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Networked/Cooperative/Distributed Control

aircraft formation flight formation flight in nature large telescope arrays

robotic networks flocks & swarms automated highways

An area rich in deep and interesting problems
Rapidly evolving
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Networked vs. Distributed Parameter Systems

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems
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Networked vs. Distributed Parameter Systems

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems

CORRESPONDENCES (Physics/Numerical Analysis perspective)

discrete space described by graph structure continuum space

Rn

differential equations
over large graphs

Numerical Methods
 �����������
�����������!
Continuum Models

Partial Differential
Equations
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Networked vs. Distributed Parameter Systems

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems

ANALOGY WITH TEMPORAL SYSTEMS (Systems & Controls perspective)

discrete space described by graph structure continuum space

Rn

discrete-time
system

tt continuous-time
system

tt

UNIFYING PERSPECTIVE: Spatio-temporal systems over discrete or continuum space
- Signals over continuous and/or discrete time and space

- Investigate systems properties (e.g. system norms & responses)
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Outline

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems

LOOK AT SPECIFIC PROBLEMS

� Vehicular Strings and Consensus

� Structured Control Design

� Flow Turbulence & Control

� Spatio-temporal

Impulse Responses Frequency Responses
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Outline

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems

SOME COMMON THEMES EMERGE

• The use of system norms and responses

• Large-scale (even linear) systems exhibit some surprising phenomena

• Large-scale & Regular Networks �! Asymptotic statements (in system size)

• Network topology imposes asymptotic “hard performance limits”
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VEHICULAR STRINGS (PLATOONS)

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems

LOOK AT SPECIFIC PROBLEMS

� Vehicular Strings and Consensus

� Structured Control Design

� Flow Turbulence & Control

� Spatio-temporal

Impulse Responses Frequency Responses
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Vehicular Platoons

Automated control of each vehicle, tight spacing at highway speeds

v̄�

Is it enough to look at neighbors? Should information be
broadcast to all?
How does performance scale with size?
Are there any fundamental limitations?

A fundamentally difficult problem (scales badly with size)
due to the network topology
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Vehicular Platoons (setting)

p̈k = uk + wk

" "
control disturbance

wk

pkpk�1 pk+1

Desired trajectory: p̄k := v̄t + k� constant velocity
Deviations:

p̃k := pk � p̄k, ṽk := ṗk � v̄

Controls:
u = Kp̃ + Fṽ

Closed loop:

d
dt


˙̃p
˙̃v

�
=


0 I
K F

� 
p̃
ṽ

�
+


0

I

�
w

K, F: matrix feedback gains (look like “Laplacians” ⇡ 2nd order consensus)
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Relative vs. Absolute Feedback

position feedback velocity feedback

# #
u = K p̃ + F ṽ

(pk � po)

(pk+1 � pk)

leader

absolute coordinate frame carried by leader

uk = K+ (pk+1

� pk ��) + K� (pk � pk�1

��) +
F+ (vk+1

� vk) + F� (vk � vk�1

) +

Ko (pk � (vt + �k)) +
Fo (vk � v̄)

RELATIVE MEASUREMENTS:

I Requires ranging devices , row_sums(K) = 0

row_sums(F) = 0

ABSOLUTE MEASUREMENTS:
I Position: Requires knowing position relative to leader
I Velocity: Requires measurement of own velocity
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Disorder Phenomenon in Platoons (w. only relative meas.)

Globally stable formation, but exhibits “accordion-like” large-scale modes

Time trajectories of vehicles’ positions relative to leader (bird’s-eye view )
100 vehicles

-A large formation in a thunderstorm
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Disorder Phenomenon in Platoons (w. only relative meas.)

Zoomed in (small-scale) behavior

Seems well regulated. No collisions.
Unrelated to “string instability”. A different phenomenon.

ECC, June 2014 12 / 48



Disorder Phenomenon in Platoons (w. only relative meas.)

String instability? Let disturbances enter only at lead vehicle

2

Only first vehicle subject to stochastic disturbance (N = 100)
xn(t) xn(t)

2

Only first vehicle subject to stochastic disturbance (N = 100)
xn(t) xn(t)

Unrelated to string instability!
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Disorder Phenomenon in Platoons (w. only relative meas.)

