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Networked/Cooperative/Distributed Control

aircraft formation flight formation flight in nature large telescope arrays

X &
robotic networks flocks & swarms automated highways

@ An area rich in deep and interesting problems
@ Rapidly evolving

ECC, June 2014 2/48



Networked vs. Distributed Parameter Systems

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control

Distributed Parameter Systems

D 4 44 ECC, June 2014
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Networked vs. Distributed Parameter Systems

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control

Distributed Parameter Systems

CORRESPONDENCES  (Physics/Numerical Analysis perspective)

discrete space described by graph structure

continuum space

= of

Numerical Methods

differential equations )

Partial Differential

over large graphs

Equations

7
Continuum Models

ECC, June 2014
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Networked vs. Distributed Parameter Systems

| SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control

Distributed Parameter Systems

ANALOGY WITH TEMPORAL SYSTEMS

(Systems & Controls perspective)

discrete space described by graph structure

continuum space

Jr 21y
)

"l'j'lr'(""’t discrete-time
system

t . . %“Qt
\V4 > continuous-time

system

UNIFYING PERSPECTIVE: Spatio-temporal systems over discrete or continuum space
= Signals over continuous and/or discrete time and space

= Investigate systems properties (e.g. system norms & responses)

ECC, June 2014

5/48



Outline

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems

| LOOK AT SPECIFIC PROBLEMS

— Flow Turbulence & Control

— Vehicular Strings and Consensus

— Structured Control Design

Impulse Responses Frequency Responses

— Spatio-temporal




Outline

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems

SOME COMMON THEMES EMERGE

® The use of system norms and responses

® [arge-scale (even linear) systems exhibit some surprising phenomena

® [arge-scale & Regular Networks — Asymptotic statements (in system size)
® Network topology imposes asymptotic “hard performance limits”

D 4 44 ECC, June 2014  7/48



VEHICULAR STRINGS (PLATOONS)

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control

Distributed Parameter Systems

LOOK AT SPECIFIC PROBLEMS

— Flow Turbulence & Control

— Vehicular Strings and Consensus

— Structured Control Design

— Spatio-temporal

Impulse Responses Frequency Responses

D 4 44 ECC, June 2014
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Vehicular Platoons

Automated control of each vehicle, tight spacing at highway speeds

~ A —Y

@ Is it enough to look at neighbors? Should information be
broadcast to all?

@ How does performance scale with size?
@ Are there any fundamental limitations?

A fundamentally difficult problem (scales badly with size)
due to the network topology



Vehicular Platoons (setting)

Pk = Uk + Wik = ~——
1 1 1
1) ) --- D U U ---
control disturbance D1 - D1
@ Desired trajectory: pr = vt + kA constant velocity
@ Deviations:

Pk *= Dk — Pk, Vk = Pk—V
@ Controls:
u = Kp + Fv

alt]- Lk r][3]+ [3]

K, F: matrix feedback gains (look like “Laplacians” = 2nd order consensus)

@ Closed loop:



Relative vs. Absolute Feedback

o (P — Po) ——»

—(Prs1 — i)

position feedback velocity feedback * * * cee- ‘ &
: - I ! |

u = K ﬁ + F i’/ absolute coordinate frame carried by leader

we = K, (py1—pr—A) + K (pk—pe—1 —A) +
F. (Vi1 — i) + F_ (v —vi-1) +
K, (pr — (vt+ Ak)) +
F, (vk — \_/)

@ RELATIVE MEASUREMENTS:
> Requires ranging devices rowﬁsums(K) —0
row_sums(F) =0
@ ABSOLUTE MEASUREMENTS:
» Position: Requires knowing position relative to leader

> Velocity: Requires measurement of own velocity



Disorder Phenomenon in Platoons (w. only relative meas.)

Globally stable formation, but exhibits “accordion-like” large-scale modes

Time trajectories of vehicles’ positions relative to leader (bird’'s-eye view )
100 vehicles

-A large formation in a thunderstorm



Disorder Phenomenon in Platoons (w. only relative meas.)
Zoomed in (small-scale) behavior
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@ Seems well regulated. No collisions.
@ Unrelated to “string instability”. A different phenomenon.



