curve.
If the displacement sensor has an error of §x, then the error in determining the force is given by

of ~ f(x)ow,

where f'(Z) is the derivative of that curve at the displacement Z. In regions (of displacement) where
f'(z) is large, a larger error in determining the force is obtained compared to where f’(Z) is small.
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Figure 5.12: The force sensor operated using the force-balance principle. The deflection x is sensed, and is fed back
to produce the actuator force fa required to counteract the externally applied force f so displacement is kept at zero
z ~ 0. This required actuator force is then the measurement of the externally applied force. In this manner, the
sensor is always operating in the linear regime shown in Figure 5.11, which is the regime of highest sensitivity. When
operated in this manner, the force-balance sensor has much higher sensitivity over a large dynamic range.

The sensitivity of the sensor at displacement Z is defined as the inverse of the error ratio

, tivity at T oz 1
sensor’s sensitivity at T (= — = ——.
5f at f/(x)
If a small change in the force produces a large change in displacement, then the accuracy in deter-
mining the force is higher for a fixed displacement sensor’s accuracy. This is depicted in Figure 5.11
for two cases where the f/(Z) is low (high sensitivity) and f’(z) is high (low sensitivity). For a typical
stiffening spring type sensor, the area of highest sensitivity is around zero displacement, sometimes
referred to as the “linear regime” of sensing. There two major difficulties with such a sensor.

1. The sensor requires extensive calibration. The (z, f) curve needs to be obtained accurately
through a collection of experiments where a calibrated force is applied and the resulting dis-
placement recorded. Each elastic element is likely to have an (z, f) curve that is slightly
different from another.

2. The behavior of many elastic elements is that of a “stiffening” spring, so that when larger
forces are applied, the derivative f’ becomes larger (stiffer), and the sensitivity 1/f’ becomes
lower. This limits the “dynamic range” of the sensor to a maximum force for which acceptable
sensitivity is required.

A force sensor that uses the force-balance principle resolves both of the two difficulties listed
above. Such a sensor is depicted in Figure 5.12. It requires an actuator capable of providing an
opposing force f,, as well as a feedback mechanism that works to keep the elastic element at close
to zero deformation. The externally applied force f then is equal to the required actuator force
fa, and therefore the force measurement is read off from f,. This means that the sensor is always
operating in the region around Z = 0, which is the region of highest sensitivity. The dynamic range
of force measurements is thus determined by the largest force f, the actuator can provide rather
than the stiffening of the elastic element. Thus the sensor is always operating in the “linear regime”
regardless of the applied force. Furthermore, the only calibration required is the single number of
the stiffness f/(0) around zero deflection rather than the entire (z, f) curve.

The scenarios described above are static ones, and they show that a force-balance sensor gives
the highest sensitivity over as large an applied force magnitudes as the actuator is able to provide.
There is also the very important dynamic property of significantly increasing the bandwidth of the
sensor as demonstrated for accelerometers in Section 5.3.1.

As mentioned, the force-balance principle is used in many other types of sensors. Below is another
notable example.

Hot-wire Anemometers in Constant-temperature Mode:
The Constant Temperature Anemometer (CTA)

A hot-wire anemometer is a local gas velocity sensor. A very thin wire placed in a gas flow is
resistively heated. Due to convective heat transfer to the flow, the faster the flow, the lower the
temperature of the wire when heated with constant power. The wire’s temperature can be read off
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from its resistance, which can be determined from its voltage and current. The bandwidth of this
sensor is related to its heat capacity, which determines how fast its temperature can react to changes
in gas velocity. Thin wires of diameters in the few microns have a bandwidth in the 100’s of Hz
when operated in this mode.

An alternative mode of operation is in “constant temperature mode”, and is more commonly
referred to as the Constant Temperature Anemometer (CTA). As mentioned, the wire’s temperature
can be sensed electronically by monitoring its voltage and current. A feedback circuit then alters
the power delivered to the wire so that its temperature stays constant regardless of flow velocity
fluctuations (and consequently convective heat transfer fluctuations to the gas). The power needed
to keep the temperature constant is then “read off” to compute the gas’ velocity. The force-balance
principle here is that the wire’s temperature is akin to the position of the spring in a load cell. The
variable power applied to keep that temperature constant is akin to the actuator force applied to
keep the load cell deflection constant. When hot wires are operated in this mode, their bandwidth
can be dramatically increased by 2 or 3 orders of magnitude to the range of 10’s of KHz. The
CTA was invented in the 1960’s, and remains as the state-of-the-art measurement technique for high
temporal resolution turbulence studies. The dynamic response of the anemometer can be analyzed
with similar frequency response techniques used earlier for force-balanced accelerometers.
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Chapter 6

General Forced Vibrations

The superposition property of linear systems enables response analysis for general and complicated-
looking input signals when they are written as a sum of simpler signals. A periodic forcing signal
can be expressed as a Fourier series sum, and the superposition property implies that the response to
the periodic input is the total sum of the responses to each of the individual harmonics in its Fourier
series. More generally, any not-necessarily periodic forcing signal can be written as an integral with
respect to its Fourier transform, also known as its “spectrum”. The systems we deal with have the
remarkable property that the spectrum of the output is simply the product of the input’s spectrum
with the system’s frequency response. This “frequency domain” analysis gives much insight into the
resulting vibrations with the “shape” of the system’s frequency response encoding all of its dynamical
properties. Transfer functions evaluated on the imaginary axis give the system’s frequency response,
and the poles and zeros of the transfer function give insight, as well as design guidelines, for the
system dynamics.

6.1 Introduction: Linearity and the Superposition Principle

In previous chapters we analyzed the steady-state response of constant-coefficient ODEs to a single
sinusoidal input. The main tools used were phasor analysis and the frequency response. These
same mathematical tools can be used in much greater generality to analyze the response to more
complex signals. The key property that enables this generalization is that of linearity, otherwise
known as the principle of superposition. This property implies that once we know the response to
some simple inputs like pure sinusoids, then we can obtain the response to inputs that are made up
of all possible linear combinations of such sinusoids. Most signals of interest can be represented as
linear combinations of a finite or infinite number of sinusoids, and when we combine the frequency
response with this linearity property, we obtain a powerful method for describing the response of a
system to very general types of inputs.

The differential equations we have encountered so far have this linearity property. This follows
from the following two observations.

1. The derivative operation (of any order) is a linear operation. Indeed, take any two signals
u1(t) and us(t), and any linear combination of them

4 (a ur(t) + buz(t)) = a Lui(t) + b Luy(t),

where a and b are arbitrary (scalar) coefficients. Applying this repeatedly, we see that differ-
entiation of any order k is also a linear operation

k
% (a up (t) + buz(t)) = a %ul(t) + b ddt(,f)ug(t).

2. Any linear combination of derivative operations (of any order) is also a linear operation. For
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example

(Bon o + =+ B + o) (s (1) + bua(r))
= B i (aul(t) +bu2(t)) +o + B (aul(t) +bu2(t)) + Bo (aul(t) +bu2(t))
= a (B b B 4 Bo) ur(t) + b (Bt -+ Bk + Bo) ua(t)

There are other operations on signals that also have the linearity property (integration for example),
but the above two facts are the ones we need for analysis system responses.

Consider now an input-output system described by and ODE of the form used earlier in Theo-
rem 4.2. The differential equation can be rewritten slightly to emphasize the linearity property as
follows

any™ @)+ + D) + aoy(t) = B ™ () + - + BruD (t) + Bo u(t)
& (bt toadta)yt) = Busm +-+ B + o) ul(t) (6.1)

Thus the left hand side is a linear operation on the output y and similarly the right hand side is a
linear operation on the input w. This has a remarkable consequence: suppose we know the outputs y;
and yo to the inputs u; and us respectively. If a new input to the system is some linear combination
of u; and wue, there is no need to re-solve the system to find the output to this new input. The
new output is simply the same linear combination of the respective outputs y; and yo. This is a
fundamental principle that we state precisely next.

The Superposition (Linearity) Principle

Let w; and us be two inputs to a system producing outputs y; and yo respectively, i.e.

(ands+ a1t +a0)yi(t) = (Bt + -+ Bl + ao) wi(t),
and (an%+...+a1%+ao)y2(t) :( m%+...+51%+a0) us (t).

Let a, b be scalars, then the output corresponding to the linear combination input a u; +bwus
is the same linear combination of the respective outputs, i.e.

(ands +- - +ar1d +a) (ayl(t) +by2(t)) = (B + -+ Pt + ) <GU1(?5) +bu2(t))~

The proof of this principle is done by simply adding the top two equations to obtain the third
one. This also implies that the linearity principle applies not only to linear combinations of two
input, but any number of inputs. More precisely, if a1,...,a, are any scalars, and uq,...,u, are
input signals with corresponding outputs y1, ..., yn, then the input a; u; + - - - + a, u, will produce
the output ayy1 + - -+ + a, y,. We will see that this argument applies also to combinations of an
infinite number of signals as will be the case of Fourier series studied later in this chapter.

Example 6.1. Given a Mass-Spring-Damper system with a forcing that is made up of sinusoids of two
different frequencies

mE(t) +ci(t) +ka(t) = ficos(wit + 61) + fa cos(wat + 62), (6.2)

we can use the linearity property to find the steady-state response by finding the response to each of the
two forcing terms separately. Let x1 and x5 be the steady-state response to the following two inputs

miy(t) +cz1(t) + kai(t) = ficos(wit+01) = z1(t) = [%1] cos(wit + LX), (6.3)
mia(t) + cao(t) + kaxa(t) = fycos(wat + 02) = 2o(t) = |Xa| cos(wat + £X3), (6.4)
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where the phasors X; and X of z1(t) and z2(t) must be obtained from the frequency response at the
two different frequencies wy and wy as follows

)A(l = H(wl) flejel 1
- ; h H = .
%3 = H(ws) fael®” where () m(jw)? + c(jw) + k

The linearity property then implies that the solution to (6.2) is simply the sum of the solutions to (6.3)
and (6.4)

x(t) = x1(t) + x2(t) = [X1| cos(wit+ £X1) + |X2| cos(wat + LX2).

The example above is not restricted to inputs with two different frequencies. The same linearity
property is applied to an input with any number of sinusoids with different frequencies (we now use
complex exponentials rather than cosines for simpler expressions of amplitude and phase relations)

N ~ .
ka e]wkt (65)
k=1

N
>
k=1

mz(t) +ci(t)+kx(t) =

= z(t) = el WKt where X = H(wy) fk. (6.6)

Therefore, provided we can evaluate the frequency response H(w) at any desired frequency, the
formula (6.6) gives a simple method for determining the steady-state response. The linearity property
can be used in this manner for any system described by an input-output ODE of the form (6.1), and
the corresponding frequency response is readily obtained from Theorem 4.2.

The linearity property can be applied to even more general inputs than finite linear combinations
like (6.5). We will see in the next section that it can be applied to infinite series such as the Fourier
series decomposition of arbitrary periodic signals. We can go even further and think of a continuum
of linear combinations. We will also see in the next sections that if the input is a “linear combination”
of a “continuum” of components with different frequencies

u(t) = / i(w) e?“tdw, (ﬂ(w) is the “component” of u(t) at frequency w), (6.7)

— 00

then the corresponding output can be expressed as a similar continuum linear combination in terms
of the frequency response

y(t) = /OO y(w) tdw, where y(w) = H(w) 0(w). (6.8)

— 00

Note the similarity between the expression (6.6) and (6.8). The first is a sum over a finite set of
frequencies {wk}gzl, while the second is an integral over all possible frequencies. The expression (6.8)
is the most general one since it allows for signals that contain all possible frequencies —co < w <
0o. The reasoning behind (6.8) is again the superposition property. If we plug in the Fourier
representation (6.7) of the input in the system’s differential equation

ar d dm d o0 ,
—_— e —_ = R e _ I Jwt
(O‘”dt" tootag + a0> y(t) <5mdtm + B o +ao> (/ i(w) e dw) ,

— 00

and observe that y(w)e/“! = H(w) G(w) e/*? is the response to each “component” G(w)e/“! of the
input, then the total response y(t) is given by the integral (6.8).

We will see that the Fourier Transform provides the right mathematical tool to justify the above
arguments, to describe signals with rich “content”, and to characterize the response of dynamical
systems to such complex-looking signals.
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6.2 Response in Frequency Domain: Fourier Series & Transforms

We first treat periodic signals using their Fourier series and express a system’s response using Fourier
series and the frequency response. We then consider a system’s response to arbitrary signals using
the Fourier transform.

We will use the “complex form” of Fourier series where any T-periodic signal can be written as
the infinite sum

u(t) = Y g o= (6.9)

k=—o0

where @ is the fundamental frequency and the term e/*** of frequency k@ is called the k’th harmonic
component of u(t). The complex coefficients {iy} have the conjugacy property 0., = G} when u(t) is
a real function (which is always the case here). Appendix 6.A contains a more extensive background
on Fourier series and justifications of the previous statements.

Now consider the response of a general ODE input-output system to the periodic input (6.9). We
know from the frequency response Theorem 4.2 that the response to each term iy, /¥ is ¥, e7*®t
where the relation between the phasors iy and Yy, is given by the frequency response, i.e. for any k

(O‘"%+"’+0ﬂ% + ag) g 7 = ( m%Jr...Jrﬂl%Jrao) iy IRt
where ¥, = H(k®) dy.

Combining this with the linearity property, we conclude that the response to the infinite sum (6.9)
is also an infinite sum of responses at the same respective frequencies kw, i.e.

oo )
(an%+...+m% + ap) ( Z 9kejk‘*’t> — (Bm%+"'+51%+a0) ( Z ﬂkejkwt> 7
k=—00 k= —oo
where y, = H(kw) g, k=...,—2,-1,0,1,2,....

We summarize this conclusion next.
Theorem 6.2. Consider the input-output system

(an;T: oo s fag)y(t) = (ﬁm% + 4 B+ ao) u(t),
where the input u(t) is a T-periodic signal with Fourier series

u(t) = Yopl o Ui €M,
The steady-state output y(t) is also T-periodic with Fourier series

y(t) = 2h oo Ii €M,

and its Fourier series coefficients {Vi}ro

&l

= 2 /T. (6.10)

are given by

g = H(kw) iy, H(w) = Znle)” bt iile) £ fo (6.11)

where H(w) is the complex frequency response of the system.

Note that the theorem statement refers to the coefficients {yj},-__ for both positive and neg-
ative k. However, the conjugacy relation y_; = y; holds, and therefore the products ¥, = H(k@) dy,
in (6.11) need only be computed for & > 0. Then the coefficients y;, for negative k are obtained from
the conjugacy relation.

Theorem 6.2 has a nice graphical interpretation illustrated in Figure 6.1. For each signal, say
u(t), the set of Fourier series coefficients {0y}, are depicted as a “bar graph” over the frequency
axis, with bars of size 0 at the harmonic frequencies kw respectively. This bar graph is referred to
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input spectrum:

X

system’s
frequency response:

output spectrum:

Figure 6.1: A graphical depiction of Theorem 6.2 expressing the relation between the Fourier series coefficients
of the input and output, and the frequency response H(w) of the system. The Fourier coefficients of a signal are
represented as a “bar graph” over the harmonic frequencies {k}7> ;. This bar graph is referred to as the spectrum
of the signal. The frequency response relation ¥, = H(k®) 0y, is represented here as the k’th Fourier coefficient 0y of
the input multiplied by the frequency response H(kw) evaluated at the k’th harmonic frequency ko to yield the k’th
Fourier coefficient y; of the output. Note that all quantities depicted above are complex numbers. Theorem 6.2 can
therefore be summarized by the simple statement: output spectrum = input spectrum X system’s frequency response.

as the spectrum of the signal. Note that since the coefficients are complex numbers, this bar graph is
somewhat of a cartoon since it does not show both magnitude and phase information. The point of
this diagram is to show the relation y, = H(k&®) Oy, which states that the spectrum of the output is
obtained by multiplying the spectrum of the input by the values of the system’s frequency response
H(w) evaluated at the harmonic frequencies {ki}y- .

Example 6.3. The Fourier series of a square wave u is worked out in Example 6.20 as
N e —9j ip2m _
u(t) =Yg lx 7 = 3y oqq 7 €T w= .

Thus the spectrum of u has non-zero components at frequencies wk for k = ..., -3,-1,1,3,.... The
amplitude of the k'th component is ;—Qg Note that the amplitude decreases with increasing harmonic
index k.

Let this signal be the input to a MSD system with frequency response (4.14)

Hw) = 1/((1 (w%)Q) +J 2C(:1)) : (6.12)

If y is the steady-state output of this system to the square wave input, then y is a T-periodic signal with
Fourier series

y(t) = Y4 oda H(k@) Z2 ethet,

where H(ki) is the frequency response function (6.12) evaluated at the input’s harmonics frequencies
{@k}. Thus the Fourier series coefficients of y are the product of the numbers H(k&) and the Fourier
series coefficients of u. Depending on where the resonances of H are, different harmonics of the square
wave will be prominent in the output. Figure 6.2 shows two different possibilities depending on how the
natural frequency of the system w,, is related to the fundamental frequency @ of the square wave.

6.2.1 The Fourier Transform

The Fourier series is only applicable to signals that are periodic. The Fourier transform is a gener-
alization of Fourier series that gives a “frequency decomposition” of non-periodic signals that have
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input Fourier series coefficients (input frequency = ) input Fourier series coefficients (input frequency = )
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Figure 6.2: Fourier series analysis of a square wave and corresponding system responses. A square wave is the input
to two different MSD systems with the natural frequencies and damping ratios shown (wn shown in terms of the square
wave fundamental frequency @). The Fourier spectrum of the square wave input (top) is shown along with the two
different systems frequency responses (second from top), and the resulting Fourier spectra of the two corresponding
outputs (third from top). Only the magnitudes (and not phases) are shown. The input and steady-state outputs are
shown (bottom) versus time. Note the significant 3rd harmonic content in the second case since the system’s resonance
amplifies this harmonic.

“frequency content” which is not necessarily harmonic. To motivate the definitions, recall that a
Fourier series of the form

oo
u(t) = Z (g elket)

k=—o00

is necessarily a periodic signal of period T = 27 /. Only harmonics k@ of the fundamental frequency
(w are present in this sum. A more general expression that gives a much larger variety of signals
is to take linear combinations over “all frequencies” possible. One way to do this is to replace the
summation with an integral and range over all possible frequencies

u(t) = [ a(w) " do. (6.13)
Note that now instead of Fourier coefficients 0y, we now have a whole function of “coefficients” G(w)
defined over all frequencies —co < w < co. There is no such thing as a fundamental frequency or
harmonics in this expression any more since all possible frequencies are allowed. The function G(w)
can be given the interpretation of the “frequency content” of the signal u(t).

If a signal can be represented in terms of the integral (6.13), how should the “coefficient function”
U(w) be found from the signal u(¢)? The answer is given by the Fourier transform which we define
together with its relation to the representation (6.13) in the following lemma.

Lemma 6.4. Given a signal u(t) defined for all —oo < t < oo, its Fourier transform is a (complez-
valued) function defined for all frequencies —oo < w < oo by

i(w) = £ _°°u(t) eIwt gt (6.14)

The signal u(t) can be reconstructed from its Fourier transform G(w) using the inverse Fourier trans-
form (6.13).
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u(t) Y

la(w)l - -

| | T : L
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(a) A non-periodic signal u(¢) and the magnitude |i(w)| of its Fourier transform (its spectrum). The spectrum
shows that the signal has frequency content mostly between 0 and 15-20 Hz. It also has two prominent peaks
around 2 and 10 Hz. None of these features are obvious from observing the time signal u(t), but they are clearly
seen in its spectrum |d(w)].

u(t)

36 36.5 37 375 38 385 39 395 40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

w (Hz)

(b) A periodic signal u(t) and the magnitude |i(w)] of its Fourier transform (its spectrum). By visual inspection
of u(t), it may be possible to ascertain that this signal is periodic with period 1. However, the spectrum |i(w)|
has very “sharp” lines, indicating that this signal is a sum of five pure sinusoids. In addition, those sinusoids are
all at frequencies which are integer multiples of 1 Hz, thus the fundamental frequency is 1 Hz. Here we see the
fundamental frequency, as well as the 4’th, 7’th, 10’th and 13’th harmonic.

Figure 6.3: Examples of, and contrasts between the Fourier transform of a non-periodic (a) and a periodic (b)
signal.

The proof of this lemma is not difficult, but is given in Appendix ??7 so as not to distract from
the main point here which is the interpretation of the Fourier transform and its uses.

The Fourier transform is an incredibly useful tool in Engineering and Science. It is the basis of
what is termed “frequency domain” analysis, which is the suite of methods for analysis of a wide
variety of oscillatory phenomena including mechanical vibrations, electrical and electromagnetic
oscillations, and acoustics amongst many others. The Fourier transform has many properties whose
study would take much more space than what is presented here. For the current topic, we are mainly
interested in the relationship between Fourier transforms of signals and the frequency response of
systems described by ODEs, which is the subject of the next section.

Example 6.5. An example of non-periodic signal and its numerically computed Fourier transform is
shown in Figure 6.3a. Note that the mathematical definition (6.14) of the Fourier transform requires
knowing the signal over all time —oo < t < oo (the range of integration in that formula). For any real
signal, only a finite duration of a signal can be recorded. To compute a reasonable approximation of
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input spectrum: -
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system’s
frequency response: !
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Figure 6.4: A graphical depiction of Theorem 6.7. The spectrum (the Fourier transform) (w) of the input signal gets
multiplied (complex number multiplication) by the frequency response H(w) of the system to produce the spectrum
y(w) of the output signal. The diagram above is a cartoon since each of the three functions (w), H(w) and y(w) are
complex-valued, and full graphical depiction would require separating into magnitude and phase graphs.

the integral (6.14), a signal needs to be recorded over a long time interval'. The signal in Figure 6.3
is collected over a time span of length 1000 seconds, and sampled at the rate of 1 millisecond. The
integral (6.14) is then approximated by a truncated Riemann sum. The Riemann sum can be calculated
in the usual way, but is more commonly done with an algorithm called the Fast Fourier Transform (FFT),
which exploits certain symmetries in the sum to substantially speed up the computation.

Figure 6.3 shows a small section of the signal for clarity, as well as its Fourier transform. Unlike a
periodic signal, this signal has no obvious repeating pattern. This is because its spectrum (its Fourier
transform) is “broad”, i.e. it has no clear sharp peaks at evenly spaced harmonics as a periodic signal
would. The spectrum shows that it has significant frequency content roughly between 0 and 15 Hz. Note
that while it is difficult to say something quantitative about the signal by looking at its time traces, more
insight into its frequency content is obtained from looking at the spectrum.

Example 6.6. An example of periodic signal and its numerically computed Fourier transform is shown
in Figure 6.3b. The spectrum of periodic signals always has sharp well-defined lines at (some of the)
harmonics of a fundamental frequency. It is almost zero at all other frequencies.

6.2.2 Steady-State Response to Arbitrary Inputs

Theorem 6.2 describes the response of an input-output system to periodic signals in terms of their
spectrums and the frequency response of the system. The next theorem gives a similar statement
for the response to arbitrary inputs (not just periodic ones) in terms of the Fourier transforms of
the input and output signals, and the frequency response of the system. The main difference is that
now we have responses at all frequencies.

Theorem 6.7. Consider the input-output system
(anjt—i +o ol 4 a0> y(t) = (ﬁm% +o Bl a0> u(t). (6.15)
Denote the Fourier transforms of the input and output respectively by

a(w) = i;wu(t) edt, W) = & ;xy(t) eIt gt (6.16)

oo

Those Fourier transforms are related by the (complex) multiplicative relation

forallw, | y(w) = Hw) i), | Hw) = et thle) £ o (6.17)

where H(w) is the complex frequency response of the system (6.15).

1To make this more precise one needs to consider the “frequency content” of the signal. We do not address these
approximation issues here.
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time-domain description:
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iFT FT E
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Figure 6.5: The contrast between the “time-domain” description of a system and its “frequency domain” description.
In the time domain (top), the input u(¢) is a non-homogenous term in an ODE, while the output y(t) is the steady-state
solution to this ODE. Thus the ODE is a system (can also be thought of as an algorithm) which takes a signal u(t)
to a signal y(t) by solving a differential equation. The frequency domain description is much simpler. The relation
between the Fourier transforms {i(w) and y(w) of the input and output respectively is simply given by the complex
multiplication y(w) = H(w)l(w) with the system’s frequency response H(w). The system’s frequency response is a
complex, rational function of w whose coefficients can be immediately read-off from the ODE.

The boxed formula in (6.17) has a simple interpretation. It should be read as follows

spectrum of output signal = frequency response of system X spectrum of input signal.

This statement is illustrated graphically in Figure 6.4. Note the contrast between this and Figure 6.1,
where only a discrete set of frequencies are involved. In the general case here, the spectra of the
input and output could be non-zero at all frequencies.

Proof. Starting from the differential equation (6.15) and substituting Fourier representations (inverse
F.T.) (6.13) for both u(t) and y(t)

(an%—i—...—i-ao) /7 y(w) eIWt do = <5m%+...+50) /7 i(w) eIt du
= /m?(w) (anjt—”;+~--+ao) I dw = /xa(w)( mjt—’l+--~+ﬁ0) I d

= /oo y(w) (an(jw)” 4 +ao) et dw = /_Z i(w) (5m(jw)m . +ﬁ0) eIt di

—o0

=: &(w) =: bw)
= for all ¢, a(t) = b(t),

where the time functions a(t), b(t) are the inverse Fourier transforms of 4(w), b(w) respectively. Since
the two functions are equal a(t) = b(t) for all time, this means that their Fourier transforms are

equal for all frequencies w, and therefore

forallo, 3w =bw) =  9w) () + - +ap) = 6(w) (Bulie)™ + -+ o)

= §w) = et ),

which is the statement (6.17). O

To appreciate the utility of this theorem, and the contrast between time-domain analysis and
frequency-domain analysis, the reader should examine Figure 6.5. The time-domain description (6.15)
is an input-output relation that involves solving an ODE. Given any input u(t), the right hand side
of the ODE is specified, and by solving the ODE and waiting until steady state is reached, the output
is obtained. The frequency domain description however is much simpler. The Fourier transforms
of the input and output are related by a simple multiplication of complex functions, without any
differentiation operations. This is another manifestation of frequency response and phasor analysis,
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time domain frequency domain

20 25 30 35 40 45 50 0 1 2 3 4

system dynamics H(w)|

wp, = 1Hz, ¢=0.3

Figure 6.6: (Example 6.8): Time-domain (left) and frequency-domain (right) descriptions of non-periodic input and
output signals. It’s difficult to get much insight into the signals and the system dynamics in the time domain. On the
other hand, the frequency-domain picture is much clearer. The spectrum of the input gets multiplied by the system’s
frequency response to produce the spectrum of the output. This gives insight into how the frequency content of the
input, and the system’s resonances contribute to the frequency content of the output.

where differential equations in the time domain are converted to algebraic equations in the frequency
domain.

Example 6.8. Figure 6.6 illustrates an example of the utility of frequency domain analysis. A particular
system (whose ODE is not shown, but it is a 2nd order input-output ODE) is fed the input w(t) shown.
This input is not periodic, but a more complex-looking signal. The ODE is solved (numerically), and the
resulting output is shown as y(t). This output signal is also not periodic and complex-looking. From
looking at the time traces of the input and the output signals, it is difficult to get either a qualitative or
a quantitative understanding of the signals and the system’s action on them.

The figure also shows the Fourier transforms of the input and output signals, as well as the frequency
response of the system. The frequency content of both signals, as well as the simple multiplicative
relation between the signal's spectrum and the system’s frequency response is now clearly visible. In
particular it is clear how the output spectrum magnitude |y(w)| is the product of the magnitude |i(w)]| of
the input's spectrum and |H(w)|, the magnitude of the frequency response of the system. Note also how
the input spectrum has only small magnitudes around 1 Hz, while the system has a strong resonance at
1 Hz, resulting in the output spectrum having high frequency content near both the system'’s resonance
as well as where the input has the bulk of its frequency content.

6.3 Impulse (Shock) Response and Convolutions

As seen in the previous section, the frequency response provides a much simpler analysis tool (com-
pared to the original ODE) of a system whose inputs are signals that persist over “long times”.
Long times are mathematically idealized as —oo < t < oo, and the signals were either periodic as
represented with Fourier series, or more general as represented using the Fourier transform. In this
section, we want to study a system’s response to signals that “start” at a given time rather than
signals that have been entering the system for long times in the past. In other words, we want to
now study the transient response. The mathematical idealization is therefore to study signals and
system responses over the time interval 0 < ¢ < oo. It is particularly useful for studying stability of
systems where responses may grow unboundedly with time and therefore the setting —oo < t < oo
would not be appropriate.