String instability? Let disturbances enter only at lead vehicle

2

Only first vehicle subject to stochastic disturbance (N = 100)
xn(t) xn(t)

2

Only first vehicle subject to stochastic disturbance (N = 100)
xn(t) xn(t)

temporally high frequency disturbances well regulated
temporally low frequency disturbances penetrate further into formation
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Disorder Phenomenon in Platoons (w. only relative meas.)

Globally stable formation, but exhibits “accordion-like” large-scale modes

This motion dominated by

• Temporally slow modes
• Large spatial scales

�
“Global” modes
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Vehicular Platoons (Optimal LQR)

Is this due to bad design, or is it inherent to this problem?
Note: Also occurs in LQR controllers that yield “localized” feedbacks

I Original formulations:
F Athans & Levine ’66
F Melzer & Kuo ’70

I Reexamined as N �! 1
F Jovanovic & Bamieh, TAC ’05
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Vehicular Platoons (Optimal LQR)

Centralized LQR design (Melzer & Kuo ’70, Athans & Levine ’66)


˙̃x
˙̃v

�
=


0 I
0 0

� 
x̃
ṽ

�
+


0

I

�
w,

J =

Z 1

0

X

k

⇣
q

1

(x̃k � x̃k�1

)2 + q
2

ṽ2

k + u2

k

⌘

Feedback gains are
“localized”:

Inherent Localization: Bamieh et. al, TAC ’02, Motee et. al. ’07
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Vehicular Platoons (Optimal LQR)

Closed loop eigenvalues of optimal LQR feedback

neutrally stable “mean mode” at
�

1

= 0 does not effect stability
however, it attracts an
unbounded number of
eigenvalues as N ! 1

Not string instability! Long wavelength modes are problematic
This system’s modes: long spatial wavelength $ slow temporal scale
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Vehicular Platoons LQR (infinite limit)
“Infinity is a convenient approximation to a large number” -Anonymous

Infinite platoon �! Spatially invariant �! Transform analysis


˙̃pk
˙̃vk

�
=


0 1

0 0

� 
p̃k
ṽk

�
+


0

1

�
uk, k 2 Z

J =

Z 1

0

X

k2Z

⇣
q p̃2

k + (p̃k � p̃k�1

)2 + ṽ2

k + u2

k

⌘
dt

Resulting closed loop spectra

M. JOVANOVIĆ, UMN 13

"
 ̇

n

�̇
n

#
=


0 1
0 0

� 
 

n

�
n

�
+


0
1

�
u

n

, n 2 Z

J :=
1
2

Z �

0

�

n2Z

�
q 2

n

(t) + ( 
n

(t) �  
n�1(t))2 + �2

n

(t) + u2
n

(t)
�

dt

CLOSED-LOOP SPECTRUM:
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However: adding absolute penalty qp̃2

k yields non-local optimal feedback
Jovanovic & Bamieh, TAC ’05
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Disorder and Feedback “Granularity”

Disturbances are spatially white
(contain all spatial wavelengths)

System Dynamics
(local)

Network Feedback
(local)

disturbances
(multi-scale)

responses
(large-scale)

Intuition:
I Local feedback can only suppress short-scale disturbances
I Local feedback ineffective against

large-scale (& slow) disturbances
I Looks like global feedback is needed for global regulation
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Disorder and Feedback “Granularity”

Disturbances are spatially white
(contain all spatial wavelengths)

System Dynamics
(local)

Network Feedback
(local)

disturbances
(multi-scale)

responses
(large-scale)

Intuition:
I Local feedback can only suppress short-scale disturbances
I Local feedback ineffective against

large-scale (& slow) disturbances
I Looks like global feedback is needed for global regulation

Surprise: In higher spatial dimensions:
Local feedback CAN suppress large-scale disturbances

cf. Harmonic Solids
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Statistical Mechanics of Harmonic Solids

Harmonic solid: A d-dimensional lattice of masses and springs
Q: Can short range interaction lead to long range order?