Disorder Phenomenon in Platoons (w. only relative meas.)

String instability? Let disturbances enter only at lead vehicle
10— - — 20 ——— : — ——
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Unrelated to string instability!



Disorder Phenomenon in Platoons (w. only relative meas.)

String instability? Let disturbances enter only at lead vehicle
10—— - — 20— — —- -
A ' e — o8 -
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@ temporally high frequency disturbances well regulated
@ temporally low frequency disturbances penetrate further into formation



Disorder Phenomenon in Platoons (w. only relative meas.)

Globally stable formation, but exhibits “accordion-like” large-scale modes

This motion dominated by

e Temporally slow modes
e Large spatial scales

} “Global” modes



Vehicular Platoons (Optimal LQR)

@ |s this due to bad design, or is it inherent to this problem?
@ Note: Also occurs in LQR controllers that yield “localized” feedbacks
» Original formulations:

* Athans & Levine '66
* Melzer & Kuo '70

» Reexaminedas N — oo
* Jovanovic & Bamieh, TAC 05



Vehicular Platoons (Optimal LQR)

Centralized LQR design (Melzer & Kuo ’70, Athans & Levine '66)

HERHIHERE
J = /Ooog<q1 (B — %)’ + @2 7% + ui)

Feedback gains are
“localized”:

Inherent Localization: Bamieh et. al, TAC ‘02, Motee et. al. ‘07

D 4 44 ECC.June 2014  14/48



Vehicular Platoons (Optimal LQR)

Closed loop eigenvalues of optimal LQR feedback

0.5

Im({ A}

2

Not string instability!

@ however, it attracts an
unbounded number of
eigenvalues as N — oo

-12 -1 08 -06 -
Re(M{ A}

This system’s modes:

0.4

Long wavelength modes are problematic

@ neutrally stable “mean mode” at
A1 = 0 does not effect stability

long spatial wavelength «» slow temporal scale

ECC, June 2014
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Vehicular Platoons LQR (infinite limit)

“Infinity is a convenient approximation to a large number” -Anonymous

Infinite platoon — Spatially invariant — Transform analysis

(2] = [8 ]2 ]+0]m ez

- =2 = = 2 ) 2
J /0 Z(m + (Bx—pe—1)” + % + uk)dt

kEZL

Resulting closed loop spectra

q = 0:

Im ’klA(/I)
Im(h{A,])

N\

da a2 Bl 08 06 04 02 0 12 -1 08 06 04 02 0
Re(M{A,}) Re(h{A,])

However: adding absolute penalty ¢p; yields non-local optimal feedback
Jovanovic & Bamieh. TAC ‘05
ECC, June 2014 16/48




Disorder and Feedback “Granularity”

disturbances responses
(multi-scale) (large-scale)

@ Disturbances are spatially white S -
(contain all spatial wavelengths) l—: —

Network Feedback
(local)

@ Intuition:
» Local feedback can only suppress short-scale disturbances
» Local feedback ineffective against
large-scale (& slow) disturbances
> Looks like global feedback is needed for global regulation



Disorder and Feedback “Granularity”

disturbances responses
(multi-scale) (large-scale)

@ Disturbances are spatially white S -
(contain all spatial wavelengths) l—: —

Network Feedback
(local)

@ Intuition:

» Local feedback can only suppress short-scale disturbances
» Local feedback ineffective against

large-scale (& slow) disturbances
> Looks like global feedback is needed for global regulation

Surprise: In higher spatial dimensions:
Local feedback CAN suppress large-scale disturbances
cf. Harmonic Solids



Statistical Mechanics of Harmonic Solids

Harmonic solid: A d-dimensional lattice of masses and springs
Q: Can short range interaction lead to long range order?

@ “short range interaction” <— local feedback
@ “long range order” <— tightness of formation



Statistical Mechanics of Harmonic Solids

Harmonic solid: A d-dimensional lattice of masses and springs
Q: Can short range interaction lead to long range order?

