Networked and Distributed Parameter Systems (Some) New Directions, Opportunities & Challenges

Bassam Bamieh

Mechanical Engineering
Center for Control, Dynamical Systems and Computation
UNIVERSITY OF CALIFORNIA AT SANTA BARBARA

Note: These slides represent a synthesis of two semi-plenary talks given at the American Control Conference (ACC) and the European Control Conference (ECC) respectively in June of 2014

Complexity and Performance in Large-Scale and Distributed Systems

Bassam Bamieh

Mechanical Engineering
Center for Control, Dynamical Systems and Computation
UNIVERSITY OF CALIFORNIA AT SANTA BARBARA

Networked/Cooperative/Distributed Control

aircraft formation flight

formation flight in nature

large telescope arrays

robotic networks

flocks & swarms

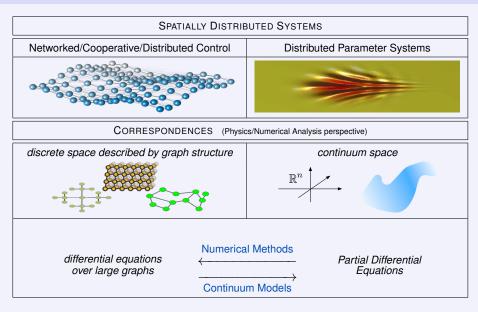
automated highways

- An area rich in deep and interesting problems
- Rapidly evolving

Networked vs. Distributed Parameter Systems

SPATIALLY DISTRIBUTED SYSTEMS			
Networked/Cooperative/Distributed Control	Distributed Parameter Systems		
0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			

Networked vs. Distributed Parameter Systems



Networked vs. Distributed Parameter Systems

SPATIALLY DISTRIBUTED SYSTEMS Networked/Cooperative/Distributed Control Distributed Parameter Systems ANALOGY WITH TEMPORAL SYSTEMS (Systems & Controls perspective) discrete space described by graph structure continuum space continuous-time

UNIFYING PERSPECTIVE:

Spatio-temporal systems over discrete or continuum space

- Signals over continuous and/or discrete time and space
- Investigate systems properties (e.g. system norms & responses)

Outline

SPATIALLY DISTRIBUTED SYSTEMS Networked/Cooperative/Distributed Control Distributed Parameter Systems LOOK AT SPECIFIC PROBLEMS Flow Turbulence & Control Vehicular Strings and Consensus Structured Control Design Spatio-temporal

Impulse Responses

Frequency Responses

Outline

SPATIALLY DISTRIBUTED SYSTEMS Networked/Cooperative/Distributed Control Distributed Parameter Systems

SOME COMMON THEMES EMERGE

- The use of system norms and responses
- Large-scale (even linear) systems exhibit some surprising phenomena
- Large-scale & Regular Networks → Asymptotic statements (in system size)
- Network topology imposes asymptotic "hard performance limits"

VEHICULAR STRINGS (PLATOONS)

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control

Distributed Parameter Systems

LOOK AT SPECIFIC PROBLEMS

Vehicular Strings and Consensus

- Structured Control Design

Flow Turbulence & Control

- Spatio-temporal

Impulse Responses

Frequency Responses

Vehicular Platoons

Automated control of each vehicle, tight spacing at highway speeds

- Is it enough to look at neighbors? Should information be broadcast to all?
- How does performance scale with size?
- Are there any fundamental limitations?

A fundamentally difficult problem (scales badly with size)
due to the network topology

Vehicular Platoons (setting)

• Desired trajectory: $\bar{p}_k := \bar{v}t + k\Delta$

constant velocity

Deviations:

$$\tilde{p}_k := p_k - \bar{p}_k, \quad \tilde{v}_k := \dot{p}_k - \bar{v}$$

Controls:

$$u = K\tilde{p} + F\tilde{v}$$

Closed loop:

$$\frac{d}{dt} \left[\begin{array}{c} \dot{\tilde{p}} \\ \dot{\tilde{v}} \end{array} \right] \; = \; \left[\begin{array}{c} 0 & I \\ K & F \end{array} \right] \left[\begin{array}{c} \tilde{p} \\ \tilde{v} \end{array} \right] \; + \; \left[\begin{array}{c} 0 \\ I \end{array} \right] w$$

K, F: matrix feedback gains

(look like "Laplacians" ≈ 2nd order consensus)

Relative vs. Absolute Feedback

position feedback velocity feedback
$$u = K \tilde{p} + F \tilde{v}$$
 absolute coordinate frame carried by leader
$$u_k = K_+ (p_{k+1} - p_k - \Delta) + F_+ (v_{k+1} - v_k) + F_- (v_k - v_{k-1}) + F_- (v_k - v_{k-1})$$

- RELATIVE MEASUREMENTS:
 - Requires ranging devices

 $F_o(v_k - \bar{v})$

 $K_o (p_k - (vt + \Delta k))$

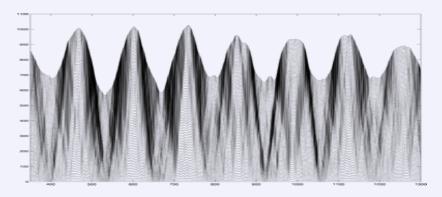
$$\Leftrightarrow$$
 $\begin{array}{c} \operatorname{row_sums}(K) = 0 \\ \operatorname{row\ sums}(F) = 0 \end{array}$

- ABSOLUTE MEASUREMENTS:
 - Position: Requires knowing position relative to leader
 - ► Velocity: Requires measurement of own velocity

Disorder Phenomenon in Platoons

(w. only relative meas.)

Globally stable formation, but exhibits "accordion-like" large-scale modes

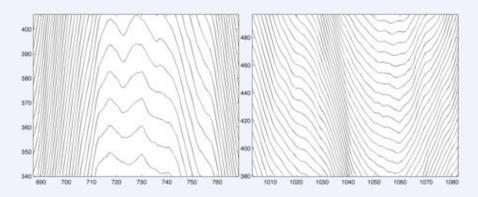


Time trajectories of vehicles' positions relative to leader (bird's-eye view) $$100$\ vehicles$

-A large formation in a thunderstorm

Disorder Phenomenon in Platoons (w. only relative meas.)

