The structure of optimal distributed controllers

What you get for free, and what you can impose
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The Setting
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e The Plant has spatially distributed dynamics
@ The controller also has spatially distributed dynamics

, DISC, June *09 slide 2/7



The Setting

~ — e —
p— — ~
— = -
== "
—
':‘\'4—*'

e The Plant has spatially distributed dynamics
@ The controller also has spatially distributed dynamics

e For a given plant structure,
what’s the inherent structure of the Centralized Controller?

e |f we want to constrain the controller’s architecture,
what type of constraints lead to tractable problems?
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WE WILL TAKE A BROAD VIEW OF spatially distributed dynamics

e Systems described by Partial Differential Equations (PDES)
Continuous Space

e Dynamical systems over lattices and graphs
Discrete Space
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WE WILL TAKE A BROAD VIEW OF spatially distributed dynamics

e Systems described by Partial Differential Equations (PDES)
Continuous Space

e Dynamical systems over lattices and graphs
Discrete Space

Look for “interesting” special structures

More detailed results

Special structure — { Insight
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WE WILL TAKE A BROAD VIEW OF spatially distributed dynamics

e Systems described by Partial Differential Equations (PDES)
Continuous Space

e Dynamical systems over lattices and graphs
Discrete Space

Look for “interesting” special structures Structure 4
generality \%
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Result's utility
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WE WILL TAKE A BROAD VIEW OF spatially distributed dynamics

e Systems described by Partial Differential Equations (PDES)
Continuous Space

e Dynamical systems over lattices and graphs
Discrete Space

Look for “interesting” special structures Structure 4
generality \%
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Part |

What you get for free:

The inherent structure of the centralized controller for
spatially distributed plants
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Outline

Examples

Vehicular Platoons
Heat Equation with Distributed Control

Spatially-Invariant Plants
Optimal Controllers are Inherently Spatially Invariant
Optimal Centralized Controllers are Inherently Localized

Spatially-Varying Plants

Localized Plants over Arbitrary Networks
Notions of Distance and Spatial Decay

Central LQR Controllers are Inherently Localized
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Vehicular Platoons
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Objective: Design a controller for each vehicle to:

e Maintain constant small slot length L.

e Reject the effect of disturbances {w;} (wind gusts, road conditions, etc...)
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Objective: Design a controller for each vehicle to:

e Maintain constant small slot length L.

e Reject the effect of disturbances {w;} (wind gusts, road conditions, etc...)

Warning: Designs based on two vehicle models may lack “string stability”,
l.e. disturbances get amplified as they propagate through the platoon.



Vehicular Platoons
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Objective: Design a controller for each vehicle to:

e Maintain constant small slot length L.
e Reject the effect of disturbances {w;} (wind gusts, road conditions, etc...)

Warning: Designs based on two vehicle models may lack “string stability”,
l.e. disturbances get amplified as they propagate through the platoon.

Problem Structure:

e Actuators: each vehicle’s throttle input.

e Sensors: position and velocity of each vehicle.



Vehicular Platoons Set-up

x;. ©'th vehicle’s position.

W1 w, _wnq _wo
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1.4 = Iy

L2 4 = Xy



Vehicular Platoons (Optimal LQR)
Centralized LQR design (Melzer & Kuo °70, Athans & Levine '66)
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Vehicular Platoons Set-up

x;. ©'th vehicle’s position.

W1 wy Wy W
1 1 1 1
i o—o] Lio—o| Llo—-o] [jo——o]
r, = ZCi—ZBi_l—L—C
- - T5_ 75 T T
B = @ 1 0 1 2
572,7; = Ziz
Structure of generalized plant:
o y _
Hy1 Hio 0
H — p— e, hO
Hoy  Hao X .
B 0 i H

The generalized plant has a Toeplitz structure!
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Optimal Controller for Vehicular Platoon

| controller gains for a 50 vehicle platoon
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Position error feedback gains for a 50 vehicle platoon

Figure 1

Remarks

is approxima

e For large platoons, optimal controller

e Optimal centralized controller has some inherent decentralization (“localization”)

Controller gains decay away from the diagonal
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Optimal Controller for Vehicular Platoon

| controller gains for a 50 vehicle platoon

Ima

Centralized H? opt
Shu and Bamieh ’96)

Example
(From

Position error feedback gains for a 50 vehicle platoon

Figure 1

Remarks

is approxima

e For large platoons, optimal controller

e Optimal centralized controller has some inherent decentralization (“localization”)

Controller gains decay away from the diagonal

Il “such” problems

N a

Do the above 2 results occur
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Simple Example; Distributed LQR Control of Heat Equation

2

s, 0 d - A
aw(x,t) =55 (x,t) + u(x,t) — Ew()\,t) = —cA*P(A\ 1) + (A 1)

Solve the LQR problem with Q = ¢qI, R = I. The corresponding ARE family:
—2cX? p(A) — p(A)* + ¢ =0,

and the positive solution is:

PA) = —cA? + V2 +q.

Remark: In general P()\) an irrational function of ), even if A(\), B(\) are rational.
i.e. PDE systems have optimal feedbacks which are not PDE operators.

Let {k(x)} be the inverse Fourier transform of the function {—p(\)}.

26



Then optimal (temporally static) feedback

u(z,t) = / k(e — £) (6, 1) de

-k(x)

/.-

Remark: The “spread” of {k(x)} indicates information required from distant sensors.

27



Distributed LQR Control of Heat Equation (Cont.)

Important Observation: {k(z)} is “localized”. It decays exponentially!!

A

EO) = eX? — /M +q.



Distributed LQR Control of Heat Equation (Cont.)

Important Observation: {k(z)} is “localized”. It decays exponentially!!

A

EO) = eX? — /M +q.

