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Abstract— Today’s multiagent systems have grown too
complex to rely on centralized controllers, prompting in-
creasing interest in the design of distributed algorithms.
In this respect, game theory has emerged as a valuable
tool to complement more traditional techniques. The fun-
damental idea behind this approach is the assignment of
agents’ local cost functions, such that their selfish min-
imization attains, or is provably close to, the global objec-
tive. Any algorithm capable of computing an equilibrium of
the corresponding game will inherit an approximation ratio
that is, in the worst case, equal to the price-of-anarchy of the
considered class of equilibria. Therefore, a successful applica-
tion of the game design approach hinges on the possibility to
quantify and optimize the equilibrium performance.

Toward this end, we introduce the notion of generalized
smoothness, and show that the resulting efficiency bounds
are significantly tighter compared to those obtained using
the traditional smoothness approach. Leveraging this newly-
introduced notion, we quantify the equilibrium performance
for the class of local resource allocation games. Finally, we
show how the agents’ local decision rules can be designed in
order to optimize the efficiency of the corresponding equilibria,
by means of a tractable linear program.

I. INTRODUCTION

Interest in the field of multiagent systems’ control has
experienced rapid growth in recent years, as a variety of
application domains have emerged [1], [2]. The impact of
recent advancements in multiagent control has been far-
reaching, revolutionizing traditional industries such as trans-
portation and power networks [3], [4], [5], while also driving
the development of novel technologies including robotic
swarms and self-driving cars [6], [7].

Modern multiagent systems must adhere to imposing
constraints with regards to their spatial distribution, overall
scale, privacy requirements and communication bandwidth.
As a consequence, the coordination of such systems does
not allow for centralized decision making, but instead re-
quires the use of distributed protocols. Ideally, a distributed
algorithm will meet the system’s requirements for scalability,
communication bandwidth, and security, while achieving the
desired global objective.

A well-established and fruitful approach to tackle this class
of problems consists in the design of a centralized max-

This work is supported by ONR grant #N00014-17-1-2060, NSF grant
#ECCS-1638214, and SNSF grant #P2EZP2 181618

R. Chandan and J.R. Marden are with the Department of Electrical
and Computer Engineering and the Center of Control, Dynamical Systems
and Computation, UC Santa Barbara, USA. Email: rchandan@ucsb.edu,
jrmarden@ece.ucsb.edu.

D. Paccagnan is with the Department of Mechanical Engineering and the
Center of Control, Dynamical Systems and Computation, UC Santa Barbara,
USA. Email: dariop@ucsb.edu.

imization algorithm, that is later distributed by leveraging
the structure of the problem considered, e.g., [8], [9]. An
alternative approach, termed game design, has emerged in
parallel as a valuable tool to complement the aforementioned
design philosophy [10]. Instead of directly specifying the
decision-making process, local cost functions are assigned
to the system’s agents such that their selfish minimization
results in the achievement of the system-level objective.

The advantages of using this approach are two-fold: i) we
inherit a pool of algorithms that are distributed by nature,
asynchronous, and resilient to external disturbances [11];
and, ii) we obtain access to readily-available performance
certificates in the form of efficiency bounds. In fact, any
(distributed) algorithm capable of driving the system to an
equilibrium configuration (e.g. pure Nash equilibrium, mixed
Nash equilibrium, correlated equilibrium, etc.) will inherit an
approximation ratio matching the corresponding worst-case
equilibrium efficiency, called the price-of-anarchy. Motivated
by the game-theoretic approach, we aim to develop novel
techniques to quantify and minimize the price-of-anarchy in
distributed systems.

A. Related Works

This work is inspired by [12] and [13] where, the authors
quantify the price of anarchy of covering problems using an
approach reminiscent of - but different from - that used in
the smoothness framework.

While smoothness arguments [14], [15] have proven useful
when characterizing the performance of broad classes of
equilibria [16], they have also been applied to a variety
of problems, including learning [17], and mechanism de-
sign [18]. Unfortunately, as observed in [19] and proven
later in this manuscript, traditional smoothness arguments
find limited applicability in connection to design problems.
Generalized smoothness is tailored to resolve this weakness,
while retaining all the strengths of the traditional smoothness
approach. Leveraging this novel notion, we extend the linear
programming approach of [19], [20] and show how to com-
pute and optimize the price-of-anarchy of coarse-correlated
equilibria, relative to any local resource allocation game.