Zoomed in (small-scale) behavior

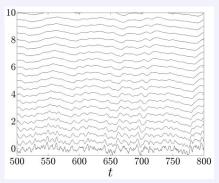


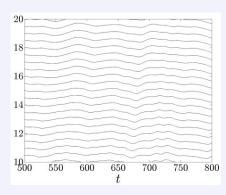
- Seems well regulated. No collisions.
- Unrelated to "string instability". A different phenomenon.

Disorder Phenomenon in Platoons (w. only relative meas.)

String instability?

Let disturbances enter only at lead vehicle



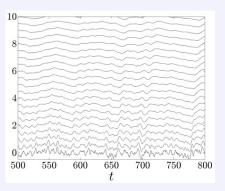


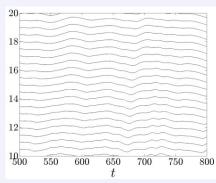
Unrelated to string instability!

Disorder Phenomenon in Platoons (w. only relative meas.)

String instability?

Let disturbances enter only at lead vehicle



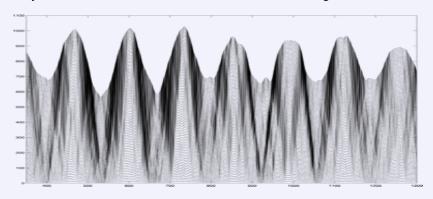


- temporally high frequency disturbances well regulated
- temporally low frequency disturbances penetrate further into formation

Disorder Phenomenon in Platoons

(w. only relative meas.)

Globally stable formation, but exhibits "accordion-like" large-scale modes



This motion dominated by

- Temporally slow modes
- Large spatial scales

"Global" modes

Vehicular Platoons (Optimal LQR)

- Is this due to bad design, or is it inherent to this problem?
- Note: Also occurs in LQR controllers that yield "localized" feedbacks
 - Original formulations:
 - * Athans & Levine '66
 - ★ Melzer & Kuo '70
 - Reexamined as $N \longrightarrow \infty$
 - ★ Jovanovic & Bamieh, TAC '05

Vehicular Platoons (Optimal LQR)

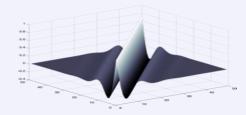
Centralized LQR design

(Melzer & Kuo '70, Athans & Levine '66)

$$\begin{bmatrix} \dot{\tilde{x}} \\ \dot{\tilde{v}} \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{x} \\ \tilde{v} \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} w,$$

$$J = \int_{0}^{\infty} \sum_{k} \left(q_{1} \left(\tilde{x}_{k} - \tilde{x}_{k-1} \right)^{2} + q_{2} \tilde{v}_{k}^{2} + u_{k}^{2} \right)$$

Feedback gains are "localized":

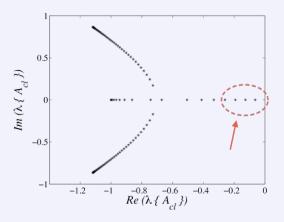


Inherent Localization:

Bamieh et. al, TAC '02, Motee et. al. '07

Vehicular Platoons (Optimal LQR)

Closed loop eigenvalues of optimal LQR feedback



- neutrally stable "mean mode" at $\lambda_1 = 0$ does not effect stability
- however, it attracts an unbounded number of eigenvalues as $N \to \infty$

Not string instability! Long wavelength modes are problematic

This system's modes: long spatial wavelength ↔ slow temporal scale

Vehicular Platoons LQR (infinite limit)

"Infinity is a convenient approximation to a large number"

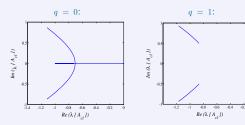
-Anonymous

Infinite platoon \longrightarrow Spatially invariant \longrightarrow Transform analysis

$$\begin{bmatrix} \dot{\tilde{p}}_k \\ \dot{\tilde{v}}_k \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{p}_k \\ \tilde{v}_k \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u_k, \quad k \in \mathbb{Z}$$

$$J = \int_0^\infty \sum_{k \in \mathbb{Z}} \left(q \, \tilde{p}_k^2 + (\tilde{p}_k - \tilde{p}_{k-1})^2 + \tilde{v}_k^2 + u_k^2 \right) dt$$

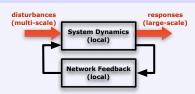
Resulting closed loop spectra



However: adding absolute penalty $q\tilde{p}_k^2$ yields non-local optimal feedback

Disorder and Feedback "Granularity"

 Disturbances are spatially white (contain all spatial wavelengths)



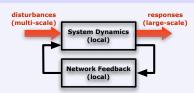
- Intuition:
 - ► Local feedback can only suppress short-scale disturbances
 - Local feedback ineffective against

large-scale (& slow) disturbances

▶ Looks like *global feedback* is needed for *global regulation*

Disorder and Feedback "Granularity"

 Disturbances are spatially white (contain all spatial wavelengths)



- Intuition:
 - ► Local feedback can only suppress short-scale disturbances
 - Local feedback ineffective against

large-scale (& slow) disturbances

Looks like global feedback is needed for global regulation

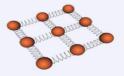
Surprise: In higher spatial dimensions:

Local feedback CAN suppress large-scale disturbances cf. Harmonic Solids

Statistical Mechanics of Harmonic Solids

Harmonic solid: A *d*-dimensional lattice of masses and springs **Q**: Can *short range interaction* lead to *long range order*?

- "short range interaction" ←→ local feedback
- "long range order" ←→ tightness of formation



Statistical Mechanics of Harmonic Solids

Harmonic solid: A d-dimensional lattice of masses and springs

Q: Can short range interaction lead to long range order?

- "short range interaction" ←→ local feedback
- "long range order" ←→ tightness of formation



Studied using long range correlations

• for d = 1, 2

short range interactions \Rightarrow no long range order

• for d > 3

long range order possible!

• i.e., solids can only exist in $d \ge 3$

Statistical Mechanics of Harmonic Solids

Harmonic solid: A d-dimensional lattice of masses and springs

Q: Can short range interaction lead to long range order?

