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Abstract

Motivated by developments and problems in a number of disciplines in-
cluding Quantum Chemistry, Information and Optics, the theory of Control of
Quantum Systems has emerged. Its goal is to apply the tools and methods of
Control Theory in the analysis and design of scientific and engineering appli-
cations of Quantum Systems. At the same time, Control Theory itself is been
enriched by new models and paradigms.

Our work focuses on the design of control fields that achieve given state
transfers with the minimum amount of energy expenditure. Besides their inher-
ent mathematical interest, such optimal designs are closely tied to the dynamics
of the underlying system and reveal much about the interplay of dynamics and
control.

In the first part of our work, we consider energy-optimal transfers in a general
isolated quantum system, for example an atom or a molecule. By examining
the large-time limit of these optimal transfer problems, we uncover the gen-
eral structure of the optimal controls. Moreover, we reduce the computational
complexity of the problem significantly.

In the second part, we examine similar problems for open quantum systems,
that is, quantum systems that interact with their environment. This interaction
creates dissipative effects in the system. Although one usually wants to resist
these effects, there are instances, such as the cooling of internal molecular mo-
tion, that one can effectively use dissipation mechanisms to one’s advantage. We
apply techniques similar to those developed for isolated systems to design “cool-
ing” electric (laser) fields for molecular rotations and demonstrate our method
in a three-state Lambda system.

The aforementioned designs are open-loop because sensing and feedback are
infeasible for the applications at hand. However, there has been remarkable
technological progress in the monitoring of single/small numbers of quantum
systems. Also, from the theoretical side, an adequate formalism has been devel-
oped for the description of continuously monitored quantum systems along with
a theory of optimal feedback. In the third part, we capitalize on these develop-
ments and design an optimal feedback control for the stabilization/preparation
of a desired state of a continuously measured spin system.
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Chapter 1

Introduction

1.1 General introduction

The subject of Quantum Control was created to address, from a Systems and
Control theoretic point of view, a number of problems from disciplines such
as Quantum Chemistry, Quantum Information and Quantum Optics. Control
Theory lends systematic tools of analysis and design to these disciplines and
in return is enriched with new models, applications and paradigms. In the
following, we will mention some of these problems trying to give a feeling of the
scope and breadth of Quantum Control Theory. Our presentation will by no
means be exhaustive. A sense of how much this field has grown and how active
it is can be gained from a simple search of the online Physics Preprint Archive
at xxx.lanl.gov.

Quantum Chemistry was historically a main importer of Control Theory
techniques, mainly optimal design. One of the main goals of Quantum Chem-
istry has been to manipulate reactions, especially between polyatomic molecules,
to desired outcomes. In particular, it is desired to selectively break chemical
bonds in polyatomic molecules so that new ones can be created. In many cases,
traditional techniques (adjusting the temperature and pressure of the reacting
system, inserting catalysts, etc.) have no effect. The introduction of high-power
lasers along with techniques to manipulate their pulses seems to offer a precision
tool for this task. Chemists realized though that the laser pulses need to be care-
fully designed to ensure collaboration with the complex molecular (vibrational)
dynamics. Thus, ideas of optimization and optimal control started to enter the
arena [1, 2, 3, 4, 5]. [6, 7] contain accounts of the situation at the beginning and
at the end of the 90s both from a theoretical and an experimental perspective,
as well as large lists of references. The problem of designing optimal laser pulses
for selective excitation of vibrational modes, molecular dissociation (breaking
of bonds) and, in general, steering to desired target states has been a major
motivator for the introduction of a Control Theory point of view.

Another source of problems amenable to Control Theory techniques is Nu-
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clear Magnetic Resonance (NMR) Spectroscopy. NMR spectroscopy uses the
response of the elementary magnetization of nuclei (spin) to magnetic pulses
to infer information about the kinds of nuclei present in a molecule and their
relative positions. A sequence of magnetic field pulses is applied to a sample of
molecules (e.g. a water solution of proteins) and then radiation is collected from
the relaxing sample. The spectral analysis of the radiation offers information
on the types of chemical groups present in the molecule and their distances.
NMR has become a very powerful experimental technique, especially in Bio-
Chemistry, for identifying the structure of macromolecules. There are several
important problems arising in the design of these pulses that can be posed as
optimal transfer problems of spin dynamics [8, 9, 10, 11] (for a Systems the-
oretic formulation of NMR experiments see [12]). Besides the aforementioned
problems, there are many more applications of control-theoretic methods in
Quantum Chemistry problems like cooling of molecules, control of molecular
alignment, identification of parameters of molecular Hamiltonians, etc.

A discipline that also promoted the introduction of a control engineering
point of view for quantum systems is Quantum Computing. Quantum Com-
puting flourished as a subject during the 90s after the realization that, in many
cases, it can offer distinct advantages over classical computing. However, the de-
velopments were mainly focused on the theory of computation, rather its imple-
mentation via physical systems. The attempt to realize quantum computing de-
vices, created the need that a number of practical design problems be addressed:
How will quantum states be prepared in the beginning of a computation, ma-
nipulated during one and measured at the end? How can external driving fields
(electric or magnetic, depending on the system) be designed that will affect a
prescribed unitary transformation on the states (quantum gates)[13, 14]? Even
more, how can one protect quantum information from environmental effects,
namely decoherence [15, 16, 17]? An introduction to theoretical and practical
aspects of Quantum Computing along with an exhaustive list of references is
[18].

A lot of the recent impetus in Quantum Control has come from Quantum Op-
tics. Already from the beginning of the 90s there existed in the Optics literature
a theory of quantum feedback [19] which, however, contained no measurement
step (i.e. some output, usually some photocurrent, would be fed back to the
system dynamics through a gain, without its value being “read”). Although
many things can be achieved with this limited form of feedback [20, 21, 22, 23],
it became clear that a measurement and estimation step would be extremely
advantageous [24, 25]. It is interesting that some of the mathematical tools
needed for this, namely a quantum filtering equation, had already been devel-
oped [26]. Combined with advancing experimental techniques for continuous
observation of quantum systems [27], these developments open up a new era for
Quantum Control. Applications to preaparation/stabilization of atomic states,
precision measurement, feedback cooling of atoms in cavities and quantum in-
formation processing are envisioned. This promises to be a very fertile area for
developments in the theory and applications of Quantum Control.
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1.2 Contributions of the thesis

The topic of this thesis is the design of energy-optimal control laws for state
transfers in quantum systems. Though certainly not the only relevant prob-
lems in Quantum Control Theory, state transfer problems are central to many
applications. They may be about selective excitation of a vibrational mode
in a molecule, polarization or coherence transfer in NMR or state prepara-
tion/stabilization in a continuously monitored quantum system.

We have concentrated on two types of transfer problems. The first one, trans-
fer of populations, is motivated by applications to Quantum Chemistry such as
selective excitation of vibrational eigenstates, molecular dissociation and cool-
ing of internal molecular motions (vibrations and rotations). The systems that
one deals with in Quantum Chemistry, namely molecules, have many degrees of
freedom and Hamiltonians without any symmetries (usually). This makes the
use of constructive design techniques essentially impossible. Optimal control,
on the other hand, offers a general setup that can handle large systems as well
as the ability to include several constraints in the design from the start. Also
important is that optimal designs for appropriate objectives produce control
laws that cooperate with the dynamics of the system rather than overpower it.
This is essential for systems with very few controls available, as is the case with
quantum systems (where usually one has one electric or magnetic field available
for control purposes). In particular, we have found that energy-optimal designs
have a lot of interesting structure.

Energy-optimal designs have been considered in the Quantum Control lit-
erature for a variety of problems in both isolated and open quantum systems
[2, 3, 4, 28, 29, 30, 31, 32, 33, 34, 35]. Except for the few cases where an analyt-
ical solution can be found (for two- and three-dimensional systems), one must
resort to numerical solution techniques. However, these techniques fail to reveal
a general structure of the optimal laws and are computationally expensive. We
discovered that, by examining the large time limit of these optimal transfer prob-
lems, we can both uncover a general structure of the solutions and significantly
reduce the computational cost of their (numerical) solution. In particular, we
found that for large times, there is a time-scale separation in the dynamics.
There is the short-time natural dynamics and the long-time evolution due to
control. The effects of the former can be incorporated in the later using aver-
aging. The original transfer problem is then reduced to a transfer problem for
an “averaged” system without drift and with only one time-scale, the long-time
scale of the transfer. We prove that there is a one-to-one correspondence be-
tween the solutions of the original and the “averaged” transfer problem. Hence,
one can solve the “averaged” transfer problem and use its solution to obtain
the solution of the original transfer problem. The computational cost reduc-
tion comes from the fact that the “averaged” system has only one time-scale,
the long-time scale. The solution of the original problem, expressed in terms
of that of the “averaged” transfer problem exhibits the time-scale separation
and clarifies the effect of the control. The form of the optimal control is espe-
cially simple and intuitive: It is a sum of Bohr frequency sinusoids modulated
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by slow profiles which are calculated from the slow averaged problem. There
are many transfer problems which by nature require a transfer time at least
3 to 4 orders of magnitude larger than the time-scale of their natural dynam-
ics. But, more than that, we believe that this approach is the most effective,
computationally and conceptually, for population transfer problems, even for
shorter transfer times. We have proved the results above for exact population
transfers in isolated quantum systems. We believe that they can be extended
to other population transfer problems with the same conclusions. We have also
extended the technique to open systems and treated the problem of designing
cooling laser pulses for molecular rotations in this framework.

The second type of problem is a regulation problem, that of stabilization
of a desired spin eigenstate of a continuously monitored spin system. It has
attracted much attention in the quantum control community, see, for example,
the recent works [36, 37, 38, 39, 40]. In particular, we focus on the feedback
stabilization of a spin- 1

2 system which is a prototypical problem, because the
spin- 1

2 is the simplest quantum mechanical degree of freedom. We use an optimal
feedback approach with an objective consisting of a control-energy term and a
state-penalty term. Since measurements provide only partial information about
the state of the system, this problem is analogous to optimal feedback control of
partially observed stochastic systems in classical Control Theory. The solution
is similar: The problem is separated into a filtering problem, where the state
of the system is continuously estimated based on incoming measurements and
an optimal state feedback problem for the dynamics of the filter. We set up
the problem of the optimal feedback stabilization of the filter dynamics and
derive the corresponding Bellman equation. In the case of perfect detection
efficiency the boundary of the state space is a forward invariant set for the
dynamics. We pose a “reduced” version of the original stabilization problem
on the boundary and solve its Bellman equation. Then, we use this boundary
solution as a boundary condition for the full Bellman equation and obtain a
complete solution to the problem.

1.3 Organization of the thesis

The thesis is organized as follows:

• In Chapter 2, we introduce the basic elements of Quantum Mechanics and
set up the optimal population transfer problem. We review some previous
work on it and comment on various conceptual and computational issues.
Then, we introduce the “averaged” transfer problem and establish the
connection between the solutions of the two problems. We conclude with
some analytical and numerical examples of the presented method.

• In Chapter 3, we begin by extending the basic quantum mechanical formal-
ism to open systems. Then, we review the problem of rotational cooling
of molecules and set it up as an optimal population transfer problem. We
present an approximate solution method based again on an “averaged”
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transfer problem. We conclude with the example of a three-level Λ system
where we compare our solution to the optimal cooling problem with that
obtained by a different method.

• Chapter 4 contains some work on Lyapunov-based control design for iso-
lated quantum systems (which is meant to be implemented in open-loop
fashion).

• In Chapter 5, we introduce the continuously monitored spin - 1
2 system,

present and analyze the associated filtering equation and set up the op-
timal feedback stabilization problem of a desired eigenstate for the filter
dynamics. We conclude with a numerical solution for the optimal feedback
law.

• Chapter 6 contains concluding remarks and some thoughts on future re-
search directions.

5



Chapter 2

Optimal transfers in
isolated quantum systems

Our presentation is organized as follows: We begin in section 2.1 with a brief
introduction to Quantum Mechanics and introduce relevant notions and facts.
We present two simple models of relevance to our work (and to Quantum Con-
trol, in general) and build some initial intuition about the dynamics of these
systems. In section 2.2, we overview the optimal transfer problem we consider
in this chapter along with the main conclusions of our work. In section 2.3, we
set the optimal population transfer problem for a finite dimensional quantum
system in detail, review approaches to its solution and comment on the difficul-
ties associated with these approaches. In section 2.4, we consider the quantum
system with a certain class of controls and show how, for large transfer times
T , it is approximated to first order in a 1

T perturbation expansion by an “aver-
aged” control system. Then, we set up an optimal population transfer problem
for this averaged system. Section 2.5 contains our main result, namely that,
for large transfer time, the solution to the original optimal control problem is
approximated by the solution of the optimal population transfer problem for the
averaged system. This implies that the optimal control for the original problem
belongs to the class of controls used to transform the original system to the
averaged one and this provides a useful characterization of it. We demonstrate
our approach with some examples in section 2.6. The proofs of our results are
contained in section 2.7. Section 2.8 concludes.

2.1 Introduction to quantum systems

2.1.1 Quantum Mechanics at a glance

We collect here a few basic definitions and axioms of Quantum Mechanics.
Our intent is to establish terminology rather than offer an introduction to this
vast subject that lies in the heart of modern Physics. For a comprehensive
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introduction, [41, 42] are two excellent and fairly modern references. The four-
volume classic work [43] contains a wealth of information on the mathematical
structure of Quantum Mechanics.

In general, to define a dynamical system one needs to provide two pieces
of information: A set of (dynamical) variables (equivalently, a state space) and
a law for their evolution. In the case of quantum systems, the relevant state
spaces are complex Hilbert spaces, i.e. complete, separable infinite-dimensional
complex Euclidean spaces. All such spaces are equivalent to l2(C), the space of
square-summable sequences of complex numbers, a well-known fact from Func-
tional Analysis. Nevertheless, finite-dimensional state spaces occur as well. For
example, all microscopic particles possess a property called spin, a kind of inter-
nal angular momentum (see section 2.1.3). Ignoring the dynamics of the particle
in the physical space, spin dynamics can be described in a finite-dimensional
complex state space CN . Also, in many cases the interesting dynamics in the
system may take place in a finite-dimensional subspace of the Hilbert space
and we wish to look at a reduced model. In this section we will address both
cases together and (slightly abusing the established mathematical terminology)
we will refer to the state space of a quantum system as its Hilbert space. Its
dimension, N , will be either finite or countably infinite. In the rest of the work
we concentrate on finite-dimensional systems obtained either in their own, or
by infinite-dimensional systems through a reduction process.

LetH denote the Hilbert space of a quantum system. Traditionally, the state
of the system is denoted by ψ. The evolution law is the famous Schrödinger
equation:

i~ ψ̇ = Hψ, (2.1)

where H is a self-adjoint operator defined in a dense domain of H, referred to
as the Hamiltonian operator of the system. H might also be a function of
time. We will not discuss questions of existence of solutions to (2.1) (in the
infinite-dimensional case) and instead refer the reader to [43]. ~ is a physical
constant with dimensions of action (energy × time) and the numerical value

~ = 1.054× 10−34 Joule.sec.

h = 2π~ is known in Physics as Planck’s constant. This evolution law is linear
and unitary (norm preserving) on account of the self-adjointness of H:

d

dt
‖ψ‖2 =

d

dt
(ψ, ψ) = (

dψ

dt
, ψ) + (ψ,

dψ

dt
) = (−iHψ, ψ) + (ψ, −iHψ)

= i (Hψ, ψ) − i (ψ, Hψ) = 0.

(The usual notation for inner products and norms is used). Traditionally, states
are normalized to 1. As we will see in a moment, a total phase factor in ψ is
physically meaningless, thus all vectors modulo a total phase factor represent
the same physical state (ψ ∼ eiφ ψ, φ ∈ [0, 2π]). Thus, the actual state space
of an N-dimensional quantum system is the complex projective space in N
dimensions, CPN .

7



In a physical theory, an interpretation of the various mathematical objects
in terms of measurable physical quantities must exist. For Quantum Mechanics,
this goes as follows: Every physical (measurable) quantity corresponds to a self-
adjoint operator in H. To avoid technicalities, we consider only operators with
discrete (point) spectrum. Treatment of operators with continuous spectrum
can be found in [43] (see also [44] for a concrete example). Let Q be the operator
corresponding to the physical quantity q, e.g. energy. Since Q is self-adjoint, its
eigenvalues are real and its normalized eigenvectors form an orthonormal basis
for H:

Qvi = qivi, i = 1, . . . , N.

Then, every possible experiment to measure q will yield one of the qi’s, i.e.
the qi’s are the only possible physical values q can take. The reason behind
the prominence of self-adjoint operators in Quantum Mechanics is the reality
of their spectrum which is interpreted as the set of measurable values of the
corresponding physical quantities. Although (2.1) is a deterministic equation,
the interpretation of the formalism is statistical, that is, one uses the knowledge
of the state ψ of the system to calculate a priori probabilities for the outcome
of measurements of physical quantities. The probability of the outcome qi in a
measurement of q when the state of the system is ψ is given by

prob(q = qi;ψ) = |(vi, ψ)|2.

ψ is interpreted as a state of knowledge about the quantum system. Hence,
right after a measurement of q that yielded the value q1, the state of the system
is v1 since q is known with certainty. This discontinuous change in the state
after a measurement is often referred to as “collapse of the state”. Notice that
completeness of the set {vi}i=1,...,N implies that

N∑
i=1

prob(q = qi;ψ) = 1.

Also, for i 6= j, (vi, vj) = 0, which translates to

prob(q = qi; vj) = prob(q = qj ; vi) = 0.

Both of these are required for a consistent probabilistic interpretation. Observe
that if one multiplies a state vector ψ by a phase eiφ, nothing changes in its
physical properties. This is the reason why one identifies all vectors that differ
by an overall phase factor. The expression for the expectation value of Q in the
state ψ,

〈Q〉 =
N∑

i=1

qi · prob(q = qi;ψ) =
N∑

i=1

qi|(vi, ψ)|2 = (ψ,
( N∑

i=1

qiviv
′
i

)
ψ)

= (ψ, Qψ), (2.2)

is one of the fundamental equations in Quantum Mechanics. Perhaps the most
striking consequence of the physical interpretation of the formalism, is the fact
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that physical observables whose corresponding quantum mechanical operators
do not commute, cannot be measured simultaneously and hence cannot be as-
signed values simultaneously. Indeed, only when the self-adjoint operators A
and B commute, i.e. [A,B] .= AB −BA = 0, they have a common set of eigen-
vectors {qi} and hence after a measurement that yielded, say, the eigenstate q1,
the corresponding quantities both can be assigned values, namely a1 and b1.

An important quantity for every physical system is energy. The operator
corresponding to energy is the system Hamiltonian H. Its eigenvectors ei are
referred to as energy eigenstates and its eigenvalues Ei as the energy levels of
the system (Hei = Eiei). If we expand a state vector ψ in the basis of the ei’s,

ψ =
N∑

i=1

ψiei,

the quantities |ψi|2 = |(ei, ψ)|2 are called the populations of the energy levels
i. We can write down the solution of (2.1) explicitly as

ψ(t) = e−iHt/~ ψ(0) =
N∑

i=1

ψi(0) e−iEit/~ ei.

Note that the time evolution is a unitary transformation of the initial state that
preserves the populations of the levels, because

|ψi(t)|2 = |ψi(0) e−iEit/~|2 = |ψi(0)|2

In particular, if ψ(0) = ei, then ψ(t) = e−iEit ei and so the energy eigenstates
are equilibria of the dynamics.

Finally, we define the notion of Bohr frequency which will play an impor-
tant role in the subsequent development: For every pair of energy levels i and
j, we define the Bohr frequency for the transition between them as

ωij =
Ei − Ej

~
.

|ωij | is equal to the frequency of a photon absorbed or emitted by the quantum
system when it makes a transition from j to i or vice versa, depending on which
state is higher in energy. This is a well-known experimental fact which motivated
the development of Quantum Mechanics. In order to put this statement in a
sound theoretical framework the development of the quantum-mechanical theory
of light and its interaction with matter, Quantum Electrodynamics (QED) was
necessary. For our purposes, we will provide a proof of this statement within the
semiclassical model of interaction we use, see equation (2.3) in the next section.

2.1.2 Controlled quantum systems

When a quantum system is acted upon by an external field (e.g. an atom in the
electric field of a laser), (2.1) is modified as follows:

i~ ψ̇ = (H0 +
∑
α

Vαuα(t) )ψ. (2.3)
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The time-independent system Hamiltonian H0 still describes the internal dy-
namics of the system. The Vα’s are referred to as control Hamiltonians and
describe the coupling of the system to the external fields uα(t). We should
note that this model is valid in the semiclassical approximation, where the con-
trol field influencing the quantum system is taken to be a classical source. We
also employ the dipole moment approximation, valid for long wavelength fields,
where the spatial features of the system-control field interaction are lumped in
the interaction Hamiltonian and the amplitude of the field becomes the control
parameter.