This can be analytically extended by: \

l%e(s) — 5% — \/c2s* + g,

which is analytic in the strip

{s cC; Im{s} < g (q)i}

/

(32
Therefore: 3M such that

k(z)| < Me =l forany a < =R
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Distributed LQR Control of Heat Equation (Cont.)

Important Observation: {k(z)} is “localized”. It decays exponentially!!

A

EO) = eX? — /M +q.

This can be analytically extended by: \ /
1

ko(s) = s — \/e2s% + ¢, (4)*

which is analytic in the strip

{SE(C; Im{s}<£<g)

=

2 \c2

Therefore: 3M such that

k(z)] < Me=@l®l forany o < =R

2

\@(q)%.

This results is true in general: under mild conditions
Solutions of AREs always inverse transform to exponentially decaying convolution
kernels

28
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Examples
Vehicular Platoons
Heat Equation with Distributed Control

Spatially-Invariant Plants
Optimal Controllers are Inherently Spatially Invariant

Optimal Centralized Controllers are Inherently Localized
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Distributed Systems with Special Structure

e General Infinite-dimensional Systems Theory

— Well posedness issues (semi-group theory)
— Constructive (convergent) approximation techniques
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— Regular (lattice) arrangement of devices
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Distributed Systems with Special Structure

e General Infinite-dimensional Systems Theory

— Well posedness issues (semi-group theory)
— Constructive (convergent) approximation techniques

THEME: Make infinite-dimensional problems look like finite-dimensional ones

e Special Structure

— Distributed control and measurement (now more feasible)
— Regular (lattice) arrangement of devices

Together = Spatial Invariance

— Control of “Vehicular Strings”, (Melzer & Kuo, 71)

— Discretized PDEs, (Brockett, Willems, Krishnaprasd, El-Sayed, 74, ’81)
— “Systems over rings”, (Kamen, Khargonekar, Sontag, Tannenbaum, ...)
— Systems with “Dynamical Symmetry”, (Fagniani & Willems)

More recently:

— Controller architecture and localization, (Bamieh, Paganini, Dahleh)
— LMI techniques, localization, (D’Andrea, Dullerud, Lall)



System Representations

All signals are spatio-temporal, e.g. u(x,t), ¥(x,t), y(z,t), etc.
Spatially distributed inputs, states, and outputs

e State space description

%@b(x,t) = Avy(xz,t) + Bu(x,t)
y(x,t) = Cy(x,t) + D u(z,t)

A, B,C, D translation invariant operators
—  gpatially invariant system

e Spatio-temporal impulse response h(z,t)
yat) = [ [ ha-gt—r) (e drde

e [ransfer function description

Y(k,w) = H(k,w) U(k,w)



Spatio-temporal Impulse Response
Spatio-temporal impulse response h(z,t)

y(x,t) = //h(:z:—ﬁ,t—T) u(é, ) dr d,

Interpretation
h(x,t): effect of input on output a distance = away and time ¢ later

Example: Constant maximum speed of effects

/T ="vyx
/
/

. {
< ! /
|
|
|
|
|



Example: Distributed Control of the Heat Equation

Y-1 Yo Y1 Y2
s Yl Y Yl A
] ] ] ] ]
u;: iInput to heating elements. y;. signal from temperature sensor.
Dynamics are given by:
Y1 H_ 19 U_1
Yo = Ho_1 Hopo Hoa Ui
Y1 Hi o U

Each H, ; is an infinite-dimensional SISO system.

Fact: Dynamics are spatially invariant = H is Toeplitz

The input-output relation can be written as a convolution over the actuator/sensor
index:

Yi = Z I:I(z'—j) Uy,

j=—00




The limit of large actuator sensor array:

0 i -
a—zf(x,t) = ca—;g(x,t) + u(z,t) Yy = /_OO Hpy— ¢ ucdc,



Spatial Invariance of Dynamics

Indexing of actuator and sensor signals:

uz(t) — U(iq,..., (t) yz(t) = Y(iq,...,in) (t)

i := (41,...,1,) aspatial multi-index, 1 €G = Gy X ... X Gy



Spatial Invariance of Dynamics

Indexing of actuator and sensor signals:

wi(t) = Ugy,...in) (1), Yi(t) = Y(iy,....in) (1)
i := (41,...,1,) aspatial multi-index, 1 €G = Gy X ... X Gy
Linear input-output relations: A general linear system from u to y:

Yi = ZHi,j Uiy, = Y(ig,in) = Z Z Hiy i), G1enin) B(1enin)

7j€G J1€Gq In€Gn



Spatial Invariance of Dynamics

Indexing of actuator and sensor signals:

uz(t) — U(iq,..., (t) yl(t) = Y(iq,...,in) (t)
i := (41,...,1,) aspatial multi-index, 1 €G = Gy X ... X Gy
Linear input-output relations: A general linear system from u to y:
ZHW U < Y(iq,ein) — Z Z H(’L1 ----- in),(J15e-0dn) W(itsenin)?
jeG J1€Gq In€Gn

Spatial Invariance:

Assumption 1: Set of spatial indices = commutative group

G = Gy x ... x Gy, each G; a commutative group.
Remark: “spatial shifting” of signals

(Sow); = Ui_g Compare with: Time shiftby  (S,u)(t) := u(t — 1)
Assumption 2: Spatial invariance «— Commute with spatial shifts

VOEGJ HSO':SO'H <~ Sa_lHSG:

12



Examples of Spatial Invariance

Generally: Spatial invariance easily ascertained from basic physical symmetry!

e Vehicular platoons: signals index over Z.



Examples of Spatial Invariance

Generally: Spatial invariance easily ascertained from basic physical symmetry!

e Vehicular platoons: signals index over Z.

e Channel flow: Signals indexed over {0,1} x Z :

vy = Y Hucoi—p uoy + . Hu—1i—j) v, l

j=—o00 j=—00

0,1.




