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ABSTRACT

Modelling and Control of Electrostatically Actuated Microcantilever

Arrays.

by

Mariateresa Napoli

In this dissertation we present the design, modelling and analysis of a

device consisting of an array of tightly packed electrostatically actuated

microcantilevers. More precisely, each microcantilever in the array consti-

tutes the movable plate of a capacitor and its displacement is controlled

by the voltage applied across the plates. We show that, if we take the

current as the measured signal, the dynamics of a single cantilever are

governed by a special second order linear periodic di�erential equation,

called the Mathieu equation. As for the array con�guration, by explicitely

incorporating the mechanical and electrostatic coupling into the dynam-

ical equations, we show that the system is described by a set of coupled

Mathieu equations. The structural properties of the array, with actua-

tors and sensors distributed over a regular lattice, allow us to cast it in

the class of spatially invariant distributed parameter systems, which bears

important consequences in the rest of the analysis. Both models, for the

single cantilever and for the array, are validated through an extensive set of

experiments, which demonstrate very good agreement between theoretical

predictions and experimental �ndings.

We propose a novel sensing scheme for the cantilevers' displacement,

based on the design of an optimal state observer whose input is the current

ix



through the capacitive cantilevers. We demonstrate in simulations its ex-

cellent performance in reconstructing the cantilevers displacement within

few nanometers from its actual value. We propose a procedure that uses

the optimal design as an analysis tool to tune both the frequency of excita-

tion of the cantilevers and the parameters of a reduced order observer. This

way we obtain a system with the best achievable noise rejection properties,

measured in terms of H1-norm of the closed loop system.

The problem of controlling tightly packed arrays of microcantilevers is

presented in two case studies, in which the microcantilever arrays consid-

ered di�er in the model of the coupling interactions. We consider the design

a controller for the electrostatically actuated array that, by using the es-

timate of the cantilever displacement provided by an observer, is able to

decouple the cantilevers' dynamics. Simulation results are provided to il-

lustrate its performance. Finally, we present an optimal H2 control design

for di�erent array of cantilevers and discuss the synthesis of suboptimal

controllers.
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Chapter 1

Introduction

1.1 Why MEMS and beams are interesting

In recent years we have experienced a strong trend towards miniaturization.

This trend results partly from the fact that small components can perform

tasks that large systems cannot. One fascinating example is o�ered by

microsurgical tools, which allow for new medical operation procedures that

are not feasible with conventional methods [2, 3, 4]. At the same time,

technology driven from IC-fabrication processes allows the production of

miniature components in large volumes and at low prices.

In particular, over the past years, cantilever-based devices have proven

to be extremely versatile instruments for applications that include, but are

not limited to, high resolution (atomic scale) surface imaging [5, 6, 7, 8, 9],

high density (Gb=cm2) data storage and retrieval [8, 10, 11, 12], optical

lithography for advanced device processing [13, 14, 15, 16], biosensors

for recognition of biomolecular interactions [17, 18], and chemical sen-
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sors [19, 20, 17, 18]. Cantilever transduction provides several principle

advantages over other solid-state sensors, namely fabrication simplicity,

sensitivity and easy implementation of array architectures. The sensitiv-

ity is better than that of other resonant designs because of the low mass

and thickness (compared for example to quartz-crystal microbalances and

surface-acoustic-wave sensors). Additionally, arrays of cantilevers can read-

ily be fabricated on single silicon chips, allowing mass production.

In order to increase the throughput of microdevices research has evolved

along two main lines: the integration of sensors and actuators [21, 22,

23, 24, 25, 26, 27, 28], and the use of array architectures of the probes

[23, 24, 29, 11, 12, 9, 8]. The device that has been the object of study in this

thesis combines both approaches and consists of an array of independently

electrostatically actuated microcantilevers.

Figure 1.1 is a micrograph of one of our devices, which consist of polysil-

icon cantilevers. Each microcantilever in the array constitutes the movable

plate of a capacitor and its displacement is controlled by the voltage applied

across the plates. More details about geometric and material characteris-

tics of the devices can be found in Chapter 4.

1.2 Contributions

The novelties in the device considered and the contributions of this thesis

are the following:

� System Design. Currently, microcantilever arrays are designed

with large spacing between the individual elements. This essentially

2



Figure 1.1: A partial SEM image of one of our arrays of electrostatically

actuated microcantilevers.

decouples the dynamics of the individual cantilevers that can be con-

sidered to behave as isolated units. The drawback of this con�gu-

ration is a decrease in the potential throughput of the device. Our

research has focused on the design and analysis of a tightly packed

array of microcantilevers. Indeed, the close spacing and the fact that

the cantilevers are connected to a common base introduces a coupling

in their dynamics, which is both electrostatic and mechanical. We

show how this coupling adds features to the device, which are inter-

esting from an engineering point of view. Moreover we show how it

can be removed, when not desired, by an appropriate control action.

� Mathematical Modelling and Experimental Validation. Start-

ing from physical principles we develop a model that describes the
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dynamics of the cantilever array, including mechanical and electro-

static coupling. For the common case of sinusoidal excitation, we

show that the system is governed by a multivariable nonlinear Math-

ieu equation with coupling. The structural properties of the device,

with actuators and sensors distributed over a regular lattice, allow

us to regard it as an example of spatially invariant distributed pa-

rameter system. This observation has important consequences. As a

matter of fact, by exploiting the spatial invariance of the problem it

is possible to analyze its stability properties and determine existence

and location of the regions of parametric ampli�cation. The mathe-

matical model is validated with experiments that include a mapping

of the �rst instability region of the Mathieu equation, both for a sin-

gle cantilever and for a pair of coupled cantilevers. While paramet-

ric ampli�cation has been discussed in small scale resonant systems

[30, 31, 32, 33, 34, 35], to our knowledge this is the �rst experimental

mapping of the �rst parametric instability region in microcantilever

resonators [36, 37].

� Use of an Indirect (Observer Based) Scheme for Cantilever

Displacement Detection. One of the main goals of our research

project has been the design of a dynamical system that is capable of

providing an estimate of the cantilever displacement, based on the

measurement of the current through the cantilevers. This approach,

which we call \indirect" sensing, has the advantage of allowing for

compact devices by removing the usually cumbersome apparatus used

in optical sensing techniques [38, 39, 40, 1].
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To this end, capacitive detection o�ers a major advantage by pro-

viding both electrostatic actuation as well as integrated detection,

without the need for an additional position sensing device. The com-

mon scheme used in capacitive detection is to apply a second AC

voltage at a frequency much higher than the mechanical bandwidth

of the cantilever. The current output at that frequency is then used

to estimate the capacitance, and consequently the cantilever position

[41, 42, 43]. This sensing scheme is the simplest position detection

scheme available, however, it is widely believed to be less accurate

than optical levers or piezoresistive sensing. We propose a novel

scheme that avoids the use of a high frequency probing signal by the

use of a dynamical state observer whose input is the current through

the capacitive cantilever. For the purpose of implementation, this

scheme o�ers signi�cant advantages as it involves simpler circuitry.

By using an optimal observer, or by tuning the observers gains, it

is conceivable that a high �delity position measurement can be ob-

tained, thus improving resolution in atomic force microscopy appli-

cations. Simulation results are provided that con�rm the theoretical

predictions.

� Control Design. In order to increase the throughput of a multi

probe device, it is desirable to have the largest number of probes

in the smallest possible space. On the other side, the proximity of

the probes induces coupling in their dynamics, which increases the

complexity of the overall device and, depending on the application,

can deteriorate its performance.
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By explicitly incorporating coupling into the model equations, we

show how it is possible to design controllers that \electronically di-

agonalize" the system. The important consequence of this approach

is that we do not need to impose constraints on the geometrical pa-

rameters of the device (in particular, the lateral spacing between

cantilevers) to obtain decoupled dynamics. It is the controller that

allows us to recover this property and that \diagonalizes" the sys-

tem. We consider two control problems: a decoupling controller for

the electrostatically actuated array and an optimal controller for a

di�erent multicantilever structure. In both cases we propose a novel

architecture, where the overall controller is distributed, thus re
ect-

ing the structure of the device.

1.3 How the Work Developed

Prof. Dahleh's lab had owned an Atomic Force Microscope (AFM) for a

few years already when I �rst arrived at UCSB in 1997. Many of his stu-

dents were or had been involved in research projects regarding the AFM,

and sure enough I was soon involved too. At that time research on scan-

ning probe instruments was exploring the problem of the parallelization

of probes. We started by considering modelling and control issues for an

array con�guration of scanning probes [44].

In 1999 Prof. Dahleh became interested in having one such device for

experimental investigations. This is how I started working at the fabrica-

tion of an array of cantilevers, under the guidance of Dr. Ami Chand (now
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at VEECO, Inc.). In November of that year we produced our �rst set of

cantilevers. Figure 1.2 shows one of them. The array in the �gure consists

Figure 1.2: SEM image of Si3N4 cantilevers, fabricated in the cleanroom

facilities at UCSB.

of thirteen Si3N4 cantilevers of di�erent lengths, 30�m wide, 1�m thick

and 50�m apart. The process used two masks and backside etching for the

release of the microbeams.

Initially, we had planned to make the structure active by depositing

piezoelectric material and implementing the controller that we had stud-

ied previously [44]. However, this idea was temporarily set aside and we

decided to grow tips by electron beam deposition on our cantilevers, using

a Scanning Electron Microscope (SEM). It was already known that these

tips, grown out of the vacuum residual gases of an SEM, were sharper,

much taller and harder that those obtained by conventional fabrication
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methods [45, 46, 47]. However, we were not interested in improving the

process and/or the tip characteristics. Our idea was to use the tips as part

of a deconvolution algorithm to reconstruct more accurate images from

data collected by commercial (blunter) tips.

Figure 1.3: Image of tip grown by electron beam deposition using SEM.

The deposition process was successful and Fig.1.3 shows one of the tips

obtained. The irregular pro�le of the cantilever edges, visible in the picture,

is caused by residuals of paraÆn oil used to start the growth process. The

procedure turned out to be quite challenging. A signi�cant drift of the

electron beam was noticed, with the e�ect of changing the initial area of

growth, leading to the deposition of a second neighbor tip, as shown in

Fig.1.4.

However, even when this problem was overcome, the tips turned out

to be not utilizable. Eventually we had to surrender to the fact that we

could not exactly center the tips on the cantilever, at least not with our
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Figure 1.4: Double tip caused by drift of the electron beam.

design of the probes. The asymmetry in the placement caused torsion in

the cantilever, while scanning in contact mode, resulting in a distortion

of the image. Figure 1.5 is the image of a calibration grid obtained with

our tips and it should be compared to Fig.1.6, which shows the same grid

imaged with a commercial tip. It can be noted that the image of each

element of the grid in Fig.1.5 is repeated several times : a kind of image

aberration that is usually attributed to a double or multiple tip [48].

Simultaneously, and for the same project, I was trying to become more

familiar with the AFM. Obtaining images with atomic resolution proved to

be a much harder task than expected. In the end, the critical issue turned

out to be the isolation of the instrument from any source of vibrations.

After trying several arrangements (
oating platform, vibration isolation

table), the problem was �nally solved by moving the AFM on the ground


oor of the Engineering building. Figure 1.7 shows an image of the atomic
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Figure 1.5: Image of the calibration grid obtained by using our tips. Notice

how the image of each square in the pattern is repeated several times: an

artifact attributed to the presence of multiple tips.

lattice of mica that I was able to obtain afterwards.

By the end of 2001 we resumed work on our original project, which

dealt with control of cantilever arrays. At this time, though, we were

thinking of capacitive actuation. We have preferred capacitive actuation

over other integrated schemes (e.g. piezoelectric [23, 24, 49], piezoresistive

[21, 25], thermal [26]) because it o�ers both electrostatic actuation as well

as integrated detection, without the need for an additional position sens-

ing device. Moreover, in contrast to piezoelectric �lms, which had been

our �rst choice, capacitive actuation is compatible with IC manufacturing

techniques: an important property when we have the integration of the

device with control circuitry in mind.
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Figure 1.6: Image of the calibration grid obtained by using DI tips.

 a)  b)

Figure 1.7: AFM image of the atomic lattice of mica. a) Top image show-

ing exagonal arrangement of atoms (inter-atomic distance � 5 �A; b) 3-D

representation of same data.
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1.4 Outline

This dissertation is organized as follows. Chapter 3 o�ers a brief intro-

duction to the topic of MEMS sensors and the phenomenon of parametric

resonance. We introduce the Mathieu equation, which will turn out to play

an important role in the modelling of our device, and discuss its stability

properties. In Chapter 2 we present some relevant mathematical tools and

theoretical results that will be applied to the analysis of the multicantilever

device. We introduce the theory of optimal �ltering for periodic systems

that will be used for the design of an optimal observer based on current

measurements. The concept of lifting for periodic systems is presented.

We use this transformation to measure the performance (in terms of I/O

norm) of a time-varying system, by associating it with an equivalent dis-

crete time-invariant system. Finally, we present the theory of spatially

invariant distributed systems, which is used to model the dynamics of an

array of coupled cantilevers. In Chapter 4 we describe the PolyMUMPS

fabrication process, which was used to fabricate the multicantilever device.

We discuss also some of the design choices that were made regarding the

con�guration of the arrays and some of the geometrical parameters of the

cantilevers. The mathematical model that we propose to describe the dy-

namical behavior of electrostatically actuated cantilevers is presented in

Chapter 5. In particular, we consider separately the case of a single can-

tilever and that of an in�nite dimensional array. In Chapter 6 we illustrate

the results of the experiments performed to characterize the cantilevers

and to validate the model proposed, both in the linear regime of opera-

tion and in parametric resonance. The experiments were performed on a
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single cantilever and on pairs of coupled cantilevers. Chapter 7 describes

the design of both optimal and reduced order observers. Simulation results

demonstrate their ability to reconstruct the cantilever displacement from

a current measurement. In a real implementation we expect that by an

optimal tuning of the observers parameters we would be able to obtain

same or better measurement precision than in the commonly used optical

apparatuses. Finally, in Chapter 8 we show how the dynamics of coupled

cantilevers can be \electronically diagonalized" by the use of an appro-

priate control action. The concept of electronic decoupling is illustrated

through two examples: an optimal H2 design and a decoupling controller.

The multicantilever arrays considered in the two cases di�er in the model

of the coupling interactions. In both cases, we show that by means of a

distributed controller, we do not need to impose constraints on the geomet-

rical parameters of the device (in particular, the lateral spacing between

cantilevers) to obtain decoupled dynamics. It is the use of control that

\diagonalizes" the system.

*

13



Chapter 2

System Theory

In this chapter we introduce the mathematical tools and discuss some the-

oretical results that will be applied to the analysis of the multicantilever

device. The challenge in this task originates essentially from two factors.

First of all, the dynamics of each single cantilever are time-varying. The

stability of time-varying periodic systems has been discussed in Setion 3.2.

Section 2.1 in this chapter presents the theory of optimal �ltering for pe-

riodic systems, adapted from the results of [50] for the more general time-

varying case. The following Section 2.2 introduces the essential concepts

of the lifting technique, by which periodic systems can be associated to

an equivalent discrete time-invariant (but in�nite dimensional in the I/O

spaces) system. This tool will be used to compute the I/O norm of the

periodic system and for an early design of the optimal �lter (Section 7.1).

The second challenging factor comes from the fact that we consider the

array to consist of an in�nite number of cantilevers. Such a structure is

evidently an abstraction, since in practice any array will consist of only a
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�nite number of cantilevers. However, the drawbacks deriving from this

assumption are largely compensated by the results that can be obtained

from this theoretical approach. Under the assumption that all cantilevers

are identical, the multicantilever array can be cast in the class of spatially

invariant distributed systems. Section 2.3 introduces some fundamental

aspects of this class of systems, and shows how by Fourier transformation

in the spatial domain, the study of an in�nite dimensional system can

be reduced to the analysis of a parameterized family of �nite dimensional

systems. This approach is convenient, since it enables to extend some of

the standard results and techniques from �nite dimensional systems theory

to this setting in a quite straightforward way.

2.1 Optimal Control for Periodic Systems

One of the main goals of our research is to replace the direct measurement of

the cantilever displacement, commonly performed via optical levers [38, 39]

or interferometric methods [40, 51], by an indirect measurement based on

a state observer. The reason to prefer this approach is twofold. First, it

would allow for more compact devices. The methods cited above at the

present time require quite cumbersome apparatus, that defeat the e�orts

of miniaturization of the probe/sensing part of the device. AFM users,

for instance, know how disproportionate is the dimension of the sensing

cantilever compared to the part of the instrument devoted to detect the

cantilever motion. Second, by optimal tuning of the observer parameters

it is conceivable that a high �delity position measurement can be obtained,
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thus improving resolution and overcoming the physical limitations of the

apparatuses mentioned above. For the vibrometer technique, for instance,

it is known that the expected 2nm accuracy in the measurement of dis-

placement cannot be guaranteed when the frequency of vibration exceeds

15kHz [52].

The observer problem for the cantilever displacement is formulated in

Section 7.1 as an H1 �ltering problem for periodic systems [53]. Whence

in this section we present some general results on the theory ofH1 �ltering

for periodic systems. Our source is [50] and in that paper the interested

reader will be able to �nd a more detailed analysis, considering both �nite

and in�nite horizon problems, as well as smoothing, for the general case of

time-varying systems. Here we adapt those results to the special class of

periodic systems.

We consider the following linear system

_x = A(t)x +B(t)w

y = C(t)x +D(t)w
(2.1)

where x 2 R
n is the state, y 2 R

p is the measured output, w 2 R
m is the

noise and A;B;C;D are T -periodic matrix functions of time. The �ltering

problem amounts to �nding a causal system that, using the measurement

y, provides an estimate x̂ of the state x. In particular, in the H1 setting

the �lter is designed to minimize the performance index

J := sup
06=w2L2

k x� x̂ k22
k w k22

;

i.e. to minimize the maximum energy of the estimation error over all

possible (bounded energy) disturbances.
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Some technical assumptions and de�nitions need to be introduced be-

fore presenting the main result. More precisely, we assume in the following

that

� (A(t),B(t)) is stabilizable,

� (C(t),A(t)) is detectable,

� D(t)

2
4 B0(t)

D0(t)

3
5 =

2
4 0

I

3
5.

The de�nition of stabilizability and detectability for periodic systems are

formally identical to the corresponding de�nitions for time invariant sys-

tems.

De�nition 2.1 [54] System (2.1) is stabilizable if there exists a T -periodic

matrix K(t) such that the system

_x = [A(t)� B(t)K(t)]x

is asymptotically stable.

A test for stabilizability is given in the following theorem.

Theorem 2.2 [54] Let �(t; 0) be the state transition matrix of system

(2.1), with �(0; 0) = I. The system is stabilizable i� for each eigenvalue �

of �(T; 0) such that j�j � 1, the conditions

�0(T; 0)� = ��; � 2 C
n,

B0(t)�0(0; t)� = 0 for a.e. t 2 [0; T ]

imply � = 0.

17



Note that the conditions given in the previous theorem can be inter-

preted as the conventional requirement on the controllability of the un-

stable modes of the system. In fact if � 6= 0, y = �0(0; t)� represents a

solution that grows unbounded and is orthogonal to the input range, i.e.

it is not controllable. Also in the case of periodic systems the notion of

detectability is dual to the notion of stabilizability and therefore can be

easily derived from the condition stated above.

The following theorem presents the main result of [50] adapted here to

the case of a periodic system.

Theorem 2.3 There exists a �lter such that J < 
2 i� there exists a T -

periodic symmetric matrix function P (t), that is absolutely continuous and

di�erentiable a.e. in [0; T ] and satis�es

i) _P (t) = A(t)P (t)+P (t)A(t)0�P (t)[C(t)0C(t)� 1


2
I]P (t)+B(t)B(t)0,

ii) The system

_p = [A(t)� P (t)(C 0(t)C(t)� 1


2
I)]p

is exponentially stable.

