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Stochastic Perturbations

M

�

yu

Perturbations are iid gains: u(k) = �(k) y(k)
M is LTI
nec & suff condition is the H2 norm kMk2

2 < 1
��

LMI proof (S. Boyd, ’84)
x(k + 1) = (A + BC �(k)) x(k) Linear System w Mult. Noise
P(k) := E

�
x(k)x(k)T

 

) P(k + 1) = A P(k) AT + ��BC P(k) CTBT

LMI cond. for P(K)
k!1! 0 = LMI cond. for kMk2

2 < 1
��

() Allerton, Oct ’12 2 / 13



Stochastic Perturbations

M

�

yu

Perturbations are iid gains: u(k) = �(k) y(k)
M is LTI
nec & suff condition is the H2 norm kMk2

2 < 1
��

LMI proof (S. Boyd, ’84)
x(k + 1) = (A + BC �(k)) x(k) Linear System w Mult. Noise
P(k) := E

�
x(k)x(k)T

 

) P(k + 1) = A P(k) AT + ��BC P(k) CTBT

LMI cond. for P(K)
k!1! 0 = LMI cond. for kMk2

2 < 1
��

() Allerton, Oct ’12 2 / 13



Structured Stochastic Perturbations

Perturbations �1(t), . . . , �n(t)
are iid
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nec & suff cond. for Mean Square
Stability given by matrix of H2

norms !
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CA <
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(Hinrichsen&Pritchard ’95, Lu&Skelton ’02, Elia ’04)

Proof involves LMIs and scalings
cf. time-varying L2

and L1
-norm bounded perturbations

Not clear how to generalize to correlated �s
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Applications of Structured Stochastic Perturbations

Network dynamics with link/node failures, etc.
(Elia, Patterson & Bamieh)

x(t + 1) = A x(t) +

 
MX

i=1

µi(t) bib⇤
i

!
x(t)

Linear system w. multiplicative noise
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Applications of Structured Stochastic Perturbations

Network dynamics with link/node failures, etc.
(Elia, Patterson & Bamieh)

(“discrete space”)
PDEs with random coefficients (“continuous space”)

@

@t
 (x, t) = (A + B �(x, t) C)  (x, t)

I e.g. problems from random materials

@

@t
 (x, t) = (̄ + (x, t))

@2

@x2 (x, t)

 (x, t)
x

G

x
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Stochastic Hydrodynamic Stability and Turbulence

x

y

Uncertain base flow

U(x, y, t) = Ū(y, t) + �(x, y, t)

spatiotemporal correlations of � should be “dialed into” the model
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AN INPUT-OUTPUT APPROACH TO STRUCTURED
STOCHASTIC PERTURBATIONS
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An IO Approach to Stochastic Stability
Look at the dynamics of the correlation matrix sequences ⌃uk , etc.

stochastic vector signals
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⌃� := E

8
>><

>>:
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9
>>=

>>;

deterministic, matrix-valued signals

kX

l=0

Gk�l⌃ulG
⇤
k�l

⌃� � ⌃ek

⌃d

⌃w

⌃y

⌃e⌃z

⌃u

"
monotone system

The “loop gain” operator plays a central role

L(X) := ⌃� �
 1X

l=0

Gl X G⇤
l

!

complexity of L scales w # of perturbations, not state space dimension
B. BAMIEH, Structured stochastic uncertainty, 2012 50th Annual Allerton Conference.
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IO notion of Mean Square Stability

Def: G is Mean-Square Stable (MSS) if for white input process u , output
process y has uniformly bounded variance

yk =
X

l

gk�l ul �yk =
X

l

g2
k�l �l

Gu y G�u �y

�yk := E {y⇤k yk} 
 
X

k

g2
k

!

| {z }

✓
sup

k
�uk

◆
k 2 Z+

= kGk2
2 k�uk1
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IO notion of Mean Square Stability

Def: G is Mean-Square Stable (MSS) if for white input process u , output
process y has uniformly bounded variance

yk =
X

l

gk�l ul �yk =
X

l

g2
k�l �l

Gu y G�u �y

MSS of feedback systems (insert disturbances, d1, d2 white)

d1

d2

G1

G2

u1

u2y2

y1

�d2

�u2

�d1

�y2

�u1 �y1

MSS Feedback Stability
, All internal signals have uniformly bounded variance sequences
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nec & suff Small Gain Condition (SISO)

�

d

e

y

wz

u G

� iid ) z is white (� “whiten’s” e)
) �zk = �� �ek

u is also white ) �yk  kGk2
2 �uk

y is colored, but uncorrelated with w ) �ek = �yk + �w

go around the loop with the variance sequences

�
1� ��kGk2

2
�
k�uk1  ���w + �d suff

��kGk2
2 � 1 ) �uk unbounded as k �!1 nec

don’t need to construct “destabilizing” �s!
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nec & suff Structured Small Gain Condition

Look at the dynamics of the correlation matrix sequences ⌃uk , etc.
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l=0

Gk�l⌃ulG
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⌃� � ⌃ek

⌃� := E
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monotone system

going around the loop
⇣

I � L
⌘
(⌃uk)  ⌃d + ⌃� � ⌃w

L(X) := ⌃� �
 1X

l=0

Gl X G⇤
l

!
 � “loop gain”
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Properties of the “Loop Operator” L

L(X) := ⌃� �
 1X

l=0

Gl X G⇤
l

!

L maps pos. s. def. matrices to pos. s. def. matrices
It is thus “cone invariant” for the cone of pos. s. def. matrices
& 9 a Perron eigenvalue and corresponding pos. s def. eigenmatrix

(Parrilo & Khatri ’00)

these properties imply

(1� ⇢(L)) ⌃uk 
⇣

I � L
⌘
(⌃uk)  ⌃d + ⌃� � ⌃w

MSS stability condition (nec & suff)

⇢ (L) < 1
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Special Case of iid �s

�s iid ! ⌃� = I

L(X) := I �
 1X

l=0

Gl X G⇤
l

!
= diag

 1X

l=0

Gl X G⇤
l

!

The “eigen-matrices” of L must be diagonal matrices !

L(X) = �X

How does L act on diagonal matrices?
"w1

. . .
wn

#
= L

 " v1
. . .

vn

#!
,

"w1
...

wn

#
=

2

64
kg11k2

2 · · · kg1nk2
2

...
. . .

...
kgn1k2

2 · · · kgnnk2
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3

75

" v1
...

vn

#

Therefore
eigs(L) = eigs

✓
kgijk2

2

�◆
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Mutually Correlated �s (but temporally white)

L(X) := ⌃� �
 1X

l=0

Gl X G⇤
l

!

L : Rn⇥n �! Rn⇥n In general, it involves terms like

1X

k=0

gij(k) glm(k)

inner products between subsystems’ impulse responses

At worst: L represented as an n2 ⇥ n2 matrix
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Further Work

Robust Performance and Correlations
Spatial correlations in �s and G have special structure
e.g. spatial invariance ) simpler conditions
useful for applications to large-scale systems

Partial Differential Equations
L is a map on pos. s. spatial operators

Temporal correlations in �s ??? probably involves other
aggregates of the impulse response sequence {gk}
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