Examples of Spatial Invariance

Generally: Spatial invariance easily ascertained from basic physical symmetry!

e Vehicular platoons: signals index over Z.

e Channel flow: Signals indexed over {0,1} x Z :

voy = D, Ho—oi-puey + D Huvimpuay, 1= 0L
j=—o00 j=—00
A
AT

Remark: The input-output mapping of a spatially invariant system can be rewritten:

Yi = Zéi—j Ujy = Y(ig,ein) — Z Z é(il—jl ..... in—"7dn) W(j1,e-rdn)

jGG j1€G1 anGn
A spatial convolution

13



Symmetry in Dynamical Systems and Control Design

e Many-body systems always have some inherent dynamical symmetries:
e.g. equations of motion are invariant to certain coordinate transformations

e Question: Given an unstable dynamical system with a certain symmetry,
is it possible to stabilize it with a controller that has the same symmetry?
(i.e. without “breaking the symmetry”)

e Answer: Yes! (Fagnani & Willems '93)



Symmetry in Dynamical Systems and Control Design

e Many-body systems always have some inherent dynamical symmetries:
e.g. equations of motion are invariant to certain coordinate transformations

e Question: Given an unstable dynamical system with a certain symmetry,
is it possible to stabilize it with a controller that has the same symmetry?
(i.e. without “breaking the symmetry”)

e Answer: Yes! (Fagnani & Willems '93)

Remark: Spatial invariance is a dynamical symmetry
This answer applies to optimal design as well

l.e.
For best achievable performance, need only consider spatially-invariant controllers

14



The Standard Problem of Optimal and Robust Control

Z w
The standard problem: 7

Signal norms: y[

wllp = 3 [ fworde = 3l

i€G i€G z = F(H,C)w




The Standard Problem of Optimal and Robust Control

The standard problem:
Signal norms:

fwlz = 3 / wi®Pdt = 3 Jwl?

1€G 1e€G
Induced system norms:

|F(G, Cllps = sup e

werP 1wl
The H? norm:

IF@G.ONFe = ll=l3 = ) llzil 7o,

1€G

with impulsive disturbance input w;(t) =

5(1)(t).

Z

a




The Standard Problem of Optimal and Robust Control

The standard problem:
Signal norms:

fwlz = 3 / wi®Pdt = 3 Jwl?

1€G 1e€G
Induced system norms:

|F(G,O)lps = sup 12

werP 1wl
The H? norm:

IF@G, O3z = 1215 = ) lzill72
1€G

with impulsive disturbance input w;(t) =

5(1)(t).

Note: In the platoon problem: finite system norm

z w
H
ey
C

z = F(H,C)w

string stability.

15



Spatially-Invariant vs. Spatially-Varying Controllers

Question: Are spatially-varying controllers better than spatially-invariant ones?
Answer: If plant is spatially invariant, no!



Spatially-Invariant vs. Spatially-Varying Controllers

Question: Are spatially-varying controllers better than spatially-invariant ones?
Answer: If plant is spatially invariant, no!

LSI := The class of Linear Spatially-Invariant systems.
LSV := The class of Linear Spatially-Varying systems.
Compare the two problems:

Vi = inf  [F(G,O)llp— Yoo = inf  ||F(G,O)p—s
stabilizing C stabilizing C'
C e LSI C e LSV
The best achievable performance The best achievable performance
with spatially-invariant controllers with spatially-varying controllers

Theorem 1. [f the plant and performance objectives are spatially invariant, i.e. if
the generalized plant G is spatially invariant, then the best achievable performance
can be approached with a spatially invariant controller. More precisely

Vsi = Vsw-

16



Spatially-Invariant vs. Spatially-Varying Controllers (Cont.)

Related Problem: Time-Varying vs. Time-Invariant Controllers

Fact: For time-invariant plants, time-varying controllers offer no advantage over time-
invariant ones! for norm minimization problems

Proofs based on use of YJBK parameterization. Convert to

Yii pp— 1nf HTl — TQQTBH Ytv = mf HTl — TQQT3|| )
stable @) stable @)
QeLTl QeLTV

Ty1,T5, T3 determined by plant, therefore time invariant.



Spatially-Invariant vs. Spatially-Varying Controllers (Cont.)

Related Problem: Time-Varying vs. Time-Invariant Controllers

Fact: For time-invariant plants, time-varying controllers offer no advantage over time-
invariant ones! for norm minimization problems

Proofs based on use of YJBK parameterization. Convert to

Yii pp— mf HTl — TQQT3H Ytv = mf HTl — TQQT3|| )
stable @) stable @)
QeLTl QeLTV

Ty1,T5, T3 determined by plant, therefore time invariant.

e The H™> case: (Feintuch & Francis, ’85), (Khargonekar, Poolla, & Tannenbaum,
'85). A consequence of Nehari’s theorem

e The ¢! case: (Shamma & Dahleh, '91). Using an averaging technique
e Any induced /P norm: (Chapellat & Dahleh, ’92). Generalization of the averaging

technique

17



Spatially-Invariant vs. Spatially-Varying Controllers (Cont.)

Idea of proof: After YJBK parameterization:
Ysi e 1Ilf HTl — TQQTgH Z Ysv e 1Ilf HTl — TQQTgH
stable () stable ()
Q< LSI Q € LSV

Let Q achieve a performance level 7 = ||T} — ToQT3]].



Spatially-Invariant vs. Spatially-Varying Controllers (Cont.)

