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Linear Systems with Random Multiplicative Inputs

e System model
x(k+1) = Ax(k) + (81(6) Br + - + 6u(k) Ba) x(8)

{é1,...,0,} uncorrelated, zero-mean white processes
e Covariance of the state, P(k) = & {x(k)x"(k)}

P(k+1) = AP(K)A* + (alBlP(k)BT A oen 4 a,,B,,P(k)B;)
e Def: System is Mean Square Stable (MSS) if

lim P(k) = 0

k—o00
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Linear Systems with Random Multiplicative Inputs
Lyapunov-like, matrix recursion
P(k+1) = AP(Kk)A* + (alBlP(k)B’f oeen aanP(k)B;)
Pk+1) = A(Pk))

A is a matrix-valued operator on matrices

x A axar 4 (JlBIXBT 4ot anB,,XB;)

SYSTEM IS MSS IFF p(A) < 1
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Structured Uncertainty
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STRUCTURED UNCERTAINTY ANALYSIS:
Give stability conditions for uncertain system
in terms of M and bounds on §’s
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Stochastic Structured Uncertainty

e n = 1 (Single uncertainty)
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Lu & Skelton '02, Elia '05
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Consensus with Random Link Failures

Will formulate the problem of consensus with random link failures
so as to use these tools
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|
Distributed Average Consensus

@ Network Model

o Undirected, connected graph G = (V, E) with N nodes and M edges.
e Each link has independent probability p of failing in each round.

Patterson and Bamieh (Allerton 2008) June 1, 2009 2/1



|
Simple Averaging Protocol

In each round, each node sends equal fraction to each neighbor and keeps remaining
fraction for self

xi(k+1) =53 x(k)+ (1= BINi(k)])xi(k)

JEN;(K)
In a static network, dynamics can be represented by recursion equation
x(k + 1) = Ax(k)

where A =1 — BL. L is the Laplacian matrix of the graph.

e.g. 4 node ring network with § := %

A=

O WIHW|HW|—=
WIFWIFWI- O
WIFEWI= O Wl

Wik O WlFW—

Well known that convergence to xa.e is guaranteed if |A2(A)| < 1.
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System with Random A Matrix

Problem equivalent to
x(k+1) = A(k) x(k)

A(k) is a matrix-valued random variable

. DISC, June 09
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Convergence in Stochastic Networks

@ Some Related Work

o Convergence is guaranteed almost surely in random graphs
[Hatano and Mesbahi 2005, Porfiri and Stilwell 2007].

o [A2(E[A(K)])| < 1 is both a necessary and sufficient condition for
almost sure convergence in random networks
[Tahbaz-Salehi and Jadbabaie 2008].

@ Analysis based on ergodicity of sequence of A matrices.
o |A2(E[A(K)])| < 1 is sufficient condition for mean square convergence
[Kar and Moura 2007].
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Distributed Average Consensus in a Static Network

The dynamics of the system can be represented by recursion equation

z(k+1) = Ax(k)
1
In a 4 node ring network with ¢ := 3,
B
i1 o1
A=45 1 1 1
-
L3 0 5 3 _

B Well known that convergence depends on A\2(A)

¢ Convergence guaranteed if |A2(A)| < 1

€ In d-dimensional torus or d-lattice with N nodes
[Kranakis et al. 1994, Patterson et al. 2006, Carli et al. 2007]

L. 1
[A2(A)] =1 — ﬂNQ/d O(N4/d)
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Incorporating Communication Failures

B Consider the failure of edge (1,2) in a ring with § := %

z(k+1)

z (k)

O Wl—wIh O

Wi O O wlv

WlFW—W= O
WIFWI—~ O Wl

B Intuition: Perform protocol as if no failure occurred, then undo effects
across failed links.