“short range interaction” ! local feedback
“long range order” ! tightness of formation

Studied using long range correlations

for d = 1, 2 short range interactions) no long range order
for d � 3 long range order possible!
i.e., solids can only exist in d � 3
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Statistical Mechanics of Harmonic Solids

Harmonic solid: A d-dimensional lattice of masses and springs
Q: Can short range interaction lead to long range order?

“short range interaction” ! local feedback
“long range order” ! tightness of formation

Studied using long range correlations

for d = 1, 2 short range interactions) no long range order
for d � 3 long range order possible!
i.e., solids can only exist in d � 3

Similar dimentional-dependencies occur in networked control systems?
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Comparison between 1D and (semi)2D cases
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Related Concepts

Optimal Performance of Distributed Estimation
(Barooah, Hespanha)

Effective Resistance in a Resistor Network
(Lovisari, Garin, Zampieri, Carli)

Global Mean First Passage Time of Simple Random Walk
Wiener Index for Molecules

Common mathematical problem: calculate sums like (cont. time)

X

n6=1

1

�n

�n: eigenvalues of a graph Laplacian
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Performance Limitations of Formations in d Dimensions

Setting:

N = Md vehicles arranged in d-dimensional torus Zd
M

Desired trajectory: p̄k := vt + k� constant speed & heading

Structural Constraints

Spatial Invariance:
State-feedbacks K and F are spatial-convolution operators

Locality: K(k
1

,...,kd) = 0, if for any i 2 {1, . . . , d}, |ki| > q

feedback from local neighbors only
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Performance Measures

Two measures of “disorder”
I Microscopic: local position deviation var (pk+1

� pk ��)

(pN � p1)

(pk+1 � pk)

I Macroscopic: long range deviation var (pN � p
1

��N)

or var

�
p̃k � 1

N

P
l p̃l

�

All above obtained asymptotically (as N ! 1) from H2 norm calculations
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Asymptotic Performance Lower Bounds
Tori networks, network size = N, spatial dimension = d, control effort = E{u2

k}  U

Feedback Type Microscopic Disorder Macroscopic Disorder

1st order consensus 1

U
1

U

8
<

:

N d = 1

log(N) d = 2

1 d � 3

absolute position
& absolute velocity

1

U
1

U

relative position
& absolute velocity

1

U
1

U

8
<

:

N d = 1

log(N) d = 2

1 d � 3

relative position
& relative velocity

1

U2

8
<

:

N d = 1

log(N) d = 2

1 d � 3

1

U2

8
>>>><

>>>>:

N3 d = 1

N d = 2

N1/3 d = 3

log(N) d = 4

1 d � 5

“Coherence in Large-Scale Networks: Dimension-Dependent Limitations of Local Feedback”

BB, Jovanovic, Mitra, Patterson TAC, 2012
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Implications for Vehicular Platoons

Feedback Type Microscopic Disorder Macroscopic Disorder

1st order consensus 1

U
1

U

8
<

:

N d = 1

log(N) d = 2

1 d � 3

absolute position
& absolute velocity

1

U
1

U

relative position
& absolute velocity

1

U
1

U

8
<

:

N d = 1

log(N) d = 2

1 d � 3

relative position
& relative velocity

1

U2

8
<

:

N d = 1

log(N) d = 2

1 d � 3

1

U2

8
>>>><

>>>>:

N3 d = 1

N d = 2

N1/3 d = 3

log(N) d = 4

1 d � 5

Using only local feedback:
cannot have 1 dimensional, large and yet coherent formations!
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Role of Node Dynamics

Each node a chain of n integrators
Controllers use local static state feedback

Z

Z

Ck�1

Z

Z

wk

Ck

Z

Z

Ck+1

ukuk�1 uk+1

performance objective

wk+1wk�1

Critical dimension needed for global coherence = 2n + 1

Tradeoff between network connectivity and node memory
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Spatial Dimension as Proxy for Network Connectivity
Convergence Time

