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4.4	 Green's Functions 

26.	 Find the eigenvalues and eigenfunctions of the integral operator 

Ku(x) = fll (1 -Ix - yl)u(y) dy. 

27.	 (This exercise requires perturbation methods from Chapter 2.) Consider 
the differential-integral equation 

2cu' = u - u - u it u(s)ds,u(O) = a < 1, 

where c is a small, positive parameter, which models a populationu = u(t) 
undergoing logistics growth and the cumulative effect of a toxin on the 
population. Find a uniformly valid approximation for t > O. 

28.	 Consider the differential-integral operator 

Ku = -u" + 47r211 u(s) ds, u(O) = u(l) = O. 

Prove that eigenvalues of K, provided they exist, are positive. Find the 
eigenfunctions corresponding to the eigenvalue ,\ = 47r2. 

29.	 Use (4.40) to numerically solve the integral equation 

11 

(1- 3xy)u(y)dy - u(x) = x3
. 

4.4 Green's Functions 

What is a Green's function? Mathematically, it is the kernel of an integral 
operator that represents the inverse of a differential operator; physically, it is 
the response of a system when a unit point source is applied to the system. 
In this section we show how these two apparently different interpretations are 
actually the same. 

4.4.1 Inverses of Differential Operators 

To fix the notion we consider a regular Sturm-Liouville problem (SLP), which 
we write in the form 

Au == -(pu')' + qu =!, a< x < b, (4.41)
 

Blu(a) == alu(a) +a2u'(a) = 0, (4.42)
 

B2u(b) == f3lu(b) + f32u'(b) = 0, (4.43)
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where p, p', q, ann j are continuous on [a, bJ, and p > o. So that the boundary 
conditions do not disappear, we assume that not both Del and DC2 are zero, and 
similarly for 131 and 132' For conciseness we represent this problem in opera­
tor notation 

Lu=j, (4.44) 

where we consider the differential operator L as acting functions in C2 [a, b] that 
satisfy the boundary conditions (4.42)-(4.43). Thus, L contains the boundary 
conditions in its definition, as well as the Sturm-Liouville operator A. 

Recall the procedure in matrix theory when we have a matrix equation 
Lu = f, where u and f are vectors and L is a square, invertible matrix. We 
immediately have the solution u = L-If, where L-I is the inverse matrix. The 
inverse matrix exists if >. = 0 is not an eigenvalue of L, or when det L =I O. We 
want to perform a similar calculation with the differential equation (4.44) and 
write the solution 

u = L-Ij, 

where L -I is the inverse operator of L. Since L is a differential operator, we 
expect that the inverse operator to be an integral operator of the form 

(4.45) 

with kernel g. Again drawing inferences from matrix theory, we expect the 
inverse to exist when>. =-0 0 is not an eigenvalue of L, that is, when there are 
no nontrivial solutions to the differential equation equation Lu = O. If there 
are nontrivial solutions to Lu = 0, then L is not a one-to-one transformation 
(u = 0 is always a solution) and so L-I does not exist. 

If the inverse L -I of the differential operator L exists, then the kernel 
function g(x,~) in (4.45) is called the Green's function associated with L 
(recall that L contains in its definition the boundary conditions). This is the 
mathematical characterization of a Green's function. Physically, as we observe 
subsequently, the Green's function g(x,~) is the solution to (,1.44) when j 
is a unit point source acting at the point ~; thus, it is the response of the 
system at x to a unit, point source at ~. Our approach here will be to present 
the mathematical result first and then have the methodology unfold with a 
heuristic physical discussion. The following theorem summarizes our preceding 
comments and gives a precise representation of the Green's function. 

Theorem 4.19 

Consider the SLP (4.41)-(4.43), and assume that>. = 0 is not an eigenvalue of 

L. Then L-1 e: 

Here,u,1 and t 
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4.4 Green's Functions 

L. Then L- 1 exists and is given by (4.45) with 

_ U>(X)U2CO x<€ 
g(x, €) = pCOW(O ' (4.46) 

{ Uj (€)U2(X) x>€- p(OW(O ' 

Here, Ut and U2 are independent solutions of the homogeneous differential 
equation Au = -(pu')' + qu = 0 with B1ut(a) = 0 and B2U2(b) = 0, and 
W = Ul u~ - u~ U2 is the Wronskian of Ut and U2. 