Under these assumptions, the �lter is given by

_̂x = A(t)x̂ + P (t)C 0(t)(y � C(t)x̂) x̂(0) = 0:

An implicit assumption of the theorem stated above is the knowledge of

the initial condition for the di�erential equation i) that corresponds to

the periodic stabilizing solution. In general such an initial condition is

unknown. In order to compute it, we de�ne the mappingP : Rn�n ! Rn�n,

P(M) =M � P (T ); (2.2)
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where P (T ) is the solution, computed at time T, of

_P (t) = A(t)P (t)+P (t)A0(t)�P (t)R(t)P (t)+Q(t); P (0) = M; (2.3)

where R(t) = C(t)0C(t) � 1


2
I and Q(t) = B(t)B0(t). If M is a matrix

corresponding to any of the steady-state periodic solutions of (2.3), then

P(M) = 0. Thus the problem is converted to that of �nding the �xed

points of this equation. This can be done numerically by using the secant

method and de�ning the iterative scheme :

Mk+1 = Mk � [Mk �Mk�1] [P(Mk)� P(Mk�1)]
�1 P(Mk):

Once the initial condition has been determined, the optimal �lter can be

found by solving the periodic Riccati di�erential equation i). Note that

the �lter has the structure of a standard observer.

2.2 The Lifted System

The lifting technique is a very useful theoretical tool for dealing with pe-

riodic systems. The advantage of lifting is that it allowes us to associate

with a T -periodic system G, an equivalent discrete shift-invariant system

Ĝ. Intuitively speaking, this is done by decomposing the input and output

signals of G into a sequence of segments, corresponding to the signals over

successive intervals of length T , as schematically represented in Figure 2.1.

Whence, each signal can be regarded as the discrete collection of these tra-

jectory pieces, i.e. as a dicrete signal whose samples are de�ned over the

Banach space X[0; T ], where X is the space, usually L1[0 1], where the

system signals are de�ned. It can be shown (see [55] for instance) that this
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Figure 2.1: Schematic representation of lifting for a continuous time signal.

induces a rearrangement of the original T -periodic system G, such that its

lifted equivalent Ĝ is shift-invariant. In fact, there is a strong correspon-

dence between a system and its lifting, that preserves not only algebraic

system properties, such as cascade decomposition and feedback, but also

internal stability and induced system norms.

Even though the equivalent lifted system has the very desirable prop-

erties of being linear, shift-invariant and norm preserving, it is in�nite

dimensional, since by construction its input/output spaces are in�nite di-

mensional. Therefore problems we are interested in, like optimal observer

design or norm computation, become more diÆcult to solve.

The approach we have followed, along the lines of [56], is to convert the

in�nite dimensional problem to an almost equivalent �nite dimensional one.

Here, by almost equivalent we mean that the problem we �nally solve is

an approximation of the original one. The idea is to fast-sample the lifted

system so that the in�nite dimensional input/output spaces are replaced

by �nite dimensional ones. Figure 2.2 is a schematic representation of the

fast sampling concept. It has been proved [56] that the rate of convergence

of this approximation is
1

n
, if T is the period of the system and

T

n
the
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Figure 2.2: Schematic representation of fast sampling for lifted signals.

sampling rate. Hence, by increasing the number of samples per period we

can approximate the original system to any prescribed degree of accuracy

[56].

In the following, we compute the lifted-sampled state space representa-

tion of

_x = A(t)x + B1w

z = C1x +D12u

y = C2(t)x + D21w

(2.4)

used in the H1 �ltering problem (7.1), introduced in Section 7.1 for the

optimal observer problem formulation. Here A(t) and C2(t) are the state

and output matrices of the state space representation of a single cantilever

(Section 5.7). The inputs are w, representing system and sensor noise, and

u, the output of the optimal H1 �lter. In [56], analytical expressions to

compute the system matrices corresponding to the approximate problem

are provided. Here we extend those results to the case of periodic system

matrices. First of all we rearrange the terms in equations (2.4), introducing

the �ctitious output

yo = [1 0]x = Cox;

so that we can isolate the time-invariant part of the state equation (7.1)
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and view its time-varying part as a feedback from the output yo

x0 = Aox +B1w +B3v

z = C1x +D12u

y = C2(t)x +D21w

yo = Cox

v = �K(t)yo;

(2.5)

where Ao =

2
4 0 1

�a �c

3
5, B3 =

2
4 0

1

3
5 and K(t) = 2q cos 2t. Note that a,

c and q have been de�ned in Section 5.1 and are functions of the system

physical parameters. The advantage in rewriting the system in this form

is that we are able to compute analytically its litfed state space represen-

tation. The lifted representation, in fact, requires the computation of the

state transition matrix. While for the Mathieu equation this cannot be

done analytically, equation (2.5) poses no problems.

If we denote by sk the N dimensional vector containing the N samples

of s(t) corresponding to the k-th time period, [kT; (k + 1)T )

sk :=

2
666666666664

s(kT )

s(kT + T

N
)

s(kT + 2T
N
)

...

s((k + 1)T � T

N
)

3
777777777775
;

the state equations of the approximate problem (lifted and sampled) cor-
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responding to (2.5) turn out to be

xk+1 = Axk +B1wk +B3vk

zk = C1xk +D11wk+ D12uk +D13vk

y
k

= C2xk +D21wk +D23vk

y
ok

= Coxk +Do1wk +D02vk

vk = �K y
ok
;

(2.6)

where the presence of the new Dij matrices is a result of the lifting. The

analytical expression of all the matrices in (2.6) can be computed as shown

in [56], with the exception of the matrices coming from the time-varying

part of the system (last three equations in 2.6), which are

C2 =
h
C0 eA

T
o TsCT1

N

e2A
T
o TsCT2

N

� � � eA
T
o Ts(N�1)CT

1� 1

N

iT

D21=

2
6666666664

D21 0 0 : : : 0

C 1

N

~B1 D21 0 : : : 0

C 2

N
eAoTs ~B1 C 2

N

~B1 D21

. . . 0

...
. . .

. . .
...

C1� 1

N
eAoTs(N�2) ~B1 : : : C1� 1

N

~B1 D21

3
7777777775

D23=

2
6666666664

0 0 0 : : : 0

C 1

N

~B3 0 0 : : : 0

C 2

N
eAoTs ~B3 C 2

N

~B3 0
. . . 0

...
. . .

. . .
...

C1� 1

N
eAoTs(N�2) ~B3 : : : C1� 1

N

~B3 0

3
7777777775
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and

K =

2
6666666664

2q 0 : : : 0

0 2q cos( T
N
) 0 : : : 0

0 0 2q cos(2T
N
) 0

... : : :
. . .

0 : : : 2q cos(N�1
N

T )

3
7777777775

;

with

eAoTs =

2
4 cos

p
aTs

1p
a
sin
p
aTs

�pa sinpaTs cos
p
aTs

3
5 ;

Ck = C2(kT ) and ~Bj is the sampled matrix corresponding to Bj in (2.5).

Finally, by de�ning the following matrices

F = A� B3 K(I +Do2K)
�1Co;

G1 = B1 � B3 K(I +Do2K)
�1Do1;

H1 = C1 �D13 K(I +Do2K)
�1Co;

H2 = C2 �D23 K(I +Do2K)
�1Co;

J11 = D11 �D13K(I +Do2K)
�1Do1;

J21 = D21 �D23K(I +Do2K)
�1Do1;

and J12 = D12, the generalized plant associated to the approximate prob-

lem is given by

Gapprx :=

2
6664

F G1 0

H1 J11 J12

H2 J21 0

3
7775 ; (2.7)

which describes a �nite dimensional discrete shift-invariant system. From

this point on, the analysis can be carried out in a straighforward way,

relying on known results from classical system theory.
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2.3 Linear Spatially Invariant Distributed

Systems

The recent technological advances in the �eld of micro devices have made

feasible the implementation of new control structures, consisting of large

arrays of spatially distributed controllers and sensors [29, 11]. In turn, these

architectures have awakened an increasing interest in the theory of spatially

distributed systems, which represent the appropriate mathematical tool for

their modelling and study.

Spatially invariant systems are an important subclass in the family of

spatially distributed systems. Systems belonging to this class are composed

of identical units, with independent actuation and sensing capabilities, dis-

tributed on a regular lattice. Their variables x can be modelled as functions

of both time and space, x = x(t; k), with the time variable causal and the

spatial variable completely a-causal. Examples are o�ered by strings of

vehicles or platoons [57, 58, 59], arrays of sensors and actuators in 
ow

control problems [60, 61, 62, 63], arrays of microcantilevers in scanning

probe devices [29, 44, 53]. Figure 2.3 is a schematic representation of a

distributed spatially invariant system.

Roughly speaking, spatial invariance means that the dynamics of the

system are independent from the \point of observation": shifting the spa-

tial variable by a �xed amount does not a�ect the dynamics of the system.

It should be noted that this property implies the assumption that the el-

ements are fully distributed over the spatial coordinate, i.e. are in�nite

in number as depicted in Fig.2.3. This fact implies that the overall struc-
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Figure 2.3: Schematic of a spatial invariant structure. The dashed lines

represent some form of internal coupling (not necessarily nearest neighbor).

All the units are identical and can be independently sensed and actuated.

ture is described by an in�nite dimensional system. Such a structure is

evidently an abstraction from a real case, however the drawbacks deriving

from this assumption are largely compensated by the results that can be

obtained from this theoretical approach.

In terms of a state space representation, spatial invariance implies that

the matrix operators A;B; C;D in

d
dt
x(t; �) = Ax(t; �) + Bu(t; �)
y(t; �) = Cx(t; �) +Du(t; �);

(2.8)

are Toeplitz and translation invariant.We refer to [64, 65] for a rigorous

mathematical treatment of this topic.

Indeed, the property of spatial invariance turns out to play a very im-

portant role in the analysis of these systems. As a matter of fact, it makes

it possible to apply a Fourier transformation in the spatial coordinate.

The Fourier transform of a two dimensional real-valued function s(t; k) is

a complex-valued function de�ned as

S(t; �) =

1X
k=�1

s(t; k)e�ik� ;
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with � 2 [0; 2�]. Similarly to its one dimensional counterpart, it trans-

forms translation invariant operators into multiplication operators. Hence,

equation (2.8) becomes

_̂x(t; �) = Â(�)x̂(t; �)+ B̂(�)û(t; �)
ŷ(t; �) = Ĉ(�)x̂(t; �) + D̂(�)û(t; �);

(2.9)

where the symbol ^ denotes the Fourier transform in space.

Notice that equation (2.9) describes a standard �nite dimensional model,

the only di�erence being the presence of the parameter � 2 [0; 2�]. Hence,

by means of the Fourier transform we have associated the in�nite dimen-

sional distributed system with a �nite dimensional parametric model. This

fact has the important consequence of allowing the almost straightforward

extension of many of the results valid for classical �nite dimensional sys-

tems to spatially invariant distributed systems [65, 64]. As a matter of fact,

\global" structural properties (stability, controllability, observability, etc.),

where by global we mean relative to the entire in�nite dimensional struc-

ture, can be studied for each system of the family using the well-known

methods for �nite dimensional systems, and then veri�ed at each value of

the parameter � 2 [0; 2�].

*
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Chapter 3

Parametric resonators

In this chapter, we introduce the concepts of parametric oscillator and

parametric resonance. In particular, Section 3.2 is devoted to discussing

some relevant properties of the Mathieu equation that in Section 3.3 are

extended to the case of coupled Mathieu equations. In fact, it will be

proven in Chapter 5 that the dynamics of electrostatically actuated micro-

cantilevers are described by either a single or coupled Mathieu equations.

There are several applications that arise from the exploitation of para-

metric ampli�cation, from extremely sensistive mass sensors [66, 67] to

mechanical �lters [1, 65, 68]. We do not explore this direction in this dis-

sertation, but consider the ability to induce parametric resonance and to

map the �rst region of instability (Chapter 6) as a further tangible sign of

the validity of our model.
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3.1 Micro-Oscillators

A simple model of a mechanical oscillator is that of a mass-spring-damper

system. Using a lumped parameters representation, this oscillator can be

described by a second order linear di�erential equation,

�x+ c _x + ax = f(t); (3.1)

where the coeÆcients have been scaled by the mass and f(t) represents a

forcing input. The values of c and a depend on the physical properties of

the oscillator and determine the characteristics of its response to external

excitations. For instance, the damping of the response depends on c and

when this coeÆcient is small, the frequency of free oscillation is equal

to ! =
p
a. Therefore, any change in the value of these parameters is

re
ected in the change of some observable (i.e. measurable) characteristic

property of the response of the oscillator. What makes micro-oscillators

particularly interesting, is the fact that their size makes them sensitive to

extremely small changes of their parameters. Whence, they are able to

detect very small variations of any physical quantity causing the change.

For instance, in biosensors, the absorption of molecules on the surface

of a cantilever causes an increase in the mass and surface stress. These

induce bending in the cantilever and a shift in its resonant frequency, whose

value can be measured experimentally and related to the physical/chemical

properties of the adsorbate. This sensitivity has been exploited in a wide

variety of applications [20, 69, 70] and has resulted in micro-scales that

can measure masses down to the attograms [71, 72, 73], calorimeters with

femtojoules resolution [18, 74, 75, 76] and force detectors that sense forces
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in the nanonewtons [18, 77].

For small excitations, a system such as (3.1) will produce a large re-

sponse only if the frequency of excitation is close to a natural frequency.

Oscillators that exhibit this property are called harmonic, to di�erenti-

ate them from the class of so-called parametric oscillators. The latter are

typi�ed by the Hill equation

�x + c _x + (a+ f(t))x = 0;

where c and a are constant coeÆcients as in (3.1), and f(t) is typically a pe-

riodic function of time [78, 79]. It should be noted that in this equation the

input appears as a time varying modi�cation of a system parameter, while

in the harmonic case (3.1) the external excitation enters the equation of

motion as an inhomogenous term. This fact leads to signi�cant di�erences

in the response behavior of the two classes of oscillators. In particular,

parametric systems respond strongly when the frequency of excitation is

related to the natural frequency by a resonance condition, without nec-

essarily being equal to it. Hence, large responses may be generated even

when the excitation frequency is remote from the system's natural fre-

quency, but related to it through an integer, or fractional, multiple. The

resulting motion is unstable and grows exponentially with time. Its mag-

nitude is not a�ected by damping, and is governed only by the nonlinear

e�ects that come into play as a result of the large displacements. Damp-

ing is responsible only for creating a minimum threshold in the excitation

amplitude, below which parametric ampli�cation cannot be induced. This

reason makes parametric resonance diÆcult to observe at the macroscale.

On the contrary, micro-oscillators which are quite often operated in vac-
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uum, can be driven into parametric mode with relative ease.

The interest in devices that exhibit parametric behavior comes from the

fact that it represents a mechanism of mechanical ampli�cation that can

improve the sensitivity of micro-resonators in all of the applications men-

tioned above. In fact, as the size of the components gets smaller, so does

the magnitude of their displacement, with the result being that the trans-

duction mechanism has to operate close to the background noise. Hence,

the large ampli�cation generated by parametric resonance can dramatically

increase their sensitivity [66].

The Mathieu equation belongs to the class of parametric systems. Given

its relevance in the modelling of a electrostatically actuated microcan-

tilevers, we devote the next two sections to analyze its properties in some

more detail.

3.2 The Mathieu Equation

Our interest in the Mathieu equation stems from the fact that it mod-

els the dynamical behavior of an electrostatically actuated cantilever, as

shown in Section 5.1. We present here only the main results regarding its

characterization, when necessary to understand the material presented in

the rest of the dissertation. We refer the interested reader to the abundant

literature on the topic for a more thorough analysis [78, 79, 80, 81, 82, 83].

The Mathieu equation takes the form

�z + (a� 2q cos 2t)z = 0; (3.2)

and is a second order linear di�erential equation with periodic coeÆcients.
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It was �rst introduced by Mathieu in 1868 [84] to model the vibrational

modes of a stretched membrane having an elliptical boundary. Since then,

a considerable amount of research e�ort has been devoted to studying its

peculiar stability properties in terms of its parameters a and q [80, 81, 83,

85].

By de�ning the vector x = [z _z]T , equation (3.2) can be rewritten in

state space form as follows

_x =

2
4 0 1

�a + 2q cos 2t 0

3
5 x = A(t)x; (3.3)

which de�nes a linear, T -periodic system, A(t) = A(t + T ) (here T = �).

From standard results on the solutions of systems of di�erential equations,

it is known that the real solutions of equation (3.3) form a 2�dimensional
linear subspace of C1(R2). Let x1 and x2 be any two independent solutions

of equation (3.3). The fundamental matrix of the system is de�ned as

�(t) := [x1 x2] 2 C1(R 2�2);

and owes its name to the fact that any other solution can be written

uniquely as a linear combination of its columns

x(t) = �(t)v; (3.4)

with v 2 R
2.

It is not diÆcult to show that if x(t) is a solution of a T -periodic linear

system, so is x(t + T ). Hence, by de�nition of �(t) and equation (3.4) we

can write

�(t + T ) = �(t)C; (3.5)
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with C 2 R
2�2. By setting t = 0 in equation (3.5) we can derive the

following equation, which de�nes the so-called principal matrix C of the

system

C = �(0)�1�(T ): (3.6)

The reason to introduce C is that it de�nes the characteristic multipliers,

which are tightly related to the stability properties of a periodic system.

A scalar � 2 C is said to be a characteristic multiplier if there exists a

nontrivial solution x(t) of equation (3.3), such that

x(t+ T ) = �x(t): (3.7)

It is evident now that the stability of the system depends on �. In fact,

from equation (3.7) it follows that x(t + nT ) = �nx(t), n 2 N . Hence, the

system will be asymptotically stable if all the �'s are inside the unit disk,

neutrally stable if they are on the unit circle and unstable if at least one

lies outside the unit disk.

It can be proved that the characteristic multipliers coincide with the

eigenvalues of C. As a matter of fact, from equations (3.4) and (3.5),

x(t) = �(t)v
=) x(t + T ) = �(t + T )v

= �(t)Cv
;

so that, if v is an eigenvector of C,

x(t + T ) = ��(t)v = �x(t):

Note that, even though C depends on the particular � considered, its

eigenvalues are invariant, that is all matrices de�ned by equation (3.6)
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are similar. Hence the de�nition of the characteristic multipliers is unam-

biguous. Moreover, without loss of generality, we can restrict ourselves to

considering the particular C corresponding to �(0) = I, i.e. C = �(T ). In

terms of stability, C plays for periodic systems the same role that the state

matrix A plays for time-invariant systems. The characteristic equation of

C

det(�I � �(T )) = 0;

can be written more explicitly as

�2 � (trace�(T ))�+ det�(T ) = 0; (3.8)

so that by means of Liouville's formula and equation (3.3)

det�(T ) = e
R
T

0
traceA(�)d� = 1;

the characteristic equation of C for the Mathieu equation can �nally be

rewritten as

�2 + b�+ 1 = 0; (3.9)

with b = trace�(T ). This last equation implies that the product of the

two characteristic multipliers of a Mathieu equation is always equal to

one, �1�2 = 1, and so that the system cannot be asymptotically stable.

More precisely, from equation (3.9) we can infer that the solutions are

(simply) stable if jtrace�(T )j < 2 and unstable if jtrace�(T )j > 2. The

condition jtrace�(T )j = 2 de�nes the transition between stable and un-

stable behavior. When this condition is satis�ed the system has a stable

periodic solution, of period T = � for trace�(T ) = 2 and T = 2� for

trace�(T ) = �2.
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Unfortunately, if we insist on an exact analysis of the stability problem,

this is all the information we can obtain. As a matter of fact, the computa-

tion of the characteristic multipliers relies on the computation of the state

transition matrix over one period, which for the Mathieu equation can-

not be done analytically. The same argument holds also for the Floquet

transformation [81, 83, 86], where an appropriate change of coordinates

(de�ned assuming the knowledge of �(t)) allows to obtain an equivalent

time-invariant system, whose stability properties could in principle be eas-

ily analyzed. Indeed, one has to resort to approximation methods, like

numerical computation of �(T ), averaging or perturbation methods.