B. Our Contributions

In this work, we introduce a broader notion of smoothness,
referred to as generalized smoothness, allowing us to provide
tighter bounds on the performance of coarse-correlated equi-
libria. To demonstrate the strength of this novel approach, we
apply our result to a general design problem, and show that
the bounds are tight. Our main contributions are listed below.
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1) We demonstrate that price-of-anarchy bounds obtained
via smoothness arguments are not tight if the sum of
players’ local cost functions is not equal to the system
cost (Theorem 1).

2) We introduce the notion of generalized smoothness,
and show that, in general, it provides tighter bounds on
the price-of-anarchy compared to current smoothness
approaches (Theorems 2 and 3).

3) For the class of local resource allocation problems,
we show that generalized smoothness provides tight
bounds on the price-of-anarchy (Theorem 4). As a
consequence, we show how the price-of-anarchy can be
characterized (Theorem 5) and optimized (Theorem 6)
using tractable linear programs.

Although we consider only cost-minimization games, the
results can be applied to welfare-maximization games with
minor modification of the generalized smoothness criterion.

II. PROBLEM STATEMENT

Consider a class of resource allocation problems where
N = {1, . . . , n} denotes the set of agents, and each agent i
must select an action ai from its action set Ai. The system
cost induced by allocation a = (a1, . . . , an) ∈ A = A1 ×
· · · × An is C(a), where C : A → R. Our objective is to
find an optimal allocation, i.e.,

aopt ∈ arg min
a∈A

C(a). (1)

Motivated by the discussion of Section I, we turn our
attention to deriving a distributed solution to (1). Unfor-
tunately, this class of combinatorial problems is inherently
intractable (more precisely, NP-hard). Thus, in the remainder
of the paper, we aim to obtain an approximate solution to
(1) through a distributed and tractable algorithm, ideally
with the best possible approximation ratio1. We tackle the
problem using the game-theoric approach discussed in the
introduction, and hence present the following game. Consider
the game where the agent set is N , each agent’s action set is
Ai, and in which each agent i evaluates its actions using a
local cost function Ji : A → R. In the forthcoming analysis,
we will focus on the solution concept of Nash equilibrium,
defined as any allocation ane ∈ A such that,

Ji(a
ne) ≤ Ji(ai, ane

−i) ∀ai ∈ Ai,∀i ∈ N, (2)

where a−i = (a1, . . . , ai−1, ai+1, . . . , an). We represent the
game as defined above with the tuple G = (N,A, {Ji}, C),
where {Ji} = {J1, . . . , Jn}. We measure the performance
of a given algorithm using the notion of price-of-anarchy,

PoA(G) :=
maxa∈NE(G) C(a)

mina∈A C(a)
, (3)

where NE(G) is the set of all pure Nash equilibria of
the game G. Informally, the price-of-anarchy describes the

1For ease of presentation, most of our analysis will focus on Nash
equilibria, which are intractable to find in general. Nevertheless, we will
show in Lemma 1 that our results generalize to the much broader set of
coarse-correlated equilibria, which can be found in polynomial time [21].

ratio between the worst performing equilibrium and the
optimal allocation. A lower price-of-anarchy is indicative
of higher overall equilibrium performance. As such, the
price-of-anarchy is an upper-bound on the efficiency of any
equilibrium in the game. In cases where we have a family
of games G, the price-of-anarchy is further defined as,

PoA(G) := sup
G∈G

PoA(G). (4)

Our work centers around the following two questions:
1) Given a class of cost-minimization games, how do we

quantify the price-of-anarchy?
2) How can agents’ local cost functions be designed in

order to minimize the price-of-anarchy?

III. THE SMOOTHNESS FRAMEWORK

The smoothness framework developed in [14] has proven
to be versatile, bringing a number of different price-of-
anarchy results under a common analytical language, and
producing tight bounds on the price-of-anarchy for different
classes of problems [22], [23]. In this section, we revisit
the notion of smooth games, and recall how smoothness
arguments can be employed to bound the corresponding
price-of-anarchy. The following proposition, adapted from
[14], makes this statement precise.

Proposition 1 (Smoothness [14]). Let G denote a class
of cost-minimization games where

∑n
i=1 Ji(a) ≥ C(a).

Further, suppose there exist λ > 0 and µ < 1 such that for
every game G ∈ G, and any two action profiles a, a∗ ∈ A,
it holds,

n∑
i=1

Ji(a
∗
i , a−i) ≤ λC(a∗) + µC(a). (5)

Then the price-of-anarchy satisfies,

PoA(G) ≤ λ

1− µ
.