@ “short range interaction” <— local feedback
@ “long range order” <— tightness of formation

o ... o
¥ @
¢ e
o
Studied using long range correlations
@ ford=1,2 short range interactions = no long range order
e ford >3 long range order possible!

@ i.e., solids can only existind > 3



Statistical Mechanics of Harmonic Solids

Harmonic solid: A d-dimensional lattice of masses and springs
Q: Can short range interaction lead to long range order?

@ “short range interaction” <— local feedback
@ “long range order” <— tightness of formation

Studied using long range correlations

@ ford=1,2 short range interactions = no long range order
@ ford >3 long range order possible!
@ i.e., solids can only existind > 3

Similar dimentional-dependencies occur in networked control systems?



Comparison between 1D and (semi)2D cases

|




Related Concepts

@ Optimal Performance of Distributed Estimation
(Barooah, Hespanha)

@ Effective Resistance in a Resistor Network
(Lovisari, Garin, Zampieri, Carli)

@ Global Mean First Passage Time of Simple Random Walk
@ Wiener Index for Molecules

Common mathematical problem: calculate sums like (cont. time)

1

An: eigenvalues of a graph Laplacian



Performance Limitations of Formations in d Dimensions

Setting:
@ N = M? vehicles arranged in d-dimensional torus Zg,

@ Desired trajectory: py := vt + kA constant speed & heading

Structural Constraints

@ Spatial Invariance:
State-feedbacks K and F are spatial-convolution operators

@ Locality: K,k = 0, ifforanyiec {1,...,d}, |k|>q

feedback from local neighbors only T

D 4 44 ECC, June 2014  21/48



Performance Measures

@ Two measures of “disorder”

» Microscopic: local position deviation var (pry1 — pr — A)
— P-(pk—kl — Dk)
— s I s B — —
I-O—OJ: I-o—o—l LO—O—I e eee I-()—oJ I-o—o—!
(pn —p1) —~
» Macroscopic: long range deviation var (py — p1 — AN)

or var (ﬁk — %le}l)

@ All above obtained asymptotically (as N — oo) from H> norm calculations



Asymptotic Performance Lower Bounds

Tori networks, network size = N, spatial dimension = d, control effort = £{u}} < U

Feedback Type  Microscopic Disorder = Macroscopic Disorder

N d=1
1st order consensus % % log(N) d=2
1 d>3
absolute position 1 1
& absolute velocity U U
Jati iti N d=1
relative position 1 _
& absolute velocity T i llog(N) Z ; i
N3 d=1
Jati o N d=1 N d=2
relative position 1 _ 1 1/3 —
& relative velocity 2 log(N) d= 7 NY/ @l =73
1 d>3 log(N) d=4
1 d>>5

v

“Coherence in Large-Scale Networks: Dimension-Dependent Limitations of Local Feedback”
BB, Jovanovic, Mitra, Patterson  TAC, 2012



Implications for Vehicular Platoons

Feedback Type  Microscopic Disorder = Macroscopic Disorder

N d=1
1st order consensus % % log(N) d=2
1 d>3
absolute position 1 1
& absolute velocity U U
relative position 1 1 —
& absolute velocity U U IIOg (N) Z ; g
i " N d=1 N d=2
relative position 1 _ 1 1/3 —
& relative velocity 2 log(N) d= = N/ @=73
1 d>3 log(N) d=
1 d>

Using only local feedback:
cannot have 1 dimensional, large and yet coherent formations!

D 4 44 ECC.June2014  24/48



Role of Node Dynamics

@ Each node a chain of n integrators
@ Controllers use local static state feedback

performance objective
*
[

W ) W+
Up—1 Uk Uk+1)

Cri1

@ Critical dimension needed for global coherence = 2n+ 1
@ Tradeoff between network connectivity and node memory

ECC, June 2014 25/48



Spatial Dimension as Proxy for Network Connectivity

Convergence Time N2 N N2 /3 N2 /d
1/,
d-dimensional
dimension
Torus (Lattice)
d=1 d=2 d=3 (d>4)
macroscopic
disorder
LS N log(N) bounded bounded
n#l

