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Linear Systems with Random Multiplicative Inputs
System model

x(k + 1) = A x(k) +
(
δ1(k) B1 + · · · + δn(k) Bn

)
x(k)

{δ1, . . . , δn} uncorrelated, zero-mean white processes
Covariance of the state, P(k) = E {x(k)x∗(k)}

P(k + 1) = A P(k) A∗ +
(
σ1B1P(k)B∗1 + · · · + σnBnP(k)B∗n

)

Def: System is Mean Square Stable (MSS) if

lim
k→∞

P(k) = 0
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Linear Systems with Random Multiplicative Inputs
Lyapunov-like, matrix recursion

P(k + 1) = A P(k) A∗ +
(
σ1B1P(k)B∗1 + · · · + σnBnP(k)B∗n

)

P(k + 1) = A (P(k))

A is a matrix-valued operator on matrices

X A!−→ A X A∗ +
(
σ1B1 X B∗1 + · · · + σnBn X B∗n

)

SYSTEM IS MSS IFF ρ(A) < 1
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Structured Uncertainty
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STRUCTURED UNCERTAINTY ANALYSIS:
Give stability conditions for uncertain system

in terms of M and bounds on δ’s
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Stochastic Structured Uncertainty
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n = 1 (Single uncertainty)

MSS ⇔ ‖M‖2
2 <

1
σδ

S. Boyd (80’s)
Finite n

ρ
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Lu & Skelton ’02, Elia ’05
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Consensus with Random Link Failures
Will formulate the problem of consensus with random link failures
so as to use these tools
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Distributed Average Consensus

Network Model
Undirected, connected graph G = (V ,E ) with N nodes and M edges.
Each link has independent probability p of failing in each round.

The Consensus Problem
Each node starts with initial value xi (0).

Goal - nodes reach consensus at average xave := 1
N

∑N
i=1 xi (0) by only

communicating with neighbors.
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Simple Averaging Protocol

In each round, each node sends equal fraction to each neighbor and keeps remaining
fraction for self

xi (k + 1) = β
X

j∈Ni (k)

xj(k) + (1− β|Ni (k)|)xi (k)

In a static network, dynamics can be represented by recursion equation

x(k + 1) = Ax(k)

where A = I − βL. L is the Laplacian matrix of the graph.

e.g. 4 node ring network with β := 1
3 ,

A :=
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Well known that convergence to xave is guaranteed if |λ2(A)| < 1.

Patterson and Bamieh (Allerton 2008) June 1, 2009 3 / 1



System with Random A Matrix
Problem equivalent to

x(k + 1) = A(k) x(k)

A(k) is a matrix-valued random variable
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Convergence in Stochastic Networks

Some Related Work
Convergence is guaranteed almost surely in random graphs
[Hatano and Mesbahi 2005, Porfiri and Stilwell 2007].
|λ2(E[A(k)])| < 1 is both a necessary and sufficient condition for
almost sure convergence in random networks
[Tahbaz-Salehi and Jadbabaie 2008].

Analysis based on ergodicity of sequence of A matrices.

|λ2(E[A(k)])| < 1 is sufficient condition for mean square convergence
[Kar and Moura 2007].

Our Contributions
Show how the distributed average consensus problem can be
reformulated as a structured stochastic uncertainty problem.
Give mean square stability conditions for problem in this formulation.
Analyze mean square convergence in circulant graphs.
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Distributed Average Consensus in a Static Network

CDC 2007 3 / 15

! The dynamics of the system can be represented by recursion equation

x(k + 1) = Ax(k)

In a 4 node ring network with β := 1
3 ,

A :=

2
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! Well known that convergence depends on λ2(A)

" Convergence guaranteed if |λ2(A)| < 1
" In d-dimensional torus or d-lattice with N nodes

[Kranakis et al. 1994, Patterson et al. 2006, Carli et al. 2007]

|λ2(A)| = 1 − β
8π2

N2/d
+ O

„

1

N4/d

«



Incorporating Communication Failures
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! Consider the failure of edge (1, 2) in a ring with β := 1
3
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! Intuition: Perform protocol as if no failure occurred, then undo effects
across failed links.
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General Recursion Equation
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General equation that includes failure of all links is

x(k + 1) = Ax(k) +
X

(i,j)∈E

δ(i,j)(k)B(i,j)x(k)

where δ(i,j) is a Bernoulli random variable

δ(i,j)(k) :=



1 with probability p(i,j) : link has failed
0 with probability (1 − p(i,j)) : link is active

Rewrite recursion equation with zero-mean multiplicative noise

x(k + 1) =

0

@A +
X

(i,j)∈E

p(i,j)B(i,j)