Systems of the form (2.3) are called bilinear in the Systems Theory litera-
ture. If one writes the solution of the (linear) equation (2.3) in the form

ψ(t) = U(t)ψ(0), (2.4)

the time-dependent unitary operator U(t) (also known as the propagator of the
quantum dynamics) satisfies the equation

i~
dU(t)
dt

= (H0 +
∑
α

Vαuα(t) )U(t), (2.5)

with the initial condition U(0) = I. Since states are defined modulo total
phase factors, one can impose the condition detU(t) = 1, i.e. U(t) is a special
unitary transformation. For finite-dimensional systems, (2.5) is known as a
right-invariant (control) system on the Lie group of special unitary matrices in
N dimensions, SU(N). Right invariant systems on Lie groups have received a
lot of attention in the Geometric Control literature, starting with the important
works [45, 46, 47], see also [48] for a comprehensive treatment and extensive
references. Many properties of system (2.3) can be inferred from (2.5). For
example, the controllability properties of (2.3) have been studied extensively
for finite dimensional quantum systems ([49, 50, 51, 52]) using results from
right invariant systems on Lie groups. We quote the main result and refer to
the bibliography for more details:

Necessary and sufficient condition for controllability: The system (2.3)
is controllable by locally bounded, measurable controls iff the Lie Algebra gener-
ated by H0 and the Vα’s contains su(N), the Algebra of traceless anti-symmetric
complex N ×N matrices.

For general infinite-dimensional bilinear systems, [53] is a basic reference for
controllability issues while [54] is the first work that undertook the controllabil-
ity question for infinite-dimensional quantum systems. In general, results con-
cerning controllability of infinite-dimensional quantum systems are far weaker
than their finite-dimensional counterparts. Nevertheless, there exist systems for
which states with interesting properties can be accessed [55, 56].

2.1.3 Two model systems

We continue this introductory section with the description of two quantum sys-
tems which arise often in applications of quantum control ideas. The first one is
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the one-half spin particle which is the quantum system with the state space of
smallest dimension, namely C2). Spin one-half systems and two-state systems
in general are referred to as qubits in the Quantum Information literature and
form the building block of many proposed Quantum Computation and Commu-
nication technologies. This makes the study of these systems very important.
The other system we will briefly describe is the so-called Morse oscillator. This
is the quantum version of a mechanical oscillator with non-linear restoring force
that models the force between two atoms in a molecule. In other words, it is a
quantum mechanical model of a chemical bond.

The spin- 1
2 particle

Spin is a purely quantum mechanical degree of freedom with no classical coun-
terpart. It corresponds to an “internal” angular momentum of the particle. Like
a rotating particle with charge has a magnetic dipole moment proportional to
its angular momentum, so does a particle with spin. In some sense, the spin is
an elementary inherent magnetization of particles. Spin interacts with magnetic
fields, possibly created by other spins.

The electron, the proton, the neutron and many composite nuclei have spin
1
2 . This is the simplest of all quantum mechanical systems. The state space is
C2 and the Hamiltonian is

H = −γ
∑

i=x,y,z

SiBi

where Bx, By, Bz are the components of the magnetic field at the position of the
particle and Sx, Sy, Sz are the spin operators. They are self-adjoint operators
in C2, so they are 2 × 2 Hermitian matrices. They are simply expressed in terms
of the Pauli matrices,

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

as Si = ~
2σi. γ, is a property of the particle called the gyromagnetic ratio, and

it may be positive or negative. Here, we take γ > 0. In most applications,
one applies a large uniform, constant magnetic field B0 in one direction (say z).
The reason for this is to overpower any random magnetic fields in the locality
of the particle. One then applies uniform time-dependent fields in the x and/or
y directions that act as controls. The dynamical equation has the form

i
dψ

dt
= −1

2
γ(σzB0 + σxBx(t) + σyBy(t) )ψ. (2.6)

This equation can be rendered dimensionless by defining the variables

ω0 = γB0, τ = ω0t, ux =
Bx

B0
, uy =

By

B0
.

11



ω0 is sometimes referred to as the Larmor frequency of the spin. The control
system takes the simple form

i
dψ

dτ
= −1

2
(σz + σxux + σyuy)ψ, ψ ∈ C2. (2.7)

It is controllable with either control input (ux or uy).

The Morse oscillator

E
1

E
2

E
22

bound states

continuum states

r 

U(r) 

U
0
 

r
0
 

E
3

Figure 2.1: The Morse potential for the OH bond

This infinite dimensional system is a model for the vibrational dynamics of
two-atom molecules. Its state space is L2(R). The Hamiltonian operator is

H0 = − ~2

2m
d2

dr2
+ U(r),

with the Morse potential

U(r) = U0{exp[−α(r − r0)]− 1}2 − U0 ,

see figure 2.1, where, r is the intermolecular distance, m is the reduced mass of
the molecule and r0 the equilibrium distance of the molecule. α determines the
width of the molecular well and V0 its depth. The spectrum of the Hamiltonian
operator contains a set of discrete points as well as a continuum. The discrete
energy eigenvalues are given by the expression

En = −~2α2

2m
(√2mV0

~α
− n − 1

2
)2
,
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where n = 0, . . . ,
[√

2mV0
~α − 1

2

]
. Every E ≥ 0 belongs to the continuous part

of the spectrum. The discrete energy levels correspond to bound states of the
molecular oscillation while the continuous energies correspond to unbounded
(relative) motion of the two atoms. Thus, a transition of the molecule from a
bound state to a state in the continuum represents the breaking of the molecular
bond. This phenomenon is called the dissociation of the molecule and is very
important to Quantum Chemistry. Indeed, the role of the laser as a chemical
catalyst is exactly that, to break existing bonds, so that new ones may be
formed. The interaction of the molecule with the electric field u of a laser is
modeled by the interaction Hamiltonian (in the electric dipole approximation)

Vint(t) = −µ(r)u(t)

and µ(r) is the molecular dipole function. A common form for it is

µ(r) = µ0r exp(−r/r0),

(µ0 and r0 are parameters of the interaction). In the following, for the purpose
of specific examples, we use the model of the OH bond which has 22 bound
states.

2.1.4 Bohr frequencies as resonance frequencies

We conclude this section with a calculation that demonstrates the physical sig-
nificance of the Bohr frequencies and helps us develop some initial intuition
about the control of quantum systems. We begin with the simplest of all quan-
tum systems, the spin- 1

2 . Suppose that the system is initially in its lowest

energy state, e1 =
(

1
0

)
, and we want to transfer it to the higher energy

state e2 =
(

0
1

)
. For the purpose of this illustration, we consider (2.6) with

sinusoidal magnetic field inputs:

Bx(t) =
By(t) =

+B1 cos(ωt),
−B1 sin(ωt).

Letting ω0 = γB0 and ε = B1
B0

, (2.6) becomes

i
d

dt

(
ψ1

ψ2

)
=
(
−ω0

2 − εω0
2 eiωt

− εω0
2 e−iωt ω0

2

)(
ψ1

ψ2

)
.

To solve this equation, we perform the transformation

ψ1 = e+
iω0t

2 x1,

ψ2 = e−
iω0t

2 x2. (2.8)
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The resulting system

iẋ1 = −εω0

2
e+i(ω−ω0)t x2,

iẋ2 = −εω0

2
e−i(ω−ω0)t x1,

can be solved explicitly because x1 and x2 satisfy linear second-order equations
with constant coefficients, e.g.

ẍ1 − i(ω − ω0)ẋ1 + (
εω0

2
)2x1 = 0.

With the initial conditions

x1(0) =
x2(0) =

ψ1(0) =
ψ2(0) =

1,
0,

the solution is

x1 =
(

cos(
Ωt
2

)− i
ω − ω0

Ω
sin(

Ωt
2

)
)
e

i(ω−ω0)t
2 ,

x2 = i
εω0

Ω
sin(

Ωt
2

) e−
i(ω−ω0)t

2 ,

where Ω .=
√

(ω − ω0)2 + ε2ω2
0 . The populations of the two states are given as

functions of time by the expressions

|ψ1|2 =
|ψ2|2 =

|x1|2 =
|x2|2 =

1− ε2ω2
0

Ω2 sin2(Ωt
2 ),

ε2ω2
0

Ω2 sin2(Ωt
2 ).

From these expressions we conclude that, in order to achieve the maximum
possible transfer of population from state 1 to state 2, we need to use a field of
frequency ω = ω0. In other words, the external field must be in resonance with
the Bohr frequency of the transition we ’re trying to achieve. In this case, the
expressions for the state and the populations are, respectively,

x =
(

cos( εω0t
2 )

i sin( εω0t
2 )

)
,

and
|ψ1|2 =
|ψ2|2 =

|x1|2 =
|x2|2 =

cos2( εω0t
2 ),

sin2( εω0t
2 ).

The transition can be achieved with arbitrarily small field amplitude and the
transfer time is inversely proportional to this amplitude:

Ttransfer =
π

εω0
=

π

γB1
.

Put differently, given a desired transfer time Ttransfer, the field amplitude has to
be equal to

B1 =
π

γTtransfer
. (2.9)
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This is an exact result for the two-state system. In the following, we show
for a general finite-dimensional quantum system (using averaging) that for small
enough amplitude, the frequency of the controlling field must be equal to the
Bohr frequency of the transition we ’re trying to achieve. From now on, we use
units where ~ = 1 and consider (2.3) with only one control:

iψ̇ = (H0 + V u(t))ψ. (2.10)

First, we make a change of variables that generalizes (2.8):

ψ = e−iH0t x

This is the transformation to the “rotating frame” or “interaction pic-
ture”. (2.10) transforms to

iẋ = eiH0t V e−iH0t u(t)x = F (t)u(t)x,

where
F (t) .= eiH0t V e−iH0t.

This equation is most easily analyzed in the basis of energy eigenstates. In this
basis, H0 is diagonal and

Fkl(t) = Vkle
i(Ek−El)t = Vkle

iωklt

Note the appearance of the Bohr frequencies in the matrix elements of F (t).
Suppose that we want to induce a transition from level i to level j. For the
control field u(t), we take a sinusoid with frequency equal to ω > 0:

u(t) = Aeiωt + A∗ e−iωt.

Inserting this u(t) in the rotating frame equation and writing the equation in
component form, we have:

iẋk =
∑

l

Vkle
iωklt[Aeiωt +A∗e−iωt]xl. (2.11)

The right-hand side of (2.11) is a sum of terms with sinusoidal time dependence.
An excellent approximation technique for systems of this sort is averaging. In
averaging, one considers equations of the form

ẇ = εf(w, t, ε), (2.12)

where f must be a bounded C2 function of its arguments with bounded deriva-
tives up to 2nd order such that the limit

fav(w) .= lim
τ→∞

1
τ

∫ t+τ

t

f(w, t′, 0) dt′
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exists. A standard result (see Chapter 8 of [57] for example) guarantees that,
for sufficiently small ε, the solution of

˙̄w = εfav(w̄)

with an initial condition O(ε) close to the initial condition of (2.12) (i.e. w̄(0)−
w(0) = O(ε)) is O(ε) close to that of (2.12) for a time interval of length O( 1

ε ).
Assuming that ω 6= ωkl for all positive Bohr frequencies of the system, the
resulting averaged dynamics is just

i ˙̄xk = 0, ∀ k,

i.e. nothing happens. If, however, ω = ωij , and there is no other Bohr frequency
equal to ωij , the averaged form of (2.11) is given by

i ˙̄xk = 0, k 6= i, j,

i ˙̄xi = A∗Vij x̄j , (2.13)
i ˙̄xj = AVjix̄i.

Using the initial conditions x̄k(0) = xk(0) = δik, these can be solved immedi-
ately to give the average populations

|ψ̄k|2 = 0, k 6= i, j,

|ψ̄i|2 = cos2 |AVij |t,
|ψ̄j |2 = sin2 |AVij |t.

For a given transfer time T , the control amplitude must be

|A| = π

2|Vij |T
. (2.14)

We can always choose a large enough transfer time T to make |A| as small as
needed. Averaging guarantees that the solution of (2.13) is O(|A|) close to the
solution of (2.11) for a time of orderO( 1

|A| ), which means that the approximation
gets better as T becomes larger. This argument substantiates the interpretation
of Bohr frequencies as resonance frequencies for any quantum system.

Before leaving this section we want to return to the question of controlla-
bility for quantum systems and present a sufficient condition for controllability
that assumes more than the necessary and sufficient condition of section 2.1.2
but is extremely easy to check. The reason we present it here rather than in
that section is that it becomes very transparent in the light of the physical in-
terpretation of the Bohr frequencies as resonance frequencies. To state it, we
need a few simple notions: A quantum system whose energy levels (eigenvalues
of H0) are all different from each other is called non-degenerate. Moreover, a
system such that no two Bohr frequencies (differences of energy levels) are the
same, is said to have no degenerate transitions. We also define the graph of an
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N -dimensional quantum system as a planar graph with N nodes, each repre-
senting an energy level, such that an edge connects the nodes i and j iff there
exists at least one control Hamiltonian Vα in equation (2.3) with (Vα)ij 6= 0.
The positions of the graph nodes are not important only the connectivity prop-
erties of the graph are (e.g. the graph is connected when there exists a sequence
of edges connecting any two given nodes).

Sufficient condition for controllability: [51, 52] If the system (2.3) is not
degenerate, has no degenerate transitions and its graph is connected, it is con-
trollable.

As a matter of fact, this is the generic situation for controllability of (2.10).

2.2 Overview of problem and results

Steering a quantum system from its initial state to a given final state or a set
of final states is one of the central problems in the control of such systems.
While transfers to specific final states are very important for applications to
Quantum Computing and Quantum Chemistry, transfers to given final popu-
lations are also important for many applications to Quantum Chemistry and
Atomic Physics. Optimal Control is a natural approach to transfer problems:
Frequently, one desires to optimize some aspect of the transfer. For example,
minimize the transfer time [58, 59], maximize some measure of efficiency of the
control in achieving its objective [10] or minimize some measure of the size of
the control, for instance its L2 norm [33, 35, 34, 60]. Moreover, the optimal
control(s), singled out of all possible controls that achieve the objective, should
have interesting properties tied to the structure of the given system.

We consider here energy-optimal exact population transfers. That is, we wish
to find a u ∈ L2([0, T ]), that minimizes

‖u‖2L2([0,T ]) =
∫ T

0

u2(t) dt, (2.15)

and drives an initial state ψ0 of system (2.10) to a target population distribution
{|ψi(T )|2 = pi, i = 1, . . . , N} (N is the dimension of the system and ψ =∑

i ψiei, where the ei’s are the orthonormal eigenvectors of H0). This cost for
the control has been used extensively in the literature of optimal control of
quantum systems as part of various objective functionals. It provides a measure
of the energy spent to create the controlling field and leads, as we will see, to
interesting conclusions.

Relatively little work has been done on the problem of optimal exact pop-
ulation transfers. Analytically, it is a hard problem and explicit solutions are
known only in few cases: In [33, 34] this is done for transfers between eigen-
states in a two-dimensional system with two controls and in [35, 34] it is done
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for transfers between eigenstates of a three-dimensional system with four con-
trols. In fact, both cases mentioned above are instances of a certain algebraic
structure being present (the so-called K+P structure) [35, 61]. It allows one to
find analytic expressions for the control and the state in terms of the unknown
initial costate but the analytic determination of this unknown initial costate
(and hence the complete solution of the problem) is possible only for systems of
small dimensionality because one needs to analytically compute matrix expo-
nentials and solve transcendental equations. In dimensions higher than 2, the
presence of the K + P structure requires unphysical numbers of controls and
very special structure in the control Hamiltonians. For a two-state system with
one control [33], it is possible to find an analytic expression for the control (in
terms of unknown constants) but not for the state and so the problem has to
be solved numerically from that point on. For higher dimensional systems, no
general properties of the optimal control and state trajectory are known.

Numerically, the two-point boundary value problem that expresses the neces-
sary conditions of optimality becomes increasingly harder to solve as the dimen-
sion of the system or the transfer time grows. Dimension growth dramatically
increases the computational cost of the numerical solution. More relevant to
our work is the issue of large transfer time. In many typical applications, the
transfer time may be a few orders of magnitude larger than the time scale of
the free evolution of the system. This may be necessary for the transfer to be
possible or for the amplitude of the control to be small enough so that it is
within experimentally feasible limits. The problem here is the presence of two
time scales in the solution, i.e. stiffness: There is the fast time scale of the
free dynamics of the quantum system and the slow time scale of the transition
(which is of the order of T ). This creates the need for a very detailed numerical
solution in order to guarantee good solution accuracy resulting in large compu-
tational times. In applications one often considers relaxations of this optimal
transfer problem where one abandons the requirement for exact transfers and
tries to minimize a combination of the integral cost (2.15) and a weighted sum
of the final populations:

a

∫ T

0

u2(t) dt +
N∑

i=1

mi|ψi(T )|2, (2.16)

(a ≥ 0). An advantage of optimal transfer problems like these over the one
we are considering in this work is that they lead to two-point boundary value
problems with separated boundary conditions and are amenable to iterative
solution methods, see for example [2, 31, 62]. Yet, the above remarks hold for
these as well. We shall comment on the connections between this work and the
later type of optimal transfer problems in section 2.8.

We found that the study of optimal population transfers for large transfer
times offers some insight into the nature of optimal control and state trajectory
as well as computational advantages in the numerical solution of the problem.
The main conclusions of our work are the following:

1. For generic population transfers (this will be defined precisely in the state-

18



ment of the theorems in section 2.5) and large enough transfer times, the
optimal control has the following, physically plausible form: It is a sum of
sinusoids with frequencies equal to the Bohr frequencies of the quantum
system multiplied by slowly varying profiles, that is functions of t

T :

uopt(t) =
i

T
tr
(
eiH0t V e−iH0tL(

t

T
)
)

+O(
1
T 2

)

=
i

T

∑
k 6=l

Vkl e
iωkltLlk(

t

T
) +O(

1
T 2

).

L is an anti-Hermitian matrix with zeros on the diagonal, whose entries
are the profiles. This form is explicitly verified in all analytically solvable
cases (in the K +P case, there are no O( 1

T 2 ) corrections) and it is in fact
observed in numerical solutions.

2. Again for generic population transfers and large enough transfer times,
the optimal trajectories follow a slow “mean” evolution modulated by fast
oscillations. The slow mean evolution and the slow control profiles can
be calculated by solving an “averaged” two-point boundary value prob-
lem (the term will be explained in section 2.4) in the fixed interval [0, 1],
irrespective of how large the transfer time T is. The small deviations
of the optimal trajectories from their mean evolution are due to the free
dynamics. Quantitatively,

ψ(t) = e−iH0t ψ̄(
t

T
) +O(

1
T

),

where ψ̄ denotes the “mean trajectory” and the oscillatory e−iH0t term
is responsible for the deviations from the mean evolution. There are also
additional corrections, of higher order in a 1

T expansion.

Although these results hold for large transfer times, one may use a solution of
the optimal control problem obtained this way for a large transfer time T as the
first step in a continuation method solution of the original optimization problem
where the continuation parameter is the transfer time. The point is that the
large transfer time limit both reveals the structure of the controls and serves
as a good starting point for the solution of the problem: Indeed, the associated
“averaged” two-point boundary value problem in [0, 1] is much easier to solve
numerically than the original problem.

2.3 Optimal population transfers

In this section we derive the necessary conditions of optimality for the optimal
population transfer problem described in section 2.2. For simplicity, we consider
a system with one control (which is usually the case) and set, as usually, ~ = 1
in Schrodinger’s equation:

iψ̇ = (H0 + V u(t))ψ.
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Nevertheless, everything we do in this and the following sections can readily
be generalized to systems with more controls. We also require the sufficient
controllability condition discussed at the end of section 2.1.4:
Controllability assumption: The system (2.10) is non-degenerate, has no
degenerate transitions and its graph is connected.

We now proceed with the set up of the optimal control problem. We wish
to find a u ∈ L2([0, T ]), that minimizes

‖u‖2L2([0,T ]) =
∫ T

0

u2(t) dt,

and drives an initial state ψ0 of system (2.10) to a target population distribution
{|ψi(T )|2 = pi, i = 1, . . . , N} (N is the dimension of the system). We will refer
to this as optimal transfer problem (I). The Maximum Principle of optimal
control [48, 63] provides necessary conditions for optimality in terms of the
Hamiltonian function (not to be confused with the Hamiltonian operators of
quantum systems!)

H(ψ, λ, u) =
1
2
u2 − iλ∗(H0 + V u)ψ + iψ∗(H0 + V u)λ,

where λ ∈ Cn is the co-state vector. It is shown in Appendix A that solutions
of the optimal control problem satisfy, λ∗(t)ψ(t) = 0.