18L-order consensus

@ Node degree does not quantify this phenomenon

o 0. compare FTTFTO ity F15451

ECC, June 2014 26 /48



Spatial Dimension as Proxy for Network Connectivity

Convergence Time N2 N N2 /3 N2 /d
1/,
. X d-dimensional
dimension
Torus (Lattice)
d=1 d=2 d=3 (d>4)
macroscopic
disorder
N N log(N) bounded bounded
Nz
18L-order consensus

@ Node degree does not quantify this phenomenon

o 0. compare FTTFTO ity F15451

1 .
@ Note: N Z 1/, scales differently from 1/\,

n#l

ECC, June 2014 26 /48



Coherence Analysis in General Graphs?

For general graphs, what is the corresponding notion of “spatial dimension”?

(opte.org)

@ The Hausdorff dimension of a fractal graph does not fully characterize coherence
Patterson,BB, '11 CDC

@ Open question:  a purely topological measure of coherence for general graphs



Further Questions

@ Can more general control laws break these limitations?
Spatially varying control gains?
Nonlinear feedback?
Dynamic feedback?
Asymmetric feedback?
* Improves scaling of eigenvalues as N — oo
Barooah, Mehta, Hespanha, Hao
* but causes exponential growth (as N — oo) of system norms!!
Tangerman, Veerman, Stosic

Herman, Martinec, Hurak
* eigenvalues do not describe “true” system behavior

vyvyVvYyy

@ Must have global feedback to address coherence problem
» Vulnerability to errors in global feedback (as N — oo)?



Swarms and Flocks in Nature

2d

@ Network dimensionality determines coherence of motion?
Starling Flocks:  Young, Scardovi, Cavagna, Giardina, Leonard, '13, PLOS CB



AC Power Networks




Phase Synchronization in AC Networks

e ?‘ .\'/ F‘\.
‘, \ '//
g, ® I ‘//'

@ Machines “tug” on each other to achieve phase synchrony
Linearized dynamics (swing equations) similar to vehicle formations

alol-lw wlla]+[7]



Phase Synchronization in AC Networks

phase
angle
rotating
machine k

@ Machines “tug” on each other to achieve phase synchrony
Linearized dynamics (swing equations) similar to vehicle formations

alol-lw wlla]+[7]

@ Electrical power flows back and forth as a signaling mechanism



A Thought Experiment: Network with Identical Generators

@ Assume identical generators but general topology

1 0 0

ilol = 1% Sllo]+[7]
y = [C 0]

@ Resistive power loss over (i, k) link Ploss;, = it |0i — O]

@ Total resistive losses Pos; = y*y

CTCI = LG,

@ Notes

> Network Admittance Matrix: ¥ = Re{Y} + jlm{Y} =: Lg + jLs
> Linearized dynamics
> Keep only quadratic part of loss term

> Model too simple? Note: Modeling best case scenario, no instabilities

D 4 44 ACC, June 2014 34749



Calculating the #> Norm

Assumption: L is a multiple of Lg

i r; . . .
a = ‘Z—’k — % _ ratio of line resistance to reactance
ik Xik

Then total resistive power loss

E{y"y} = % (N-1)

N: Network Size
Total resistive losses are Independent of the network topology!!



Implications

Compare:

@
® @

less coherent

larger phase fluctuations

less links
Resistive losses

AV A

more coherent

small phase fluctuations

more links
Resistive losses

ACC, June 2014
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Implications

) ® Y Zanyiean=" Y

Compare: VS. e e Ay,
® 7 ® e
® @ @@
more coherent
small phase fluctuations

more links
Resistive losses

less coherent

larger phase fluctuations
less links

Resistive losses

AV A

@ A fundamental limitation, independent of network topology
A consequence of using electrical power flows as the signaling mechanism!
“The Price of Synchrony”, BB, Gayme, '13, ACC

@ Losses proportional to network size N
What if N =~ millions in a future highly-distributed-generation smart grid??