Idea of proof: After YJBK parameterization:
Ysi e 1Ilf HTl — TQQTgH Z Ysv e 1Ilf HTl — TQQTgH
stable () stable ()
Q< LSI Q € LSV

Let Q achieve a performance level 4 = ||T} — T2QT3||.
Averaging Q:

o If G is finite: define

Qup := 5 Z o 'Qo. — Q.. is spatially invariant, i.e. Yo € G, 6 'Qup o = Quo
‘ ‘ ceG
Then
1T — ToQu 3|l = ||T1 — ( Za_lQa) ;|| = 20_1 T — ThQTs) o
UEG JEG

|o7t (1 - Q1) 0| = |17 - TQT|
oceG

18



e If G is infinite, take a sequence of finite subsets M; C M, C -- -, with U M, =G

Then define: @, =

1
|

M Z 0_1Q0.

oceMy

(.. converges weak x to a spatially-invariant @), with the required norm bound.

19



Implications of the Structure of Spatial Invariance

Poiseuille flow stabilization:

C_o

C .

Y—1 Yo Y1 Y2

Uy




Implications of the Structure of Spatial Invariance

Poiseuille flow stabilization:

C_o

ce ‘ (/1_1
(/11 (/Yo

Q A A A

Y—1 Yo Y1 Y2

Uo Uy

Channel



Implications of the Structure of Spatial Invariance (Cont.)

Uneven distribution of sensors and actuators
Consider the following geometry of sensors and actuators:

e Sensor
s Actuator
o o
° [} ° ° [ | L
| [ ° | ([ oo °
rrrrrr ) H A o [ [
mE e 5 HE o o
° ] ° [ [ ] [
@ @

What kind of spatial invariance do optimal controllers have?

22



Implications of the Structure of Spatial Invariance (Cont.)

Uneven distribution of sensors and actuators (Cont.)
Consider the following geometry of sensors and actuators:

e Sensor

= Actuator

Each “cell”’ is a 1-input, 2-output system. underlying group is Z x Z

23



Transform Methods

Consider the following PDE with distributed control:

0
a—f(ml,...,xn,t) — A(agl,...,8§n> Y(x1, ..., Tn,t) + 8(821,...,82n) U(x1, ..., Ty, t)

Y(x1, ..y Ty, t) = C(821,...,8§n>w(xl,...,xn,t),

where A, B,C are matrices of polynomials in a?;--

Consider also combined PDE difference equations such as:
0 \
%(wl,...,xm,kl,...,kn,t) — .A(a‘zl,...,agn,zfl,...,zgl) Y(xy,. .., xn, k1, ...k, t

0 o 1 —1
+ B(aml,...,axn,zl ey 2 )u(xl,...,xn,kl,...,kn,t)

We only require that the spatial variables x, k, belong to a commutative group
Taking the Fourier transform:

d(A 1) = / eI ) d,
G

24



The above system equations become:

di)
E(Av t)

g\ 1)

A

AN YN t) + B(A)a(At)

A

C(A) (A ),

where ) € G, the dual group to G.

Remark: This can be thought of as a parameterized family of finite-dimensional

systems.

25



BLOCK DIAGONALIZATION BY FOURIER TRANSFORMS

The Fourier transform converts:

spatially-invariant operators on £y(G) — multiplication operators on £,(G)
In general:
group: G | dual group: G | Transform
R R Fourier Transform
Z oD Z-Transform
oD Z Fourier Series
Lo, L, Discrete Fourier Transform

and the transforms preserve £, norms:

112 = /G f(@)Pda = /G FOOPdr = 112



BLOCK DIAGONALIZATION BY FOURIER TRANSFORMS

The Fourier transform converts:

spatially-invariant operators on £y(G) — multiplication operators on EQ(@)
In general:
group: G | dual group: G | Transform
R R Fourier Transform
7. oD Z-Transform
oD 7 Fourier Series
Lo, L, Discrete Fourier Transform

and the transforms preserve £, norms:

um&aéumewiémew=wma

The system operation is then spatially decoupled or “block diagonalized”:

9y(x,t) = Ad(z,t)+ Bulz,t) Lh(nt) = AN 1) + BV, 1)
y(z,t) = C(a,t)+ D u(z,t) A1) = COVDA ) + D(Na(At)
A distributed, A parameterized family

spatially-invariant system of finite-dimensional systems

11



TRANSFORM METHODS

dt

_wn —
Yn =

In physical space

A, x, + B, *u,
Cn* Yy

After spatial Fourier trans. (FT)

() ¥(0) + B(6) u(0)
"



TRANSFORM METHODS

In physical space
d
Ewn = An*wn + Bn*un
Yn = Cn* ¢n

IMPLICATIONS

e Dynamics are decoupled by FT

After spatial Fourier trans. (FT)

() ¥(0) + B(6) u(0)
"

B, C operators are “diagonalized”)



TRANSFORM METHODS

In physical space

%wn = An*wn + Bn*un
Yn = Cn* ¢n

IMPLICATIONS
e Dynamics are decoupled by FT

e Quadratic forms preserved by FT

After spatial Fourier trans. (FT)

() ¥(0) + B(6) u(0)
"

(The A, B, C operators are “diagonalized”)

Quadratically optimal control
problems are equivalent for FT



TRANSFORM METHODS

In physical space After spatial Fourier trans. (FT)
d d - 2o &\
—Un = Auxty + Buxu, () = A(0) v(0) + B(9) u(6)
yn = Chx Uy §(8) = C(8) ¥(9)
IMPLICATIONS
e Dynamics are decoupled by FT (The A, B, C operators are “diagonalized”)

Quadratically optimal control

e Quadratic forms preserved by FT SIS are Uil e [T

e Yields a parametrized family of mutually independent problems



TRANSFORM METHODS

In physical space After spatial Fourier trans. (FT)
d d - Ao ~
yn = Chx Uy §(8) = C(8) ¥(9)
IMPLICATIONS
e Dynamics are decoupled by FT (The A, B, C operators are “diagonalized”)
e Quadratic forms preserved by FT — Quadratically optimal - control

problems are equivalent for FT
e Yields a parametrized family of mutually independent problems