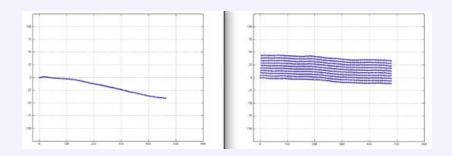
- ullet "short range interaction" \longleftrightarrow local feedback
- ullet "long range order" \longleftrightarrow tightness of formation

Studied using long range correlations

- for d = 1, 2 short range interaction
 - short range interactions \Rightarrow no long range order
 - for $d \ge 3$ long range order possible!
 - i.e., solids can only exist in $d \ge 3$

Similar dimentional-dependencies occur in networked control systems?

Comparison between 1D and (semi)2D cases



Related Concepts

Optimal Performance of Distributed Estimation

(Barooah, Hespanha)

Effective Resistance in a Resistor Network

(Lovisari, Garin, Zampieri, Carli)

- Global Mean First Passage Time of Simple Random Walk
- Wiener Index for Molecules

Common mathematical problem: calculate sums like (cont. time)

$$\sum_{n \neq 1} \frac{1}{\lambda_n}$$

 λ_n : eigenvalues of a graph Laplacian

Performance Limitations of Formations in d Dimensions

Setting:

- ullet $N=M^d$ vehicles arranged in d-dimensional torus \mathbb{Z}_M^d
- Desired trajectory: $\bar{p}_k := vt + k\Delta$

constant speed & heading

Structural Constraints

Spatial Invariance:

State-feedbacks K and F are spatial-convolution operators

Locality:

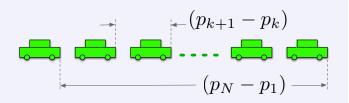
$$\textit{K}_{(k_1,\ldots,k_d)} \ = \ 0, \quad \text{if for any } i \in \{1,\ldots,d\}, \quad |k_i| > q$$

feedback from local neighbors only

Performance Measures

- Two measures of "disorder"
 - ▶ Microscopic: local position deviation

$$\operatorname{var}\left(p_{k+1}-p_k-\Delta\right)$$



► Macroscopic: long range deviation

$$\begin{array}{cc} & \mathrm{var}\,(p_N-p_1-\Delta N) \\ \mathrm{or} & \mathrm{var}\,\big(\tilde{p}_k\,-\,\frac{1}{N}\sum_l\tilde{p}_l\big) \end{array}$$

• All above obtained asymptotically (as $N \to \infty$) from H^2 norm calculations

Asymptotic Performance Lower Bounds

Tori networks, network size = N, spatial dimension = d, control effort $= \mathcal{E}\{u_k^2\} \leq U$

Feedback Type	Microscopic Disorder	Macroscopic Disorder		
1st order consensus	$\frac{1}{U}$	$\frac{1}{U} \begin{cases} N & d=1\\ \log(N) & d=2\\ 1 & d \ge 3 \end{cases}$		
absolute position & absolute velocity	$rac{1}{U}$	$rac{1}{U}$		
relative position & absolute velocity	$\frac{1}{U}$	$\frac{1}{U} \left\{ \begin{array}{ll} N & d = 1\\ \log(N) & d = 2\\ 1 & d \ge 3 \end{array} \right.$		
relative position & relative velocity	$\frac{1}{U^2} \left\{ \begin{array}{ll} N & d=1\\ \log(N) & d=2\\ 1 & d \ge 3 \end{array} \right.$	$\frac{1}{U^2} \begin{cases} N^3 & d = 1\\ N & d = 2\\ N^{1/3} & d = 3\\ \log(N) & d = 4\\ 1 & d \ge 5 \end{cases}$		

 $\hbox{``Coherence in Large-Scale Networks: Dimension-Dependent Limitations of Local Feedback''}$

BB, Jovanovic, Mitra, Patterson TAC, 2012

Implications for Vehicular Platoons

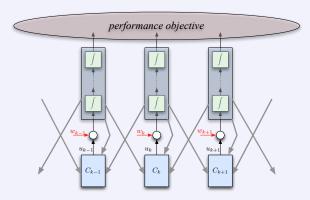
Feedback Type	Microscopic Disorder	Macroscopic Disorder		
1st order consensus	$\frac{1}{U}$	$\frac{1}{U} \begin{cases} N & d = 1\\ \log(N) & d = 2\\ 1 & d \ge 3 \end{cases}$		
absolute position & absolute velocity	$\frac{1}{U}$	$\frac{1}{U}$		
relative position & absolute velocity	$\frac{1}{U}$	$\frac{1}{U} \begin{cases} N & d = 1\\ \log(N) & d = 2\\ 1 & d \ge 3 \end{cases}$		
relative position & relative velocity	$\frac{1}{U^2} \left\{ \begin{array}{ll} N & d=1\\ \log(N) & d=2\\ 1 & d \ge 3 \end{array} \right.$	$\frac{1}{U^2} \begin{cases} N^3 & d = 1\\ N & d = 2\\ N^{1/3} & d = 3\\ \log(N) & d = 4\\ 1 & d \ge 5 \end{cases}$		

Using only local feedback:

cannot have 1 dimensional, large and yet coherent formations!

Role of Node Dynamics

- Each node a chain of n integrators
- Controllers use local static state feedback



- Critical dimension needed for global coherence = 2n + 1
- Tradeoff between network connectivity and node memory

Spatial Dimension as Proxy for Network Connectivity

Convergence Time $1/\lambda_2$	N^2	N	$N^{2/3}$	$N^{2/d}$
dimension	0 0 0 0 0 0 0 0 0 0	d=2	d = 3	d-dimensional Torus (Lattice) $(d \geq 4)$
macroscopic $\frac{\text{disorder}}{\sum\limits_{n\neq 1}1/\lambda_n}$ $1^{\text{st}}\text{-order consensus}$	N	$\log(N)$	bounded	bounded

- Node degree does not quantify this phenomenon
- e.g. compare with

Spatial Dimension as Proxy for Network Connectivity

Convergence Time	N^2	N	$N^{2/3}$	$N^{2/d}$
$1/\lambda_2$				
dimension	00000		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	d-dimensional Torus (Lattice)
	d = 1	d = 2	d = 3	$(d \ge 4)$
macroscopic $\begin{array}{c} \text{disorder} \\ \frac{1}{N} \sum_{n \neq 1} 1/\lambda_n \\ 1^{\text{St}} \text{-order consensus} \end{array}$	N	$\log(N)$	bounded	bounded

- Node degree does not quantify this phenomenon
- e.g. compare with
- Note: $\frac{1}{N} \sum_{n \neq 1} 1/\lambda_n$ scales differently from $1/\lambda_2$

Coherence Analysis in General Graphs?