3.2.1 Perturbation Analysis for the Mathieu Equa-

tion

The general procedure of perturbation theory is to identify a small param-

eter, usually denoted by �, such that when � is zero the problem becomes

solvable. In the case of equation (3.2), the small parameter is q. By letting

� = �2q, we obtain the equation

�z + az + � cos 2tz = 0: (3.10)

For � = 0 equation (3.10) describes a simple harmonic oscillator whose

solution, zo, can be easily computed. For � 6= 0 the solution of (3.10) can

be written in the form of a series expansion in �

z = zo + �z1 + �2z2 + :::; (3.11)

so that the original problem is decomposed into an in�nite sequence of

relatively easy ones: computing the coeÆcients of the series.
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A detailed derivation, using this method, of the stable/unstable regions

as a function of the parameters a and q can be found for instance in [80].

Figure 3.1 portrays these characteristic tongue-like shaped regions: pa-

rameter pairs (a,q) belonging to the shaded areas correspond to unstable

behavior; for parameter pairs belonging to the white areas all solutions

are bounded; if (a,q) belongs to a boundary curve, the equation has one

periodic solution (of period � or 2�).

a

q

Figure 3.1: Mathieu equation: the shaded areas correspond to unstable

behavior.

In the rest of this section, we derive the equations for the boundary

curves of the �rst unstable region. The result will be used in Chapter 6

to compare the theoretical prediction with experimental results. Following

[83], the perturbation method we use is the so-called two variable expan-

sion, which is equivalent to standard averaging. This method exploits the

fact that, for many vibration problems, the expected solution involves two

time scales: the time scale of the periodic motion itself and a slower time

scale, which represents the approach to the periodic motion. The method
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proposes to distinguish between these two time scales, by associating a sep-

arate independent variable with each one. Let � = t and � = �t be the fast

and slow varying time coordinates respectively, and write x(t) = x(�; �).

Equation (3.10) is modi�ed accordingly as

@2z

@�2
+ 2�

@2z

@�@�
+ �2

@2z

@�2
+ (a+ � cos 2�)z = 0:

Expanding z in power series as in (3.11), substituting in the previous equa-

tion and collecting terms of equal power in �, we obtain

@2zo

@�2
+ zo = 0 (3.12)

@2z1

@�2
+ z1 = �2 @

2zo

@�@�
� (a1 + cos 2�)zo (3.13)

where we have introduced also a power expansion of a = 1+a1�+a2�
2+ :::

and considered only the terms of �rst order. Taking the general solution

to equation (3.12) to be of the form

zo(�; �) = A(�) cos � +B(�) sin �;

and substituting in equation (3.13), we get after few algebraic manipula-

tions
@2z1

@�2
+ z1 = 2

dA

d�
sin � � 2

dB

d�
cos �

�a1(A cos � +B sin �)

�A
2
(cos 3� + cos �)

�B
2
(sin 3� � sin �):

Removal of resonance terms gives the following slow-
ow equations

dA

d�
= 1

2
(a1 � 1

2
)B

dB

d�
= �1

2
(a1 +

1
2
)A:

(3.14)
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Equilibrium points of the slow 
ow correspond to periodic motions of the

Mathieu equation : by studying the stability of these linear equations (3.14)

we can conclude that the Mathieu equation is stable if ja1j > 1
2
. Hence in

the a-q parameter space the following two curves represent the transition

from stable to unstable regions

a = 1� �

2
= 1� q; (3.15)

Inside that tongue, solutions to (3.10) grow exponentially in time, while

outside the tongue they are quasiperiodic functions of time.

By considering higher order expansions, it is possible to determine the

other regions of instability, depicted in Figure (3.1). In particular, it can

be proved that for � = 0 instabilities occur at

a = n2; n 2 N : (3.16)

The expressions for the boundary curves are quite complicated and are not

reported here.

Instead, it is interesting to consider the case of (3.10) with a cubic

nonlinearity

�z + az + � cos 2tz + �a3z
3 = 0: (3.17)

Following the procedure outlined above, the slow-
ow equations (3.15) be-

come [66, 83, 87]

A0 = 1
2
(a1 � 1

2
)B + 3a3

8
B(A2 +B2);

B0 = �1
2
(a1 +

1

2
)A� 3a3

8
A(A2 +B2);

(3.18)

which can be solved numerically to obtain the �rst region of parametric

resonance. The e�ect of the nonlinearity is to bound the amplitude of the
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oscillations. More precisely, going from a non-parametric to a parametric

region, the signal still grows exponentially (Fig. 3.2), but its amplitude

remains bounded and varies with the value of the perturbation parameter

a1 (Fig. 3.3).
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Figure 3.2: Exponential growth of the signal at the transition from non-

parametric to parametric region of oscillation. The simulation used the

cantilever parameters.

Note that in the simulations of Fig. 3.2 and 3.3 we have used (3.17) with

the experimentally identi�ed parameters of our cantilevers. In fact, we will

show in Section 5.1 that the dynamics of single electrostatically actuated

cantilevers are governed by a Mathieu equation. Note that, in terms of

the cantilevers' physical parameters, the �rst parametric region is centered

around a = 2!r, with !r natural resonant frequency of the cantilever (see

Section 6.2). Similar results will be reproduced experimentally in Section
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Figure 3.3: Variation of oscillation amplitude with a1 (i.e. driving fre-

quency for a cantilever) across the �rst region of parametric ampli�cation.

The `+' symbols correspond to increasing values of a1 (frequency is swept

up), the `o' to decreasing values (frequency being swept down). The sim-

ulation used the cantilever parameters.

6.2 (Fig. 6.12 and 6.13). From Fig. 3.3 it is evident that (3.17) has

a bistable region on the left side of the �rst parametric region, a result

con�rmed by Fig. 3.4, which represents a simulation of the phase portrait

of (3.18).

3.3 Coupled Mathieu Equations

In this section, we extend the analysis of parametric ampli�cation to the

case of coupled Mathieu equations. In fact, in Chapter 5 we show that, as

a consequence of the mechanical and electrostatic coupling, multicantilever
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Figure 3.4: Phase portrait of equation (3.18) for di�erent values of pertur-

bation parameter a1.

arrays are modelled by equations of this kind.

We consider, at �rst, the case of two coupled Mathieu equations:

�z1 + (a1 � 2q1 cos 2t)z1 + (b1 � 2b2 cos 2t)z2 = 0;

�z2 + (a2 � 2q2 cos 2t)z2 + (b1 � 2b2 cos 2t)z1 = 0;
(3.19)

where we allow the coeÆcient of coupling to be time-varying. By de�ning

the vector Z = [z1; z2]
T 2 R

2, (3.19) can be rewritten as

�Z + [A� �Qcos(2t)]Z = 0; (3.20)

whose structure is that of a standard Mathieu equation (3.2), except that

now A and Q are matrices,

A =

2
4 a1 b1

b1 a2

3
5 �Q =

2
4 2q1 2b2

2b2 2q2

3
5 :
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Equation (3.20) describes a periodic system and, as stated in the previous

section, the stability of its solutions depends on the eigenvalues of the

principal matrix, �(T ). More precisely, the stability of these trajectories

is equivalent to the stability of the equilibrium points of the discrete time-

invariant system having �(T ) as its state matrix. We want to prove that

for � = 0 in (3.20), the origin is a strongly stable [for De�nition see [82]

pg.117] equilibrium point of �(T ). Then, by de�nition, the \perturbed"

solution obtained for small values of � is stable as well.

For � = 0, (3.20) is time-invariant and describes a two-dimensional

harmonic oscillator

�Z + AZ = 0: (3.21)

The eigenvalues �j of the corresponding �(T ) are given by

�j = e�jT ; j = 1; : : : ; 4 (3.22)

where the �j's correspond to the eigenvalues of a state space representation

of (3.21) and are purely imaginary pairs since there is no damping. As a

consequence, the �j's are on the unit circle. Using Liouville's theorem we

can prove that the product of the �j's, for any value of �, is always equal to

1. Together, these two facts imply that the origin is strongly stable. As a

matter of fact, these conditions constrain the eigenvalues of the perturbed

state transition matrix to move in complex conjugate pairs along the unit

circle, and therefore describe stable dynamics. The only cases when the

perturbed system can have unstable eigenvalues, is when at least one pair

of �'s overlaps and is equal to �1, or when the two pairs of �'s overlap, as

represented schematically in Fig. 3.5. In fact, in these cases the �'s can

leave the unit circle, still satisfying the condition on their product.
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Figure 3.5: Schematic representation of the conditions corresponding to a

possible loss in stability for two coupled Mathieu equations.

This loss of stability corresponds to the cases j�jjT = �n, and (j�ij �
j�jj)T = 2�n, n 2 N . It is not diÆcult to prove that

j�jj = p
�i i = 1; 2

where the �'s are the eigenvalues of A. Hence, in terms of these eigenvalues

the unstable tongues are located at

�i = n2; �21 � �22 = 4n2 n 2 N ; i = 1; 2 (3.23)

which is the equivalent of (3.16) for two coupled Mathieu equations. Note

that, in the coupled case, the eigenvalues of A play the same role as the

constant a in a standard Mathieu equation. Moreover, (3.23) implies that,

for two coupled Mathieu equations, each region of parametric ampli�cation

is composed of more than one tongue. In Section 6.3.2 we will show that

experimentally we found the �rst parametric region to be composed of

three subtongues.

To conclude this section, we analyze the case of an in�nite number of

coupled Mathieu equations. While in any practical system the number of
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cantilevers and therefore the number of coupled equations will necessarily

be �nite, in the limit for a large number of cantilevers, spatially invariant

distributed models represent the correct abstraction. Moreover, in case

of a large number of units, the drawbacks deriving from this assumption

are compensated by the results that can be obtained from this theoretical

approach.

In case of an in�nite number of coupled Mathieu equations, (3.19) be-

comes

�zi + (a� 2q cos 2t)zi +
X
j 6=i

(b1;j � 2b2;j cos 2t)zj = 0; i; j 2 Z

which, by Fourier transformation in the spatial coordinate (Section 2.3),

can be written as

�̂z + [â(�)� 2q̂(�) cos 2t]ẑ = 0; (3.24)

with â(�) = a +
P

m6=n b1;je
�i�m and q̂(t; �) = q +

P
m6=n b2;je

�i�m. The

symbol^here denotes Fourier transformation in space.

Equation (3.24) is a parameterized family of Mathieu equations. As

discussed in Section 2.3, its stability can be studied for each equation

of the family and then veri�ed for each value of � 2 [0 2�] [64, 88].

More precisely, each � in (3.24) de�nes a standard Mathieu equation and

therefore determines a set of unstable tongues. As a consequence, (3.24)

is also characterized by regions of instability, which are given by the union

of these tongues. If we consider, for instance, the case of nearest neighbor

interaction (b1;j = b2;j = 0; 8j � 2), the unstable regions of (3.24) for

q = b21 = 0 are given by

a(�) = a + 2b12 cos � = n2; � 2 [0; 2�] (3.25)
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that is they are intervals, as opposed to points for the single Mathieu

equation (3.16).

Figure 3.6 represents the �rst region of parametric resonance for the

case of two, ten and one hundred coupled equations. It should be con-

trasted with the �rst tongue in Fig. 3.1 that represents the same region for

a single Mathieu equation. Also in this case, shaded areas denote unsta-

ble behavior. The simulation considered identical coupled equations, with

nearest neighbor interaction and with a =
b1;2

2
= 100. The boundaries

were approximated using (3.15).

Note that, as the number of cantilevers increases, the part of the a-

axis that belongs to the unstable region increases as well, as predicted by

(3.25). This simple example illustrates the point that for large number of

units, or cantilevers in our case, the theory of distributed systems is indeed

the correct abstraction and that tangible guidelines for the analysis and

the control design of such structures can be obtained using the methods of

distributed systems theory.

*
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Figure 3.6: First region of parametric ampli�cation for coupled Mathieu

equations. The shaded areas correspond to unstable behavior. N denotes

the number of coupled equations considered.
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Chapter 4

Device Design and Fabrication

It was considered more cost e�ective to outsource the fabrication of the de-

vice, that was in fact commissioned to Cronos (div. of JDS Uniphase from

2000-2002), a commercial MEMS manufacturer. The company has devel-

oped and standardized three fabrication processes, referred to as MUMPsr

(Multi-User MEMS Processes). Customers whose devices can be fabricated

within the �xed sequence of steps involved by each process can submit or-

ders to have the company carry out the fabrication. Our cantilever arrays

were fabricated with PolyMUMPs, a three-layer polysilicon surface micro-

machining process that is brie
y illustrated in Section 4.1.

The process is repeated in successive runs, according to a calendar

decided by the company. We reserved two die locations during run 47,

that took place around March 2002. Some relevant data about this run, as

measured by the company at the completion of the process, is reported at

the end of Section 4.1. As with any other customer, we had to submit the

design of the layout of the eight masks utilized in the fabrication process.
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Section 4.2 discusses some of the design choices that were made.

A detailed information about calendar, process and design rules can be

found at the URL http : ==www:memscap:com=memrus. Note that the

company has been acquired by MEMSCAP as of November 1, 2002.

4.1 Fabrication : PolyMUMPS Process

The PolyMUMPs process derives from work performed at the Berkeley

Sensors and Actuators Center at the University of California in the late

80's. Several modi�cations have been made since then to make it suitable

for a multi-user environment. The process consists of a non-patternable

nitride isolation layer, a polysilicon ground (plane) layer, two structural

polysilicon layers, two oxide release layers, and one metal layer for electrical

connection and re
ectivity enhancement. The thickness of all layers has

been chosen to suit most users, so that the process would be capable of

supporting many di�erent designs on a single silicon wafer.

The fabrication process begins with a 100mm n-type (100) silicon wafer,

which is �rst heavily doped with phosphorus. This helps to prevent or re-

duce charge feedthrough to the substrate from electrostatic devices on the

substrate. Next a 600nm low-stress LPCVD (low pressure chemical va-

por deposition) silicon nitride is deposited on the wafers as an electrical

isolation layer. This is followed by the deposition of a 500nm LPCVD

polysilicon �lm, denoted as Poly0. Poly0 is then patterned by photolithog-

raphy, a step that includes the coating of the wafers with photoresist,

exposure of the photoresist with the appropriate mask and developing of
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the exposed photoresist to create the desired etch mask for the subsequent

pattern transfer into the underlying layer. After patterning the photore-

sist, the Poly0 layer is etched in an RIE (reactive ion etch) system. A

2�m PSG (phosphosilicate glass) sacri�cial layer is deposited by LPCVD

and annealed at 1050oC for 1 hour in argon. This layer, known as First

Oxide, is removed at the end of the process to free the �rst mechanical

layer of polysilicon. The sacri�cial layer is lithographically patterned with

the anchor mask and reactive ion etched. After etching the anchor, the

�rst structural layer of polysilicon, Poly1, is deposited at a thickness of

2�m and doped, by anneal of a thin (200nm) layer of PSG. This layer is

etched to produce a hard mask for the subsequent polysilicon etch, and �-

nally removed by RIE. After Poly1 is etched, a second PSG layer (2�m) is

deposited (Second Oxide), annealed and patterned. At this stage, two dif-

ferent etch masks can be used: to etch in the Second Oxide down to Poly1,

or to etch both First and Second Oxide, down to the level of Poly0 (or

nitride). After this step, the second structural layer of polysilicon, Poly2,

is deposited (1:5�m thick), followed by a deposition of 200nm of PSG. As

with Poly1, the thin PSG acts as both an etch mask and dopant source

for Poly2. The wafer is annealed for one hour at 1050oC, before Poly2 is

patterned and the PSG layer is etched by RIE. The �nal deposited layer is

a 0:5�m metal layer, that provides for probing, bonding, electrical routing

and highly re
ective mirror surfaces. The wafer is patterned lithographi-

cally and the metal is deposited and patterned using lift-o�. The wafers are

diced and usually shipped to users for the sacri�cial oxide release, which

is done by immersing the chip in a bath of 49% HF, followed by DI water
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Film T [�A] SD [�A] SR [ohm/sq] R [ohm-cm]

Nitride 6193 238 - -

Poly0 5166 36 29.51 1.53e�3

Oxide1 19870 793 - -

Poly1 20334 168 10.54 2.14e�3

Oxide2 7581 200 - -

Poly2 15056 386 15.53 2.34e�3

Metal 5628 - 0.05 2.81e�6

Table 4.1: Some relevant data for Run 47 provided by the manufacturer.

T= thickness, SD= standard deviation, SR= sheet resistance, R= resis-

tivity.

and then critical point drying to reduce stiction.

The fabrication of our devices was part of run 47. Table 4.1 contains

relevant data for this run relative to the di�erent layers, as measured at the

completion of the process. Here T is thickness, SD is standard deviation,

SR is sheet resistance and R is resistivity. The values of thickness are

included because they correspond to geometrical parameters of the device.

They are used in Chapter 6 to compute the expected value of some charac-

teristic parameters of the device (resonant frequency, electrostatic sti�ness,

etc.). The values of the electrical parameters are given for completeness,

and to con�rm that the polysilicon layers are conductive.
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4.2 Device and Mask Design

In our design the cantilevers are arranged in arrays of ten elements, which

we considered a number large enough to infer properties on the dynamical

behavior of large arrays of electrostatically coupled units. A 3D schematic

of the array is shown in Figure 4.1.

Figure 4.1: Final design for multicantilever array. The top plates are con-

nected to a sturdy anchor, while the bottom plates are electrically isolated.

Notice that neither scales nor proportions are respected in this drawing,

which has only illustrative purposes. As can be seen, the top plates are

connected to a common base, while the bottom plates lay on the wafer

surface and are electrically isolated.

This con�guration was preferred over the one shown in Figure 4.2,

where the cantilevers are separate, closely spaced units to make the de-

vice more robust to mechanical shocks, deriving for instance from the use

of probes in testing, or the needle in the wire-bonder.

With the design shown in Figure 4.1 the top cantilevers share the same

electrical connection, which is typically grounded, while the independent

driving signals are applied through the bottom plates. Figure 4.3 is a

micrograph of one of the arrays fabricated.
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Figure 4.2: Initial design for multicantilever array. All cantilevers are

electrically isolated and closely spaced.

  Anchor

  Cantilevers

  Electrical Connections

  Metal Pad

Figure 4.3: Micrograph showing the typical geometry of one of the arrays

fabricated with PolyMUMPs.

More importantly, this con�guration introduces mechanical coupling in

the dynamics of the cantilevers, made even stronger by the presence of an

overhang between anchor and cantilever beam, as depicted in Figure 4.4,

which shows also a detail from the side view .

The length of the cantilevers in each array is the same, but each die
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 Metal Pad 

 Electrical Connections 

  A
  B

 a) 

  Overhang

  b)

  A
  B

Figure 4.4: Micrograph showing the overhang between anchor and can-

tilevers base, responsible for the strong mechanical coupling.

contains arrays with di�erent cantilevers lengths, in view of studying the

e�ects of coupling on di�erent geometries and also maximize the chances

of obtaining working devices. In particular, the following values of length

were considered : L = 100 � 150 � 200 � 250 � 300 � 500 �m. In all

the dies utilized during testing, the 300 and 500 �m cantilevers were bent,

touching the substrate; the 250�m were occasionally standing, while the

100� 150� 200�m were in most cases working devices. Figure 4.5 shows

an array where half of the cantilevers are released and straight, and half

are bent and touching the substrate.