TRANSFER FUNCTIONS

operator-valued transfer function spatio-temporal transfer function

H(s) = C(sI— A)'B H(s,8) = C(6) (51—A<9>) B(6)



TRANSFORM METHODS

In physical space After spatial Fourier trans. (FT)
d d - Ao ~
yn = Chx Uy §(8) = C(8) ¥(9)
IMPLICATIONS
e Dynamics are decoupled by FT (The A, B, C operators are “diagonalized”)
e Quadratic forms preserved by FT — Quadratically optimal - control

problems are equivalent for FT
e Yields a parametrized family of mutually independent problems

TRANSFER FUNCTIONS

operator-valued transfer function spatio-temporal transfer function

H(s) = C(sI— A)'B H(s,8) = C(6) (51—A<9>) B(6)

A multi-dimensional system with temporal, but not spatial causality

12



M. JovaNovIC, UCSB

Optimal Control of Infinite Platoons
i GOOD APPROXIMATION OF LARGE BUT FINITE PLATOONS

i 1 | | |
| | | : :
L____., L___.., L___..,. L___..,. |____+

Lo, U L1, U Lo, Up 4 (A | sy

MAIN IDEA: EXPLOIT SPATIAL INVARIANCE

[H = Lo s ] [ e wez

LA: < lSPATIAL Zp-TRANSFORM

2] =0T a] e [mese<n

1= NOT STABILIZABLE ATH = 0




Parameterized ARE solutions yield “localized” operators!

Consider unbounded domains, i.e. G = R (or Z).
Theorem 2. Consider the parameterized family of Riccati equations:

A* (NP + PVAN) — PO)BROW)B* (VPO + Q) = 0, Ae G

Under mild conditions:
there exists an analytic continuation P(s) of P()\) in a region

{[Im(s)| < a}, a>0.

Convolution kernel resulting from Parameterized ARE has exponential decay.
That is, they have some degree of inherent decentralization (“localization”)!



Parameterized ARE solutions yield “localized” operators!

Consider unbounded domains, i.e. G = R (or Z).
Theorem 2. Consider the parameterized family of Riccati equations:

A* (NP + PVAN) — PO)BROW)B* (VPO + Q) = 0, Ae G

Under mild conditions:
there exists an analytic continuation P(s) of P()\) in a region

{[Im(s)| < a}, a>0.

Convolution kernel resulting from Parameterized ARE has exponential decay.
That is, they have some degree of inherent decentralization (“localization”)!

Comparison:

e Modal truncation: In the transform domain, ARE solutions decay algebraically.

e Spatial truncation: In the spatial domain, convolution kernel of ARE solution
decays exponentially.

Therefore: Use transform domain to design V. Approximate in the spatial domain!
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DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

EXAMPLE: one dimensional array of systems indexed in Z.

A A e
\LI L] \LI I_I\

T_
L] \IJ L]
\ cell#—l\ cell#O\ cell#l\ cell#2\

Y, the state of the system in the n’th cell total state: {..., ¥ 1,4, 91, ...}




DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

EXAMPLE: one dimensional array of systems indexed in Z.

u_2\ Y1 u_1\ Yo Uo\ Y1 u\ 2 u\
VTV MV P
CT\0 I\ CJ7{0 IO CJ]
\ cell#—l\ cell #0 \ cell #1 \ cell#2\
Y, the state of the system in the n’th cell total state: {..., ¥ 1,4, 91, ...}

d

Yn = ZO’FL m¢n



DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

EXAMPLE: one dimensional array of systems indexed in Z.

u_2\ Y1 u_1\ Yo Uo\ Y1 u\ 2 u\
VTV MV P
CT\0 I\ CJ7{0 IO CJ]
\ cell#—l\ cell #0 \ cell #1 \ cell#2\
Y, the state of the system in the n’th cell total state: {..., ¥ 1,4, 91, ...}

d

Yn = ZO’FL m¢n
L

Ewn - An*wn + Bn*un

Yn = Cn* wn



DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

—>

4 A, / A, /

U_s Y-

U—1

Yo

Uy W 2w Yo U

N I U I U O

Observer based controller has the following structure:

Plant
d
Ewn - An*wn + Bn*un
Yn — Cn* ¢n

Controller
u = K;*1,
d -~ -
Ewn - An*wn + Bn*un

+ Ln* (yn - gn)



DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

—>

/

U—2

Y-

U—1

Yo

Uo

n "

Y2

Uz

N I U I U O

Observer based controller has the following structure:

Plant

%% - An*wn =+ Bn*un

Yn = Cn* ¢n

REMARKS:

Controller

u = K;*1,
@bn — An*f&n + Bn*un

+ Ln* (yn - gn)

e Optimal Controller is “locally” finite dimensional.



DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

—>

4 A / A [ A / A /

usg |V usy (Y fue [P [P |

N I U I U O

Observer based controller has the following structure:

Plant Controller
d Ui = Kz’*l@z’
W ¥n — An n Bn n d - N
i’ X Yo+ Boxu & = Ak, + B, xu,
Yn = Cn x % dt

+ Ln * (yn T gn)
REMARKS:
e Optimal Controller is “locally” finite dimensional.

e The gains { K}, {L;} are localized (exponentially decaying) — “spatial truncation”



DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

—>

4 A / A [ A / A /

U_s Y-1 Uy Yo u, Y1 2w Y2 U

N I U I U O

Observer based controller has the following structure:

Plant Controller
d u = K;*1,
W ¥n — An n Bn n d - N
i’ X Yo+ Boxu & = Ak, + B, xu,
Yn = Cn* % dt

+ Ln * (yn T gn)
REMARKS:
e Optimal Controller is “locally” finite dimensional.

e The gains { K}, {L;} are localized (exponentially decaying) — “spatial truncation”

e After truncation, local controller need only receive information from neighboring
subsystems.



DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

—>

4 A / A [ A / A /

U_s Y1 Uy Yo u, W 2w Yo U

N I U I U O

Observer based controller has the following structure:

Plant Controller
d u = K;*1,
W ¥n — An n Bn n d - N
dtw *w " i —% — An*wn -+ Bn*un
Yn = Cn x % dt

+ Ln * (yn T gn)
REMARKS:
e Optimal Controller is “locally” finite dimensional.

e The gains { K}, {L;} are localized (exponentially decaying) — “spatial truncation”

e After truncation, local controller need only receive information from neighboring
subsystems.

e Quadratically optimal controllers are inherently distributed and semi-decentralized
(localized)



Outline

Examples
Vehicular Platoons
Heat Equation with Distributed Control

Spatially-Invariant Plants
Optimal Controllers are Inherently Spatially Invariant
Optimal Centralized Controllers are Inherently Localized

Spatially-Varying Plants

Localized Plants over Arbitrary Networks
Notions of Distance and Spatial Decay

Central LQR Controllers are Inherently Localized
PhD Thesis of Nader Motee
Motee & Jadbabaie, Optimal control of spatially distributed systems
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Spatially Distributed Dynamical Systems

e Engineered systems involve finite number of subsystems.

e Infinite-dimensional abstractions allows for a precise
mathematical Analysis.

® Qur focus will be on spatially distributed linear systems:

oy N
P08 = (46,1 + (Bu)(i,t)
y(3,1) (CY)(5,t) + (Du)(i,t)/

-

W, u,y : state, input, and output variables
i : spatial variable
t : temporal variable

A, B, C, D : infinite-dimensional matrices



Spatially Distributed Dynamical Systems

e Spatially decaying (SD) matrices

e Infinite-dimensional matrices:

A= (a;;) =

e Banach spaces:

Uy

-~

N

d
T
Y

Bu

Ay

Ce -

- Du

~

/

1
{z : |lz|lp < oo} where |z|lp = (Z’-’fi‘p>p

a; j—1

A,B,C,DZ€2—>£2

aj—1,j
A1,
i+1,5

i j+1

/

1

3



Spatially Decaying (SD) Operators

e In many applications the corresponding matrices are spatially decaying:

A = (a;;)

@il ;]
5 - distance(l,j) s
Xa(@) = (1 + [2)® xa(@) =" 0<p<i

- Spatially Decaying (SD) matrices |




Optimal Control of Spatially Decaying Systems

Structural Properties of Spatially Decaying Systems:

0 (%, QY) + (u, Ru)dt

minimize
K

/OO N

d
subject to: £@b = Ay 4+ Bu

" v = A /

Assume that the corresponding LQR problem is optimizable and
exponentially detectable. If A, B, @, R are spatially decaying (SD),
then K is also SD.



Locality Features of the Optimal Controller
o The state feedback K = (Kj;) is

lim K dis(z,7)) =0
s I Xa(dis(s 1)

Coupling function

| K | K|

jll

0 i 0

Xa(z) = (1 + |2))° xa(z) =’ o<p<a



Coupling function
e Properties of a coupling characteristic function:

e xa(0)=1 forall a>0 and xo(z)=1 for all = > 0.
o Continuous and nondecreasing in z.

o Xo(+Y) < Xal(®) Xaly) (submultiplicative)

Examples:

e Sub-exponential: xa(z) = el o<p<t
e Polynomial: xa(z) = (1 + |z))°

e Logarithm: xa(z) = (log(e-l- |93|)>a

e Product of coupling functions, e.g. xa(z) = ea’|$|ﬁ(1 + |z|)®



Subspace of Spatially Decaying Operators

e Consider the following subspace of infinite-dimensional matrices:

S2(%) ={A : ||All- < oo}

e An operator norm can be defined:

l14llo: = max (‘sup 3~ llagi xa(dis(k, ), sup Y- llaylxa(dis(k, )
i Lok

e Structure of this subspace:

((822(), |Il.IID forms a Banach Algebra, )
IABI|| < [||All [||B]l]

\for all A, B € §°(%). y




Banach Algebra of Spatially Decaying Operators

[(530(%”)7 II.1I) forms a Banach Algebra }

o Properties: For all A, B € 8°(%¥), it follows

o Closed under addition: A + B € S2°(%)
o Closed under multiplication: AB € S2°(%)

o Closed under inversion: A= € §°(%)

o Convergence of Cauchy sequences

10



Spectral Properties of SD operators

Assume that Y. satisfies

lim Xa(nx)% =1

n—oo

and the weak growth condition

Xa(z) > C(1+ |z])° for some 0 < § < 1.
Then

[ The spectral radius w.r.t. the Banach Algebra = ps_(A) = pe,(A) = ||A||2,2}

for all A= A" € §>°. Consequently,
0'830 (A) = O'gg(A).
forall A € &.

11



Applications of the Spectral Properties

Assume that A = A* € S° is the infinitesimal generator of ¢
c g

and 4! is exponentially stable. Then

lletllla < C e
for some C,u > 0.
e The result holds for any exponentially stable semigroup.

e The unique solution of the Lyapunov equation is SD:

P(t)¢ = /O t e 5QeA5 bds

Form a Cauchy sequence

At

12



Simulations

100 | T T T =] . : ;
oo o | © ., ¢+ * - oeicv Systems marked by “*’:

0] PSSR T Do SRR - LA S W errses et L % ...... SRR F o -
. @ o 11 0
I R—— ....... s é ....... L v o ...... O** ................ o B Akk — [ 1 2 ] , Bk = [ 1 ]

T e pr e e . ........... Do _*_ ............... e G o

o * ke JVOR T Systems marked by ‘o’:

ED—Q-C@ ........ ............... C‘o*._*, ......... ................ .............. * ......... " .*-‘ ............... ............. ol