One particularly important type of input is the so-called shock or impulsive input. A typical
“shock response” experiment is depicted in Figure 6.7. An impulsive force is applied to the system,
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Figure 6.7: (Left) A typical shock response experiment depicted as “hammering” on the system. The hammering force
is modeled as a pulse of duration € and height f/e so that the total impulse (integral of force in time) is f. The duration e
should be as short as possible. (Right) The response is then recorded and the system’s parameters can be identified from
this response.

and its responses (e.g. displacements or velocities or any other quantity of interest) are recorded
as signals over time. It turns out that if the applied impulse is of very short duration, then this
“impulse response” will actually allow us to characterize the system response to any other input u
starting at a particular time. We will show that the response of the system to any other input is a
“convolution” operation of its impulse response with that input. First let’s define impulsive inputs
more precisely.

A very short duration impulse is depicted in Figure 6.7 (middle) with duration e and magnitude
f/e. The unit approximate impulse J. is such an impulse with f =1

1/e, 0<t<g,
0c(t) = { 0,/ t> e

Note that no matter what e is, the total impulse of §. (the integral of force over time) is 1, so we
refer to d. has an impulse of “strength” 1 (note that the total integral is independent of €). We
are interested in very short impulses, and ideally we want ¢ — 0. We can now define the impulse
response of the system.

Definition 6.9. Let h. be the response of the following system when the input is the approrimate
unit impulse O, i.e.

(an%+~--+a1%+ao) he(t) = (m%—F""Fﬁl%‘f’aO) 5e(t)a (618)

with zero initial conditions h(0) =0, ..., hE”'”(o) =0.
The (unit) impulse response of the system is defined as the limit h(t) := lime_o he(t).

The unit impulse response h(t) can be thought of as the response to an impulse of infinitesimally
short duration, but of strength 1. Since such an infinitesimally short duration pulse is non-physical
(it is an idealization), we have to obtain its response as the limit of responses to shorter and shorter
duration impulses. Mathematically we should point out that the limit of the input lim._q d.(¢) is
not well defined, but the limit of the responses lim,_,g h¢(t) is usually well defined.

Note that the above is just a definition, and we have not yet described how this differential
equation can be solved. This will be done in the next subsection after introducing partial fraction
expansions. For now, we assume that the unit impulse response can be found (perhaps even by
an experiment), and show how we can use it to obtain the (zero initial conditions) response to an
arbitrary input.

Figure 6.8 illustrates how an arbitrary function u(¢) can be approximated using a “modulated
train” of approximate impulses J.(t) as

u(t) ~ iu(ke) (eée(t—ke)), t>0. (6.19)
k

=0

Here u(ke) are the values of the signal u at grid points spaced e apart, and € §(t — ke) are pulses of
width €, total area ¢, and starting at the grid point ke. As the figure indicates, the approximation
gets better as € — 0. This should remind the reader of approximations to integrals using Riemann
sums.
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(a) A signal wu(t) is approximated by a (b) The piecewise-constant signal can be written as a sum of delayed im-
piecewise-constant signal shown here in red. pulses §.(t — ke) each with height given by the samples u(ke) of the original

signal u(t).

Figure 6.8: Tllustration of the approximation formula (6.19) where a signal is approximated by a piece-wise constant
signal, which in turn can be written as a sum of delayed pulses with varying heights.

he(t) he(t — d)/\

Figure 6.9: Illustration of the time invariance property shown here when the input is the approximate impulse 6.
(Left) he(t) is the response to the impulse d¢(t). (Right) If the input is a now delayed by d time units, then the output
is exactly the same as he but also delayed by exactly d time units, i.e. the response to the input d(t — d) is he(t — d).

5:() 5t - d)

response response t

Now to compute the response to an input like (6.19), we can use linearity and decompose it
as the sum of responses to each delayed impulse é.(t — ke). Note that because of linearity, the
response to the scaled impulse € () is simply € h (), i.e. the response h.(t) scaled by e. It remains
to characterize the response to a delayed impulse. This is done using an additional property that
ODEs with constant coefficients poses, which is time invariance.

Definition 6.10. Let u and y be the input and output signal respsectively of a system. The system
is called time invariant if the response to a delayed version of the input u is the same output delayed
by exactly the same amount. More precisely

if the input u produces the output y, i.e. u — vy,
ug(t) = u(t —d),
ya(t) == y(t —d).

This property is illustrated in Figure 6.9. In particular, when the input is the delayed impulse
d¢(t — ke), then the response is simply the delayed approximate impulse response h(t — ke). Now we
can combine the linearity and the time-invariance properties to find the general form of a system’s
response using convolutions. There are two steps to this.

then for any d > 0, the delayed input ugq produces yq ug — Yd,

1. Write an arbitrary input u in terms of its approximation (6.19)

u(t) =~ ieu(kje) de(t — ke), t > 0. (6.20)
k=0

2. We know that the response to each (¢t — ke) is h.(t — ke), the system’s impulse response delayed
by ke. This together with the linearity property give the total output to be

o0

y(t) ~ Y eulke) he(t — ke). (6.21)

k=0
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Figure 6.10: When the input u(t) is a collection of impulses of different strengths arriving at different times, the
systems response is the sum of all the corresponding scaled and delayed copies of the impulse response h(t). Here
y1 is the response to the first impulse in u, and since that impulse has strength 1, y; is just a copy of the systems
impulse response h(t). y2 is the response to the second impulse in u, and it is just h(t) scaled by 0.5 and delayed by
2 time units. The total response y(t) is the sum of y; and y2.

This expression has the following interpretation. At time ke, the system receives an impulse
of strength eu(ke). Its response to this input is eu(ke) he(t — ke), i.e. the impulse response
he(t) scaled by eu(ke) and delayed according to the time ke when that impulse arrives. At the
next time (k + 1)e, another impulse arrives, and the corresponding scaled and delayed impulse
response is added to the previous response, and so on. Thus the expression (6.21) represents
the accumulated response to all the delayed and modulated impulses arriving at the input at
different times and with different strengths. This idea is illustrated in Figure 6.10.

Now observe that (6.21) is the Riemann sum approximation to an integral. Taking the limit
€ — 0 gives the integral

o0

EE%EZ u(ke) he(t — ke) = /Oocu(T) h(t —7) dr

k=0

= y(t) = /O“u(f) h(t —7) dr — /Otu(T) h(t —7) dr, (6.22)

where the second equality follows from the fact that h(t —7) = 0 for t — 7 < 0, i.e. for 7 > ¢.
This is because the impulse response is zero for ¢ < 0, i.e. there is no response until the time the
impulse is applied.

Note that the impulse response h(.) used in (6.22) is the unit impulse response of Definition 6.9,
i.e. it is the limit of the approximate impulse responses h.(.) as ¢ — 0. This is the response to
an infinitesimally short duration impulse.

We now summarize all the above formally.

Theorem 6.11. Let h(t) be the unit impulse response of a linear time-invariant system. Then the
zero-initial conditions response y(t) to an arbitrary input u(t), t > 0, is given by the convolution

y(t) :/0 h(t —7) u(r) dr. (6.23)

Figure 6.11 gives a graphical illustration of the convolution formula (6.23). However, the best
visualization of convolutions is by observing animation of the process. A good tool to experiment
with such animations is found here: https://lpsa.swarthmore.edu/Convolution/CILhtml.

6.4 The Transfer Function

In this section, we introduce anther analysis tool called the transfer function which is based on
the wunilateral Laplace transform. Like the impulse response analysis of the previous section, It is
particularly suited for analysis of system response to signals that “start” at a given time rather than
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Figure 6.11: A graphical illustration of convolution where one of the signals is “flipped” in time and slides rightwards
as ¢ increases. The value of y at time ¢ is given by the integral of the product of the flipped h(t — 7) with wu(r).
Animations of this process: https://Ipsa.swarthmore.edu/Convolution/CILhtml help clarify it.

signals that have been entering the system for long times in the past. The mathematical idealization
is therefore to study signals and system response over the time interval 0 < ¢ < oco. It also turns out
that the frequency response of a system forms part of the transfer function (i.e. it can be obtained
from the transfer function), and therefore the transfer function is a more general analysis tool than
the frequency response. We will also see that the Laplace transform of the impulse response of a
system (studied in the previous section) is the same as the transfer function.

Given the importance of the concept of transfer functions, we will introduce them using two
equivalent, but different ways. The first is a simple technique sometimes known? as the “operational
calculus”, and avoids the direct use of the Laplace transform. The second approach uses the Laplace
transform and requires setting up a little bit of mathematical machinery.

6.4.1 The Transfer Function via Operational Calculus

The basic idea of the operational calculus is to replace the derivative operator % in any ODE
with the “symbol” s, use the linearity property, and algebraically manipulate expressions with the
operation s in them. For example, the simplest differential equation stating that the input is the

derivative of the output implies

i.e. that the output is the integral of the input (assuming zero initial conditions on y). In the
operational calculus, the equivalent statement would be

sy = u = Yy = —u.

In other words, if s denotes the operation of differentiation, then 1/s is its inverse, which is integra-
tion. Note that we write sy rather than sy(¢) to indicate that s operates on the whole function y
rather than on its value y(t) at time ¢.

2In the mathematics literature, this is also known as a “functional calculus”. The operational calculus and transform
analysis was introduced into Engineering by Oliver Heaviside (1850-1925), a brilliant Engineer/Mathematician who
invented much of the analysis methods used in this chapter. Unfortunately for him, he is much more appreciated
today than he was during his lifetime.
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Similarly, the operation C‘li% of repeated differentiation is expressed as s*, and integration k times
as 1/s*. We can go further and say that an operation like (% + 1), which is represented as (s + 1),
has as its inverse the operation 1/ (s + 1). But how should we interpret 1/ (s + 1)? What kind of
an operation on signals is it? The clarification is obtained using the Laplace transform, but for now
we will proceed formally with algebraic manipulations.

Consider the following input-output ODE, and rearrange each side as a “polynomial” in the

operation %
O gamy(t) -+ a1 gy(t) +aoy(t) = B gamult) + -+ B gult) + Bo u(?) (6.24)
& (andst o tard +a0)y(t) = B+ + B + Bo) ult). (6.25)

Now replace each % with its representation s* to obtain polynomials in s acting on y and u
respectively

(ans" 4+ +ais+ag)y = (Bns™ + -+ B1s+ Bo) u. (6.26)

So far this equation is simply another notation for the original ODE (6.24). However, now we
proceed (bravely) with algebraic manipulations to find y in terms of some operation on y
y = bms™ - ¥ rs+ fo u =: H(s) u, (6.27)

aps" + -+ a1Ss+

where H(s) is the rational function® of s defined above. If we can make sense of this operation H(s),
then we have in effect “solved” the ODE, i.e. obtained the output y explicitly as the operation H(s)
on the input w.

The expression H(s) in (6.27) is called the transfer function of the system (6.25). How should
we interpret this rational function of s as an operation on signals? There are several interpretations
possible, which we examine next.

Solutions through Decompositions

Any rational function of a complex number s has a Partial Fraction Expansion (PFE, see Ap-
pendix ??) of the following form
Bms™ + -+ P15+ Bo by bn

= oot : (6.28)
an5n+"’+a15+a0 sS—p1 S — Pn

where py, ..., p, are the roots of the denominator polynomial o, " +- - -+ a5+ g (assumed here to
have distinct roots), and by, ..., b, are coefficients that can be calculated from the rational function,
i.e. they can be calculated from the coefficients «y, ..., a0, Bm,--., B0 (See Appendix ?? for the
calculation procedure).

Since this is purely algebraic expression, we can apply it to the operation H(s) to decompose it
into simpler operations like

mo. b b b b
y = Bms™ + +51s+50u( LI >u L 4 —m
nS" + -+ a8+ ag s —p1 S — Pn S—D1 S —Dn

Y1t Yne (6.29)

u

Thus if we can explicitly compute what the function sf’; —u is in terms of u, then we can obtain
the full solution y = y; + -+ + y, in terms of a decomposition into simpler problems for each

yr, k=1,...,n. Now to find out what y := sﬁ’;k u is, convert this expression back to a simple 1st
order differential equation
b .
- Aad (8 =pr)yr = bru < Ue(t) — peyr(t) = bru(t).

3A function is called “rational” if it is the ratio of two polynomials.
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Recall from Section 6.3 that the impulse response of this system was found to be by, eP*?, and therefore
the general response to any input u is given by the convolution

t
() = by / P (=) (1) dr. (6.30)
0

This is the answer to the question asked earlier about what kind of operation is 1/(s + 1) on
signals. From (6.30) we see that it is the following convolution operation (again assuming zero
initial conditions)
1
U
s+1

t
y = & y(t) = /Oe'(t_T) u(r) dr.

For the more general case of (6.29), the solution is the sum of n terms like (6.30) and is therefore
t t
y(t) = i)+ +yat) = b / P y(r)dr -+ bn/ ePr ="y (1) dr
0 0

t
= / (blem(tfr) R bnepn(tf‘r)> u(r) dr.
0
Note that this last expression is the convolution of the input « with the function
h(t) = byeP*' 4+ .- 4 bePn?t,

which is the impulse response of the system.
We summarize the above as a the following procedure.

Impulse Response from Partial Fraction Expansion

1. Given the input-output ODE
ang=y(t) - + a1 dy(t) + aoy(t) = Bmgmult) + -+ Brgult) + Bo ult),

Pms™ + -+ Pis+ Bo
ans™+ -+ a1s+ag

form the transfer function H(s) =

2. Find the coefficients p1,...,p, (the roots of the denominator polynomial) and by, ..., b,

b bn
of the partial fraction expansion H(s) = L o+

5—p1 S —pn

3. The general solution y for any input w (and zero initial conditions on y) is given by the
convolution of u with the system’s impulse response h

y(t) = /0 h(t —7) u(r) dr, h(t) := by "' + - + by, P (6.31)

.

Remark 6.12. Observe the following about the procedure outlined above.

1. The partial fraction expansion in 2. shows that the transfer function H(s) is the Laplace trans-
form of the impulse response h(t) in (6.31). The Laplace transform pair eP! +— ﬁ is a standard
one from the tables.

2. The fact that h(t) is the response to an impulse is clear from the convolution expression in (6.31).
If the input is an impulse u(t) = §(¢), then the response to this input is

t
y(t) = / Wt —r)o(r)ydr = hit—7)| = k).
0 7=0
The partial fraction expansion shown above is valid for denominator polynomials with no repeated
roots. The case of repeated roots requires a slightly different treatment and more bookkeeping, and
is therefore relegated to Appendix 77.
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The Frequency Response from the Transfer Function

The observant reader will have noticed the similarity between the expression for H(s) above and the
frequency response expression (6.17). In fact, the frequency response is exactly H(s) with the term
s replaced by the complex number jw. Indeed

ﬂm8m+...+ﬁ13+ﬁ0 _ H(jw) _ Bm(jw)m—l—-..—kﬂl(jW)‘FﬂO _ H(w)

8™+ 18+ Qo |4y, an(jw) + - + o1 (jw) + ag

6.4.2 The Transfer Function via the Laplace Transform
To being with we recall the definition and some important properties of the Laplace transform.

Definition 6.13. Let u(t) be a one-sided signal (i.e. defined over the time interval 0 < t < o).
The unilateral Laplace transform* U of u is a complex-valued function of a complex variable s defined

by
U(s) := /OOO u(t) e *dt. (6.32)

We will adopt the notational convention of lower-case letters for signals and upper-case letters for
their Laplace transforms, e.g. the Laplace transform of a signal y will be denoted by Y. Notice
the similarity of the Laplace transform definition (6.32) to that of the Fourier transform (6.14),
the difference being that instead of integrating the signal against the function e/“*, we integrate it
against e %! where s is now allowed to be any complex number rather than only imaginary numbers
jw. We will return to this important observation shortly.

The Laplace transform (6.32) takes a function of a real variable (namely time ¢) and converts it
to a function of a complex variable s. Just like the Fourier transform, its utility for analyzing ODEs
is that it converts differentiations of time signals to algebraic operations on their Laplace transforms,
but first let’s see some examples.

The canonical one-sided signal is the constant, or “unit-step” Heaviside® function h(t)

1 t>0 1 h(t)
0 t<0

ht) =

Its Laplace transform is easily computed to be

H(s) = /°° ht) e~*'dt = /OO e”*tdt (since h(t) =1 for t > 0)
0 0
_ ;1 —st > _ ;1 _ _ 1
= et =L =4 (6.33)

Note that the integral is finite only if s is such that R(s) > 0, and in that case limy ;o e7%¢ = 0
as shown above. Thus the Laplace transform $(s) is only defined over the subset of the complex
plane where R(s) > 0. This is called the region of convergence of the Laplace transform of the
signal h(t). We will largely ignore issues of regions of convergence here since we will be interested
in the Laplace transform primarily to encode differentiation operations in ODEs. Another easily
computable Laplace transform is for the exponential function that “starts” at time ¢ = 0

ges)

u(t) == bt) et = U(s):/o

o0

et et = /me(“_s)tdt = ﬁ ela=s)t . = ais (0-1)
0
1
s—a’

4Also called the “one-sided” Laplace transform to distinguish it from the “two-sided” Laplace transform used for
signals defined over —oco < t < co.

5named after Oliver Heaviside (1850-1925), a brilliant Engineer/Mathematician who invented much of the transform
analysis methods used in this chapter. He is much more appreciated today than he was during his lifetime.
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Note that for @ = 0, the exponential function e is just he unit step function, and in that case the
Laplace transform 1/(s — a) is simply 1/s as derived earlier in (6.33). Further important examples
are shown in the table of Laplace transforms is included in Appendix 77

The most important property of Laplace transforms is the differentiation property. Let u be any
one-sided signal and denote its Laplace transform as usual by U. What is the Laplace transform of

its derivative y(t) := 9%(¢)? This important relation can be calculated as follows

U(s) = /U Sult) estat,

| ) et = u(t)e
0

0o

o0
+ s wu(t) e s'dt (integration by parts)
0 0

<
—~
~~
~
I
&
—~
~
~—
~
—~
VA
~
I

=—u(0) + sY(s)

If you're familiar with the Laplace transform, then you see that if we take the Laplace transform
of both sides of the ODE (6.24) (and assuming zero initial conditions) we get the following relations
between the Laplace transforms Y and U of the functions y and u respectively

an g y(t) + -+ a1 Gy(t) + aoy(t) = B fomult) +---+ Bu gu(t) + Bou(t) (6.34)
= a,s"Y(s) +-- 4+ a1sY(s) + apY(s) B s"U(s) + -4 B1sU(s) + BoU(s)
= (ns" +-+ars+ ) Y(s) = (Bus™ 4+ Brs+ Bo) U(s)
Y(s) Pms™ + -+ P1s + Bo
Uls)

S

S

= = =: H(s). (6.35)
aps" + -+ a8+

The complex function H(s) is called the transfer function of the system (6.34), and it is defined

as the ratio of the Laplace transform Y of the output to the Laplace transform U of the input.

By the simple calculation above, we see that it is completely determined by the coefficients of the

differential equation. A comparison of (6.35) and (4.27) shows that the frequency response is the

transfer function evaluated on the imaginary axis, i.e. evaluated at s = jw.
Theorem 6.14. Consider the system described by the following constant-coefficient ODE
ap gV () + apa yP V(@) + o+ ary V() + ag y(t)
= By ulD(t) + By TV + o 4+ B uMV (@) + Boult), (6.36)

where the signal u is an input and y is an output. With zero initial conditions on y, the relation
between the Laplace transform U of the input and the Laplace transform Y of the output is given by

Y(s) = H(s) U(s), H(s) = — S”+~~+(11]s+a;)’ (6.37)

where H(s) is called the transfer function of the system. The frequency response H(w) of this system
is the transfer function evaluated on the imaginary axis s = jw

frequency response = H(w) = H(jw) = transfer function evaluated on the imaginary axis.

6.4.3 Poles and Zeros: Visualizing the Transfer Function

The transfer function H(s) of a system is a complex-valued function of a complex variable s, and
therefore it is a map ‘H : C — C from a complex plane C to a complex plane C. Since a complex plane
has two real dimensions, a full visualization of the “graph” of the function #(s) requires visualizing
a graph in four real dimensions, which is very difficult. However, the magnitude |H| : C — R is
a real-valued function of a complex variable s, and this can be visualized as a graph (a surface)
over a two-dimensional plane. The so-called “rubber sheet” analogy provides an intuitive geometric
description of this graph in terms of the transfer function’s poles and zeros. This in turn helps
explain resonances that appear in the system’s frequency response.
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A complex function of the form (6.37) is a ratio of two polynomials (in the complex variable
s), l.e. it is a rational function of the variable s. Recall that any polynomial can be factored using
its roots. For example, the denominator polynomial in (6.37) has n roots (since it’s an n’th order
polynomial)

ans" + - +os+ag = an(8”+---+§f8+%ﬁ) = an(s—p1) - (s—pn),

where p1,...,p, are the roots of the polynomial. Similarly, the numerator polynomial can also be
factored in terms of its roots. The roots of both the numerator and the denominator polynomials
have special significance, so they deserve their own names as described next.

Definition 6.15. Consider a rational transfer function H(s) where its numerator and denominator
polynomials are factored as follows

Bms™ 4+ -+ Bis+ fo Bm (s—21) -+ (8—2zm)

H(s) = = — . 6.38
() 8™ 4+ 18 + g an (s=—p1) -+ (s—pn) ( )
The (possibly complex) roots z1, . .., zm of the numerator are the zeros of the transfer function since
H(z;) = 0, i=1,...,m.
The (possibly complex) roots p1,...,pn of the denominator are the poles of the transfer function
lim H(s) = oo, 1=1,...,n.
S—pi
In other words, the transfer function magnitude is zero when evaluated at the zeros z1, ..., z,, (thus
the name “zeros”), and it is infinite when evaluated at the poles p1,. .., py.

We have already encountered the roots of the denominator (the poles) when studying solutions of
homogenous ODEs. They are exactly the characteristic roots of the ODE. Recall that those give the
form of the general solution of the homogenous ODE. On the other hand, the roots of the numerator
(the zeros of the transfer function) are something new. They are a property of input-output ODEs
and do not occur if the ODE is homogenous (note that the denominator polynomial comes from
the right hand side of the ODE (6.36), which would be zero if there were no inputs). We will see
in Chapter 8 that zeros of a transfer function have an important dynamical interpretation in terms
of a phenomenon called vibration absorption. Thus, both poles and the zeros of a transfer function
have significance for the dynamic behavior of the system. In addition, they also provide a geometric
visualization of the transfer function and the frequency response as discussed next.

A real-valued function of a real variable is easy to visualize in terms of its graph, which is normally
plotted as a curve in a two-dimensional plane with one axis representing the independent variable,
and the other axis representing the value of the function. Similarly, a real-valued function of two
real variables can also be visualized in terms of its graph in three dimensions, which is a surface over
the two-dimensional plane of the two variables. On the other hand, the graph of a complex-valued
function H(s) of a complex variable s requires four real dimensions to visualize, which is beyond the
imagination of most people. However, the magnitude |H(s)| of a transfer function is a real-valued
function of a complex variable s, and can therefore be visualized as a surface drawn over the complex
plane.

This visualization of the magnitude |H(s)| of a transfer function is depicted in Figure 6.12a. Note
that the magnitude is always non-negative, so the surface of the graph is always above the complex
plane. A very useful intuition is given by the so-called “rubber sheet” analogy. Imagine the surface

first as a “flat” rubber sheet stretched over the complex plane. Mark the pole locations p1,...,pn
as points in the complex plane where “poles” (like the poles of a tent) are placed vertically, and the
rubber sheet is forced to go to infinity at those locations. Similarly, the zero locations z1, ..., z,, are

points in the complex plane where the rubber sheet is “pinned to the ground” (the “ground” is the
complex plane, and the zeros are like the ground pins of a tent). The rubber sheet then interpolates
between poles and zeros throughout the rest of the complex plane. Finally, if the order of the
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(a) The “rubber sheet” or “tent” analogy visualizing the
magnitude |H(s)| as a surface over the the whole of the
complex plane s = 0 + jw. The poles of the transfer func-
tion (the two red crosses) act like “poles of a tent” (where
|H(s)| goes to oo), and the zeros (the blue disk at s = 0)
act like “pins to the ground”.

(b) The frequency response H(w) is the transfer function

H(s) evaluated on the imaginary axis s = jw. This is
visualized as taking a “slice” of the graph of H(s) over
the imaginary axis. In particular, this gives a geometric
visualization of how poles of H(s) near the imaginary axis
(the so-called lightly-damped poles) produce resonances in

the frequency response H(w).

(s=21)--(s—2m)
(s=p1)-+-(s—pn)’
Z1y---,2m and pi1,...,pn are its zeros and poles respectively. This analogy demonstrates how poles and zeros near
the imaginary axis influence the resonances of the system’s frequency response H(w).

Figure 6.12: The “rubber sheet” visualization of a rational transfer function H(s) = where

numerator m < 7 is less than the order of the denominator (a typical case), then |H(s)| == 0, and

therefore the surface stretches down to the ground for large values of s in all directions.

The justification for the rubber sheet analogy follows from the product and ratio rules of complex
numbers. Recall that for any two complex numbers z1, z2, the magnitudes of their products and
ratios are given by

|z122] = |21] 22,

Applying these two rules repeatedly to the products and ratios in the rational function (6.38)

57m (s —21)
Qp (S _pl)

_ Bml [s==] - |5 = 2w

aw] Is=paf o s —pal

(s — zm)
(5 —pn)

H(s)| =

Recall also that for any two complex numbers s and z; for example, the quantity |s — 2| is the
distance in the complex plane between s and z;. Therefore as the variable s varies in the complex
plane, the ratio above can be interpreted as

_ Bml| Is—z1] --- |s—zm|  |Bm| product of distances from s to the zeros

el [s = pal

[H(s)]

-« |s—pn|  |an| product of distances from s to the poles’

As s gets close to a zero zi of H(s), the numerator of |H(s)| goes to zero, i.e. |H(s)| gets “pinned”
to the ground. Similarly as s gets close to a pole py, of H(s), the denominator of |H(s)| goes to zero,
which means that |H(s)| goes to infinity.

The rubber sheet analogy also gives a very useful geometric intuition for the frequency response
H(w) of the system. Since H(w) = H(jw), the frequency response magnitude |H(w)| is just the
magnitude |H(jw)| of the transfer function evaluated on the imaginary axis. Thus if we take a
“vertical slice” of the surface of [H(s)| over the imaginary axis s = jw (see Figure 6.12b), we obtain
the frequency response. Note how in Figure 6.12b the two poles close to the imaginary axis® “induce”
peaks in the frequency response (i.e. resonances) at nearby frequencies. Similarly zeros near or on
the imaginary axis will force the frequency response to be close to zero at nearby frequencies. For
example, the transfer function in Figure 6.12 has a zero at s = 0, which forces the frequency response
to be exactly zero at w = 0.

6Poles close to the imaginary axis are called underdamped poles since those arise for example in a Mass-Spring-
Damper system with very low damping ratio .
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Figure 6.13: A signal that is T-periodic is also 27-periodic. It is also kT-periodic for any k = 1,2,3,.... The
fundamental period is the smallest number T such that the signal is T-periodic.

Appendix

6.A Background on Fourier Series
Let u(t) be any T-periodic signal. This means that starting at any time ¢, the value of the signal at
time t 4 7 is the same as its value at time ¢

for all ¢ u(t) = u(t + 1),

i.e. the signal “repeats” after T time units. There is some ambiguity in defining the period because
it is also true that this signal is 27-periodic as well since

u(t) = ult+71) = w(t+71)+71) = ut+27).

Repeating this argument, we see that a T-periodic signal is actually k7-periodic where k is any
integer

for all t, wu(t)=wu(t+7) = for all ¢, wu(t) =wu(t+ k1), k=0,1,2,...

This fact is illustrated in Figure 6.13. Thus a periodic signal has many periods. If it is periodic
with period T, then it is periodic with period kT where k is any integer. The smallest such period
is however special and has a definition.

Definition 6.16. For a periodic signal u(t), the fundamental period is the smallest number T such
that

for all t, u(t) = u(t + 1),

i.e. the smallest possible period. The fundamental frequency is obtained from the fundamental period
T as 2w /T in rad/s or 1/T in Hz.

A pure sinusoid like
cos(wt), w=27/T,

is periodic with fundamental period T = 27 /®@. A sinusoid of twice the frequency has fundamental
period of T/2, but is also T-periodic as well

cos(2wt) = cos (225¢) = cos (222 (t+71)) = cos (22514222 7)) = cos (225 t+47) = cos (225¢).

Similarly, the signal cos(kwt) has fundamental period 27/kd, but it is also periodic with period
27 /@, which is the fundamental period of cos(wt), i.e. they are both T-periodic.

Definition 6.17. Consider a sinusoidal signal u(t) with fundamental frequency @
u(t) = u cos(wt + 0).