The above proposition demonstrates that an upper-bound
on the price-of-anarchy can be computed by determining
parameters λ > 0, µ < 1 that satisfy (5). Accordingly, the
best price-of-anarchy bound that can be derived using the
smoothness framework, termed the robust price-of-anarchy
[14], is given by,

RPoA(G) := inf
λ>0,µ<1

{
λ

1− µ
s.t. (5) holds ∀G ∈ G

}
.

(6)
Note that, in general, PoA(G) ≤ RPoA(G). Fortunately,
PoA(G) = RPoA(G) for the well-studied class of congestion
games, in which

∑n
i=1 Ji(a) = C(a) for all a ∈ A, see [14].

However, smoothness arguments are not applicable to
games where

∑n
i=1 Ji(a) < C(a) for at least one a ∈ A.

Additionally, the robust price-of-anarchy does not provide a
tight upper-bound when

∑n
i=1 Ji(a) > C(a) for all a ∈ A,

as we demonstrate in the following theorem.



Theorem 1. For the given game G, assume
∑n
i=1 Ji(a) >

C(a) holds for all a ∈ A. Then,

RPoA(G) > PoA(G). (7)

Proof. By assumption, there must exist γ > 1 such that∑n
i=1 Ji(a) ≥ γC(a) for all a ∈ A. Observe that, for λ > 0

and µ < 1 as in (5),

γC(ane) ≤
n∑
i=1

Ji(a
ne) ≤

n∑
i=1

Ji(a
opt, ane

−i)

≤ λC(aopt) + µC(ane),

where the above inequalities hold by assumption, by (2), and
by (5), respectively. As the equilibrium conditions in (2) are
scale-invariant, it must be that

PoA(G) ≤ λ∗

γ − µ∗
<

λ∗

1− µ∗
= RPoA(G),

where λ∗ > 0, µ∗ < 1 optimize (6).

IV. GENERALIZED SMOOTHNESS

In the previous section, we showed that traditional smooth-
ness arguments are unsuitable for bounding equilibrium
performance when the sum of agents’ local costs is not equal
to the system cost. In the following, we introduce a new
notion of smoothness that provides tight bounds for a broader
class of games.

Theorem 2 (Generalized Smoothness). Suppose there exist
λ > 0 and µ < 1 such that for every game G ∈ G, and any
two action profiles a, a∗ ∈ A,

n∑
i=1

Ji(a
∗
i , a−i)−

n∑
i=1

Ji(a)+C(a) ≤ λC(a∗)+µC(a). (8)

Then, the price-of-anarchy satisfies,

PoA(G) ≤ λ

1− µ
.

Proof. For all G ∈ G, for all ane ∈ NE(G) and aopt ∈ A,

C(a) ≤
n∑
i=1

Ji(a
opt
i , a

ne
−i)−

n∑
i=1

Ji(a
ne) + C(a)

≤ λC(aopt) + µC(ane),

(9)

where the first inequality holds by (2), and the second, by
(8). Rearranging (9), one gets the desired result.

We use the name generalized smoothness as this novel
notion of smoothness reduces to traditional smoothness when∑n
i=1 Ji(a) = C(a). Observe that generalized smoothness

does not even require
∑n
i=1 Ji(a) ≥ C(a), and thus applies

to a much broader class of games. In parallel to the previous
section, we define the generalized price-of-anarchy as the
best price-of-anarchy bound that can be derived using the
generalized smoothness framework,

GPoA(G) := inf
λ>0,µ<1

{
λ

1− µ
s.t. (8) holds ∀G ∈ G

}
.

(10)

In the following theorem, we demonstrate that the pro-
posed generalized smoothness framework provides upper
bounds on the price-of-anarchy that are at least as tight as
those provided by traditional smoothness.

Theorem 3. For all games G ∈ G s.t.
∑n
i=1 Ji(a) ≥ C(a),

PoA(G) ≤ GPoA(G) ≤ RPoA(G).

Additionally, if for all a ∈ A,
∑n
i=1 Ji(a) > C(a). Then,

GPoA(G) < RPoA(G).

Proof. The proof can be found in the Appendix.

Since the result in Theorem 3 holds for every game in the
class G, the inequalities hold with G in the place of G, i.e.
for the whole class.

V. LOCAL RESOURCE ALLOCATION GAMES

In this section, we show how generalized smoothness can
be used in order to provide concrete and tight bounds on the
price-of-anarchy for the class of local resource allocation
games. This analysis will extend the applicability of the
linear programming approach presented in [20] to all coarse-
correlated equilibria and to multiple resource types.