Before giving the proof, we make some remarks and give an example. 
Clearly, knowing the Green's function 9 allows us to immediately write down 
the unique solution to the inhomogeneous problem (4.41)-(4.43) as 

l b 

u(x) = g(x, € )!( €) d€. (4.47) 

Also, the Green's function can be expressed as a single equation in terms of 
the Heaviside step function H(x) (where H(x) = 0 if x < 0, and H(x) = 1 if 
x ~ 0). Then 

Let us write down some of the basic properties of the Green's function. First 
it is clear that: (a) g(x,~) satisfies the differential equation Ag(x, €) = 0 for 
x f €; (b) g(x,€) satisfies the boundary conditions (4.42) and (4.43); (c) 9 is 
continuous on [a, b] and, in particular, it is continuous at x = €; (d) however, 
9 is not differentiable at x = €. It is easy to verify that there is a jump in the 
derivative at x = € given by g'(€+, €) - g'(€-, €) = - plo' Here, prime denotes 
differentiation with respect to x. Thus 9 is a continuous curve with a corner at 

x =~. 

Example 4.20 

Consider the boundary value problem 

-u" = !(x), 0 < x < 1; u(O) = u(l) = O. (4.49) 

Here Au = -u", and solutions to the homogeneous equation Au = 0 are linear 
functions u(x) = ax +b, where a and b are constants. Thus, we take Ul (x) = ax 
and U2(X) = b(l - x), so that Ul satisfies the left boundary condition and 
U2 satisfies the right boundary condition. Also, p = 1 and the Wronskian is 
W = -abo Therefore, the Green's function is given, according to (4.48), by 

g(x, €) = €(1 - x)H(x -~) + x(l - ~)H(€ - x). 
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y 

o x 

Figure 4.1 Green's function. 

Consequently, the solution to (4.49) is given by 

1 

u(x) = 1g(x, ~)f(~) d~ 

The reader should verify that this is indeed the solution to (4.49). The Green's 
function is shown in Fig. 4.1. 

Finally, the proof of the theorem is a straightforward calculation. First 
we write 

4.4 Green's F 

. time), and 
bar, measur, 
when the he 
locations in 
section at X, 

heat general 

or, rearrang 

These equal 
the limit as 

To prove the theorem, we must show that Av = f and that the boundary To obtain a 
conditions hold. The calculation of the derivatives of v can be accomplished law, which 
by a direct application of the Leibniz rule, and we leave the details of this gradient, or 
calculation to the reader. 

where K is 

4.4.2 Physical Interpretation 

which is thNext we investigate the physical interpretation of the Green's function (George 
ends of a bGreen, 1793-1841). Our discussion is heuristic and intuitive, but it is made 
steady ternprecise in the next section. To fix the context we consider a steady-state heat 
the boundaflow problem. Consider a cylindrical bar of length L and cross-sectional area 

A, and letu = u(x) denote the temperature at cross section x. Further, let 
q = q(x) denote the energy flux across the face at x, measured in energy/(area 
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f(x) 

+
 
q(x) --t_J~_(:......-'r q(x+d<) 

x x+dx 

Figure 4.2 Small region . 

. time), and let f(x) be a given, distributed heat source over the length of the 
bar, measured in energyj(volume . time). By convention, the flux q is positive 
when the heat flow is to the right. Then, if x and x + dx denote two arbitrary 
locations in the bar, in a steady-state mode the heat energy entering the cross 
section at x, minus the heat energy exiting the cross section at x +dx, plus the 
heat generated by the source is zero. See Fig. 4.2. That is, 

Aq(x) - Aq(x + dx) + f(x)Adx = 0, 

or, rearranging, 
q(x + dx) - q(x) = f(x). 

dx 
These equations are merely a statement of conservation of energy. Now, taking 
the limit as dx -+ 0, we obtain 

q'(x) = f(x). 