The optimal control u and the corresponding state and co-state satisfy the
equations

ψ̇ =
∂H

∂λ∗
, λ̇ = − ∂H

∂ψ∗
and

∂H

∂u
= 0,

which, given the expression for H, have the form

iψ̇ = (H0 + V u)ψ, (2.17)
iλ̇ = (H0 + V u)λ, (2.18)
u = i (λ∗V ψ − ψ∗V λ). (2.19)

For convenience, we rewrite equations (2.17) and (2.18) using u from (2.19):

iψ̇ = H0ψ + i (λ∗V ψ − ψ∗V λ)V ψ, (2.20)
iλ̇ = H0λ+ i (λ∗V ψ − ψ∗V λ)V λ. (2.21)

To these equations one must append the boundary conditions

ψ(0) = ψ0, |ψi(T )|2 = pi, Im(ψ∗i (T )λi(T )) = 0, (2.22)

∀ i = 1, . . . , N . The last of these equations are the transversality conditions
at the endpoint. Their proof is also given in Appendix A. We will refer to
the two-point boundary value problem comprised of equations (2.20) - (2.22) as
two-point boundary value problem (I).
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We briefly discuss now methods for its solution. Analytically, we may pro-
ceed as follows: Define the traceless, anti-Hermitian matrix Λ by Λ .= ψ λ∗−λψ∗
and using (2.17) and (2.18) we can show that

Λ̇ = −i [H0 + V u,Λ] = [−iH0 + tr(V Λ)V,Λ] (2.23)

where we substituted

u = i (λ∗V ψ − ψ∗V λ) = i tr(V Λ),

from (2.19). If we solve (2.23) analytically, we obtain an expression for the
control function u(t) in terms of unknown constants (these unknown constants
are matrix elements of Λ(0) = ψ(0)λ∗(0)− λ(0)ψ∗(0) and λ(0) is what we are
after). Then, one may attempt to solve (2.17) and (2.18) using this expression for
u and determine these constants by satisfying the boundary conditions (2.22).
In practice this program seems impossible to carry out in its entirety except
for the few special cases mentioned [33, 34, 35]. [Note: These works consider
optimal transfer problems for the system i~ U̇ = (H0 +

∑
α Vαuα(t) )U which,

as discussed in subsection 2.1.2, comes from i~ ψ̇ = (H0 +
∑

α Vαuα(t) )ψ by
letting ψ(t) = U(t)ψ(0). It turns out that the formulation of the optimal control
problem in the two setups is similar and in fact, equation (2.23) in that context
is the co-state equation “pulled-back” on the cotangent space at the identity
of SU(N), see [47, 48].] Numerically, one may attempt to solve the two-point
boundary value problem (2.20) - (2.22) using, for example, some shooting or
finite-difference method. This works for systems of small dimensionality and
small transfer times but becomes increasingly harder as the system dimension
grows and as larger transfer times are required for the transfer to be possible.
As mentioned before, in many typical applications the transfer time has to be a
few orders of magnitude larger than the time scale of the free dynamics of the
system in order to achieve the desired transfer. Because the free dynamics of the
system is oscillatory, the first terms on the right sides of equations (2.20) and
(2.21) create small oscillations of the populations around their “mean” evolution
towards their final values. This creates the need for a very detailed numerical
solution in order to guarantee good solution accuracy. Examples of this can
be seen in the graphs of section 2.6. Besides the usual unfavorable scaling of
the solution efficiency with dimension (an issue which we do not address), this
is the main source of difficulty of the problem. Note that these remarks are
quite general and independent of the specific numerical methods used to solve
the two-point boundary value problem. We will see in the following how this
problem can be overcome.

Before we leave this section we would like to point out that our discussion so
far, as well as in the following, will only concern regular or normal extrema of
the optimization problem (I). Singular extrema [64, 48] will not be considered.
The reason is that the form of the singular extrema does not depend on the exact
cost used in the minimization problem, and thus, the same singular extremum
can be a local or even a global minimizer to many different cost functionals. In
this sense, singular extrema are not particular to one optimal control problem
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and don’t reflect its particular structure. So, in this work, all the discussion
and results concern normal minima of problem (I) (as well as problem (II) to
be defined in the next section).

2.4 Optimal population transfers for an aver-
aged system

In this section, we introduce a special form for the control in equation (2.10), a
sum of sinusoids with frequencies equal to the Bohr frequencies of the quantum
system multiplied by slowly varying profiles, that is functions of t

T . We then
proceed to “average out” the dynamics in the time scale of the free evolution
of the system (this time scale is set by the Bohr frequencies), which is fast
compared to the transfer time T . This leaves us with an “averaged” control
system whose evolution approximates that of the original under the special form
of the control introduced. The motivation for this lies in the following: We set
up a corresponding optimal transfer problem for the averaged system, whose
cost approximates the cost (2.15). We will show in section 2.7 how solutions
to this optimal transfer problem approximate solutions to our original optimal
transfer problem (I), to first order in an O( 1

T ) expansion, proving the results
described in the introduction. We begin with a transformation to the rotating
frame

x = eiH0tψ (2.24)

in (2.10). The time evolution of the new variable x is due entirely to the control,
because the free evolution has been accounted for. In terms of the new variable,
(2.10) becomes

iẋ = uF (t)x, (2.25)

where,
F (t) .= eiH0t V e−iH0t. (2.26)

Note the appearance of the Bohr frequencies in the matrix elements of F,

Fij(t) = Vije
i(Ei−Ej)t = Vije

iωijt.

We adopt the following form for the control u(t):

u(t) = ε
(
u0(εt) +

N∑
i 6=j

eiωijt uji(εt)
)
, (2.27)

where u∗ji = uij and u0 is real, so that u is real. uji is a complex “envelope”
that multiplies a sinusoid with frequency equal to the Bohr frequency for the
transition i to j. The value of ε will be given shortly. We introduce u(t) from
(2.27) in (2.25) and rewrite (2.25) in component form:

iẋi = ε
(
u0(εt) +

∑
k 6=l

eiωklt ulk(εt)
) ∑

j

eiωijtVijxj . (2.28)
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We now approximate (2.28) for small ε using averaging. As mentioned be-
fore, averaging approximates the solution of an equation of the form

ẇ = εf(w, t, ε),

with that of the equation
˙̄w = εfav(w̄),

where

fav(w) .= lim
τ→∞

1
τ

∫ t+τ

t

f(w, t′, 0) dt′.

A standard averaging theorem [57] guarantees that, for sufficiently small ε, the
solutions of the two equations remain O(ε)-close for a time interval of length
O( 1

ε ) as long as their initial conditions are O(ε)-close. Equation (2.28) involves
two time scales, 1 and 1

ε but we want to average only over the time scale 1
dynamics. This is achieved as follows: Consider, instead of (2.12) the following
equation:

ẇ = εf(w, t, εt, ε). (2.29)

Define w0 = εt and substitute w0 for εt in (2.29). Then, consider the system

ẇ = εf(w, t, w0, ε),
ẇ0 = ε

and apply averaging to it. The resulting averaged form of (2.29) is now

˙̄w = εfav(w̄, εt),

where

fav(w,w0)
.= lim

τ→∞

1
τ

∫ t+τ

t

f(w, t′, w0, 0) dt′.

We now apply this to equation (2.28). Since the time average of eiωt is zero
for ω 6= 0 and 1 for ω = 0, only terms with no time dependence will contribute
to the averaged equation. Letting x̄ be the averaged x, the averaged form of
(2.28) is

i ˙̄xi = ε
(
Vii u0(εt) x̄i +

∑
j 6=i

Vij uij(εt) x̄j

)
. (2.30)

Taking ε = 1
T and rescaling time to s = εt = t

T , (2.30) becomes

i
dx̄i

ds
= Vii u0(s) x̄i +

∑
j 6=i

Vij uij(s) x̄j , (2.31)

or, in vector form,

i
dx̄

ds
= Ṽ [u0, uij ] x̄,
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where

Ṽ [u0, uij ] =

 V11u0 V12u12 · · ·
V21u21 V22u0 · · ·

...
...

. . .

 =

 V11u0 V12u12 · · ·
V ∗12u

∗
12 V22u0 · · ·

...
...

. . .

 .

By construction, every solution to (2.31) with controls u0(s) and uij(s) and
initial state x̄(0) = ψ(0), provides a solution to (2.10) with u(t) given by (2.27)
and initial condition ψ(0), correct up to O(ε) terms for a time interval of size
1
ε = T . It is shown in Appendix B that system (2.31) is controllable on account
of the controllability assumption on the original system.

Since our goal is to relate optimal transfers of the original system to optimal
transfers of the averaged one, we must find an objective for the averaged system
that approximates ‖u‖2L2([0,T ]). So, we compute ‖u‖2L2([0,T ]) for u(t) given by
(2.27), with ε = 1

T :∫ T

0

u2(t) dt =
1
T 2

∫ T

0

(
u0(

t

T
) +

∑
i 6=j

eiωijt uji(
t

T
)
)2
dt

=
1
T 2

∫ T

0

{
u2

0(
t

T
) + 2

∑
i 6=j

eiωijt uji(
t

T
)u0(

t

T
)

+
∑
i 6=j

∑
k 6=l

ei(ωij+ωkl)t uji(
t

T
)ulk(

t

T
)
}
dt

=
1
T

∫ 1

0

{
u2

0(s) + 2
∑
i 6=j

eiωijTs uji(s)u0(s)

+
∑
i 6=j

∑
k 6=l

ei(ωij+ωkl)Ts uji(s)ulk(s)
}
ds

=
1
T

∫ 1

0

[∑
i 6=j

uij(s)uji(s) + u2
0(s)

]
ds+

1
T 2

B(T ),

where B(T ) represents terms bounded in T . This last line is the result of
separating the integrals into two kinds, these without exponentials, which are
explicitly retained, and those with, which can easily be seen to scale like 1

T B(T )
after a partial integration: Indeed, for any differentiable f ,∫ 1

0

eiωTs f(s) ds =
1
iωT

∫ 1

0

(eiωTs)′ f(s) ds

=
1
iωT

{
eiωT f(1)− f(0)−

∫ 1

0

eiωTs f ′(s) ds
}
.

So, we pose the following optimal control problem for the averaged system: Find
controls u0(s), uij(s), s ∈ [0, 1], that minimize∫ 1

0

[∑
i 6=j

uij(s)uji(s) + u2
0(s)

]
ds =

∫ 1

0

[∑
i 6=j

|uij(s)|2 + u2
0(s)

]
ds (2.32)

24



and drive an initial state x̄(0) = ψ0 of system (2.31) to a target population
distribution {|x̄i(1)|2 = pi, i = 1, . . . , N}. We will refer to this as optimal
transfer problem (II).

The necessary conditions for optimality are derived from the Hamiltonian
function

H(x̄i, z̄i, uij) =
1
2
u2

0 +
1
2

∑
i 6=j

|uij |2 − iz̄∗Ṽ [u0, uij ] x̄+ ix̄∗Ṽ [u0, uij ] z̄

=
1
2
u2

0 +
∑
i 6=j

1
2
uijuji − iVjiuji(x̄iz̄

∗
j − z̄ix̄

∗
j )− iu0

∑
i

Vii(x̄iz̄
∗
i − z̄ix̄

∗
i )

and have the form

i
dx̄i

ds
= Vii u0 x̄i +

∑
j 6=i

Vijuij x̄j (i
dx̄

ds
= Ṽ [u0, uij ] x̄), (2.33)

i
dz̄i

ds
= Vii u0 z̄i +

∑
j 6=i

Vijuij z̄j (i
dz̄

ds
= Ṽ [u0, uij ] z̄), (2.34)

uij = iVji (xiz
∗
j − zix

∗
j ), u0 = i

∑
i

Vii(x̄iz̄
∗
i − z̄ix̄

∗
i ). (2.35)

We rewrite equations (2.33) and (2.34) using u0 and uij from (2.35):

dx̄i

ds
=

∑
j 6=i

|Vij |2(x̄iz̄
∗
j − z̄ix̄

∗
j ) x̄j +

∑
k

Vkk(x̄kz̄
∗
k − z̄kx̄

∗
k)Viix̄i, (2.36)

dz̄i

ds
=

∑
j 6=i

|Vij |2(x̄iz̄
∗
j − z̄ix̄

∗
j ) z̄j +

∑
k

Vkk(x̄kz̄
∗
k − z̄kx̄

∗
k)Viiz̄i. (2.37)

The corresponding boundary conditions are given by

x̄(0) = ψ0, |x̄i(1)|2 = pi, Im(x̄∗i (1) z̄i(1)) = 0. (2.38)

We will refer to the two-point boundary value problem comprised of equations
(2.36) - (2.38) as two-point boundary value problem (II). From (2.35), we
see that all uij with Vij = 0 are identically zero, as they should. We can also
show that u0 = 0 and simplify the right sides of equations (2.36) and (2.37):
In a fashion similar to the construction of Λ in section 2.3, we define L by L .=
x̄z̄∗ − z̄x̄∗. We also define another anti-Hermitian matrix K = K(x̄, z̄) = K(L)
by,

Kij
.= |Vij |2Lij = |Vij |2(x̄iz̄

∗
j − z̄ix̄

∗
j ), i 6= j, (2.39)

Kii
.= Vii

∑
k

VkkLkk = Vii

∑
k

Vkk(x̄kz̄
∗
k − z̄kx̄

∗
k). (2.40)

K is the analog of −iH0 + tr(V Λ)V in section (2.3) and is a linear function of
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L. With this definition, (2.36) and (2.37) read simply as

dx̄

ds
= K(L)x̄, (2.41)

dz̄

ds
= K(L)z̄. (2.42)

It is easy to see that L satisfies the differential equation

dL

ds
= [K(L), L]. (2.43)

The ii-th component of this equation reads

dLii

ds
=

∑
j

KijLji − LijKji

= KiiLii +
∑
j 6=i

KijLji − LiiKii −
∑
j 6=i

LijKji

=
∑
j 6=i

|Vij |2(LijLji − LijLji) = 0,

and so,
Lii(s) = Lii(1) = −2i Im(x̄∗i (1) z̄i(1)) = 0. (2.44)

This shows that Kii(s) = Lii(s) = 0 and u0(s) = 0 and so, equations (2.36) and
(2.37) simplify to

dx̄i

ds
=

∑
j 6=i

|Vij |2(x̄iz̄
∗
j − z̄ix̄

∗
j ) x̄j , (2.45)

dz̄i

ds
=

∑
j 6=i

|Vij |2(x̄iz̄
∗
j − z̄ix̄

∗
j ) z̄j . (2.46)

We will refer to this set of equations (along with (2.38) ) as two-point bound-
ary value problem (II) as well.

2.5 Main results

In this section, we make the connection between solutions of the two-point
boundary value problems (II) and (I) in the large T limit.

Theorem 1: Let (x̄(s), z̄(s)) be a solution of two-point boundary value problem
(II) over [0, 1]. Define ψ(t), λ(t) and u(t), t ∈ [0, T ], by

ψ(t) = e−iH0t x̄(
t

T
), (2.47)

λ(t) =
1
T
e−iH0t z̄(

t

T
), (2.48)

u(t) =
i

T
tr
(
eiH0t V e−iH0tL(

t

T
)
)

=
i

T

∑
kl

Vkl e
iωkltLlk(

t

T
). (2.49)
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Then, for large enough T , ψ(t) satisfies the necessary conditions of optimality
(2.17) - (2.22), up to terms of order O( 1

T ) and λ(t) and u(t) up to terms of order
O( 1

T 2 ).2

Thus, solutions of the two-point boundary value problem (II) provide approx-
imate solutions to the two-point boundary value problem (I) for large transfer
times T . A natural question to ask then is, whether these approximate solutions
to two-point boundary value problem (I) are in fact approximations to solutions
of (I), in the large T limit. This is answered positively by the following theorem:

Theorem 2: Let ψ0 and {pi}i=1,...,N be an initial state and a target population
of system (2.10), respectively, and let (x̄(s), z̄(s)) be a solution of two-point
boundary value problem (II) over [0, 1]. Then, for almost all pairs (ψ0, {pi}), a
solution of two-point boundary value problem (I) exists, for large enough T , of
the form

ψ(t) = e−iH0t x̄(
t

T
) +O(

1
T

), (2.50)

λ(t) =
1
T
e−iH0t z̄(

t

T
) +O(

1
T 2

), (2.51)

The corresponding control has the form

u(t) =
i

T
tr
(
eiH0t V e−iH0tL(

t

T
)
)

+O(
1
T 2

)

=
i

T

∑
kl

Vkl e
iωkltLlk(

t

T
) +O(

1
T 2

). (2.52)

The set of pairs (ψ0, {pi}) of initial states and target populations for which a
solution of two-point boundary value problem (II) provides a solution of (I)
according to (2.50) and (2.51) is open and full measure in the corresponding
product manifold.2

According to this theorem, solutions to the two-point boundary value prob-
lem (II) approximate solutions to (I) for large transfer times in the sense of
equations (2.50) - (2.52), for almost every population transfer. In other words,
all the local minima of optimal transfer problem (II) approximate local minima
for the optimal transfer problem (I) according to (2.50) - (2.52). The question
arises naturally: Are all local minima of optimal transfer problem (I), for large
T , approximated in the sense of equations (2.50) - (2.52) by local minima of
(II)? The answer to this question is essentially yes (see comment after theorem
3). We state the following theorem:

Theorem 3: Let ψ0 and {pi}i=1,...,N be an initial state and a target population
of system (2.10), respectively. Then, for almost all pairs (ψ0, {pi}) and for large
enough T , the globally optimal solution to the optimal transfer problem (I) is
approximated by the globally optimal solution of (II) according to theorem 2.
As before, the set of pairs (ψ0, {pi}) of initial states and target populations
for which this happens is open and full measure in the corresponding product
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manifold.2

In fact, we prove that, for large enough T , a number of the lowest energy
optima of (I) that depends (in an unknown way) on T , are approximated by the
corresponding lowest energy optima of (II) according to theorem 2. We think,
however, that theorem 3 is enough to demonstrate the spirit of our approach.

Theorem 3 precisely states the main results of our work that were delineated
in the introduction: We obtain useful, physically plausible properties of the
optimal control and state trajectory and at the same time, we reduce the solution
of the original optimal control problem to a much easier problem: Indeed, the
evolution equations (2.45) and (2.46) of two-point boundary value problem (II)
do not contain the free dynamics of the system and thus their solution (which
describes the “mean” evolution of the state) is much easier, see section 2.6.
We end this section with two remarks:

1. Theorems 2 and 3 are proven for an open, full measure set of pairs
(ψ0, {pi}) of initial states and target populations. Unfortunately, the very
important case of the initial state ψ0 being an eigenstate (or, in general,
having some populations equal to 0) is excluded. The reason is that in
this case, two-point boundary value problem (II) has non-isolated solu-
tions. Although this property is necessary for our proof of these results,
we believe that they can be extended to (at least some) transfers with
non-isolated solutions. Nevertheless, theorem (I) which contains all the
essential applicable aspects of this work still holds.

2. An interesting implication of the theorem above is that, for large T , the lo-
cally optimal values of the objective (“energy”) scale like 1

T . This demon-
strates that the quadratic objective we use, cannot correspond to a phys-
ical notion of energy.

2.6 Examples

We consider three examples, each involving a different quantum system: A
general two-state system with one control, a general three-state system with
one control and the Morse oscillator model for the vibrational dynamics of the
ground electronic state of the OH bond. We restrict our attention to the 22-
dimensional space of bound states for that model and seek to control populations
again with one control field. In all of the examples, we consider transfers from
one eigenstate of the system, to another. Although in the proof of theorems 2
and 3 we had to exclude such transfers (because in that case two-point boundary
value problem (II) has continua of solutions parameterized by angles, see (2.68)
and (2.69), and we need isolated solutions to prove the theorems), we believe
these theorems to hold for such transfers as well. Perhaps this can be established
using different techniques from ours. In any case, theorem 1 still holds and
so, every solution of two-point boundary value problem (II) will furnish an
approximate solution to (I).
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A two-state system

Consider the two-level system iψ̇ = (H0 + V u)ψ, ψ ∈ C2, with

H0 =
(
E1 0
0 E2

)
, and V =

(
V11 V12

V ∗12 V22

)
.

By rescaling u, we make |V12| = 1. We are interested in the “population inver-
sion” transfer

ψ0 =
(

1
0

)
−→ ψd =

(
0
1

)
.

In this example, the averaged optimal transfer problem (II) can be solved an-
alytically. To begin, we introduce the anti-Hermitian matrices L and K(L) of
section (2.4):

L =
(

0 L12

−L∗12 0

)
and K(L) = L.