Another argument for a communications layer in the smart grid



STRUCTURED, DISTRIBUTED CONTROL DESIGN

| SPATIALLY DISTRIBUTED SYSTEMS |

Networked/Cooperative/Distributed Control Distributed Parameter Systems

LOOK AT SPECIFIC PROBLEMS

— Flow Turbulence & Control

— Vehicular Strings and Consensus

— Structured Control Design — Spatio-temporal

Impulse Responses Frequency Responses




Distributed Control Systems Design

@ Controller Architecture: Constraints on controller information flow

= Controller Layer

=
— - -
< = -
f‘—-—'.‘\? -
b.ﬁ- ‘
Plant Layer

@ Optimal Constrained Controller Design
» In general: difficult, non-convex, non-scalable
» Some Exceptions:
* Partially Nested Info. Structure, Funnel Causality, Quadratic Invariance
* Sparsity Promoting (¢!-regularized) designs
» Often possible to propose (non-optimal), scalable algorithms that “work”
* e.g. Consensus-like algorithms (cf. multi-agent systems)



Distributed Control Systems Design

@ Controller Architecture: Constraints on controller information flow

= Controller Layer

=
— - -
< = -«
jen NI G TT Y
Plant Layer

@ Optimal Constrained Controller Design
» In general: difficult, non-convex, non-scalable
» Some Exceptions:
* Partially Nested Info. Structure, Funnel Causality, Quadratic Invariance
* Sparsity Promoting (¢!-regularized) designs
» Often possible to propose (non-optimal), scalable algorithms that “work”
* e.g. Consensus-like algorithms (cf. multi-agent systems)

@ Q: Why care about optimality?
Quantify fundamental limitations-of-performance due to network topology?
akin to those due to RHP poles/zeros



Why care about difficult optimal/robust control problems?

@ Optimality gives Best Achievable Limits of performance
» e.g. a plant G with a RHP pole p and zero 7

_lz+pl

o —1
Cst;l?ilf;zingH(l—‘rPC) ||oo B |Z_p| 7 J

rear-steering bike:

Bicycle Dynamics and Control, K.J. Astrom



Why care about difficult optimal/robust control problems?

@ Optimality gives Best Achievable Limits of performance
» e.g. aplant G with a RHP pole p and zero z

. _ a4
inf H(I—G—PC) IHOO = :E_Z: N J

C stabilizing

» If z £ p, system is both controllable/observable, the rank tests

rank [BAB --- A" 'B]  rank [C; CA; ---; CA™']
give a deceptive answer! (especially for large-scale systems!)
Grammians — better measures of

approximate Controllability/Observability



Why care about difficult optimal/robust control problems?

@ Optimality gives Best Achievable Limits of performance
» e.g. aplant G with a RHP pole p and zero z

_ |z +p]

= vd
|z = p|
» Optimal/Robust Control is useful to
design/characterize a good plant, not just controller design!

inf ||(1+PC)~"||

C stabilizing

A point recognized in 80’s-90’s, but has not made it into networks literature



Why care about difficult optimal/robust control problems?

@ Optimality gives Best Achievable Limits of performance
» e.g. aplant G with a RHP pole p and zero z

_ |z +p]

= vd
|z = p|
» Optimal/Robust Control is useful to
design/characterize a good plant, not just controller design!

inf ||(1+PC)7"||

C stabilizing

A point recognized in 80’s-90’s, but has not made it into networks literature

inf | F(G; Ol
» Use C stabilizing
C structured

to measure approximate network controllability/observability



Case Study: Vehicular Formations

Vehicular string control with only local (no leader) information

— T L
- o
P

k-1 b3 Pr+1

o\

@ Corresponds to banded controller structure
@ This exact problem is non-convex for any fixed N (currently unsolved)

@ asN — o0
can find lower bounds (hard performance limits) as function of topology!