To obtain and equation for temperature, we assume Fourier's heat conduction 
law, which states that the flux is proportional to the negative temperature 
gradient, or 

q(x) = -Ku'(x), 

where K is the thermal conductivity of the bar, a physical constant. Then 

-Ku"(x) = f(x), 

which is the steady-state heat equation. For simplicity, we assume that the 
ends of a bar of unit length are held at zero degrees, and K = 1. Then the 
steady temperature distribution u = u(x) along the length of the bar satisfies 
the boundary value problem 

-u" = f(x), 0 < x < 1: u(o) = u(l) = 0, 
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which is the same as (4.49). Now imagine that f is an idealized heat source of 
unit strength that acts only at a single point x = ~ in (0,1), and we denote 
this source by f == b(x, ~). Thus, it is assumed to have the properties 

and 

11 

b(x,Odx = 1. 

A little reflection indicates that there is no ordinary function 15 with these 
two properties; a function that is zero everywhere but one point must have 
zero integral. Nevertheless, this 15 symbol has been used since the inception of 
quantum mechanics in the late 1920s (it was introduced by the mathematician­
physicist P. Dirac); in spite of not having a rigorous definition of the symbol 
until the early 1950s, when the mathematician L. Schwartz gave a precise char­
acterization of point sources, both physicists and engineers used the "15 func­
tion" with great success. In the next section we give a careful definition of the 
delta function, but for the present we continue with an intuitive discussion. 

The differential equation for steady heat flow becomes, symbolically, 

-ul/ = b(x, ~). (4.50) 

Thus, for x i- ~ we have -ul/ = 0, which has solutions of the form u = Ax + B. 
To satisfy the boundary conditions we take 

u = Ax, x <~; u = B(1 - x), x > ~. 

The reader should be reminded of the calculation we made in the last ex­
ample. To determine the two constants A and B we use the fact that the 
temperature should be continuous at x = ~, giving the relation A~ = B(1 - ~). 

To obtain another condition on A and B we integrate the symbolic differential 
equation (4.50) over an interval [~ - E, ~ + E] containing ~ to get 

€+£ 1€+£ 
- ul/(x)dx = b(x,Odx. 

1€-£ €-£ 

The right side is unity because of the unit heat source assumption; the funda­
mental theorem of calculus is then applied to the left side to obtain 

-u'(~ + E) + u'(~ - E) = 1. 

Taking the limit as E ~ °and multiplying by -1 yields 

4.4 Green's Functions 
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4.4 Green's Functions 

Observe that this condition is precisely the jump condition on the derivative at 
the point x = ~ required of a Green's function. This last condition forces -B­
A = -1. Therefore, solving the two equations for A and B simultaneously gives 

Therefore the steady-state temperature in the bar, caused by a point source at 

x = ~ is 
u = (1 - ~)x, x < ~; u = ~(1 - x), x > ~ 

or 
u(x,~) = ~(1 - x)H(x - 0 + x(l - OH(~ - x). 

This is precisely the Green's function for the operator L = -d2 /dx 2 with 
boundary conditions u(O) = u(l) = 0 that we calculated in the last example. 
Consequently, this gives a physical interpretation for the Green's function; it 
is the response of a system (in this case the steady temperature response) to a 
point source (in this case a unit heat source). See Fig. 4.1. 

This idea is fundamental in applied mathematics. The Green's function 
g(x,~) is the solution to the symbolic boundary value problem 

Ag(x,~) == (-pg')' + qg = 5(x, ~), (4.51) 

Blg(a,~) = 0, B2g(b,~) = 0, (4.52) 

where 5 represents a point source at x = ~ of unit strength. Furthermore, 
the solution (4.47) to the boundary value problem Lu = f can therefore be 
regarded as a superposition of point sources of magnitude f (~) over the entire 
interval a < ~ < b, 

Example 4.21 

Consider the differential operator A = -d2/dx 2 on 0 < x < 1 with the bound­
ary conditions 1/'(0) = u'(l) = O. In this case the Green's function does not 
exist since the equation Lu = 0 has nontrivial solutions (any constant func­
tion will satisfy the differential equation and the boundary conditions); stated 
differently, A = 0 is an eigenvalue. Physically we can also see why the Green's 
function does not exist. This problem can be interpreted in the context of 
steady-state heat flow. The zero-flux boundary conditions imply that both ends 
of the bar are insulated, and so heat cannot escape from the bar. Thus it is im­
possible to impose a point source, which would inject heat energy at a constant, 
unit rate, and have the system respond with a time-independent temperature 
distribution; energy would build up in the bar, precluding a steady state. 
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To pro 