. R ] - . T b s et 2 1 0
IR I R L L R e A’“’“zll —3]"8%:[1]

: e ) : : Y1 : e : *
o} : : # : o] i : ; ]
AT RN SRRTERR s .......... 'D....:, ............... OGO@ ................ _ff' ............. ..... : o

i - __________ o _______________ _______________ _______________ * ______________ ________________ ..... P Coupling matrix:
o * _______ **o _____________ ________________ . G _______________ _______________ _______________ ________________ ______________ ) 1 [1 O]

| . L + g 2 r Ap; =
A I%. SO b ________________ LT S S, - T S I & xa(dis(k,i)) | O 1

® COUp'Gd systems: .CUk = Akk Tl + Bkk uk—l— Z Akz x; , N =200
1=1

® In quadratic cost functional, the weighting matrices are defined as:

-1 if i~y

dy; if i=j5 k=1

(graph Laplacian) @;; = {



Exponentially Decaying Couplings

GO
amk Subsystem Mo 1
LY
L B S
aiilh
i I h [T e e e | L | 1 | L 1 [
] 10 20 30 40 a0 =] 70 oo =] 1a0
16+
iy [ Subsystem Mo, 2
ALY
ar \‘
— oy,
) o |ﬁ' P o ol i i ] ) Nl | AL i |
=2 0 10 20 30 a0 &0 B0 70 80 90 100
M =]
40 Subsystern Mo, 3
Y
20 -
-
o [l e o 15 | L I | L i 1
] 10 20 30 40 =] =] 70 oo a0 1a0
=]
kb Subsystern Mo, 4
N
20 ‘ Y
oo,
o | ||| ruTlTHrn-.m-—_l_ s | e ) L
] 10 20 30 40 =] GO 70
Distance

e The coupling function is Xxa(z) = ™" where a = 0.1823

o Optimal state-feedback: up = Ky z + > Ki; x;
i~k



Algebraically Decaying Couplings

40

201

| Kkl

40

20

40

20F

Subsgystem Mo 1 -

LY
s
||| L o L | L L L L | 1
10 20 30 40 A0 <] | a0 a0 ]
T I | Bl
Subsystem Mo, 2
LY
LY 5
[N
| hhhhh mnl I B ) el AL | aH 1 |
10 20 30 40 a0 B0 70 80 an 100
T T T T
- Subsystemn No. 3 i
\ —
B oy
[ oy | L L L e =] 1
10 20 30 40 50 =] 70 an a0 100
T T
Subsystern Mo, 4 7
LY
LY —
= o
‘ T ot o o e o i a l 1 I L
0 10 20 30 40 ] [ah] 70
Distance

e [Ihe coupling function is y,(z) = (1 4+ 0.12)“ where o =4

o Optimal state-feedback: wup = Ky zp + > Ky x;

ik
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Nearest Neighbor Couplings

L Subsystem Mo, 1 |
20 —_——— 'y
1
=1D r 1 -
8 LUl
U Y 1 1 | J | L i | 1
e 0 10 20 30 40 a0 =] 70 20 o0 100
(5]
©
b 3
T
g 2F Subsystern Mo, 2 -
L
0 el -
S | ]
- i | .U.' A . = | | 2L | il | s
S O 10 20 a0 40 50 G0 70 &0 50 100
E
i T
D551 -
i Subsystermn Mo, 3
1
10+ I -
] ‘|| lIJ PR, ot L | ] L | i {1 | 3
0 10 20 a0 40 50 =] 70 g0 a0 100
T e e ]
1 Subsystemn Mo, 4
1
10 | e
0 | ‘ | L|L| ] 1 =) o ] A !
0 10 20 30 40 a0 8] 70
Distance

O 0.5
0 otherwise

0.5 O : : :
e The coupling is defined as [A]y; = [ ] if  dis(k,4) < 10

o Optimal state-feedback: up = Ky =1 + > Ky x;
ik



Spatial Truncation vs. Performance Loss

Performance Loss Percentange %

[K]y;  if  dis(k,i) <T

® Spatial truncation of the optimal controller: [K7]x; = { 0 it dis(k,i) > T

Z ] ................... ................... .................... .................... ................... .................. _

SUORL, — e e m e Sensmemsenes e = s .

Algebraica | decay
! ! !
i
5 B 7 g 9 10 1 12

Truncation Length {T)

® Performance criteria:

Trace(Py) — Trace(P)

e Stabilizing truncation length:
® Exp. decaying: Ts = 7.9785
o Algeb. decaying: 75 = 2.9603

® Nearest Neighbor: Ts = 15.0934

x 100

Trace(P)

where  (A+BKp)*Pr+Pr(A+BKp)+Q+KHRKp = 0

20



Part |l

What you can impose

Architectural constraints that lead to convex
optimal control problems

, DISC, June *09 slide 6/7



Outline

Controller Constraints that L.ead to Convex Problems
The YJBK Parameterization

Funnel Causality

, DISC, June *09 slide 7/7



Controller Architecture

Centralized vs. Decentralized control: An old and difficult problem



CENTRALIZED:

Go Gq G

FULLY DECENTRALIZED:

. 1 Go G1 Go |~
K, K Ko
LOCALIZED:

. 1 Go G1 Go |~

BEST PERFORMANCE
EXCESSIVE COMMUNICATION

WORST PERFORMANCE
NO COMMUNICATION

MANY POSSIBLE ARCHITECTURES



Reasoning with the YJBK Parameterization
Let G be a stable MIMO plant
e All stabilizing controllers (Internal Model Control)

K = 01 + GQ)™' (Qstable

e If G and Q belong to a CLASS closed under
additions, multiplications, inversions
Then QO € CLASS & K € CLASS