1/�
2

N2 N N2/3 N2/d

dimension
d-dimensional

Torus (Lattice)

d = 1 d = 2 d = 3 (d � 4)

macroscopic

disorder
1

N

X

n 6=1

1/�n

1

st-order consensus

N log(N) bounded bounded

Node degree does not quantify this phenomenon

e.g. compare with

Note: 1

N

X

n 6=1

1/�n scales differently from 1/�
2

ECC, June 2014 26 / 48



Spatial Dimension as Proxy for Network Connectivity
Convergence Time

1/�
2

N2 N N2/3 N2/d

dimension
d-dimensional

Torus (Lattice)

d = 1 d = 2 d = 3 (d � 4)

macroscopic

disorder
1

N

X

n 6=1

1/�n

1

st-order consensus

N log(N) bounded bounded

Node degree does not quantify this phenomenon

e.g. compare with

Note: 1

N

X

n 6=1

1/�n scales differently from 1/�
2

ECC, June 2014 26 / 48



Coherence Analysis in General Graphs?

For general graphs, what is the corresponding notion of “spatial dimension”?

(opte.org)

The Hausdorff dimension of a fractal graph does not fully characterize coherence
Patterson,BB, ’11 CDC

Open question: a purely topological measure of coherence for general graphs
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Further Questions

Can more general control laws break these limitations?
I Spatially varying control gains?
I Nonlinear feedback?
I Dynamic feedback?
I Asymmetric feedback?

F Improves scaling of eigenvalues as N ! 1
Barooah, Mehta, Hespanha, Hao

F but causes exponential growth (as N ! 1) of system norms!!
Tangerman, Veerman, Stosic

Herman, Martinec, Hurak
F eigenvalues do not describe “true” system behavior

Must have global feedback to address coherence problem
I Vulnerability to errors in global feedback (as N !1)?
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Swarms and Flocks in Nature

1d 2d 3d

Network dimensionality determines coherence of motion?
Starling Flocks: Young, Scardovi, Cavagna, Giardina, Leonard, ’13, PLOS CB
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AC Power Networks
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Phase Synchronization in AC Networks

rotating
machine k  

phase
angle

�k

Machines “tug” on each other to achieve phase synchrony
Linearized dynamics (swing equations) similar to vehicle formations

d
dt


✓
!

�
=


0 I

�LB ��I

� 
✓
!

�
+


0

I

�
w

Electrical power flows back and forth as a signaling mechanism
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A Thought Experiment: Network with Identical Generators

Assume identical generators but general topology

d
dt


✓
!

�
=


0 I

�LB ��I

� 
✓
!

�
+


0

I

�
w

y =
⇥

C
1

0

⇤

Resistive power loss over (i, k) link P̃lossik = gik |✓i � ✓k|2

Total resistive losses P̃loss = y⇤y

C⇤
1

C
1

:= LG,

Notes
I Network Admittance Matrix: Y = Re{Y} + jIm{Y} =: LG + jLB
I Linearized dynamics
I Keep only quadratic part of loss term

I Model too simple? Note: Modeling best case scenario, no instabilities
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Calculating the H2 Norm

Assumption: LG is a multiple of LB

↵ :=
gik

bik
=

rik

xik
= ratio of line resistance to reactance

Then total resistive power loss

E{y⇤y} =
↵

�
(N � 1)

N: Network Size
Total resistive losses are Independent of the network topology!!
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Implications

Compare: vs.

less coherent < more coherent
larger phase fluctuations > small phase fluctuations
less links < more links
Resistive losses = Resistive losses

A fundamental limitation, independent of network topology
A consequence of using electrical power flows as the signaling mechanism!

“The Price of Synchrony”, BB, Gayme, ’13, ACC

Losses proportional to network size N

What if N ⇡ millions in a future highly-distributed-generation smart grid??

Another argument for a communications layer in the smart grid

ACC, June 2014 36 / 49



Implications

Compare: vs.

less coherent < more coherent
larger phase fluctuations > small phase fluctuations
less links < more links
Resistive losses = Resistive losses

A fundamental limitation, independent of network topology
A consequence of using electrical power flows as the signaling mechanism!

“The Price of Synchrony”, BB, Gayme, ’13, ACC

Losses proportional to network size N

What if N ⇡ millions in a future highly-distributed-generation smart grid??