A sinusoid with k times (k an integer) that frequency, i.e.
y(t) = y cos(kwt + @)

is called a k'th harmonic of the signal u(t). While y(t) has fundamental period 2w /(k@), it is also
periodic with period 27 /&, the fundamental period of u(t). Therefore u(t) and any of its harmonics
share the common period 2w /@, the fundamental period of u(t).
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up(t) = Ay, cos(2rkt +0y), k=1, Ay =0.66, 0; =12.9°
I I

) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

we(t) = Ay cos(2rkt +0y), k=7, A =0.68, 0, =273°
[ I I [

) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

up(t) = A cos(2wkt +0), k=10, Aj =0.74, 0, =141°
I [

) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

uk(t) = A C()S(Zﬂk‘t + 9;,), k=13, A =0.66, 0, =61.6°
I I I I I

Figure 6.14: A “randomly constructed” periodic signal (bottom panel in blue) as the sum of of five signals all of
which have a common period. The top panel shows u; (t) which has frequency 1 Hz and therefore a period of 1 second.
u4(t) (second panel) has 4 times the frequency of u1(t) and therefore 1/4th of the period. Thus u2(t) has a period
of 1/4 seconds, but it is also periodic with period 1 second. Similarly all other signals are harmonics of w1 (t), and
therefore are also periodic with period 1 second, but their amplitudes and phases are chosen randomly. The bottom
panel shows the sum of all those signals, which must also be periodic with period of 1 second, but does not have any
smaller period.

Figure 6.14 shows a signal and some of its harmonics. Note that while its harmonics have higher
frequencies, and thus smaller periods, they all have the common period of the first signal. A key
observation is that the sum of any number of T-periodic signals is another T-periodic signal. In
particular, a signal of the form

Z up cos(kwt + 6) (6.39)
k=0

for any set of amplitudes u; and phases 0 is periodic with the fundamental period 7 = 27 /®.
Figure 6.14 shows an example of such a sum of a sinusoid and some of its harmonics where the
amplitudes and phases are chosen randomly. The sum is clearly a periodic signal with the same
period as the fundamental. We therefore arrive at the conclusion that any sum of sinusoids with a
common period T is a T-periodic signal. The idea of Fourier Series is the “converse” of this; given
any T-periodic signal, write it as a linear combination of harmonics like (6.39)!

There are several different forms of Fourier series. The most convenient form is in terms of
complex exponentials. Fix a fundamental frequency @, and consider an infinite sum of the form

u(t) = > g (6.40)
k=—o0

where the coefficients {ﬂk}z’;_w are possibly complex numbers. The complex-valued signal e/*®t
has frequency kw, and note that k£ can be either positive or negative. A “negative frequency” term
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is the complex conjugate of the corresponding positive frequency term as can be seen by applying
Euler’s formula

(ejk‘:’t)* = (cos(ka)t)Jrjsin(k(Dt))* = cos(kwt) — jsin(kwt) = e k&t = (=Rt

We are only interested in real-valued signals u(t) in (6.40). If we take the two k’th harmonic terms
in (6.40) corresponding to k and —k, their sum must be real, and therefore must equal its own
complex conjugate

requirement: (ﬂk eIkt g eijkm)* = { eIt 4 G, eIkt

= Oy e M an, M = R e s =0

Thus the coefficient G_j at the negative frequency —kw must be the complex conjugate of the
coefficient U at the positive frequency kw. In other words, the set of coefficients {ﬂk}gzl_ oo are
completely determined by the set of coefficients {l},—,. The former are the complex conjugates
of the latter. Finally, since the “zeroth frequency” iy multiplies the constant function e/%%* =1, it

must be a real number. We summarize the above in the following definition.
Definition 6.18. A complex Fourier series of a real-valued signal u(t) is
u(t) = Y g e (6.42)
k=—o0

where the complex coefficients {Uy} o
is periodic with period 2 /®.

satisfy the conjugacy relations G_y, = 0F. The signal u(t)

— 00

It is not difficult to find the other forms of the Fourier series from the complex form. The key is
to use the conjugacy relations. We first find the relation between the complex form and what might
be called the “phased-cosine” form as follows

[ee] ) [e’e) ‘ —1 ‘ 0o ‘
Z iy, ket — ﬂOJrZﬂk eIk@t 4 Z 0y, eIhet — Z Gy @ g, 67]k<Dt)
k=—o0 k=1 k=—o00 k=1
o . .
= lg+ Z (ﬂk eIkt 4 ay, (e]kwt)*> (since i_p = 0F and e 7*®t = (ejkm)*)
;3 .
= 0o + Z 2 R(0y, ejkm) (recall 242" =2 R(z))
k=1
o0 ) o0
= Y e = g+ Y 2|0k cos (kwt + Liy) (6.43)
k=—oc0 k=1

Observe that the magnitude and phase of the coefficient 0y, in the complex series gives the magnitude
and phase of the k’th harmonic in the phased-cosine series (with the factor of 2 taken into account).
The remaining Fourier series forms can now be easily derived from (6.43) as follows

co + Z CL COSs (k(ﬁt + Hk) = ¢co+ Z Ck Sin(/ﬂ(ﬂt + (;5k), (qbk = 0}, + m/2 since cos(¢)) = sin(¢ + 7r/2))
k=1 k=1

a = ¢k cos(Oy),

Br = —ci sin(6).

co + Z oy cos(kwt) + B sin(kwt),
k=1

(using cos(x + y) = cos(z) cos(y) — sin(z) sin(y) on cos(kwt + Gk))
These relations are summarized and their simple geometrical relations are illustrated in Figure 6.15.

We will be primarily using the complex exponential form as it is the most convenient for algebraic
manipulations and differentiation.
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e > c 0o, ¢ 2 |0g|
L ket - 0 = Uo, Ck = 2 |Ug], A
Z iy, elk® 7CO+ZC’€ cos(kwt-{-ek), 0y = L, R
k=—o00 k=1 I 2Uk
oo ) B -,Bk ™
=co+ Z cr sin(kot + ¢p), G =0+ 5 N
k=1 N, D v
\ k ://v
oo ! ’/I/
=co+ Z oy, cos(kwt) + B sin(kwt) N P >
k=1 \ _-~Ck Ok

Figure 6.15: The four different forms of Fourier series: the complex-exponential, phased-cosine, phased-sine, and
the cosine-sine forms respectively, and the relations between them. The diagram on the right illustrates the relations
geometrically for k # 0. For the constant terms k = 0, we simply have g = cp.

6.A.1 Obtaining Fourier Series Coefficients for any Periodic Signal

The previous discussion described how a series expression like (6.42) produces a periodic signal. The
converse question is: given a periodic signal, how to obtain its Fourier series coefficients? This is
given by the next statement.

Lemma 6.19. Let u(t) be a T-periodic signal. Then its Fourier series coefficients are given by the
following integral

T+T . T+T 21,27
o = 3 [ty et = 3 [ u(e) e, (6.44)

where @ = 2w /T is the fundamental frequency, and T is any starting point of the integral. From
these coefficients, the signal can be reconstructed by the (possibly infinite) sum

oo
u(t) = Z Gy emet,
k=—oc0

The proof of this statement is not difficult, but is relegated to Appendix ?? where a beautiful
geometric interpretation of Fourier series as an “expansion in an orthogonal” basis of functions is
presented. Finally, note that once the complex Fourier series coefficients (i are found, the coefficients
of any of the other three forms can be found using the relations summarized in Figure 6.15.

Example 6.20. A square wave of unit amplitude and period T is depicted in Figure 6.16. Its Fourier
series can be calculated from the formula (6.44) as

i = [ u(t)e I F At~ 4 (/Qe‘j’“g%’tdt - /Te_jsz"tdt)
0 0 %
a1 —jk2rt T —jkzze|" \ _ o (—imk _ 0 _ _—j2rk  —jnk
= Tﬁ e 0 — € T = 5k (6 —€e —¢€ +e )
T 2
; 0 k even
_ k _ )
= wr (CDF=1) { —2j  kodd.

First note that the coefficients Gy are purely imaginary, thus by the diagram in Figure 6.15 the Fourier
series of this square wave has only sine terms”. This is to be expected since this particular square wave
is an odd function of ¢, and therefore can only have sine terms in its expansion. The Fourier series of
this square wave is then written in both complex and cosine-sine form as

aty = 3 ikjejk%*t S ik sin (k25 1) . (6.45)

T
k odd k>1, odd

7A periodic signal which is an even function of time (i.e. u(t) = u(—t) has only cosine terms in its Fourier series.
If it is an odd function (i.e. u(—t) = —u(t), then it only has sine terms in its Fourier series.
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— -Square Wave
1 L
—n=1
n=>5
—n =250
O - —
1+ w
| | |
0 T2 T 3T/2 2T

. o2m

Figure 6.16: A square wave and its Fourier series u(t) = 3. _ U e?® Tt reconstructions with various series
n<k<n

sizes n. The larger n is, the more accurate the reconstruction is. The only exception is the “Gibbs” phenomenon of

peaked oscillations at the point of discontinuity of the square wave.

Although the Fourier series has an infinite number of terms, a “truncation” where the summation in (6.45)
is taken for |k| < n gives an approximation of the original square wave. Examples of such truncated series
approximations are shown in Figure 6.16. As n increases, we see that the approximation becomes better
and closer to the original square wave at every point in time, with the exception of the isolated times
when the square wave has a discontinuity (the jump points) where the so-called “Gibbs phenomenon”
appears.
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Higher-Order Systems

Vibrational analysis of complex systems with many degrees of freedom is best done using vector and
matriz notation and methods. These “matriz methods” uses concepts from linear algebra, such as
change of bases, eigenvalues and eigenvectors, and diagonalization to encode the dynamical properties
of higher-order systems. In contrast to single degree of freedom systems, a higher-order system has
more than one natural frequency, as well as specific vibration shapes associated with each natural
frequency. These are called the normal modes of vibration. The frequencies are found as eigenvalues
of certain matrices, while the “shape of vibrations” are obtained from the corresponding eigenvectors.
Ezxternally forced systems admit a frequency response analysis, in which the frequency response is a
matriz of individual frequency responses from each forcing input to each mechanical degree of freedom.
This frequency domain analysis complements the normal mode analysis, and direct correspondences
between external resonances and internal normal modes are established.

The limit of an infinite number of degrees of freedom are continuum systems, such as with the
vibrations of strings, beams, plates and acoustic waves. Those can be treated with similar linear
algebra methods as finite number of degrees of freedom systems.

1 4
2
| m i |
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Chapter 7

Normal Modes of Free Vibrations: Matrix
Methods

Systems with several mechanical degrees of freedom are best analyzed with matriz methods. The
coupled differential equations describing the dynamics are reorganized using matriz-vector products
into input-output systems where both the input and output signals are vector valued. Mass and
stiffness and other parameters now become matrices rather than scalars. With these matriz meth-
ods, complicated-looking coupled differential equations can be reorganized in a unified form for which
analysis techniques are developed. The main tool for analysis is based on matriz diagonalizations,
which in turn is based on eigenvalues and eigenvectors of matrices. An N-DOF system has n pos-
sibly different natural frequencies, and each of those frequencies correspond to a particular mode of
vibration which describes how the N coordinates move relative to each other. Figenvalues give the
natural frequencies and eigenvectors give the “shape” of the corresponding motion, which are also
called the modal shapes.

Introduction with a 2-DOF Example: Sprung Beam

We begin with a brief introduction to the methods of this chapter using the 2-DOF example of
the (rigid) Sprung Beam, or equivalently the “half car” model introduced in an earlier chapter in
Figure 1.15c. This will serve as a preview of the matrix methods developed further in this chapter
for vibrations analysis of N-Degree Of Freedom (N-DOF) systems.

Figure 7.1 shows a diagram of the sprung beam. Let = be the vertical displacement of the center
of mass, and x; and zo be the vertical displacements of the support points. Assume the origin of
the coordinate systems for x1,zo and 6 are chosen so that 1 =0, xo = 0 and § = 0 correspond to
the two springs being at equilibrium. Let m be the mass of the rigid body, then Newton’s second
law for vertical and rotational motions are

mx = —klxl—k‘gl’g,

. (7.1)
Jo =1 k1x1 -1 ]ﬂg.’tg,
where J is the moment of inertia about the center of mass, and we have assumed l; = I, = [ for
simplicity. Note the signs on the torques | k1x1 and [ koxs which are due to the sign convention on
0 being measured positively in the counter-clockwise direction. For example, when x; is positive,
spring ky exerts a downwards force on its support point, which is a positive torque on the mass. On
the other hand, when x5 is positive, spring ks exerts a downwards force, which results in a clockwise
(negative) torque on the mass.
We need to rewrite the equations above in terms of only one set of coordinates, either (z,6)
or (x1,x2), but not both. The first option is to use the kinematics to express (z1,22) in terms of
(z,0). To do this, we make the simplifying assumption (reasonable for small oscillations in ) that
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Figure 7.1: (Left) Schematic of the sprung-beam model, which has two degrees of freedom. The coordinates are
either (z1,2), the vertical displacements of the support points, or equivalently (z,6) the vertical displacement of
the center of mass and the rotation angle of the mass respectively. (Right) The kinematics used to relate the two
coordinate systems (z,0) and (z1,z2).

the springs and dampers move only vertically! (see Figure 7.1 (Right) )

mx = 7](11171 — ]{321‘2
1~z —Ilsinf ~ z—10 N ":—(k1+k2)x+l(k1—k2)0 (7.2)
To ~ x4+ 1sinf ~ z+10 JO =1kizi — [ koxo ’

= l(kl — kg) xr — l2(k}1 + k‘g) 0

Note an important feature of these two equations. The first one is for the derivative i, but it depends
on both z and 6 and their derivatives. Similarly, the second equation is for €, but it also depends
on both z and 6 and their derivatives. The equations are therefore coupled. Each equation cannot
be solved separately, they have to be solved together. In the language of dynamics, the equations
for # and 6 describe vertical and rotational dynamics respectively. The fact that their equations
are coupled means that vertical vibrations effect rotational vibrations and vice versa. A very useful
technique that helps reveal the underlying structure of complex equations like (7.2) is to rewrite
them as a single matriz differential equation as follows.

i s = "
SO A S T I 4

The equation (7.3) is exactly the two equations (7.2) written as the two components of a vector.
This vector equation can be further rearranged into the matrix-vector equation (7.4) in which each
term represents all derivatives of a given order. Here the two terms collect derivatives of second and
zeroth orders respectively.

An alternate model is to rewrite equations (7.1) using the coordinates (x1,z2) by substituting
for (z,0) in terms of (1, x2). First note that the mapping (z,6) — (x1,2z2) in (7.2) can be written
in matrix-vector form and inverted as follows

x| (1 =] |z w10 | | (w1 a2)/2
To - 1 l 0 0 - 20 |—=1 1] |x9 o (l‘2 — .231)/2l
Substituting these expressions for (z,6) in (7.1) gives

m (#1+#2)/2 = —kiz1 — kozo
J (7.%1 +I2)/21 = 1 klxl — k2$2

These equations can be reorganized into a matrix-vector form similar to (7.4) as follows

m m i‘l k’l kg X1
.. 2 = 0. 7.5
’V—J J“ ’71'2“ + ’712]%‘1 —12k2:| |:£L'2:| ( )
IThis is clearly not the case if the beam is assumed to be a rigid body. If 1 # z2, then the support points will
have to move laterally. This motion can be assumed negligible for small oscillations 6. An alternative way to view
this is that if we write the full two dimensional model that allows for lateral motion, then linearizing around 6 ~ 0
will give the model above that ignores lateral motion.
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N-DOF Mass-Spring-Damper System in Matrix Form

Note the similarity in the structures of the equations (7.4) and (7.5). They are both of the following
form

M Z(t)| + K z(t)| = |0 = Mx(t) + Kx(t) = 0, (7.6)

where x(t) is a vector of coordinates, and M, K are matrices of system’s coefficients. Such equations
are the N-DOF generalizations of the single DOF equation for a Mass-Spring matrix. M is referred
to as the “mass matrix”, and similarly K is called the stiffness matrix. The two equations in (7.6)
are exactly the same. The first equation graphically emphasizes the dimensions of the matrices and
vectors for illustration. The second equation is written in the much more compact matrix-vector
form, but the reader should always keep in mind that despite the simplicity of writing it in that
form, a lot of information is “coded into” the entries of the matrices M and K as can be seen by
examining (7.4) and (7.2).

Decoupling and Normal Modes

When analyzing N-DOF systems written in a matrix form, certain coordinates are much better than
others. Take for example the equations (7.4) written in (z, ) coordinates, and assume a special case
where k1 = ko = k and [; = I3 = [. The equations then simplify to

m 0| |Z 2k 0 x

[0 J] M * [0 2kl2} [9] =0 (.7)
Note that the matrices M and K are now diagonal (i.e. all off-diagonal entries are zero). This
matrix equation is therefore decoupled into two scalar equations

m #(t) + 2k z(t) = 0, (7.8)
JA(t) + 2kI?6(t) = 0. (7.9)

Note that the differential equation for z(t) does not involve 6(t), and similarly, the differential equa-
tion for 6(t) does not involve x(t). This means each differential equation can be solved independently
of the other. In this case we say that the dynamics of © and 0 are decoupled in the sense that they
do not influence each other. We call the motion of xz(t) the vertical (or heaving) mode, and that
of 6 the rotational mode of vibration respectively. Those are the normal modes of vibration of this
2-DOF system. In general, an n-DOF system will have n different normal modes of vibration.

Let’s make more simplifying assumptions to get some intuition for the distinction between vertical
and rotational vibrations. Assume that the support points of the sprung beam in Figure 7.1 are at
each end. Additionally, assume the beam is slender so that its moment of inertia (about the center
of mass) is that of a bar of uniform length 2[

J = m(20)*/12 = mi*/3
With these assumptions, the rotational motion equation (7.9) becomes

mi?/30 + 2kI>6 = 0 = i+ %y _ o (7.10)

m

Now comparing the vertical motion equation (7.8) and the rotational motion equation (7.10), we see
that they are both of the Mass-Spring type, but with two different natural frequencies

v/ 2k/m
rotational vibrations: wa = V6k/m = V3 \/2k/m.
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x
o(t)

Figure 7.2: Vibrations of the sprung beam model in the special case where vertical and rotational dynamics (7.8)-
(7.9) are decoupled. (Top) Both rotational 6(t) and vertical xz(t) vibrations are pure sinusoids, but with different
frequencies. The frequency of rotational vibrations 6(¢) is higher than that of vertical vibrations x(¢) as predicted by
the formulas (7.11) for their respective natural frequencies. (Bottom) The vibration of the support point z1(t) is a
superposition of the two modes (vertical and rotational) of vibrations.

Thus rotational vibrations have a natural frequency that is /3 times higher than that of vertical
vibrations.

Any free vibrations of this 2-DOF system will be a superposition of those two modes of vibrations
with those two different frequencies. For example, the motion of one of the support points, say x1 (¢)
is linear combination of both z(t) and 0(t) since (recall (7.2))

wi(t) = x(t) — 16(t).

Figure 7.2 shows an example of the vibration of such a system. Note how vertical motion z(t) and
rotational motion 6(¢) are both pure sinusoids, but with different natural frequencies. The vibration
of x1(t) appears to be some superposition (a linear combination) of the two motions.

The fact that the matrix equation (7.7) involved only diagonal matrices is what led to the de-
coupling of the dynamics of x and 6§ as described by the two mutually-independent equations (7.8)
and (7.9). Although this looks like a “lucky accident” due to the symmetry of the problem, there is
a general method to take any coupled matrix problem representing an n-DOF system, and find the
fundamental normal modes of vibration in a similar manner to what was done above. The mathe-
matical technique is based on matrix diagonalization, which in turn is based on finding eigenvalues
of eigenvectors of matrices. In Section 7.2 we will see how to do this in general without having a
“lucky guess” of what the right coordinates should be for each problem.

7.1 Modeling with Vector Differential Equations

The dynamics of any ~n-degree of freedom mechanical systems with either linear or linearized dy-
namics can be expressed as a vector differential equation of the form

M&(t) + Cx(t) + Ka(t) = Boa(t) + Bru(t) + Bou(t) (7.12)
xl(t) _.’l.fl(t> fl(t
<~ M E + C : + K :
T (t) L Z (1) (1)
T 111(t> I'Ll (t) Uy (t)
= B, : + B S+ Bo N
I Liig(t) iy (1) uq ()
where uq(t), ..., uq4(t) are ¢ “input signals”, which might be externally applied forces, displacements

of other externally applied variables. All the inputs are combined into the vector signal w(t).

Let’s parse through the notation above carefully. Matrix-vector notation allows for very compact
expressions, but it hides details! If you're not too familiar with it, you may not notice the details
at first. The expressions above are written in compact matrix notation on the first line, and this
notation is expressed more explicitly on the second line. Capital letters M, C,; K and By are used
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for matrices, bold small letters are used to express vectors (which may be functions of time as well)
such as

L]5'1(15) xl(t)
z(t) = S &(t) = S etc.
X (t) i (t)

Thus when we write a matrix-vector equation like (7.12), a lot of detail is contained in the matrix
entries of M, C; K and {B}. In fact, all the dynamical properties of this system are “encoded” in
those matrices.

The equation (7.12) is the most general form for the dynamics of an ~-degree of freedom mechan-
ical system with linear dynamics. If a system has k& masses where each can move in [ coordinates,
then v = kl. Those masses can be connected by any arrangement of springs and dampers and possi-
bly kinematic constraints. It is also the form of the linearization of multi-link systems that arise from
e.g. modeling robotic manipulators. Since equation (7.12) is a generalization of the single degree of
freedom (Mass-Spring-Damper) system, we therefore refer to M, C and K as the “generalized” mass,
damping and spring constant matrices respectively. The matrix K is also more commonly referred
to as the “stiffness” matrix.

The advantage of expressing all mechanical systems in the matrix-vector form (7.12) cannot
be overstated. It allows us to develop convenient formulas for solutions and frequency responses
using compact matrix algebra, which can also be easily programmed in software like MATLAB. In
addition, normal mode analysis which we will see in the next section is best expressed in linear
algebra language in terms of eigenvalues and eigenvectors of matrices.

As already mentioned, the vector w(t) contains all the external “inputs” that may be acting on
the system, which may be external forces, or kinematic quantities like displacements or velocities.
Figure 7.3 shows three examples with the corresponding matrix-vector form of their dynamics. Note
that in the first two examples, the external inputs are forces, while in the third example, the external
input is actually a displacement. This variety of types of inputs is why we denote them generally by
u rather than f in (7.12), the latter being notation for forces. The size g of the vector u in (7.12)
is the number of inputs, which is not usually the same as the number N of mechanical degrees of
freedom. When ¢ < N, we call the system underactuated, and when q = n, it is fully actuated.

We now detail the derivations of the differential equations for each of the examples in that figure.

Example 7.1. (Example |, Figure 7.3) A convenient coordinate system to choose is where 21 = 0 and
9 = 0 when all three springs are in equilibrium. The equations of motion for the two masses are then

my i1 (t) = —kri(t) — ke(zi(t) —22(t) + fi(t),
mo Z2(t) = — koxao(t) + kc(l"l(t)*@(t)) + fa(t).

These two equations can be rewritten as a single matrix-vector equation as follows
|:m1£i'1(t)_ — |:k1(E1(t) + k ( ( ) — ;L‘g(t))] |:f1(t):|
210] koo (t) — ke — za(t)) fa(t)
) _ [kt ke 1(t) f1(t)
)] —ke kz + ) f2(t)
N mq 0 X t)_ I k1 + ke —k. T . fl(t)
0 mo .ifg(t)_ —k. ko + ke| |22 N f2(f,) ’
This last equation is of the general form (7.12)
_ R4 ke ke — |7(t) _ [A@)
Comparing this equation with the general form (7.12), we see that in this case the damping matrix

C = 0 (since there is no damping in this problem), the input u(t) = f(t) vector of forces enters with no
differentiation, thus By = 0, By = 0 and By =1, the identity matrix.

Mi(t) + Ka(t) = f(),

mi O:|

where M= [ 0 my
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() L )
kl kc k2
my 0 (t) ki+ke -kc Il(t)j| _ |:f1(t):|
(I) [ o m2] |:£E2(t):| T { "y k2+k:j [12(“ - L0
< f(t)
O ee— 00—
my - kl ma - kz
1 e
. mi 0 i1(t) ] “a a @1(t) ] ki -k ety | |0
(H)' [ 0 mz} [iz(t)_ + [—01 c1+02} {5”2(15)_ + |:'k71 k1+k'2} {xz(t)] N L]f(t)

s d(t)
TN R ] e ] B e | e R P ECR G

Figure 7.3: Three examples of mechanical systems with their dynamics written in the matrix-vector form (7.12).
Note that in Systems (i) and (II), the “external inputs” are forces, while in System (III) the external input is a
displacement.

Example 7.2. (Example Il, Figure 7.3) The most convenient choice of coordinates here is again where
x1 = 0 and x5 = 0 when both springs are in equilibrium. The equations of motion are

my B1(t) = —ki(21(t) —22(t)) — er(@1(t) — d2(t))
ma da(t) = ki(w1(t) —22(t)) + cr(dr(t) —a2(t)) — kema(t) — coda(t) + f(1),

which can be rewritten in matrix-vector form as
my 0 SCl(t) C1 —C1 xl(t) kl 7k1 Jil(t) _ 0
|: 0 m2:| |:£E2(t):| - |:—Cl C2 + Cl:| |:$2(t):| - |:—/€1 kQ + k1:| |:(E2(t):| B |:].:| f(t)

This equation is again of the form (7.12) with
M &) + Cx(t) + Ka(t) = By f(t).

The input f(t) is a scalar-valued function, but it enters the matrix equation through multiplication by
the matrix

-

since it only enters the second equation in (7.13). This is an example of when the B; matrices are
non-square because the number of inputs is not equal to the number of mechanical degrees of freedom.

Note that even though the external forcing f(t) enters only in the dynamics of x5, it does have
(indirect) effects on the dynamics of z1, since the latter are influenced by x5 through the coupling in the
equations. This point will be emphasized when we analyze this example later as a prototype of a certain
vibration isolation technique termed “tuned mass dampers".

DRAFT: VIBRATIONS, MARCH 2, 2025 © 2024, Bassam Bamieh



CHAPTER 7. NORMAL MODES OF FREE VIBRATIONS: MATRIX METHODS 163

Example 7.3. (Example Ill, Figure 7.3) In this example, the input is a displacement rather than a force.
In such problems, the choice of convenient coordinates requires a little care. Consider measuring =1, %2
and u with one coordinate system, then the equations of motion are

i (5) =~y (21() — 22(0) — £2) — e (d1(6) — 2 (0))
mQ.’EQ(t) = kl (.’El(t) - (EQ(t) — L1) + 1 (xl(t) — l'g(t)) - k2 ($2(t) - d(t) - LZ) —C2 ($2(t) - d(t))v

where L and Lo are constants such that when x1 — x5 — L1 = 0, spring k1 is in equilibrium, and when
xo —u = 0, spring ko is in equilibrium. Now redefining z; as 1 — L1 and x2 as x3 — La, the new
equations of motion are written more nicely (without the constant terms) as

i (t) = —ky (xl(t) - :vg(t)) —a (:‘rl(t) - @(t))
Mada(t) = ki (xl(t) — :cz(t)> e (i:l(t) _ :i:g(t)) — ks (xg(t) — d(t)) — ¢ (5’62(15) - d(t)) .

Those two equations can now be rewritten as a single matrix equation

A Nt e W 1 i o I ] S M GRS P ELC

This equation is again of the form (7.12) with
M &(t) + Ca(t) + Ka(t) = By d(t) + Bo d(t),

where the matrices By and B; are

v w-

Note again that the input in this case (which was denoted as a general signal w in (7.12)) is a displacement
d rather than a force.

This system has a single-input d(t) and 2 mechanical degrees of freedom, thus the matrices By and
By are 2 x 1, while the matrices M, C, K are 2 x 2.

In many systems (though not all, see e.g. the next example), the “mass matrix” M will typ-
ically be diagonal as is the case in the three examples just described. In this case, every “row”
in equation (7.12) represents a scalar equation of the form m;@; = >, fi; for the ¢’th mass, with
> ; fij being the sum of forces on the ¢’th mass. Note that we have as many equations as masses,
and therefore the reader should check that this implies that M, C and K must be square (¥ X N)
matrices. The “B matrices” however can be non-square, i.e. N X ¢, where ¢ is the number of external
forces (or inputs) acting on the system, which may not be the same as the number of masses.

In general, the mass matrix need not be a diagonal matrix as the following example of the
combined mass and pendulum of Figure 7.4 illustrates.

Example 7.4. (Example V: Linear Mass Motion with Pendulum) Consider the system of a block M
with linear motion coupled to a pendulum as shown in Figure 7.4.

The equations of motion of this system are best derived using the Lagrangian formulation of me-
chanics. The total kinetic and potential energies of this system (see diagrams in Figure 7.4) and the
Lagrangian are

KE =1 (Mx'2 +m((¢+ l9c089)2 + (lésin0)2>) =1 ((M +m)i? + 2ml:’c9cos€+ml292>

PE = 1k 2? + mgl (1 — cos(0))
L(x,0,i,0) = KE — PE = 1 ((M +m) &2 + 2ml &0 cos 6 + mi*6? — kx2> —mgl (1 — cos(0))
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>4 + 16 cos

Figure 7.4: (Left) The system of Example 7.4 consisting of a mass constrained to move laterally, and an attached
pendulum swinging freely from a frictionless pivot. (Right) The velocity of m relative to M is Vin/u = 10 €g. Thus
the velocity of m in the inertial frame is Vin = Viy + V0 = 2 €2 + 16 ey has the lateral and vertical components
shown.