Then, (2.43) implies that L12(s), s ∈ [0, 1], is constant. Equation (2.41) reads

dx̄

ds
=
(

0 L12

−L∗12 0

)
x̄.

Its solution with initial condition
(

1
0

)
, is given by

x̄(s) =
(

cos(|L12|s)
−i L12

|L12| sin(|L12|s)

)
.

To achieve x̄(1) =
(

0
ei∗

)
, we must have |L12| = (n + 1

2 )π, with n ∈ N. The

value of the cost (2.32) is π2

2 (2n + 1)2. Thus, n = 0 corresponds to the global
minimum of optimal transfer problem (II). The approximate optimal control for
problem (I) has the form (2.52)

u(t) = − π
T

sin(ω21t+ ϕ),

where ϕ ∈ [0, 2π) comes from the phases of L12 and V12.
Figure 2.2 shows the evolution of populations in a two-state system with

ω21 = 1 under the approximate optimal control, for T = 10π and T = 6π. Note
that even for T = 6π, the averaged equations are still a good approximation to
the full dynamics.

A three-state system

Let us now consider the general three-state system with one control and

H0 =

 E1 0 0
0 E2 0
0 0 E3

 and V =

 V11 V12 V13

V ∗12 V22 V23

V ∗13 V ∗23 V33

 .
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Figure 2.2: Averaged (dashed line) and exact (full line) populations of the two-
state system under the approximate optimal control, for T = 10π and T = 6π.

We assume that ω12 = E1 − E2, ω13 = E1 − E3 and ω23 = E2 − E3 are all
different from each other and from zero. Their exact values are unimportant
for the averaged optimal transfer problem as are the values of V11, V22 and V33.
By rescaling the control, we can take |V12| = 1 (we assume |V12| 6= 0). Define
p
.= |V23|2 and r = |V13|2. We assume that 1 > p > r ≥ 0, with other cases

treated similarly. We are interested in the transfer

ψ0 =

 1
0
0

 −→ ψd =

 0
0
1

 ,

particularly in the way the “two-photon” transition 1
0
0

 −→

 0
1
0

 −→

 0
0
1

 ,

assists the “direct” (“one-photon”) transition 1
0
0

 −→

 0
0
1

 .

In this example, we are able to calculate the form of the (locally) optimal con-
trols for the averaged problem analytically up to a constant, which has to be
computed by solving the state evolution equations numerically and imposing
the terminal conditions on the state. For a special case (p = 1), we can obtain
everything analytically. We begin again with equation (2.43), dL

ds = [K(L), L].
The diagonal elements of L are zero and L is anti-Hermitian, so it has only 3
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independent (complex) entries, L12, L23 and L13. They satisfy the following
equations:

dL12

ds
= (p− r)L13L

∗
23,

dL23

ds
= (r − 1)L∗12L13,

dL13

ds
= (1− p)L12L23.

Because x̄2(0) = x̄3(0) = 0, we have that L32(0) = 0. The general solution of
the above equations with L32(0) = 0 is

L12(s) = eiφ12 A cn(ws),
L23(s) = −eiφ23 B sn(ws),
L13(s) = ei(φ12+φ23) C dn(ws),

where w > 0. cn, sn and dn are Jacobi elliptic functions and A
B
C

 =
1√

(1− p)(1− r)(p− r)

 kw
√
p− r

kw
√

1− r
w
√

1− p

 .

0 ≤ k ≤ 1 is the modulus of the elliptic functions. Now, from x̄1(1) = x̄2(1) = 0,
we have that L12(1) = 0. This allows us to determine w as w = (2n+ 1)K(k),
n ∈ N, where

K(k) .=
∫ π

2

0

dθ√
1− k2 sin2 θ

,

the complete elliptic integral of the first kind, is the quarter-period of the func-
tions cn and sn. The only undetermined parameter is k. It can be solved for
numerically by solving the two-point boundary value problem given by

dx̄

ds
=

 0 eiφ12 A cn(ws) ei(φ12+φ23) rC dn(ws)
−e−iφ12 A cn(ws) 0 −eiφ23 pB sn(ws)
−e−i(φ12+φ23) rC dn(ws) e−iφ23 pB sn(ws) 0

x̄
and the boundary conditions

x̄(0) =

 1
0
0

 , x̄(1) =

 0
0
ei∗

 .

It is straightforward to see that the phases φ12, φ23 and φ12+φ23 can be absorbed
in the phases of the components of x̄, so k is independent of them and depends
only on p and r. Intuitively, one expects a discrete set of solutions for k. The
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cost of a local minimizer is given by

J = 2
∫ 1

0

[|u12(s)|2 + |u23(s)|2 + |u13(s)|2] ds

= 2
∫ 1

0

(A2cn2(ws) + rC2dn2(cs) + pB2dn2(cs)) ds

=
2(2n+ 1)2K2(k)

(1− p)(1− r)(p− r)
[(p− r)k2 + r(1− p)].

The expression for the approximate locally optimal controls of optimal transfer
problem (I) is

u(t) =
2
T

{
−A cn(w

t

T
) sin(ω21t− α12 + φ12) +

√
pB sn(w

t

T
) sin(ω32t− α23 + φ23) −

√
r C dn(w

t

T
) sin(ω31t− α13 + φ12 + φ23)

}
,

where αij = arg Vij .
Figures 2.3 and 2.4 show an approximate locally optimal control, the (slowly-

varying) profiles of its Bohr frequency components and the averaged and exact
evolution of the three state system with p = .9 and r = .1, under this control
for T = 20π. Figure 2.4, in particular, demonstrates the point we discussed in
the introduction: The ‘averaged’ two-point boundary value problem is non-stiff
because the short-time scale natural dynamics of the system has been averaged
over and thus, its solutions are much easier to compute compared with those of
the original two-point boundary value problem (I). In Appendix C, the special
case with p = 1 is analyzed in detail and a complete solution to the optimal
transfer problem (II) is given for that case.

Bound states of a Morse oscillator

Our final example considers the 22-dimensional space of bound states of the
Morse oscillator model for the vibrational dynamics of the ground electronic
state of the OH molecule. Here we solve the optimal transfer problem (II)
numerically for two transfers, one from the ground vibrational state (state 1) to
an intermediate vibrational state (state 10) and one from state 10 to the highest
bound state, state 22. Figures 2.5 and 2.6 contain the state populations as well
as the intensities (absolute values squared) of the frequency profiles as functions
of rescaled time. Note the correspondence between high intensity value for a
profile Lij and the transition between states i and j.
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Figure 2.3: Approximate optimal control for the transition 1 → 3 in T = 20π
and the corresponding frequency profiles.
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Figure 2.4: Averaged (dashed lines) and exact (full lines) populations of the
three-state system under the approximate optimal control.
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locally optimal transfer 1 → 10.
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2.7 Proof of main results

Proof of Theorem 1

To begin, we define a new costate variable by λ̃
.= Tλ and rewrite (2.20) and

(2.21) in terms of λ̃:

iψ̇ = H0ψ +
i

T
(λ̃∗V ψ − ψ∗V λ̃)V ψ, (2.53)

i
˙̃
λ = H0λ̃+

i

T
(λ̃∗V ψ − ψ∗V λ̃)V λ̃. (2.54)

Note that the form of the boundary conditions remains unchanged, as well:

ψ(0) = ψ0, |ψi(T )|2 = pi, Im(ψ∗i (T ) λ̃i(T )) = 0. (2.55)

We must show that e−iH0t x̄( t
T ) and e−iH0t z̄( t

T ) satisfy (2.53) - (2.55) up to
terms of order O( 1

T ). To this purpose, we perform one more change of variables
in (2.53) - (2.55):

y = eiH0tψ, l = eiH0tλ̃.

In terms of the new state and costate, the necessary conditions of optimality
take the form

iẏ =
i

T
(l∗F (t)y − y∗F (t)l)F (t)y, (2.56)

il̇ =
i

T
(l∗F (t)y − y∗F (t)l)F (t)l, (2.57)

where, as before, F (t) = eiH0t V e−iH0t, along with

y(0) = ψ0, |yi(T )|2 = pi, Im(y∗i (T ) li(T )) = 0. (2.58)

The boundary conditions retain their form because |yi(T )|2 = |ψi(T )|2 and,
li(T ) and yi(T ) are rotated by the same amount, e−iEiT , with respect to ψi(T )
and λ̃i(T ). We will refer to equations (2.56) - (2.58) as two-point boundary
value problem (I’). The equivalence of problems (I) and (I’) is evident.

Now, we have to show that x̄( t
T ) and z̄( t

T ) satisfy (2.56) - (2.58) up to
terms of order O( 1

T ). To do this, we average equations (2.56) and (2.57). To
make the procedure more transparent, we rewrite equations (2.56) and (2.57)
in component form:

ẏi =
1
T

(∑
km

Vkm eiωkmt(l∗kym − y∗klm)
)∑

j

Vij e
iωijtyj

l̇i =
1
T

(∑
km

Vkm eiωkmt(l∗kym − y∗klm)
)∑

j

Vij e
iωijtlj

One can see (based on our controllability assumption) that we get non-zero
contributions from two groups of terms: Terms with ωkm 6= 0 and ωij 6= 0
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such that m = i and k = j, and terms with ωkm = ωij = 0, i.e. k = m and
i = j. Letting ȳ and l̄ be the averaged y and l, the averaged state and co-state
equations are:

˙̄yi =
1
T

{∑
j 6=i

|Vij |2(ȳi l̄
∗
j − l̄iȳ

∗
j ) ȳj +

∑
k

Vkk(ȳk l̄
∗
k − l̄kȳ

∗
k)Viiȳi

}
, (2.59)

˙̄li =
1
T

{∑
j 6=i

|Vij |2(ȳi l̄
∗
j − l̄iȳ

∗
j ) l̄j +

∑
k

Vkk(ȳk l̄
∗
k − l̄kȳ

∗
k)Vii l̄i

}
. (2.60)

To finish the proof, we rescale time in equations (2.59) and (2.60) to s = εt = t
T .

Letting ỹ(s) .= ȳ(t) and l̃(s) .= l̄(t), these equations read now:

dỹi

ds
=

∑
j 6=i

|Vij |2(ỹi l̃
∗
j − l̃iỹ

∗
j ) ỹj +

∑
k

Vkk(ỹk l̃
∗
k − l̃kỹ

∗
k)Viiỹi, (2.61)

dl̃i
ds

=
∑
j 6=i

|Vij |2(ỹi l̃
∗
j − l̃iỹ

∗
j ) l̃j +

∑
k

Vkk(ỹk l̃
∗
k − l̃kỹ

∗
k)Vii l̃i. (2.62)

These equations are the same as (2.36) and (2.37) (with the substitution ỹ → x̄
and l̃ → z̄). Then, from the sequence of variable changes and the averaging
theorem, the conclusion of the theorem follows.�

Proof of Theorem 2

To prove Theorem 2 we need the following lemma:

Lemma: Let ψ0 and {pi}i=1,...,N be an initial state and a target population
of system (2.10), respectively, and let (x̄(s), z̄(s)) be a solution of two-point
boundary value problem (II) over [0, 1]. The set of pairs (ψ0, {pi}) of initial
states and target populations for which all solutions of two-point boundary
value problem (II) are isolated is open and full measure in the corresponding
product manifold. 2

Proof of Lemma: We begin by introducing new coordinates for the state and
costate of the optimal transfer problem (II) by

x̄i
.= Ii e

iφi , z̄i
.= Ji e

iθi , (2.63)

where φi
.= arg x̄i mod π and Ii

.= |x̄i| for Imx̄i ≥ 0 and Ii
.= −|x̄i| for Imx̄i < 0,

and similarly for the θi’s and Ji’s. Then, Ii, Ji ∈ R and φi, θi ∈ [0, π), ∀i =
1, . . . , N . With this definition, the phases φi and θi have discontinuities when-
ever the signs of the imaginary parts of x̄i and z̄i change. We shall see that this
will not be a problem for us because φi and θi will turn out to be constant in
time. On the other hand, the introduction of these coordinates will prove to be
beneficial in the following.
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In the new coordinates, (2.45) and (2.46), take the form

iİi − Iiφ̇i = +iIi
∑
j 6=i

|Vij |2IjJj e
i(φj−θj) − iJi e

i(θi−φi)
∑
j 6=i

|Vij |2I2
j , (2.64)

iJ̇i − Jiθ̇i = −iJi

∑
j 6=i

|Vij |2IjJj e
i(θj−φj) + iIi e

i(φi−θi)
∑
j 6=i

|Vij |2J2
j , (2.65)

while the boundary conditions at the end become

I2
i (1) = pi, θi(1)− φi(1) = 0. (2.66)

Multiply (2.64) by Ji, (2.65) by −Ii, add them and take the real part. The
resulting equation reads:

IiJi(φi − θi). = sin(φi − θi) {I2
i

∑
j 6=i

|Vij |2J2
j − J2

i

∑
j 6=i

|Vij |2I2
j }. (2.67)

Except for the degenerate cases (Ii(s) = 0, Ji(s) = const.) and (Ji(s) =
0, Ii(s) = const.) ∀s ∈ [0, 1], which will be excluded, we see that, given the
transversality conditions at s = 1, this equation implies that θi(s) = φi(s), ∀s ∈
[0, 1]. Using this fact, we see that the right sides of equations (2.64) and (2.65)
are purely imaginary. This leads to the simplified equations

İi = +Ii
∑
j 6=i

|Vij |2IjJj − Ji

∑
j 6=i

|Vij |2I2
j ,

J̇i = −Ji

∑
j 6=i

|Vij |2IjJj + Ii
∑
j 6=i

|Vij |2J2
j ,

φ̇i(s) = 0, θ̇i(s) = 0.

We see that the two-point boundary value problem (II) separates nicely into
two parts: A trivial problem for the arguments of state and costate components

φ̇i(s) = 0, θ̇i(s) = 0, (2.68)
φi(0) = φi0, θi(1)− φi(1) = 0, (2.69)

which has a unique solution as long as ψ0i 6= 0, ∀i = 1, . . . , N (so that all φi(0)
are unambiguously defined) and a two-point boundary value problem for the
(signed) magnitudes of state and costate components

İi = +Ii
∑
j 6=i

|Vij |2IjJj − Ji

∑
j 6=i

|Vij |2I2
j , (2.70)

J̇i = −Ji

∑
j 6=i

|Vij |2IjJj + Ii
∑
j 6=i

|Vij |2J2
j , (2.71)

Ii(0) = Ii0, I2
i (1) = pi. (2.72)
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We will refer to (2.70) - (2.72) as the real form of problem (II). These two-
point boundary value problems can be seen to be necessary conditions for opti-
mal population transfers of the following real control system on SN−1:

dI

ds
=

 0 |V12|v12 · · ·
−|V21|v21 0 · · ·

...
...

. . .

 I. (2.73)

Here the vij are real controls and (2.73) is controllable on SN−1 because of
the controllability assumption on the original system, see Appendix B. This
separation of the two-point boundary value problem (II) into a trivial problem
for the evolution of the arguments of state and costate components and real
two-point boundary value problem (II) was inspired by [64], see section 4 of
that reference.

We are now ready to prove the lemma. From the discussion so far, it should
be obvious that we need ψi0 6= 0 and |ψ0i|2 6= pi,∀i = 1, . . . , N so that the
(constant) phases of the state components are uniquely defined and certain
pathological cases mentioned are excluded. The set of pairs (ψ0, {pi}) of initial
states and target populations for which this is the case is open and full measure
in the corresponding product manifold.

We define a terminal condition function G : RN−1 → SN−1 of the initial
costate vector J(0) of real problem (II) by

G(J(0)) .= I(1). (2.74)

G is a function of only N − 1 components of J(0) because one of them is fixed
by the condition 0 = x̄∗(0)z̄(0) = IT (0)J(0) (let us decide to fix J1(0)). In the
following, when talking about initial costate vectors, we will identify vectors in
RN−1 with vectors in RN perpendicular to I0. G has two important properties:
First, it is a smooth function of its argument. Indeed, the right sides of (2.70)
and (2.71) are C∞ functions of I and J so, their solutions depend smoothly on
I(0) and J(0) [65]. Thus, when I(0) is fixed, the terminal conditions depend
smoothly on J(0). Second, because of controllability of system (2.73), G is onto.
Then, since G is a mapping between manifolds of the same dimension, it is a
diffeomorphism from (open) neighborhoods of RN−1 to neighborhoods of SN−1.
Additionally, Sard’s theorem [66] implies that the set of critical values of G in
SN−1 (i.e. the set of points around which G is not a diffeomorphism) is of
measure zero.

Any initial costate vector J(0) such that

G(J(0)) = I(1) = (±√p1, . . . ,±
√
pN )T

provides a solution to real problem (II). Let’s fix a sequence of signs in the
components of I(1), say all positive. The same conclusions will hold for all such
sequences. Because of the properties of G, the set of pi’s for which all J(0) that
satisfy G(J(0)) = (

√
p1, . . . ,

√
pN )T satisfy also N (DG(J(0))) = ∅, is an open
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set of full measure in SN−1. For a fixed pair of initial state and final populations
which satisfy this, the set of J(0)’s must be discrete. Also, it cannot have a limit
point. Indeed, if there exists a subsequence {J(0)}nk

→ J0, then

G(J0) = lim
k→∞

G({J(0)}nk
) = (

√
p1, . . . ,

√
pN )T ,

and also N (DG(J0)) 6= ∅, which violates the assumption that for this given
transfer all the J(0)’s that achieve it satisfy N (DG(J(0))) = ∅. Hence, given
an initial state with all populations non-zero, the set of populations that can be
achieved by isolated locally optimal transfers of the real problem (II) is open
and full measure. So, the set of pairs (ψ0, {pi}) of initial states and target
populations for which all solutions of two-point boundary value problem (II)
are isolated is open and full measure in the corresponding product manifold.�

Proof of Theorem 2: We are going to define terminal condition functions for
two-point boundary value problems (II) and (I’) in a way similar to that in the
proof of the lemma. First, for (II) we define F : R2N−2 −→ R2N−2 by

F(z̄(0)) .= (|x̄2
2(1)|, . . . , |x̄2

N (1)|, Im(x̄∗2(1) z̄2(1)), . . . , Im(x̄∗N (1) z̄N (1)))T (2.75)

(Recall that one complex component of z̄(0) is fixed by x̄∗(0)z̄(0) = 0. Here,
we again identify initial costate vectors in CN perpendicular to ψ0 with vec-
tors in CN−1 and also identify CN−1 with R2N−2). F is a smooth function
of its argument. Also, any initial costate vector z̄(0) such that F(z̄(0)) =
(p2, . . . , pN , 0, . . . , 0)T provides a solution to problem (II).

The corresponding terminal condition function F1 for problem (I’), is defined
exactly the same way:

F1(l(0);T ) .= (|y2(T )|2, . . . , |yN (T )|2, Im(y∗2(T ) l2(T )), . . . , Im(y∗N (T ) lN (T )))T

(2.76)
The second argument of FI is just a reminder of the transfer time. F1 is also
a smooth function of its argument. Again, any initial costate vector y(0) such
that F1(y(0)) = (p2, . . . , pN , 0, . . . , 0)T provides a solution to problem (I’). From
the proof of theorem (I), we know that

F1(v;T ) = F(v) +O(
1
T

). (2.77)

From this we also have that

DF1(v;T ) = DF(v) +O(
1
T

).

Although F1 is not formally defined for T = ∞ from (2.76), we can define it
from (2.77) as F1(v; 0) .= F(v). With this definition, F1 is continuous in 1

T
at 1

T = 0, with continuous first derivatives in v and 1
T there. In particular,

DF1(v;∞) = DF(v).
Consider now an initial costate vector v that solves problem (II), i.e.

F(v) = (p2, . . . , pN , 0, . . . , 0)T
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We have seen that the set of pairs (ψ0, {pi}) such that all v’s that satisfy this
are isolated (DF(v) full rank), is an open set of full measure in the product
space. For such a transfer and for large enough T , the implicit function theorem
guarantees the existence of a δv such that F1(v+δv;T ) = (p2, . . . , pN , 0, . . . , 0)T .
Then, v + δv provides a solution for problem (I’) and v+δv

T is a solution for
problem (I). Taking T large enough so that |δv| = O( 1

T ), the averaging theorem
guarantees that this solution (ψ(t), λ(t)) to two-point boundary value problem
(I) is such that

ψ(t) = e−iH0t x̄(
t

T
) +O(

1
T

),

λ(t) =
1
T
e−iH0t z̄(

t

T
) +O(

1
T 2

),

where (x̄(s), z̄(s)) is the solution to problem (II) we started with.�

Proof of Theorem 3

We only consider transfers such that problem (II) has isolated solutions. Any
initial costate v that satisfies F(v) = (p2, . . . , pN , 0, . . . , 0)T provides a solution
to problem (II) and DF(v) is full rank. Inside a ball of radius M > 0 there can
be only a finite number of these initial costates v because any discrete set with
no limit points inside a compact set must be finite.