% % 0 3 1 -1 0 0
x(k+1) 5 5 = 0 z(k) 1 -1 1 0 0 z(k)
=lo 1 1 1 T3 0 0 0 0
RS R 0 0 0 0
2 . L 3 3 3 4L . 2 4L .
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General Recursion Equation

General equation that includes failure of all links is

z(k+1) = Ax(k) + Z d¢i,5) (k)B,nx(k)

(1,J)eE

where 9, ;) is a Bernoulli random variable

1 with probability p¢; - : link has failed
0eig) (k) = { ° e

0 with probability (1 —p(. ;) : link is active
Rewrite recursion equation with zero-mean multiplicative noise

z(k+1) = <A+ > p(i,j)B(i,j)> z(k)+ Y py(k)Bu k)
(i,j)eE (i,j)€E(k)

where pi¢; iy(k) := 0¢; jy(k) — p(i 4) is zero-mean

A=A+, erPag) By is the mean (or expected) protocol matrx
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Defining Convergence

We measure how far the system is from consensus at x,,e with
deviation from average vector

(k) = xi(k)—%(xl(k)jt...jtazn(k))
B(k) = (I—%lf)x(k)

Autocorrelation of deviation from average

M (k) == E{3(k)3"* (k)} = (1 - %11*) E{z(k)z" (k)} (1 - 111*)

n

Goals:

B Determine conditions under which entries of M (k) converge to 0 as
k — oo
B Determine rate of convergence

CDC 2007 7/ 15



Analyzing Convergence

Dynamics obey Lyapunov-like recursion

M(k+1) = (I - l11*) A N (k) (I - l11*> A+ > ofi)BuyMKk)Bg,

n n
(i,j)€E
m Decay Factor - the factor by which entries of M (k) decay in each round

B Decay factor is largest eigenvalue of matrix-valued operator A

A 1 * |\ g 1 * |\ g 2
X — I - -11 A X I——11 A+ E B oy X By s
( n ) ( n ) T(i,5) P (4,5) (i,9)

(1,7)eE

m Ifp;;=0forall (i,j) € E

X — (I—lll*)AX<I—lll*)A
n n

Decay factor is Ao (A)?
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Computing the Decay Factor

Kronecker product of matrices C' and D

CllD ClnD
Crmxn Q@ Drxs =

| leD st CmnD

- mrXmns

Matrix equation of the form Y = C' X D can be rewritten as
vec(Y) = (C® D) vec(X)

¥ 1 *\ A A 1 * \ A 2 W
M(k+1) = (1— ~11 )A M (k) (1— ~11 )A+ > ol;.y By M (k) B j)

becomes

vec(M (k+1)) = (((1 — %11*) Z) ® ((1 — l11*> Z) + > 0By ® B@,j)) vec(M (k))

n
(1,J)€E
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Spectral Perturbation Analysis

For uniform link failure probability p

A(X) = (fl+pﬁﬁ> X (fl +pﬁ£) + (p—p") > Bujsy X Buy

(1,J)eE

where A = ( — %11*) A

A(p, X) = Ao(X) + pAi(X) + p> A2(X)

where
A(X) = AXA
A(X) = BLXA + BAXL + Z By X B
(i,J)EE
A:(X) = B°LXL — ) Buj X Buy
(i,j)eE
CDC 2007
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Perturbation Analysis

Let v be an eigenvalue of A(0, )

Power series expansion of « is

Y(p) =X+ cip + cap” + ...
where X is eigenvalue of Ay with eigenmatrix V' and

< VAL(V) >
<V, V>

Interested in largest eigenvalue of A up to first order in p

p(A) = p(Ao)+cip
B -0 < ww", A (ww®) >
N pA)” + < ww*, ww* > b
. — -~ — - 1 "
= MA)+ | 2X(A) - 2X(4)* + ol > (w'Buyw)® | p

where w is eigenvector corresponding to A(A) (Fiedler vector)
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Perturbation Analysis in Tori Networks

In a d-dimensional torus with /N nodes

X(A):1—ﬁ8ﬂ2 +O( 1)

N2/d N4/d

For d-dimensional tori with IV nodes, the first order expansion (in p) of decay factor

- - . 1 .
p(A) = XA)?+ | 2X(4) - 2X(A4)? + e > (w'Buyw)® | p
(i,j)eE
0
167 1
pA) = 1 = (=98 377 + 0 (5am)

For large network size, link failures reduce decay factor by (1 — p)

CDC 2007
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e —
Problem Reformulation

-1
%(k+1) = Ax(k) + > 6;(k)Bb;br%(k)

<

.
Il
o

@ ldea: decompose system into 2 components.

uncertain
A component
H nominal
component

@ Mean square stability conditions can be given in terms of only the
nominal system.