The width of the cantilevers was chosen based on the minimum dis-

tance allowed by the PolyMUMPs process between neighboring cantilevers.

Since this distance could be 5�m at the least, we chose the width to be

w = 50�m, in a ratio of
1

10
so that the electrostatic coupling would be sig-

ni�cant. Moreover, in order to study di�erent cases of coupling strength,
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Figure 4.5: Micrograph showing an array with about half of the cantilevers

correctly released and half touching the bottom plates (a phenomenon

known as stiction).

the spacing between the cantilevers was designed to be either 5�m or 10�m.

The gap between top and bottom plates was not a design parameter,

but was �xed to d = 2�m, i.e. the thickness of the �rst oxide layer. Its

micrograph is shown in Figure 4.6.

Finally, Figure 4.7 shows a close up image of one of the arrays.

As described in the previous section, the PolyMUMPs process consists

of a non-patternable nitride isolation layer, a polysilicon ground (plane)

layer, two structural polysilicon layers, two oxide release layers, and one

metal layer for electrical connection and re
ectivity enhancement. Up to

eight masks can be designed for the patterning of these layers, according

to need. We used only six of them. The �rst one patterned Poly0 to form
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Figure 4.6: Micrograph showing the gap between top and bottom plates

of each cantilever capacitor.

the bottom plates of the cantilevers capacitors and a bottom layer for the

electrical contacts. The second one was used to pattern the First Oxide to

obtain the anchors of the cantilevers. The third one patterned the Poly1

layer, to obtain the top plates of the cantilevers and the common anchor.

The forth one etched both First and Second Oxide to form a mask for the

deposition of Poly2 for the electrical connections and the metal pad over

the anchor. The �fth one removed the Poly2 from unwanted places, leaving

it along the electrical connections only. The sixth and �nal mask was used

for the metal deposition.

*
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Figure 4.7: Close up image of one of the cantilever arrays. The lines visible

are the electrical connections between bottom plates and metal pads.
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Chapter 5

Mathematical Model

The translation of the qualitative physical behavior of a system into quan-

titative mathematical terms is a fundamental step in the engineering pro-

cess. This chapter is devoted to the derivation of a mathematical model

for both a single electrostatically actuated cantilever, (Section 5.1), and

for a multicantilever array, (Section 5.2).

For a single cantilever and for the common case of sinusoidal excitation,

we demonstrate, by using simple parallel plate theory that the dynamics

are governed by a special second order linear periodic di�erential equation:

the Mathieu equation. The model for a multicantilever array is similarly

derived after incorporating the description of the coupling interactions that

are both mechanical and electrostatic. In Section 5.2, we show how this

results in a coupled Mathieu equation.

57



5.1 Single Cantilever Model

The schematic of a single cantilever sensor is shown in Figure 5.1. It

consists of two adjacent electrically conductive beams forming the two

plates of a capacitor. One of the beams is rigid, while the other (hereafter

referred to as the cantilever) is fairly soft and represents the movable part

of the structure. In the following, the cantilever is treated as a lumped-
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Insulator layer
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Figure 5.1: A schematic of an electrostatically driven cantilever.

parameter system, and hence described by only taking into account its

�rst bending mode, and neglecting all higher order 
exible modes. This

approximation is quite common in the study of the dynamics of scanning

probe cantilevers [89, 90, 91].

If the length of the cantilever is much bigger than its distance from the

bottom plate, the capacitance can be expressed as

C(z) =
�oA

d� z
; (5.1)

where �o = 8:85 10�12As=Vm is the permittivity in vacuum, A is the area

of the plates, d is the gap between them and z is the vertical displacement

of the cantilever from its rest position.
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If we adopt the parallel plate approximation and apply a voltage V (t),

then Fe, the electrostatic attractive force between the capacitor plates, can

be expressed as

Fe = � d

dz
[
1

2
C(z)2V (t)] =

1

2

�oA

d2
V 2(t)

(1� z

d
)2
; (5.2)

which under the further assumption that
z

d
<< 1 and neglecting higher

order terms, can be approximated as

Fe =
1

2

�oA

d2
(1 + 2

z

d
)V 2(t): (5.3)

Whence the equation of motion is given by

m�z + � _z + kz =
1

2

�oA

d2
(1 + 2

z

d
)V 2(t); (5.4)

where k =
Ewt3

4L3
is the spring constant of the cantilever (
exure-mode), E

is the Young's modulus of the constitutive material, and L, w, t are length,

width and thickness of the cantilever respectively.

If we apply a sinusoidal voltage V (t) = Vo cos!ot, equation (5.4) can

be rewritten, after few algebraic steps, as

z00 + cz0 + (a� 2q cos 2t)z = uf(t); (5.5)

where the prime denotes the derivative with respect to the scaled time � =

!ot; c is a small damping coeÆcient, resulting from both air friction and

structural losses, a =
k

m!2
o

� �oAV
2
o

md3!2
o

, q =
�oAV

2
o

2md3!2
o

, and uf(t) = q d cos2(t).

Equation (5.5) is an instance of the Mathieu equation, a well-known and

studied di�erential equation that arises in boundary condition problems

involving the wave equation. When uf(t) � 0, this equation has very
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peculiar stability properties that have been extensively investigated and

are recalled in Section 3.2. In our case of interest, where uf(t) 6= 0 and

periodic, one can prove that, for any pair of parameters a and q, the forced

equation retains the same stability properties as the unforced one [81].

In our model, we consider the current generated as the output y of the

system

y = i(t) =
d

dt
[CV (t)] = ��oA

d2
V

(1� z

d
)2
_z +

�oA

d

_V

(1� z

d
)
;

whose �rst order approximation is given by

y = c1(t)z + c2(t)z
0 + vf(t); (5.6)

where c1(t) = ��oAVowo

d2
sin t, c2(t) =

�oAVo

d2
cos t, and vf (t) =

�oAVowo

d
sin t.

Introducing the vector x = [z _z]T , we can derive from (5.5) and (5.6)

the state space representation of the cantilever model

x0 = A(t)x +B(t)uf(t)

y = C(t)x+ vf (t);
(5.7)

where A(t) =

2
4 0 1

�a + 2q cos 2t �c

3
5; B =

2
4 0

1

3
5 and C(t) = [c1(t) c2(t)].

Note that (5.7) is a linear time-varying and T -periodic model, with

T = �. Section 6.2 o�ers a detailed account of the experimental validation

of this model.

In the following section we show how this model can be modi�ed to

describe the dynamics of a tightly packed array of cantilevers, where the

coupling interactions need to be taken into account.
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5.2 Multicantilever Model

In this section we derive a mathematical model for the parallel connec-

tion of several electrostatically actuated microcantilevers. As illustrated

Figure 5.2: A schematic of the multicantilever array.

in Section 4.2 and schematically shown in Figure 5.2, the architecture we

selected for the array con�guration has the cantilevers connected to a com-

mon anchor, while the bottom plates are electrically isolated. Even though

in this fashion each cantilever can be independently actuated, the proxim-

ity introduces coupling in their dynamics. More precisely, the coupling is

mechanical because the microbeams are connected to the same base, and

electrical due to the fringing �elds generated by the capacitors nearby. As

a consequence, the model introduced in the previous section for a single

cantilever has to be modi�ed to take into account this interaction.

The force acting on each microbeam consists of several components, so

that the overall linearized equation of motion for the vertical displacement

zi, i = 1; 2, of each cantilever can be written as

�zi + �i _zi + !2
rizi = Fe;i + Fmc;i + F?

ec;i; (5.8)

where �i and !ri are the normalized damping coeÆcient and the natural

resonant frequency of the i-th cantilever respectively. Here Fe;i expresses
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the electrostatic force between the capacitor plates of the i-th cantilever.

As illustrated in the previous section, by using parallel plate theory, its

linearized expression can be shown to be

Fe;i =
�oA

2md2
(1 + 2

zi

d
)V 2

i ;

where again �o = 8:85 10�12As=V m is the permittivity in vacuum, d is the

gap between the electrodes, A is the area of the capacitor plates, m their

mass, and Vi is the voltage applied.

The mechanical coupling force Fmc;i originates from the fact that the

cantilevers are connected to the base through an overhang, visible in Figure

4.4 of Section 4.2. Fmc;i has been modelled as a spring like force, propor-

tional to the di�erence in the vertical displacement of the cantilevers,

Fmc;i =
X
j 6=i


i;j(zi � zj):

Due to the symmetry of the array, the coeÆcients 
i;j are even functions of

j, i.e. 
i;j = 
i;�j. Moreover, as it is reasonable to expect from a physical

point of view, their value decays to zero as j tends to in�nity.

As far as the electrostatic coupling is concerned, we assume that the

voltage applied to each capacitor results in a charge induced on each can-

tilever. This can be expressed as

q1 = �c1;1V1 + �c1;2V2 + : : :+ �c1;NVN ; (5.9)

q2 = �c2;1V1 + �c2;2V2 + : : :+ �c2;NVN ; (5.10)

... (5.11)

qN = �cN;1V1 + �cN;2V2 + : : :+ �cN;NVN : (5.12)
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Note that when all conductors are grounded except the ith, which is kept

at 1 Volt, �ci;j are equal to the charges qj on the various cantilevers. Hence,

from reciprocity it follows that �ci;j = �cj;i . Moreover, in order to maintain

the ith cantilever at 1 V and the others at zero potential, qi must be positive

and all other charges negative. Therefore

�ci;i � 0 (5.13)

�ci;j � 0 i 6= j: (5.14)

The interaction between these induced charges is described via a point

charge model. The basic idea is shown schematically in Figure (5.3), that

depicts only the case of two capacitors. Each cantilever is represented as a

charged particle, qi, and the mutual interaction is described by Coulomb's

law

Fec;i = 1
4��o

qiqj

r2

= 1
4��o

(
P

k
�ci;kVk)(

P
m

�cj;mVm)

[p2
ij
+(zi�zj)2] ; j 6= i

where pij = ji� jjp is the pitch distance between the i-th and j-th capac-

p

+ + + + + + +                   + + + + + + +

r

d-z
d-z

q

q

i

i

i+1

i+1Fa

+  +  +  +  +               +  +  +  +  +  +

Figure 5.3: A schematic of the coupling capacitance model.

itors, and zi is the vertical displacement of the i-th cantilever. We assume

63



that the lateral sti�ness of the cantilevers is large enough to prevent any

lateral motion, so that the only component of the force that mainly a�ects

their behavior is the vertical one, whose �rst order approximation, in the

case of two cantilevers, is given by

F?
ec;i = Fec;i

zi � zjq
p2ij + (zi � zj)2

= [ciiV
2
i + ci;jViVj + cj;jV

2
j ](zi � zj): (5.15)

From equation (5.8) and for the special case of identical cantilevers,

!ri = !rj = !r, and equal inputs, Vi = Vj = Vo cos(!ot) 8j, the state

equations for the i-th cantilever become

x1(t; i)
0 = x2(t; i)

x2(t; i)
0 = [�a1 + 2q1 cos 2t]x1(t; i)� cx2(t; i) + u(t; i)+

+
P

j 6=i [�i;j + aij � aij cos 2t] x1(t; j);

(5.16)

where the prime denotes the derivative with respect to the scaled time

� = !ot; a1 = a � �a, q1 = q +
�a

2
, with a and q de�ned in equation 5.5,

�a being the sum of the convergent series �a =
P

j 6=i(�i;j + aij), �i;j =

i;j

!2
o

,

aij =
V 2
o

2!2
o

P
j ki;j, and ki;j =

P
j ci;j. Note that here i is the spatial

variable, introduced to denote the cantilevers in the array.

Equations (5.16) provide a local description of the system, where by

local we mean limited to the i-th cantilever. However, no term in equations

(5.16) is speci�c to the i-th cantilever, i.e. modulo a shift in the spatial

index, these equations describe the dynamical behavior of any cantilever

in the structure. Systems that satisfy this property are called spatially-

invariant [64]. Some fundamental results in the theory for this class of

systems have been presented in Section 2.3. In particular, we have seen that
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by applying the Fourier transform in the spatial coordinate, the in�nite

dimensional system (5.16) can be associated with a parameterized family

of �nite dimensional ones

x̂1(t; �) = x̂2(t; �)

x̂2(t; �) = [�a(�) + 2q(�) cos 2t] x̂1(t; �)� c x̂2(t; �) + û(t; �)
(5.17)

where the symbol ^ denotes the Fourier transform in space, â(�) = a �P
m6=n(�n;m + an;m)e

�i�m, q̂(t; �) = q �Pm6=n an;me
�i�m. In the special

case of a nearest-neighbor interaction, the parameters of equation (5.17)

are given explicitely by

a(�) = a� 2(�12 + a12) cos �

and

q(�) = q � 2a12 cos �:

*
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Chapter 6

Experimental Characterization

of the Device

This chapter describes the experiments that were performed to both char-

acterize the dynamical behavior of electrostatically actuated cantilevers

and validate the model proposed in Chapter 5.

The measurements were taken using the vibrometer testing technique,

whose principle of operation is described in Section 6.1. Section 6.2 presents

the experiments performed for the characterization of the dynamics of a

single cantilever. The results show very good agreement with the behavior

predicted by the model, both in the linear regime of operation and in

parametric resonance. A similar analysis was conducted on pairs of coupled

cantilevers. The results of testing are discussed in Section 6.3 and are used

to provide validation for the model of the array of cantilevers.
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6.1 Testing Technique Using a Vibrometer

Laser vibrometry was used to perform the experiments for characteriza-

tion of cantilever dynamics and validation of the proposed model. The

instrumentation suite is the one developed and characterized in [1, 92].

Figure 6.1: Schematic of the experimental setup, courtesy of [1].

Figure 6.1 is a schematic of the experimental setup. The device, pack-

aged in a 24-pin IC carrier (Spectrum Semiconductor Materials, HYB20408),

is lodged in a vacuum chamber and wire-bonded to the contact pins. The

connection to the rest of the laboratory test equipment is via an electrical

feed-through on the vacuum chamber. The pressure inside the chamber

can be regulated and was kept at p = 8mtorr during the experiments.
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The excitation voltage for driving the devices being tested is generated

by a power source (Hewlett Packard, HP3245A), while the oscillation ve-

locity and position are measured at the free end of the cantilever using a

laser vibrometer (Polytec, OFV 3001, OFV 511). The laser beam is focused

onto the device using an optical microscope, which can be positioned over

the sample via a computer controlled, mechanical x-y positioning mech-

anism. The measurement is based on interferometry, in which the idea

is to split the laser beam into two (coherent) beams: one that impinges

on the device tested, the other on a reference target. The relation be-

tween the di�erence in phase and the di�erence in path length traversed

by the two beams is then translated into displacement of the beam. Due

to the relatively high working frequency and the small displacement of the

cantilevers (f � 50kHz and x = O(nm)), we worked with velocity mea-

surements, which for high frequencies are more reliable and accurate than

position measurements [52].

The results of these measurements are recorded and analyzed with a

signal analyzer (Hewlett Packard, HP89410A) and oscilloscope (Tektronics,

TDS 420A). The instruments are interfaced to a PC, where data can be

stored for further analysis.

6.2 Testing of a Single Cantilever

We started out our experimental investigation of the dynamics of electro-

statically actuated cantilever arrays by analyzing the behavior of a single

cantilever. We realized that it was necessary to isolate the cantilever under
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test from the others in the same array, by physically removing all cantilevers

nearby. Because of mechanical coupling, which was stronger than initially

expected, the dynamics of a given cantilever was heavily in
uenced by its

neighbors, even when the neighbors were grounded. The �rst attempts at

cutting the cantilevers with a Focused Ion Beam (FIB) was unsuccessful,

because the ion beam would charge the capacitor plates and snap them

into contact. Hence, we had to resort to breaking them o� manually using

a conventional probe tip.

The experiments reported in this section were conducted on 200�m�
50�m � 2�m, highly doped polysilicon cantilevers, with a gap between

the electrodes of about 2�m. The cantilevers were fabricated using the

MUMPS/CRONOS process, which was described in Section 4.1. Figure

6.2 is a micrograph of an actual device. The mechanical response of the

Figure 6.2: SEM image of a polySi cantilever. The inset shows details of

the mechanical connection to the base.

69



cantilever was tested in vacuum using laser vibrometry [1] to measure ve-

locity near its free end.

A preliminary set of experiments were done to verify that the value of

the pressure used was low enough to guarantee a stable value of the quality

factor Q, whence reliable data. The quality factor Q is a measure of energy

loss in a system, and is de�ned as the ratio between the frequency of peak

amplitude in the frequency response, fr, and the bandwidth of the points

f1 and f2 between which the amplitude is reduced by a factor of
1p
2
:

Q =
fr

f2 � f1
:

Figure 6.3 shows the relation between Q and pressure. As expected, as

the pressure p is lowered, Q increases, until it settles to an approximately

constant value, independent of p.
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Figure 6.3: Variation of Q with pressure p.
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The rest of the experiments reported in this dissertation was performed

at a nominal pressure of p = 8mtorr, well within the 
at region for the

value of Q. Therefore we could disregard small 
uctuations in the value of

p, since these would not a�ect Q.
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Figure 6.4: Frequency response of the cantilever: the solid line corresponds

to measured data, the dashed one is its least square �t.

In our �rst experiments, we attempted to identify the system using as

a simple mass-spring-damper model. In fact, when the amplitude Vo of the

AC actuation voltage is small enough, the coeÆcient q in equation (5.5) is

negligible, and the beam can be approximately described by an ordinary
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second order di�erential equation,

�z + 2�!r _z + !2
rz = u2(t): (6.1)

Figure 6.4 shows the magnitude, both measured and identi�ed, of the fre-

quency response of this model, excited by a square-rooted sinusoidal signal.

A least square �tting of the data gives a resonant frequency of approxi-

mately fr = 50800 Hz, a damping coeÆcient � = 2:1 � 10�4, while the

quality factor Q = 2200 is, as expected, quite high. The value of these pa-

rameters was con�rmed by time domain identi�cation experiments as well.

Figure 6.5 shows the measured velocity of the cantilever when subject to

a step input. In fact, the descending fronts of the step can be considered

to act as an impulse excitation. Hence, the frequency of free vibration of

the beam corresponds to its natural frequency. At the same time, an ex-

ponential �t of the decay rate of this free response can be used to identify

the damping factor �. The results obtained by this method were in very

good agreement with those obtained by frequency identi�cation, with an

error in the order of 2%.

The Young's modulus for Cronos' polysilicon is E = 158� 10 GPa and

its density is � = 2300Kg=m3. We assume that the e�ective thickness t of

the capacitor coincides with its nominal value. Hence, from the experimen-

tal value of the resonant frequency and the formula !rn =
1

2

t

L2

r
E

�
, we

infer that the e�ective length of the capacitor plate is about L = 160 �m,

opposed to a designed value of 200 �m.

It can be demonstrated experimentally that, by applying an external

voltage to the cantilever, its resonant frequency !r is shifted by an amount

that depends on the amplitude of that voltage. This phenomenon is easily
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Figure 6.5: Analysis of cantilever response to a step input of amplitude

A = 50 V . a) Full trace showing exponential decay; b) detail showing

oscillation at natural resonant frequency. The red line represents the input

in arbitrary units.

explained by examining equation (5.5), from which we derive the following

relation between resonant frequency and voltage applied

!2
r = !2

rn � !2
eV

2
o ; (6.2)

where !rn denotes the natural resonant frequency of the beam, and !2
e =

�oA

md3
is what we call \electrostatic resonance". To identify the value of !e

we performed a set of experiments in which we applied a sinusoidal voltage

u(t) = VDC + VACcos!t;

with VDC varying from VDC = �500 mV to VDC = 300 mV, with incre-

ments of 100 mV. In this case, Vo of equation (6.2) is the e�ective input
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Figure 6.6: Experimental identi�cation of the electrostatic resonance. The

circles represent measured values of resonance frequency, the solid line is

their linear �t.