For general graphs, what is the corresponding notion of "spatial dimension"?

(opte.org)

- The Hausdorff dimension of a fractal graph does not fully characterize coherence Patterson, BB, '11 CDC
- Open question: a purely topological measure of coherence for general graphs

Further Questions

- Can more general control laws break these limitations?
 - Spatially varying control gains?
 - Nonlinear feedback?
 - Dynamic feedback?
 - Asymmetric feedback?
 - ★ Improves scaling of eigenvalues as $N \to \infty$

Barooah, Mehta, Hespanha, Hao

***** but causes exponential growth (as $N \to \infty$) of system norms!!

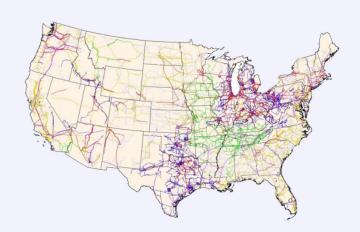
Tangerman, Veerman, Stosic Herman, Martinec, Hurak

- ★ eigenvalues do not describe "true" system behavior
- Must have global feedback to address coherence problem
 - ▶ Vulnerability to errors in global feedback (as $N \to \infty$)?

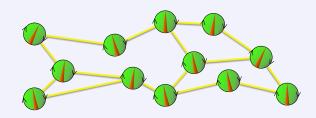
Swarms and Flocks in Nature

Network dimensionality determines coherence of motion?
 Starling Flocks: Young, Scardovi, Cavagna, Giardina, Leonard, '13, PLOS CB

AC Power Networks



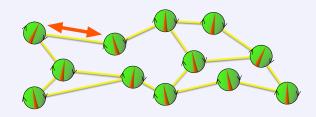
Phase Synchronization in AC Networks



Machines "tug" on each other to achieve phase synchrony
 Linearized dynamics (swing equations) similar to vehicle formations

$$\frac{d}{dt} \left[\begin{array}{c} \theta \\ \omega \end{array} \right] = \left[\begin{array}{cc} 0 & I \\ -L_B & -\beta I \end{array} \right] \left[\begin{array}{c} \theta \\ \omega \end{array} \right] + \left[\begin{array}{c} 0 \\ I \end{array} \right] \mathbf{w}$$

Phase Synchronization in AC Networks



Machines "tug" on each other to achieve phase synchrony
 Linearized dynamics (swing equations) similar to vehicle formations

$$\frac{d}{dt} \left[\begin{array}{c} \theta \\ \omega \end{array} \right] = \left[\begin{array}{cc} 0 & I \\ -L_B & -\beta I \end{array} \right] \left[\begin{array}{c} \theta \\ \omega \end{array} \right] + \left[\begin{array}{c} 0 \\ I \end{array} \right] \mathbf{w}$$

Electrical power flows back and forth as a signaling mechanism

A Thought Experiment: Network with Identical Generators

Assume identical generators but general topology

$$\frac{d}{dt} \begin{bmatrix} \theta \\ \omega \end{bmatrix} = \begin{bmatrix} 0 & I \\ -L_B & -\beta I \end{bmatrix} \begin{bmatrix} \theta \\ \omega \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} \mathbf{w}$$
$$y = \begin{bmatrix} C_1 & 0 \end{bmatrix}$$

Resistive power loss over (i, k) link

$$\tilde{P}_{loss_{ik}} = g_{ik} \left| \theta_i - \theta_k \right|^2$$

• Total resistive losses $\tilde{\mathbf{P}}_{loss} = y^*y$

$$C_1^*C_1:=L_G,$$

- Notes
 - Network Admittance Matrix: $Y = Re\{Y\} + jIm\{Y\} =: L_G + jL_B$
 - Linearized dynamics
 - Keep only quadratic part of loss term
 - Model too simple?

Note: Modeling best case scenario, no instabilities

Calculating the H^2 Norm

Assumption: L_G is a multiple of L_B

$$\alpha := \frac{g_{ik}}{b_{ik}} = \frac{r_{ik}}{x_{ik}} = \text{ ratio of line resistance to reactance}$$

Then total resistive power loss

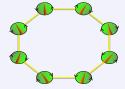
$$E\{y^*y\} = \frac{\alpha}{\beta} (N-1)$$

N: Network Size

Total resistive losses are Independent of the network topology!!

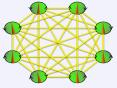
Implications

Compare:



less coherent larger phase fluctuations less links Resistive losses VS.

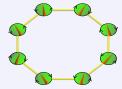
<



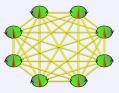
more coherent small phase fluctuations more links Resistive losses

Implications

Compare:



less coherent larger phase fluctuations less links Resistive losses VS.



- more coherent small phase fluctuations more links
- Resistive losses
- A fundamental limitation, independent of network topology
 A consequence of using *electrical power flows* as the signaling mechanism!

"The Price of Synchrony", BB, Gayme, '13, ACC

Losses proportional to network size N

What if $N \approx millions$ in a future highly-distributed-generation smart grid??

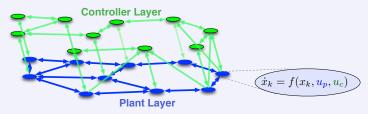
Another argument for a communications layer in the smart grid

STRUCTURED, DISTRIBUTED CONTROL DESIGN

SPATIALLY DISTRIBUTED SYSTEMS Networked/Cooperative/Distributed Control Distributed Parameter Systems LOOK AT SPECIFIC PROBLEMS Flow Turbulence & Control Vehicular Strings and Consensus Structured Control Design Spatio-temporal Impulse Responses Frequency Responses

Distributed Control Systems Design

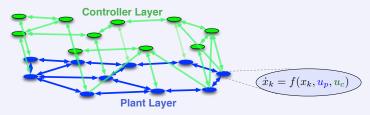
Controller Architecture: Constraints on controller information flow



- Optimal Constrained Controller Design
 - In general: difficult, non-convex, non-scalable
 - Some Exceptions:
 - ★ Partially Nested Info. Structure, Funnel Causality, Quadratic Invariance
 - ★ Sparsity Promoting (ℓ¹-regularized) designs
 - Often possible to propose (non-optimal), scalable algorithms that "work"
 - ★ e.g. Consensus-like algorithms (cf. multi-agent systems)

Distributed Control Systems Design

Controller Architecture: Constraints on controller information flow



- Optimal Constrained Controller Design
 - ▶ In general: difficult, non-convex, non-scalable
 - Some Exceptions:
 - ★ Partially Nested Info. Structure, Funnel Causality, Quadratic Invariance
 - ★ Sparsity Promoting (ℓ¹-regularized) designs
 - Often possible to propose (non-optimal), scalable algorithms that "work"
 - ★ e.g. Consensus-like algorithms (cf. multi-agent systems)
- Q: Why care about optimality?