In this heuristic discussion we noted that 15 is not an ordinary function. 
Furthermore, the Green's function is not differentiable at x = ~, so it remains 
to determine the meaning of applying a differential operator to g as in for­
mulas (4.51 )-(4.52). Our goal in the next section is to put these notions on 
firm ground. 

Example 4.22 

(Causal Green's function) The causal Green's function is the Green's func­
tion for an initial value problem. Consider the problem 

Au == -(pu')' + qu = f(t), t > 0; u(O) = u'(O) = 0 (4.53) 

We assume p, p', and q are continuous for t 2: 0 and p > O. The causal Green's 
function, also called the impulse response function, is the solution to (4.53) 
when f is a unit impulse applied at time 7, or, in terms of the delta function 
notation, when f = l5(t,7). Thus, symbolically, Ag(t,7) = l5(t, 7), where g 
denotes the causal Green's function. We shall give a physical argument to 
determine g. Since the initial data is zero the response of the system is zero up 
until time 7; therefore, g(t, 7) = 0 for t < 7. For t > 7 we require Ag(t,7) = 0, 
and we demand that g be continuous at t = 7, or 

At t = 7, the time when the impulse is given, we demand that g have a jump 
in its derivative of magnitude 

g'(7+,7) = -1/p(7). 

This jump condition is derived in the same way that the jump condition is 
obtained in earlier. The continuity condition and the jump condition, along 
with the fact that g satisfies the homogeneous differential equation, are enough 
to determine g( X,'7) for t > 7. 

Now we return to the SLP problem (4.41)-(4.43) and ask what can be said 
if >. = 0 is an eigenvalue, that is, if the homogeneous problem has a nontrivial 
solution. In this case there may not be a solution, and if there is a solution, it 
is not unique. The following theorem summarizes the result. 

Theorem 4.23 

Consider the Sturm-Liouville problem (4.41 )-(4.43), and assume there exists 
a nontrivial solution ¢ of the homogeneous problem L¢ = O. Then (4.41)­

(4.43) has 
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4.4 Green's Functions 

(4.43) has a solution if, and only if, 

b 

(¢J,j) == l ¢Jf dx = O. 

To prove necessity we assume a solution u exists. Then 

b b 

(¢J,1)=(¢J,Au)=- ja ¢J(pu')'dx+ 1¢Jqudx. 

The first integral may be integrated by parts twice to remove the derivatives 
from u and put them on ¢J. Performing this calculation gives, after collect­
ing terms, 

b 

(¢J,1) = [P(u¢J' - ¢Ju') l~ + l u( - (P¢J')' + qrj;) dx 

b 

= [p(u4>' - ¢Ju')J~ + l uA¢Jdx 

= [P(u4>' - ¢Ju')]~, 

because A¢J = O. Both ¢J and u satisfy the boundary conditions (4.42)-(4.43), 
and one can easily show that [P(u4>' - ¢Ju')]~ = O. 

The proof of the "if' part of the theorem is less straightforward. We indicate 
the solution and leave the verification for the reader. Assume that (¢J, 1) = 0 

and let v be independent of 4> and satisfy only the differential equation Av = 0, 

and not the boundary conditions. Now define 

1 
G(x,~) == - p(~)W(O (¢J(x)v(OH(~ - x) + ¢J(~)v(x)H(x - ~)) 

where H is the Heaviside function and W = ¢Jv' - v4>'. Then 

u(x) = c¢J(x) + lb 

G(x, Of(~) d~ 

is a solution to Lu = f for any constant c. (Note here that G is not the Green's 
function; as we have noted, the Green's function does not exist.) 