, DISC, June *09 slide 8/8



Reasoning with the YJBK Parameterization
Let G be a stable MIMO plant
e All stabilizing controllers (Internal Model Control)

K = 01 + GQ)™' (Qstable

e If G and Q belong to a CLASS closed under
additions, multiplications, inversions
Then QO € CLASS & K € CLASS

e Optimal design becomes

inf |H — UQV||
o stable, opcCLASS

Convex CLASS = Convex problem
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Reasoning with the YJBK Parameterization
Let G be a stable MIMO plant
e All stabilizing controllers (Internal Model Control)

K = 01 + GQ)™' (Qstable

e If G and Q belong to a CLASS closed under
additions, multiplications, inversions
Then QO € CLASS & K € CLASS

e Optimal design becomes

inf |H — UQV||
o stable, opcCLASS

Convex CLASS = Convex problem
If G is unstable, use a factorization G = NM~', XM — YN =1
e All stabilizing controllers

K = (Y + MQ)(X + NQ)™' QO stable

, DISC, June *09 slide 8/8



Spatio-temporal Impulse Response
Spatio-temporal impulse response h(z,t)

y(x,t) = //h(:z:—ﬁ,t—T) u(é, ) dr d,

Interpretation
h(x,t): effect of input on output a distance = away and time ¢ later

Example: Constant maximum speed of effects

/T ="vyx
/
/

. {
< ! /
|
|
|
|
|



Funnel Causality

Def: A system is funnel-causal if impulse response h(.,.) satisfies

h(x,t) =0 for t< f(x),

where
() IS (1) non-negative
(2) £(0) =0
(3) {f(x), x>0} and {f(z), x <0} are concave
t t
h | A = —]
< | > =7 \\\ : -
D o t= f(2)
| \/
| X | T
(a) Cone causality (b) Funnel causality

i.e. supp (h) is a “funnel shaped” region



Funnel Causality (Cont.)

Properties of funnel causal systems

Let S be a funnel shaped set

e supp (h1) C Sy & supp (he) C Sy = supp (h1 + ha) C S¢
e supp (h1) C Sy & supp (he) C Sy = supp (h1*ha) C Sy

e (I+hy) texists & supp (k1) C Sy = supp((I+h1)"') C S

.e.

The class of funnel-causal systems is closed under
Parallel, Serial, & Feedback

interconnections



A Class of Convex Problems

e Given a plant G' with supp (G22) C Sy,

o Let Sy, be asetsuchthat Sy C Sy,
I.e. controller signals travel at least as fast as the plant’s

{4

> X

Solve

inf IF(G; K|, G

K stabilizing j u
supp (K) C Sy, L K

10



YJBK Parameterization and the Model Matching Problem
L, := class of linear systems w/ impulse response supported in S

o Let (Goo € Lfg
G2 = NM~1and XM — YN = I with N, M, X,Y € Ly, and stable

o Let ng C ka
e Then all stabilizing controllers K such that K € L;,_are given by

K = (Y + MQ)(X + NQ) ™,

where () is a stable system in Ly . i
e The problem becomes

inf ||H-UQV], A convex problem!
() stable

QELfk

11



Coprime Factorizations

Bezout identity: Find A" and L such that A + LC and A + BK stable

X v = _A}LC—IB g" Hﬂ - A+KBK 1}[3
: i - C 0 |
then G = NM~! and XM —-YN = 1,
" { o B, Ce' and Ce' B are funnel causal
e K and L are funnel causal (Easy!)
then all elements of Bezout identity are funnel-causal
A+ BK|B | AlB] - O

¢ |0 C|0
K |0 K I]0

12



Example: Wave Equations with Input

1-d wave equation, z € R: 07 P(x,t) = 0% (x,t) + u(zx,t)
v [ 0 I Y n 0 .
State space vo | | 202 0| | o I
representation b = [1 0] [ 31 ] |
i 2

The semigroup
G(x,t)

tA 1 [ Tct + T—ct %Rct ]

y B 5 Cﬁi Rct Tct + T—ct

R, := spatial convolution with rec(+z) «
T.; := translation by ct

X=—ct

all components are funnel causal oo

e.g. the impulse response h(z,t) = 5 rec(z).

13



Example: Wave Equations with Input (cont.)

x := spatial Fourier transform variable (“wave number”)
0 1 0
A+ BK = _—(32/{2 O]+[1][k1 kg}

B 0 1
- i —Czli2 -+ kl kg .

Set ki1 =0, then

0(A+BK) = U (/@Qi%\/kg—zlc%?) = B/@%/@] U (k2+JR)

kER

Similarly for A + LC. Therefore, choose e.g.

K=[0 -1], L:[_Ol].

14



Elements of the Bezout Identity are thus:

—1 1|0 -1
X -Y| = | —* 0 |-1 0 |,
—1({ 1 O
0 1]0]
M B —c?k? —11|1
N | 0 -—1]1
1 010
Equivalently
2 2. 2
M = sQS—i—:fcjfsQ’ X == _QF—I%SSJF—I—CCSKQ—H
N N Y - —C2I<{,2

s2 4+ s + ¢2k2)

15



How easily solvable are the resulting convex problems?

e In general, these convex problems are infinite dimensional
I.e. worse than standard half-plane causality

e In certain cases, problem similar in complexity to half-plane causality
e.g. H? with the causality structure below
(Voulgaris, Bianchini, Bamieh, SCL '03)

0000 00000
0000 00000
0000 00000
0000 00000
ONONON ® O OO
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Generalizations

e Quick generalizations:

— Several spatial dimensions
— Spatially-varying systems
funnel causality < non-decreasing speed with distance
— Use relative degree in place of time delay
e Quadratic Invariance (Rotkowitz, Lall)
e Arbitrary graphs (Rotkowitz, Cogill, Lall)

e How to solve the resulting convex problems

Related recent work:

e Anders Rantzer
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