Quantify fundamental limitations-of-performance due to *network topology?*akin to those due to RHP poles/zeros

- Optimality gives Best Achievable Limits of performance
 - e.g. a plant G with a RHP pole p and zero z

$$\inf_{C \text{ stabilizing}} \left\| (1 + PC)^{-1} \right\|_{\infty} = \frac{|z + p|}{|z - p|} \checkmark$$

rear-steering bike:

Bicycle Dynamics and Control, K.J. Åstrom

- Optimality gives Best Achievable Limits of performance
 - e.g. a plant G with a RHP pole p and zero z

$$\inf_{C \text{ stabilizing}} \left\| (1 + PC)^{-1} \right\|_{\infty} = \frac{|z + p|}{|z - p|} \checkmark$$

▶ If $z \neq p$, system is both controllable/observable, the rank tests

$$rank \left[B \ AB \ \cdots \ A^{n-1}B \right] \quad \ rank \left[C; \ CA; \ \cdots; \ CA^{n-1} \right]$$

give a deceptive answer!

(especially for large-scale systems!)

better measures of approximate Controllability/Observability

- Optimality gives Best Achievable Limits of performance
 - e.g. a plant G with a RHP pole p and zero z

$$\inf_{C \text{ stabilizing}} \left\| (1 + PC)^{-1} \right\|_{\infty} = \frac{|z + p|}{|z - p|} \checkmark$$

 Optimal/Robust Control is useful to design/characterize a good plant, not just controller design!

A point recognized in 80's-90's, but has not made it into networks literature

- Optimality gives Best Achievable Limits of performance
 - e.g. a plant G with a RHP pole p and zero z

$$\inf_{C \text{ stabilizing}} \left\| (1 + PC)^{-1} \right\|_{\infty} = \frac{|z + p|}{|z - p|} \checkmark$$

 Optimal/Robust Control is useful to design/characterize a good plant, not just controller design!

A point recognized in 80's-90's, but has not made it into networks literature

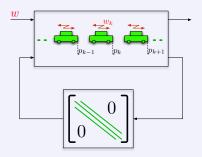
Use

$$\begin{array}{c} \inf & \|\mathcal{F}(G;C)\| \\ C \text{ stabilizing} \\ C \text{ structured} \end{array}$$

to measure approximate network controllability/observability

Case Study: Vehicular Formations

Vehicular string control with only local (no leader) information



- Corresponds to banded controller structure
- This exact problem is non-convex for any fixed N (currently unsolved)
- as $N \to \infty$ can find lower bounds (hard performance limits) as function of topology!
- The platoons problem is fundamentally difficult because of the 1d topology

Structured Optimal Control in the Limit of Large System Size

ullet The problem $\inf_{C \text{ structured}} \|\mathcal{F}(G;C)\|$

- very difficult for finite N
- may admit simple answers as $N \to \infty$
- cf. Statistical Mechanics
- Use structured Robust/Optimal control problems
 not to design network controllers, but to quantify limits of performance
- Implications:
 - ► In engineered systems: allows for selection of network structures
 - In natural systems (e.g. biological):

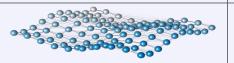
may explain naturally evolved network structures

Quantify network controllability/observability

FLOW TURBULENCE & CONTROL

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control

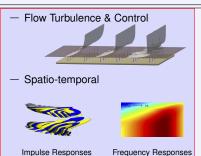


Distributed Parameter Systems

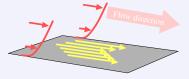
LOOK AT SPECIFIC PROBLEMS

Vehicular Strings and Consensus

- Structured Control Design



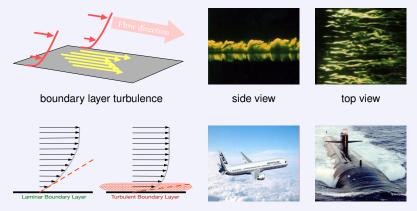
Turbulence in Streamlined Flows (Boundary Layers)



side view

top view

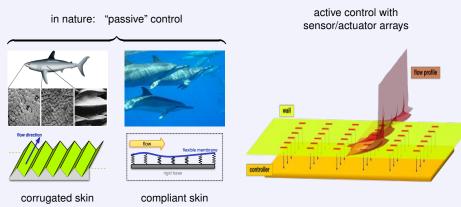
Turbulence in Streamlined Flows (Boundary Layers)



skin-friction drag: laminar vs. turbulent

- Streamlining a vehicle reduces form drag
- Still stuck with: Skin-Friction Drag (higher in Turbulent BL than in Laminar BL)
- Same in pipe flows (increases required pumping power)

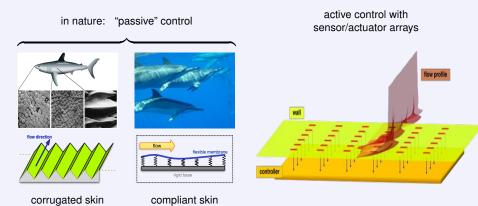
Control of Boundary Layer Turbulence



Intuition: must have ability to actuate at spatial scale comparable to flow structures
 spatial-bandwidth of controller

 plant's bandwidth

Control of Boundary Layer Turbulence



- Intuition: must have ability to actuate at spatial scale comparable to flow structures
 spatial-bandwidth of controller