From equation (2.77) we may conclude that for a given transfer, we can take
T large enough to bound the difference of F and F1 over an open ball around
the origin by any δ > 0:

∀M > 0, ∀ δ > 0, ∃T > 0 such that |F1(v;T )−F(v)| < δ, ∀ |v| < M.

Thus, the only solutions of F1(ṽ;T ) = (p2, . . . , pN , 0, . . . , 0)T inside the ball of
radius M come from perturbing solutions of F(v) = (p2, . . . , pN , 0, . . . , 0)T by
quantities of order O( 1

T ), for T large enough. In particular, they also form a
finite set and DF1(ṽ;T ) is full rank for each such ṽ. We arrive at exactly the
same conclusion if, instead of a ball, we define a neighborhood of the origin by
an ellipsoid.

We introduce now the following quadratic form in v ∈ {w ∈ CN s.t. ψ∗0w =
0} ' CN−1 ' R2N−2:

E(v) =
N∑

i 6=j

|Vij |2|ψ0iv
∗
j − viψ

∗
0j |2.

E is non-negative and, furthermore, due to the connectivity of the graph of V
(part of the controllability assumption) can be shown to be positive definite.
Indeed, suppose that ∃v ∈ {w ∈ CN s.t. ψ∗0w = 0} such that E(v) = 0. Then,
we have that

ψ0iv
∗
j − viψ

∗
0j = 0, ∀ (i, j) s.t. Vij 6= 0. (2.78)
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Let us assume for a moment that V12 6= 0. Then (recall, all ψ0i 6= 0),

v2
ψ02

=
v∗1
ψ∗01

.

It is straightforward to see that the connectivity of the graph of V and the
repeated use of the relations (2.78) allows us to show that

vi

ψ0i
=

v1
ψ01

or
v∗1
ψ∗01

,∀ i = 2, . . . , N.

Recall now that both ψ0 and v can be defined modulo global phases which we
choose such that ψ01 and v1 are real. Then,

vi

ψ0i
=

v1
ψ01

,∀ i = 2, . . . , N.

The relation ψ∗0v = 0 implies that

(
N∑

i=1

|ψ0i|2)
v1
ψ01

= 0,

which means that v1 = 0 and hence v = 0.
Since E is positive definite, its sub-level sets define ellipsoids in R2N−2. The

significance of our choice for E(v) lies in the following:

H(x̄, z̄) =
∑
i 6=j

|Vji|2|x̄iz̄
∗
j − z̄ix̄

∗
j |2

is the Hamiltonian function from which the optimal state and costate equations
(2.45) and (2.46) are derived. Thus, H is a constant of motion along the optimal
solutions. Note, also, that H(x̄, z̄) =

∑
i 6=j |uij |2. Since E is just H evaluated

at t = 0, we conclude that E is equal to the cost of a trajectory of system (II)
(equations (2.45) and (2.46) ) with initial conditions (ψ0, v):∫ 1

0

∑
i 6=j

|uij(s)|2ds = H(0) =
N∑

i 6=j

|Vij |2|ψ0iv
∗
j − viψ

∗
0j |2.

With a calculation similar to that of section 2.4, one can show that the locally
optimal costs for problems (II) and (I/I’) coming from the solutions v and
ṽ = v +O( 1

T ), respectively are related as follows:∫ T

0

u2(t) dt =
1
T

( ∫ 1

0

∑
i 6=j

|uij(s)|2 ds+O(
1
T

)
)

=
1
T

( N∑
i 6=j

|Vij |2|ψ0iv
∗
j − viψ

∗
0j |2 +O(

1
T

)
)
.
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Let us fix a value E0 > 0 such that the initial costate v0 that achieves the
desired transfer with the minimum energy for problem (II) satisfies

N∑
i 6=j

|Vij |2|ψ0iv
∗
j − viψ

∗
0j |2 < E0.

Then, for large enough T , ṽ0 = v0 + O( 1
T ) is the initial costate that achieves

the desired transfer with the minimum energy for problem (I’). This proves the
assertion of the theorem. In fact, we proved a little bit more: Not only the
global optimum, but also all local optima of problem (I’) with values of energy
less than E0

T , come from local optima of problem (II) according to the theorem
2, for T large enough (Note that the solutions ṽ of problem (I/I’) outside the
ellipsoid E(ṽ) < E0 have higher costs than those inside the ellipsoid).�

2.8 Summary

We examined the large transfer time limit of exact, energy-optimal population
transfers in a finite dimensional quantum system. The investigation of this
problem uncovered useful structure in the optimal control and state trajectory
and, moreover, resulted in the much simpler optimal control problem (II) whose
solution provides the first order solution to the original optimal transfer problem,
in a 1

T expansion. The main reason we considered exact population transfers is
that, we could prove Theorems 2 and 3 which are important for uncovering the
structure of solutions of optimal transfer problem (I). On the other hand, solving
the two-point boundary value problem (II) becomes extremely difficult as the
dimension of the system grows. For practical applications to large-dimensional
systems, an optimal transfer problem with an objective like (2.16)

a

∫ T

0

u2(t) dt +
N∑

i=1

mi|ψi(T )|2,

which leads to separated boundary conditions would be preferable because it-
erative techniques exist that converge to local minima [4, 31]. One can obtain
an averaged transfer problem here too and prove an analog of Theorem 1 (see
Chapter 3, where this is done for an open quantum system) but we haven’t been
able to do so for Theorems 2 and 3 yet. Nevertheless, we think that this method-
ology, of considering the long transfer time limit and separating the time-scales
of natural and controlled evolution offers a conceptual and a computational
simplification in all kinds of population transfer problems for quantum systems.

2.9 Appendices to Chapter 2

Appendix A

First, we prove the transversality conditions Im(ψ∗i (T )λi(T )) = 0, i = 1, . . . , N .
The optimal transfer problem (I) is a standard Bolza problem with (real) ter-
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minal state constraints, |ψi(T )|2 = pi, i = 1, . . . , N . According to the general
theory of such problems [63], the transversality conditions for the costate at the
final time are given by

λi(T ) = νi
∂(|ψi(T )|2 − pi)

∂ψi(T )∗
= νiψi(T ), (2.79)

where νi are the real Lagrange multipliers that enforce the terminal state con-
straints. The transversality conditions in the form we state them,

Im(ψ∗i (T )λi(T ) ) = 0, i = 1, . . . , N

follow easily.
Next, we prove that λ(t)∗ψ(t) = 0. One can easily show from equations

(2.17) and (2.18) that λ(t)∗ψ(t) is constant along any optimal trajectory and
so, λ(t)∗ψ(t) = λ(T )∗ψ(T ). From the transversality conditions it follows that
Im(ψ∗(T )λ(T )) = 0 and thus, Im(ψ∗(t)λ(t)) = 0. Let us now decompose λ as
follows, λ = cψ + λ⊥, with c real and λ⊥ perpendicular to ψ, i.e. λ∗⊥ψ = 0.
All we need to show is that c = 0. We introduce this representation of λ into
equation (2.19). The resulting equation is

u = i (λ∗⊥V ψ − ψ∗V λ⊥) + i (c∗ − c) (ψ∗V ψ),

and the reality of u forces c to be zero.

Appendix B

We prove that system (2.31) is controllable on account of the controllability as-
sumption on the original system (2.10). Due to the fact that (2.31) has complex
controls, every non-zero Vij , i 6= j, provides us with two generators of su(N)
(traceless anti-Hermitian matrices), Eij − Eji and i(Eij + Eji) (Eij denotes a
matrix with only one non-zero element, at the position (i, j), equal to one. So,
(Eij)kl = δikδjl. It is easy to see that EijEmn = δjmEin). One can easily verify
the following commutation relations:

[Eij − Eji, Ejk − Ekj ] = Eik − Eki, i 6= k, (2.80)
Eij − Eji, i(Ejk + Ekj) = i(Eik + Eki), i 6= k, (2.81)
Eij − Eji, i(Eji + Eij) = 2i(Eii − Ejj). (2.82)

Due to the connectivity of the graph of V , there exists a sequence of index pairs
that connects any state index i with any other state index j. Thus, starting
with the given generators Eij − Eji and i(Eij + Eji) for all Vij 6= 0, i 6= j, we
can generate, with repeated use of (2.80) and (2.81), all missing such generators
(corresponding to Vij = 0, i 6= j). Finally, using (2.82) we can generate the
diagonal generators of su(N) (its Cartan subalgebra). For the system (2.73)
which has real controls, every non-zero Vij , i 6= j, provides us with a generator
of so(N) (anti-symmetric matrices), Eij − Eji. In that case, the repeated use
of (2.80) is enough to establish controllability.
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Appendix C

In the special case p = 1, we can give a complete analytic solution to the optimal
transfer problem (II) for the second example of section 2.6. The solution for the
matrix elements of L is given by

L12(s) = eiφ12 A cos(ws),
L23(s) = −eiφ23 A sin(ws),

L13(s) = ei(φ12+φ23)
w

1− r
,

where w is determined to be w = (2n + 1)π
2 , n ∈ N. To determine A, we have

to solve the two-point boundary value problem given by (2.41),

dx̄

ds
=

 0 eiφ12 A cos(ws) ei(φ12+φ23) rw
1−r

−e−iφ12 A cos(ws) 0 −eiφ23 A sin(ws)
−e−i(φ12+φ23) rw

1−r e−iφ23 A sin(ws) 0

 x̄,

and the boundary conditions

x̄(0) =

 1
0
0

 , x̄(1) =

 0
0
ei∗

 .

With the change of variables

y =

 y1
y2
y3

 .=

 cos(ws) 0 sin(ws)
0 1 0
− sin(ws) 0 cos(ws)

 x̄1

eiφ12 x̄2

ei(φ12+φ23) x̄3

 ,

y satisfies the simpler equation

dy

ds
=

 0 A w
1−r

−A 0 0
− w

1−r 0 0

 y.

The boundary conditions for x̄ translate into the following conditions for y:

y(0) =

 1
0
0

 , y(1) =

 ±1
0
0

 .

It is a straightforward calculation to find the solution for y(s) and impose the
boundary conditions. We find then that A must satisfy the condition

cos

√
A2 +

w2

(1− r)2
= ±1
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which implies that

A = A(m,n) =

√
(mπ)2 − w2

(1− r)2
= π

√
m2 − (n+ 1/2)2

(1− r)2
,

where m ∈ N is such that m ≥ (n+1/2)
(1−r) . The solution for the state evolution is

given by x̄1

eiφ12 x̄2

ei(φ12+φ23) x̄3

 (s) =

 cos((n+ 1
2 )πs) 0 sin((n+ 1

2 )πs)
0 1 0
− sin((n+ 1

2 )πs) 0 cos((n+ 1
2 )πs)


 cos(mπs)

−A(m,n) sin(mπs)
mπ

− n+1/2
m(1−r) sin(mπs)

 .

We see that the local minimizers for this optimal transfer problem are parame-
terized in terms of two integers, n ∈ N and m ∈ N such that m ≥ (n+1/2)

(1−r) . The
cost of such a minimizer can be easily computed to be equal to

J = 2π2 [m2 − (n+ 1/2)2

1− r
].

The values of m and n and the exact cost for the global minimum are uniquely
specified by the value of r.
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Chapter 3

Optimal transfers in open
quantum systems

Our presentation is organized as follows: We begin in section 3.1 with an intro-
duction to the Quantum Mechanics of open systems, in particular the density
matrix formalism and the Lindblad equation. In section 3.2 we discuss the cool-
ing of molecular motions and the role that dissipation mechanisms play in it.
We consider the problem of optimal control of cooling of the rotational motion
of molecules in section 3.3. This leads us to study an optimal transfer problem
for the Lindblad equation with Hamiltonian control. In section 3.4 we propose
a method of approximate solution to the two-point boundary-value problem
that expresses the necessary conditions of optimality for the transfer. This
method takes advantage of the separation between the free Hamiltonian evolu-
tion time-scale (fast) and the dissipation time-scale (slow). It substitutes the
original two-point boundary-value problem with an “averaged” one, where the
fast Hamiltonian free dynamics and control action have been averaged over. The
advantages of this approach are twofold: The numerical solution of the averaged
problem is much more efficient than that of the original one, and once obtained,
it provides the (approximate) solution of the original problem in a structured
form, where the two time-scales are clearly separated. Using this technique, we
solve an optimal cooling problem for a three-level Λ system in section 3.5 and
we compare our solution with an existing solution for this problem obtained by
a different approximation and find excellent agreement.

3.1 Quantum Mechanics of open systems

3.1.1 The density matrix formalism

In chapter 2 we introduced the basic formalism of Quantum Mechanics, how to
describe the dynamics of a quantum system in terms of its Hilbert space and
the Schrödinger equation. We also incorporated the effects of external classical
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forces, electric or magnetic fields for example, which can be used to control the
system. The question of how these external forces are created and manipulated
was not addressed. We idealized the physical systems (apparatuses) that create
them and ignored their internal dynamics concentrating only on their effect on
the quantum system under study.

Here, we’ll present the extension of the basic formalism that treats inter-
actions between two quantum systems. We will then show how to pass to an
effective description for one of the systems when the other one is ignored, usu-
ally due to the fact that it is a much larger system and there is insufficient
information about its state. This will lead to the density matrix formalism.
In the case of interest here, the “ignored” quantum system is the environment
of the quantum system under consideration. We emphasize that the density
matrix formalism is derived from the Hilbert space/state vector formalism and
thus, nothing new is added to the basic structure of Quantum Mechanics.

We begin by considering the interaction of two quantum systems, A and B,
with respective Hilbert spaces HA and HB . The Hilbert space for the composite
system, HAB , is simply the tensor product of HA and HB :

HAB
.= HA ⊗HB .

Let {ei}i=1,...,N1 and {EI}I=1,...,N2 be orthonormal bases for HA and HB , re-
spectively. Then, {ei⊗EI} is an orthonormal basis for HAB and a general state
vector ΨAB has the representation

ΨAB =
∑
iI

(ΨAB)iI ei ⊗ EI .

Whenever (ΨAB)iI can be written as

(ΨAB)iI = ψAiψBI , ∀i, I,

then, ΨAB factorizes as
ΨAB = ψA ⊗ ψB ,

with ψA
.=
∑

i ψAiei and ψB
.=
∑

I ψBIEI . Such a state of the composite
system is called separable and for such a state it is meaningful to talk about
the individual states of A and B as defined above. The physical meaning of
this separation will become more obvious when we talk about operators and
measurements for the composite system in a moment. For now, note that this
kind of state is rather rare and in general, ΨAB will not be factorizable. In that
case, ΨAB will be called entangled, to emphasize the fact that in the composite
system AB, the individual systems “share information about each other”.

We continue with the description of operators inHAB : They have the general
structure

OAB =
∑

ν

O
(ν)
A ⊗O

(ν)
B ,

where O(ν)
A and O

(ν)
B are operators in HA and HB , respectively. If OA is an

operator in HA, then OA ⊗ IdB represents the same operator in the composite
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system. The Hamiltonian operator for the total system has the form:

HAB = HA ⊗ IdB + IdA ⊗HB + Hint
AB .

HA,B are the Hamiltonians of A and B as isolated systems and

Hint
AB =

∑
ν

S
(ν)
A ⊗ T

(ν)
B

is their interaction Hamiltonian. The Schrödinger equation for the composite
system is again

i~
d

dt
ΨAB(t) = HAB ΨAB(t).

We note the following fact: If there was no interaction term in HAB , i.e. HAB =
HA⊗IdB +IdA⊗HB , an initial separable state ΨAB = ψA⊗ψB would continue
to be separable:

ΨAB(t) = (e−iHAt ψA)⊗ (e−iHBt ψB).

The entanglement of states is exactly the effect of the interaction, as one would
expect. To physically explain the difference between separable and entangled
states, consider the following: Let P be a self-adjoint operator in HA that
represents a physical quantity p in system A. The expectation value of P ⊗ IdB

in the separable state ΨAB = ψA ⊗ ψB is equal to

〈P ⊗ IdB〉 = (ψA ⊗ ψB , (P ⊗ IdB)ψA ⊗ ψB)
= (ψA, PψA) · (ψB , ψB) = 〈P 〉A · 1 = 〈P 〉A.

Hence, the measurement results of any physical quantity in A are independent
of B as long as AB is in a separable state. This is not the case in general, i.e.
when AB is in an entangled state

〈P ⊗ IdB〉 = (ΨAB , P ⊗ IdB ΨAB)

=
∑
ijIJ

(ΨAB)∗iI Pij δIJ (ΨAB)jJ

=
∑
ij

Pij

(∑
I

(ΨAB)∗iI (ΨAB)jI

)
,

〈P ⊗ IdB〉 depends on the state of the total system. We can, nevertheless,
define a quantity that encodes the probabilities for outcomes of measurements
of physical quantities in system A. From the last line of the expression for
〈P ⊗ IdB〉, we define the self-adjoint operator

ρ
.=
∑
ij

(∑
I

(ΨAB)∗iI (ΨAB)jI

)
ej e

′
i, (3.1)

in HA. In the Physics literature it is referred to as the density matrix of
system A. For the open system A (interacting with its environment B), ρ is the
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state variable analogous to the vector ψ for an isolated quantum system. In
particular, it encodes all information about the system, that is the probabilities
for outcomes of measurements of physical quantities. This can be seen from the
last line of the expression for 〈P ⊗ IdB〉 which can now be written as

〈P ⊗ IdB〉 =
∑
ij

Pij ρji = trPρ. (3.2)

Compare (3.2) with the expectation value for P , if A was an isolated quantum
system:

〈P 〉 = (ψA, PψA) =
∑
ij

ψ∗i ψjPij .

In that case, we could still define the density matrix ρ by ρ = ψψ′ (ρji
.= ψjψ

∗
i )

and every information about the quantum system (probabilities of measurement
outcomes) would be encoded in it. But the state vector ψ encodes the same
information more efficiently so there is no need to do so. In the case at hand
(open quantum systems), the use of the density matrix is absolutely necessary
because it encodes information about the composite system necessary for the
calculation of probabilities of measurement outcomes in A. Thus ρ becomes
the state variable for A and 〈P 〉 = trPρ becomes the analog of the quantum-
mechanical expectation formula for closed systems, namely 〈P 〉 = (ψ, Pψ). A
basis-independent expression for ρ is

ρ
.= trBΨABΨ′

AB , (3.3)

where trB is a partial trace with respect to any basis of HB . (3.3) easily reduces
to (3.1):

ρ = trBΨABΨ′
AB =

∑
ij

(∑
I

(ΨAB)∗iI (ΨAB)jI

)
ej e

′
i.

From its definition, we can easily infer the following properties of ρ:

1. ρ is self-adjoint.

2. ρ is positive semi-definite. Indeed, for any v ∈ HA,

(v, ρv) =
∑

I

(∑
i

(ΨAB)iI vi

)∗(∑
j

(ΨAB)jI vj

)
≥ 0.

3. trρ = 1. From the definition,

trρ =
∑
iI

(ΨAB)∗iI (ΨAB)iI = ‖ΨAB‖2 = 1.

From these properties it follows that ρ can be diagonalized and all its eigenvalues
are real and non-negative and sum to one. Whenever ρ is of rank one, that is
there exists a ψ ∈ HA such that ρ = ψψ′ (ρji = ψjψ

∗
i ), the state of the

system is called pure, otherwise it’s called mixed. A pure state corresponds
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to a separable state of the composite system (A + environment) while a mixed
one signifies the presence of entanglement. Mathematically, pure states are
characterized by the property ρ2 = ρ while mixed ones satisfy ρ2 < ρ. Any
scalar function of ρ that is extremized by pure states only, e.g. trρ2 or the von
Neumann entropy −k tr(ρ ln ρ), is a measure of the purity of the system.

In the case of a two-state system, ρ is a 2×2 Hermitian, positive semi-definite
matrix of trace 1. Hence, we need only 3 real numbers to specify it. A useful
parametrization of it is the following:

ρ =
1
2
(I2 + xσx + y σy + z σz) =

1
2

(
1 + z x− iy
x+ iy 1− z

)
, (3.4)

where x, y and z are real. Since ρ is 2 × 2 and has trace 1, the condition
det ρ ≥ 0 is necessary and sufficient for it being non-negative. We can compute
det ρ = 1

4 (1 − x2 − y2 − z2) which leads to the condition x2 + y2 + z2 ≤ 1,
i.e the state space of an open two-state system is the 3-dimensional closed ball
of radius one. In the Physics literature, it is often referred to as the Bloch
sphere and the vector (x, y, z) is referred to as the Bloch vector. The states on
the boundary x2 +y2 +z2 = 1 have rank one (they have one eigenvalue zero and
one equal to one) and thus they are pure. All states in the interior are mixed.
For higher dimensional systems, the state space does not have such a simple
description, but, due to the properties of ρ, is always convex.