@ The platoons problem is fundamentally difficult because of the 1d topology

ECC, June 2014 34/48



Structured Optimal Control in the Limit of Large System Size

@ The problem inf || F(G;C)||

C structured

== ">
» very difficult for finite N

» may admit simple answers as N — oo
» cf. Statistical Mechanics

@ Use structured Robust/Optimal control problems
not to design network controllers, but to quantify limits of performance

@ Implications:
> In engineered systems: allows for selection of network structures
> In natural systems (e.g. biological):
may explain naturally evolved network structures
> Quantify network controllability/observability



' FLow TURBULENCE & CONTROL

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control

Distributed Parameter Systems

LOOK AT SPECIFIC PROBLEMS

— Vehicular Strings and Consensus

— Structured Control Design

——

— Flow Turbulence & Control

— Spatio-temporal

Impulse Responses

Frequency Responses

ECC, June 2014
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Turbulence in Streamlined Flows (Boundary Layers)

~—~
—— =
boundary layer turbulence side view top view



Turbulence in Streamlined Flows (Boundary Layers)

~—~
—— =
boundary layer turbulence side view

Laminar Boundary Layer Turbulent Boundary Layer

skin-friction drag: laminar vs. turbulent

@ Streamlining a vehicle reduces form drag

@ Still stuck with: Skin-Friction Drag (higher in Turbulent BL than in Laminar BL)
@ Same in pipe flows (increases required pumping power)



Control of Boundary Layer Turbulence

active control with

in nature: “passive” control
sensor/actuator arrays

flexible membrane

corrugated skin compliant skin

@ |Intuition: must have ability to actuate at spatial scale comparable to flow structures
spatial-bandwidth of controller > plant’s bandwidth



Control of Boundary Layer Turbulence

active control with
sensor/actuator arrays

in nature: “passive” control

rigid base

corrugated skin compliant skin

@ |Intuition: must have ability to actuate at spatial scale comparable to flow structures
spatial-bandwidth of controller > plant’s bandwidth

@ Caveat: Plants dynamics are not well understood
obstacles not only device technology
also: dynamical modeling and control design



Mathematical Modeling of Transition: Hydrodynamic Stability
The Navier-Stokes (NS) equations:

ou = —Vyu-—gradp+ I%Au
0 = divu
@ Hydrodynamic Stability: view NS as a dynamical system

@ /aminar flow ug := a stationary solution of the NS equations  (an equilibrium)



Mathematical Modeling of Transition: Hydrodynamic Stability
The Navier-Stokes (NS) equations:

ou = —Vyu-—gradp+ I%Au
0 = divu
@ Hydrodynamic Stability: view NS as a dynamical system

@ /aminar flow ug := a stationary solution of the NS equations (an equilibrium)

i.c. u(0) # g,

laminar flow uy stable —> e
u(t) — ug

u(t) u(0)

typically done with dynamics linearized about ug

various methods to track further “non-linear behavior”




Mathematical Modeling of Transition: Hydrodynamic Stability
The Navier-Stokes (NS) equations:

N
ou = —Vyu-—gradp+ I%Au
0 = divu
@ Hydrodynamic Stability: view NS as a dynamical system

@ A very successful (phenomenologically predictive) approach for many decades

@ However: it fails badly in the special (but important) case of streamlined flows



Mathematical Modeling of Transition: Adding Signal Uncertainty

@ Decompose the fields as u = Ug s u
) )
laminar fluctuations
@ Fluctuation dynamics: In linear hydrodynamic stability, — Vi is ignored
O = —Vgi —Vgig — gradp + A — Vi + d
0 = diva

» a time-varying exogenous disturbance field d (e.g. random body forces)

NS Iu
(spatio-temporal system)

Input-Output view of the Linearized NS Equations
Jovanovic, BB, 05 JFM

D 4 44 CDS20, Aug 2014  10/17



Input-Output Analysis of the Linearized NS Equations

~ 1 b
o[ &] Z [Ua-usksiar 0 (18], e, @i s[4
& —U's, U8+ Lia] | . 0 =% |4

€=

R A
024+ 02 0 [~]

zy aX

= (224 83)71

H

d _
— (spauc»tm?psn:zd system) '—; at\Ij = A \I/ _"_ B d

D 4 44 CDS20, Aug 2014  11/17



Input-Output Analysis of the Linearized NS Equations

2 Ox

U"0y — UAD, + %Az 0 q ? L _8xy 6)% + 612 —azy gf
-U'0, —Udx + EA w 0

dy =077~
v
024+02 0 H@]