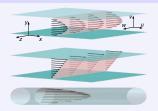
 plant's bandwidth
- Caveat: Plant's dynamics are not well understood
 obstacles { not only device technology also: dynamical modeling and control design

Mathematical Modeling of Transition: Hydrodynamic Stability

The Navier-Stokes (NS) equations:

$$\partial_t \mathbf{u} = -\nabla_{\mathbf{u}} \mathbf{u} - \operatorname{grad} p + \frac{1}{R} \Delta \mathbf{u}$$

 $0 = \operatorname{div} \mathbf{u}$



Hydrodynamic Stability:

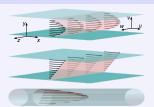
- view NS as a dynamical system
- $laminar flow \bar{\mathbf{u}}_R := \mathbf{a}$ stationary solution of the NS equations (an equilibrium)

Mathematical Modeling of Transition: Hydrodynamic Stability

The Navier-Stokes (NS) equations:

$$\partial_t \mathbf{u} = -\nabla_{\mathbf{u}} \mathbf{u} - \operatorname{grad} p + \frac{1}{R} \Delta \mathbf{u}$$

 $0 = \operatorname{div} \mathbf{u}$



Hydrodynamic Stability:

- view NS as a dynamical system
- ullet laminar flow $ar{\mathbf{u}}_{\mathit{R}} := a$ stationary solution of the NS equations (an equilibrium)

laminar flow $\bar{\mathbf{u}}_{\mathit{R}}$ stable

$$\longleftrightarrow$$

i.c.
$$\mathbf{u}(0) \neq \bar{\mathbf{u}}_R$$
, $\mathbf{u}(t) \stackrel{t \to \infty}{\longrightarrow} \bar{\mathbf{u}}_R$

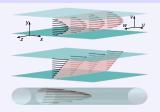
- typically done with dynamics linearized about $\bar{\mathbf{u}}_R$
- various methods to track further "non-linear behavior"

Mathematical Modeling of Transition: Hydrodynamic Stability

The Navier-Stokes (NS) equations:

$$\partial_t \mathbf{u} = -\nabla_{\mathbf{u}} \mathbf{u} - \operatorname{grad} p + \frac{1}{R} \Delta \mathbf{u}$$

 $0 = \operatorname{div} \mathbf{u}$



Hydrodynamic Stability:

- view NS as a dynamical system
- A very successful (phenomenologically predictive) approach for many decades

However: it fails badly in the special (but important) case of streamlined flows

Mathematical Modeling of Transition: Adding Signal Uncertainty

Decompose the fields as

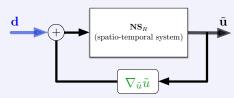
$$egin{array}{ccccc} oldsymbol{u} & = & ar{oldsymbol{u}}_R & + & ar{oldsymbol{u}} & \ & \uparrow & & \uparrow \ & & & \mathsf{laminar} & \mathsf{fluctuations} \end{array}$$

Fluctuation dynamics:

In *linear* hydrodynamic stability, $-\nabla_{\tilde{u}}\tilde{u}$ is ignored

$$\partial_t \tilde{\mathbf{u}} = -\nabla_{\tilde{\mathbf{u}}_R} \tilde{\mathbf{u}} - \nabla_{\tilde{\mathbf{u}}} \bar{\mathbf{u}}_R - \operatorname{grad} \tilde{p} + \frac{1}{R} \Delta \tilde{\mathbf{u}} - \nabla_{\tilde{u}} \tilde{u} + \mathbf{d}$$
 $0 = \operatorname{div} \tilde{\mathbf{u}}$

▶ a time-varying exogenous disturbance field d (e.g. random body forces)



Input-Output view of the Linearized NS Equations

Jovanovic, BB, '05 JFM

Input-Output Analysis of the Linearized NS Equations

$$\partial_{t} \begin{bmatrix} \Delta \tilde{v} \\ \tilde{\omega} \end{bmatrix} = \begin{bmatrix} U'' \partial_{x} - U \Delta \partial_{x} + \frac{1}{R} \Delta^{2} & 0 \\ -U' \partial_{z} & -U \partial_{x} + \frac{1}{R} \Delta \end{bmatrix} \begin{bmatrix} \tilde{v} \\ \tilde{\omega} \end{bmatrix} + \begin{bmatrix} -\partial_{xy} & \partial_{x}^{2} + \partial_{z}^{2} & -\partial_{zy} \\ \partial_{z} & 0 & -\partial_{x} \end{bmatrix} \begin{bmatrix} \frac{dx}{dy} \\ \frac{dy}{dz} \end{bmatrix} \\
\begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = (\partial_{x}^{2} + \partial_{z}^{2})^{-1} \begin{bmatrix} \partial_{xy} & -\partial_{z} \\ \partial_{zy} & \partial_{x} \end{bmatrix} \begin{bmatrix} \tilde{v} \\ \tilde{\omega} \end{bmatrix}$$

Input-Output Analysis of the Linearized NS Equations

$$\partial_{t} \begin{bmatrix} \Delta \tilde{v} \\ \tilde{\omega} \end{bmatrix} = \begin{bmatrix} U'' \partial_{x} - U \Delta \partial_{x} + \frac{1}{R} \Delta^{2} & 0 \\ -U' \partial_{z} & -U \partial_{x} + \frac{1}{R} \Delta \end{bmatrix} \begin{bmatrix} \tilde{v} \\ \tilde{\omega} \end{bmatrix} + \begin{bmatrix} -\partial_{xy} & \partial_{x}^{2} + \partial_{z}^{2} & -\partial_{zy} \\ \partial_{z} & 0 & -\partial_{x} \end{bmatrix} \begin{bmatrix} \frac{d_{x}}{d_{y}} \\ \frac{d_{y}}{d_{z}} \end{bmatrix} \\
\begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = (\partial_{x}^{2} + \partial_{z}^{2})^{-1} \begin{bmatrix} \partial_{xy} & -\partial_{z} \\ \partial_{zy}^{2} + \partial_{z}^{2} & 0 \\ \partial_{zy} & \partial_{x} \end{bmatrix} \begin{bmatrix} \tilde{v} \\ \tilde{\omega} \end{bmatrix}$$

- eigs (A): determine stability
- (standard technique in Linear Hydrodynamic Stability)