Another argument for a communications layer in the smart grid

ACC, June 2014 36 / 49



STRUCTURED, DISTRIBUTED CONTROL DESIGN

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems

LOOK AT SPECIFIC PROBLEMS

� Vehicular Strings and Consensus

� Structured Control Design

� Flow Turbulence & Control

� Spatio-temporal

Impulse Responses Frequency Responses
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Distributed Control Systems Design

Controller Architecture: Constraints on controller information flow
Controller Layer

Plant Layer

ẋk = f(xk, up, uc)

Optimal Constrained Controller Design
I In general: difficult, non-convex, non-scalable
I Some Exceptions:

F Partially Nested Info. Structure, Funnel Causality, Quadratic Invariance
F Sparsity Promoting (`1-regularized) designs

I Often possible to propose (non-optimal), scalable algorithms that “work”
F e.g. Consensus-like algorithms (cf. multi-agent systems)

Q: Why care about optimality?
Quantify fundamental limitations-of-performance due to network topology?

akin to those due to RHP poles/zeros
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Why care about difficult optimal/robust control problems?

Optimality gives Best Achievable Limits of performance
I e.g. a plant G with a RHP pole p and zero z

inf

C stabilizing

��(1 + PC)�1

��
1 =

|z + p|
|z� p| .

rear-steering bike:

Bicycle Dynamics and Control, K.J. Åstrom
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Why care about difficult optimal/robust control problems?

Optimality gives Best Achievable Limits of performance
I e.g. a plant G with a RHP pole p and zero z

inf

C stabilizing

��(1 + PC)�1

��
1 =

|z + p|
|z� p| .

I If z 6= p, system is both controllable/observable, the rank tests

rank

⇥
B AB · · · A

n�1

B

⇤
rank

⇥
C; CA; · · · ; CA

n�1

⇤

give a deceptive answer! (especially for large-scale systems!)

Grammians �! better measures of
approximate Controllability/Observability
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Why care about difficult optimal/robust control problems?

Optimality gives Best Achievable Limits of performance
I e.g. a plant G with a RHP pole p and zero z

inf

C stabilizing

��(1 + PC)�1

��
1 =

|z + p|
|z� p| .

I Optimal/Robust Control is useful to
design/characterize a good plant, not just controller design!

A point recognized in 80’s-90’s, but has not made it into networks literature
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Why care about difficult optimal/robust control problems?

Optimality gives Best Achievable Limits of performance
I e.g. a plant G with a RHP pole p and zero z

inf

C stabilizing

��(1 + PC)�1

��
1 =

|z + p|
|z� p| .

I Optimal/Robust Control is useful to
design/characterize a good plant, not just controller design!

A point recognized in 80’s-90’s, but has not made it into networks literature

I Use
inf

C stabilizing

C structured

kF(G; C)k

to measure approximate network controllability/observability
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Case Study: Vehicular Formations

Vehicular string control with only local (no leader) information

wk

pkpk�1 pk+1

w

0
0

Corresponds to banded controller structure
This exact problem is non-convex for any fixed N (currently unsolved)
as N ! 1
can find lower bounds (hard performance limits) as function of topology!

The platoons problem is fundamentally difficult because of the 1d topology
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Structured Optimal Control in the Limit of Large System Size

The problem inf

C structured

kF(G; C)k

I very difficult for finite N
I may admit simple answers as N !1
I cf. Statistical Mechanics

Use structured Robust/Optimal control problems
not to design network controllers, but to quantify limits of performance

Implications:
I In engineered systems: allows for selection of network structures
I In natural systems (e.g. biological):

may explain naturally evolved network structures
I Quantify network controllability/observability
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FLOW TURBULENCE & CONTROL

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems

LOOK AT SPECIFIC PROBLEMS

� Vehicular Strings and Consensus

� Structured Control Design

� Flow Turbulence & Control

� Spatio-temporal

Impulse Responses Frequency Responses
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Turbulence in Streamlined Flows (Boundary Layers)

Flow direction

boundary layer turbulence side view top view

skin-friction drag: laminar vs. turbulent

Streamlining a vehicle reduces form drag
Still stuck with: Skin-Friction Drag (higher in Turbulent BL than in Laminar BL)