The first EL equation and its linearization is

L  doc . . :
—f = 5 don _—kx—ﬁ((M—&—m)m—i—mchosH)

—kx— (M+m)i —ml (9cos€—92sin0)
~ —kz— (M+m)i —mlb.

The second EL equation and its linearization is similarly derived

oL doc

00 dt o

—ml i sinf — mglsinf — % (mlj: cosG—i—ml%‘)
=—mlz6 sin@ — mglsin @ — ml & cos 0 4+ ml i 6 sin — ml%0

~ —mgl§ — ml i —mi*0

The linearized equations can be written in a matrix-vector form as

M+m  ml| [£(t) E o] [z(®)] _ |1
[ 1 } {9@)} i [0 g} [a(t) = o] F®) (7.14)
Here we see that while the stiffness matrix is diagonal, the mass matrix is not, thus providing the
coupling between the two equations. Note that it is possible to rewrite those equations in an equivalent

form with a diagonal mass matrix (in fact a mass matrix which is the identity) by multiplying both sides
of the equation by the inverse of the mass matrix

(v +m  ml -1 _ i l —ml
1 l T oMl -1 Mm+ml|’

which then renders Equation (7.14) as

Zgﬂ - %l [i (M_ J:n fvg)g] [ﬁgg] = Mil [_ZJ f@). (7.15)

The mass matrix is now the identity matrix, which is not explicitly written out.

We note that in the previous example, Equations (7.14) and (7.15) represent the same exact
system. Which set of equations we use for analysis is a matter of convenience. In fact, since any n-
DOF system involves n coupled differential equations, by taking linear combinations of these linear
equations, we can generate a second set of equivalent differential equations. This is precisely what
was done by the matrix multiplication that converted (7.14) to (7.15). There is an infinite number of
ways one can take linear combinations of coupled equations and rewrite equivalent equations. There
is however one special way of doing this that renders the equations very simple to analyze, and in
fact renders them decoupled. This is the subject of normal mode analysis to which we now turn.
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7.2 Free Vibrations via Normal Mode Analysis

Recall the motivating example (7.7) in the introduction where the matrices were diagonal due to
some very special assumptions on the system. Any system with interesting dynamics will typically
not be uncoupled like that in (7.7). However, it turns out that it is always possible to rewrite the
equations in a different coordinate system such that the equations become decoupled in the new
coordinates. There are two diagonalization procedures depending on whether C' = 0 (no damping),
or otherwise. In this section we present the simpler case of no damping. The most general case with
damping requires the use of state-space methods described in Section 77.

Consider now a system of the general form (7.12) but with no damping (C = 0), and no external
inputs u(t) = 0. Equation (7.12) can then be manipulated as follows

M&(t)+Ka(t) =0 & M&(t) = —Kx(t) & &(t) = — (M'K) x(t) |, (7.16)

where the last equation is obtained by multiplying both sides of the previous one by M-! from
the left?. Note again that this last equation is a wvector differential equation. The solutions and
dynamical properties of this equation are completely determined by the matrix M-'K. This matrix
is the counterpart of the stiffness-to-mass ratio k/m we encountered when studying single DOF
system. Thus in the vector case, the dynamical properties are determined by an entire N X N matrix
rather than a single number. However, it turns out that the important dynamical properties are
not revealed by looking at the individual N2 entries of the matrix M K, but rather by looking at its
eigenvalues and eigenvectors. To illustrate this point, we first consider very special solutions related
to eigenvectors and known as the normal modes of vibrations. Then in the remainder of the section,
we show how general solutions can be regarded as a “superposition” of normal modes by using the
technique of matrix diagonalization.

For the illustration, assume for simplicity that M = I (the identity matrix) and therefore MK =
K. Recall that an eigenvector of a matrix K is a vector v such that

Kv = Av,

for some (possibly complex) number A. It can be shown (see Appendix 7.B) that stiffness matrices
K of mechanical systems always have real and non-negative eigenvalues, i.e. A > 0 always. For any
given eigenvector v of K, we can show by direct verification that the following vector function of
time

z(t)| = |v| acos(wt +6), w=vA\ (7.17)

for any amplitude a and phase 6 is a solution of the differential equation &(t) = —Ka(t). Indeed,
given the form above, we see that &(t) is a scalar multiple of @(¢)

&(t) = % (vacos(wt+0)) = —w? (vacos(wt+0))
—K z(t) = —K (v acos(wt +0))

— Kv acos(wt + )
— A (vacos(wt+90)). (since Kv = \v)

Thus if we choose w = v/, then the function (7.17) indeed satisfies the differential equation &(t) =
—Ka(t).

Note the “separation structure” of the solution (7.17) which is the product of a constant (inde-
pendent of t) vector v and a scalar, oscillatory function of time acos(wt + ). If we think of x(¢)

2In this setting, the mass matrix M is always assumed to be non-singular. When M is diagonal, this is equivalent
to all the masses being non-zero.
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as a time-varying vector in N-dimensional space, then the solution (7.17) oscillates along a single
direction v which does not change for all ¢ > 0. Note also that the initial conditions of this solution
are

z(0) = v acos(d) #(0) = v (—awsin(d)),

i.e. both x(0) and @(0) are vectors in the same direction as v. The converse is also true as shown
in Section 7.3; if the initial positions and velocities are in the direction of the eigenvector v, then
the solution x(t) remains (for all ¢) in the direction of the eigenvector v! It oscillates in time with
frequency w = v/A determined by the eigenvalue A corresponding to the eigenvector v. This is a very
special set of initial conditions and solutions, and they are called the normal modes of vibration.
There are N of them since an N X N matrix like K will have ~ eigenvalues and vectors. Thus an
N-DOF system has N natural frequencies and N normal modes of vibration. For more general initial
conditions (i.e. those not corresponding to eigenvectors), the typical response will be a superposition
of all the normal modes of the system. All these phenomena are illustrated in Figure 7.5 and the
included animations for the example of System I. The full analysis of this example will be given later
in Example 7.7 once the concepts of normal mode analysis are fully explained.

The systematic analysis of general n-DOF systems is done by diagonalizing the matrix MK,
which is equivalent to changing coordinates to a more convenient set of coordinates given by the
eigenvectors of M'K. The concept of diagonalization of matrices is explored in detail in Ap-
pendix 7.A, which the reader is now highly encouraged to review. Here we are interested in showing
what diagonalization implies for the dynamical equation. First we explore how the equation (7.16)
transforms when we use a different coordinate system.

7.2.1 Change of Coordinates

Let V be some N X N, non-singular, constant (i.e. does not depend on t) matrix. Suppose we
define new variables by y(t) := V-lx(t), or equivalently x(t) = Vy(t). This has two possible
interpretations. The first comes from writing the matrix-vector product in detail as

z1(t) yi(t) z1(t) vy (t) + - 4 vinvyn(t)
Ty (t) yn(t) Ty (1) on1y1(t) + -+ onnyn(t)
where v;; is the ¢j’th entry of the matrix V. The above equation says that each function z;(t) is
written as a linear combination of the n functions {y1(¢),...,y~(t)}.
The second interpretation comes from partitioning the matrix V' columnwise
P y1(t)
z(t)| = |vii vy : & z(t)| = |vi| () +---+ |on| yn(t). (7.19)
yn(t)
This means that at each time ¢, the vector x(t) is written in terms of the basis {v1,..., vy}, with
the scalars y;1(t),...,yxn(f) as the coefficients in that basis. Since z(¢) is time varying, so are the

coefficients. The basis however is fixed in time. Viewing the motion of x(t) using either (7.18)
or (7.19) gives two different insights. In the example of Figure 7.5b (the case of a generic initial
condition), the plots of z1(t) and z2(t) show that each position is a linear combination of two pure
sinusoidal modes. This corresponds to the form (7.19). On the other hand, the trajectories of
x1(t) versus x5 (t) plotted in (z1,22) space show how the motion of the vector (21(t),z2(t)) can be
expressed in the eigenvectors basis by x(t) = y1(t)v1 + y2(t)v2. Note how the motions of the basis
expansion coefficients y; (t) and y2(t) are pure sinusoids.

7.2.2 The Dynamics in New Coordinates

When we change coordinates as done above, we can derive the dynamics (i.e. the differential equa-
tion) that the vector y(t) obeys from the original differential equation for @(t). The reason for
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(a) Motion of System (I) starting from equally displaced positions (left), oppositely displaced positions (middle),
and a generic initial displacement (right). These lead to unison motion, differential motion, and motion combining
both unison and differential modes respectively. Note the differences in oscillation frequencies between unison and
differential motion when viewing the animations.
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(b) Trajectories from the 3 different initial conditions shown in 3 different ways. Trajectories are shown as
(w1(t), z2(t)) versus time (top), 1(t) versus x2(t) in (z1,x2) space (black dot in middle), and its projections
onto the eigenvectors vi, v2 (magenta and red dots respectively). The coordinates y1(t),y2(t) versus time of
the point (z1(t),z2(t)) in the basis {v1,v2} (i.e. the modal coordinates) are shown at the (bottom). On the left
and middle are “pure mode” initial conditions along v; and w2 producing pure unison and differential motions
respectively. On the right is a generic initial condition which produces a response with a combination of unison
and differential modes. Note that the projections y1(t), y2(¢) along the eigenvectors v1, v2 are pure sinusoidal
motions with frequencies w; = \/H, wo = v Aa.

Figure 7.5: Trajectories of masses’ positions for System (I) from three different sets of initial conditions. mji =
mo = 1 and k1 = k2 = k. = 100 in these simulations. Trajectories from equally displaced, oppositely displaced, and
generic initial conditions are shown. These generate unison motion (in phase), differential motion (opposite phase),
and a combination of the two modes respectively. The unison and differential modes have frequencies of w1 = /A1
and ws = /2 respectively, where A1, Ao are the eigenvalues of the matrix M 1K, and vy, v> are the corresponding
eigenvectors.

changing coordinates is that with a judicious choice of the transformation V', the dynamics of y(t)
will be simple and easily solvable. Once we find the solution for y(t), we can then recover the original
variables from the relation x(t) = Vy(t).

In matrix-vector form, the equations (7.18)-(7.19) and their inverse is written as

x(t) = Vylt) &  ylt) = V'@

Since V and V! are constant matrices (do not depend on t), then the vector derivatives are simply
related by

i) = Vi) bt) = V7 a()
i) = Vi) i) = V).
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Now derive the differential equation for y(t) using these relations and the differential equation (7.16)
for x(t)

E(t) =— (M'K) x(t) (Starting from Eq. (7.16))
= Vi) =-V*' (M'K) z(t) (multiplying both sides from left by V1)
= 0 = (VI (M) V) ) (Subsmu:fﬁ 3.8 _ “i;z;t)) (7.20)

At first it might seem that this last equation is more complicated than the one for x(t) since
we replaced the matrix (MK) by the matrix V! (M'K) V. However, if we can choose V' such
V-l (M'lK) V is simple, then we have a simpler differential equation. It is a fact that for the types of
matrices that occur in mechanical vibrations problems, the matrix (M'1 K) is always diagonalizable3.
Diagonalization means (see Appendix 7.A) that we can find a non-singular matrix V' such that

A1
vt ][ MK ][ v ]: = A, (7.21)
AN

where A is the diagonal matrix with the numbers {A1,..., Ay} on the diagonal, and zero entries off
the diagonal. The numbers {A1,..., Ay} are the eigenvalues of (I\/I'lK), and the columns of V' are
the corresponding eigenvectors.

Substituting the diagonalization (7.21) in the transformed equation (7.20), we finally arrive at
the simple decoupled equation for y(t) which reads

VI(MIK)V =

71 (1) -1 y1(t) ii(t) = -Ay(t)
jt)=-Ay(t) & L= : & ;
Gin (1) And Lyn () iin (t)

')\Ny(t)

The last set of equations are N, decoupled equations, each for a simple, undamped systems with
natural frequency w; = v/A;. Therefore the solution of each is (written here in the “phased-cosine
form”)

yi(t) = yicos(\/)\jt—i-ﬂi) i=1,...,N.

The exact values of the amplitudes {y;};_, and phases {6;};_, depend on the initial conditions.
However, the frequencies {wi}le = {\/)TZ };Vzl do not, and only depend on the eigenvalues of (M'lK),
i.e. only on the system’s parameters, and not on its initial conditions. We now summarize these
conclusions.

Theorem 7.5. Consider an N-degree of freedom, undamped, linear mechanical system of the form
M &(t) + Kz(t) = 0.

The solution is given as x(t) = V y(t), where the components of the n-vector y(t) each satisfy the
following scalar, uncoupled differential equations

Gi(t) = —wlylt), i=1,...,n, (7.22)
where the oscillation frequencies w; := v/ X;, 1 =1,...,N are called the normal modes of the system,
Ai, i =1,...,N are the (always non-negative) eigenvalues of the matriz (I\/I'lK), and the columns

of the matrix V' are its eigenvectors.

3The justification of this statement is beyond the scope of this chapter. The precise statement is that if M is
symmetric positive definite, and K is symmetric, then MK is diagonalizable. These assumptions are satisfied by all
linear mechanical systems.
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Since we know how to reconstruct @(t) from y(t) (using the matrix V as in (7.18)), and we know
the form of the solutions of the simple equations (7.22), we can now write the most general solution
to our original system (7.16) in two different forms

yi(t) = y;cos (wit+9i)7 i=1,...,N,
zi(t)]  [vin yicos (wit+61) + - + v vy cos (wat + Ox)
N | = : (7.23)
zn(t)] | Up1 y1 cOs (wlt + 91) + -+ Vpp Y COS (th + GN)
= x(t)| = |v1]| y1cos (w1t+91) +--+ |vy|yycos (oJNt+9N) (7.24)

The form (7.23) says that the response xz;(t) for each mechanical degree of freedom is generally
a linear combination of N normal modes of the form y; cos(w;t + 0;), i.e. a mizture of sinusoids
of frequencies wi,...,wy. These are the “natural frequencies” of the system. Since we have n~
mechanical degrees of freedom, we also have N natural frequencies.

The form (7.24) gives another perspective which can be interpreted as revealing the “shape of
vibrations”. If we think of x(t) as a vector in N-dimensional space, it is a linear combination of n
basis vectors vy, ..., vy, each defining a particular direction. Equation (7.24) says that the vector
x(t) vibrates in each direction v; with frequency w;. Another look at Figure 7.5b will help clarify
this point of view.

7.3 Initial Conditions and Pure Normal Mode Responses

As Equation (7.23) demonstrates, the response of a system will typically contain a linear combination
of all normal modes. The exact mixture of those normal modes depends on the initial conditions.
An interesting question is whether there are initial conditions that produce responses that are made
up of only one of the normal modes and none of the others (i.e. a pure normal mode response)?
Specifically, which initial conditions produce a response where only one frequency (say wy) appears
in (7.23)-(7.24), with the terms corresponding to all other frequencies w;, i # k being zero. As seen
earlier in the special solutions (7.17), the eigenvectors play a role in answering this question.

To find the exact relations between the initial conditions of (t) and those of y(t) we simply use
the matrix relation @ (t) = Vy(t) which implies (since V' does not depend on time)

z(0) = Vy(0), z(0) = V y(0).

These relations imply that choosing (0) or #(0) as scalings of one of the eigenvectors v1,...,vy is
equivalent to choosing y(0) or ¢(0) as scalings of one of the canonical basis vectors ey, i.e.

0
z(0) = Vy(0) = V(aeg) = 'ul'vN a | + k’th component = x(0) =a |vg |,
Lo 0

where 0 is a vector of all zeros of the appropriate size. Similarly, choosing §(0) = Sey implies that
213(0) = ka.
The implications of y(0) = aer and g(0) = Sey, are the following
Ji(t) = —wi y(t), vi(0) =0, %:(0) =0,  i#k (7.25)
i (t) = —wi y(t), y£(0) =, P(0) = 8. (7.26)

This means that the solutions of all normal modes equations for ¢ # k will be identically zero for
all time, i.e. y;(t) =0, ¢t > 0 for i # k. Only the normal mode yi(¢) will be non-zero. Recall from
Theorem 3.1 that the solution of the 1-DOF system (7.26) is given by

2
yk(t) =y cos (wyt +0), y=1l>+ %, 0=—tan? 2.
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In this case the solution vector y(t) would have all other components zero (7.25), i.e. it would be

yi(t) 0 0
y(t) = : = (@] = [1|y®) = |er| ycos(wit+6).
yN(t) 0 0

This in turn means that in the original coordinates x(t) the solution is
w(t) = Vy(t) = Ver yr(t) = vk yr(t),

i.e. it is an oscillatory solution which is always in the direction of the eigenvector vy for all ¢ > 0.
This is summarized in the next statement.

Lemma 7.6. Consider an N-degree of freedom, undamped, linear mechanical system of the form
M &(t) + Ka(t) = 0,

and let vy, be an eigenvector of MK with eigenvalue A\, > 0. If the initial conditions vectors are in
the direction of vy, then the solution vector x(t) will remain in the direction of vy for all t

z(0)| = |vi|a, and |2(0)| = |vp|B = z(t)| = |vi|a cos(wit+6), (7.27)

where wy := /A is the k’th mode of vibration (aka the k’th natural frequency), and the amplitude a
and phase 0 are determined by initial conditions as follows

_ Jo2 B _ -1_8
a= 0‘+Tg’ 0 = —tan et

The vector vy, is referred to as that mode's shape. For such initial conditions, the response (7.27) is
called a pure mode response.

In other words, choosing the initial conditions to be along an eigenvector vy of (M'l K) will produce a
vibration in only that direction in n-dimensional space with a single frequency wy, = v/A; associated
with that eigenvector. Since the N x N matrix MK has n eigenvalues and eigenvectors, an N-DOF
system always has ¥ modes of vibration with possibly ~ different vibration natural frequencies.
Note that in the special case @(0) = 0 (i.e. 8 = 0) when initial velocities are zero, the phase § =0
and the amplitude a = « is simply the initial condition amplitude.

Example 7.7. (System |). Consider first the System | described earlier

mq 0 .fl(t) + kl + k}c —k‘c J?l(t) o 0

0 mo .iQ(t) —k‘c ]4124—]4)0 Z‘Q(t) R
and assume for simplicity that m; = ms = 1 and that all spring constants are equal k1 = ko = k. = k.
We then have

e = 5o =3 5

The eigenvalues of this matrix can be easily found (manually or by symbolic calculations)? to be

1 1 1 1 k0
0 heww=[Y] = ve] Yoac] 2] ca

4Note that in this case the matrix is of the form kM, where M is a numerical matrix whose eigenvalues can be
calculated numerically. As can be easily verified, for a matrix of the form kM, the eigenvectors are the same as the
eigenvectors of M, and the eigenvalues of kM are the eigenvalues of M multiplied by k.

)\1:]€, v =
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Thus the normal mode frequencies are
w = v\ = VE, wo = v/ Ap = V3k. (7.29)

The initial conditions that would produce those two pure modes are the eigenvectors v; and vs, e.g.

B;Egﬂ - E] ’ [258;] - {8] =~ z(t) = [ﬂ cos (Vk t),
LR - e [

and similarly for the initial conditions on the derivatives (though with different amplitudes and phases).
The first initial condition above corresponds to frequency vk and a motion where z;(t), x2(t) move
“together” left and right, i.e. “unison” motion. The second corresponds to a higher frequency v/3k, but
the masses move in opposite directions, or in “differential” motion. These are illustrated in Figure 7.5.

Example 7.8. (System Il). This system has the equations
mia 0 xl(t) + _k'l -kl _l’l(t) _ O
0 mo .’Ez(t) _-kl kl + kQ _ZL’Q (t) ’
Assume for simplicity that m; = mo =1 and k; = ko = k. We then have

U A ) e R
orte) = 4w =k )

The eigenvalues of this matrix can be easily found (manually or by symbolic calculations) to be

n=lk w1V PR, je =0 v = |1 S Y a0

2 2 2 2 2

We again see two normal modes with a lower and higher frequency modes at

w = ,/3‘2“5 ko~ 0.62VE  w= w/3+f k ~ 1.62 VE. (7.31)

We can again use vy and vs as the initial conditions that would produce those pure modes, but a physical
interpretation of these initial conditions is harder to imagine compared to System (). None the less, the
eigenvector and eigenvalue calculations always produce the normal modes regardless of physical insight.

Pure mode motions for this system are illustrated in Figure 7.6. Note that they again represent
differential and unison motion respectively, though unlike System (), each displacement has a different
amplitude. This is due to the asymmetry between the two masses m; and msy, unlike the completely
symmetric case of System (I). Note in particular the solution forms

B;Eg;] = {3224] = x(t) = {3224] cos (0.62Vk t),
B;Eg;] = {_1'224} = x(t) = {_1'224} oS (1.62\@ t),

which can be clearly seen in Figure 7.5.

Finally note that System (III) with no external forcing (i.e. u(¢) = 0) and no damping is exactly
the same as System (II), and therefore has the same normal modes. The differences between Systems
(IT) and (III) appear when we consider the effect of external inputs on the response, such as in the
expressions for the frequency response. This is the subject of the next Chapter.
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Figure 7.6: Trajectories of masses’ positions for System (II) from three different sets of initial conditions. m; =
mo = 1 and k1 = ko = 100 in these simulations. (Left) Trajectories from a “generic” initial conditions appear to
contain two different frequencies in each mass’ trajectory. (Middle) Trajectories from the special initial conditions
2(0) = —wv2 obtained from the 2nd eigenvector va appears to correspond to differential motion. The trajectories

appear to be a “pure normal mode” with frequency w = 277’ ~ 02% ~ 16 rad/s, which matches the theoretically

predicted value wa ~ 1.6v'k ~ 16 rad/s. (Right) Trajectories from the initial conditions x(0) = v obtained from the
other eigenvector. This again appears to be a pure normal mode with frequency w = 2% ~ QT“ ~ 6.3 rad/s, which
approximately matches the theoretically predicted value for this mode of w; = 0.62vk = 6.2. The two masses move
together in sync, but with different amplitudes, which makes it easy to distinguish them on this plot.
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\/

Figure 7.7: Expressing a vector x in terms of a different basis {v1,v2}.

Appendix

7.A Change of Bases and Diagonalization

Consider an n xn matrix V' and two n-vectors & and y related by the matrix-vector product x = Vy.
You have already seen the basic definition of a matrix-vector product as

x=Vy & xi:Zvij Yj, i=1,...,n, (7.32)
j=1

where v;; is the 75'th entry of the matrix V, and z; and y; are the i’th and j'th components of the
vectors  and y respectively. This definition is very algebraic. However, there is some beautiful
geometry underlying this definition which we will now discuss.

Change of Bases

The product (7.32) can have several geometric interpretations. The first one we consider is as a basis
expansion. First, recall that the components z1, ..., z, of a vector x are geometrically interpreted as
the Cartesian coordinates of the vector in an orthonormal coordinate system as shown in Figure 7.7
for the special case of 2-vectors (i.e. vectors in the plane). Any set of linearly independent vectors
v1,...,Uy, is & basis in n-dimensional space, and we can always express any given vector x in that
basis by writing is as a linear combination of the basis vectors

T = Y1v1+ -+ YpUn, (7.33)

where the scalars y1,...,y, are the new coordinates of x in this new basis. See Figure 7.7 for
a geometrical illustration. Now we ask the following question: given a vector « and a new basis
{v1,...,v,}, how do we compute the coefficients y1, . .., y, of the expansion (7.33) in the new basis?

The key idea is to form a matrix V whose columns are the basis vectors, and observe that a
matrix-vector product can be interpreted differently from (7.32) as follows

8

I
<
<
(:

Il
S
S
3

Il

‘ ‘ U1 y1—|— e 4+ Un | Yn, (734)
Tn Yn

linear combination of the
vectors v1,...,Un

The equality L follows from the matrix-vector product definition (7.32). For example, the first
component y; multiplies only the first column of V', and so on. The last expression in (7.34) expresses
x as a linear combination of the vectors vy, ..., v,, with the scalars y1,...,y, as coefficients in this
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linear combination, i.e. a basis expansion of x in the basis {vy,...,v,}. Although this might
constitute a “mental shift” from the way you normally think about a matrix-vector product, it is a
very useful interpretation as you will shortly see. The coefficients ¥4, ..., y, can be calculated all at

once by forming the inverse V! to obtain
Y
z=Vy = = vt z|. (7.35)
Yn

You may have seen other algorithms for computing the coefficients of a basis expansion. They
are all equivalent to the above, which is very compactly expressed using a matrix inverse, and a
matrix-vector product.

Effect of Change of Bases on Matrices

Given an n X n matrix A, it can be considered as a mapping between vectors as
T = Ax & z — ' = Azx.

That is, A maps the vector x to the vector ' = Ax by matrix-vector multiplication. We now ask
another question: Given a new basis {v1,...,v,}, how does A map the basis coefficients of x to
those of ' ?

This question is easy to answer. Using the previous material, we can find the basis coefficients
of  and &’ using the matrix V (made from the basis vectors vy, ..., v, as its columns)

y = Via, y = Via,

where the expansion coefficients of « and x’ are the components of the vectors y and y’ respectively.
Next we find the mapping from y to y’ by

y =Vvia (y’ contains the coefficients in the new basis. Apply (7.35))
= V! Ax (since &’ = Ax)
= V%iAVvy (since & = Vy)

= y = (V'AV) .

Note that (V'lAV) is another n x n matrix. It is the representation of the original mapping A in
the new basis. We can now think of a transformation of matrices A — (V'lAV), which is called a
similarity transformation. Let’s summarize what we have just done precisely as a theorem.

Theorem 7.9. Let {v1,...,v,} be a set of n linearly independent n-vectors, i.e. a basis of the space
of n-vectors. Form the non-singular n X n matrix V whose columns are the vectors v1,...,v,. Then

1. For any vector x, the coefficients y1, ..., yn of its expansion in the basis {vi,...,v,} are given
by

Y1
Yy = = V‘l €T = T = |v] y1_|__|_ Un | Yn.
y'n.

2. For any (possibly singular) n x n matriz A, the transformation x — x’ with ' = Az can be
expressed in terms of their basis expansion coefficients y := Vx and y’' := V1x’ as

y' = (V'AV)y & T =Ax
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One way to phrase the above theorem is that the basis transformation on vectors ¢ — y = V-'lz
induces a similarity transformation A +— (V'lAV) on matrices. Another way to say it is that
(V-AV) is the new representation of the matrix A in the new basis {v1,...,v,}. One major
motivation for bases changes is that a matrix A with complicated structure may be converted to a
matrix A’ = (V'lAV) with much simpler structure. The process of diagonalizing a matrix through
a similarity transformation (i.e. a change of basis) illustrated next is a prime example of this
simplification.

Diagonalization of a Matrix using its Eigenvectors and Eigenvalues

Consider an n x n matrix A that has n linearly independent eigenvectors® v1,...,v, with corre-
sponding eigenvalues A1, ..., A,. This means that we have n eigenvalue/eigenvector relations of the
form

A’Ui = )\ivi, 1=1,...,n.

It is an elementary, but powerful observation that these n matrix-vector relations can be rewritten
as the following single matrix equation

Avyi--- Av, = A1 R Anvp (7.36)

,,,,,,,,,,,,,,,,,,,,,,

A viicivp | = vy (7.37)

AV = VA, (7.38)

where A is the diagonal matrix made up of the eigenvalues of A arranged in the same order as their
corresponding eigenvectors in the columns of V. The fact that (7.37) is equivalent to (7.36) follows
from the definition of matrix-matrix products. The notation shown above is called partitioned matriz
notation, and is a very compact way of expressing the above relations without exhibiting the details
of matrix-matrix products.

Finally, observe that by multiplying by V! from the left or the right, equation (7.38) implies
that

A = V3IAV = A & A = VAV (7.39)

Thus A — VAV = A, where V is made up of the eigenvectors of A, is precisely the similarity
transformation that diagonalizes A. The resulting diagonal matrix A has all the eigenvalues of A
along the diagonal (and zero entries otherwise).

Diagonal matrices are the simplest matrices to work with. For systems of equations (either
algebraic or differential equations), if the underlying matrix is diagonal, then the system of equations
is completely uncoupled, and they can therefore be solved as scalar equations independently of each
other.

5Not all n x n matrices have n linearly independent eigenvectors. In general an n x n matrix may have anywhere
from 1 to n such eigenvectors. This is not an issue for us since the matrices we consider in this handout all have as
many linearly independent eigenvectors as their dimension.
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Figure 7.8: The sprung beam with damping and possibly unequal lengths I1, l2.

7.B Eigenvalues/vectors of Mass and Stiffness Matrices

K is the sum of a positive-semi-definite matrix and possibly a diagonal with positive entries, so
always has non-negative real eigenvalues.