11 / 17

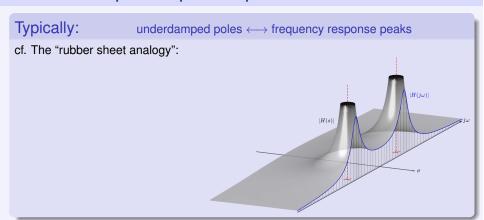
Input-Output Analysis of the Linearized NS Equations

$$\begin{array}{lll} \partial_t \left[\begin{array}{c} \Delta \tilde{v} \\ \tilde{\omega} \end{array} \right] & = & \left[\begin{array}{ccc} U'' \partial_x - U \Delta \partial_x + \frac{1}{R} \Delta^2 & 0 \\ -U' \partial_z & -U \partial_x + \frac{1}{R} \Delta \end{array} \right] \left[\begin{array}{c} \tilde{v} \\ \tilde{\omega} \end{array} \right] + \left[\begin{array}{c} -\partial_{xy} & \partial_x^2 + \partial_z^2 & -\partial_{zy} \\ \partial_z & 0 & -\partial_x \end{array} \right] \left[\begin{array}{c} d_x \\ d_y \\ d_z \end{array} \right] \\ \left[\begin{array}{c} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{array} \right] & = & \left(\partial_x^2 + \partial_z^2 \right)^{-1} \left[\begin{array}{c} \partial_{xy} & -\partial_z \\ \partial_{zy} & \partial_x \end{array} \right] \left[\begin{array}{c} \tilde{v} \\ \tilde{\omega} \end{array} \right] \end{array}$$

Surprises:

- Even when A is stable

- the gain $\mathbf{d} \longrightarrow \tilde{\mathbf{u}}$ can be very large $(H^2 \text{ norm})^2$ scales with R^3)
- Input-output resonances ve
- very different from least-damped modes of ${\cal A}$



However: Pole Locations ↔ Frequency Response Peaks

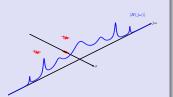
Theorem: Given any desired pole locations

$$z_1, \ldots, z_n \in \mathbb{C}_-$$
 (LHP),

and any stable frequency response $H(j\omega)$, arbitrarily close approximation is achievable with

$$\| H(s) - \left(\sum_{i=1}^{N_1} \frac{\alpha_{1,i}}{(s-z_1)^i} + \dots + \sum_{i=1}^{N_n} \frac{\alpha_{n,i}}{(s-z_n)^i} \right) \|_{\mathcal{H}^2} \le \epsilon$$

by choosing any of the N_k 's large enough



However: Pole Locations <code-block> Frequency Response Peaks</code>

Theorem: Given any desired pole locations

$$z_1, \ldots, z_n \in \mathbb{C}_-$$
 (LHP),

and any stable frequency response $H(j\omega)$, arbitrarily close approximation is achievable with

$$\left\| H(s) - \left(\sum_{i=1}^{N_1} \frac{\alpha_{1,i}}{(s-z_1)^i} + \cdots + \sum_{i=1}^{N_n} \frac{\alpha_{n,i}}{(s-z_n)^i} \right) \right\|_{\mathcal{H}^2} \le \epsilon$$

by choosing any of the N_k 's large enough

Remarks:

- No necessary relation between pole locations and system resonances
- \bullet ($\epsilon \to 0 \Rightarrow N_k \to \infty$),

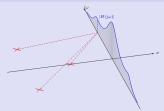
- i.e. this is a large-scale systems phenomenon
- Large-scale systems: IO behavior not always predictable from modal behavior

However: Pole Locations \leftrightarrow Frequency Response Peaks

MIMO case:
$$H(s) = (sI - A)^{-1}$$

• If A is normal (has orthogonal eigenvectors), then

$$\sigma_{\max}\left(\left(j\omega I-A\right)^{-1}\right) = \frac{1}{\text{distance}\left(j\omega, \text{nearest pole}\right)}$$



• If A is non-normal: no clear relation between singular value plot \iff eigs(A)

Spatio-temporal Impulse and Frequency Responses

Translation invariance in x & z implies

• Impulse Response (Green's Function)

Impulse Response (Green's Function)
$$\tilde{\mathbf{u}}(t,x,y,z) = \int G(t-\tau,x-\xi,\mathbf{y},\mathbf{y}',z-\zeta) \, \mathbf{d}(\tau,\xi,y',\zeta) \, d\tau d\xi dy' d\zeta$$

$$\tilde{\mathbf{u}}(t,x,.,z) = \int \mathcal{G}(t-\tau,x-\xi,z-\zeta) \, \mathbf{d}(\tau,\xi,.,\zeta) \, d\tau d\xi d\zeta$$

$$\mathcal{G}(t,x,z) : \text{Operator-valued impulse response}$$

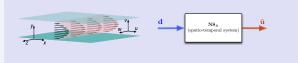
Frequency Response

$$\tilde{\mathbf{u}}(\omega, k_x, k_z) = \mathcal{G}(\omega, k_x, k_z) \, \mathbf{d}(\omega, k_x, k_z)$$

$$\mathcal{G}(\omega, k_x, k_z) : \qquad \text{Operator-valued frequency response} \quad \text{(Packs lots of information!)}$$

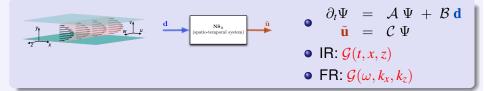
Spectrum of A:

$$\sigma(A) = \overline{\bigcup_{k_x,k_z} \sigma\left(\hat{A}(k_x,k_z)\right)}$$



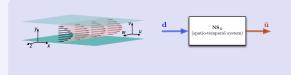
$$\begin{array}{cccc}
\bullet & \partial_t \Psi & = & \mathcal{A} \ \Psi + \mathcal{B} \ \mathbf{d} \\
& \tilde{\mathbf{u}} & = & \mathcal{C} \ \Psi
\end{array}$$

- IR: G(t, x, z)
- FR: $\mathcal{G}(\omega, k_x, k_z)$



Modal Analysis: Look for unstable eigs of $\mathcal{A} = \left(\bigcup_{k_x,k_z} \sigma\left(\hat{\mathcal{A}}(k_x,k_z)\right)\right)$