Same in pipe flows (increases required pumping power)
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Flow direction

boundary layer turbulence side view top view

Laminar Boundary Layer Turbulent Boundary Layer

skin-friction drag: laminar vs. turbulent

Streamlining a vehicle reduces form drag
Still stuck with: Skin-Friction Drag (higher in Turbulent BL than in Laminar BL)
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Control of Boundary Layer Turbulence

in nature: “passive” control active control with
sensor/actuator arrays

z }| {

flow direction 

rigid base

flexible membrane
flow

corrugated skin compliant skin

Intuition: must have ability to actuate at spatial scale comparable to flow structures

spatial-bandwidth of controller � plant’s bandwidth

Caveat: Plant’s dynamics are not well understood

obstacles
⇢

not only device technology
also: dynamical modeling and control design
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Mathematical Modeling of Transition: Hydrodynamic Stability
The Navier-Stokes (NS) equations:

@tu = �ruu� grad p + 1

R�u
0 = div u

x

y

z

u
v

w

Hydrodynamic Stability: view NS as a dynamical system

laminar flow ūR := a stationary solution of the NS equations (an equilibrium)
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The Navier-Stokes (NS) equations:

@tu = �ruu� grad p + 1

R�u
0 = div u

x

y

z

u
v

w

Hydrodynamic Stability: view NS as a dynamical system

laminar flow ūR := a stationary solution of the NS equations (an equilibrium)

laminar flow ūR stable  !
i.c. u(0) 6= ūR,

u(t) t!1�! ūR

I typically done with dynamics linearized about ūR

I various methods to track further “non-linear behavior”

u(0)u(t)

ūR
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Mathematical Modeling of Transition: Hydrodynamic Stability
The Navier-Stokes (NS) equations:

@tu = �ruu� grad p + 1

R�u
0 = div u

x

y

z

u
v

w

Hydrodynamic Stability: view NS as a dynamical system

A very successful (phenomenologically predictive) approach for many decades

However: it fails badly in the special (but important) case of streamlined flows
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Mathematical Modeling of Transition: Adding Signal Uncertainty

Decompose the fields as u = ūR + ũ
" "

laminar fluctuations
Fluctuation dynamics: In linear hydrodynamic stability, � rũũ is ignored

@tũ = �rūR ũ � rũūR � grad p̃ + 1

R�ũ � rũũ + d
0 = div ũ

I a time-varying exogenous disturbance field d (e.g. random body forces)

NSR

(spatio-temporal system)

d ũ

rũũ

+

Input-Output view of the Linearized NS Equations

Jovanovic, BB, ’05 JFM
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Input-Output Analysis of the Linearized NS Equations

@t


�ṽ
!̃

�
=


U00@x � U�@x +

1

R�
2

0

�U0@z �U@x +
1

R�

� 
ṽ
!̃

�
+


�@xy @2

x + @2

z �@zy
@z 0 �@x

� " dx
dy
dz

#
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ṽ
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5 =
⇣
@2

x + @2

z

⌘�1

"
@xy �@z
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x + @2

z 0

@zy @x

# 
ṽ
!̃

�
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z

u
v

w
NSR

(spatio-temporal system)

d ũ

@t = A  + B d
ũ = C  
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Input-Output Analysis of the Linearized NS Equations
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NSR

(spatio-temporal system)

d ũ

@t = A  + B d
ũ = C  

eigs (A): determine stability
(standard technique in Linear Hydrodynamic Stability)

Transfer Function d �! ũ: determines response to disturbances✓
uncommon in Fluid Mechanics

an “open system”

◆
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Input-Output Analysis of the Linearized NS Equations
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
�ṽ
!̃

�
=


U00@x � U�@x +

1

R�
2

0

�U0@z �U@x +
1

R�

� 
ṽ
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(spatio-temporal system)

d ũ

@t = A  + B d
ũ = C  

Surprises:
Even when A is stable the gain d �! ũ can be very large

( (H2 norm)2 scales with R3)

Input-output resonances very different from least-damped modes of A
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Modal vs. Input-Output Response

Typically: underdamped poles ! frequency response peaks

cf. The “rubber sheet analogy”:
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Modal vs. Input-Output Response

However: Pole Locations = Frequency Response Peaks
Theorem: Given any desired pole locations

z
1

, . . . , zn 2 C� (LHP),

and any stable frequency response H(j!), arbitrarily close
approximation is achievable with