N
PE = 'Kz = Y 1kizl + > ki (2 — ;)
i=1 (1,7)€€

TBC

7.C More Models

7.C.1 The General Sprung Beam Model

We derive the differential equations for a more general sprung beam than the one considered in the
introduction. The model is shown in Figure 7.8 with damping elements and possibly unequal lengths
l1 and l5. The equations in this case are

max = — kll‘l — k2$2 — 811"1 — Czi?g,

; . . (7.40)
Jo =1 (k‘ll‘l + 611‘1) — Iy (k‘gl‘g + 621‘2) .
The kinematics shown in Figure 7.8 imply
mx = 7k1£81 — k2$2 — Clil — 621"2
= —(kl + k‘g) x + (klll — ]{72[2) 0
T ~ x—llsiHQ%x—hG - . —(01+CQ) 3'3+(Cll1—02[2) 0 (7 41)
To & x+lysinf =~ x+ 150 JO =1 (k1x1 + Cljfl) — Iy (kzl‘g + Cgi’g) ’
= (k?lll — leQ) xr — (kll% + le%) 0
(Clll — Cglg) T — (Cll% + CQl%) 0
These equations are rewritten as vector differential equations as follows
|: “m £L‘ + (Cl + CQ) 1‘ — (Clll — Cglz) 9+ (]Cl + ]CQ) xr — (klll — ]{3212) 9 :| _
Jo— (Clll — Cglg) T+ (Cll% + Cgl%) 0 — (/ﬁll — kglg) x + (k‘ll% + kgl%) 0
(7.42)
N m 0 l’ + c1+ co CQlQ — Clll l’ + kl + kg kglg — klll X _ 0
0 J 0 CQZQ - Clll Cll% + CQl% 0 kglg - klll kll% + kzl% 0 - 0"
(7.43)

The alternate model using the coordinates (x1,x2) is obtained from the transformation

I e 1T R - B | I R A
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Substituting these expressions for (z,0) in (7.41) gives

m (lod1 + L132) /(L + 12) = —k1x1 — kama — 181 — caig,
J (—iﬁ + 1‘2)/(11 + ZQ) =1 (k’ll‘l + Cl.fl) — Iy (kgd?z + 621.:2) s

which can be reorganized into the following single vector differential equation.

1 mlg ml1 ﬁ:‘l C1 C2 j?l kl k’g X1
.. . =0. 7.44
I+ 15 {J J } [ifz + cily —cala| |22 + kili  —kala| |22 (7:44)
As can be seen from the above, there is no easily-recognizable set of coordinates that renders the

equations in a decoupled form unless [y = I3, ¢ = ¢o and ky = ko. Such assumptions may not be
realistic in all problems.
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Chapter 8

Forced n-DOF Systems: The Frequency
Response Matrix

Forced n-DOF systems can be analyzed in the frequency domain using techniques similar to those
for 1-DOF systems. The main tool is again phasor representations and the frequency response. For
n-DOF systems, the mechanical coordinates form wvectors, and multiple forcing inputs are also de-
scribed mathematically as a vector of inputs. Phasors representing outputs and inputs become vectors
of phasors, and the input-output relation between the phasor vectors becomes the frequency response
matrix. Starting from the matriz coefficients of vector differential equations, formulas for the fre-
quency response matriz are given in terms of those matrix coefficients. It thus becomes important
to keep track of matrix algebra, and in particular the non-commutativity of matriz products in the
analysis. In comparison to 1-DOF systems, n-DOF systems exhibit new vibrations phenomena such
as multiple resonances and zeros of certain frequency responses. The latter represents phenomena
of vibration absorption that are used in devices such as tuned mass dampers.

8.1 The Frequency Response Matrix

Phasor and frequency response analysis can be applied to the vector equation
M&(t) + Cx(t) + Ka(t) = Baa(t) + Byu(t) + Bou(?) (8.1)

in much the same manner as for scalar equations. Care must be taken with matrix algebra though.
Phasor analysis of (8.1) enables us to determine the frequency response from any component of
the input vector u(t) to any component of the response vector (t). We will be extra careful with
notation in this section to avoid confusion. Phasors and complex numbers in general will be denoted
with a “hat” in sans serif font, e.g. x; will be a scalar phasor which is the i’th component of a vector
of phasors X.

To see how phasor analysis applies to (8.1), let u(t) be a vector where each component is a
sinusoid of some amplitude and phase, but all with the same frequency. We express each component
in terms of its corresponding phasor to obtain a vector of phasors as follows

uq cos (wt + ¢1) R(Ul ej(wt+¢1)) Uy ef(wtten)
u(t) = : = : =R
up, cos (wt + ¢y,) R(u, ej(wt+¢>n)) u,, €3 (@t+én)
up el 1P
=R : et = R Ceet] = R(d ej‘“t) , (8.2)
u, én U,

where G is the phasor vector defined above. Note that the amplitudes and phases u;, ¢; of each
component are encoded in the magnitudes and phases of the complex numbers U, i.e. |0;| = u and
Z0; = ¢;, all of which make up the phasor vector a.
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180 8.1. THE FREQUENCY RESPONSE MATRIX

Since the vector of functions u(t) is the real part of the vector of complex functions @ e/“?, it can
also be written as the sum of a complex function and its conjugate as

uj Cos (wt+¢1) ‘
u(t) = : = R(ae) PR u(t) =

: (ﬁ ejwt + fj* 6jwt) ,
Up, cos (wt + ¢y, )

1
2

where @i* is the vector whose components are the complex conjugates of the components of &i. The
superposition property of linear equations implies that the steady state response to u(t) is (half)
the sum of the responses to 1 e/“? and 0" e/** respectively.

We will show next that the steady-state response to an input of the form @ie’*? is of the form
% e/t and obtain the frequency response matriz which gives the relation between the vector phasors
G and X. Substituting the forms w(t) = Ge’** and x(t) = xe/“! in the differential equation (8.1)
(for notational simplicity in the following we assume B; = 0, and By = 0), and recalling that the
derivative of a vector function of ¢ is simply the vector of derivatives of each component

d2 >21 d )A(1 )A(l . ﬁl .
il  Jal; ALl L)
;(1 >A(1 )A(l X lA‘l A
= M (jw)? : C (Jw)| : K : et = Bo : el
Now since e/ is a common factor to all terms on both sides of the equation, we divide by it to
obtain the purely algebraic relation
)A(l C|1
ot [l < )L -

S 3 I A 1 R

Now that the relation is clear, we rewrite (8.3) in compact matrix notation, which then shows
clearly how to solve for X from @ using a matrix inversion

et 4 et +

ejwt + e]wt +

X1 X1

Xn

(—w’M+jwC+K)x=Boii = &= (—w’M+jwC+K) By = Hw)a.  (8.4)

The frequency response H(w) defined by this formula is now a complex matriz for each frequency
w. The reader should compare this with the complex frequency response formula we obtained earlier
for a single degree of freedom system (where x and & were complex scalars, and we had By = 1)

1
—-mw? + jew + k’

Hw) =

o= X>

Since we are now working with matrices, it does not make sense to do something like 1/M when M is
a matrix. The corresponding operation is to take a matrix inverse as in (8.4). Finally, a repetition of
the arguments above show that the frequency response of the most general system (8.1) with possibly
non-zero By and Bs gives the general frequency response formula. We state this as a theorem.

Theorem 8.1. Consider the vector input-output differential equation
M&(t) + Ca(t) + Ka(t) = Baa(t) + Bru(t) + Boult),

and the associated frequency response matrix function of w

Hw) = (~w*M+jwC+K)" (~w? By + jwBi +Bo). (8.5)
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1. If the input is a complex harmonic vector of the form wu(t) = G /!, the steady-state response
is also a complex harmonic vector x(t) = X e/“t with the same frequency w. The complex
phasor vectors G and X are related by the frequency response matriz as

% = H(w) . (8.6)

2. If the input components are sinusoids of one frequency w, then so are the output components,
and the two are also related using the frequency response matriz by

uy cos(wt+¢1) x1 cos(wt+61) x1ed01 uel®1
u(t):[ : ] =>33(t)=[ : ], [ : ]:[ H(w) ][ : ].(8.7)

uy, cos(wt+ey,) Xp, cos(wt+0,,) Xpp e On X, eden
Note how the formula (8.4) derived earlier is a special case of the more general formula (8.5).
Note also how the relation (8.7) between the amplitudes and phases of the input and output is the
same as that between the phasors (8.6). The fact that 2 follows from I is a consequence of the
superposition property and the representation of sinusoids as the real part of complex exponentials

u(t) = % (ﬁ erJt + ﬁ* e_jwt) = w(t) = % (H(OJ) 1] ejwt + H(_OJ) ﬁ* e_jwt)

1 (H(w) et 4 HY(w) e*jwt)

~1 (iewt—i—f(* e_J”t), % = Hw) a,

where the second equality follows from the fact that H(—w) = H*(w) as can be verified directly
from (8.5). Thus the amplitudes and phases x;, 8; of the response’s components are obtained from
the amplitudes and phases u;, ¢; of the input using the elegant complex matrix-vector relation
x = H(w)a.

We now apply the frequency response matrix formula (8.5) to the three examples discussed earlier
to get some insight into the meaning of the frequency response matrix H(w).

A

Example 8.2. (Frequency Response of System ) — )

- fa(t)
my W 4 M2
I ke ka2

Recall the diagram of System (l) reproduced here. We make the simplifying assumptions that m; =
mgzland klzkgzkczk

1 0 i‘l(t) + 2k -k .Tl(t) o f1(t)

0 1| [Z2(t) -k2k| |ze(®)| T | f2(0)]
Applying formula (8.5) to find the frequency response (By = I in this case, so we don't write it out
explicitly)

—1 —1
) -1 10 2k -k 2k — w? -k
Hw) = (—w*M+jwC+K) = <w2 [0 J + {—k‘ 2k]> = { e Qk_w2:|

_ 1 {kaz k }

T wt — 4kw? + 3k2 k 2%k — w?

Examine the meaning of this by writing it out as the relation between the components of the forcing and
the components of the response

21 2k—w? k f,

~ ¢ 4 __ 2 2 4 __ 2 2

X = H(w) f = |:)A(2:| — |w 4k<i: +3k w 24]521“3316 |:f: :| ) (88)
W= 4kw?+3k2  wi—4kw?+3k? 2

Note that all four entries of this matrix have the same denominator. The roots of the denominator are
the frequencies at which the frequency responses become infinite, these are the resonance frequencies.
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It's instructive to calculate them. The denominator is a 4'th order polynomial, and therefore has 4 roots.
Because this polynomial has only even-order terms, finding the roots reduces to finding the roots of a
2'nd order polynomial as follows

wh—4k W +3k2 =0 & s2—4k s+3k* =0, s = w?.
The roots of the 2'nd order polynomial are obtained from the quadratic formula

s12 = 2k+\/4k2 -3k = 2k+k =  wio= /512 = Vk and V3k, (8.9)

where we have ignored the negative roots since they correspond to negative frequencies.

The two resonance frequencies calculated in (8.9) are precisely the frequencies of the normal modes
calculated previously in (7.29) using an eigenvalue calculation. This is not an accident, but a manifestation
of a fact that the frequency response resonances are the same as the frequencies of the normal modes of
a system. This will be shown to be true in general in Section 8.2.

There is a lot of symmetry in the frequency response matrix (8.8). The (1,1) and the (2,2) entries of
the matrix are equal. Those represent the frequency response from f; to x; (the position of m;) and the
frequency response from fy to x5. The fact that they are equal means that the dynamical effect of f;
on z is exactly equivalent to the dynamical effect of f on xo. Furthermore, the (1,2) and (2,1) entries
are also equal. Those represent the effect of fo on x7 and the effect of f; on o respectively. This is
again due to the symmetry in this problem. Note that if we change any of the assumptions on equality
between my, mo or on ki, ko and ki2, this symmetry will disappear.

Note that in the previous example, all entries of the frequency response matrix (8.8) have no
imaginary parts. This is because there is no damping in this example. Examining the formula (8.5)
for the general form of the frequency response, we see that if C = 0 and By = 0 (i.e. all the
coefficients of the first derivative terms are zero), the matrix H(w) will have no imaginary parts.

Example 8.3. (Frequency Response of System II) < f)

mq /XXKK\ — M2
kl ](’2

Consider System (I1) with the simplifying assumptions that my; = my = m, k; = ko = k, and no
damping ¢y =c; =0

{m 0] [28} * []Z 2];;} [28] = m f) e ME®) + Ka(t) = By u(t).

0 m

Applying formula (8.5) to find the frequency response

1

2 -1 (2 1 0 1 -1 0
Hw) = (-w’M+K) Bo—<wm{0 J—l—kj[_l 9 1
AP ) A R A [ PR E R T R [ Q.
E\ k/m |0 1 -12 1 k -1 202 1 ’ k/m

1 1 2-Q? 1 o] _1 m
TR 31| 1 11 Tk | gismn |

Note how in the second line, multiplication by the 2 x 1 matrix By “picks out” only the second column

of the 2 X 2 matrix.

Since in this case there is only one input (one forcing term) the frequency response is a 2 x 1 matrix.
Each entry is the frequency response from f to the displacement of each mass

%1 1/k Hi(Q)

- Q4-302+1 | 2 :
I i (Y750 i P (S (8.10)
X2 Q1-302+1 2(92)

Note again that the denominators of both components of the frequency response are the same. The
resonance frequencies are calculated by finding the roots of the denominator polynomial. This is again a
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4'th order polynomial with only even terms, and the calculation can be reduced to that of a 2'nd order
polynomial

0t -302+1=0 o s2—35+1=0, 5:=02

The roots of the 2'nd order polynomial are obtained from the quadratic formula

s2 = FEEVICD) = BE o - ea—5/50

The two positive frequencies are
Q; =~ 0.62, Qo ~ 1.62. (8.11)

Note again that those are the same frequencies of the normal modes calculated in (7.30). As already
stated, this is a general fact.

The two frequency responses Hi(Q2) and Ha(f2) are plotted in Figure 8.1a. The two resonances
and Q5 calculated above are clearly visible in the plot. In addition, the frequency response Ha(£2) has an
interesting feature that we have not seen before. It becomes exactly zero at a particular frequency

1 1-02
H2(92) =0, (8.12)

Ha(02) = kO —302+1 = Q=1

because the numerator polynomial has a root at €2, := 1 (which corresponds to w, = /k/m)'. This
has a very interesting interpretation, namely that forcing with f(¢) at that frequency will result in zero
displacement in steady state of z2(t). In other words, at that frequency xo(t) is “shielded” from the
forcing f(t)! Figure 8.1b illustrates the time response of z1(¢) and x2(t) when f(t) is at frequency €.
Note how z1(t) appears to “absorb” all the vibrations caused by f(¢), while z5(¢) is shielded from the
effects of f(¢). This is an example of a “vibration absorber”, sometime called a tuned mass damper.
Figure 8.1c gives a physical interpretation of this vibration absorption phenomenon. At this frequency,
the motion of the my is “synchronized” with the forcing so that the force m; produces on msy exactly
cancels the external force f.

In general, if a frequency response is exactly zero at a particular frequency, that frequency
is termed a zero of the frequency response (thus the notation w,). In vibrations problems, this
corresponds to a vibration absorption phenomenon. In Electrical Engineering, w, is called a “notch
frequency”, usually used in some kind of filter (sometimes referred to as a “band-stop” filter) to
suppress oscillations at that frequency.

Example 8.4. (Frequency Response of System Il1) -

I d(t
my kl,nnn,‘ meo ko ®)

This system also exhibits a vibration absorption phenomenon similar to the previous example. Consider
the simplified equations with no damping

miq 0 il(t) ]{31 —kl 1‘1(t) o 0

|: 0 m2:| |:$2(t):| T |:—k1 ]Cl +]€2 I’Q(t) B kg d(t)
Note that these equations are essentially the same as those of System Il, so it is no surprise that the
dynamical behavior will be similar. Applying formula (8.5) to this system

I R Gl A 8 el ) I

kiko
mims w? — (kimi+kimatkami) w2 + kiko Hl(w)
frg 2 =
kz(k1—mlw ) HQ(W)
mimg wt — (kxmi+kimatkami) w? + kiks

I The reader should note that while in a 1-DOF MSD system, 4/k/m corresponds to the natural frequency (normally
denoted by wn, we cannot call y/k/m a “natural frequency” in this two-mass system. The two natural frequencies of
this system are w1 = 0.62/k/m and wa ~ 1.62y/k/m as derived in (8.11). In this case, \/k/m plays a different role
as the vibration absorption frequency.
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E [Ha ()] E[H(Q)]

2.5 3

&2

(a) The amplitude frequency responses of System II. |H1(w)| (solid red curve) is the response from forcing f to displacement
x1 of my, and similarly for |Ha(w)|. The resonances of both responses are the same frequencies w; and ws since those are
determined by the denominators of the respective frequency responses, which are the same for H; and Hs as can be seen
from (8.10). The frequency response Hy has a “zero” at a particular frequency w, = Vk, which is the “vibration absorption”
frequency. If the input is oscillating at this frequency, then the steady state value of z2(t) is expected to be zero as verified
below. The dashed red curve is the frequency response of H; when some amount of damping is introduced between m; and
mo. While damping reduces the resonance peaks, it also reduces the quality of vibration absorption at the frequency w,.
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(b) The time responses of System IT when the input f(t) is oscillating at the vibration absorption frequency w, = vk (top),
and at w = 0.5vk (bottom). Both simulations include a slight amount of damping (¢ & 0.01), which explains the long time
needed to settle to steady state). Note how when the forcing is at w,, the response of x5 is almost zero in steady state, and
thus my absorbs all the forcing in its vibrations. The fact that the steady state amplitude of x5 is not exactly zero is due
to the slight damping. At other forcing frequencies (e.g. bottom figure), the vibrations of m; and mso are comparable in

amplitude.
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(C) A physical interpretation of the vibration absorption phenomenon. At forcing frequency w,, the motion of mq is “almost
synchronized” with the forcing so that they effectively cancel each other’s effects on ma. When the forcing is positive, x; is
negative (see plot on left) and the coupling spring (between mi and ms) is compressed, producing a negative force which
counteracts the applied force f as depicted in the diagram on the right. When the forcing is negative, the opposite occurs.

Figure 8.1: Tllustrations of the frequency responses of System IT showing resonances at w1, wa and a zero w, in the
response from forcing to z2. The time responses illustrate the implications of having a zero in the frequency response

as a type of “vibration absorption”.
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The frequency response Ho(w) from d to x5 has a zero at the frequency w, = \/k1/my. This is
again a vibration absorption phenomenon. A physical interpretation can be given by imagining that when
the input d(t) is oscillating at that frequency, mass msq is stationary, and only mass m; vibrates. Since
my is stationary, the vibrations of m, are determined by its mass m; and spring ki, which explains the
frequency w, = \/ki1/mq. This is a very similar interpretation to that given in Figure 8.1c.

Vibration absorption is a common technique for vibration suppression used in so-called tuned
mass dampers. Examples of these include “Stockbridge dampers” installed on long cables and
transmission lines. Some skyscrapers use tuned mass dampers which are laterally vibrating large
masses installed near the top to reduce the vibrations due to dynamic wind loading.

8.2 Relation between Normal Modes and Resonances

Frequency response resonances are a property of the response of a system to “external excitation”,
where the excitation can be an externally applied force or displacement. In the language of systems
analysis, these resonances are input-output (i.e. external) properties of a system. Normal modes
on the other hand arise from non-equilibrium initial conditions without any external excitation, so
they may be considered as internal properties of a system. None the less, there is direct connection
between the input-output and the internal properties. In particular, for undamped systems, we will
show in this section that the normal mode frequencies are precisely the resonance frequencies in
the frequency response in a system with no damping. This correspondence also holds as a good
approximation in lightly damped systems.

add the simpler derivation using change of basis already introduced before

Consider an undamped system with C = 0. The frequency response formula (8.5) becomes

Hw) = (,w2|\/|+|,()_1 Bo,

where we assume for simplicity that the input enters without differentiation, i.e. By = 0 and By = 0.

This formula can be “massaged” so that the diagonalization M'K = VAV-! is applied as follows?
Hw) = (—w*M+K) "By
= (M(~w?T+M'K)) "By (Tis the n x 1 identity matrix)
= (M(~’I+VAVY) )_1 Bo (substitute the diagonalization of M1 K)
= (MV (—w’I+A) V'l)_1 Bo (“extract” V and V-1, and note V-1V = 1)
= V(~w?T+A) " VIMIB, (using (XY Z)" = Z1y-1x1)
r, 2 -1
v Wi . D (—w?I1+ A) is a diagonal matrix
o E ) V-IM-1B, is some constant matrix, call it D
L w +>\N
r_ 1
A-w?
=V D. (the inverse of a diagonal matrix is also diagonal)
1
L An-w?

The exact values of the entries of the vector D are not important for the analysis next.

Now examine more closely the meaning of the last expression above for the response phasor
vector x. First recall that the normal mode frequencies w; are related to the eigenvalues A; of the
matrix MK by w? = );. Assume for simplicity that there is a single external input f, and therefore
its phasor f is a scalar rather than a vector. In this case the matrix D is n x 1 and the relation

2The matrix manipulations here are equivalent to changing to new coordinates z using * = Vz, finding the
decoupled frequency responses, and then changing back to the original coordinates x.
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Figure 8.2: A depiction of the frequency response of an n-degree of freedom, undamped (or lightly damped)
mechanical system. This depiction is for a system with a single forcing input. The resonance frequencies wi,...,wn
are the same as the “internal” normal modes. Furthermore, when the forcing is at a frequency close to a resonance
w & wj, then the response phasor vector is nearly aligned (i.e. & = H(w)f ~ wv;a) with the eigenvector v; of that
normal mode as follows from (8.13). This determines the “vector shape” of the response near each resonance in the
sense that the response as a vector function of time is @(t) & v; acos (wt + 6). A version of this diagram for the
specific example of System II is shown in Figure 8.3.

between % and f is

1 C 1
w%—wQ : : w%—wQ dl
¥ = Hw)f =V Df = |vii---ivy S f
1 Do 1
L"12V'WQ ! ! W%I—WQ dN
. 4 f
i i 2.2 ¢ s
P wi-w dif dyf
s ' ' 1 N
x| = |vii- vy 5 = |v| 55+  + |ov| 53— (8.13)
b i wi —w w3 —w
! ! T
N

This last expression says a lot! As the frequency approaches each normal mode w — w; := \/\;, the
dif
w?—w?

corresponding term goes to infinity, i.e. a resonance in the frequency response®. Thus we see

that provided none of coefficients d; are zero (which holds generically), the internal normal mode
frequencies are the same as the external resonance frequencies. This is depicted in Figure 8.2.

There is another important observation from (8.13) about the “shape” of vibrations near reso-
nances. Near each w;, the dominant term multiplies the eigenvector v;. This means that the phasor
vector X is essentially aligned with v;. This says that as a vector, x(t) should be aligned with v; for
each t, i.e.

ft) =1 cos(wt+¢), and w= w; N ‘
- %~ v ( ) ’ = z(t)| ~ |v;| afcos (wt+ ¢), (8.14)

where o := % is a scalar which depends on the exact value of w, i.e. when w =~ w;, the “shape

2 w2

of the vibrations” will be a temporal oscillation (with frequency w;) of the vector v;.

Example 8.5. In System Il, the normal modes were calculated (in (7.30) and (7.31)) to be (in units
of normalized frequency Q := w/vEkm)

Ql ~ 0627 v = |:324:| y

. (8.15)

N~ 162, vy~ [’1'224} .

This means that at the first resonance wy, the two masses will move “in phase” (i.e. in the same direction)
with their amplitudes having the ratio x;/xo & 3.24/2 = 1.62, while at the second resonance wy, the
two masses will move “completely out of phase” (i.e. with 180° degree phase difference, which means
moving in opposite directions) with their amplitudes having the ratio x; /x3 & 1.24/2 = 0.62. Figure 8.3
shows the frequency response magnitude together with (steady state) time responses for forcing near the
two resonance frequencies. Note that these responses look the same as the (unforced) responses from
the special initial conditions x(0) = v; and (0) = vy shown in Figure 7.6.

3If there is any damping in the system, the frequency response will have a “peak” at w; rather than going to
infinity.
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Figure 8.3: Magnitude (top) and phase (bottom) of System II. The insets show the time responses when forcing is
near each of the two resonance frequencies €2; and 2. These responses are the same as the respective free vibrations
starting from eigenvectors v1 and vz respectively as initial conditions (Figure 7.6). For forcing at i, the masses
move in-phase, while they move out-of-phase when forcing is at 2. The phase plots ZH1, ZH2 and their difference
/H1 — ZH3 are shown. Note that H;(€2) is the phase difference between forcing input and position of mass m;. On
the other hand, the green curve ZH;(Q) — ZH2(92) shows the phase difference between the two masses. We see clearly
that below Q < 1, mi,mo are in phase (unison motion), while for © > 1, they are 180° out of phase (differential
motion). The plots were generated with very small damping (¢ = 0.01).

Figure 8.3 shows additional information that can be obtained from examining the phase plots ZH; ()
and ZH{(Q). Those two plots indicate the phase difference between forcing input and each mass’
position. The difference ZH;(Q) — ZH;(Q) is also shown. This indicates the phase difference between
the two masses positions (irrespective of their phase difference relative to forcing). We see that for
0 <1, ZH1(Q) — ZH2(2) = 0, i.e. the two masses move in phase, which is consistent with the
first resonance (at 2 &~ 0.62 < 1) corresponding to unison motion. On the other hand, for Q > 1,
ZH1(Q) — ZH3(2) ~ 180°, i.e. the two masses move completely out of phase?, which is consistent with
the second resonance (at € ~ 1.62 > 1) corresponding to differential motion.

Figure 8.3 illustrates how phase plots can reveal useful information about the “shape of vibra-
tions”. To have a full picture of harmonically forced vibrations in N-DOF systems, both magnitude
and phase plots need to be considered. We will see further examples of this when considering
large-scale N-DOF systems in Chapter 9.

8.2.1 Hidden Modes

In the pervious section we made the statement that “generically” the internal normal mode frequen-
cies are the same as the external resonance frequencies. The precise statement is that the external
resonance frequencies can only be a subset of the internal mode frequencies. This means there are
no external resonances that did not come from internal normal modes. However, there could be
internal modes that do not appear as an input-output resonance in the frequency response. We call
such frequencies “hidden modes”. They only arise in very specific geometries or systems with sym-
metries. In this section we give such examples to add insight into the relationship between internal
and external vibration phenomena.

4Recall that a phase difference of —180° is the same as a phase difference of +180°.
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Consider the three mass system shown in Figure 8.4a. The differential equations can be derived
as follows®

mi1 &1 = —kixr — kie(z1—22) + fi = —(ki+ki2) z1 + k2 z2 + fi,
mo &2 = kio(x1 —x2) — koz(x2 —x3) + fo k1o x1 — (k1o + ko3) 2 + kos x3 + fo,
m3 ¥o = kog (12 —x3) — k3xs kos o — (kog + k3) 3.

Those equation can be put in the standard matrix-vector form (7.12)

mi 0 0 T k1 + k1o —k19 0 1 1 0 f
0 mg O Zo| + | —ki2 ko4 ks —kos ol = |0 1 [fl}
0 0 ms| |is 0 —koz  koz+ k3| |3 0 o] L2
We first analyze this system under the simplifying assumption that all masses are equal m; = mq =
ms = m, and all spring constants are equal k1 = k1o = ko3 = k3 = k. In this case M'K becomes
i 2 -1 0
M 1K = — 71 2 71 - - A7
mlo -1 2 m

where A is the matrix of constants defined above. Since the matrix M'K is a scalar multiple of A,
the eigenvectors of M~'K are the same as those of A, and the eigenvalues are % times those of A, all
of which can be computed numerically. The results are best summarized by defining a “normalized
frequency” 2 := w/w, where w, = /k/m (the natural frequency of a single mass-spring system).
The computed normal modes are

1 1 -1
M(A) ~ 059 Aa(A) = 2 B As(A) ~ 34
Ql ~ 0.77° V1 = \{5 ) Q2 — \/i , V2 = _01 ) QS ~ 18" U3 = \_/1§

Note that the eigenvalues listed are those of the constant matrix A (e.g. A1(A) is the first eigenvalues
of A), while the actual normal modes of the system are obtained from w; = Q;w, = Q;1/k/m. The
physical interpretations of the three modes of motion are depicted in Figure 8.4b.
The frequency response from forcing inputs f1, fo to masses positions has some peculiar behavior
in this system. It is calculated from formula (8.5) as
Hw) = (~*M+K)"'By = (—w?mI+kA)" By

(
= %(—QQI—i— )_180 (Q =w/\k/m & me:Q2k)
1

2 1 o]\"'[1 o
= -0? 102 A 0 1.
k 0 -1 2] 0 0

Using symbolic calculations, the frequency response matrix (in terms of ) is computed as

—(0%-40%+3 r o .
) (94_(492+2)(92)_2) (92172)2 Hii Hio >j1 Hii Hio ;

H(Q) = z (94,4192“) (951,2) =: |H21 Ha < Xp| = |Har Hoz| | |,
(94,492112)(92,2) (921,2)2 |Ha1  Hs2 X3 Hz1  Hso fa

where the dependence on € is suppressed in the notation for the individual matrix entries H;; for
simplicity of notation. There is a lot to unpack in this frequency response relation, and we list some
below as individual remarks.