4.4.3 Green's Function via Eigenfunctions 

Suppose Green's function exists for the SLP (4.41)-(4.43). If we can solve the 
eigenvalue problem associated with the operator L, then we can find the Green's 
function. We know from Section 4.2 that the SLP problem 

Lu = Au, a < x < b, (4.54) 
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where L includes the boundary conditions (4.42)-(4.43), has infinitely many 
eigenvalues and corresponding orthonormal eigenfunctions An and rPn (x), n = 

1,2, ... , respectively. Moreover, the eigenfunctions form a basis for the square­
integrable functions on (a, b). Therefore we assume that the solution u of (4.41)­
(4.43) is given in terms of the eigenfunctions as 

00 

u(x) =	 'L cnrPn(x), (4.55) 
n=l 

where the coefficients Cn are to be determined. Further, we write the given 
function f in terms of the eigenfunctions as 

l b 
f(x) = f fnrPn(x), fn = f(()rPn(() d(. 

n=l 

Substituting these expansions into (4.54) gives 

But 

n=l 
00 

Equating coefficients of the independent eigenfunctions gives 

Thus, from (4.55), 
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mu" + ku = j(t), t> 0; u(O) = u'(O) = 0, 

where u =u(t) is the displacement from equilibriulll, j is an applied force, 
and m and k are the mass and spring constants, respectively. 

-(K(x)u')' = j(x), 0 < x < 1; u(O) = u(l) = 0; K(x) > O. 

Find Green's function or explain why there isn't one. 

u" +u' ­ 2u = j(x), 0 < x < 1; u(O) = u'(I) = O. 

2. Determine if there is a Green's function associated with the operator Lu = 
u" + 4u, 0 < x < rr, with u(O) = u.(rr) = O. Find the solution to the 
boundary value problem 

Find Green's function or explain why there isn't one. 

u" ­ 2xu' = j(x), 0 < x < l;u(O) = u'(l) = o. 

u" + rr 2u = j(x), 0 < x < 1; u(O) = u(l) = O. 

u" + 4u = j(x), 0 < x < rr; u(O) = u(rr) = O. 

4. Consider the boundary value problem 

1. Discuss the solvability of the boundary value problem 

3. Consider the boundary value problem 

5. Use the method of Green's function to solve the problem 

(Note: This differential equation is a steady-state heat equation in a bar 
with variable thermal conductivity K(x).) 

6. Consider a spring-mass system governed by the initial value problem 

Consequently, we have inverted the operator L and so we must have 

4.4 Green's Functions 

which gives the Green's function in terms of the eigenvalues and eigenfunctions 
of the operator L. This expansion for 9 is called the bilinear expansion. 

ctions 
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a)	 Show that the causal Green's function is 

g(t, r) = ~ sin ['k(t - r), t > r. 
ykm V-:;;; 

b)	 Find the solution to the initial value problem and write it in the form 

it [f;"u(t) = r.-=1 sin -(t - r)/(r) dr. 
ykm 0 m 

7.	 By finding Green's function in two different ways, evaluate the sum 

00 • 

~ sm nxsin n~ 
L n 2 0 < x, ~ < 71'. 

n=! 

8.	 Find the inverse of the differential operator Lu = -(x2u')' on 1 < x < e 

subject to u(l) = u(e) = O. 

4.5 Distributions 

In the last section we showed, in an intuitive manner, that the Green's function 
satisfies a differential equation with a unit point source. Because the Green's 

function is not a smooth function, it leads us to the question of what it means 
to differentiate such a function. Also, we have not pinned down the properties 
of a point source (a delta function) in a precise way. If a point source is not 
a function, then what is it? The goal of this section is to come to answers to 
these questions. New notation, terminology, and concepts are required. 

4.5.1 Test Functions 

Let K be a set of real numbers. A real number c is said to be a limit point 
of set K if every open interval containing c, no matter how small, contains at 
least one point of K. If K is a set, then the closure of K, denoted by K, is the 

set K along with all its limit points. A set is called closed if it contains all of 

its limit points. For example, the closure of the half-open interval (a, b] is the 
closed interval [a, b]. A useful set in characterizing properties of a function r/J 
is the set of points where it takes on nonzero values. The closure of this set is 
called the support of the function; precisely, we define supp r/J == {xlr/J(x) i- O}. 
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