DC component, V 2
o = V 2

DC+
1

2
V 2
AC . Figure 6.6 shows the experimental data

collected, marked with a circle, and their linear �t, which gives a value of

!2
e = 2:63� 108 rad2=s2V2, which is in good agreement with its theoretical

value.

As the amplitude of the driving signal increases, the motion of the

beam becomes larger and the linear approximation of equation (6.1) is no

longer appropriate. A non linear cubic term, due to both mechanical and

electrostatic forces, appears in the equation, which needs to be modi�ed

as follows:

�z + 2�!r _z + !2
rz + a3z

3 = u2(t): (6.3)
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Figure 6.7: E�ect of cubic nonlinearity on the frequency response of the

cantilever. The dots denote experimental data, the solid lines their �t.

Notice how the curve tilts on one side as the e�ect of the cubic term

becomes no longer negligible.

The e�ect of the cubic nonlinearity is visible in Fig.6.7, which depicts

the experimentally measured frequency response of the cantilever, when

the input amplitude is varied from Vo = 1 V to Vo = 2:5 V in increments of

0:5 V. As the amplitude of Vo increases, the frequency response starts to

tilt on one side, showing the characteristic behavior of a DuÆng oscillator.

The sign of the cubic coeÆcient determines the side to which the curve

tilts. The two cases are known as the softening spring (a3 < 0) and the
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hardening spring (a3 > 0), with the case depicted in Fig.6.7 corresponding

to a negative coeÆcient.

4.97 4.972 4.974 4.976 4.978 4.98 4.982

x 10
4

50

100

150

200

250

300

350

400

450

 Frequency [Hz]

 V
el

oc
ity

 [m
m

/s
]

Figure 6.8: E�ect of cubic nonlinearity on the frequency response of the

cantilever. The circles correspond to data collected by sweeping the fre-

quency from low to high, the asterisks to data collected by sweeping the

frequency from high to low.

In dynamical systems terms, the tilt in the frequency response corre-

sponds to the existence of a bistable region, where one small-amplitude

and one large-amplitude stable harmonic solution coexist. Depending on

the initial conditions, the solution of (6.3) converges to one of these two

coexisting periodic attractors. Experimentally, this is re
ected by the fact

that the resonance response measured sweeping the frequency from low to
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high is di�erent from the one obtained by reversing the sweep direction

(see Fig.6.8). It should be noted that in this region, there also exists an

unstable solution, which cannot be recorded experimentally.
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Figure 6.9: Experimental identi�cation of the coeÆcient of cubic sti�ness.

Squares denote experimental data, solid lines their �t.

The coeÆcient of cubic sti�ness a3 can be decomposed into the sum

of two parts: the mechanical contribution a3m and the electrostatic con-

tribution a3e = �2�oA

md5
. The expression for a3e is derived from the power

expansion of the electrostatic force Fe (see (5.3)). Note that it is multi-

plied by the square of the voltage amplitude, therefore its e�ect becomes

stronger with increasing inputs. Figure 6.9 a) shows the least square �t of

frequency response curves obtained for di�erent values of the input voltage

(from Vo = 2:45 V to Vo = 2:6 V with increments of 50 mV). Part b) of

the same �gure is the linear interpolation of the �tted data, which gives an

estimate for the mechanical cubic sti�ness of a3m = 3:6� 107
�N

�m3
, and for

the electrostatic sti�ness a3e = 2:3�107
�N

�m3
, comparable to its theoretical
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expected value a3;e�theo = 2:1� 107
�N

�m3
.

Not only does the e�ect of the nonlinearities become more prominent as

the input increases, but also the value of the coeÆcient q of the time varying

term in (5.5)|which we have neglected so far|becomes larger. Hence the

time invariant approximation (6.3) is no longer suitable for describing the

dynamical behavior of the system and we need to return to the full non

linear time-varying equation

�z + c _z + [a� 2q cos 2!ot]z + a3z
3 = u2(t); (6.4)

where c = 2�!r, a = !2
r and q =

�oAV
2
o

2md3
from Section 5.1. Equation (6.4)

is an example of a non linear, damped Mathieu equation with forcing.

Its properties, in the absence of damping, external forcing and nonlinear-

ity, have been discussed in some detail in Section 3.2, in which it was

shown that the a-q parameter space can be divided into tongue-shaped

stable/unstable regions.

These regions can be redrawn in terms of the physical parameters of

the device. Let's neglect for the moment damping, external forcing and

nonlinearity. If we rescale the time variable � = !ot in (6.4), we have

z00 + [~a� 2~q cos 2� ]z = 0; (6.5)

with ~a =
a

!2
o

and ~q =
q

!2
o

. Equation (6.5) is now a standard Mathieu

equation, for which in Section 3.2 we have shown that the unstable regions

occurr for ~a = n2, n 2 N . Thus, we obtain that the driving frequencies !o

that cause unstable responses in the system are given by

!o =
!r

n
� !rn

n
n 2 N ; (6.6)
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where we have used the de�nition of a = !2
r = !2

rn�!2
eV

2
o , with the second

equality coming from (6.2). Similarly, the boundaries of the �rst instability

region, given by ~a = 1� ~q for (6.5), are de�ned in terms of frequency and

amplitude of excitation by

!2
o = 2!2

r � 2

�
1� 1

2

�
!2
eV

2
o ; (6.7)

which are obtained using the de�nition of q. It can be proved that the

presence of a damping term has only the e�ect of shifting the tongues up-

wards in the a-q parameter space. In our setup this is of little consequence,

because the magnitude of the shift is relatively small. However this is not

always the case and in fact this is the reason why parametric resonance is

diÆcult to observe at the macroscale.

Figure 6.10 is a comparison between the experimental data relative to

the boundaries of the �rst instability region, and the same curves obtained

from two sets of parameters. The solid line in Fig. 6.10 is the best �t of

the experimental data using (6.7), the dash-dotted line is the �t of (6.7),

in which the value of the parameters is that of the frequency response

identi�cation. In these experiments the cantilever was excited by a square

rooted sinusoidal input, to avoid the presence of a harmonic component in

the input. Thus, the condition (6.6) has to be modi�ed as !o =� 2!rn
n
.

In fact, in this case the time scaling required to transform the dynamical

equation into an equation equivalent to (3.2) is � =
!ot

2
.

Inside the \tongue", the cantilever oscillation does not grow unbounded,

as predicted by the linear analysis. As discussed in Section 3.2, the presence

of a nonlinear cubic term in (6.4) has the e�ect of bounding the amplitude

of the oscillation. What we observe when driving the cantilever in the
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Figure 6.10: First instability region: experimental data points (circles) and

curves with identi�ed parameters. The inset shows the upward shift of the

tongue caused by damping.

parametric resonance regime is a subharmonic 2:1 oscillation of the beam

[83]. As shown in Fig.6.11, the cantilever vibrates at half the frequency of

excitation (oscilloscope data). Also, note that during the transition from

non-parametric to parametric region, the response shows a characteristic

exponential growth (see Fig. 6.12).

Above the critical driving voltage amplitude, and for driving frequen-

cies near the �rst parametric resonance, the response of the cantilever has

the shape depicted in Fig.6.13. The two curves shown represent data col-

lected by sweeping the driving frequency from low to high (`+' points) and
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Figure 6.11: Time series of typical input and output signals inside the

�rst \tongue" (oscilloscope data). Note the response is at half the driving

frequency.

from high to low (`o' points), as indicated by the arrows. The vertical axis

represents the amplitude of the periodic (half frequency) velocity of the

beam, while the horizontal axis is the frequency of excitation. We noted

earlier that this kind of plot is typical of oscillators having a cubic nonlin-

earity (DuÆng). What is worth noting here is the sharp transition of the

output response (vertical segment of '+' data) that marks the entrance into

the parametric region (region II). Since this transition always occurs for

the same value !1 � 2!r, related to the resonant frequency of the beam,

the phenomenon has potentially many applications, from the realization

of mechanical �lters [42, 43, 65, 68] to extremely sensitive mass sensors

81



0 2 4 6 8 10
−150

−100

−50

0

50

100

150

Time [s]

V
el

oc
ity

 [m
m

/s
]

Figure 6.12: Exponential growth of oscillation following parametric exci-

tation. Experimental data.

[66]. Inside the parametric region, the system exhibits a stable periodic

oscillation, whose amplitude decreases as the driving frequency increases,

until it goes to zero upon exiting the region (region III). Note that the size

of the interval [!1 !2] corresponds to the width of the parametric tongue

represented in Fig. 6.10 for the considered input amplitude value. If we

reverse the process and start decreasing the frequency, the output ampli-

tude, which is zero at the beginning, starts to increase as soon as we enter

the parametric region. This subharmonic periodic solution remains stable

even after leaving the region and its amplitude keeps increasing (region I).

However, it is only a matter of time before it collapses to zero. The loca-

tion of this second jump is not predictable and depends on the amplitude

of the frequency decrements, i.e. on the initial conditions.
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Figure 6.13: Frequency response above critical driving voltage amplitude

(A = 10 V ). The solid and dashed lines have been added to the experi-

mental data points (marked with `o' and `+') to facilitate the reading.

To conclude this section, we point out that these experimental results

reproduce the expected behavior obtained by analysis and simulations in

Section 3.2.

6.2.1 Combined Harmonic-Parametric Response

When driving the system with a sinusoidal voltage, V (t) = VDC+Vo cos!t,

equation (6.4) becomes

z00+ cz0+(a� 2p cos t� 2q cos 2t)z+ a2z
3 = bo+ b1 cos t+ b2 cos 2t; (6.8)

where p = �oAVDCVo
2md3w2

o

, bo = V 2
DC +

V 2
o

2
, b1 = pd, and b2 = qd. When the

frequency of the driving signal is close to the resonant frequency wr of the
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6.3 Testing of a Pair of Cantilevers

As a second natural step in the experimental investigation of the dynamics

of electrostatically actuated cantilever arrays, we have analyzed the case

of a pair of cantilevers. This can be considered as the simplest example of

an array because it has all the important features of more complex con-

�gurations, such as independent actuation and coupled dynamics. Hence,

studying it can provide useful insight into the behavior of larger arrays and

validation for the in�nite array model as well.

Figure 6.16 shows the geometry of the device. It consists of two mi-

crobeams connected to the same base, each forming a micro-capacitor. By

applying a voltage across the plates, each cantilever can be independently

actuated. As discussed in the previous section and as shown in Fig. 6.16,

all nearby cantilevers in the array had to be removed, because the strong

mechanical coupling between them would corrupt the measurements.

Similar to the single cantilever case, each beam is 200�m�50�m�2�m
highly doped polysilicon, with a gap between the electrodes of about 2�m

and separated by a distance of 5�m.

In this case also, experiments were performed in vacuum (p = 8 mtorr),

using laser vibrometry [1] to measure velocity near the free end of each

cantilever. The close spacing and the fact that the cantilevers are connected

to a common base introduces coupling in their dynamics, which is both

electrostatic and mechanical. Even though this might be considered a

drawback of the design, the close spacing allows for a higher throughput

device. We will show how the electrostatic coupling adds features to the

device, which are interesting from an engineering point of view. Moreover,
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Figure 6.16: SEM micrograph of the device. The insets show details of the

mechanical connection to the base and between the cantilevers.

in Section 8.1, we demonstrate how the system can be e�ectively decoupled

using an appropriate control strategy.

In Section 5.2, we have derived a model for an array of microcantilevers

that explicitely incorporates the mechanical and electrostatic couplings.

Recall that the mechanical coupling was modelled as a spring like force,

while the electrostatic coupling was modelled as a Coulomb interaction

force between charged particles. By specializing that model to the case of

two cantilevers, and for the particular but relevant case of Vi = Voi cos!t,

we obtain the following linearized equation of motion for the vertical dis-
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placement zi of each cantilever:2
4 �z1

�z2

3
5 +

2
4 �1 0

0 �2

3
5
2
4 _z1

_z2

3
5+

+

8<
:
2
4 !2

1 
1


1 !2
2

3
5+

2
4 �1 
2


2 �2

3
5 cos(2!t)

9=
;
2
4 z1

z2

3
5 =

2
4 b1 0

0 b1

3
5
2
4 V 2

1

V 2
2

3
5

(6.9)

where !2
i = !2

ri � � � (KeV
2
oi + KT ), �i = �(KeV

2
oi + KT ), 
1 = � + KT ,


2 = KT , KT = (K11V
2
o1 + K12Vo1Vo2 +K22V

2
o2)=2, b1 = Ked=2 and Ke =

�oA=(md
3); or equivalently, introducing the vector Z = [z1 z2]

T 2 R
2,

U = [V 2
1 V 2

2 ]
T and de�ning the appropriate matrices

�Z + � _Z + [� + �E cos(2!t)]Z = kU; Z 2 R
2�1 (6.10)

where � represents a small perturbation parameter. The results presented

in the rest of this section will justify this notation.

Eq.(6.10) represents a system of periodic di�erential equations, which

we refer to as a vector Mathieu equation, since its algebraic structure is rem-

iniscent of the famous Mathieu equation. In the absence of coupling, they

reduce to a pair of independent scalar Mathieu equations, which describe

the dynamics of an isolated beam [37].

6.3.1 Linear Regime of Operation

The �rst set of experiments was performed to characterize the system in

its linear regime of operation, that is for small input signals. When the

amplitude of the applied voltage Voi in Eq.(6.10) is small, the time-varying
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coeÆcients can be neglected and the device is described by a system of

second order ordinary di�erential equations.

�Z + � _Z +�Z = kU: (6.11)

Let Gij denote the transfer function from the voltage input applied to

the j-th cantilever to the velocity output measured on the i-th cantilever,

when the other voltage input is set to zero. The analytical expression of

these transfer functions can be found to be

Gii =
b1s(s

2 + �is + !
2

ri � � +KiiV
2

oi)

(s2 + �is+ !
2

ri
� �� (Ke �Kii)V

2

oi
)(s2 + �js + !

2

rj
� � +KiiV

2

oi
)� (��KiiV

2

oi
)2
;

Gij = �
b1s(��KiiV

2

oi)

(s2 + �is+ !
2

ri
� �� (Ke �Kii)V

2

oi
)(s2 + �js+ !

2

rj
� � +KiiV

2

oi
)� (��KiiV

2

oi
)2
;

which, by introducing the appropriate parameters, can be rewritten in the

following form, which is more convenient for subsequent analysis

Gii =
b1s(s

2 + �is+ !2
zi
)

(s2 + a1is+ !2
pk1)(s

2 + a2is+ !2
pk2)

;

Gij =
cis

(s2 + a1is+ !2
pk1)(s

2 + a2is+ !2
pk2)

:
(6.12)

Figure (6.17) represents the experimental and �tted data of these frequency

responses. Notice the presence of two peaks in the frequency response of

each single cantilever, a consequence of coupling, predicted by Eq.(6.12).

This frequency characteristic leads to potentially interesting applications

in the �eld of micromechanical (pass-band) �lters [93]. The peaks corre-

spond to the so-called normal modes of the system and their values coincide

approximately to !pk1 and !pk2. The center frequency is determined pri-

marily by the frequencies of the constituent resonators, while the spacing

between the modes is determined largely by the strength of the mechanical
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coupling. This fact can be used advantageously to implement �lters with

tunable center frequencies. In fact, the center frequency can be adjusted

by applying an appropriate DC bias, as illustrated by (6.2) in the previous

section. It can be proved that each mode peak corresponds to a distinct,

physical mode shape. In particular the oscillation of the microbeams is in

phase for ! = !pk1 and in anti-phase for ! = !pk2 [94].
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Figure 6.17: Magnitude of the frequency responses of the coupled can-

tilevers with di�erent input/output combinations. The circles represents

experimental data; the solid line the �tted data.
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By �tting our model to the experimental data, as shown in Figure

(6.17), we �nd that the resonant frequencies of the isolated beams are

!r1 = 48870Hz and !r2 = 51520Hz respectively, while the quality factors

are Q1 = Q2 � 3000. The di�erence between the values of !r1 and !r2,

in spite of the fact that the beams have the same geometry and material,

is to be attributed to the asymmetry of the anchor in the point where

it connects to the beams, visible in Figure(6.16) and also in the ANSYS

model of Figure(6.20).

Identi�cation of Mechanical and Electrostatic Coupling CoeÆ-

cients

The coeÆcient of mechanical coupling � was estimated using the Power

Spectral Density (PSD) of the vibrations induced by thermal noise. In

fact, by setting both inputs to zero, the electrostatic coupling is eliminated

and the e�ect of � can be isolated. More precisely, the location of the

peaks in the frequency responses is, in this case, solely determined by �.

Figure (6.18 c,d) shows the experimental characterization of noise that, as

expected, has a Gaussian distribution. From stochastic �ltering theory it

is known that the PSD Sy of the output of a linear system G excited by

random noise e is given by

Sy(!) = G(!)G(!)�Se(!) = jG(!)j2Se(!); (6.13)

where Se is the PSD of the input noise. In our case, since the system

has two inputs, and the noise on each of them is mutually independent,
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Eq.(6.13) becomes

Syi(!) = jGii(!)j2Sei(!) + jGij(!)j2Sej (!);
= (jGii(!)j2 + jGij(!)j2)Se(!);

(6.14)

where the last equality follows from the fact that e1 and e2 have the same

stochastic description. Since the PSD Se of thermal noise is constant,

Eq.(6.14) suggests a way to extrapolate the value of � from the value of

the normal modes. Parts a) and b) of Figure (6.18) show the comparison

between measured data and a �t using Eq.(6.14). Note that the region

between the two peaks is below the noise level of our instrumentation,

hence a good �t cannot be obtained.

By examining the numerator of G11 and G22 in (6.12), we can notice

the presence of a resonant zero, visible also in Fig.(6.17) as a dip in the

magnitude plot of these functions. This zero frequency is called antireso-

nance [94], and its value is approximately equal to !2
zi = !2

ri � � +KiiV
2
oi.

This expression highlights that its existence is due to the mechanical and

electrostatic coupling, and its location changes with the amplitude of the

driving voltage. This property gave us a way to estimate the values of

the electrostatic coeÆcients K11 and K22, as shown in Figure 6.19 a) and

b). In fact, the shift in the zero location depends linearly on the voltage

applied, and the coeÆcient of proportionality is given by K11 for G11 and

K22 for G22. In a similar fashion, the coeÆcient Ke was estimated from

the shift in the poles with the applied AC voltage. Finally, the coeÆcient

K12 was estimated by applying the same voltage to both inputs. In this

case the system is speci�ed by only two transfer functions, whose analytical

expression can be easily derived from (6.11). In particular, the numerator
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Figure 6.18: Fit of PSD of thermal noise to determine �: a) cantilever

1, b) cantilever 2. The region between the two peaks is below the noise

level of our instrumentation. c,d) Experimental characterization of noise

distribution (104 samples of the noise signal at the vibrometer output).

of the transfer function of cantilever 1 turns out to be

n1(s) = b1s(s
2 + �2s+ !2

r2 � 2��KeV
2
o + 2KT ) = b1s(s

2 + �2s+ ~!2
z1):

From this expression we can see that also in this case the location of the

zero is related to the changes with the amplitude of the AC voltage applied,

Vo.

It is worth noting that the equivalent sti�nesses corresponding to these

eletrostatic coupling parameters are quite large, indicating signi�cant cou-
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�cient of the attractive force, Fe;i, between the cantilever and its ground

plate.

pling in this system, but two orders of magnitude smaller than the mechan-

ical sti�ness of the uncoupled cantilever, justifying the notation of (6.15),

where they are represented as a perturbation to a time invariant equation.