1

A x(k) +
X

(i,j)∈E(k)

µ(i,j)(k)B(i,j)x(k)

where µ(i,j)(k) := δ(i,j)(k) − p(i,j) is zero-mean

Ā := A +
∑

(i,j)∈E p(i,j)B(i,j) is the mean (or expected) protocol matrx



Defining Convergence
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We measure how far the system is from consensus at xave with
deviation from average vector

x̃i(k) = xi(k) −
1
n

(x1(k) + ... + xn(k))

x̃(k) =

„

I −
1
n
11

∗

«

x(k)

Autocorrelation of deviation from average

M̃(k) := E{x̃(k)x̃∗(k)} =

„

I −
1
n
11

∗

«

E{x(k)x∗(k)}

„

I −
1
n
11

∗

«

Goals:

! Determine conditions under which entries of M̃(k) converge to 0 as
k → ∞

! Determine rate of convergence



Analyzing Convergence

CDC 2007 8 / 15

! Dynamics obey Lyapunov-like recursion

M̃(k + 1) =

„

I −
1
n
11

∗

«

A M̃(k)

„

I −
1
n
11

∗

«

A +
X

(i,j)∈E

σ2
(i,j)B(i,j)M̃(k)B(i,j)

! Decay Factor - the factor by which entries of M̃(k) decay in each round

! Decay factor is largest eigenvalue of matrix-valued operator A

X
A
"−→

„

I −
1
n
11

∗

«

A X

„

I −
1
n
11

∗

«

A +
X

(i,j)∈E

σ2
(i,j)B(i,j) X B(i,j)

! If p(i,j) = 0 for all (i, j) ∈ E

X "−→

„

I −
1
n
11

∗

«

A X

„

I −
1
n
11

∗

«

A

Decay factor is λ2(A)2



Computing the Decay Factor
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Kronecker product of matrices C and D

Cm×n ⊗ Dr×s :=

2

6

4

c11D · · · c1nD
...

. . .
...

cm1D · · · cmnD

3

7

5

mr×ns

Matrix equation of the form Y = CXD can be rewritten as

vec(Y ) = (C ⊗ D) vec(X)

M̃(k + 1) =

„

I −
1

n
11

∗

«

A M̃(k)

„

I −
1

n
11

∗

«

A +
X

(i,j)∈E

σ2
(i,j)B(i,j)M̃(k)B(i,j)

becomes

vec(M̃(k+1)) =

0

@

„„

I −
1

n
11

∗

«

A

«

⊗

„„

I −
1

n
11

∗

«

A

«

+
X

(i,j)∈E

σ2
(i,j)B(i,j) ⊗ B(i,j)

1

A vec(M̃(k))



Computational Results
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More Computational Results
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Spectral Perturbation Analysis
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For uniform link failure probability p

A(X) :=
“

Ã + pβL
”

X
“

Ã + pβL
”

+ (p − p2)
X

(i,j)∈E

B(i,j) X B(i,j)

where Ã =
`

I − 1
n11

∗
´

A

"

A(p, X) = A0(X) + pA1(X) + p2A2(X)

where

Ao(X) = ÃXÃ

A1(X) = βLXÃ + βÃXL +
X

(i,j)∈E

B(i,j) X B(i,j)

A2(X) = β2LXL −
X

(i,j)∈E

B(i,j) X B(i,j)



Perturbation Analysis
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Let γ be an eigenvalue of A(0, ·)

Power series expansion of γ is

γ(p) = λ + c1p + c2p
2 + ...

where λ is eigenvalue of A0 with eigenmatrix V and

c1 =
< V, A1(V ) >

< V, V >

Interested in largest eigenvalue of A up to first order in p

ρ(A) = ρ(A0) + c1p

= ρ(Ã)2 +
< ww∗,A1(ww∗) >

< ww∗, ww∗ >
p

= λ(Ã)2 +

0

@2λ(Ã) − 2λ(Ã)2 +
1

||w||2
X

(i,j)∈E

`

w∗B(i,j)w
´2

1

A p

where w is eigenvector corresponding to λ(Ã) (Fiedler vector)



Perturbation Analysis in Tori Networks
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In a d-dimensional torus with N nodes

λ(Ã) = 1 − β
8π2

N2/d
+ O

„

1

N4/d

«

For d-dimensional tori with N nodes, the first order expansion (in p) of decay factor

ρ(A) = λ(Ã)2 +

0

@2λ(Ã) − 2λ(Ã)2 +
1

||w||2
X

(i,j)∈E

`

w∗B(i,j)w
´2

1

A p

"

ρ(A) = 1 − (1 − p)β
16π2

N2/d
+ O

„

1

N4/d

«

For large network size, link failures reduce decay factor by (1 − p)



Problem Reformulation

x̃(k + 1) = Ãx̃(k) +
M−1∑

j=0

δj(k)βbjb
∗
j x̃(k)

Idea: decompose system into 2 components.