2y Ox

Q
| —|
EIE
-
|

(02 + 83)71

i
v
W

[ I
Il

NSp u
e 9 — AT + Bd
i=Cv

@ eigs (\A): determine stability
(standard technique in Linear Hydrodynamic Stability)

@ Transfer Function d — u: determines response to disturbances
uncommon in Fluid Mechanics
an “open system”

D 4 44 CDS20, Aug 2014  11/17



Input-Output Analysis of the Linearized NS Equations

- 1 b
o[ &] Z [Ua-usksiar 0 (18], e, @i s[4
@ ~U', ~Ud+ EA | | @ . 0 =% ||

i
v
w

Oy =871 =
R+ 0 ] [Y]
2y Ox w

| = @y

a _
— ool system) '—: (9,\11 _ A N/ + B d
u = CvVv

Surprises:

@ Even when A is stable the gain d — u can be very large

( (H? norm)? scales with R®)

@ Input-output resonances very different from least-damped modes of A

D 4 44 CDS20, Aug 2014  11/17



Modal vs. Input-Output Response

Typically: underdamped poles «— frequency response peaks
cf. The “rubber sheet analogy”:




Modal vs. Input-Output Response

However: Pole Locations <=

Frequency Response Peaks
Theorem: Given any desired pole locations

2y ey 2w € C_ (LHP),

|H(jw)|

and any stable frequency response H(jw), arbitrarily close
approximation is achievable with

Ny @il Nn Qi
e = (Z oy T NG )

i=1 o -

H2

by choosing any of the N;'s large enough

CDS20, Aug 2014 12/17




Modal vs. Input-Output Response

However: Pole Locations <=

Frequency Response Peaks
Theorem: Given any desired pole locations

2y ey 2w € C_ (LHP),

|H(jw)|

and any stable frequency response H(jw), arbitrarily close
approximation is achievable with

Ny @il Nn Qi
HE) - (Z<s_l’£1)f T )‘

=i = (=)

72

by choosing any of the Ny 's large enough

Remarks:

@ No necessary relation between pole locations and system resonances
@ (e~ 0= N — ),

i.e. this is a large-scale systems phenomenon
@ Large-scale systems:

10 behavior not always predictable from modal behavior
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Modal vs. Input-Output Response

However: Pole Locations <«  Frequency Response Peaks

MIMO case: H(s) = (sI —A)~!
@ IfA is normal (has orthogonal eigenvectors), then

1

distance (]'w, nearest pole)

ez ((]'wl —A)_l) =

@ IfA is non-normal : no clear relation between
singular value plot o+ eigs(A)
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Spatio-temporal Impulse and Frequency Responses

Translation invariance in x & z implies

o /mpU/Se Fr’esponse (Green’s Function) A/'VL‘ i:%:%;f:‘:;s—;w Y
ﬁ(ta XY, Z) = /G(t — T, X = ga ysy’ < — C) d(Tv anla C) degdy,dC

u(t,x,.,z) /Qt—rx &,z—C)d(r,&,.,C) drdéd¢
g (t, x,z7) Operator-valued impulse response
@ Frequency Response
u(w, ke, k;) = G(w,ky, k) d(w, ky, k;)
G(w, ke, k) :  Operator-valued frequency response (Packs lots of information!)

@ Spectrum of A:

o(A) = | o (Alke k)
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Modal vs. Input-Output Analysis

| . ° 6;‘11 = ./4 \II + B d
] S ) = u = CVU

@ IR:G(t,x,2)

@ FR: G(w, ky, k;)
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Modal vs. Input-Output Analysis
OV = AV + Bd

e 5 = a =2C0U
@ IR:G(t,x,2)
(*] FR g(w7kkaz)

Modal Analysis: Look for unstable eigs of .A (ka‘kz o (A(kx,kz)»

[| Flow type | Classical linear theory R. | Experimental R. ||
Channel Flow 5772 ~ 1,000-2,000
Plane Couette 00 ~ 350
Pipe Flow 00 ~ 2,200-100,000
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Modal vs. Input-Output Analysis
OV = AV + Bd