Finite Element Method Simulations

We performed simulations using �nite element methods to verify the ex-

perimental �ndings. The pair of cantilevers has been modelled according
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to the actual physical con�guration, as shown in Fig.(6.16). In particular,

both the anchor and the overhang which connects the two beams have been

explicitely incorporated in the model. The geometry generated in ANSYS

is shown in Fig.(6.20 a). The values of the �rst two modes, found by modal

analysis using the element Solid92, match well with the values of the two

peaks in the frequency response found experimentally. Fig.(6.20 b,c) shows

the ANSYS model corresponding to the isolated cantilevers. These mod-

els have been used to determine the resonant frequency of the uncoupled

cantilevers. Table I presents values of several signi�cant parameters ob-

Figure 6.20: Ansys model of the cantilever pair a), and of the single can-

tilevers b,c).

tained by identi�cation and compares them with the value obtained by

�nite element simulations. The agreement is satisfactory.

As the amplitude of the driving signal increases, so do the values of �i

and 
2 and this linear time-invariant approximation of the system is no
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Table 6.1: Comparison between the values obtained by testing and by �nite

element simulations of some relevant parameters of the model.

!pk1 !pk2 !r1 !r2 �

FEM 50045 55868 48830 51681 1:10e10

Testing 48896 55417 48870 51520 1:02e10

Error 2.3% 0.8% 0.1% 0.3% 7.8%

longer appropriate. In order to predict and explain the rich dynamics that

the system shows, we have to return to the original equations (6.10).

6.3.2 Parametric Resonance

Ignoring damping and external excitations, (6.10) can be written as

�Z + [� + �E cos(2!t)]Z = 0 Z 2 R
2�1; (6.15)

which can be considered the vector extension of a standard Mathieu equa-

tion. In Section 3.3 we have demonstrated that parametric resonance oc-

curs also in systems described by equations of this form. In particular, we

have shown that each region of parametric ampli�cation in this case can be

composed by multiple tongues. The location of these tongues is determined

by the system parameters, and more speci�cally by the eigenvalues of �

in (6.15). These eigenvalues coincide with the normal mode frequencies of

the system, which are approximately equal to the peaks in the frequency

response. Hence, from (3.23) we have that the tongues can emanate from

!pk;iT = n� n 2 N ;
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and

(!pk;1 � !pk;2)T = 2n� n 2 N ;

with T =
�

w
in (6.15), so that in terms of the frequency of excitation we

have

! � !pk;i

n
n 2 N ; i = 1; 2

and

! � !pk;1 � !pk;2

2n
: n 2 N (6.16)

It is worth noting that also in this case the presence of a damping term has

the e�ect of making the tongues narrower and shifting them upwards, so

that there is a critical voltage amplitude above which parametric resonance

can be induced [83], but does not a�ect the stability analysis.

Figure (6.21) shows the experimental mapping of the �rst region (n = 1)

for our pair of cantilevers. During these experiments one of the inputs was

set to zero, while the other was set to Vi =
Vo
2

p
1 + cos!ot. Which input is

selected is in fact inconsequential, given the symmetry of the device, and

the results can be reproduced using either one of them. Note that when

the input is a square-rooted sinusoid, (3.23) needs to be modi�ed, to give

! = 2!pk;i=n and ! = (!pk;1 � !pk;2)=n. Figure (6.21 a) and b) shows

the cases corresponding to the driving frequency being varied around to

a)2!pk1 and b)2!pk2. For n = 1 we �nd that the parametric resonance can

be induced also by ! = !pk1 + !pk2, which is the case depicted in part c)

of the same �gure. However, we could not induce parametric ampli�cation

for ! = !pk1 � !pk2.

During parametric ampli�cation, the beams exhibit an oscillation that

is bounded by the system nonlinearities. For large oscillation amplitudes,
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Figure 6.21: First region of coupled parametric ampli�cation, with the

electric signal applied to one cantilever only. The three tongues correspond

respectively to a) ! = 2wpk1; b) ! = 2wpk2; c) ! = wpk1+wpk2. Picture d)

shows the exponential growth of the output inside the region of parametric

ampli�cation.

both the linear spring model and the linear electrostatic force need to be

corrected by adding cubic terms. Equation (6.10) becomes

�Z + � _Z + [� + �E cos(2!t)]Z + A3Z
3 = kU;

where the matrix A3, which is diagonal, describes the e�ective cubic sti�-

ness of each beam. When driving the cantilever in parametric resonance

regime we observe: in case a) and b) a subharmonic 2 : 1 oscillation at half
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substrate.

We notice that, when sweeping the frequency from low to high, in both

cases, the entrance to the parametric region is marked by a sharp jump in

the amplitude of the cantilevers oscillation. This phenomenon was already

noticed in Section 6.2 and its relevance in terms of potential engineering

applications was mentioned. In the case of two cantilevers one has the

additional advantage of having three parametric regions and therefore the

option of selecting the frequency range where to work. Moreover, at the

design stage of the device, the tongues can be placed as desired by tuning

the mechanical coupling coeÆcient.

Inside the parametric region, as the driving frequency increases, the

periodic subharmonic solution is stable and shows decreasing amplitude in

case a), and increasing amplitude in case b). We reiterate that the 
atten-

ing of the output is an experimental artefact, which is due to the fact that

the cantilever is touching the substrate. Upon exiting the region, while

in case a) the oscillation is reduced to zero, in case b) the periodic solu-

tion remains stable and its amplitude virtually keeps increasing, until it

goes back to zero. The location of this second jump is not predictable and

depends on the amplitude of the frequency increments. If we reverse the

process and start decreasing the frequency, the output amplitude starts to

increase and keeps increasing, in both cases, even after leaving the para-

metric region. Again, this large periodic solution eventually collapses to

zero at some unpredictable time.

From a dynamical systems point of view, the di�erent behavior in Fig.

(6.22) a) and b) corresponds to a di�erent phase portrait. In particular,
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while the single cantilever has a bistable region only on the left side of

the tongue (where both the periodic and the trivial solutions are stable),

the coupled cantilevers have a bistable region on both sides of the tongue.

Interestingly, when subject to both harmonic and parametric excitation,

that is for instance when excited by a sinusoidal input having a small

DC o�set, a single cantilever exhibits a behavior similar to what depicted

in Fig. (6.22 b). Since the electrostatic force depends on the square of

the voltage, this implies that the cantilever is excited both at the driving

frequency ! and at 2!, implying the coexistence of both harmonic (!)

and parametric (2!) forcing. For the case of two cantilevers, this behavior

can be explained intuitively by the following approximate argument. From

(6.15) de�ne x := z1+z2 and y := z1�z2, and consider the case of a square
rooted sinusoidal input : the equations of motion are given by:

�x+ (�!2
1 + ��1cos(!t))x = �(�! +��cos(!t))z2; (6.17)

�y + (�!2
2 + ��2cos(!t))y = (�! +��cos(!t))z1; (6.18)

where �!2
1 = !2

1 + 
1, ��1 = �1 + 
2, �!
2
2 = !2

2 � 
1, ��2 = �2 � 
2, �! =

!2
2 � !2

1, �� = �2 � �1. Now, ignoring the right hand sides, (6.17,6.18)

represent a pair of uncoupled, standard Mathieu equations. Hence, their

parametric regions of the �rst order are obtained for ! = 2 �!1 and ! =

2 �!2 respectively, which correspond roughly to the peaks of the frequency

responses in Fig.(6.17) and to the values obtained by the previous analysis.

From the de�nition of x we can infer that, when excited at ! = 2�!1, z1 and

z2 oscillate in phase at ! = �!1. Hence, z2 on the RHS of (6.17) acts as a

harmonic excitation, justifying the phase portrait observed experimentally.

A similar argument can be repeated for (6.18), where z1 oscillates with
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opposite phase from z2 and provides the harmonic excitation.

*
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Chapter 7

Observer Design

In this chapter we address the problem of designing a dynamical system

capable of providing an estimate x̂ for the cantilevers displacement, based

on the measurement of the current through the cantilevers. This approach

that we call \indirect" sensing, has the advantage of allowing for compact

devices, by removing the usually cumbersome apparatus used in optical

sensing techniques [38, 39, 40, 1]. The optimal observer design, formulated

and solved in Section 7.1, is used as an analysis tool to tune both the

frequency of excitation of the cantilever and the parameters of a reduced

order observer (Section 7.2) to obtain the best achievable performance in

terms of H1-norm of the closed loop system.

7.1 Optimal Observer Design

One of the main goals of our research project has been to design an ob-

server to reconstruct the displacement of cantilevers from an indirect mea-
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surement. The fact that the system is time-varying has made the problem

less straightforward to solve. In this section we illustrate how this prob-

lem has been tackled and provide simulation results to demonstrate the

performance of the observer.

We have started our analysis by considering a single cantilever. The ob-

server problem in the Linear Fractional Transformation (LFT) framework

can be formulated as an H1 �ltering problem, by de�ning the variable

z = x� x̂ (estimation error), and considering the generalized plant shown

in Fig.7.1 and described by

Ggen :=

2
6664

A(t) B1 0

C1 0 D12

C2(t) D21 0

3
7775 =

2
6664

A(t) [M 0] 0

I 0 -I

C(t) [0 N] 0

3
7775; (7.1)

where the exogenous input w = [d n]T represents process and measurement

noise, the matricesM and N are respectively the process and measurement

noise weight, the matrices A(t), C(t) are as in (5.7) and the input u = x̂ is

the output of the observer system. Notice that we do not need to account

for the signals uf and vf in (5.7): since they are known, their presence does

not a�ect the observer design.

In this framework, the optimal observer problem amounts to �nding

a dynamical system Gobs such that the H1 norm of the transfer function

Tzw from w to z is minimized. If the system is time-invariant, and has the

structure of (7.1), where D0
21B1 = 0, than the optimal �lter is an observer,

whose gain L comes from the solution of an appropriate algebraic Riccati

equation [95]. It turns out that a similar result holds in the time-varying

case as well. The details have been presented in Section 2.1, where the
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Figure 7.1: A block diagram of the observer problem.

solution for the periodic case is derived from the results of [50]. If the

system is periodic, the algebraic Riccati equation is replaced by a periodic

differential Riccati equation (2.2), which we recall here

_P (t) = A(t)P (t)+P (t)A(t)0�P (t)[C(t)0C(t)� 1


2
I]P (t)+B(t)B(t)0: (7.2)

If the periodic non-negative de�nite solution of this equation P (t) is sta-

bilizing, the optimal �lter has the structure of an observer and is given

by

_̂x = A(t)x̂ +P(t)C(t)0[y(t)� C(t)x̂]:

While we do not necessarily wish to implement this optimal observer,

we propose a method where we use the driving frequency !o as a design

parameter in (7.2) and tune its value so that the closed loop system has

the minimum attainable H1 norm. Recall, from the cantilever dynamical

equations (5.7), that !o enters as a parameter in the expression of A and C.

In other words, we propose to use the optimal observer design to actually

design the system (rather than the observer), by selecting the excitation
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frequency that produces the least estimation error. This procedure requires

solving (7.2) for every !o and computing the norm of the corresponding

closed loop time-varying system. We have followed two approaches.

In the �rst approach [53], we have applied lifting to (7.1), and have

reformulated the optimal observer problem in the lifted domain. As dis-

cussed in Section 2.2, by lifting, the periodic system G can be associated

with an equivalent time-invariant in�nite dimensional system Ĝ. In its

turn, by fast-sampling, Ĝ can be approximated by a shift-invariant �nite

dimensional system ~G. It is for this latter, almost equivalent problem that

the observer problem has been �nally explicitly solved. The expressions of

the matrices describing ~G, discrete, shift-invariant and �nite dimensional

~G :=

2
6664

F G1 0

H1 J11 J12

H2 J21 0

3
7775 ;

are given in Section 2.2. Standard techniques can be applied to this system,

both for solving the observer problem and for computing the closed loop

norm. In particular, the lifted observer corresponds to a constant matrix

L, whose elements are the Fourier coeÆcients of the corresponding time

varying gain L(t). It was proved in [56] that this approximation converges

at the rate of 1=N , if T=N is the sampling period, and T the period of the

system. Hence, by increasing the number of samples per period we can

approximate the optimal solutions of the original system to any prescribed

degree of accuracy [56].

Figure 7.2 describes the dependence of the closed loop H1-norm on

the frequency of excitation, !o. The parameters of the cantilever used in
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Figure 7.2: H1�norm vs. frequency of excitation for the lifted, fast sam-

pled system.

this simulation are based on a preliminary design, later revised, and are as

follows: length L = 300�m, width w = 50�m, thickness t = 1�m and gap

d = 10�m.

The second approach we have pursued was based on the observation

that by designing the observer in the lifted domain with the procedure

outlined above, we had not incorporated a causality constraint, so that

the observers corresponding to the data of Fig. 7.2 are both causal and

a-causal [96]. The causality constraint, which amounts to imposing that

the observer gain L be diagonal, cannot be easily incorporated in the for-

mulation above. Hence, we decided to go back and use directly (7.2) for

the observer design.

In this second approach, we have solved numerically the periodic Riccati
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equation for each !o and for the least admissible 
 that corresponds to a

stabilizing solution. The diÆculty now lies in the fact that this procedure

requires knowledge of the initial condition Po corresponding to the periodic

stabilizing solution of (7.2). The method developed to tackle this problem

was described in Section 2.1. More precisely, we have de�ned a map P
(2.2) whose �xed points correspond to the unknown Po. Whence, the

search over the initial conditions is transformed into a �xed point seeking

problem, which is solved via an iterative scheme using the secant method.

Figure 7.3 describes the dependence of the closed loop norm from the

frequency of excitation, !o. The parameters of the cantilever used in this

analysis are those obtained by system identi�cation and are given in Sec-

tion 6.2. In particular, for the length we have used its e�ective value.

Notice that the minimum is reached at di�erent values of the driving fre-

quency, depending on the measurement noise weight N and not necessarily

coinciding with the resonance frequency. We note that the analysis here

is done solely for the optimal observer design problem. In any realistic

application of micro-cantilevers, there will be other control objectives as

well. The problem setup, then, would involve a compound cost function

that involves both observations and control. For such a problem, the best

driving frequency will probably be di�erent than the one obtained here,

and its value will depend on the particular tradeo�s between control and

estimation. The framework we present here should be easily extended to

incorporate control objectives as well.

As a second step we have turned our attention to the case of pairs of

coupled cantilevers. Under the assumption that the inputs applied are the
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Figure 7.3: H1-norm vs. frequency of excitation with a causal observer.

same, we can apply the procedure outlined above to the periodic system

comprising both cantilevers. The state space has dimension four in this

case, and so has P (t) in the Riccati equation (7.2), but there is no concep-

tual di�erence in treating this case from the previous one. The diÆculty

arises when the inputs have di�erent, non commensurate frequencies. In

this case the coupled equations are not even periodic, making the design

of the observer for the coupled system much harder.

In Fig. 7.4 we show a block diagram of the observer structure that

we propose for the cantilever pair. In this con�guration, the subsystems

corresponding to the observers are designed for each cantilever as if they

were decoupled, i.e. treating the coupling variables zj in the linearized
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Cantilever 1 Cantilever 2

Observer1 Observer2

x2

x1u1 u2

y1 y2

x1̂ x2̂

Figure 7.4: A schematic of the observer. The dashed lines represent the

coupling interaction.

model as if they were exogenous inputs

�zi + �i _zi + !2
i zi = b1V

2
i � 
1zj; (7.3)

where 
1 accounts for both mechanical and electrostatic coupling. In this

fashion, not only can we recast the problem in the framework of periodic

systems theory, but also we gain 
exibility. In fact, now the design does

not depend on the number of units (cantilevers) considered and can be

easily extended to the case of an array of microcantilevers, which will be

discussed later in this section.

The observers in Fig. 7.4 are designed following the procedure outlined

above for a single cantilever. Note that, in this \decoupled" design the

optimal observers do not necessarily guarantee stable error dynamics for

the overall system. In fact, from Theorem 2.2, Section 2.1 the solution

Pi(t) to each Riccati equation guarantees that [Ai � Pi(t)C
0
i(t)Ci(t)] is

stable. However, if we denote by e1, e2 the estimation errors on the state
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variables of the �rst and second cantilever respectively, in the absence of

noise their dynamics are now described by the following equations

_e1 = [A1 � P1(t)C
0
1(t)C1(t)]e1 +Gce2;

_e2 = Gce1 + [A2 � P2(t)C
0
2(t)C2(t)]e2;

(7.4)

that is they are coupled, withGc =
h

0 0


1 0

i
. Using the small gain theorem,

we can establish the stability of (7.4) if we can guarantee that the I/O

norm of the two error subsystems �i is small enough, jj�1jjjj�2jj < 1.This

condition can be included in a compound optimal objective. To this end we

introduce the augmented state variable �xi := [xi; x̂i]
T 2 R

4 and consider

the closed loop system2
4 _xi

_̂xi

3
5 =

2
4 Ai 0

L(t)Ci Ai � L(t)Ci

3
5
2
4 xi

x̂i

3
5

+

2
64

B1



0

B1 � L(t)D21



�Gc

3
75
2
4 wi

ej

3
5

| {z }
w

+

2
4 Gc

Gc

3
5 xj|{z}

u

; (7.5)

zi = [I � I]

2
4 xi

x̂i

3
5 ; (7.6)

where B1, D21 are as de�ned in (7.1). In this formulation, the coupling be-

tween xi and xj is treated as an external \known" input u for the cantilever

dynamics, while the estimation error ej is treated as a disturbance. The

problem now can be formulated as that of �nding the periodic matrix L(t)

that makes jjTw;zijj < 1. This condition guarantees jjTwi;zijj < 1, which

corresponds to the old �ltering problem, with 
 now included in the state

matrices. At the same time, it also guatantees the condition jjTej ;zjj < 1,
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and so the stability of the error dynamics.

Simulations have been performed to assess the performance loss, if any,

caused by this choice of \decoupled" design. In these simulations the can-

tilevers are assumed to be equal, with a natural resonant frequency of

!rn = 51kHz, and damping � = 2e�3, one order of magnitude larger than

its experimental value, to guarantee a faster convergence. The driving in-

puts are sinusoids of equal frequency, with a DC term added to reproduce

the most general case, ui(t) = VDCi + VACi cos!t. The solution to the

full order Riccati equation, when the two cantilevers are considered as one

system, is denoted by P4. The solutions to the single Riccati equations for

the respective cantilevers are denoted by P1, and P2. Figure 7.5 compares

the performance of the two observer schemes. In this simulation the input

parameters are set to: Vac1 = 10 mV, Vac2 = 50 mV, Vdc1 = 200 mV,

Vdc2 = 100 mV, f1 = f2 = 50:5 kHz. Note how, even during the tran-

sient, the behavior of the two schemes is not appreciably di�erent. Figure

7.6 demonstrates that, at steady-state, they both achieve practically exact

state estimation.

In other words, there is no appreciable loss in performance in adopting

the decoupled design over the full order one. In order to understand this

result, which is indeed surprising at �rst glance, we have looked at the

structure of the observers obtained with the two di�erent design schemes.