������
H(s) �

0

@
N

1X

i=1

↵
1,i

(s � z
1

)i
+ · · · +

NnX

i=1

↵n,i

(s � zn)i

1

A

������
H2

 ✏

by choosing any of the Nk ’s large enough

jω

|H (jω)|

σ
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Modal vs. Input-Output Response

However: Pole Locations = Frequency Response Peaks
Theorem: Given any desired pole locations

z
1

, . . . , zn 2 C� (LHP),

and any stable frequency response H(j!), arbitrarily close
approximation is achievable with

������
H(s) �

0

@
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↵
1,i

(s � z
1

)i
+ · · · +

NnX

i=1

↵n,i

(s � zn)i

1

A

������
H2

 ✏

by choosing any of the Nk ’s large enough

jω

|H (jω)|

σ

Remarks:
No necessary relation between pole locations and system resonances
( ✏ ! 0 ) Nk ! 1), i.e. this is a large-scale systems phenomenon
Large-scale systems: IO behavior not always predictable from modal behavior
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Modal vs. Input-Output Response

However: Pole Locations = Frequency Response Peaks

MIMO case: H(s) = (sI � A)�1

If A is normal (has orthogonal eigenvectors), then

�
max

⇣
(j!I � A)�1

⌘
=

1

distance (j!, nearest pole)

If A is non-normal : no clear relation between
singular value plot = eigs(A)
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Spatio-temporal Impulse and Frequency Responses

Translation invariance in x & z implies

x

y

z

u
v

wImpulse Response (Green’s Function)

ũ(t, x, y, z) =

Z
G(t � ⌧, x � ⇠, y,y’ , z � ⇣) d(⌧, ⇠, y0, ⇣) d⌧d⇠dy0d⇣

ũ(t, x, ., z) =

Z
G(t � ⌧, x � ⇠, z � ⇣) d(⌧, ⇠, ., ⇣) d⌧d⇠d⇣

G(t, x, z) : Operator-valued impulse response

Frequency Response

ũ(!, kx, kz) = G(!, kx, kz) d(!, kx, kz)

G(!, kx, kz) : Operator-valued frequency response (Packs lots of information!)

Spectrum of A:

�(A) =
[

kx,kz

�
⇣
Â(kx, kz)

⌘
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Modal vs. Input-Output Analysis

x

y

z

u
v

w
NSR

(spatio-temporal system)

d ũ
@t = A  + B d

ũ = C  
IR: G(t, x, z)

FR: G(!, kx, kz)
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Modal vs. Input-Output Analysis

x

y

z

u
v

w
NSR

(spatio-temporal system)

d ũ
@t = A  + B d

ũ = C  
IR: G(t, x, z)

FR: G(!, kx, kz)

Modal Analysis: Look for unstable eigs of A
⇣S

kx,kz
�
⇣
Â(kx, kz)

⌘⌘

Flow type Classical linear theory Rc Experimental Rc

Channel Flow 5772 ⇡ 1,000-2,000
Plane Couette 1 ⇡ 350
Pipe Flow 1 ⇡ 2,200-100,000
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Modal vs. Input-Output Analysis

x

y

z

u
v

w
NSR

(spatio-temporal system)

d ũ
@t = A  + B d

ũ = C  
IR: G(t, x, z)

FR: G(!, kx, kz)

Modal Analysis: Look for unstable eigs of A
⇣S

kx,kz
�
⇣
Â(kx, kz)

⌘⌘

Channel Flow @ R = 2000, kx = 1, (kz = vertical dimension):

top view
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Modal vs. Input-Output Analysis

x

y

z

u
v

w
NSR

(spatio-temporal system)

d ũ
@t = A  + B d

ũ = C  
IR: G(t, x, z)

FR: G(!, kx, kz)

Modal Analysis: Look for unstable eigs of A
⇣S

kx,kz
�
⇣
Â(kx, kz)

⌘⌘

Channel Flow @ R = 6000, kx = 1, kz = 0:

Flow structure of corresponding eigenfunction:
Tollmein-Schlichting (TS) waves
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Modal vs. Input-Output Analysis

x

y

z

u
v

w
NSR

(spatio-temporal system)

d ũ
@t = A  + B d

ũ = C  
IR: G(t, x, y, �1, z)

FR: G(!, kx, kz)

Impulse Response Analysis: Channel Flow @ R = 2000

similar to “turbulent spots”
Jovanovic, BB, ’01 ACC,

more movies and pics at http://engineering.ucsb.edu/~bamieh/pics/impulse_page.html
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Spatio-temporal Frequency Response

G(!, kx, kz) is a LARGE object! (very “data rich”! )

one visualization method: sup! �
max

⇣
G(!, kx, kz)

⌘

Jovanovic, BB, ’05 JFM

What do the corresponding flow structures look like?
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Spatio-temporal Frequency Response

G(!, kx, kz) is a LARGE object! (very “data rich”! )

one visualization method: sup! �
max

⇣
G(!, kx, kz)

⌘

What do the corresponding flow structures look like?

Figure 1: Singular values of Ĥ at {kx = 0.01, kz = 1.67, ! = �0.0066}, and {kx = 0.1, kz = 2.12, ! =
�0.066}, in Poiseuille flow with R = 2000.

Figure 2: Streamwise velocity perturbation development for largest singular value (left) and second largest
singular value (right) of operator Ĥ at {kx = 0.01, kz = 1.67, ! = �0.0066}, in Poiseuille flow with R = 2000.
High speed streaks are represented by red color, and low speed streaks are represented by green color.
Isosurfaces are taken at ±0.5.

Figure 3: Streamwise velocity perturbation development for largest singular value (first row) and second
largest singular value (second row) of operator Ĥ at {kx = 0.1, kz = 2.12, ! = �0.066}, in Poiseuille flow
with R = 2000. High speed streaks are represented by red color, and low speed streaks are represented by
green color. Isosurfaces are taken at ±0.5.

3

23

streamwise velocity isosurfaces Figure 8: Streamwise vorticity perturbation development for largest singular value of operator Ĥ at {kx =
0.1, kz = 2.12, ! = �0.066}, in Poiseuille flow with R = 2000. High vorticity regions are represented by
yellow color, and low vorticity regions are represented by blue color. Isosurfaces are taken at ±0.4.

Figure 9: Streamwise vorticity perturbation development for second largest singular value of operator Ĥ at
{kx = 0.1, kz = 2.12, ! = �0.066}, in Poiseuille flow with R = 2000. High vorticity regions are represented
by yellow color, and low vorticity regions are represented by blue color. Isosurfaces are taken at ±0.8.

6

24

streamwise vorticity isosurfaces
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Spatio-temporal Frequency Response

G(!, kx, kz) is a LARGE object! (very “data rich”! )

one visualization method: sup! �
max

⇣
G(!, kx, kz)

⌘

What do the corresponding flow structures look like?
much closer (than TS waves) to structures seen in turbulent boundary layers
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Spatio-temporal Frequency Response

How to view of G(!, kx, kz) ?

bring rũũ back in through IQCs?

NSR

(spatio-temporal system)

d ũ

rũũ

+
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Flow Control

Some recent related progress in Fluid Dynamics and Controls communities
Farrell & Ioannou
Henningson & Co. @ KTH
Rowley & Co. @ Princeton
Gayme, Doyle, Papachristodoulou & Mckeon @ Caltech
Jovanovic & Co. @ Minnesotta

Viscoelastic turbulence
Vibrational Control with Wall Oscillations

FLOW CONTROL remains
an under-explored field
with many high-payoff possibilities

I Flow and separation control
I Control of MHD instabilities (in plasmas and liquid metals)
I Thermoacoustics
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Recap

SPATIALLY DISTRIBUTED SYSTEMS

Networked/Cooperative/Distributed Control Distributed Parameter Systems

SOME COMMON THEMES EMERGE

• The use of system norms and responses

• Large-scale & Regular Networks �! Asymptotic statements (in system size)

• Network topology imposes asymptotic “hard performance limits”

• Large-scale (even linear) systems exhibit some surprising phenomena

• This is a very rich area with many remaining
- fascinating questions, unsolved problems
- research problems yet to be properly formulated
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