=== d a
s — ———] NS, &
./YL ======u |y e (spatio-temporal system) [ u = C \I/

C @ IR:G(t,x,2)
@ FR: G(w, ky, k;)

Modal Analysis: Look for unstable eigs of .A (ka‘kz o (/l(kx,kz)»

@ Channel Flow @ R = 2000, k, = 1, (k, = vertical dimension)i

top view
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Modal vs. Input-Output Analysis

) , o¥ = AU + Bd

=P (atic-temporal system) [P u = CvVU

@ IR: G(t,x,2)
@ FR: G(w, ky, k;)

Modal Analysis: Look for unstable eigs of A (ka‘kz o (/l(kx, kz)))

@ Channel Flow @ R = 6000, k, = 1, k, = 0:

Flow structure of corresponding eigenfunction:
Tollmein-Schlichting (TS) waves
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Modal vs. Input-Output Analysis

e e | u = CVU
@ IR: G(t,x,y,—1,2)
@ FR: G(w, ky, k;)

a——
z Xo

Impulse Response Analysis: Channel Flow @ R = 2000

similar to “turbulent spots”

Jovanovic, BB, 01 ACC,
more movies and pics at http://engineering.ucsb.edu/~bamieh/pics/impulse_page.html


http://engineering.ucsb.edu/~bamieh/pics/impulse_page.html

Spatio-temporal Frequency Response

G(w, kv, k) is @ LARGE object!  (very “data rich”! )

one visualization method: sup,, omax (g(w, ky, kz))

dy —> u II do — u

10° 10°

10"

k=
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Spatio-temporal Frequency Response

G(w, kv, k) is @ LARGE object!  (very “data rich”! )

one visualization method: sup,, omax (g (w, kx, kz))

b
-

bbous

Wlog, 1tk k)

&
3

100

log (k)

streamwise velocity isosurfaces streamwise vorticity isosurfaces
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Spatio-temporal Frequency Response

G(w, kv, k) is @ LARGE object!  (very “data rich”! )

one visualization method: sup_, omax (Q(w, kx,kz))

ik )

10°

: o°
tog o(k) 10° 1og (k)

What do the corresponding flow structures look like?
much closer (than TS waves) to structures seen in turbulent boundary layers
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Spatio-temporal Frequency Response

How to view of G(w, k., k.) ?

bring Vi back in through IQCs?

dy —> u ds —
10 »
&
10°
10”58 I
10°
dy dy —> v v
1'% o
&
~c |
107
10"
10°

W N O O =
Lb © ® e A b © MR A b © MR
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Flow Control

Some recent related progress in Fluid Dynamics and Controls communities
@ Farrell & loannou
@ Henningson & Co. @ KTH
@ Rowley & Co. @ Princeton
@ Gayme, Doyle, Papachristodoulou & Mckeon @ Caltech

@ Jovanovic & Co. @ Minnesotta
Viscoelastic turbulence
Vibrational Control with Wall Oscillations

FLow CONTROL remains
@ an under-explored field
@ with many high-payoff possibilities
» Flow and separation control

» Control of MHD instabilities (in plasmas and liquid metals)
» Thermoacoustics
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Recap

| SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems

| SOME COMMON THEMES EMERGE

® The use of system norms and responses
® [ arge-scale & Regular Networks —» Asymptotic statements (in system size)
® Network topology imposes asymptotic “hard performance limits”
® [ arge-scale (even linear) systems exhibit some surprising phenomena
e This is a very rich area with many remaining
- fascinating questions, unsolved problems
- research problems yet to be properly formulated
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Collaborators

@ M. Jovanovic @ M. Dahleh

@ D. Gayme o P. Mitra

@ S. Patterson @ P Voulgaris

@ J.C. Doyle @ F. Paganini

@ B. Mckeon @ M.A. Dahleh
Support:

W W
Energy, Power & Adaptive Systems Program (ECCS) Dynamics & Control Program

Control Systems (CMMI)

Physics of Living Systems (PHY)

ACC, June 2014
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