In the \decoupled" design, the equations of the overall observer subsystem
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Figure 7.5: Comparison of the performance of the observers de�ned by P4

(part b,d) and Pi, i = 1; 2 (part a,c) during transient. The plots in a,b)

refer to cantilever 1, the plots c,d) to cantilever 2. Notice how the transient

of the two observer schemes is not signi�cantly di�erent.

are given by2
4 _̂x1

_̂x2

3
5 =

2
4 A1 Gc

Gc A2

3
5
2
4 x̂1

x̂2

3
5+

2
4 P1(t) 0

0 P2(t)

3
5
2
4 C 0

1(t) 0

0 C 0
2(t)

3
5
8<
:
2
4 y1

y2

3
5�

2
4 C1(t) 0

0 C2(t)

3
5
2
4 x̂1

x̂2

3
5
9=
; :

(7.7)

The structure of this equation suggests that this design corresponds to the

special case of a diagonal P4. Whence, if we partition P4 in four 2 � 2
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Figure 7.6: Estimation error at steady state. Parts a,b) refer to cantilever

1, parts c,d) to cantilever 2. Note that the vertical scale is in pm.

blocks

P4 =

2
4 P11 P12

P21 P22

3
5 ;

we can identify corresponding blocks in the two designs and compare them

to explain the simulations. It turns out, as shown in Fig. 7.7, that there is

an extremely small discrepancy between Pi, i = 1; 2, and the corresponding

blocks Pii of P4. Furthermore, the elements of the extra diagonal blocks

Pi;j of P4 are in comparison very small, as shown in Fig. 7.8. An intuitive

explanation of why this might be the case can be sought in the structure

of the matrices in (7.2), when the Riccati equation is rewritten for the full

order system. In this case all the system matrices but the state matrix A
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and the corresponding elements of the diagonal blocks Pii, i = 1; 2 of P4

(circles).

are diagonal. A itself has an almost diagonal structure

A =

2
4 A1 Gc

Gc A2

3
5 =

2
4 A1

h
0 0


1 0

i
h

0 0


1 0

i
A2

3
5 ;

where Ai are the state matrices for the single cantilevers, andGc models the

coupling. If we scale the equation by the value of the resonant frequency,


1 turns out to be also relatively small. Whence the almost decoupled

structure of P4.

To conclude this section, we consider the problem of the multicantilever

array. If we assume that all the cantilevers are identical and the inputs

applied are the same, the whole structure can be treated as a distributed

115



0 2 4 6 8 10 12
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

 Time (scaled)

Figure 7.8: Components of P4. The solid lines represent the components

that P4 has in common with P1; P2, also shown in Figure 7.7. The dashed

lines are the components of P4 belonging to the extra diagonal blocks P12

and P21.

spatially-invariant time-periodic system. As illustrated in Section 2.3, this

implies that, in order to study the multicantilever, we do not need to deal

with the in�nite dimensional model corresponding to the complete array.

We can use instead the parameterized �nite dimensional model obtained

by applying the spatial Fourier transform

�z(t; �) + c _z(t; �) + â(�)z = u(t; �); (7.8)

where â(�) = a�Pm6=n(�n;m+an;m)e
�i�m contains all the coupling terms.

For more details on the notation we refer the reader to Section 2.3. The

optimal observer problem for this model can be solved analogously to what
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we presented above for the single cantilever case . Equation (7.2) is now

replaced by a parameterized periodic Riccati equation

_P (t; �) = A(t; �)P (t; �) + P (t; �)A(t; �)0 (7.9)

�P (t; �)[C(t; �)0C(t; �)� 1


2
I]P (t; �) +B(t; �)B(t; �)0;

and the observer itself will be a distributed system. A schematic of its

architecture is shown in Figure 7.9, which shows the coupling between the

nth observer unit and the neighboring units. In general, the P (t; �) that

solves (7.9) will be an irrational function of �. This means that the observer

needs to receive information from distant units in the array to provide an

estimate at each given point. Given the number of cantilevers involved

in the coupling interaction, the strength of this coupling depends on the

analytic properties of P (t; �). If its Laurent expansion coeÆcients decay

to zero fast enough, it is reasonable to expect that a satisfactory subop-

timal observer, dealing only with \local" information, can be achieved by

truncating the in�nite series expansion. In fact, from the insight gained

from the study of the two cantilevers case we expect this decay rate to be

indeed quite fast.

Besides this strategy, as outlined in the two cantilevers case, the al-

ternative is to design an optimal observer for each cantilever as if it were

isolated, treating coupling as another external excitation. The advantage

deriving from this approach is twofold. First of all, it allows us to treat the

case where the input signals are not at the same frequency. Second, the

cantilevers can be di�erent, which is not allowed in the previous design,

since in this case the system would not fall in the category of spatially-

invariant distributed systems. The drawback is that we are not guaranteed
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Figure 7.9: Schematic of the distributed observer.

stable error dynamics, similarly to what happened in the two cantilevers

case. In the following derivation, we consider the case of nearest neighbor

interaction. The estimation error for each cantilever in this case is given

by

_ei = [Ai(t)�Pi(t)C
0
i(t)Ci(t)]ei+Gcei�1+Gcei+1 = Aei(t)ei+Gcei�1+Gcei+1;

whereGc is the coupling matrix that has been de�ned previously. We de�ne

the global estimation error variable E as the collection of these vectors

E =

2
6666666664

...

e�1

e0

e1
...

3
7777777775
:
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E is governed by the following in�nite dimensional time-varying equation

_E =

2
6666666664

. . .
. . .

. . .

Gc Ae
�1
(t) Gc

Gc Ae0(t) Gc

Gc Ae1(t) Gc

. . .
. . .

. . .

3
7777777775
E ;

which we can rewrite in the following more convenient form

_E = [A(t) +H]E ; (7.10)

where A is the diagonal matrix of Aei , and H is given by

H =

2
6666666664

. . .
. . .

. . .

Gc 0 Gc

Gc 0 Gc

Gc 0 Gc

. . .
. . .

. . .

3
7777777775
:

Equation 7.10 reveals the structure of this problem, which can be posed

as a small gain problem (see Fig. 7.10). Stability is guaranteed if the

product of the norms of the two subsystems, is less than 1. The columns

of H are the Fourier coeÆcients of the matrix transfer function

H(z) = Gcz
�1 +Gcz;

so that we �nd its norm to be

jjHjj = sup
�

jjGce
�j� +Gce

j�jj = 2jjGcjj = 2
1:
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Figure 7.10: Schematic representation of the small gain theorem for the

in�nite dimensional array.

The other system is diagonal. Its norm is the sup over all norms of the

decoupled subsystems. Even though the parameters of these subsystems

might be di�erent, their value will be very close. Hence it will be possible

to �nd an upper bound � to their norms. The error dynamics will be stable

if � <
1

2
1
.

7.2 The Reduced Order Observer

In this section we consider the problem of designing a reduced order ob-

server. In particular, we are interested in de�ning a procedure to tune its

parameters, so that it is a sub optimal implementation of the H1 optimal

observer derived in the previous section.

A reduced order observer allows us to exploit the information about

the state of the system that is provided by the output signal and leave to

the observer the task of estimating a smaller portion of the state vector.
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The details of this standard technique can be found in any book on linear

systems theory, and for instance in [86]. Its synthesis is based on the

de�nition of an appropriate change of coordinates, such that in the new

coordinates the output of the system becomes a state variable. The matrix

that de�nes such coordinate transformation is time varying in this case,

and is given by

T�1 =

2
4 H(t)

C(t)

3
5 =

2
4 c�12 cos!ot �c�11 sin!ot

c1 sin!ot c2 cos!ot

3
5 ;

where ci, i = 1; 2 are the constant coeÆcients of ci(t) in (5.7), T�12C1

and det(T�1) = 1 at each t. Notice that to be well-de�ned, this change of

coordinates requires consideration of a \noiseless" output, i.e. ~y = C(t)x,

in contrast to the formulation of the optimal observer problem (7.1). It

will become clear later, when we analyze the simulation results, how this

assumption in
uences the performance of the two observers.

After few algebraic steps the equations of the observer turn out to be

_̂v = (A11(t) + L(t)A21(t))v̂ +M(t)y

ẑ = T (t)

2
4 v̂ � L(t)y

y

3
5 ; (7.11)

where A11; A21;M are T -periodic functions that can be computed from the

system matrices in (5.7). In particular,

A11 = do + d1 sin 2t+ d2 sin 4t+ d3 cos 2t (7.12)

A21 = d4 + d5 cos 2t+ d6 cos 4t + d7 sin 2t; (7.13)
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with

do = �d3 = c

2
;

d1 = �1

2

�
c1

c2
� c2

c1
a

�
;

d2 = �1

2

c2

c1
q;

d4 =
1

2
(�ac22 � c21 + 2c1c2 + qc22) ;

d5 =

�
qc22 +

1

2
(�ac22 + c21)

�
;

d6 =
qc22
2
;

d7 =
1

2
c1c2c;

(7.14)

where all the parameters have been de�ned in (5.7). M(t) turns out to be

given by the expression

M(t) := A12 � L(t)A22 + L(t)(A11 + L(t)A21)� _L(t);

where

A12 = d8 + d9 cos 2t+ d10 cos 4t+ d11 sin 2t; (7.15)

A22 = d12 + d13 cos 2t+ d14 sin 2t: (7.16)

with

d8 =
1

2

�
1

c22
� c2

c1
a +

q

2c21
� 2

c1c2

�
;

d9 =
1

2

�
�2q

c21
+

1

c22
� a

c21

�
;

d10 =
q

2c21
;

d11 =
c

2c1c2
;

d12 = � c

2
;

d13 =

�
2
c2

c1
q � c

2

�
;

d14 =
1

2

�
c1

c2
� c2

c1
a

�
:

(7.17)
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L(t) in (7.11) is the design parameter, through which we can adjust the

behavior of the observer.

The state estimation error, ez := z � ẑ is described by

ez = T

2
4 ev

0

3
5 +Dz(t)w; (7.18)

with Dz = n

2
64 0 0 c2L(t) cos t� 1

c1
sin t

0 0 �c1L(t) sin t� 1

c2
cos t

3
75 and n sensor noise weight.

Here ev is governed by the equation

_ev = (A11(t) + L(t)A21(t))ev +Bv(t)w; (7.19)

with Bv = m[
cos t

c2
�L(t) sin t � sin t

c1
� c2L(t) cos t � nM(t)], m system

noise weight, n sensor noise weight and M de�ned above.

L(t) needs to be chosen so that (7.19) is asymptotically stable. As

pointed out in Section 3.2, for a T -periodic system this is equivalent to say

that the characteristic multipliers are in norm less than 1, j�(�(T ))j < 1.

Since we are dealing with a scalar system, �(T ) can be easily computed

�(T ) = e
R
T

0
(A11+LA21)(�)d� ; (7.20)

and the condition on the characteristic multipliers is equivalent to the

condition
R T

0
(A11 + LA21)(�)d� < 0. In particular, from the analytical

expression of the integrand

A11 + L(t)A21 = do + d1 sin 2t+ d2 sin 4t+ d3 cos 2t (7.21)

+L(t) [d4 + d5 cos 2t+ d6 cos 4t+ d7 sin 2t] ;
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it can be seen that the condition on the characteristic multipliers can be

satis�ed also by a static gain, (L = Lo < �do).
Figure 7.11 compares the performance of such a static reduced or-

der observer to the optimal observer described in the previous section

(L = P (t)C(t)0). Figure 7.12 shows the components of P (t), obtained

as a solution to (7.2) for 
 = 10.
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Figure 7.11: Performance of the observers in the presence of measurement

noise and initial estimation error. The dashed line is the measured position

signal, the solid line its estimate. a) Optimal observer b) Reduced order

observer.

At this moment the implementation of the circuit to measure the cur-

rent is still under study. Therefore we have generated the current signal

starting from the experimentally measured velocity and position, using the
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Figure 7.12: Components of P (t).

nonlinear model i(t) = d=dt[C(x; t)V (t)], where C(x; t) is the capacitance

(5.1), and V (t) is the input voltage. Gaussian noise, corresponding to a

S/N of approximately 12.5, has been added to mimic a real measurement,

with the result shown in Fig.7.13.

As can be seen in Figure 7.11, the estimate of both observers converges

quite fast to the measured displacement signal: only four cycles for the

optimal observer and six for the reduced order observer. However, the

latter is a�ected more heavily by the presence of noise, as expected. The

price to pay for its simpler dynamics is a degradation of its performance.

For this reason we want to consider a time-varying observer gain, L(t) =
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Figure 7.13: Expected current signal from experimental velocity and posi-

tion data.

k cos(�t + �). This way its parameters can be selected not only to ensure

stable error dynamics, but also to optimize its performance, with the H1-

norm as its measure. In particular, from (7.21) it can be seen that the

stability condition is met for � = 2 and by taking do+kd5 cos� < 0, where

do and d5 have been de�ned in (7.14). In fact, if � = 1 the system has period

T = 2� and integration of (7.21) over one period gives a characteristic

multiplier � = do > 0. For the computation of the H1-norm of the closed-

loop periodic system, as our closed loop system is, we have used lifting and

fast-sampling [55, 56]. Figure (7.14) depicts the value of the closed loop

norm as k and � vary in R and [0 2�) respectively. Based on this plot, a

better informed choice of k and � turns out to be k = 0:001 and � = 3:63,
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which give H1-norm=45.
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Figure 7.14: Estimation error for di�erent values of the observer gain: a)

k > 0 cos(�) < 0, b) k < 0 cos(�) > 0.

The above procedure can be generalized to any number of cantilevers,

where the parameters of each suboptimal observer are tuned independently,

according to the architecture chosen for the optimal observer.

*
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Chapter 8

Control Design

In order to increase the throughput of a multi probe device, it is desirable

to have the largest number of probes in the smallest possible space. On the

other side, the proximity of the probes induces coupling in their dynamics,

which increases the complexity of the overall device and can deteriorate its

performance. For these reasons, multi probe devices are currently designed

with large spacings between the individual elements [11, 29, 97, 23, 24, 9,

19]. In this chapter we illustrate the concept of \electronic decoupling"

through two case studies, where by means of a distributed controller we are

able to achieve decoupled dynamics in tightly packed arrays of individually

actuated microcantilevers.

The devices we consider are di�erent. In Section 8.1 we refer to the

electrostatically actuated array analyzed throughout the thesis. For this

system, we design a decoupling controller, based on the displacement esti-

mate provided by the observer in Section 7. Simulation results are provided

to show the e�ectiveness of the controller. The array considered in Section
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8.2 corresponds to a preliminary design for the array (Fig. 1.2), where the

actuation was not electrostatic. For this system, we formulate and solve

the optimal H2 control problem and discuss the synthesis of suboptimal

controllers. In particular, with this example we intend to investigate the

architecture of a distributed controller in terms of the information it needs

to collect from neighboring units to achieve a desired performance.

Both examples demonstrate the ability of control to e�ectively decouple

the dynamics of coupled cantilevers, so that they behave as isolated units

in spite of the existing physical coupling.

8.1 Decoupling Controller for Arrays of Elec-

trostatically Actuated Cantilevers

In this section we design a decoupling controller for the electrostatically

actuated array described in the previous chapters, and demonstrate that

physical coupling can be removed by using an appropriate control action.

Indeed if we consider the two cantilevers system, from Equation (7.3) it is

clear that we would be able to cancel out the e�ects of coupling if we could

generate an input signal of the form

Vi(t) =

r
VDC + VAC cos(!it) +


1

b1
zj;

where the DC o�set needs to be large enough so that Vi is always well

de�ned. Note that this does not represent an unfeasible constraint since,

in the linear regime of operation, both zj and VAC are small. However, the

problem with this choice of input is that it requires the direct measurement
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Figure 8.1: Schematic of the observer based decoupling controller. The

dashed lines represent internal coupling.

of zj, which is something we want to avoid.

The control architecture that we propose is represented schematically

in Fig.8.1. Here the i-th controller uses an estimate of the displacement of

the j-th cantilever, ẑj produced by the corresponding observer. The input

signal, is then given by

Vi(t) =

r
VDC + VAC cos(!it) +


1

b1
ẑj:

Notice that, given the dependence of the current from the input, this choice

of control signal represents a problem for the synthesis of the optimal

oberver gain. In fact, it requires a priori knowledge of ẑj. However, by

considering that in the linear regime of operation of the device, this signal

is much smaller than VDC and VAC , we can neglect it in the computation

of P (t), without compromising the performance of the observer, as will be

shown in the sequel.

130



15.85 15.9 15.95 16 16.05 16.1
−0.02

0

0.02

0.04

0.06

 P
o

si
ti

o
n

1 
[µ

 m
]

 Vac1 = 0.01 Vdc1 = 0.1 Vac2 = 0 Vdc2 = 0.1 f1 =50000 f2 =0

Estim
True

15.85 15.9 15.95 16 16.05 16.1
−0.02

0

0.02

0.04

0.06

 P
o

si
ti

o
n

2 
[µ

 m
]

 Time [ms]

  a)

  b)

Figure 8.2: Steady state oscillation of Cantilever 1 (a) and Cantilever 2

(b) with detail of the transient when the controller is switched on. The

solid line is the cantilever oscillation, the dotted line its estimate. Notice

the fast transient of the observer.

Figure 8.2 shows the result of a simulation where one of the cantilevers

(Cantilever 1) is excited close to its resonance frequency (VDC=:1V , VAC=

10mV , f1=50kHz), while the other has a constant input (VDC = :1V ). In

particular, we show the instant when the observer/controller is switched

on. Notice how prior to this time, as a consequence of coupling, both

cantilevers are oscillating (at the same frequency).

Figure 8.3 shows the transient of the controller. In spite of the very

fast response of the observer, whose estimation error goes to zero almost

instantaneously, the time constant of the controller is much longer. This

is due to the fact that, after removing the coupling, the evolution of each
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Figure 8.3: Oscillation of Cantilever 1 (a) and Cantilever 2 (b) after the

controller is switched on, showing the controller transient. This longer

transient is dominated by the system's time constant.

cantilever is dictated by its own time constant, and because of its very

lightly damped modes, it takes some time to reach steady state.

Figure 8.4 is a comparison of the steady state oscillation of the now

decoupled cantilevers, with the oscillation that isolated (uncoupled) iden-

tical cantilevers would exhibit if excited by the same input. Notice the

excellent performance of the decoupling controller, con�rmed also in Fig.

8.5, which shows the decoupling error, de�ned as the di�erence between the

displacements of the corresponding coupled, xi;coup and uncoupled, xi;uncoup

cantilevers, ei;dec := xi;coup � xi;uncoup. At steady state this error amounts

only to few pm.
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Figure 8.4: Comparison between the decoupled cantilevers oscillation and

identical single (uncoupled) cantilevers subject to the same external inputs

: a) Cantilever 1, b) Cantilever 2. The solid line represents the decoupled

cantilevers oscillation, the dotted line the uncoupled cantilevers oscillation.

Simulations were performed also to check the e�ect of measurement

noise on the performance of the decoupling controller. Keeping all other

parameters unchanged, noise has been added to the output signal, as shown

in Fig.8.6. Figure 8.7 compares the oscillations of the coupled cantilever

pair, decoupled by the controller action, and the oscillation of single un-

coupled cantilevers subject to the same input. Figure 8.8 represents the

decoupling error. Compared to the noiseless case, the performance of the

decoupling controller is certainly degraded, but remains satisfactory, with

a decoupling error in the order of few nm.
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Figure 8.5: Decoupling error (entire trajectory and detail). Note that the

scale is nm.

Finally, we have evaluated the performance loss caused by using a re-

duced order observer instead of an optimal one. The simulation parameters

are the same as in the previous simulations. Figure 8.9 compares the oscil-

lations of the coupled cantilever pair, decoupled by the controller action,

and the oscillation of single uncoupled cantilevers subject to the same in-

put. Figure 8.10 represents the decoupling error. There is evidence that

the persistence of the error, that does not decay to zero even at steady

state, is a numerical problem. In fact, by decreasing the integration step,

its value becomes smaller (notice that in the �gure it is in the order of

10�9).

Even though the performance of the control scheme has been tested
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Figure 8.6: Simulation of sensor noise: current on both cantilevers.

only in the case of two cantilevers, the methodology proposed here lends

itself to an easy extension to the case of arrays of probes. The overall

controller is given by the repetition of (almost) identical units, that have

the same coupling structure as the underlying system. Once the cantilevers

are decoupled, one could think of designing an appropriate local control

action to achieve the desired performance objectives, which will depend on

the particular application considered.
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Figure 8.7: Comparison between decoupled and uncoupled oscillation of

same cantilevers in the presence of measurement noise.