5As usual, the coordinates x; are chosen so that 1 = 0, z3 = 0 and 3 = 0 corresponding to all springs being
unstretched.
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< it < f2
m | m2 A ™
ky k12 ka3 ks
) \ )
zf zgl I';:
(a) The three mass system with two forcing inputs.
- —p —P - [ ] <+ 4+ —> <+
1 +-— < 1] a— ° — 1l —p — —
vi=|2 va=|0 v3=|+2

1 mq mo ms -1 ma mo ms -1 mq meo ms

Mode 3: m1 and mg3 oscillate in tan-
dem, while mg oscillates in the oppo-
site direction with a larger amplitude

Mode 2: mg stationary. m1 and ms
oscillate in opposite directions

Mode 1: unison motion. mi and mgs os-
cillate together with same amplitude. mo
oscillates in tandem with a larger amplitude

(b) The three normal modes of the system at frequencies Q1 = 0.77, Q2 = v/2, and Q3 ~ 1.8. The eigenvectors are
shown together with depictions of each corresponding mode of motion.

Fin (52)
Ha1 (59)| |
i ()| ||

15
2, Q, 0 [N

(C) Frequency responses from f; to the three mass po-
sitions. All three normal modes appear as resonances in
the responses to x1 and x3. However, mode Q2 is “hid-
den” in the response Hz;p. This means that when fy is

(d) Frequency responses from fa to the three mass po-
sitions. Modes Q1 and Qg are “hidden” and only mode
Qg appears as a resonance to all mass positions. Note
how Hao (the response to z2) has lower growth than the

other two responses. This is again a manifestation of
mode 2 above, where the center mass remains relatively
stationary compared to the other two at that mode.

at frequency Q2, 1 and 3 will move according to mode
2 above, and z2 will remain relatively stationary.

Figure 8.4: Analysis of the three mass system with two different kinds of forcing in the case where all masses and
spring constants are equal respectively. The middle figure depicts the normal modes, while the bottom figure shows
the various frequency responses. Some of the frequency responses have a subset of the normal modes “hidden”, i.e.
they do not appear as resonances. This phenomenon is due to the symmetry in the problem. The plots are shown in
terms of the normalized frequency Q := w/wy 1= w/\/k/m.
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Figure 8.5: The three components of the frequency response of the three-mass system as a function of the normalized
frequency Q = w/+/k/m. Each represents the frequency response from forcing to the respective mass position z;.
All three responses have their resonances at all three normal mode frequencies. There are also two zeros, each for a
subset of the responses, and those represent two different phenomena of vibration absorption.

o The second column of H(w) corresponds to the effect of fo on the three masses with f1 set to zero.
This is a very special and symmetric situation since the force acts on the center mass, and all
masses and spring constants are respectively equal. Note that even though we have three masses,
and thus three normal modes, there is only one resonance at € = /2 for all the entries of the
second column. To see the behavior of the masses around this resonance

1

@27 ! L
-1
@ | =y ()|~ @ |0 = w2 (as 2~ 2)
— 1 1
@2y

where ~ refers to the “leading order” behavior as Q — /2.

Thus the only resonance from f> corresponds approximately to vibrations of normal mode wvs.
More precisely, as Q — /2, my vibrates with amplitude proportional to 1 /(9% —2), but m; and
ms vibrate with the much larger amplitudes 1/(Q2 — 2)2. Thus near that resonance the motion
resembles that of the 2nd mode depicted in Figure 8.4b.

The roots of the denominator are the frequencies where the response goes to infinity (i.e. res-
onance), and the positive ones are exactly the frequencies 21, Qo and Q3 calculated earlier as the
normal modes. Figure 8.5 illustrates the magnitudes of each component of H(w) separately. It is clear
that each goes to infinity at each of the resonances as expected. An interesting feature of this system
is that it has two zeros §1,, and Q,, corresponding to two different scenarios of vibration absorption.
The first, §2,, corresponds to Hi(€,,) = 0 and Hy(£,,) = 0, i.e. m; and mz not moving and all the
vibrations being absorbed by m3. The second corresponds to Ha(£2,,) = 0 and H5(f,,) = 0, i.e. mq
and mg3 not moving and all the vibrations being absorbed by mi. The reader should try to think of
a physical interpretation of these phenomena similar to that given in Figure 8.1c.

1 00 2 1 o]\ [0 1 w2 [ o o 2 1 o]\ [o
Hw)=(-w’mlo 1 o] +k|-1 2 2 1| = — 0 1 o|+1]1 2 1
0 0 1 0 -1 2 of k\ k/mio o 1 0 -1 2 0
. . 2(2-0%
_ _ 02 4 — _ w
=% o etz —1 | (Z)(QQQ) g (Q w/wn an)
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Chapter 9

Vibrations in Large-Scale Systems

Normal mode and frequency response analysis for n-DOF systems can be applied to systems of any
order. This chapter gives examples where n can be quite large either due to the system comprising
many masses, or when the n-DOF dynamics arise from spatial discretizations of continuum models
such as those of beam or wave phenomena. The first ezample involves a chain of a large number of
masses, which has similar behavior to the wave equation in one dimension. The second is the wave
in one spatial dimension which has an infinite number of normal modes. After a finite-difference
discretization (in space), the equations resemble those of an n-DOF system, which can then be
analyzed using the tools developed so far. The third example is the Fuler-Bernoulli beam equation,
which is analyzed through a similar finite-difference discretization. In all the examples, the relations
between the normal modes and the frequency response is explored.

Introduction

The first example presented is a system with ~ masses where N can be arbitrary. In the other
examples presented here of the wave and beam equations, the number of degrees of freedom n is
the size of the discretization grid used in finite-difference approximations of the underlying Partial
Differential Equations (PDEs). Spatial discretization of a PDE over a spatial grid of size v yields
coupled ODEs representing an N-DOF system. Thus ~ can be as large as needed for a sufficiently
accurate approximation of the PDE.

The wave and beam equations are termed “continuum” systems since their mechanical degrees of
freedom form an infinite continuum. Spatial discretizations of the underlying PDEs provide numeri-
cal schemes for converting such systems to finite DOF system, which can then be analyzed using the
tools developed so far, and this is the approach taken in this chapter. Chapter 10 will present ana-
lytical methods for analysis of some continuum systems without the need for discretization methods.

0.1 A Mass Chain

The first example is a “chain” of N masses connected by springs and moving in one dimension as
depicted in Figure 9.1. In the free-vibrations setting, the two springs at the boundaries are attached
to rigid wall anchors (top of Figure 9.1), while in the forced-vibrations setting (bottom figure), the
left wall is replaced by a moving boundary which moves with an externally determined displacement
u(t). The forced-vibrations setting is used to explore the frequency response of the system from that
input.

For simplicity of exposition, the springs are assumed identical. Mass chain models with the two
ends either free or connected to rigid anchors represent idealized dynamics of several real systems.
Those include many vehicles connected in series such as the cars of a long locomotive, or the dynamics
of a tightly packed “string” of vehicles on a single lane of a highway. In the latter case the spring
connections are “virtual”, i.e. they represents the behavior of the drivers of vehicles (whether humans
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Figure 9.1: A chain of N masses connected with identical springs. The mass’ positions {z;} are measured on a single
coordinate axis. The analysis is however simplified using an alternative set of coordinates x; := z; — iL, which measure the
“deviation” of the i’th mass position from its equilibrium position iz (where L is the equilibrium length of each spring, and
the masses are assumed to have zero width). The mass chain is an idealized model of large interacting subsystems arranged
in a one-dimensional “lattice”. This idealization is useful for some traffic models such as connected locomotive cars and a
tight chain of vehicles traveling on a highway lane. The bottom figure depicts a mass chain driven by the position u(t) of
the platform on the left.

or automated systems) in terms of their response to inter-vehicle gaps’ deviation from desired value.
The control force law in this case can be modeled as a “virtual spring”. At the other extreme end
of spatial scales, an extremely large mass chain is a so-called “harmonic solids” model of atomic
lattices where the masses represent atoms and the springs represents bonds between them. The
vibrational modes of such a crystal lattice are called “phonons” in quantum mechanical models of
crystal vibrations.

Let the position of the i’th mass be denoted by z;(t). The positions {z;} are measured using
one coordinate system as shown. A change of coordinates will simplify the equations of motions
by “removing” constant terms which are not relevant to vibrational behavior as shown next. For
simplicity assume each mass to have zero width. The equilibrium length of each spring is r, and
at static equilibrium all springs are uncompressed which means that the distance between the two
vertical walls must be

w = (N+1) L.

Now we write Newton’s 2nd law for each of the masses in the interior region 2 <7 < N —1, and then
for the two masses at the left and right end respectively as shown in the figure below (suppressing

the dependence on t in the equations below for simplicity of notation)

m; Z; = —k (Zi_zi—l —L) +k(zi+1 — Zi —L) (iZQ,..,N-l)
mii =—k(z—u—1L)+k(z2—2—1) (left end)
My 2y = —k (ZN —2ZN-1" L) +k (W —Zn — L) (right end)

These equations contain the constant terms w and r, which can be removed by defining new coor-
dinates which are the deviations from equilibrium positions, i.e.

T; = 2;—1L = Zi = T;+1L, (7,21,2,,N)
= Ty —Tj—1 = (Zi—iL)—(Zi,1—<i—1)L) = (Zi—zifl—L)

X1 = 21— L

Ty = Zy —NL = 2y —W+L (using w = NL+ L)
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In terms of the new variables {z;(¢)}, the equations become simpler with no constant terms

m; &; = —k (ﬂii —l‘i_l) +k(~73i+1 —l‘i) = —k(—xi_1+2xi—xi+1) (Z'ZQ,...,N—I)
my iy =—k (z1—u)—k (xg + xl) = —k (2951 — xg) (left end)
my Iy = —k (mN — :CN,l) —kzy = —k (—xN,l — QmN) (right end)

Of course once these equations are solved, we can reconstruct the original position variables using
the relation

zi(t) = x(t) + irL, i=1,2,...,N. (9.1)

The differential equations for the x; variables are all mutually coupled. They have to be solved
all together. The best way to understand their structure is to write them all together as a single
vector differential equation as follows

mi il(t) 2 -1 (El(t) 1
mo Zo(t) -1 2 -1 x2(t) 0
: + k I : = k|:|u) (9.2)
mpy-1 wN_l(t) -1 2 -1 wN_l(t) 0
mn ZDN(t) -1 2 (DN(t) 0
Ly
N Ma(t) + Ka(t) = Boult)

where the mass M, stiffness K := k L, and By matrices are as shown. The numerical matrix £y
defined above is the Laplacian® of size n, and therefore denoted by £,. While M is diagonal, the
stiffness matrix K is tri-diagonal; a structure reflecting the “nearest neighbor” interaction between
the masses.

Free Vibrations of the Mass Chain

For analysis of free (unforced) vibrations of the mass chain, we simply set u(¢t) = 0, i.e. the right
hand side of (9.2) is zero. Note that u(t) = 0 is equivalent to attaching the leftmost spring to a
rigid wall. This system with ¥ masses moving in only one coordinate has N degrees of freedom. The
normal modes of vibration are given by the eigenvalues of MK, and the normal mode shapes by the
eigenvectors. If we make the simplifying assumptions that all masses are equal m; =m, i=1,..., N,
then we have

MK = £ 2.

This means that M'K is a scalar multiple of the numerical matrix £,. Thus the eigenvalues of
M-1K are the eigenvalues of £, multiplied by the scalar factor k/m, while the eigenvectors of MK
are exactly the eigenvectors of L. Both the eigenvectors and eigenvalues of £y can be calculated
numerical or analytically?. In particular, it can be shown that for large ~, the first few eigenvalues
of L, are well approximated by

ML)~ (FDT = M(ELy) ~ o

e

N = wl%(% ﬁ)z, 1=1,2,..., (9.3)

where A\;(Ly) denotes the I’th eigenvalue of Ly, and w; is the I’th natural frequency of the n-
mass chain system. The formulas for the eigenvalues and natural frequencies are a relatively good
approximation for the first 20% of natural frequencies (when arranged in increasing order), which

IThis name originates from the fact that —L is the finite-difference discretization of the second derivative operator
2
%, traditionally referred to as the “Laplacian”.
2The matrix Ly is a tridiganoal so-called Toeplitz matriz, for which the eigenvalues and vectors can be derived

analytically.
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(a) Mode shapes of the first four modes of a mass chain system of size 50. The blue circles represent the position
deviation variables {z}}, while the red dots represent the absolute mass positions {zy} obtained from the deviations
by (9.1). The red dashed lines indicate the equilibrium positions of the masses. Click for Animation.
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(b) A depiction of the first normal mode of the mass chain using five snapshots over 1/2 of the period. A “compression
wave” starts from one end and propagates to the other end. The wave then reverses and the process repeats periodically.
Click for Animation.
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(C) The second normal mode begins with a compression wave either in the middle or at both edges. The compression
then propagates from one configuration to the other repeatedly. The diagram depicts 1/2 of a period. Click for
animation. See also the 3rd mode animation, the 4th mode animation, as well as the animation of the first 4 modes
together.

Figure 9.2: Tllustrations of some of the normal modes of the mass chain system computed with 50 masses. The
modes are usually ordered by increasing values of their corresponding natural frequencies. The most important modes
are those with the lowest natural frequencies since in any real system, damping tends to suppress higher frequency
oscillations more than lower frequency ones.

are typically the most important modes of vibration®. For comparison, the first few actual natural
frequencies computed from the eigenvalues of L, for v = 100 are

l 1 2 3 4

w [ (F/%) || 0:99 | 1.98 | 2.97 | 3.96

m

which should be compared with the approximation (9.3). We note that this approximation becomes
exact in the limit of a large number of masses N — oco.

Figure 9.2 depicts a visualization of the first few normal modes (ordered in terms of oscillation
frequency) calculated from the eigenvectors of L. Those modes have the structure of “compression
waves”. The first mode is a compression wave oscillating back and forth between the left and right
end, while the second mode is a compression wave oscillating back and forth between the edges of
the chain towards the center. Higher frequency modes also look like compression waves, but with
more minimum and maximum compression regions. Figure 9.2 shows the modes for N = 50. For
such a large system, the eigenvectors are best visualized as graphs over the mass index running from
1 to 50. These are shown in the top panel of the figure using both the original coordinates {z;} and
the deviations from equilibrium positions coordinates {x;}. Animations of the first four modes of
vibrations are also shown in that figure.

3In many real systems, damping tends to be proportional to natural frequencies, i.e. higher damping for higher
frequencies. Thus only the first few modes of vibrations are important in such systems since the higher frequency
modes are typically so heavily damped that they have little contribution to the total superposition of modes.
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w= 1w

mass index i

500 1000

(a) The input u(t) is a sinusoid with the same frequency w as the first normal mode frequency w;. Note how the
response grows with the same “shape” as the first mode depicted in Figure 9.2a. Note also how the response’s period
matches that of the input’s period.
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(b) The input is at w = we = 2w, which is the 2nd normal mode’s frequency. The response shape matches that of
the 2nd mode depicted in Figure 9.2a, and the response frequency matches that of the input.
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(C) The input frequency is at w &~ 1.7w;, which is in between the 1st and 2nd mode frequencies. The response shape is
a more complicated combination of the modes, and initially appears (top panel) not to have a well defined frequency.
In steady state (bottom panel), the response has the same frequency as the input, but its shape is a combination of
primarily the 1st and 2nd mode shapes. Note also how the maximum amplitude is about an order of magnitude smaller
than the two resonant responses above.

Figure 9.3: Time responses of an N = 50 mass chain subject to purely harmonic excitation of frequency w at the
input u(t). The pcolor plots show the deviation positions (z;(t) variables) as a function of time, with amplitude scales
indicated by the color bar gray scale. Three cases are shown with w at the 1st and 2nd normal mode frequencies, as
well as a frequency in between those two modes. The amplitude of u(¢) is the same in all three cases for comparison
of the responses’ amplitudes. The gaps between the red dashed lines indicate one period of the forcing input u(t).

Forced Vibrations of the Mass Chain

Now assume the mass chain is driven by an input u(t) as depicted in the bottom part of Figure 9.1.
Before analyzing the frequency response, we consider examples of the time response of this system
when u(t) is a pure harmonic excitation, i.e. when u(t) is a pure sinusoid of frequency w. In order to
simulate this system we require a small amount of damping in order to have a steady state response*
It is not difficult to see that if we place dampers ¢ in parallel with each spring in Figure 9.1, the
resulting differential equation becomes

Ma(t) + cLy@(t) + kLyz(t) = Bou(t). (9.4)

The fact that the damping matrix is ¢ £ follows from the dampers being in parallel with the springs,
for which the stiffness matrix is k L

4When there is no damping, and the input is at the (normal mode) resonance frequencies of the system, the
response grows unboundedly in time, i.e. there is no “steady state”.
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Figure 9.4: Animations of the steady state response for forcing at various frequencies. The red marker indicates
the input displacement u(t), and the blue and black markers indicate the masses’ positions in terms of the deviations’
positions z(¢), and absolute positions z(t).

The system (9.4) is simulated with a small amount of damping ¢ and the results are illustrated
in Figure 9.3. The first and second cases correspond to the input frequency set to the 1st and 2nd
normal mode frequencies. In those cases, the responses build up significantly in amplitude and the
“shape” of the responses matches very closely to the corresponding normal mode shapes depicted
in Figure 9.2a. Thus we have clear resonance phenomenon in those two cases. In addition, when
the input frequency is close to a normal mode frequency, the system’s response appears to “select”
primarily that mode as the shape of the vibrations (regardless of initial conditions). This is to be
expected from the analysis in Section 8.2 of the relation between normal modes and resonances.

In the third case, the excitation frequency w is in between w; and ws. During the initial transients,
this response does not appear to have a well-defined frequency. In steady state its frequency is the
same as the input’s frequency as predicted by the theory, and it appears to have a more complex
shape that is a combination of the first two modes. In addition, the response’s amplitudes in this
case are about one order of magnitude smaller than the two resonant cases. Animations of the
response to forcing at various frequencies are shown in Figure 9.4.

The phenomena observed in the time response experiments just described can be fully under-
stood and quantified using the frequency response matrix of this system. Recall formula (8.5) of
Theorem 8.1. The frequency response H(w) in this case is an ¥ X 1 matrix since there is a single input
u, and N outputs z;, i = 1,..., N representing the position of each mass in the chain. Applying
formula (8.5) to (9.4) with all masses m; = m, springs, and dampers assumed identical gives

Hw) = (—w?mI+jwcly+kLy) " Bo,

where I is the ¥ x N identity matrix, and By = k e; is the matrix given in (9.2). Now rewrite this
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(a) The magnitude frequency responses (for (b) A pseudo-color plot of all the magnitude frequency responses [H;(Q)],
N = 18) showing the first 3 resonances. The ¢ = 1,..,N (for N = 50). The frequency axis is scaled as Q/(w/N),

mode shapes shown in Figure 9.2a are clearly and the resonances are expected at integer values as predicted by (9.3).
visible here in terms of the peaks and nodes of Actual resonance frequencies are indicated by the dashed red lines. Note
each mode shape. again the peaks at each resonance frequency, as well as the node locations

at all frequencies.
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(C) Real and imaginary part of the frequency response. Note that color bar scale. The relative signs of the mode shapes
near each resonance are visible in these plots. The reader should compare to the normal mode shapes shown in Figure 9.2a.
For example, the 2nd mode has two peaks of opposite signs, while the 3rd mode has the two “outer” peaks of the same sign,
which is opposite to the sign of the “middle” peak.

Figure 9.5: Various views of the N x 1 frequency response matrix of the forced mass chain. The input is the leftmost
displacement, and the outputs are the positions of each mass.

c

equation in terms of the normalized frequency 2 := w/+/k/m and the damping ratio ¢ := 2 T

-1
H(Q):(_w2m:[+jwch+k£N)_1kel = (_;‘/)_?2711+£N+]22\/c7n7k /—:/mEN) 81

((£x -9 +j 20 ﬁN)'l er. (9.5)

It is helpful to compare this expression for the single Mass-Spring-Damper case which reads

1

1-Q2)+;20Q (9:6)

H(Q) =

It is useful to think of the frequency response (9.5) as the matriz version of the single Mass-Spring-
Damper frequency response (9.6) for a “networked” system of identical masses, springs and dampers.
Note the appearance of the matrix £, which describes the interconnection, or network structure
of the system. Any other system of identical elements connected in another manner, e.g. a 2-
dimensional array of masses, would have the same expression as (9.5), but with a different matrix
Ly encoding the different network structure.

For the mass-chain system of Figure 9.1 with » = 50, the numerically computed frequency
response matrix H(Q2) is illustrated in Figure 9.5. Various ways of visualizing this frequency response
are presented since the 50 x 1 matrix H(2) is complex-valued. Its absolute value, real and imaginary
parts are shown. Resonances occur at the normal mode frequencies, and the “shape” of the frequency
response near the resonances resembles the shape of the normal modes of vibrations as expected.

Aside from showing the shape of vibrations at resonances, the frequency response plot 9.5b also
shows the shape of vibrations at other frequencies. Examine the steady state vibrations in 9.3c when
w = 1.5w, and compare with the frequency response in 9.5b at that same frequency. You will see
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Figure 9.6: Spatial discretization of a spatially-distributed and time-varying field W (z, t) over the domain 0 < z < 1.
The spatial domain is approximated by a grid of N+1 points x; :=iA,7=0,1,2,..., N. Define the time-varying value
of W (z,t) evaluated at the i’th grid point to be the function of time w;(t) := W (ia, t). The N+1 functions {w; ()},
are then collected together as the components of a vector-valued function w(t). Provided ~ is sufficiently large, the
vector signal w(t) will be a good approximation to the field W (z, t). Dynamic spatial discretization techniques amount
to finding the ODEs that govern w(¢) from approximations of the PDE that governs W (z, t).

that the frequency response plot predicts the shape of the steady state vibrations in this case as
well.

9.2 The Wave Equation

The wave equation in a finite, one-dimensional medium 0 < x < L is

2 62
— Wz, t) = V2=—=W(z,t), 0<x<r, 9.7
oV @) = VW <as (91
where the boundary conditions have not been explicitly stated yet. This is a model for the vibrations
of a string, or the transmission of acoustic vibrations in a one dimensional medium. The constant
v is called the wave speed since if the medium is infinite —co < x < oo then it easy to verify by
differentiation that this equation has the two “d’Alembert” solutions

Wi(z,t) = W(x —vt,0), Wy(z,t) = W(z+ vt,0). (9.8)

Thus an initial spatial profile W (., 0) is advected right as W1(.,) and left as Wa(., t), which are right
and left moving with velocity v respectively. However, when the spatial domain is finite, “reflections”
occur at the boundaries and the solutions (9.8) are no longer valid. This makes the wave equation
behave in more interesting ways over finite domains. In this chapter we take a spatial discretization
approach to the wave equation, while an analytical treatment is presented in Chapter 10. The
discretization approach will also show the analogies of the wave equation to the mass chain system
studied earlier.

The wave equation (9.7) can be approximated by a finite DOF system by using a spatial finite-
difference discretization as follows. Define ~ + 1 functions of time {w;(t)}, which are the values of
W (x,t) on a uniform spatial grid of size N+1 as shown in Figure 9.6 (from now on we assume L = 1)

wi(t) = W (ia,t), i=0,1,...,N. A:=1/N.

The time derivatives of the functions w;(t) are the partial derivatives of W (x,t) at the grid points

2
W (z, t)‘ - %W(m, ). (9.9)
r=iA

d? 0?
—w(t) = =—
et = gp
This approximates the left hand side of (9.7). To approximate the right hand side, we need to

approximate the 2nd spatial derivative BG—;W(Z'A, t) at the grid points. This can be done using the
following finite-difference scheme (with 2nd order accuracy) implemented with the stencil

aa—;w(m,t) ~ é (W((i —1)a,t) =2 W(ia, t) + W((i + I)A,t))
= é (Uh'fl(t) =2 w;i(t) + wi+1(t)) , 1=1,...,N-1. (9.10)
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Note that we cannot use this stencil at ¢ = 0 or ¢ = N since i-1 and N 4+ 1 are not point on the grid.
The values of wp(t) and wy () will have to be determined using boundary conditions.

Before discussing boundary conditions, note that the original PDE (9.7) can now be approxi-
mated by using the expression (9.9) for the time derivatives, (9.10) for the spatial derivatives, and
substituting in the wave equation (9.7). This results in the set of ODEs for {wy(t)} written here in
vector form as

wir ()

&2 wi_l(t) 5 T o, . T )
Lol wt) | ~ %5 0 1 -2 1 0 wi(t) |, i=1,...,n-1. (9.11)

wi+1(t) w;4+1(t)

Note the structure of the matrix here which is “constant along diagonals”, with the entries on those
diagonals being exactly the coefficients of the stencil (9.10). The equation above only holds at the
“interior” grid points. To find the correct equations near the boundaries, we have to incorporate
boundary conditions. Next we show how that is done for two types of boundary conditions imposed
on either the function W itself or on its first spatial derivative.

Boundary conditions can be imposed on either end Z = 0,1 and on either the value of W (z,t)
or the spatial derivative a%W(aE, t) for all time as the following examples show.

wW(,t) =0 (left end is kept at zero)
2ZW(0,t) =0 (derivative at left end is kept at zero)
W(0,t) = u(t) (left end is actuated with u(t))

An example of the actuated boundary condition is when the left end of a string is connected to
an actuator that moves with the command wu(t). To approximate boundary conditions using the
samples {w;(t)} of the function W (x,t), the unidirectional finite-difference stencils can be used®

W(0,t) =~ wy(t)

W(l,t) =~ wy(t)
%W(O,t) ~ < (wi(t) —wo(t)) (forward finite difference)
%W(l, t) ~ x(wy(t) —wya(t)) (backward finite difference)

Consider a wave equation that is “actuated” at both left and right ends according to time-varying
inputs u)(t) and u,(t) respectively

W(0,1) = wo(t) = w(t), W(Lt) = wy(t) = ul?).

The discretization of the wave equation with these boundary conditions becomes

w;(t) = ZfZQ (wi_l(t)—2 w;(t) + wi+1(t)) , i=1,...,(n-1) (at interior points)
in (1) = £ (wo(t)2wn () +wa(t)) = % (2wr () +wa()) + Kz w(®) (et e
i1 (t) = £ (waa (2w () + wa () = & (wn2()-2w,a () + %o w(t) (wit(tﬁigzhl ?3)

Note that there is no need for the differential equations for wq(t) or wy(t) since those variables are
determined by the external inputs wu(¢) and wu,(¢). Thus we have ~ — 1 differential equations for
the evolution of w;(t) at the N — 1 interior points of a grid of size ~ + 1. The differential equations
just derived can be collected into a single vector ODE with the input vector u(t) := (ui(t), u.(t)) as

5Although the stencil (9.10) has 2nd order accuracy, the boundary stencils presented here have only 1st order
accuracy, implying that the overall scheme will only have 1st order accuracy.
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(b) The aggregate frequency response of the wave equation showing the regularly spaced resonances on a semi-log plot.
The four natural frequencies depicted in red correspond to the first four modes shown above.
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(C) The spatially-resolved frequency response as a color plot. The color at each point in this plot represents
log (|Hm(w)|), the frequency response at a particular location z when the input is oscillating at frequency w. The
shapes of each of the resonant modes is clearly seen in this plot. In particular, the nodes of oscillation are marked in
blue. Note that since the actuation is at the x = 0 end, the plot shows asymmetry with respect to the position z.

Figure 9.7: The first few modes of the wave equation together with two different ways of visualizing its frequency
response.

follows

wy (t) -2 1 w (1) 10

P2 2(t) E -2 1 wo(t) 2 0 0

d? - T [Zlgg]
’LUN_2<t) 1 -2 1 wN_g(t) 0 0] ~~—
w1 (1) 1 —2] |wya(t) 0 1] wu(t)

Ly w(t) Bo
& W) = —Kw(t) + B ult) (9.12)

Note the reappearance of the Laplacian matrix £, and the similarity of the stiffness matrix K :=
2
— Xz Ly above to that in the mass-chain example (9.2).

9.2.1 Normal Modes and Frequency Response

The normal modes of the wave equation are obtained from the eigenvalues and eigenvectors of L.
Recall the approximate expression (9.3) for the eigenvalues which then gives the natural frequencies

~ AN 2 ~ v? AN 2 2 1)? 22 12
)\Z(EN) ~ | ; = Al (F‘CN) ~ p ™ ; = NV ™ ; = v'n°l
= wy = v =1,2,.... (9.13)

This expression turns out to be exact for the wave equation which has an infinite number of modes
corresponding to all positive integers [ as will be shown in Chapter 10 (note the disappearance of
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the approximation order ~ from the above expression). The eigenvectors of K are the same as the
eigenvectors of L, since the scaling with Z—i scales only the eigenvalues and not the eigenvectors.
The first four eigenvectors are depicted in Figure 9.7a together with the corresponding natural
frequencies.

The input is the actuation w(¢) which is the left boundary condition. For the wave equation
modeling the vibrations of a string, this physically corresponds to vibrating the left end of the string

vertically according to the signal u(t). The “aggregate” frequency response of (9.12) is defined as

M@y = H@) + -+ Haa @),

where H;(w) is the frequency response from input u to the displacement w;(t). Figure 9.7b shows a
portion of this frequency response where the regularly spaced resonance frequencies {wl}fil in (9.13)
are clearly seen.