H

!

uncertain

 component

nominal 

component

Mean square stability conditions can be given in terms of only the
nominal system.
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Stochastic Structured Uncertainty Problem

Rewrite

x̃(k + 1) = Ãx̃(k) +
M−1X

j=0

δj (k)βbjb
∗
j x̃(k)

as M2 scalar subsystems, one for each pair of edges.

Hi,j :


x̃(k + 1) = Ãx̃(k) + βbiu(k)

yj (k) = b∗j x̃(k)
i , j = 0, ..., M − 1

ul (k) = δl (k)yl (k) l = 0, ..., M − 1.

!0

!M-1

u0
H0,0 H0,M-1

HM-1,0 HM-1,M-1

...

...

... ...

0

0

uM-1

y0

yM-1

Patterson and Bamieh (Allerton 2008) June 1, 2009 9 / 1



General Convergence Results

Can derive convergence condition in terms of H2 norms of the subsystems
of H

H :=

2

64
‖H0,0‖2

2 · · · ‖H0,N−1‖2
2

...
...

‖HM−1,0‖2
2 · · · ‖HM−1,M−1‖2

2

3

75 ,

where discrete-time H2 norm of Hi ,j is

‖Hi ,j‖2 := tr

(
bi
∗

( ∞∑

l=0

Ãl βbjβbj
∗Ãl

)
bi

)

The system is mean square stable if and only if σ2ρ(H) < 1.
[Elia 2005, Lu and Skelton 2002] "
The consensus algorithm converges in mean square if and only if
(p − p2) ρ(H) < 1.
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Analysis for Circulant Graphs

G is circulant graph (e.g. torus) ⇒ H is circulant ⇒ H is circulant.

Can find eigenvalues of H by taking DFT over any column
(‖h0‖22, ‖h1‖22, ..., ‖hM−1‖22).

ĥr :=
M−1∑

j=0

‖hj‖22e
−i 2π

M jr = β2 tr



b0b0
∗




∞∑

l=0

Ãl
M−1∑

j=0

bjbj
∗e−i 2π

M jr Ãl









Fourier coefficient with maximal modulus occurs at r = 0.

ĥ0 = β2 tr



b0b0
∗




∞∑

l=0

Ãl
M−1∑

j=0

bjbj
∗ Ãl








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Analysis for Circulant Graphs

Note that
∑M−1

j=0 bjbj
∗ = L

ĥ0 = β2 tr



b0b0
∗




∞∑

l=0

Ãl
M−1∑

j=0

bjbj
∗ Ãl









= β2 tr
(
b0b0

∗ L (I − Ã2)−1
)

=
1

M

M−1∑

j=0

β2 tr
(
bjbj

∗ L (I − Ã2)−1
)

=
β2

M
tr

(
L2(I − Ã2)−1

)

The trace can be determined from the eigenvalues of L and Ã.
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Analysis for Circulant Graphs

Ã and L are related by the following: Ã = I − (1− p)βL.

Can write ρ(H) in terms of eigenvalues of L.

ρ(H) =
β2

M

N−1∑

i=0

λi (L)2

1− (1− (1− p)β λi (L))2

Well known that 0 ≤ λi (L) ≤ 2(max degree) for i = 0 . . .N − 1.

Therefore, we can bound ρ(H).

ρ(H) ≤ β2

(
N − 1

M

) (
(2(max degree))2

1− (1− (1− p)β 2(max degree))2

)

Patterson and Bamieh (Allerton 2008) June 1, 2009 13 / 1



Analysis for Circulant Graphs

Recall that for a general graph, the system converges in mean square
if and only if (p − p2)ρ(H) < 1.

In a tori, the system converges in mean square if
(

N − 1

M

) (
pβ(max degree)

1− (1− p)β(max degree)

)
< 1.

For any circulant network, there is a β such that the system
converges in mean square for any link failure probability 0 ≤ p < 1.
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Summary

Shown how consensus problem with stochastic communication
failures can be recast as stochastic structured uncertainty problem.

Given mean square convergence conditions for this formulation.

Demonstrated that for circulant networks, mean square convergence
is guaranteed.

Future work - investigation of performance robustness and
convergence rates.
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