Patterson and Bamieh (Allerton 2008) June 1, 2009 8/1
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Stochastic Structured Uncertainty Problem

Rewrite

M—1

%(k+1) = A%(k) + > 8;(k)Bbsb} (k)

Jj=0

as M? scalar subsystems, one for each pair of edges.

Hi, - { %(k + 1) = Ax(k) + Bbiu(k)

yi(k) = brx(k)

ui(k) = o;(k)yi(k)

Patterson and Bamieh (Allerton 2008)

Uy

b 07 .
1=0,..,M—1.
8 0
0 By
Hoo - Hom-
Hv1,0 - AM-1,M-1

Yo

June 1, 2009
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|
General Convergence Results

Can derive convergence condition in terms of H> norms of the subsystems
of H
[Hooll3 -+ lIHon-1ll3
H:= : : )
[Hu-10ll3 -+ [[Hu-1m-1l3

where discrete-time H> norm of H;; is

| Hijll2 := tr (b,-* (Z Al 5bj5bj*2\’) b,-)

1=0
The system is mean square stable if and only if 0?p(H) < 1.

)

The consensus algorithm converges in mean square if and only if
(p—p°) p(H) < 1.

[Elia 2005, Lu and Skelton 2002]
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Analysis for Circulant Graphs

e G is circulant graph (e.g. torus) = H is circulant = H is circulant.

o Can find eigenvalues of H by taking DFT over any column

(1hol13, 1h113, - [1hm—1I5)-

R M—-1 Y fe’e) M—-1

hei= > hil2e 5 = B2 tr [ bobo™ | AN bibyte i A
Jj=0 I=0 Jj=0

@ Fourier coefficient with maximal modulus occurs at r = 0.

R 0 M-1 .
ho = 3 tr | bobo* ZAI bjb;* A
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Analysis for Circulant Graphs

o Note that "/ gt biby* = L

0o M-1
ho = B2tr|bobo® | DAY bt Al

I=0  j=0
— P (bobo* L(/—Z\2)—1)
1 = 2 A2\—1
— S NT B (kb L (1 — A2
STV

- f; tr (L2(1 - A7)

The trace can be determined from the eigenvalues of L and A.
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Analysis for Circulant Graphs

o Aand L are related by the following: A=/ — (1 — p)AL.

e Can write p(H) in terms of eigenvalues of L.

-1

_ B (L)2
le = p)B Ai(L))*

1=

o Well known that 0 < X\;(L) < 2(max_degree) for i =0...N — 1.

Therefore, we can bound p(H).
s (N—1 (2(max_degree))? )
p(H) < 3 ( M > (1 — (1 = (1 — p)3 2(max_degree))?
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Analysis for Circulant Graphs

@ Recall that for a general graph, the system converges in mean square
if and only if (p — p?)p(H) < 1.

@ In a tori, the system converges in mean square if
N-1 pB(max_degree) <1
M 1 — (1 — p)B(max_degree)

@ For any circulant network, there is a (3 such that the system
converges in mean square for any link failure probability 0 < p < 1.

Patterson and Bamieh (Allerton 2008) June 1, 2009 14 /1



Summary

@ Shown how consensus problem with stochastic communication
failures can be recast as stochastic structured uncertainty problem.

@ Given mean square convergence conditions for this formulation.

@ Demonstrated that for circulant networks, mean square convergence
is guaranteed.

o Future work - investigation of performance robustness and
convergence rates.
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