We saw how the need for the introduction of the density matrix arises by
considering the interaction of quantum systems with their environment. There
is an alternative view of the density matrix formalism. ρ can always be expressed
as

ρ =
N∑

i=1

pi vi v
′
i. (3.5)

The vi’s need not be orthogonal, although, since ρ is Hermitian, there is always
a representation like (3.5) with orthogonal vi’s, namely it’s eigenvectors. Also,
the pi’s must satisfy the relations

0 ≤ pi ≤ 1, i = 1, . . . , N, and
N∑

i=1

pi = 1.

So ρ can be interpreted as the expectation value

ρ = E[ψψ′], (3.6)

in a classical ensemble of (identical) quantum systems. In this ensemble, the
fraction of quantum systems in state vi is equal to pi. Equivalently, for one
quantum system, there is a probability pi to find the system in the quantum
state vi. Note that this is classical probability and not quantum probability,
as described in Chapter 2. We want to clarify this important point with an
example: Consider the spin- 1

2 system of Chapter 2. Assume it is in the state

ψ =
1√
2

(
1
1

)
.
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The probability of measuring the z component of spin to be equal to +1
2 is equal

to

|
(

1
0

)′
· ψ|2 =

1
2
,

and that of being equal to − 1
2 is

|
(

0
1

)′
· ψ|2 =

1
2
,

again. Had we’ve been measuring the corresponding probabilities for the x
component of spin, whose eigenvectors are

1√
2

(
+1
±1

)
,

we would have gotten the answers 1, for Sx = + 1
2 and 0 for Sx = − 1

2 . These
are quantum-mechanical probabilities. The same answers would come out of
the density matrix formalism for the pure state

ρ = ψψ′ =
1
2

(
1 1
1 1

)
.

Consider now a classical ensemble where half the quantum systems have Sz =
+ 1

2 and the other half − 1
2 . This state is described by the density matrix

ρ̃ =
1
2

(
1
0

) (
1
0

)′
+

1
2

(
0
1

) (
0
1

)′
=
(

1/2 0
0 1/2

)
6= ρ.

Notice that ρ̃ can also be written as

ρ̃ =
1
2

(
1√
2
)2
(

1
1

) (
1
1

)′
+

1
2

(
1√
2
)2
(

+1
−1

) (
+1
−1

)′
,

and hence it also represents an ensemble with half the systems in the Sx = +1
2

eigenstate and the other half in the Sx = − 1
2 eigenstate, in sharp contrast with

the corresponding probabilities computed from ψ above. In the following, both
interpretations of ρ will be useful.

3.1.2 The Lindblad equation

So far, we discussed the necessity of the density matrix formalism for the descrip-
tion of open quantum systems along with its physical (statistical) interpretation.
The next step is the introduction of an evolution equation for it (ρ is, after all,
a state variable). Let ΨAB0 be the initial state of the composite system and
ρ0 = trBΨAB0Ψ′

AB0 the initial density matrix of A. Then, after time t, the state
ΨAB0 has evolved to

ΨAB(t) = e−iHABt ΨAB0,
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hence,

ρ(t) = trBΨAB(t)Ψ′
AB(t) = trBe

−iHABt ΨAB0 Ψ′
AB0 e

iHABt.

It is fairly obvious from this expression that ρ(t) can not necessarily be sim-
ply expressed in terms of ρ0 alone. From a physical perspective this is to be
expected: ρ contains only part of the information encoded in ΨAB (the part
that is relevant for calculating probabilities of measurement outcomes in A) but
to predict its evolution after time t, the evolution of all of the state ΨAB is
necessary. Nevertheless, it turns out that one can write an evolution equation
for it (the analog of Schrödinger’s equation for open systems) under certain
simplifying assumptions on the dynamics of system B (the environment). We
will comment on these assumptions shortly, but first we introduce the Lindblad
equation for ρ:

ρ̇ = −i[H, ρ] +
∑

n

KnρK
′
n −

1
2
{
∑

n

K ′
nKn, ρ}. (3.7)

We now explain the meaning of the various terms. In Quantum Mechanics,
the notations [S, T ] and {S, T} denote, respectively, the commutator and the
anti-commutator of two operators S and T :

[S, T ] .= ST − TS, and
{S, T} .= ST + TS.

The term −i[H, ρ] represents the reversible (Hamiltonian) evolution of A and
H is the Hamiltonian operator of A as an isolated system, usually with some
corrections due to the dynamics of B (e.g. some renormalization of constants).
The other terms express the effect of the dynamics of B on the evolution of
A. As we will see, they represent various irreversible (dissipative) processes. H
is self-adjoint while the Kn’s are not necessarily so. In the case of an infinite
dimensional Hilbert space, we also assume that H and Kn are bounded and∑

nK
′
nKn converges strongly if n→∞.

(3.7) has some very interesting structure. Denote the (linear) map from the
initial condition to the solution at time t as Λt : ρ0 → ρ(t). Then:

1. Λt is a bounded, strongly continuous semigroup, that is

Λt(Λs(ρ0)) = Λt+s(ρ0) and lim
t→0+

Λt(ρ0) = ρ0.

2. Λt preserves the trace, trΛt(ρ0) = trρ0.

3. Λt is positive: If ρ0 ≥ 0, then Λt(ρ0) ≥ 0.

4. Λt is completely positive.
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Properties 1 to 3 are all reasonable for an evolution equation that preserves
the properties of a density matrix. Property 4, which is a stronger form of
property 3, requires some explanation. A positive linear map Λ : T (H) →
T (H) from trace-class operators in H to trace-class operators in H is called
completely positive if its extension Λn : T (H) ⊗ Mn → T (H) ⊗ Mn (Mn

is the set of complex n × n matrices) defined by Λn(ρ ⊗ M) .= Λn(ρ) ⊗ M
is positive, for all n ≥ 1. Physically, this requirement means the following:
Given any other open quantum system A’, uncoupled to A, their joint state is
described by the tensor product of their density matrices. If A evolves but A’
doesn’t, this evolution must preserve the properties of the density matrix of the
total system, its positivity in particular. Complete positivity guarantees exactly
that. Furthermore, it guarantees that the independent evolution of the density
matrices of A and A’ preserves the properties of the density matrix of the total
system. Hence, it is an important property.

In the literature on open quantum systems there exist derivations of (3.7)
beginning with the Schrödinger equation for the composite system, of varying
mathematical rigor and with various simplifying assumptions on the dynamics
of the environment. A good entry point to this literature is the recent review
[67]. In general, two approximations are involved in these derivations, the weak
coupling limit between the system and its environment and the white noise
ansatz for the dynamics of the environment. The first rigorous derivation of (3.7)
was done by Davies in [68]. A fundamental result proved by Gorini, Kossakowski
and Sudarshan [69] (who considered (3.7) for finite-dimensional systems) and
Lindblad [70] (who considered the general case) is the following:

Theorem: [71] (3.7) is the only evolution equation that has all four properties
listed above.

To reinforce the idea that all the properties of the Lindblad equation and in
particular complete positivity are absolutely necessary for the evolution of a
density matrix and to connect the Lindblad equation with the unitary dynamics
of the composite system (system + environment), we quote the following

Theorem: [71] Let {Λt, t ≥ 0} be a bounded, norm-continuous, completely
positive semigroup in the space T (H)) of trace-class operators in H. There
exist a Hilbert space HB , a density matrix ρB in HB and a strongly continuous
one-parameter group of unitary operators {Ut, t ≥ 0} in H⊗HB such that

Λt(ρ) = trHB
Ut(ρ⊗ ρB)U ′t , t ≥ 0.

These results put the Lindblad equation on a rigorous basis. However, they give
no information on the form ofH and theKn’s for specific systems. These have to
be determined based on phenomenology and symmetry principles. In contrast,
derivations based on models of the interaction with the environment provide
forms for H and the Kn’s but the price to pay is either some mathematical
rigor sacrificed or certain unphysical approximations/limiting procedures [67].
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For the sake of building some intuition about the Lindblad equation and
its structure, we present a short “derivation” of it taken from [67], which is
mathematically rigorous but whose starting point we don’t justify. Consider
the following Stratonovich stochastic differential equation (SDE):

dψ(t) = −iHψ(t)dt− i
∑

n

Knψ(t) ◦ dBn(t). (3.8)

H is a self-adjoint operator while the Kn’s are not necessarily so. The Bn(t)’s
are independent normalized Brownian motions. Heuristically, one may say that
(3.8) comes from a Schrödinger equation like

i
dψ(t)
dt

= Hψ(t) +
∑

n

Knun(t)ψ(t),

where the functions un(t) are “white noises”. Of course, this is just heuristics:
Kn are not self-adjoint in general and the “white noise” effect of the environment
on the system requires involved and technical approximations. Nevertheless, we
will use (3.8) as the starting point for a derivation of the Lindblad equation
(3.7). First, we turn (3.8) into an Itö SDE:

dψ(t) = −iHψ(t)dt− 1
2

∑
n

K ′
nKn ψ(t)dt− i

∑
n

Knψ(t) dBn(t). (3.9)

Then, using the Itö rules,

E[dBn(t)] = 0, and E[dBn(t) dBm(t)] = δnmdt,

we calculate

dρ(t) = dE[ψ(t)ψ′(t)] = E[dψ(t)ψ′(t) + ψ(t) dψ′(t) + dψ(t) dψ′(t)]

= −i[H, ρ(t)] dt− 1
2
{
∑

n

K ′
nKn, ρ(t)} dt+

∑
n

Kn ρ(t)K ′
ndt.

This coincides with the Lindblad equation (3.7). We conclude this introduction
with an example. The phenomenon of spontaneous emission in atoms and
molecules, where a system transitions from an excited electronic state to the
ground electronic state by emitting a photon with frequency equal to the Bohr
frequency of the transition (see figure 3.1), is due to the interaction of these
systems with the surrounding quantized modes of the electromagnetic field. We
will write down the Lindblad equation that describes this phenomenon for a
two-state system. Normalizing the energies of the ground and the excited state
to 0 and ω, respectively, the Hamiltonian of the system is

H =
(

0 0
0 ω

)
.
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If the rate of transition from the excited state to the ground state is equal to γ,
then the corresponding Lindblad generator is K12 =

√
γE12, with

E12 =
(

0 1
0 0

)
(in CN the matrices Eij are defined by (Eij)kl

.= δikδjl, see appendix B of
Chapter 2). The Lindblad equation reads

ρ̇ = −i[H, ρ] +K12ρK
′
12 −

1
2
{K ′

12Kij , ρ}.

Representing ρ(t) as

ρ(t) =
(
p1(t) c∗(t)
c(t) 1− p1(t)

)
,

its solution is easily found to be

p1(t) = 1− (1− p1(0)) e−γt,

c(t) = e−( γ
2 +iω)t c(0),

so that ρ(t) is asymptotically approaching the state ρeq = E11, where only the
ground state is populated.

E
1
 

E
2
 

ω = E
2
 − E

1
 

Figure 3.1: Spontaneous emission in a two-state system.

3.2 Laser cooling of molecules: The role of dis-
sipation

Laser cooling of atoms and molecules is about reducing the kinetic energy of
their motion. It is a very powerful tool for a number of applications. In the case
of atoms, one only needs to reduce their translational kinetic energies. Laser
cooling of molecules is much more complicated due to the fact that they have
an internal structure. When cooling a sample of molecules, one must cool their
translational motion as well as their rotation and internal vibration. In this
work we concern ourselves with the laser cooling of the rotational motion of
molecules.
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Figure 3.2: A three level Lambda system with spontaneous emissions from level
2 to 1 and 2 to 3. There is no direct emission from 3 to 1.

The essential mechanism and main obstruction are depicted in figure 3.2,
which represents a, so-called, three-level Λ system. Molecules cool rotationally
by spontaneous emission to the ground electronic-rotational state (state 1) from
higher electronic-rotational states (state 2). The problem is that they can also
end up at states other than the ground state (state 3) and that from some of
these intermediate states, there is no direct spontaneous emission to the ground
state. Thus, the molecules are trapped to higher rotational levels. One must
then irradiate them with laser pulses to excite them back to states from where
they can spontaneously emit and relax to the ground state.

In this work, we will ignore all other dynamics besides rotational and consider
a finite-dimensional Hilbert space that contains the electronic-rotational levels
involved in the cooling process. As in [72, 73], we assume that the only relaxation
mechanisms in the system are spontaneous emissions and therefore we take
Kij = √

γijEij and γij is the rate of spontaneous emission from level j to level
i. The dynamics of the system, will be given by a Lindblad equation with
Hamiltonian control,

ρ̇ = −i[H0 + V u(t), ρ] + L(ρ), (3.10)

where
L(ρ) =

∑
ij

KijρK
†
ij −

1
2
{K†

ijKij , ρ}. (3.11)

In the three-level Λ system, state 2 spontaneously decays into the states 1
(ground state) and 3 at rates γ12 and γ32, respectively, but there is no di-
rect emission from 3 to 1. The corresponding Lindblad generators are K12 =√
γ12E12 and K32 =

√
γ32E32.

Although the technique we’ll develop in the following can handle general
finite-dimensional quantum systems, we will restrict our analysis to the simple
three-level Λ system which captures all the essential elements of the situation
without the added complications of real molecular spectra. In [73], an analytic
solution is obtained for the optimal cooling strategy in this system under certain
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simplifying assumptions to be discussed in the next subsection. We want to
compare the results of our technique to this known solution.

There are two very important facts about the problem of rotational cooling:

1. The cooling effect is the transfer of an initial state ρ0, with (ρ0)ii 6= 0,
for some i > 1, as close as possible to the ground state. An important
feature of the dynamics (3.10) [72, 73] is that only the dissipative term
can change the purity of ρ. Indeed, in the absence of the dissipative part,
the dynamics would simply be

ρ̇(t) = −i[H0 + V u(t), ρ(t)].

One can immediately establish the fact that trρ(t)n is a constant of motion,
∀n ∈ N∗:

d

dt
trρ(t)n = n tr[ρ(t)n−1ρ̇] = −in tr

(
ρ(t)n−1[H0 + V u(t), ρ(t)]

)
= 0,

from which follows the constancy of the spectrum of ρ(t) and hence of
its purity. In the absence of the dissipative terms, the control u(t) only
performs unitary transformations on the state. This is the reason we refer
to its as unitary (or Hamiltonian) control. Given an initial state ρ0, the
most it can do is transfer the state to a diagonal form with the largest
eigenvalue of ρ0 at the (1, 1) position. The cooling effect, which is the
increase of ρ11 as close to 1 as possible, requires the cooperation of the
unitary and the dissipative dynamics. In the case of the three-level Λ
system, one can see this from the form of L(ρ): For

ρ =

ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

 ,

L(ρ) has the form

L(ρ) =

 γ12ρ22 − 1
2 (γ12 + γ32)ρ12 0

− 1
2 (γ12 + γ32)ρ21 −(γ12 + γ32)ρ22 − 1

2 (γ12 + γ32)ρ23

0 − 1
2 (γ12 + γ32)ρ32 γ32ρ22

 .

Looking at the diagonal elements of L(ρ), one can see the basic mechanism:
Population from level 3 must be pumped by the laser to level 2 and then
it is spontaneous emission from level 2 to level 1 that is responsible for the
cooling. At the same time, emission from state 2 to state 3 works against
cooling, hence the approach to ρ = E11 can only be asymptotic.

2. The dissipation occurs on a much slower time-scale than the unitary (nat-
ural and induced) evolution of the system. Indeed, laser control in the
time-scale of the free dynamics (∼ 10−13 sec) is widely available while
typical spontaneous emission times are in the order of a nanosecond.
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3.3 Optimal control of dissipative dynamics

We now pose the optimal control problem: Determine the control u(t) in (3.10)
that maximizes ρ11(T ) (for a desired final time T ) given ρ(0) = ρ0. In the
following we briefly review two approaches to its solution, a “traditional” ap-
proach using a performance objective comprised of the above terminal quantity
minus a quadratic penalty term for the control effort [30] and a recent approach
pioneered in [72, 73].

In the traditional approach, one seeks to maximize the following objective:

J
.= ρ11(T )− a

2

∫ T

0

u2(t)dt. (3.12)

a > 0 is a weight factor on the size of the control effort which we’ll make very
small but non-zero. The general theory of optimal control [63] leads to the
Hamiltonian function

H(ρ, λ, u) = −a
2
u2 + tr[λ† (−i [H0 + V u, ρ] + L(ρ) )],

where λ = λ† is the co-state variable. The Hamiltonian equations satisfied by
the local maxima are

ρ̇ = −i [H0 + V u, ρ] + L(ρ), (3.13)
λ̇ = −i [H0 + V u, λ]− L†(λ), (3.14)

u = − i

a
tr(V [ρ, λ]). (3.15)

L† is the adjoint operator of L (acting on the dual of the state space, i.e. on
co-state variables). That is, for every Hermitian ρ and λ, tr[L(ρ)λ] = tr[ρL†(λ)].
For the three-level Λ system, the action of L† on

λ =

λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33

 ,

is given by

L†(λ) = 0 − 1
2 (γ12 + γ32)λ12 0

− 1
2 (γ12 + γ32)λ21 γ12(λ11 − λ22) + γ32(λ33 − λ22) − 1

2 (γ12 + γ32)λ23

0 − 1
2 (γ12 + γ32)λ32 0

 .

Finally, as part of the necessary conditions of optimality, one has a terminal
condition for λ (transversality condition):

λ(T ) = E11.
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We insert the expression (3.15) for the optimal control in the state and co-state
equations and bundle them with the boundary conditions on ρ and λ:

ρ̇ = [−iH0 −
1
a

tr(V [ρ, λ])V, ρ] + L(ρ), (3.16)

λ̇ = [−iH0 −
1
a

tr(V [ρ, λ])V, λ]− L†(λ), (3.17)

ρ(0) = ρ0, λ(T ) = E11. (3.18)

We shall refer to equations (3.16) - (3.18) as two-point boundary value
problem III (in short, TPBVP III). An important feature of this TPBVP is
the separation of the boundary conditions for the state and co-state variables,
which makes it amenable to iterative numerical solution methods, of the type
developed in [31, 32, 74, 62]. There is, however, a drawback in any attempt to
a numerical solution of this TPBVP. As discussed before, cooling is a result of
the cooperation between unitary control and dissipation, hence it takes place
on the slower of the two time-scales, namely that of the dissipative dynamics.
In that time scale, which is several orders of magnitude larger than that of the
unitary evolution, the free dynamics terms in (3.16) and (3.17) generate many
oscillations on top of the mean evolution of ρ and λ. This means that to achieve
good accuracy, numerical solutions must be very detailed, thus increasing com-
putational cost. This is because these numerical techniques do not exploit the
separation of the two time-scales. Furthermore, the resulting locally optimal
controls obtained by these numerical techniques don’t reveal much structure.

In the recent work [73], a different approach is taken to the optimal control
of cooling. Given the big separation of the dissipative and unitary time-scales,
the authors introduce the following approximation: When the system without
dissipation is controllable, i.e. H0 and H1 generate the Lie algebra of traceless
anti-Hermitian matrices in N dimensions, su(N) [49, 52], then any unitary
evolution (similarity transformation) of ρ can be produced instantaneously on
the dissipation time-scale. Following this, the state ρ is decomposed as ρ =
Uσ U†, with the diagonal σ which contains the spectrum of ρ remaining a state
variable, while the unitary U is effectively turned into a control variable. Note
that this control variable is not explicitly related with the original control u(t),
there may not even exist a u(t) that can produce a desired evolution U(t).
This is a generalization of the idea in [75, 10, 11] that certain components
(or functions) of the state can be controlled selectively and arbitrarily fast, so
one can pass to an effective description of the system where these quantities
are treated as control variables. An evolution equation is derived for σ with
U as a control variable and an optimal control problem is posed, namely to
maximize ‖ρ‖∞ (the largest eigenvalue of ρ, or equivalently, of σ) at a final
time T . The optimal strategy of [73] for steering the density matrix is very
simple: Given ρ, instantly “rotate” it by unitary evolution to a ρ̃ such that
the rate of change of the objective achieves its maximum value on the orbit
Φ(ρ) .= {UρU†, U ∈ SU(N)}. The mechanism responsible for the change of
the objective is, of course, dissipation.
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The advantage of this formulation is that it provides a clear understanding of
the roles of control and dissipation in the optimal cooling strategy. A drawback
is that, even when an analytic solution exists as in the case of the three-level Λ
system, there is no explicit connection between the physical control u(t) and the
control variables of the formulation of [73]. Put another way, given an optimal
control strategy U(t) it is not obvious how to generate from it a physical control
u(t). Moreover, for higher dimensional systems where analytical solutions may
not exist, the numerical solution of the associated Hamilton-Jacobi-Bellman
partial differential equation will be an extremely hard problem.