Figure 9.7c shows more details of the frequency response. If H;(w) is thought of as H, (w) where
x € [0,1] is the location corresponding to the index 4, then H,(w) represents the frequency response
from the input to the wave at a particular location . This can be visualized as the color map shown
in the figure where the colors corresponding to the value of log (|H,(w)|). The two axes are then
the normalized frequency w/v and the spatial location . The respective mode shapes can now be
clearly seen at each resonance frequency.

9.3 Euler-Bernoulli Beam

The dynamic Euler-Bernoulli equation for an unloaded, undamped beam of length r is

2 4
% W(x,t) = — a% W (z,t), 0<z<i, = %, (9.14)

where W (z, t) is the beam’s deflection at location  and time ¢. E, I, p are the Young’s modulus, area
moment of inertia, and the linear mass density of the beam respectively. The boundary conditions
on this equation are determined by how the beam is supported (e.g. clamped at one end and free
at the other, pinned at both ends, etc.).

This equation can be discretized to yield a vector ODE in a similar manner to what was done
with the wave equation. Assume a beam length of £z = 1 and define the values of W (z,t) at v+ 1
grid points by

wi(t) = W (ka,t), k=0,1,...,N. A:=1/nN,
As before, the time derivatives of wy(t) are the partial derivatives of W (x,t) at the grid points

d? o?

(9.15)

rz=kA

The fourth order spatial derivative 8‘i’—;ll/lf(ac,t) can be approximated with the 2nd order accuracy
stencil

%W(kA,t)

Q

(W (k-2)a, 1) = AW (1), 8) + 6W (ka, t) — AW ((k+1)a,8) + W ((k+2)a, 1))
= a7 (wk—2(t) — 4w (t) +6 wi(t) — 4w (t) + wk+2(t)> , (9.16)

which gives the following form for the vector ODE at the interior points

JL; wi (t) %A% 0 1 -4 6 -4 1 0 wi(t) |. (9.17)

wi1(1)

Note the “constant along diagonals” structure of the stiffness matrix above.
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9.3.1 Boundary Conditions

There are a variety of boundary conditions that can be imposed on the beam at either end. Those
correspond to the beam being “pinned”, “actuated”, “clamped” or “free”, and any combination of
those at either end. Mathematically, those physical constraints amount to constraints on W and
its derivatives at the respective ends. For example, the four different possible constraints at the left
end x = 0 are

0 = W(0,t), and 0 = 2W(0,1) (left end clamped)
u(t) = W(0,t), and 0 = %W(O,t) (left end actuated vertically by u(t))
0 = W(0,t), and 0 = 2, W(0,t) (left end pinned)
0 = aa—;zW(O,t), and 0 = aa—;W(O,t) (left end free)

and similarly at the other end. Note that these constraints have to hold for all £ > 0.

To incorporate the boundary conditions into the dynamical equations (9.17), we can use unidi-
rectional finite-difference stencils at either end. Those stencils are listed below

W(0,t) = wo(t), W(L,t) = wn(t)
2w (0,t) ~ L (—wo(t) + w1(t)> DW(L,t)~ L (_wN,l(t) + wN(t))
W0, ~ 25 (wo(t)-2 wit) +wa(t)) ZoW(1,0) & gy (wxa(t)-2 wna(8) + wn (1))
LW (0,t) ~ A5 (-wo(t) 43wy (£)-3 wa(t) + wg(t)> (9.18)
1

Zew ()~ 2 (-wna(t) +3 wna(t)3 wna(t) + wx (b))

The stencils above are the forward and backwards finite difference stencils with first order accuracy
for simplicity. Higher order accuracy stencils can also be used, but give more complicated expressions.
For one dimensional problems like this one, this additional complexity is not warranted as accuracy
can always be increased by increasing the grid size while keeping computational complexity within
feasible bounds.

Usually two boundary conditions are needed at each end. The differential equation (9.17) has
N + 1 functions of time. A boundary condition using any of the stencils (9.18) represents one
algebraic constraint between those functions of time, which then allows for the elimination of one
of the functions. Applying four boundary conditions then eliminates four of the functions leaving
an unconstrained differential equation of dimension (¥ + 1) —4 = ~ — 3. The next two examples
illustrate this procedure.

Example 9.1. [Pinned-Pinned Beam]

If both ends are pinned, then the boundary conditions are

u(t) = W(Oat)v 0 = W(L,t),
0 = ZZW(0,1), 0 = ZW(Lt)

The approximation of these conditions using the stencils (9.18) at the left and right end respectively

0 = wy(t), 0 =wy(t)
0 = wo(t)-2 wy(t) + wa(t) 0= wy2(t)-2 wy-1(t) + wy ()
= wl(t) = wg(t)/2, wN_l(t) = wN_Q(t)/Q,
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which allow for elimination of wg, w1, wy.1 and wy. Substituting this into the ODEs (9.17)
-a/at) [wo —4 w1 +6wy —4 w3 +w4] = (-a/a%) [4 wo —4 w3 +w4] ,

[’Ufl —4 w2+ 6wy —4 wy + w5] = (-C!/A4) [*3-5 wo +6 w3z — 4 wy + w5] )
[UJN—E; —4wn.4+6wysg—4wna+ 'U/'N—l:|

[wx-5 =4 wxa + 6 Wz — 3.5 wio
[

Wwn-4 —4 wn3+6 wno—4 w1+ ’u,'N]

(-a/a%) [wN.4 — 4wy +4 waz]

The final set of ODEs for the pinned-pinned beam are then

w2 4 -4 1 w2
w3 -3.5 6 -4 1 w3
d2 wy 1 -4 6 -4 1 w4
w(t) = 5| ¢ | =g D | = —a K w(t)  (9.19)
WN-4 1 -4 6 -4 1 WN-4
WN-3 1 -4 6 -3.5 WN-3
WN-2 1 -4 4 WN-2

where the stiffness matrix K is defined as above, and we collected all the function {wy(t)} as components
of the vector-valued function w(t). Note that except for the first and last two rows respectively, the
matrix entries are the same as in (9.17). This is because of the use of two boundary conditions at each
end to “adjust” the differential equations so that boundary conditions are enforced.

Example 9.2. [Actuated, Clamped End with other End Free]
If the left end (x = 0) is clamped to an actuation device (e.g. a shaker) that can oscillate vertically as
u(t), and the right end (z = L) is free, then the boundary conditions are

u(t) = W(0,1), 0= Zw(),
0 = 2ZW(0,1), 0 = ZsW(1,t).
Approximating these conditions using the stencils (9.18) at the left end gives
u(t) = W(0,t) = u(t) = wo(t),
0= W) = 0=i(w®iwm®) > wd)=w®=u).

Thus we can eliminate wo(¢) and wi(t) and rewrite them in terms of the input u(t). Similarly, at the
right end the homogenous boundary conditions for the 2nd and 3rd derivatives can be used to eliminate
wy(t) and wy_1(t) be rewriting them in terms of wy 3(¢) and wy 2(t) using the corresponding stencils
from (9.18)

K LU har RS SR e Gl IO N

- {%Nl} - {:é g} [zzﬂ . (921)

Now a complete set of ODEs incorporating (9.17) and the boundary conditions can be written for

the remaining functions ws, ..., wy.2. The differential equations for wy and ws are
Wy = (—a/A4) ['w[) — 4wy +6 wy — 4 wy + w4] = (—a/A4) [6 wy —4 w3 +wy — 3 u} ,
W3 = (—a/A4) [11/'1—4w2+6w3—4w4—|—w5] = (—a/A4) [—4 Wy + 6 w3 —4 wyg +ws + u] ,
where we have used (9.20) to substitute for wy and wy. At the other end, we use (9.21)
Wy.g = (—a/A4) [wN_4 —4 wyg+6 Wy —4 Wy + wN]
= (—a/A4) [wN_4 —4 wy3+ 6wy — 4(—’LUN,3 + QwN,Q) + (—2wN_3 + 3wN,2)]
= (—a/A4) [wN_4 — 2 wy.3 + wN_g] .
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w; ~ 10/ wy & 40/« wy~ 161/
v (z) vy (x)
0 T 10 T 10 T 10 T 1

Figure 9.8: The first 4 normal modes of vibration of the Euler-Bernoulli beam with pinned-pinned boundary
conditions. These were computed numerically from a discretization with N = 100 of the stiffness matrix K in (9.19).
The eigenvectors v;(z), ¢ = 1,2, 3,4 are plotted against the spatial variable 0 < z < 1 by assuming that the values
vi(ka) of the function at the grid points are the components of the numerically computed eigenvector. The mode
frequencies w; are obatined from the numerically computed eigenvalues of K. Note that the natural frequencies behave
approximately like w; ~ 10 i /a.

A similar calculation for .3 gives
. 4
Wy3 = (—a/A ) [wN_s — 4 Wyna +5 Wyg —2 U}N_g] )

Now putting all of the above together we finally arrive at the required set of ODEs written in vector form

wa 6 -4 1 wa -3
w3 -4 6 -4 1 w3 1

a2 wy o 1 -4 6 -4 1 wy o 0

|| == P S+ e

| Al SR LT
WN-4 1 -4 6 -4 1 WpN-4 0
WnN-3 1 -4 5 2| |wn3 0
WN-2 1 -2 1 WN-2 0

= @) = — K w(t) + Boult) (9.22)

where the matrices K and By are defined as above, and we collected all the function {wy(t)} as compo-
nents of the vector-valued function w(t). Note that this system is of the form (7.12) with M = I, and
C = 0, but with an input u(t) that enters the equations through the matrix By. Recall that the input is
the vertical position of the left end that is actuated with an external device.

Note that except for the first and last two rows in (9.22), the matrix entries are the same as in (9.17)
and in (9.19). The first and last two rows here are different from those in the pinned-pinned case (9.19)
since we are enforcing a different set of boundary conditions.

The systems (9.19) and (9.22) are both of the form (7.12) (with M = I, C' =0, and an input in
the latter case). We can therefore apply all the previous material on normal modes and frequency
responses to analyze this system as we show next.

9.3.2 Normal Modes and Frequency Response

Equations (9.19) and (9.22) are a spatially discretized versions of the dynamic Euler-Bernoulli
model (9.14) with two different boundary conditions assumptions. The PDE (9.14) has an infi-
nite number of vibration modes, while the discretized models have ¥ — 3 modes (the number of
variables {wy} that remain after using the boundary condition to eliminate 4 of them). The larger
the grid size N, the better of an approximation the discretized model will be. In the results shown
next, N = 100 is used.

Example 9.3. [Normal modes of free vibrations of pinned-pinned beam] The normal modes are obtained
from the eigenvalues and eigenvectors of the stiffness matrix K in (9.19) (since we've made the simplify
assumption that all masses are equal to one m; = 1, i.e. M = I, and therefore M 'K = K). While
it is possible to calculate analytical expressions for the eigenvalues and eigenvectors as will be shown in
Chapter 10, the quantities displayed in Figure 9.8 are computed numerically from the discretization with
N = 100, and are very close to the actual true quantities.
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10’ 10? w 10®

(a) The magnitude frequency response showing the first 10 of an infinite number of resonances. This frequency
response is shown on a log-log plot. The frequencies w; scale like i2, which makes gaps between successive
frequencies progressively larger and harder to visualize on a regular plot. The first 4 modes are indicated by
dashed lines on the plot, and their corresponding “mode shapes” are shown below.

w3 & 64y/a

0 €T 1 0 T 1

(b) The first 4 modes of oscillation. The eigenvectors v; of the matrix K in (9.17) are the normal modes. Since
the vector indices represent points on the = grid, the length N + 1 vectors are plotted here as a function of
the spatial location 0 < & < 1. These modes are the “shape” of the vibrations that occur at the respective
resonances (i.e. mode v; oscillates in time with frequency w;. Note the difference in mode shapes and natural
frequencies between the pinned-pinned case of Figure 9.8 and the clamped-free case shown here.

Figure 9.9: The actuated, clamped-free Euler-Bernoulli beam frequency response showing the first 10 resonances,
as well as the “mode shapes” of the first 4 normal modes. The length of the beam is assumed here as L = 1, and the
coefficient o = 1.

Example 9.4. [Modes and frequency response of actuated, clamed-free beam] To find the frequency
response, use formula (8.5) with the matrices K and By from (9.22) (note that in this case M = I and
C=0)

Hw) = (—w*I+K) ' B

For each w, H(w) is an (N — 3) x 1 matrix, so to plot the frequency response, we plot its “norm” defined
as the square root of the sum of squares of the components

||H(W)HQ = (‘Hg(w)|2 4ot |HN72(w)|2) 1/2 .

A plot of this magnitude frequency response is shown in Figure 9.9a. Many resonances are clearly seen.
For the original PDE model, there's actually an infinite number of resonances of progressively increasing
frequencies. The plot only shows the first 10, which should be well approximated with n = 100.

Recall that a system excited with a frequency near any one its normal modes w;, will oscillate with a
“shape” determined by the i'th eigenvector v; of the matrix M1 K (which is just K in this case). The
first 4 mode shapes are shown in Figure 9.9b by simply plotting the components of each eigenvector
v1, V2, U3, V4. Recall that the components of the vector w(t) are approximations to the function W (z, t)
at the grid points. Therefore the plots of the eigenvectors can be considered as approximations to
functions over the domain 0 < < 1. These “mode shapes” will be the shape of the oscillation when
the beam is excited at frequency w;. More precisely, we can say that for the original PDE

u(t) = acos (wt + ¢), and w =~ w; = W(z,t) =~ B vi(z) cos(wt+8),

where v; () is the eigenvector of K (considered as a function over [0, 1]). Note the separation of W (z, t)
into a product of a spatial mode shape v;(x) and a temporal oscillation cos(wt + 6). This only occurs
near resonances. Away from resonances, the spatial shape of oscillations will usually be “a mixture” of
many normal modes.
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Chapter 10

Vibrations in Continua

Vibrations of strings, membranes, beams and plates are described by Partial Differential Equations
(PDEs). The mechanical degrees of freedom are represented by displacements which are functions
of both time and a spatial variable. There is an infinite, continuum number of mechanical degrees
of freedom, and such systems are therefore referred to as continuum systems. The mathematical
tools used for analysis of continuum systems are conceptually similar to those of N-DOF, except
that instead of matrices, the objects to analyze are spatial differential operators. Those operators
typically have an infinite number of eigenvalues with associated eigenfunctions that play the same
role eigenvectors do in n-DOF systems.

Introduction and the Big Picture

The main theme of this introduction is to highlight the similarities between the analysis methods
of continuum vibrations and those of n-DOF systems. The key idea is an abstraction where spatial
differential operators are thought of in a similar manner to matrices, i.e. as linear operators. Eigen-
vectors of matrices can then be abstracted to more general objects which are the eigenfunctions of
linear differential operators. To explain how this works, consider the following PDEs treated in this
chapter in comparison with the standard form for (an undamped) n-DOF system

2
vector ODE for n-DOF d _
system with M =1 ° di2 w(t) = -K w(?) (10.1)
2 2
1D wave equation i _ .2 i
for strings ° Ot2 w(a,t) = v ox w(z, t) (10.2)
2 2 2
2D wave equation i ) 87 i
for membranes ot2 ’LU(.’L‘, Y t) =V ( 2 + 81/2 w(x, Y, t) (10'3)
2 4
Euler-Bernoulli equation - 0
for beams o2 w(z,t) = -« Ozt w(z, 1) (10.4)
2D Euler-Bernoulli equation 0? ot 0% 0? o*
S+ g wend) =a (G2 g o ) ulend
(10.5)
The four PDEs are all of the form
82

where IC is some spatial PDE operator like the ones in the four examples above. This form corre-
sponds to placing the second-order time derivative on one side of the equation, and all the spatial
derivatives on the other side. Notice the suppression of the spatial coordinate in the notation w(., t).
This means that we consider K w(.,t) to be an operation on the whole of the function w(.,t) at each
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time. This slight abstraction is a very important “mental shift” which is developed carefully in the
next section.

For the N-DOF system (10.1), the normal modes of vibration are obtained from the eigenval-
ues/vectors of the stiffness matrix K. In continuum systems, normal modes of vibrations are obtained
from the eigenvalues and eigenfunctions of the “stiffness” operation IC. Abstractly a function v(x)
of a spatial variable is an eigenfunction of a differential operation K if for some (possibly complex)
number A

Kv(z) = Xo(z).

Finding such eigenvalues A and corresponding eigenfunctions v(z) is called an eigenvalue problem.
For example, for the 1D and 2D wave equations respectively, the eigenvalue problems are to find
numbers A and functions v that satisfy

82
—ung(a:) = A ou(x), (10.7)
02 02
_ 207 _ 290 _
viaavey) — v aygv(%y) A v(z,y). (10.8)

Note the absence of the time variable in these problems. They are differential equations that involve
only the spatial variables. Therefore (10.7) is actually an ODE in the single spatial variable z,
while (10.8) is a PDE in the two spatial variables z, y.

Once an eigenfunction is found, it is easy to show that if a system of the form (10.6) starts from
an initial condition which is an eigenfunction of the operation K, it will oscillate in time as a multiple
of that spatial eigenfunction. For example, for the 1D wave equation, if the initial condition is a
multiple of an eigenfunction satisfying (10.7)

w(z,0) = «av(z), %w(ax,O) = B o(x),

then the solution for all time will be of the form
w(z,t) = v(z) a cos(wt+ 0), w= VA,

where the temporal oscillation frequency w is the square root of the eigenvalue A associated with the
eigenfunction v(x). The amplitude a and phase € of the temporal oscillation is determined by the
details of the initial conditions (i.e. « and (). The fact that this is a solution of the PDE is easily
shown by direct verification. If v(z) satisfies (10.7), then

2 a—z v(x cos(wt + 0)) = —w? (v(z cos(wt + 0
yz%v(aﬂ)ZAv(x) = 2(8;2(()3 ( +)):_ (v(z) acoswt +))
V22 (v(z) acos(wt+6)) A (v(z) acos(wt+6))

10.1 Eigenvalues and Eigenfunctions of Differential Operators

Differentiation of a function is an operation on functions. Going forward, we will be very careful
with notation so as to emphasize this point. Up to now, we have been using notation like v(z) to
refer to a function of an independent variable x. From now on, we adopt the notation that v or
v(.) refers to the whole function as an object, while v(x) is the single number which is the value of
the function v at the point x. Thus v(z) is a number, while v or v(.) is the whole function. This
notational distinction is important to avoid confusion going forward.

Differentiation is an operation that takes functions to functions. We want to think of this in
analogy with a matrix being an operation that takes vectors to vectors. To emphasize this analogy,
the operation of differentiation with respect to an independent variable x will be denoted as follows

ov

(0xv)(z) = %(x)
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Parse through this notation carefully. v is a function, and the operator 8y transforms the function
v to the function 8xv. This transformation is given by the recipe above, i.e. the value (0xv)(z) of
the function 8xv at the point x is given by the partial derivative of v with respect to z. While at
first this notation may seem unnecessarily pedantic, it is important for understanding normal mode
analysis of PDEs in analogy with that for ODEs.

Using the notation above, we can express the fact that differentiation is a linear operation on
functions, i.e. given any two functions v; and vs, and any linear combination awv; + Svs of these
functions

Bx(owl + ,8’02) = « Oxv1 + 153 Ox Vo (equality as functions)

pas for all x, (Bx(owl + ﬂvg))(x) o (axvl)(x) + B (8xv2)(x)
(equality at each point )

=4 for all x, % (Oﬁ)l (.T) + Buo (x)) = « %(m) + %(m) (previous notation)

Thus differentiation is a linear operation in the same way that matrices are linear operations on
vectors

K(Ot’l)1+ﬂ’02) = OéK’Ul +ﬂ K’l)g,

where «, 8 are scalars, v, vs are n-vectors, and K is an n X n matrix. This linearity property is
the key to generalizing the concepts of eigenvalues and eigenvectors from matrices to differential
operators.

Let’s take this analogy a little further. Given an n x n matrix K, we view it as an operation on
vectors; given an n-vector v, the matrix-vector product Kv produces another n-vector. Repeating
this operation say m times

K -+ Kv = K™,
m times

is equivalent to acting with the matrix K™. Similarly, differentiating a function v(.) m times is
expressed as

o™v 0 0 m 0™
8xm(x) = o %v(:c) And (8x v)(x) = (%m(x).
—
m times

Similarly, mixed partial derivatives can be written as “compositions” of differentiation operations
0%v

(axayv) (.’t, y) = m (1’7 y)

Here v is a function of two independent variables z,y (i.e. function over a 2D domain), and the
operation 858y v produces another function of the two independent variables x, y. This is an example
of the composition of two linear operators that commute since

0%v 0%v

aTay(x’y) = m(%y)

for any function v, & 0,0y = 0y 0x.

The first statement above follows from multlivariable calculus; the two successive operations of
partial differentiation with respect to one of the variables followed by differentiation with respect to
the other can be performed in either order. This is succinctly stated by 0«0y = 8y0x, i.e. the two
operators Jx and 8y, commute. Note that in general linear operators do not commute in the same
manner that not all matrices commute. However, when two operators do commute, then so do all
their powers. For example, for the mixed partial derivatives this implies

8202 = 0,0:8, 0, = 0,0,0.0, = 8,0,8,0, = 8,0,0,0, = 8,0,0,0, = 0292
~—— —— —— ——

switch switch switch switch
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(a) A vector as a function

(b) A vector as a function

Figure 10.1: Vectors as functions and functions as vectors

Similar arguments show that all higher powers of those two operators commute. A nice application
of this fact allows us to view the two-dimensional PDE for plate vibrations as a generalization of
the one-dimensional Euler-Bernoulli beam equation as follows. First, note that the commutativity
shown above implies the following

(82+02)° = (82+02)(82+02) = 822+ 0202 + 5292 +020>
—_——
(equal because 8202 = 82932)
_ g4 292 4
= Oy +2 00, + 0, (10.9)
This last differential operator is the one appearing on the right hand side of PDE (10.5) for plate

vibrations. In one dimension, second derivative operator 82 is called the Laplacian. In two dimen-
sions, the Laplacian is 87 + @3. Thus in the Euler-Bernoulli beam equation (10.4), the right hand

side is given by the square (8,2()2 = 8% of the one-dimensional Laplacian, while the right hand side
of the plate vibrations PDE (10.5) is also given by the square of the Laplacian, but in this case we
use the two-dimensional Laplacian (10.9). This is why we call the plate vibrations PDE the “2D
Euler-Bernoulli equation”.

Functions as Continuum versions of Vectors

The final ingredient in this new way of thinking about PDEs is to write fields like w(x,t) so as to
view the dependence on zx differently from the dependence on t.

w(t) = w(.,t), (w(t))(z) = w(z,t)

We now rewrite the equations (10.2)-(10.5) in this operator notation

£ w(t) = —K w(t) (vector ODE for n-DOF system with M = I)
diw(t) = 1292 w(t) (1D wave equation for strings)
Fw(t) = v* (0 +9;) w(t) (2D wave equation for membranes)
Otw(t) = —a 8L w(t) (Euler-Bernoulli equation for beams)
OHw(t) =—a(0; + 83)2 w(t) (2D Euler-Bernoulli equation for plates)

Continuum Vibration Modes are Eigenfunctions

In n-DOF systems, the modes of vibrations are given by the eigenvalues and eigenvectors of the
matrix M 1K, i.e. the matrix that appears on the right hand side of the vector differential equation.
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Similar statements will apply to continuum systems, but we will consider the eigenvalue problem for
the spatial differential operators that appear on the right hand side of the PDE.
Consider any PDE written in the form

Atw(t) = — K w(t) & Otw(x,t) = — (Kw(.,t))(z,1), (10.10)

where K is a spatial differential operator. A function v(.) is called an eigenfunction of a linear
operator if for some (possibly complex) number A

Kv = Av =3 (Kv) () = Xwv(z), (10.11)

where A is called the eigenvalue corresponding to this eigenfunction. Just like n-DOF where initial
conditions which are eigenvectors produce solutions which are pure modes, the situation is the same
here. Let the initial condition of (10.10) be an eigenfunction like (10.11), it follows that the solution
must be

w(z,0) = av(x)

Ow(z,0) = B v(x)

Note the “separation form” of the solution as a product of a function of x and a function of ¢. The
solution oscillates in time with a frequency w = v/A determined by the eigenvalue, but the “spatial
shape” of the solution is always a multiple of eigenfunction v(.). The amplitude w and phase 8 of
the temporal oscillations are determined by the initial condition parameters a and .

For example, consider the 1D Laplacian 82. A function v(.) is an an eigenfunction of this operator
if for some (possibly complex) number A

= w(z,t) = v(z) wcos(wt+0), w=VA\

(02v)(z) = Av(z) & %U(I) = A v(z). (10.12)

In this case A is called the eigenvalue corresponding to this eigenfunction.
To see what eigenfunctions imply for the dynamics of PDEs,; consider the 1D wave equation with
an initial condition which is an eigenfunction (10.12) of 82
Otw(x,t) =

We will briefly describe this more abstract approach using the Euler-Bernoulli equation. Recall
the dynamics (9.14)

2
o2
The spatial derivative can be thought of as a linear operator K := 582 which acts on functions

defined over the spatial domain 0 < z < L. A function v(x) on that domain is an eigenfunction of
K with eigenvalue A if

Kv = Av & 501 v(z) = X o(x), 0<z<L. (10.14)

Wiz, t) = —3502 W(x,t), 0<z<L. (10.13)

Notice that the statement Kv = Av is the same as if I were a matrix, and v were a vector. The new
feature now is that L = —503 is a linear operator (that operates on functions rather than vectors),
and v is a function.

The statement on the right in (10.26) is just the statement Kv = Av in detail. This statement
is actually a differential equation. To see this, assume again a beam clamped at z = 0 (with no
actuation in this case), and free at x = L. The (purely spatial) differential equation for determining
the eigenfunctions becomes

v(0) =0, v@(L)=0

svW(@) — Av(z) = 0, v (0) =0, vB3N(L)=0

(10.15)
This is a 4’th order differential equation for v(x) with a “free parameter” A. It is called a “two point
boundary value problem” since the boundary conditions are given at two points, namely z = 0 and
x = L. Note that time does not play a role in this equation, the same way that when solving for
normal modes, we solve an eigenvalue problem for a matrix Kv = Av, and this eigenvalue problem
does not involve time.
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bw(x,t)

(a) Wave motion of a string are modeled using a function of spatial location = and time ¢. w(z,t) describes the
time-varying transverse displacement of the string. The fact that the string is pinned at both ends is expressed
by the boundary conditions w(%L,t) = 0 for all ¢ > 0.

R = (Kx, Ky)

1511

(b) In 2D, an acoustic plane wave is a pressure fluctuation of the form p(z,y,t) = ¢ ((HXZD + kyy) — ut). It is a

wave traveling in the direction of the wavenumber vector & = (kx, ky) with speed v. A plane wave in 2D (or 3D)
can be represented as a one-dimensional wave in the spatial coordinate z := kxx + Kyy, while being constant in
an orthogonal coordinate.

Figure 10.2: The one-dimensional wave equation can describe either (a) the vibrations of a string, or (b) a plane
wave. Here an acoustic wave of pressure fluctuations is depicted, but the same analysis is applicable electromagnetic
or elastic plane waves.

10.2 String Vibrations and Acoustics: The Wave Equation

The one-dimensional wave equation for a quantity w(x,t) that varies in both time ¢ and a one-
dimensional medium with spatial coordinate x is

Ow(x,t) = v (z) d2w(x,t), (10.16)

where the coefficient function v(x) describes certain material properties of the medium. When v is
a constant in x, it corresponds to the wave speed as described in Section 9.2. The wave equation is
encountered in a wide variety of physical phenomena such as string vibrations, and “plane waves” in
elasticity, acoustics and electromagnetics. Appendices 10.A.1 and 10.A.2 detail the derivations of the
respective wave equations for string vibrations and acoustic waves respectively. We now summarize
how each of the two phenomena are modeled with an equation of the form (10.16).

The dynamics of a string of length 21 pinned at both ends x = +r illustrated in Figure 10.2a
are given by the one-dimensional wave equation with the following boundary conditions

0% w(z,t) = v (z) d2w(a,t), w(-L,t) =0, w(r,t) =0. (10.17)

The function v(z) depends on the material properties of the string, which in analogy with /k/m
is the square root of ratio of local tension over local (linear) density of the string. For a string of
uniform density and tension, v is independent of x, which is the case we will consider in this chapter.

In a non-moving gas, small pressure p(x,t) and velocity v(z,t) fluctuations forming a plane wave
as shown in Figure 10.2b can be described by the pair of one-dimensional, coupled PDEs (10.53)

which we recall here
8U$,t :l—axpxatv
o(ent) = up(ant) e
Oep(z,t) = 7P Oxv(z,1).