Flow type	Classical linear theory R_c	Experimental R _c
Channel Flow	5772	≈ 1,000-2,000
Plane Couette	∞	≈ 350
Pipe Flow	∞	≈ 2,200-100,000

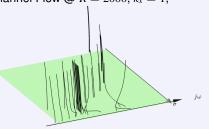


$$\partial_t \Psi = \mathcal{A} \Psi + \mathcal{B} \mathbf{d}$$
 $\tilde{\mathbf{u}} = \mathcal{C} \Psi$

- IR: G(t, x, z)
- FR: $\mathcal{G}(\omega, k_x, k_z)$

Modal Analysis: Look for unstable eigs of \mathcal{A}

• Channel Flow @ R = 2000, $k_x = 1$,



$$\left(igcup_{k_x,k_z}\sigma\left(\hat{\mathcal{A}}(k_x,k_z)
ight)
ight)$$

 $(k_z = \text{vertical dimension})$:

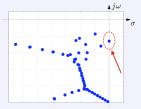
top view

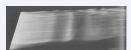
- $\partial_t \Psi = \mathcal{A} \Psi + \mathcal{B} \mathbf{d}$ $\tilde{\mathbf{u}} = \mathcal{C} \Psi$
- IR: G(t, x, z)
- FR: $\mathcal{G}(\omega, k_x, k_z)$

Modal Analysis: Look for unstable eigs of $\mathcal{A} = \left(\bigcup_{k_x,k_z} \sigma\left(\hat{\mathcal{A}}(k_x,k_z)\right)\right)$

• Channel Flow @ R = 6000, $k_x = 1$, $k_z = 0$:

Flow structure of corresponding eigenfunction: Tollmein-Schlichting (TS) waves

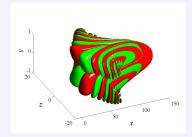


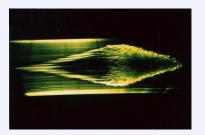


$$\partial_t \Psi = \mathcal{A} \Psi + \mathcal{B} \mathbf{d}$$
 $\tilde{\mathbf{u}} = \mathcal{C} \Psi$

- IR: G(t, x, y, -1, z)
- FR: $\mathcal{G}(\omega, k_x, k_z)$

Impulse Response Analysis: Channel Flow @ R = 2000

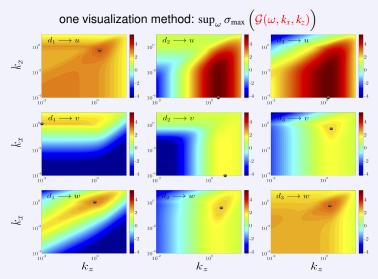




similar to "turbulent spots"

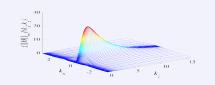
Jovanovic, BB, '01 ACC,

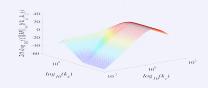
 $\mathcal{G}(\omega, k_x, k_z)$ is a *LARGE* object! (very "data rich"!)



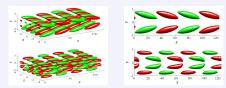
 $\mathcal{G}(\omega, k_x, k_z)$ is a *LARGE* object! (very "data rich"!)

one visualization method: $\sup_{\omega} \sigma_{\max} \left(\mathcal{G}(\omega, k_x, k_z) \right)$

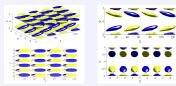




What do the corresponding flow structures look like?



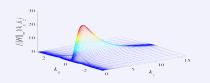
streamwise velocity isosurfaces

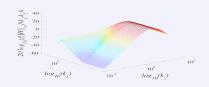


streamwise vorticity isosurfaces

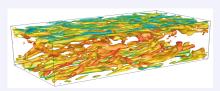
 $\mathcal{G}(\omega, k_x, k_z)$ is a *LARGE* object! (very "data rich"!)

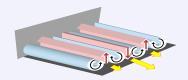
one visualization method: $\sup_{\omega} \sigma_{\max}\left(\mathcal{G}(\omega, \emph{k}_{x}, \emph{k}_{z})\right)$



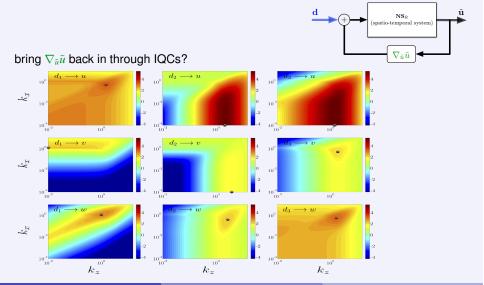


What do the corresponding flow structures look like? much closer (than TS waves) to structures seen in turbulent boundary layers





How to view of $\mathcal{G}(\omega, k_x, k_z)$?



Flow Control

Some recent related progress in Fluid Dynamics and Controls communities

- Farrell & Ioannou
- Henningson & Co. @ KTH
- Rowley & Co. @ Princeton
- Gayme, Doyle, Papachristodoulou & Mckeon @ Caltech
- Jovanovic & Co. @ Minnesotta

Viscoelastic turbulence Vibrational Control with Wall Oscillations

FLOW CONTROL remains

- an under-explored field
- with many high-payoff possibilities
 - Flow and separation control
 - Control of MHD instabilities (in plasmas and liquid metals)
 - Thermoacoustics

Recap

SPATIALLY DISTRIBUTED SYSTEMS Networked/Cooperative/Distributed Control Distributed Parameter Systems

SOME COMMON THEMES EMERGE

- The use of system norms and responses
- Large-scale & Regular Networks → Asymptotic statements (in system size)
- Network topology imposes asymptotic "hard performance limits"
- Large-scale (even linear) systems exhibit some surprising phenomena
- This is a very rich area with many remaining
 - fascinating questions, unsolved problems
 - research problems yet to be properly formulated

Collaborators

- M. Jovanovic
- D. Gayme
- S. Patterson
- J.C. Doyle
- B. Mckeon

- M. Dahleh
- P. Mitra
- P. Voulgaris
- F. Paganini
- M.A. Dahleh

Support:

Energy, Power & Adaptive Systems Program (ECCS) Control Systems (CMMI)

Physics of Living Systems (PHY)

Dynamics & Control Program