Our goal is to combine the best features of the two approaches and directly
incorporate the time-scale separation of Hamiltonian and dissipative evolution
into the “traditional” optimal control formulation. This addresses the draw-
backs of both approaches: It allows us to explicitly calculate (locally) opti-
mal controls u(t) and avoid solving high-dimensional Hamilton-Jacobi-Bellman
equations. At the same time, our method provides a structured form for the
optimal control and state trajectory where the fast Hamiltonian evolution is
clearly separated from the slow dynamics which is the result of the interplay of
dissipation and the average effect of Hamiltonian control.

3.4 An efficient approximation based on averag-
ing

3.4.1 Separating the two time-scales of the dynamics: An
averaged system

In this section, we use the idea of separating the dynamics at the two time-
scales. But instead of assuming that the effect of control is instantaneous in
the slow (dissipation) time-scale, we take into account its average effect on the
slow time-scale evolution. As mentioned before, all dissipation constants in the
system can be considered extremely small compared to its Bohr frequencies.
We introduce a common scale ε for all these constants γij , and define γ̃ij ’s such
that γij

.= ε γ̃ij . ε should be defined as ε = max γij

min ωij
(ωij > 0) or any number of

the same order of magnitude. We also define L .= ε L̃. It makes sense that the
cooling effect which is a result of the dissipation takes place on a time-scale of
order at least 1

ε . Thus, S .= εT should be at least of order 1, which is what we
assume from now on.

Consider now equation (3.10):

ρ̇ = −i[H0 + V u(t), ρ] + εL̃(ρ).

We introduce the change of variables ρ .= e−iH0t r eiH0t (transformation to the
interaction picture). With the definition

F (t) .= eiH0t V e−iH0t,

61



it transforms to

ṙ = −i[F (t), r]u(t) + ε eiH0t L̃(e−iH0t r eiH0t) e−iH0t.

Note the appearance of the Bohr frequencies in the matrix elements of F,

Fij(t) = Vije
i(Ei−Ej)t = Vije

iωijt.

For the form of L(ρ) we are using, it is easy to see that

[L(ρ)]kk =
∑

i

γkiρii −
∑
ik

γikρkk, and

[L(ρ)]kl = −1
2

∑
i

(γik + γil)ρkl, k 6= l,

from which follows that

eiH0t L(e−iH0t r eiH0t) e−iH0t = L(r).

We thus end up with the transformed system

ṙ = −i[F (t), r]u(t) + ε L̃(r). (3.19)

The evolution of the interaction picture density matrix r is entirely due to the
control and the dissipation term. Equation (3.19) suggests the following fact:
For small control amplitude, if the control is to have any significant effect on
the dynamics over a long time, u(t) must contain frequency components whose
frequency equals the Bohr frequencies of the system. This is an intuition based
on averaging theory. The discussion in section 3.4.3 will make this intuition and
the proposed form of the control (3.20) more transparent.

Following this intuition, we introduce the following form for the control:

u(t) = ε
∑

ωij 6=0

eiωijt uji(εt), (3.20)

where the summation is over pairs of indices (i, j) with ωij 6= 0 (if there is
degeneracy in the spectrum, as in the case of rotational dynamics, ωij = 0 even
for i 6= j). uji is a complex “envelope” and u∗ji = uij so that u is real. By
definition, uij

.= 0 whenever ωij = 0. We will also use the notation ωα, with α
being an index pair (i, j), i > j, such that i and j are the smallest indices in the
set of index pairs (m,n) such that ωmn = ωij . Essentially, α runs over the set of
independent positive Bohr frequencies of the system. For example, consider a
four-state system with E4 > E3 > E2 > E1, such that ω21 = ω43 6= ω32. Then,
ω42 = ω43+ω32 = ω32+ω21 = ω31 as well. Hence, the only independent positive
Bohr frequencies are ω21, ω32, ω31 and ω41 and so α can only take the values
(2, 1), (3, 2), (3, 1) and (4, 1). Using this convention, we can rewrite (3.20) as

u(t) = ε
∑

ωij 6=0

eiωijt uji(εt) = ε
(∑

α

e−iωαtwα(εt) + eiωαtw∗α(εt)
)
, (3.21)
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where

wkl
.=


∑

ωij=ωkl 6=0

uij , ωkl 6= 0,

0, ωkl = 0.
Introduce this form for u(t) in (3.19) and rewrite that equation in component

form:

ṙkl = −iε
∑
m

(
Vkm eiωkmt rml − rkm Vml e

iωmlt
)
·
∑
i,j

eiωijt uji(εt)

+ ε [L̃(r)]kl. (3.22)

We approximate (3.22) for small ε using averaging, as in chapter 2:

˙̄rkl = −iε
∑
m

(Vkm wkm(εt)r̄ml − r̄km Vml wml(εt) ) + ε [L̃(r̄)]kl. (3.23)

With the definition (Ṽ [w])mn
.= Vmn wmn, we can write (3.23) in matrix form

as
˙̄r = ε

(
− i [Ṽ [w], r̄] + L̃(r̄)

)
. (3.24)

Finally, we rescale time to s .= εt in (3.24):

dr̄

ds
= −i[Ṽ [w], r̄] + L̃(r̄), s ∈ [0, εT ] = [0, S]. (3.25)

According to the averaging theorem in [57] and the preceding arguments , any
control strategy {wα(s)}, s ∈ [0, S], for (3.25), results in a control strategy
u(t), t ∈ [0, T ], for (3.10) according to (3.21), such that the state trajectory ρ(t)
is O(ε)-close to e−iH0t r̄(εt) eiH0t, if ρ(0) = r̄(0).

3.4.2 Optimal transfers in the averaged system

We now consider the following optimal transfer problem for the averaged system
(3.25): Maximize

J̄
.= r̄11(S)− a0

∫ S

0

∑
α

|wα(s)|2ds, (3.26)

where, as above, S = εT . The necessary conditions for optimality are derived
from the Hamiltonian function [63]

H(r̄, l̄, wα) = −a0

∑
α

|wα|2 − i trl̄([Ṽ [w], r̄] + L̃(r̄)),

and are the following:
dr̄

ds
= −i [Ṽ [w], r̄] + L̃(r̄), (3.27)

dl̄

ds
= −i [Ṽ [w], l̄]− L̃†(l̄), (3.28)

wα = − i

a0

∑
ωij=ωα

Vji [r̄, l̄]ij , (3.29)
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along with boundary conditions identical to (3.18),

r̄(0) = ρ(0) and l̄(S) = E11.

We shall refer to this TPBVP as two-point boundary value problem IV.
The point to be made is that, it is computationally much easier to solve than
TPBVP III: The dynamics in the short time-scale (both free and due to fast
control action) has been removed and only the dissipative dynamics and the
averaged control action on the long time-scale (i.e. of order 1

ε ) remain. Thus the
solution of problem IV requires much less computational burden and accuracy
retained. Because of the separated boundary conditions for the state and co-
state at the two ends, iterative procedures that use successive forward (in time)
integrations of the state equation and backward integrations of the co-state
equation can be applied for the solution of TPBVP IV. An example of such an
algorithm is the following (see also [31, 32, 74, 62]):

dr̄(k+1)

ds
= −i [Ṽ [w(k+1)] , r̄(k+1)] + L̃(r̄(k+1)),

w
(k+1)
ij =

d− a0
2

d+ a0
2

w
(k)
ij − i

d+ a0
2

∑
ωmn=ωij

Vnm [r̄(k+1), l̄(k)]mn,

r̄(k+1)(0) = ρ0,

dl̄(k+1)

ds
= −i [Ṽ [w(k+1)], l̄(k+1)]− L̃†(l̄(k+1)),

l̄(k+1)(S) = E11,

with d > 0 and a0 ≥ 0. It can be shown that the sequence of objective func-
tionals

J̄ (k) = r̄
(k)
11 (S)− a0

∫ S

0

∑
α

|w(k)
α (s)|2ds

increases monotonically. We note in passing that this algorithm works even
when a0 = 0.

Finally, we show in the next section that the resulting control law u(t) for the
original system that we get from the optimal envelopes wij(s) for the averaged
system from (3.21), is approximately optimal with respect to J of (3.12), up to
terms of O(ε), for a = a0

ε .

3.4.3 Approximate optimality of the resulting control u(t)

We begin with the change of variables in equations (3.16) - (3.18):

ρ = e−iH0t r eiH0t,

λ = e−iH0t l eiH0t.
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With the definition F (t) .= eiH0t V e−iH0t, they become

ṙ = −1
a

tr(F (t)[r, l]) [F (t), r] + L(r), (3.30)

l̇ = −1
a

tr(F (t)[r, l]) [F (t), l]− L†(l), (3.31)

r(0) = ρ0, l(T ) = E11, (3.32)

where the following facts were used:

eiH0t L(e−iH0t r eiH0t) e−iH0t = L(r),
eiH0t L†(e−iH0t l eiH0t) e−iH0t = L†(l).

The transformation property of L has already been established and that of L†

follows immediately from its definition. We now take a = a0
ε in (3.12). Notice

that the choice a = a0
ε does not affect the generality of J because the parameter

a0 is chosen independently of ε. Letting L = εL̃ and L† = εL̃†, equations (3.30)
and (3.31) become

ṙ = ε
(
− 1
a0

tr(F (t)[r, l]) [F (t), r] + L̃(r)
)
,

l̇ = ε
(
− 1
a0

tr(F (t)[r, l]) [F (t), l]− L̃†(l)
)
.

The final step is to average these equations. To make the procedure a little
more transparent, we rewrite the state equation in component form:

ṙmn = ε
(
− 1
a0

∑
i,j

Vji e
iωjit [r, l]ij ·

∑
p

(
Vmp e

iωmpt rpn − Vpn e
iωpnt rmp

)
+ [L̃(r)]mn

)
.

The averaged form of this equation is

˙̄rmn = ε
(∑

p

(
− 1
a0

∑
ωij=ωmp

Vji [r̄, l̄]ij
)

︸ ︷︷ ︸
−iwmp

Vmp r̄pn

−
∑

p

(
− 1
a0

∑
ωij=ωpn

Vji [r̄, l̄]ij
)

︸ ︷︷ ︸
−iwpn

Vpn r̄mp + [L̃(r̄)]mn

)

= ε
(
− i
∑

p

wmp Vmp r̄pn − wpn Vpn r̄mp + [L̃(r̄)]mn

)
,

or, in compact form,
˙̄r = −iε

(
[Ṽ [w], r̄] + L̃(r̄)

)
.
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This is precisely equation (3.27) without the time rescaling, with the envelopes
given by (3.29). An identical calculation establishes that (3.28) (without the
time rescaling) is the averaged form of (3.31).

The aforementioned averaging theorem and the sequence of variable changes
that we introduced guarantees that, for sufficiently small ε, any solution (ρ(t),
λ(t)) of (3.16) and (3.17) with some initial conditions ρ0 and λ0, can be expressed
in terms of the solution (r̄(s), l̄(s)) of (3.27) and (3.28) with the same initial
conditions as

ρ(t) = e−iH0t r̄(εt) eiH0t +O(ε), (3.33)
λ(t) = e−iH0t l̄(εt) eiH0t +O(ε). (3.34)

Ideally, we would like to prove a relation identical to (3.33) and (3.34) between
the solutions of TPBVPs III and IV with the same boundary conditions (3.18).
That is, prove that there is a one-to-one correspondence between the solutions
of TPBVPs III and IV with the same boundary conditions (3.18) given by (3.33)
and (3.34). We established such a relation in Chapter 2 between TPBVPs I and
II for exact population transfers in a closed quantum system with a quadratic
penalty on the control. Here, we take a simpler approach: Given a solution
(r̄(s), l̄(s)) of TPBVP IV, we define ρapr(t) and λapr(t) by

ρapr(t) .= e−iH0t r̄(εt) eiH0t, (3.35)
λapr(t) .= e−iH0t l̄(εt) eiH0t. (3.36)

Then, (ρapr(t), λapr(t)) will satisfy the necessary conditions of optimality (3.16)-
(3.18), that is TPBVP III, up to terms of order ε. In this sense, (ρapr(t), λapr(t))
furnish approximate solutions to the optimal transfer problem of section (3.3).
There is a fine distinction to be made here, namely that this is not the same
as (ρapr(t), λapr(t)) providing approximations to solutions of TPBVP III. Put
another way, for any finite ε, no matter how small, there is no guarantee that
the approximate solution (ρapr(t), λapr(t)) to TPBVP III defined through (3.35)
and (3.36 is an approximation to an actual solution of it, i.e. ε-close to a local
maximum of J . Based on the results of the numerical solution of the optimal
cooling strategy for the 3-state Λ system (see section 3.5), we believe this to be
true. From a practical perspective, what is important is that r̄11(S) achieves
a value close to 1 because then, the corresponding approximate solution of
TPBVP III defined by (3.35) and (3.36) will furnish a control that achieves the
same yield to O(ε) for the original system.
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3.5 Example: Numerical solution of the three-
level Λ system

We now present the numerical solution of the optimal cooling problem for the
three-level Λ system. We take γ̃1 = 1, γ̃2 = .8 and, for simplicity,

V =

 0 1 0
1 0 1
0 1 0

 .

We used the iterative technique outlined at the end of section 3.4.2, starting with
the relatively large value 1 for a0 and gradually decreasing it to 0. Intuitively,
one expects that the control will pump population from level 3 to level 2 and
then let spontaneous emission do the rest, i.e. dump it on level 1. This intuition
is verified, as the profile w12 turns out to be zero. Only the real part of the
profile w23 is nonzero and is represented in figure 3.3. Hence, the optimal control
will have the form

u(t) = 2ε cosω23t w23(εt) +O(ε2).

The value of ε should be of the order of magnitude of max{γ12,γ32}
ω23

.
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Figure 3.3: Optimal profile w23

To compare with the results of [73], we plot the average populations r̄ii we
calculated numerically with the analytically calculated populations σi of [73] in
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figure 3.4. The agreement between r̄11 and σ1 is excellent. As expected, σ1 is
always larger than r̄11, because the approximation of [73] assumes instantaneous
unitary control of the quantum system and thus over-estimates the response of
the system. Still, at the final time, hardly any difference is discernable. The
agreement between r̄22 and σ2 and between r̄33 and σ3 is also very good: The
populations of levels 2 and 3 become equal after some time (close to the time
predicted in [73]) and stay almost equal for all times after that, as predicted by
the analytical solution of [73]. Again, the discrepancy (mostly in the initial stage
of the transfer) stems from the assumption of instantaneous unitary control of
[73]. And again, the agreement becomes almost perfect close to the final time.
Finally, we look at the coherences ρ12, ρ13 and ρ23. [73] predicts that they
are all zero for the optimal trajectory. Our solution finds that r̄12 and r̄13 are
indeed zero but r̄23 is non-zero, though small. Once again, the reason for the
difference is the fact that the approximation of [73] over-estimates the response
of the system. We plot |r̄23| in figure 3.5.

We see that the numerical solution of the optimal cooling problem for the
three-level Λ system reproduces the features of the solution in [73] with some
small but expected deviations.
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Figure 3.4: Average populations calculated by our method and optimal popu-
lations calculated in Sklarz et al.
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3.6 Summary

We set up an optimal molecular-rotation cooling problem as an optimal transfer
problem for the Lindblad equation with Hamiltonian control. Using the facts
that the Hamiltonian natural dynamics is much faster than the dissipative and
that it is the latter that controls the time-scale of the cooling process, we intro-
duced an approximation method analogous to that of Chapter 2. We showed
that, instead of the original transfer problem, one may consider an averaged
version of it, which is computationally much easier to solve since it contains
only one time-scale, the slow time-scale of the dissipation. Once solved, it pro-
vides an approximate solution to the original transfer problem which exhibits
the time-scale separation. Unfortunately, we were not able to obtain as strong
results as in Chapter 2 (show the one-to-one correspondence between solutions
of the original and the averaged problem) because of the nature of the TPBVP.
We did demonstrate, however, in the context of an example, the conceptual
and computational simplification that our technique offers. We compared our
results for the example of a three-level Λ system with the solution obtained by
[73] using a different approximation (that also uses the time-scale separation of
the different dynamics in the system) and found excellent agreement. But our
technique is able to obtain the form of the (approximate) optimal control and is
readily generalizable to higher dimensional systems in contrast to that of [73].
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Chapter 4

Lyapunov based control of
quantum systems

In this chapter we present some work on Lyapunov-based control of isolated
quantum systems. We derive continuous feedback laws that asymptotically sta-
bilize desired energy levels. The obtained feedback laws are to be used to derive
open loop controls. The inclusion of (continuous) measurement and feedback
requires much more complicated models with stochastic dynamics as we’ll see
in the next chapter. We should point out right away that the best one can do
with these Lyapunov-based designs for isolated quantum systems is to create
almost globally stabilizing feedback laws. This is because of the topology of
the phase space of quantum systems: They are (essentially) multidimensional
spheres and there does not exist a globally stabilizing continuous vector field
on a finite-dimensional sphere. Other works on Lyapunov-based control of iso-
lated quantum systems include [76, 77]. In these works, as in ours, the control
Lyapunov functions are conserved quantities of the uncontrolled Hamiltonian
dynamics. This idea was proposed in [78] and is a generalization of the “en-
ergy” control of [79].

In the following, we consider only finite-dimensional quantum systems with
one control as in (2.10):

iψ̇ = (H0 + V u(t))ψ.

For an N -dimensional quantum system, the state space is CPN , hence only
Lyapunov functions with the property Φ(eiφψ) = Φ(ψ), φ ∈ S1, are allowed.
We use Φ(ψ) = ψ′Pψ, P ′ = P , as a control Lyapunov function. Our first task
is to analyze the structure of its critical points on CPN .

Lemma: The critical points of Φ(ψ) = ψ′Pψ on CPN are the normalized
eigenvectors of P . The eigenvector with the largest eigenvalue is the global
maximum, the eigenvector with the smallest eigenvalue is the global minimum
and all others are saddle points.2
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Proof: We only need to worry about the constraint ψ′ψ = 1, all other equa-
tions/statements are appropriately phase-invariant or covariant. We consider
the “augmented” function

Φ̃(ψ, σ) = ψ′Pψ − σ (ψ′ψ − 1),

where σ is a Lagrange multiplier. Varying Φ̃ with respect to ψ we have,

0 =

(
∂Φ̃
∂ψ

)′
= Pψ − σψ,

so, ψ is an eigenvector of P and σ the corresponding eigenvalue. Varying Φ̃ with
respect to σ enforces the normalization of ψ. Denote the normalized eigenvectors
of P by qi , i = 1, . . . , N , and the corresponding eigenvalues by pi. Then,

P =
N∑

i=1

piqiq
′
i.

To determine the structure of Φ around one of its critical points, qN for example,
consider a finite variation ∆ψ such that ‖qN + ∆ψ‖2 = 1. Express ∆ψ in the
basis of the eigenvectors of P ,

∆ψ =
N∑

i=1

∆ψiqi.

The normalization condition ‖qN + ∆ψ‖2 = 1 implies that

(∆ψN + ∆ψ∗N + ∆ψN∆ψ∗N ) +
N−1∑
i=1

∆ψi∆ψ∗i = 0,

so, not all components of the variation can be chosen arbitrarily. Consider the
difference

Φ(qN + ∆ψ)− Φ(qN ) = pN (∆ψN + ∆ψ∗N + ∆ψN∆ψ∗N ) +
N−1∑
i=1

pi∆ψi∆ψ∗i

=
N−1∑
i=1

(pi − pN )∆ψi∆ψ∗i .

Taking the ∆ψi , i = 1, . . . , N−1, as independent parameters of the variation, we
see that the structure of Φ around qN depends on the ordering of the eigenvalues:
qN is the global maximum iff pN is the largest eigenvalue, the global minimum
iff pN is the smallest eigenvalue and a saddle point otherwise.�

We calculate the rate of change of Φ along a trajectory of (2.10):

dΦ
dt

= −iψ′P (H0 + V u)ψ + iψ′(H0 + V u)Pψ

= iψ′[H0 + V u, P ]ψ
= iψ′[H0, P ]ψ + iψ′[V, P ]ψ u.
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For any matrices A and B, tr([A,B]) = tr(AB)− tr(BA) = 0, hence a commu-
tator can never be sign-definite. For this reason, we choose P to commute with
H0, [H0, P ] = 0. This implies that the two matrices must have the same eigen-
vectors and hence, by the lemma, the critical points of Φ are the eigenvectors
of H0. Now,

dΦ
dt

= iψ′[V, P ]ψ u.