8.2 Optimal Control for an Array of Micro-

cantilevers

The analysis in this section considers a di�erent array of microcantilevers.

More precisely, the model refers to a preliminary design, corresponding

to the device of Fig. 1.2. In that design, the actuation was supposed to

be piezoelectric. Hence, the resulting model is time-invariant and coupling

among adjacent cantilevers is only mechanical. Moreover, we assumed that

the operating mode of the device would be contact, therefore the model

includes the interaction of the cantilevers with the surface forces of a sample

in an AFM.
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Figure 8.8: Decoupling error in the presence of measurement noise (entire

trajectory and detail).

For this system, we formulate and solve the optimalH2 control problem.

The main goal of this analysis is to provide insights into the architecture of

the controller for a multicantilever structure. The solution of the optimal

problem leads, as expected, to a distributed controller [98]. However, we

are interested in investigating its communication range. More precisely, we

want to understand how localized the structure of the optimal controller

and its sub-optimal approximations can be, while still retaining a desired

performance. From an implementation point of view, this property is cru-

cial, since a localized controller would require to exchange information with

fewer units in the array, and therefore result in a simpler circuitry.
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Figure 8.9: Comparison between decoupled and uncoupled oscillation of

same cantilevers with a reduced order observer.

8.2.1 Mathematical Model of Microcantilever Arrays

with Sample Interaction

In the unimodal approximation, the cantilever-tip-sample system is mod-

eled by a sphere of radius R and mass m, which is suspended by a spring

of sti�ness k. The de
ection from the equilibrium position, Z, which rep-

resents the distance from the microcantilever to the sample when only the

gravity is acting on it, is measured by x. The interaction with the sample

is modeled by the Lennard-Jones potential,

V (x; Z) =
A1R

1260(Z + x)7
� A2R

6(Z + x)
; (8.1)

whose two terms describe, respectively, the short range repulsive forces and

the long range attractive forces between the molecules of the tip and those
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Figure 8.10: Decoupling error with a reduced order observer.

of the surface. A1 and A2 are the Hamacker constants for the repulsive and

attractive potentials. The net energy of the system scaled by the e�ective

mass m of the cantilever is given by

H(x; _x; Z) =
1

2
_x2 +

1

2
!2
1x

2 � D!2
1

(Z + x)
+

�6D!2
1

210(Z + x)7
; (8.2)

where, !1 =
q

k

m
is the �rst modal frequency of the system, �6 = A1

A2

and D = A2R

6k
. Note that H(x; _x; Z), which is the Hamiltonian of the

system, is a constant of the dynamics (invariant of motion) since there is

no dissipation.

Introducing the state variables x1 = x and x2 = _x, we can derive from
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(8.2) the equations which govern the dynamics of a single cantilever

_x1= x2 (8.3)

_x2=�!2
1x1 �

D!2
1

(Z + x1)2
+

�6D!2
1

30(Z + x)8
: (8.4)

In order to study the qualitative behavior of the system, it is convenient to

perform the following change of variables. By setting � = !1t, and dividing

the left and right hand sides of (8.3) and (8.4) by Zs =
3
2
(2D)

1
3 , we get

�01 = �2 (8.5)

�02 = ��1 � d

(�+ �1)2
+

�6d

30(�+ �1)8
; (8.6)

where �1 = x1
Zs
; �2 = x2

!1Zs
; d = 4

27
; � = Z

Zs
; and � = �

Zs
. Notice that

the prime denotes the derivative with respect to non-dimensional time � .

Zs is the critical value of Z, below which the attractive force is greater

than the spring force, and in the absence of the repulsive force the surface

snaps the tip into contact, [99]. Note that the equations describing the

dynamics of the dimensionalized system (8.3) and (8.4) and of the non-

dimensionalized one (8.5) and (8.6) are formally the same. Hence, we can

study the dynamical behavior of the former, using the equations of the

latter.

As � varies over [0;1], the number of equilibrium points of the system

varies too. In particular in [100] it is shown that there are two critical

values of �, �sl and �sv. When � < �sv there is only one equilibrium

point. If �sv < � < �sl the equilibrium points become three. Finally, if

� > �sl there is again only one equilibrium point.

A multicantilever structure consists of an array of microcantilevers con-

nected to the same beam and is represented schematically in Fig. (8.11).
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Figure 8.11: A schematic of a multicantilever structure.

Though each cantilever is actuated independently, the presence of the

beam implies that its dynamics is a�ected by the behavior of the others.

As a consequence, the model we introduced for the single cantilever has to

be modi�ed to take into account this correlation. We have modelled this

interaction via a symmetric in�nite matrix ai;k, so that the state equations

for the i-th cantilever become

�01(t; i)= �2(t; i) (8.7)

�02(t; i)=��1(t; i)�
d

(�+ �1(t; i))2
+ (8.8)

�6d

30(� + �1(t; i))8
+

+1X
k=�1

k 6=i

ai;k�1(t; k):

Notice that the symbol t from now on denotes the nondimensional time

� introduced above. Moreover, due to the fact that the microcantilevers

are similar, the coeÆcients ai;k satisfy ai;k = ai;�k, and decay as k goes to

in�nity.
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Linearization of equations (8.7) and (8.8) around an equilibrium point

leads to the following expression for the local model

_�(i; t) =

2
4 0 1

�1 + 2d
(�+��1;i)3

� 4�6d

15(�+��1;i)9
0

3
5�(i; t) +Pj 6=i

2
4 0 0

ai�j 0

3
5�(j; t)

= F�(i; t) +
P

j 6=iBi�j�(j; t):

If we now apply the discrete Fourier transform in the spatial domain, in-

troduced in Section 2.3, we get the one-dimensional parameterized system

_�(�; t) =

2
4 0 1

a(�) 0

3
5 �(�; t) +

2
4 0

1

3
5 u(�; t); (8.9)

where

a(�) = �1 + 2d

(� + ��1;i)3
� 4�6d

15(� + ��1;i)9
+

1X
k=�1

k 6=0

ake
�ik�: (8.10)

8.3 H2 Optimal Controller

As shown in [88], once we have parameterized the distributed problem by

a family of �nite dimensional state space problems through the application

of the Fourier transform, we can use the same results of classical �nite

dimensional H2 theory (see [64, 88]). More precisely, after using spatial

transforms, the problem can be stated as the minimization of the cost

functional

J =
1

2�

Z 2�

0

Z 1

0

[�(�; t)�Q�(�; t) + u(�; t)�Ru(�; t)] dtd�

subject to

_�(�; t) = F (�)�(�; t) +B(�)u(�; t);
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with �(�; 0) = �0(�). Since the system is stabilizable, its unique solution is

given by the feedback control law

u(�; t) = �R�1(�)B�(�)P (�)�(�; t)

where P (�) is the positive de�nite solution of the parameter-dependent

algebraic Riccati equation

F �(�)P (�) + P (�)F (�) +Q(�)� P (�)B(�)R�1(�)B�(�)P (�) = 0:

(8.11)

In our case, the state model is given by (8.9), and if we take

R =

2
4 1 0

0 1

3
5 Q =

2
4 q 0

0 q

3
5

the matrix which de�nes our stabilizing controller is

K(�) = �
�
a(�) +

p
a(�)2 + q

q
2a(�) + 2

p
a(�)2 + q + q

�
;

where a(�) is as de�ned in equation (8.10). Notice that this controller is

not a dynamical system: it merely performs algebraic operations on its

input data. The fact that K(�) is irrational in � means that the controller

needs to look at distant points to compute the control input at each given

point. In real time, the feedback control law is implemented using the

coeÆcients of a Laurent series expansion of K(�) in an open annulus that

contains the unit circle. If K(z) is the analytic extension of K(�) in such

an annulus, its Laurent power series expansion will be

K(z) =

1X
h=�1

K(h)zh ; (8.12)
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so that the resulting optimal control law is given by

u(h; t) =

1X
i=�1

K(i)�(h� i; t):

From an implementation point of view, the issue of how large is the number

of state variables the controller needs to know is crucial. If the Laurent

expansion coeÆcients of K(�) decay to zero fast enough, it is reasonable

to expect that a satisfactory suboptimal control law can be achieved by

truncating the in�nite series expansion.

8.4 Suboptimal Controllers and Communi-

cation Range

The analytic properties of the feedback matrix K(�) have a strong im-

pact on the structure of the optimal control law. By analyzing K(�) we

want to derive some information concerning the possibility of implement-

ing a suboptimal control law, through the truncation of the above series

(8.12). Therefore, it becomes important to determine the decay rate of its

coeÆcients.

This information is related to the location in the complex plane of the

singularities of (8.12). More precisely, the decay rate of the coeÆcients of

(8.12) corresponding to positive powers of z is determined by the singularity

�M = minf�(K) : j�(K)j > 1g

while for the decay rate of the coeÆcients corresponding to negative powers
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of z we have to consider

�m = maxf�(K) : j�(K)j < 1g:

From the analytical expression of the matrix K(�), it follows that such

singularity points are solutions of the equations

a(�)2 + q = 0 (8.13)

and

2a(�) + 2
p
a(�)2 + q + q = 0; (8.14)

which are equivalent respectively to

a(�)� i
p
(q) = 0; (8.15)

and

a(�) +
q

4
� 1: (8.16)

Analyzing the expression of a(�)

a(�) = �1 + 2d

(� + ��1;i)3
� 4�6d

15(�+ ��1;i)9
+

1X
k=�1

k 6=0

ake
�ik�;

it is easy to see that, when the number of interacting cantilevers N is

�nite, (8.13) and (8.14) are reciprocal equations of degree N , with N even.

Reciprocal equations with even degree are equations of the form

ax2k + bx2k�1 + cx2k�2 + : : :+ rxk + : : :+ cx2 + bx + a = 0; (8.17)

that can be easily rewritten as

a(xk + x�k) + b(xk�1 + x�k+1) + c(xk�2 + x�k+2) + : : :+ r = 0:
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De�ning t := x + x�1, it is not diÆcult to verify that t2 � 2 = x2 + x�2,

t3 � 3t = x3 + x�3 and, in general, xm + x�m is a polynomial of degree m

in t. It follows that the reciprocal equation (8.17) can be rewritten as an

equation of degree k in the variable t. Hence, the solution of a reciprocal

equation of degree 2k can in general be reduced to solving one polynomial

equation of degree k, as well as at most k quadratic equations. In what

follows, we use this property to reduce the order of the polynomials de�ning

the singularities and �nd an explicit analytical expressions for them.

We explicitly consider, at �rst, the case where the dynamics of each

cantilever is a�ected only by the presence of the two closest cantilevers, i.e.

the case where in (8.8) only a1 = a�1 are di�erent from zero. It follows that,

from (8.13), we obtain four singularity points, which after some algebraic

calculations, are given by

�1;2;3;4 = �1

2

a0 � i
p
q

a1
� 1

2

s�
a0 � i

p
q

a1

�2

� 4;

while from (8.14) we get

�5;6 = �1

2

4a0 + q � 4

4a1
� 1

2

s�
4a0 + q � 4

4a1

�2

� 4;

where in both cases a0 = �1� 2d
(�+��1;i)3

+ 4�6d

15(�+��1;i)9
.

In the simulations that we performed, we set � = 1:2 and � = 0:03. For

this value of � the nonlinear system has three equilibrium points, therefore

it can be associated with three linearized systems. Fig. (8.12) shows how

the maximum and minimum modulus singularities, respectively �M and

�m, move as a1 varies in [a0
8

; a0
4
] for these three systems. As expected,

the value of �M tends to decrease, while the value of �m tends to increase,
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meaning that the decay rate of the coeÆcients becomes slower: as the

in
uence of the neighbouring cantilevers becomes stronger, the controller

needs more information to stabilize and optimize the performance of the

system.
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Figure 8.12: Variation of the minimum and maximum modulus singulari-

ties.

We then considered the case of four interacting cantilevers. The explicit

expression for the singularities is, from (8.13)

�1;:::;8 = � a1
4a2

�
p

a21�4a2(a0�i
p
q�2a2)

4a2

�1
2

s�
� a1

2a2
�
p

a21�4a2(a0�i
p
q�2a2)

2a2

�2

� 4;
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and from (8.14)

�9;:::;12 = � a1
4a2

�
p

a21�a2(4a0+q�4�8a2)
4a2

�1
2

s�
� a1

2a2
�
p

a21�a2(4a0+q�4�8a2)
2a2

�2

� 4:

Simulations show that the decay rate of the coeÆcients of K is slower as

in Fig. (8.13).
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Chapter 9

Conclusions and Future

Directions

9.1 Conclusions

In this dissertation, we have presented the analysis of an electrostatically

actuated cantilever array. The device was designed to consist of tightly

packed microcantilevers, so that we could investigate the e�ects of coupling

between neighboring microbeams. The interest in this kind of con�guration

is not merely academic. From a practical point of view, this architecture

allows for an increase in throughput, while keeping the size of the device

as small as possible.

In our design, each cantilever in the array constitutes the movable plate

of a microcapacitor and its displacement can be independently controlled

by applying a voltage across the plates. We have shown that the dynam-

ics of a single cantilever are governed by a periodic di�erential equation,
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the Mathieu equation. In the array case, after incorporating the informa-

tion about coupling, we obtain a set of coupled Mathieu equations, which

have been analyzed using results from the theory of spatially invariant

distributed parameters systems. These models have been experimentally

validated, both in the linear regime of operation, where they can be ap-

proximated as time-invariant, and in parametric resonance. The results

show very good agreement with the theoretical predictions.

One of the main goals of our research has been the replacement of the

direct measurement of the cantilever displacement, commonly performed

with optical methods, with an estimate obtained from a state observer. To

provide this estimate, the observer uses the current through the cantilevers

as sensing signal. The advantage of such an arrangement is the fact that

it would result in more compact devices, while retaining or improving the

measurement accuracy o�ered by commercially available instruments. To

this end, we have formulated and solved the optimal observer problem for

periodic systems. In the architecture we have proposed for the array, the

design of the observer is done for each cantilever independently, as if they

were decoupled, treating the coupling variables as exogenous inputs. We

have shown that with this approach there is no loss in performance, be-

cause the problem is naturally \almost" decoupled. The optimal observer

design, not necessarily intended for implementation, is used to tune the

parameters of a reduced order observer, so that the overall system has the

best achievable noise rejection properties.

Finally, we have shown how the dynamics of coupled cantilevers can be

\electronically diagonalized" by the use of an appropriate control action.
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To illustrate this point, we have presented two examples: an optimal H2

design and a decoupling controller. The multicantilever arrays considered

in the two cases di�er in the model of the coupling interactions. In both

cases, we show that by means of a distributed controller, we do not need to

impose constraints on the geometrical parameters of the device (in particu-

lar, the lateral spacing between cantilevers) to obtain decoupled dynamics.

It is the use of control that \diagonalizes" the system.

9.2 Future Directions

The analysis presented in this dissertation, far from being complete, is in

a way the starting point for posing other interesting questions that have

not been addressed here.

One of the �rst issues that comes to mind regards the design of a

control action to achieve ojectives other than the simple decoupling of the

dynamics. Now that the physical coupling is eliminated and the cantilevers

are indeed independent units, we can think of superimposing a second,

fully localized controller to achieve or satisfy performance objectives that

will depend on the particular application considered. For instance, one

immediate goal could be to reduce the time constant of the system, and

speed up the convergence of the decoupling control.

Another issue that deserves more attention regards the assumptions

about the cantilever parameters, and in particular the hypothesis that

they are all equal. This is not an unreasonable assumption for the nom-

inal parameters of each cantilever, and in fact it is conceivable that in a
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typical application we might want to have identical units. However, due

to inhomogeneities in the fabrication process and/or slight asymmetries in

the device, it is highly likely that there are small discrepancies in these

values. Therefore it will be important to consider a robust observer and

controller design where we allow for di�erences between the parameters of

the cantilevers, and also uncertainty in their values.

In the past few months we have been working at the implementation of

an observer. A prerequisite to its implementation is the ability to measure

very small currents (in the order of pA) at high frequencies (in the order

of 100kHz). We have some promising results, but more work needs to

be done in terms of characterizing the circuit that measures the current.

Moreover, one of the critical questions we are faced with concerns noise

and the ability of the circuit to �lter it out.

Finally, it will be interesting to test the device in a real implementa-

tion, and demonstrate that we can in fact guarantee or even improve the

performance of existing devices.
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Appendix A

On the Implementation of the

Observer

A.1 The Current Measurement

The normal mode of operation for our multicantilever array will have the

cantilevers driven close to their resonant frequency. For a sinusoidal input

V = Vo sin(!ot), the current through the cantilevers is given by

y = i(t) =
d

dt
(CV ) = c1 sin(!ot)z + c2 cos(!ot) _z + v(t); (A.1)

where v(t) =
�oAVowo

d
sin(!ot) and c1, c2, are a function of the system

parameters, de�ned in (5.6). From (A.1) it is easy to see that the current

has two components

y = imot(2!ot) + iinp(!ot);

with

iinp = v(t);
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depending only on the input, and

imot = c1 sin(!ot)z + c2 cos(!ot) _z;

carrying the information about the cantilever dynamics. This is the \use-

ful" component that the observer uses to reconstruct the cantilever dis-

placement.

The measurement of imot turned out to be quite challenging. Its ampli-

tude, when the cantilever is in its linear regime of operation, is in the order

of few picoamperes, and about two to three orders of magnitude smaller

than the amplitude of iinp. Moreover, when the cantilever is driven close to

its resonant frequency, imot has a frequency of about 100kHz. In particular,

note that iinp is always at the driving frequency !o, while imot is at 2!o.

It turned out that there are no o�-the-shelf instruments able to perform

the measurement of such a small current at such a high frequency. The next

section presents the schematic of the circuit we have designed to perform

the measurement. The project is a collaboration with Craig Olroyd.

A.2 Circuit Design

Figure A.1 shows diagram of the circuit to measure the current. The

circuit is composed of two amplifying stages, to reduce noise and parasitic

impedances and obtain an ampli�cation gain of about 106 with a bandwidth

of 300kHz.

Figure A.2 shows the printed circuit board (PCB) with the circuit and

the cantilever die inside one of our IC carriers, during testing. The PCB

was custom made so that the circuit could be placed as close as possible to
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Figure A.1: Schematic diagram of the circuit to measure the current.

Figure A.2: Picture showing the PCB and the cantilever die during testing.

the cantilever die. The output terminal of the cantilever is wire-bonded to

the input of the �rst stage operational ampli�er, to further minimize any

source of noise and parasitic impedances.
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A.3 O�ine Implementation of the Observer

Figure A.3 shows the result of a �rst set of experiments regarding the

o�ine implementation of the optimal observer, using the circuit described

above for the measurement of the current. The input applied during this

experiment was a sinusoidal function with amplitude Vo = 300 mV and

frequency f = 53100 Hz.

In Section A.1 we noticed that iinp and imot are respectively at !o and

2!o and that iinp is the useful component, carrying the information about

the cantilever displacement. The small separation in frequency makes the

extraction of imot from the measurement of i diÆcult, since iinp can be

hardly �ltered out of i.

Figure A.3 a) represents the output of the circuit, once deprived of the

component relative to iinp. In this case, iinp has been subtracted out of i,

based on the model of the circuit and the identi�ed parameters of the can-

tilever. Figure A.3 b) compares the estimate of the cantilever displacement

(solid line) obtained with an optimal observer, to measured data (dashed

line). Notice how, in spite of the large amount of noise, the optimal ob-

server is able to provide an estimate of the cantilever displacement, not

too far o� from its actual value. Even though the performance is not sat-

isfactory yet, this result shows that indeed the sensing scheme proposed

might be a viable alternative to existing devices. In particular we expect

that, once we succeed in reducing the level of noise in the current measure-

ment, this scheme will be able to o�er comparable or better accuracy in

the reconstruction of the cantilever displacement than the other available

sensing schemes.
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