In these equations v(x,t) and p(x,t) are air particles’ velocity and pressure fluctuations respectively,
and p and p are the nominal constant density and pressure about which the fluctuations are occurring.
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v(-L,t) =0 v(L,t) =0 v(-L,t) =0 o qu,v(L,f:) ; 0

:' 1 | I
L

T -L L x

Figure 10.3: Acoustic boundary conditions in a high aspect ratio tube. At closed ends, the no-slip condition results
in zero velocity boundary conditions. At open ends, more complicated “radiative” boundary conditions are typically
needed. However, for high aspect ratio tubes, a reasonable approximation is to assume zero pressure fluctuations at
the open end. Due the structure of the equations, a zero pressure fluctuation boundary condition can equivalently be
represented as zero velocity-derivative condition.

v =1+ % is the heat capacity ratio, which is a dimensionless number equal to 1.4 for diatomic gases
like air. Although the equations (10.18) at first look do not resemble the wave equation (10.16),
the pressure and velocity fields individually obey wave equations. To see that, differentiate the first
equation with respect to ¢ and the second one with respect to x

dv(x,t) = £ xp(x,1) = Bv(x,t) = L 8eBxp(x,t)
8tp(x7 t) - ’Yﬁ 8x1)($, t) = 8x8tp(xa t) = ’Yﬁ 83{”(333 t)
= Oiv(x,t) = %’7 02v(x,t) (since Ox 0y = 8 0x)

This is a wave equation with wave speed v = \/7p/p. Alternatively, if we differentiate the first
equation in (10.18) with respect to = and the second one with respect to ¢

Bpv(x,t) = § Bxp(a,1) = Bx0pv(z,t) = 7 Ogp(x,t)
8tp(aj? t) = ’Yﬁ BX’U(QT, t) = afp(x, t) = 715 81;8)(1)(1', t)
= Alp(x,t) = %’7 32p(x,t). (since Ox 0y = Oy Ox)

Thus pressure also obeys a wave equation with the same wave speed as velocity wave equation!.
The boundary conditions for pressure and velocity depend on the geometry. For example, to
model acoustic waves in narrow tubes as shown in Figure 10.3, the one-dimensional model is a
reasonable approximation. If one end of the tube is closed, then particle velocity at that end must
be zero for all time by the no-slip condition. Thus the acoustic dynamics in a narrow tube with both
ends closed would be described by the wave equation (for velocity) with zero boundary conditions

Oiv(x,t) = 77? O2v(x,t) v(-L,t) = 0, v(r,t) =0, (10.19)

which resembles the equation for string vibrations (10.17).

On the other hand, if one end is open, then a “radiative” boundary condition? needs to be
imposed. For tubes with very high aspect ratio, a reasonable approximation is that pressure fluctu-
ations at the open end are zero. We can apply those boundary conditions regardless of whether we
take the wave equation for velocity or the equivalent alternative wave equation for pressure. This
because when the equations relating velocity and pressure (10.18) are applied at a particular point
Z for all time

fort >0, w(z,t) =0 = 8w (T, t) = o
and Byvo(z,1) = L Bup(a,1) = Oxp(z,t) =0
fort >0, p(z,t) =0 = p(z,t)=0 o
and atp(j’,"t) = P ax'U(SU,t) = 6xv('r7t) =0

Thus we can replace a zero velocity boundary condition with a zero derivative pressure boundary
condition and vice versa.

IStandardized atmospheric pressure at sea level is 1 atm (atmosphere) := 101,235 Pa. The standardized air density
at sea level is approximately 1.2 Kg/mz. This leads to a speed of sound of \/vyp/p =~ 344 m/s.

2A “radiative” or “Robin” boundary condition specifies a linear relation between pressure and velocity at the open
end v(L,t) = ap(L,t), where the parameter « is related to the “acoustic impedance” at the tube opening.
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For example, for a tube closed at the left end x = -L and open at the right end x = L, we can
use either of wave equations with their following respective boundary conditions

Ov(x,t) = % 02v(x,t), v(-L,t) =0, dxv(L,t) =0,
Oip(x,t) = %’3 02p(x,t), Oxp(-L,t) =0, p(L,t) =0.

10.2.1 Normal Modes: Eigenvalues and Eigenfunctions

The normal modes of string vibrations are determined by the eigenvalues of the one-dimensional PDE
operator v%(z) 92 together with the boundary conditions listed above. For strings with homogenous
material properties, v(z) is constant in z (which from now on we write as simply v), and therefore
the operator has constant coefficients, which greatly simplifies its analysis. The normal modes of
vibrations are obtained from eigenfunctions which satisfy® equations of the form

22 v(z) = No(x), v(-£) =0, (L) =0, (10.20)
for some (possibly complex) number . Note that there is no time dependence in this eigenvalue
problem, and therefore it is actually an ODE in the independent variable x

j—;v(:ﬁ) = Av(x), v(£L) = 0.

This is a second order ODE with constant coefficients. It may not have solutions that satisfy the
boundary conditions for all A\. We first characterize the numbers A for which there exists solutions,
and then construct those solutions. The characteristic roots are given as the roots § of the polynomial
(s> — X) = 0. The form of the solutions depends on whether A = 52 is positive, zero, or negative as
follows

vy 5% 4 vy e A>0, 52‘\5,

v(z) = Vi Z + Vg, A=0, (10.21)
VA VA A A <0, Ez‘\/\/\w.

For each of the three cases, the constraint of satisfying the boundary conditions v(£+r) = 0 can be
expressed as a system of two linear equations (for the coefficients vy, vy or v)

A>0 A=0 A<0

e 1 S o e A e | M ]

Thus non-zero coefficients that satisfy the boundary conditions exist iff the corresponding 2 x 2 matrix
is singular. This condition is most easily expressed in this case via their respective determinants

A>0  if e?F —e 2 = sinh(25L) = 0,
non-trivial solutions exists for{ A =0 if L +L =20 =0,
A<O0  if e — TS = oosin(252) = 0.

Clearly the case A = 0 is inadmissible. The case A > 0 is also inadmissible since § > 0, and
sinh(251) = 0 only at § = 0. This leaves the third case for which the condition becomes

§>0, sin(28)=0 = s="non=12.. = A=-—n’n=12...,
L L

where the last equality recalls that \,, = —52 for the case A < 0.

3Recall that the eigenvalues of a scaling v202 of the operator are simply 2 times the eigenvalues of 2. On the
other hand, the eigenfunctions of the two operators are the same.
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Having calculated the eigenvalues, we now find the coefficient v to obtain the eigenfunctions.
The general form for the case A < 0 is that of a sinusoid of frequency 3, := n7/L. Any such sinusoid
can be written (ignoring the amplitude for now) as a sine with some phase

v (x) = sin (n(r/L)z + B). (10.22)
Using the boundary conditions again
0 =uv,(£L) =sin (n%(:l:L) + ﬁ) = tnr+pf=k2n = [B=x(n+2k),

where k is any integer. Note however that we can take &k = 0 since an additional phase of kL for
the sine function can only change its sign (i.e. sin(y + kL) = %sin(y)), which does not effect the
condition above. Similarly, we can take 3 = +1rn/2 since if sin(y+1/2) = 0, the so is sin(y—1/2) =0
(and similarly for n > 1). We finally conclude that the eigenfunctions and eigenvalues are all of the
form

() = sin(g(a?+L))7 wn:g, n=1,2,.... (10.23)

10.3 The Euler-Bernoulli Beam

The dynamic Euler-Bernoulli equation for an unloaded, undamped beam is

W (x,t) = —a LW (a,t), 0<z<L, o= %, (10.24)
where W (x, t) is the beam’s deflection at location x and time ¢. E, I, p are the Young’s modulus, area
moment of inertia, and the linear mass density of the beam respectively. The boundary conditions
on this equation are determined by how the beam is supported (e.g. clamped at one end and free
at the other, pinned at both ends, etc.).

The results presented earlier relied on a finite-difference discretization of the spatial derivatives in
the Euler-Bernoulli equation. There is an alternative, more analytical approach that lends additional
insight compared to the numerical method. This approach relies on an abstraction where the spatial
derivative 82 is considered as an infinite dimensional version of a matrix, referred to as a linear
operator. While matrices operate on vectors to produce other vectors, linear operators act on
functions to produce other functions. The linear algebra concepts are very analogous though, linear
operators have eigenvalues, but possibly an infinite number of them, and they have eigenfunctions
as their version of eigenvectors.

We will briefly describe this more abstract approach using the Euler-Bernoulli equation. Recall
the dynamics (9.14)

W (z,t) = —a O2W(x,t), 0<z<L. (10.25)

The spatial derivative can be thought of as a linear operator K := a2 which acts on functions
defined over the spatial domain 0 < x < L. A function v(z) on that domain is an eigenfunction of
K with eigenvalue A if

Kv = Av & adl v(z) = No(x), 0<z<L. (10.26)

Notice that the statement Kv = Av is the same as if I were a matrix, and v were a vector. The new
feature now is that K = —ad4 is a linear operator (that operates on functions rather than vectors),
and v is a function.

The statement on the right in (10.26) is just the statement Kv = Av in detail. This statement
is actually a differential equation. To see this, assume again a beam clamped at x = 0 (with no
actuation in this case), and free at x = L. The (purely spatial) differential equation for determining
the eigenfunctions becomes

~—~

=

=
I

0, v@(L)=0
0

soW(z) — No(z) = 0, WO(L) = 0°

u<11>)(0) (10.27)
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This is a 4’th order differential equation for v(z) with a “free parameter” \. It is called a “two point
boundary value problem” since the boundary conditions are given at two points, namely = 0 and
x = L. Note that time does not play a role in this equation, the same way that when solving for
normal modes, we solve an eigenvalue problem for a matrix Kv = Av, and this eigenvalue problem
does not involve time.

The differential equation (10.27) can be solved with standard methods for constant coefficient
ODEs. We will not show the details here. The main feature is that the parameter A is not given,
but it is to be determined. One can show that this equation has solutions that satisfy the boundary
conditions only for values of A\ which satisfy the equation

cos (AY*) cosh (AV4) + 1 = 0, (10.28)
(37 cost (x'7)

where for simplicity we assumed § = 1 and L = 1. The equation (10.28) has an infinite set of
solutions at discrete values {\;};=;. The normal modes are then obtained from

wi = VN, i=1,2,....

Equation (10.28) does not have analytical solutions, but good estimates can be obtained for large A
since cosh ()\1/ 4) grows exponentially. Therefore

-1
A>1 = cos ()\1/4) = =~ 0 = )\2/4

cosh (A1/4)
= w; = \/Yz

Thus for large w; we see that the normal modes behave like w; ~ 2. For lower values of w = ﬁ,
the zeros of equation (10.28) can be calculated numerically, and the table below gives the values for
the first 4 normal modes. We see that the approximation (10.29) is quite reasonable even for ws.

. L
1L — —

2

(’iL - g)z (10.29)

Q

Q

w1 w2 w3 Wy

actual values 3.516 22.03 61.70 121.0

(ir— L)* 2.467 | 2221 | 61.69 | 120.9

Finally, the reader should note that the values of wy, ws, w3, wy calculated from the eigenvalue problem
here are precisely the resonances seen in Figure 9.9a as expected from the theory.

For each computed eigenvalue J);, one can substitute that number in the differential equa-
tion (10.27) and solve it for the ¢’th eigenfunction v;(x). This will produce the exact mode shapes
shown in Figure 9.9b.

10.4 Vibrations of Thin Membranes: The 2D Wave Equation

The vibrations of a thin membranes are described by a function w(x,y,t) of two spatial variables
x,y and time ¢, where w(x, y,t) is the instantaneous transverse displacement of the membrane. The
vibration dynamics of such thin membranes with isotropic and homogenous material properties are
governed by 2 dimensional version of the wave equation

02 w(z,y,t) = v° (8§w(x7y,t) + Biw(x,y,t)) = ? (aﬁ + 85) w(z,y,t) (10.30)
where v is a constant the depends on material properties. The boundary conditions depend on the

shape of the membrane described as a domain in 2D. This equation is the two dimensional analog of
the one dimensional wave equation (10.17) describing the vibrations of a string. The main difference
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is that spatial derivatives are now in terms of the 2D Laplacian 92 + 8; instead of the 1D Laplacian
in (10.17).

In this section we only consider free vibrations of a membrane that is pinned at the boundary
v of a domain I' C R2. Unlike the 1D case, the boundary conditions are now imposed on a closed
curve v in 2D rather than two end points. A good analogy to keep in mind is with the membrane
of a drum, which is forced to not vibrate at the edges of the drum. The equation with its boundary
conditions becomes

02 w(z,y,t). = V2 (8% + 85) w(z,y,t), w(z,y,t) e 0, t>0. (10.31)
xT,Y)EY

The normal modes of plate vibrations are determined by the eigenvalues of the two dimensional
PDE operator 92 + 85 together with the applicable boundary conditions. For membranes with
homogenous material properties, this has constant coefficients, which greatly simplifies its analysis.
The normal modes of vibrations are obtained from eigenfunctions of this operator?

2v(z,y) + 8§v(x,y) = Aov(z,y). (10.32)
The eigenfunctions are all of the form
v(a,y) = T I = eIty (10.33)

where Ky and &, are the wavenumbers that will be determined by applying the boundary conditions.
Substituting the form (10.33) into the eigenfunction equation (10.32) we arrive at an algebraic
equation for the eigenvalues

N edlmata) (92 4 92) ST — ()2 o (fiey)?) € (xetRay)
= A= —(kl+n2). (10.34)

The allowable values of A will then come from discovering the allowable values of ky and &, that are
compatible with boundary conditions.

Example 10.1. [Square membrane] This is the simplest case to analyze. Let the membrane be of size
2L x 2L, and choose a centered coordinate system so that the boundaries are at x = £+ and y = +L.
The pinned boundary conditions are then

v(£L,y) =0, y¢€[-L,L], v(z,£L) =0, =z € [-L,L] (10.35)
For real eigenfunctions, we need function of the form (10.33) together with its complex conjugate, i.e.

v(z,y) = v eI (Fxwtryy) 4\ o=i(Rxatryy)

Imposing the boundary conditions (10.35) on this form gives

0=uv(+L,y) = v e (Erxltryy) 4\ e*j(iﬁxm+~yy), y e[ 1]

10.5 Vibrations of Plates: The 2D Euler-Bernoulli Equation

The vibrations of a thin plate are described by a function w(z,y,t) of two spatial variables z,y and
time ¢, where w(z,y,t) is the instantaneous transverse displacement of the plate. The vibration
dynamics of such thin plates with isotropic and homogenous material properties are governed by the
following PDE

O wiw,yt) = — 5 (hwle,y,t) +2 BoRu(z,y.t) + Ohw(r,y,1)) (10.36)

4Recall that the eigenvalues of a scaling v2 (02 +8§) of the operator are simply v2 times the eigenvalues of (02 +8§).
On the other hand, the eigenfunctions of the two operators are the same.
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where 5 is a constant the depends on material properties. The boundary conditions depend on the
shape of the plate, described as a domain in 2D, and on which parts of its boundary the plate maybe
pinned, clamped or free.

Although at first the PDE (10.36) appears quite different from the Euler-Bernoulli beam PDE (10.24),
it is in fact just the two (spatial) dimensional version of the one spatial dimensional beam equation.
To see that note that the right hand side of each PDE is the square of the Laplacian operator in 1
and 2 dimensions respectively

A = 92 = A? = 0} (in 1 dimension)

A = 9+0; = A% = (92+ 85)2 = 0, +20.0. 40, (in 2 dimensions)
Thus the beam and plate PDEs can be written in a formally similar way as

Oy W(x,t) = —35A*W(a,t) (beam equation)

0y W(x,y,t) = —35A*W(x,y,t), (plate equation)

where the Laplacian A is defined as above depending on whether the problem is in 1 or 2 dimensions.

The normal modes of plate vibrations are determined by the eigenvalues of the two dimensional
PDE operator A2 together with the applicable boundary conditions. For plates with homogenous
material properties, the PDE operator A? = 9% + 2 8%85 + 8;1 has constant coefficients, which
greatly simplifies its analysis. The normal modes of vibrations are obtained from eigenfunctions of
this operator

2 4 202 4

A%v(z,y) = Ao(z,y) & yu(a,y) +20;0,v(z,y) + yv(z,y) = Av(z,y). (10.37)
The eigenfunctions are all of the form

v(z,y) = T WY = eIlrxatryy) (10.38)

where Ky and &, are the wavenumbers that will be determined by applying the boundary conditions.
Substituting the form (10.38) into the eigenfunction equation (10.37) we arrive at an equation that
the eigenvalue A\ must satisfy

A el mxathivy) = (@% +2 0202 + 63) e (Rxtthyy) ((jfix)4 +2 (jrx)*(jry)® + (jﬁy)4) el st riyy)
= A = Ky +2 K260+ Ry = (KE+ Iif,)z . (10.39)

The allowable values of A will then come from discovering the allowable values of ky and k, that are
compatible with boundary conditions.

Example 10.2. [Square plate with free boundaries] This is the simplest case to analyze. Let the plate
be of size 21 X 2L, and choose a centered coordinate system so that the boundaries are at x = L and
y = £L. The free boundary conditions are then

82U(il”y) =Y ) [_L’L]v 82U(x,iL) =Y [—L,LL
d3v(£L,y) =0, [z, 1], IBv(x,+1) =0, [z, 1]
TBC
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Figure 10.4: The transverse motion of a string segment (shown in red) are determined by the net vertical force
on it. The tension T'(z) is assumed constant in magnitude throughout the string. However, the angle 6(z) at which
the tension acts varies and is determined by the slope Oxw(z,t). The difference between the vertical components
of T'(xz) and T'(z + dz) is determined by the difference between 6(z) and 6(z + dz), which in turn is determined by
the curvature 82w(x,t) of the string. In the configuration shown, the string segment has negative curvature, and
therefore it is accelerating downwards.

Appendix
10.A Physical Dynamics Described by the 1D Wave Equation

10.A.1 String Vibrations

To derive the differential equation for string vibrations, take a small segment of the string as shown
in Figure 10.4 and analyze the forces on it. The assumption we make is that the internal tension
force T in the string is constant in magnitude throughout. However, the angle #(z) at which the
tension forces act on a string element does depend on the instantaneous “slope” Oxw(z,t) of the
string. Examining Figure 10.4 shows that the net vertical force on the string element shown is
determined by the difference between the wvertical components of the opposing tension forces. This
difference is in turn determined by the “curvature” 82w(z,t) of the string as we show next.

Let 6(x) be the slope of the function w(x,t) at any one instant of time, i.e. the angle the vector
tangent to w(zx,t) makes with the horizontal axis. The mass of a string element of length dx is given
by éx p(x), where p(x) is the string’s linear density. Newton’s 2nd law for a small string segment
relates the vertical acceleration 82w(z,t) to the sum of vertical forces

<5m p(ac)) Otw(x,t) = T sin(H(x—i—(Sx)) - T sin(@(x)) (sum of vertical forces)

Q

T 0(x+o0x) — T 6(x) (using the small angle approximation sin(¢) = ¢)

T (9(1; +ox) — e(g:)) (10.40)

To rewrite this equation in terms of w(x,t), we need to express this angle difference in terms of w
or its spatial derivatives. First observe that the slope is related to the derivative Oxw(z,t) by using
the small angle approximation again 6 ~ tan(#) and

0(z) ~ tan (0(z)) = Oxw(z,t),
where the last equality follows from the definition of the derivative. The slope at x + dx is also
Oz +dz) = Oxw(x+ dz,t).

The above two expressions for the angles can now be used to express the angle difference in (10.40)
in terms of the curvature 82w(x,t)

O(x+dz) — 0(x) = Oxw(x+dz,t) — Oxw(z,t)
R~ <8xw(x,t) + 82w(x,t) (53:) — Oxw(z,t)
(first-order approximation of dxw(x + dx,t))
= d2w(x,t) oz
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v(xy) ——> —> v(z3)

-
<« — — — — — — >

sV

Figure 10.5: Depicting a control volume for the dynamics of a one-dimensional gas, or equivalently, a 3D gas where
velocities, pressures and densities vary in only one dimension, depicted here as the z coordinate. v(z1) and v(z2)
depict the velocities in and out of the volume respectively. p(z1) and p(x2) are the pressure forces exerted onto the
volume by the remainder of the gas. These pressure forces are always positive and act inwards towards the volume.
The density p(z) (not shown) is also assumed to vary with coordinate x.

Finally we can substitute this last expression in (10.40) to get a PDE that is purely in terms of
w(x,t) and does not involve 6(x)

((5:E p(x)) Otw(x,t) ~ T d2w(x,t) dx. (10.41)

Dividing through by dz and taking a limit dz — 0 produces an exact equation® which is the wave
equation

diw(x,t) = % O2w(x,t).

Note that the constant v? = T'/p(x), where the tension T plays the role of “stiffness per unit length”
while the density p(x) is the mass per unit length. Thus the wave equation can be considered to be
the continuum analog of a Mass-Spring system.

10.A.2 One-dimensional Gas Dynamics and Acoustics

Figure 10.5 depicts a one-dimensional compressible gas medium, or equivalently a three-dimensional
medium (with cross-sectional area A) where all fields are constant in the cross-sectional directions,
e.g as in the propagation of plane waves. All fields are then simply functions of a single spatial
coordinate . The picture depicts a thin volume slice (a “control volume” in the interval [z1, z3]) in
which we keep track of mass, momentum and energy transport. The fields relevant to gas dynamics
are

e v(xz,t): the velocity field

e p(x,t): the mass density field

e p(x,t): the pressure field (the isotropic force exerted on the fluid at any point)

o T'(z,t): the temperature field

e U(x,t): specific (per unit mass) internal energy. It accounts for energy stored in molecular
motions and vibrations. For “calorically perfect” gasses, it is a function of only temperature
U(z,t) = ¢,T(x,t), where ¢, is the specific heat capacity.

Three physical laws that govern the behavior of these fields can be derived.

Mass Conservation

The mass flow rate rightwards through the boundary at z; is equal to v(z;,t)p(z;,t)A. The total
mass inside the control volume increases at a rate equal to the total mass flow rate inwards at those

5Note that we took first order approximations with éz and 86 ~ dz assumed small. This means that terms of order
(6x)? and higher powers were ignored. If we kept track of them, they would appear in Equation (10.41). However,
after dividing through by dx and taking the limit = — 0, those terms would limit to zero.
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boundaries

% (/:2 p(z,t)A da:) = v(z1,t) p(x1,t)A — v(x2,t) p(22,1)A.

mass flow rate in mass flow rate out

time rate of change of
total mass in control volume

Dividing by A and A, := z3 — x1, and taking the small-volume limit as A, — 0 results in the
continuity (aka transport) equation

Bup(z,t) = — B (v(m) p(x,t)). (10.42)

Forces and the Momentum Equation

The time rate of change of momentum of a control volume of fluid is equal to the sum of forces
acting on it, plus the momentum flux due to material flow across the boundaries (now suppressing
the independent variables and the area A for notational simplicity)

d r2
— / vp dx = (v?p| — 0% + (p - p .
dt 1 x) T2 T T2
~—_——
total momentum of momentum influx total force at
fluid in control volume through boundaries boundaries

The first term on the right states that a mass flow rate of vpA across a boundary adds momentum
at the rate of v(vpA) = v2pA. The second term is the total force at the boundary due to the
isotropic pressure force (which always acts inwards on the volume). Taking the small-volume limit
again results in the momentum equation

EY (v(m,t) p(x,t)) = — 8, (vz(m,t)p(ac,t)) — Bp(a,t). (10.43)
An equivalent (and more standard) form of this equation expressing acceleration is obtained if the
continuity equation (10.42) is used to eliminate the 8¢p terms (see Section 10.A.3)

Ov(z,t) = —o(z,t) Oxv(x,t) — Oxp(x,1). (10.44)

b
p(z,t)

The Energy Equation and Thermodynamic Effects

A volume of gas has both internal and kinetic energies. Its total energy density at location x can
then be expressed as p(z,t)U(z,t) + $p(z, t)v?(z,t). An intuitive interpretation of internal energy
density pU is that it is a kind of potential energy stored in molecular motions and vibrations. The
time rate of change of total energy in the control volume is accounted for by

d 2 xl zl
(et @) = v+ wf (10.45)
— dded b,
time rate of change of energy power added by work rate of
material influx pressure forces

The first term on the right represents the energy flux due to material entering and leaving the control
volume with velocity v, while the second term is the rate of work done by the pressure forces at the
boundaries. Taking the small volume limit leads to the PDE

O (pU + %pvQ) = — 0Oy (v (pU + 3p0*) + pv) . (10.46)

As shown in Section 10.A.3, this equation can be simplified and converted to a more standard form
by using the continuity and momentum equations to substitute for the 9 (% pvz) term, which then
leads to

Oy (pU) = —0x(vpU) — p Oxv (10.47)
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Equivalent, and more useful forms of this equation are obtained by expressing the internal energy
U in terms of physically observable quantities. This can be done using either pressure or temperature,
and we choose pressure here since the resulting equations will have a more convenient form. To
express internal energy in terms of pressure, first note that for an ideal gas p = R pT. Combining
this with U = ¢, T yields

Cy

pU = ¢, pT = — p. (10.48)

This provides some useful intuition. Recall that internal energy density pU can be understood as a
kind of potential energy stored in molecular motions and vibrations. Equation (10.48) states that
local pressure is directly proportional to this potential energy density for ideal gases. Rewriting
Equation (10.47) using the substitution (10.48) for pU we obtain the energy equation in terms of
the pressure field

Op = —7pOxv — v Oxp, (10.49)

where v := 1+ g is the heat capacity ratio (a dimensionless number equal to 1.4 for diatomic gases
like air).

Finally, the three equations of mass conservation (10.42), momentum (10.44) and energy (10.49)
can now be combined into a single vector PDE that has the following form

p —v Oxp — P Oxv vop 0 P
O |v| =] —vOv — = Bxp = — |0 v 1/p|8x |v|. (10.50)
p —Y p Oxv — v Oxp 0 v w p

These are the Euler Equations of Gas Dynamics that describe compressible gas flows which have
negligible thermal conductivity within the gas. Although this vector PDE is nonlinear, it has the
following very special structure of

0.V (z,t) = F(¥(x,1)) 0x¥(,1), (10.51)
where U(z,t) is a vector-valued field and F'(.) is a function that depends on ¥(x,t), but not on any
of its derivatives.

Linearization

Acoustic phenomena are described by the linearization of (10.50) around small oscillations. For a
PDE of the form (10.51), consider a nominal solution ¥ (z) which is constant in x as well, i.e.

= 8,V(x),
and fluctuations @(x, t) around the nominal, i.e. consider a general solution decomposed as

U(z,t) = V() + U(z,t),

Plugging this into (10.51) and using a Taylor series expansion of F/(.)

EY (\Il(x) + \i/(:v,t)) = F(\Tl(x) + U, t)) 8x<\If(x) + U(a,t ))
8V (z,t) = (F(\iz(x)) + %w z,1) ) Bx\il(x,t))
AV(x,t) = F(¥U(z)) dxV(a,t) + - (10.52)

where . .. indicate terms of order 2 or higher in ¥ which do not contribute to the linearized dynamics.
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Now consider (10.50) with a nominal condition of constant density p, velocity v and pressure p.
Using (10.52) we see that the density, velocity and pressure fluctuations p, o, p have the following
linearized dynamics

p v p 0 p
O |v| =—|0 o 1/p| O |0
D 0 v v D

This equation shows an interesting feature. Since p,7,p are constants known ahead of time, the
differential equations for ¥ and p are independent of p (they only depend on the nominal density p.
Those two equations can then be considered independently of the evolution of p as

] =[5 ¥)ofi)

In particular, for the propagation of sound waves in a still medium (i.e. ¥ = 0), the equations take
on a particularly simple form

7 _ o 1/p
af] =l e
10.A.3 Simplifications Leading to Equations (10.44) and (10.47)

To avoid notational complexity in the following derivations, we adopt here the subscript notation
for partial derivatives, i.e. ;v = v4 and Oxv = v, and so on.

p

"3} . (10.53)

From Equation (10.43) to Equation (10.44)
Starting from Equation (10.43) and then using Equation (10.42) follows
(’Up)t = - (vzp)x -
= vp 4 vpr = —200.p — V2 py — P (using product and chain rule)
= wp + v(—vpy —Vep) = —200.p — V2 py — Pa (using (10.42) for py)
= Vep = —VVzP — Dy
= v=—vvp — o (pe+ Pu),

From Equation (10.46) to Equation (10.47)

We start from Equation (10.46) and use the continuity (10.42) and momentum (10.44) equations

(4th line below) as follows
pv? pv?
(0 +55), ‘(”(WT)“’”)E

vpU), — 5p2v° — 3pv?vs — (pov + pus)
):x) — DUz

(PU), — 3v°v2p — 30°pz — pav
(pU)t

(PU), + 3 (%), = —(wU), =3 (%), -
(pU), + %(pw2 + 2pvvt) = f(va) — % (pzv + 3pv vz) (pav + pug)
(PU); + 5 (( vap — vpz) V¥ + 2pv( VUg — %m)) = —(vpU), — 5 (pov® + 3pv*vs) — (pov + pu)
(PU), — 5 (VPvzp+0°pz) —vPvap—pav = —(vpU), — 3 (p2v® + 3pv°vz) — (p2v + pux)
=
— (vp
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