To make Φ̇ ≤ 0, we choose the following (state feedback) control law:

u = −f(iψ′[V, P ]ψ), (4.1)

with f : R → R, any continuous function such that xf(x) > 0, ∀x 6= 0. With
this choice of u, the controlled Schrödinger’s equation becomes

iψ̇ = (H0 − f(iψ′[V, P ]ψ)V )ψ. (4.2)

We show now that the set of eigenvectors of P is the largest invariant set of (4.2).
For ψ̄ to be in the invariant set of (4.2), Φ̇ = −xf(x) = 0, with x = iψ̄′[V, P ]ψ̄,
which means that

iψ̄′(t) [V, P ] ψ̄(t) = 0, (4.3)

must be satisfied along with

i ˙̄ψ(t) = (H0 − f( iψ̄′(t)[V, P ]ψ̄(t) )V ) ψ̄(t),

with initial condition ψ̄. The solution is given by

ψ̄(t) = e−iH0t ψ̄ =
N∑

i=1

ci e
−iEit qi,

where ψ̄ =
∑N

i=1 ci qi and the Ei’s are the eigenvalues of H0. Substituting this
in (4.3), we obtain the condition

−i
N∑
i,j

(pi − pj) ci c∗j e
−iωjit (q′jV qi) = 0. (4.4)

We make the following assumptions:

1. ωji 6= ωlk, (i, j) 6= (k, l).

2. q′jV qi 6= 0, i 6= j.

3. pi 6= pj , i 6= j.

Assumption 1 guarantees that the exponential functions in (4.4) are linearly
independent, while 2 and 3 ensure that the resulting equations,

ci c
∗
j = 0,

hold ∀ i 6= j. The only non-trivial solutions of these have only one ci non-zero.
This means that ψ̄ is one of the qi’s. Hence, the largest invariant set of (4.2) is
the set of eigenvectors of P . La Salle’s invariance principle [57] guarantees its
asymptotic stability. This analysis can be generalized in two ways:
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1. One may consider a P with multiple eigenvalues. Suppose that P has only
M < N distinct eigenvalues. Group the eigenvectors of P in M corre-
sponding eigenspaces. One can show that the conclusions above continue
to hold if we substitute ‘eigenspaces’ for ‘eigenvectors’. One still needs
assumptions 1-3, but the indices need only belong to levels in different
eigenspaces of P.

2. For systems with more controls, instead of assumption 2 one needs the
weaker condition

q′jVαqi 6= 0, i 6= j,

for at least one Vα.

We summarize our results in the following theorem:

Theorem: Consider system (2.10) with the feedback control law (4.1), where
H0 and P commute. Given the (generalized) assumptions 1-3, this control law
asymptotically drives any trajectory of (2.10) to an eigenspace of P .2

In general, Φ is just a local Lyapunov function for the eigenspace correspond-
ing to the minimum element of P. In the special case p1 = . . . = pN−1 > pN ,
Φ guarantees semi-global convergence to qN (only points from the subspace
spanned by q1, . . . , qN−1 do not converge to qN but remain in that subspace).
Figure 4.1 demonstrates a transfer of population from the ground vibrational
state of the OH-bond to its 9th excited state using a Lyapunov based feedback
law. The approach to the target state is asymptotic but a good yield (90%) is
achieved in a reasonable transfer time.
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Figure 4.1: Selective excitation of an intermediate vibrational state of the OH
bond using a Lyapunov based feedback control. The transfer is 90% complete
in 10 ps.
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Chapter 5

Optimal feedback control of
a continuously monitored
spin

Our presentation is organized as follows: In section 5.1 we introduce a spin- 1
2

system that is continuously monitored and pose an optimal stabilization prob-
lem (with partial observation) for that system. The solution invokes the sepa-
ration principle, according to which the optimal control design is done in two
steps: First, one constructs an optimal filter that continuously estimates the
state based on incoming measurement results. The second step, involves the
solution of an optimal stabilization problem for the filter dynamics with full
state information. We set up the relevant Bellman equation for this problem
and in section 5.2 we solve the Bellman equation numerically for the special
case of perfect detection efficiency.

5.1 Optimal feedback control of a continuously
monitored spin

Figure 5.1 is a schematic representation of an experimental set-up for continuous
measurement and control of a spin [36, 27]. The spin interacts weakly with
an optical mode (laser) along the z-axis. The cavity is used to control the
strength of that interaction. Then, a continuous measurement is performed
on the laser using a technique known as homodyne detection [80]. This
provides an indirect continuous measurement of the z-component of the spin
angular momentum in such a way that the state of the system does not collapse
to an eigenstate of Sz (a so-called non-demolition measurement [80, 71]).
A magnetic field in the y-direction is applied for control purposes.

The dynamics of the continuously monitored spin system is described by
a quantum stochastic differential equation (QSDE). The proper mathe-
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Figure 5.1: Schematic of an experiment for continuous measurement and control
of a spin. The spin interacts with a probe laser, which is measured continuously
using photodetectors. A magnetic field is used for feedback.

matical framework for QSDEs is the non-commutative analog of the Itö sto-
chastic calculus that was developed by Hudson and Parthasarathy [81], see also
[82, 71, 83]. There is also a corresponding observation process for a field ob-
servable of the laser probe. At this point, we should recall that it is impossible
to measure all components of the state because they are non-commuting ob-
servables. Hence, any measurement can provide only partial information about
the state of the system. The situation is analogous with that of classical par-
tially observed stochastic systems. As in the classical case, one can derive a
quantum filtering equation [26, 82] which is the equivalent of the Kushner-
Stratonovich equation in classical nonlinear filtering theory [84]. The quantum
filtering equation is a classical Itö SDE for the conditional expectation of the
density matrix ρ̂t (conditioned on the measurement record up to time t). The
important property of the filtering equation is that the expectation value of
any system observable at time t is the same whether it is computed from the
corresponding QSDE or from ρ̂t, even with feedback control that depends on
the measurement record [85]. This is a great simplification, since it allows us
to circumvent the dynamical QSDE and use the filtering equation (or Belavkin
equation) for control design [36, 40, 85]. Moreover, an output feedback con-
trol problem has been converted into a state feedback control problem for the
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conditional expectation of the state ρ̂t.
The starting point of our analysis will be the spin filtering equation. It has

the following form [36]:

dρ̂t =
(
iu(t) [Sy, ρ̂t] +M(Sz ρ̂t Sz −

1
2
(S2

z ρ̂t + ρ̂t S
2
z )
)
dt

+
√
ηM

(
Sz ρ̂t + ρ̂tSz − 2tr(Sz ρ̂t) ρ̂t

)
dWt, (5.1)

where the innovations process Wt is a Wiener process that describes the dif-
ference between the measured value of Sz at time t and its expected value. The
measurement strength M is determined by the properties of the cavity and
the probe laser and effectively determines the time-scale of the measurement
process. The parameter η ∈ [0, 1] is the detection efficiency of the photodetec-
tors and u(t) is the amplitude of the magnetic field applied in the y-direction.
By defining τ = Mt, Vτ =

√
MWt (so that (dVτ )2 = M(dWt)2 = Mdt = dτ)

and ũ = 1
M u, we can set M = 1, which we do from now on.

For the case of a spin- 1
2 system, we use the Bloch vector representation of

ρt introduced in Chapter 3,

ρ̂t =
1
2
(I2 + xt σx + yt σy + zt σz) =

1
2

(
1 + zt xt − iyt

xt + iyt 1− zt,

)
in terms of which, the spin filtering equation becomes the following system of
SDEs:

dxt = −(u(t)zt +
1
2
xt) dt−

√
η xtzt dWt, (5.2)

dyt = −1
2
yt dt−

√
η ytzt dWt, (5.3)

dzt = u(t)xt dt+
√
η (1− z2

t ) dWt. (5.4)

It is easy to analyze the long time limit of the dynamics of (5.2) - (5.4) in the
case u(t) = 0. This has been done in [36] and we just cite the conclusion:
The state converges either at the equilibrium point (x, y, z) = (0, 0,+1) with
probability 1

2 (1 + z0) or at (x, y, z) = (0, 0,−1) with probability 1
2 (1 − z0).

As the authors of that work remark, these are exactly the outcomes and the
corresponding probabilities for a measurement of Sz. Hence, they remark, the
continuous measurement of Sz is exactly what its name suggests, a “stretched
out” (in time) measurement of Sz. However, this offers the opportunity to
influence the outcome of this measurement using a feedback control law. For
example, one may want to prepare/stabilize the Sz = +1 eigenstate of the spin,
i.e. (x, y, z) = (0, 0,+1) [Note: The z-direction can be chosen arbitrarily and
hence any pure state of the spin system may be prepared]. In [36], Lyapunov-
based designs are proposed and analyzed for this objective. In the older work
[23], the same objective is considered but in an experimental setup that involves
output feedback but no measurement.

We seek to design optimal feedback strategies for this objective. Certainly,
one may design feedback laws for the filter dynamics based on some objective
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but they will not necessarily be optimal for the system. What is needed is an
appropriate Separation Principle, that is, a statement that under appropriate
conditions the optimal feedback control designed based on the filter dynamics
remains optimal for the system (with the same objective). Then, the optimal
feedback is a separated strategy. Such a result has been proven recently in [85],
thus establishing a Separation Principle for the optimal control of quantum
systems. Hence, from this point on, we will concentrate on optimal designs for
the filter, (5.2) - (5.4). Before we do this, we simplify things using the following
observation in [36]: The variable yt does not enter equations (5.2) and (5.4),
and (5.3) does not contain the control at all. If our objective is to stabilize the
eigenstate with Sz = +1, we may restrict our analysis in the system of (5.2)
and (5.4) and stabilize (x, z) = (0,+1) and then the geometry of state space
will guarantee the stabilization of y = 0. So, we will restrict our attention
to equations (5.2) and (5.4). The associated state space will now be the disk
0 ≤ x2 + z2 ≤ 1. In the next section, it will be beneficial to our analysis to use
polar coordinates (r, θ) for the state space defined by x = r sin θ and z = r cos θ.
It is a simple application of Itö ’s rule to obtain the following SDEs for them:

drt =
1
2

(
η

rt
− rt) sin2 θt dt+

√
η (1− r2t ) cos θt dWt, (5.5)

dθt =
[
− u(t) + (

η

r2t
− η − 1

2
) sin θt cos θt

]
dt

− √
η

sin θt

rt
dWt. (5.6)

We pose now the following optimization problem: Suppose that at time t
the state of the system is (r, θ). Let u(s), s ∈ [t, T ] (T is the time at which the
experiment terminates) be a square integrable function. We define the following
expected cost-to-go

J(t, r, θ, u(s)) .= E(r,θ)

[∫ T

t

(
1
2
u2(s) + U(rs, θs)

)
ds

]
, (5.7)

where the expectation value is taken with respect to every possible sample path
of (5.5) - (5.6) that starts at (r, θ) at time t. The function U is a measure of the
distance of the state from the desired target state (r, θ) = (1, 0) ( (x, z) = (0, 1) ).
For well-posedness we require that U(1, 0) = 0 and U(r, θ) > 0 ∀ (r, θ) 6= (1, 0).
For example, U = 1− z = 1− r cos θ. For now, we keep the form of U general
and we will specify a form in the following section, where we will also discuss
the disadvantages of certain choices. We seek the control law u that minimizes
J . The expected cost-to-go of the optimal law is called the value function:

V (t, r, θ) .= min
u(s)

J(t, r, θ, u(s)). (5.8)

Bellman’s principle of optimality and dynamic programming lead to the follow-
ing Bellman equation for the value function:

min
u

{u2

2
+ U +

∂V

∂t
+ LV

}
= 0. (5.9)
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The stochastic generator L of the SDE system acts on V as follows:

LV =
1
2

(
η

r
− r) sin2 θ

∂V

∂r
+
[
− u+ (

η

r2
− η − 1

2
) sin θ cos θ

] ∂V
∂θ

+
1
2
η (1− r2)2 cos2 θ

∂2V

∂r2
+

1
2
η
sin2 θ

r2
∂2V

∂θ2

− η (
1
r
− r) sin θ cos θ

∂2V

∂r∂θ
. (5.10)

Besides the penalty term u2

2 , the only other term in (5.9) that contains the
control is the second term in the expression for LV . The minimization over u
is immediate with the result

u =
∂V

∂θ
. (5.11)

Substituting (5.10) and (5.11) into (5.9), we end up with the following nonlinear
PDE:

∂V

∂t
+

1
2
η (1− r2)2 cos2 θ

∂2V

∂r2
+

1
2
η

sin2 θ

r2
∂2V

∂θ2

− η (
1
r
− r) sin θ cos θ

∂2V

∂r∂θ

+
1
2

(
η

r
− r) sin2 θ

∂V

∂r
+ (

η

r2
− η − 1

2
) sin θ cos θ

∂V

∂θ

− 1
2
(∂V
∂θ

)2 + U(r, θ) = 0. (5.12)

In addition to the Bellman equation, the principle of optimality provides a
terminal condition for the value function, namely V (T, r, θ) = 0. However, in
order to solve the PDE (5.12), one needs boundary conditions for V at r = 1.
These boundary conditions are not furnished by the principle of optimality and
have to be inferred by other means. This is what makes such optimal control
problems so difficult to solve (besides the computational complexity, of course).
In the following section, we will see that for the case of perfect detector efficiency
(η = 1), we can provide such a boundary condition and hence obtain a solution
to the problem.

5.2 Solution for the case of perfect detection ef-
ficiency

In this section we concentrate on the special case η = 1, i.e. perfect detector
efficiency. Letting the initial value of r equal to 1 (r0 = 1) in (5.5),

drt =
1
2

(
η

rt
− rt) sin2 θt dt+

√
1η (1− r2t ) cos θt dWt,

we see that dr0 = 0 and hence rt = 1, ∀t ≥ 0. Hence, r = 1 is a forward
invariant set of the stochastic dynamics (5.5) - (5.6). Physically, this means
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that if the detection is perfect, a pure state of the system will remain pure for
all time.

Let us rewrite (5.6) on the invariant set r = 1:

dθt = −(u(t) +
1
2

sin θt cos θt) dt− sin θt dWt. (5.13)

This stochastic system is the reduction of the full system (5.5) - (5.6) whose
state space is the disk 0 ≤ r ≤ 1, on the boundary r = 1 which is a forward
invariant set of the full dynamics.

In the previous section, we set up an optimal control problem for the con-
trol system (5.5) - (5.6) whose objective is to stabilize the target Sz-eigenstate
(x, z) = (0, 1). The principle of optimality lead us to the Bellman PDE (5.12)
for the value function along with a terminal condition for it. As noted there, in
order to solve this PDE one also needs a boundary condition for V at r = 1.
This boundary condition, however, is not provided automatically by the prin-
ciple of optimality. In the case of perfect detection efficiency (η = 1), we can
provide such a boundary condition based on the property shown above, that the
boundary of the state space is a forward invariant set of the dynamics. Our rea-
soning is the following: Consider the reduction of the optimal control problem
posed in the last section on the boundary r = 1. That is, minimize

J̃(t, θ, u(s)) .= E(θ)

[∫ T

t

(
1
2
u2(s) + Ũ(θs)

)
ds

]
, (5.14)

over all admissible controls (Ũ(θ) .= U(1, θ)). The principle of optimality for this
problem leads to the following “boundary” Bellman equation for the “boundary”
value function Ṽ (t, θ) .= minu(s) J̃(t, θ, u(s)):

∂Ṽ

∂t
+

1
2

sin2 θ
∂2Ṽ

∂θ2
− 1

2
sin θ cos θ

∂Ṽ

∂θ
− 1

2
(∂Ṽ
∂θ

)2 + Ũ(θ) = 0. (5.15)

The terminal condition is again Ṽ (T, θ) = 0. As before, the (feedback) control
is given in terms of the value function by

u =
∂Ṽ

∂θ
.

Note that one can also obtain this equation from (5.12) by dropping the terms
with r-derivatives and setting r = 1. Since any state of the full system (5.5) -
(5.6) that starts on the boundary remains on the boundary forever, the value
function V for the optimal control problem (5.7) at the boundary must be equal
to the value function Ṽ for the problem (5.14):

V (t, r = 1, θ) = Ṽ (t, θ),

∀t ≤ T and θ ∈ S1. The solution of (5.15) itself, however, requires no boundary
conditions, only periodicity of the solution with respect to θ (so that Ṽ is well
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defined). Hence, one can solve the Bellman PDE (5.15) first, and use its solution,
Ṽ (t, θ) as a time-dependent boundary condition for the PDE (5.12).

In the following, we present the solution of an optimal feedback problem of
the form (5.7). We make the following remarks:

1. We are interested in the infinite-horizon problem, i.e. the T →∞ limit
of the optimal control problem (5.7). In this limit, the value function
(and hence the optimal control) are time-independent. To obtain the
solution, we solved (5.15) backwards in time with the terminal condition
Ṽ (T, θ) = 0 until convergence to a steady state was achieved. Then, we
used this solution on the boundary as time-dependent boundary condition
for (5.12), which was also solved backwards in time (with the terminal
condition V (T, r, θ) = 0) until convergence to a steady state.

2. For the numerical solution of the Bellman equations (5.15) and (5.12) the
spatial discretization was done as follows: We used a spectral scheme in
the θ variable in terms of a Fourier basis {1, e±iθ, e±iNθ, . . .} truncated
to N = 80 and a first order finite difference scheme in the r variable using
50 points. The time stepping was implemented with Matlab’s ODE45
routine.

3. The system (5.2) - (5.4) is invariant under the simultaneous interchange
(x, u) ↔ (−x,−u). If the state-penalty (“potential”) term U is symmetric
under the interchange of the left and right side of the disk (i.e. x↔ −x, or
similarly θ ↔ −θ), then the value function will have the same symmetry.
It will also have corners along θ = π, signaling the non-uniqueness of the
optimal control at θ = π (recall, u = ∂V

∂θ ). This is a known phenomenon
in the solutions of Bellman equations in the presence of symmetry. We
observed this in numerical solutions of (5.12). Since sufficient regularity
of the value function is a prerequisite for the separation principle to hold
[85], to avoid regularity problems in the value function we used a non-
symmetric form for U . In particular, we used

U = (1− z)(α+ x) = (1− r cos θ)(α+ r sin θ),

with α = 1.1. U(x, z) > 0 ∀(x, z) 6= (0, 1) and U(x = 0, z = 1) = 0, as it
should, for the optimization problem to be well-posed.

Figures 5.2 and 5.3 represent the value function and the optimal feedback
for the infinite-horizon problem on the boundary of the state space. Figures
5.4 and 5.5 represent the value function and the optimal feedback on the whole
disk. The asymmetry between the left and right side of the disk is obvious in
all figures. To elucidate the action of the control on the system, we portray, in
figure 5.6, the vector field (−u(x, z) z, u(x, z)x). This vector field is the part of
the dynamics of (5.2) - (5.4) that depends on the control. The fact that there
are lines on which this field vanishes should not be alarming: The action of the
rest of the dynamics, the deterministic dissipative part and the stochastic part,
“throws” the system off these points. Finally, figure 5.7 demonstrates some
typical trajectories of the closed-loop system.
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5.3 Summary

We considered the problem of stabilization of a desired spin eigenstate of a
continuously monitored spin- 1

2 system. We posed an optimal regulation problem
for the associated filter, whose solution is also the optimal feedback for the
system, according to the Separation Principle. We obtained such a solution in
the case of perfect photodetection efficiency.
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Figure 5.2: Steady-state value function Ṽ on the boundary
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Figure 5.3: Optimal feedback on the boundary
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Figure 5.4: Steady-state value function V on the disk

Figure 5.5: Optimal feedback on the disk
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Chapter 6

Conclusions and future
directions

In this thesis we presented a general methodology for simplifying the solution of
energy-optimal population transfers in (isolated or open) quantum systems. The
main point of our approach is that, in the large transfer time limit (much larger
than the inverse of the smallest Bohr frequency of the system), the solution
has a time-scale separated form. We showed how to construct corresponding
“averaged” systems and optimal transfer problems that capture the long time-
scale dynamics and in which the contribution of the short time-scale natural
dynamics is averaged out. These reduced problems offer great conceptual and
computational simplifications to the solution of the original ones. We believe
that our methodology is the most useful systematic approach to these problems
and can be used to generate very good first approximations to their solutions.
We were able to fully prove these assertions for exact population transfer prob-
lems in isolated quantum systems but only provided evidence for minimizing-
the-distance-from-the-desired-state types of problems. We would like to supply
a complete correspondence between original and averaged transfer problems in
that case too (the analog of Theorems 2 and 3 of Chapter 2). We would also
like to investigate the robustness properties of the open-loop controls generated
through our technique to parameter uncertainty and laser noise.

We also presented the solution to an optimal feedback stabilization problem
for an eigenstate of a continuously monitored spin- 1

2 system in the case of per-
fect detection. We would like to extend this solution to the case of imperfect
detection. We would also like to study optimal stabilization problems for higher
dimensional spin systems through the use of effective low-dimensional models.
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