Consider a finite set of resources R = {r1, . . . , rm} and
let each agent’s action set Ai ⊆ 2R. Every resource r ∈ R
is associated with a pair of functions (cr, fr), where cr and
fr are mappings from N = {1, . . . , n} → R. We define the
system cost and local cost functions as,

C(a) =
∑
r∈R

cr(|a|r),

Ji(ai, a−i) =
∑
r∈ai

fr(|a|r),

where |a|r is the number of agents covering resource r in
allocation a. We identify the aforementioned game with the
tuple G = (n,R,A, {(cr, fr)}), and, for ease of notation,
we remove the subscripts of the above sets, e.g. we write
{(cr, fr)} in place of {(cr, fr)}r∈R. Given a set of resource
types T = {(c1, f1), . . . , (c|T |, f |T |)}, we induce the class
of games GnT in which, for every resource r ∈ R, there exists
vr ≥ 0 such that,

cr(·) = vr c
t(·)

fr(·) = vr f
t(·)

for some (ct, f t) ∈ T . Informally, GnT contains all possible
games G where the number of agents is fixed to n, and each
pair (ct, f t) is selected from T and premultiplied by vr. A
possible interpretation of vr ≥ 0 is that it represents the value
of the resource r. We will refer to the functions {fr}r∈R as
distribution rules, since each fr describes how the value of
covered resources vr is split among the agents. We observe
that many classes of problems studied in the literature can
be analyzed using this model. Important examples include
set covering problems, vehicle-target assignment problems,
and congestion games [13], [24], [11]. In Section V-A, we



exemplify one of many problems that can be represented in
this form.

With slight abuse of notation, in the following, we redefine
the price-of-anarchy for the class GnT as,

PoA(GnT ) := sup
G∈Gn

T

PoA(G), (11)

Before presenting our results, we demonstrate the gener-
ality of the local resource allocation problem formulation,
using the example of atomic congestion games.

A. An Illustrative Example: Atomic Congestion Games

To demonstrate the generality of the local resource alloca-
tion problem presented above, we analyze congestion games,
a classical cost-minimization problem [25]. A congestion
game can be reformulated as a local resource allocation game
in which the system cost and local costs depend on the edges’
occupancy-dependent latency functions le such that

C(a) =
∑
e∈R

ce(|a|e) =
∑
e∈R

le(|a|e) |a|e,

Ji(ai, a−i) =
∑
e∈ai

le(|a|e).

Observe that, in this context, the edges of the congestion
game correspond to resources in a local resource allocation
game. The latency functions le play the role of distribution
rules fr, and cr is substituted with le(|a|e)|a|e.

Congestion games with affine costs [26]. As a particular
example, the class of congestion games with affine cost func-
tions can be represented as a class of local resource allocation
problems with two resource types; T = {(x2, x), (x, 1)}.2 As
an elementary example, consider the game G with resources
R = {ei}4i=1, each of which has nonnegative value ve ≥ 0.
The resource e1 and e3 are associated with type (x2, x),
whereas e2 and e4 have type (x, 1)}. If we define all n
agents’ action sets as {(e1, e2), (e3, e4)}, the game can be
represented by a two link network as shown in Fig. 1, where
Ji(a) = v1|a|1 + v2 for an agent i that selects (e1, e2), and
Ji(a) = v3|a|3 + v4 for agents selecting (e3, e4).

S T

l1(|a|e) = v1|a|e l2(|a|e) = v2

l3(|a|e) = v3|a|e l4(|a|e) = v4

Fig. 1: A simple congestion game with affine cost functions that
can be represented as a local resource allocation problem with two
types. The system’s n agents must select either the top or bottom
edge, and experience the corresponding cost.

While we consider the simplistic example of a two-link
network here, we note that, in general, any congestion game

2Informally, this means that there are two edge types in the congestion
game, those that impose a latency proportional to the number of agents
selecting them, and those that have constant latency.

with affine costs can be represented as a local resource
allocation game with T as above. Additionally, given a basis
set of all possible edge costs, any atomic congestion game
can be formulated using our model.

B. Computing the price-of-anarchy

The next theorem shows how the price-of-anarchy in (11)
can be recovered by means of the notion of generalized
smoothness previously introduced in (8). Before proceeding,
we state a few assumptions and some notation.

Standing Assumption. We assume, with slight abuse of
notation and without loss of generality, that ct(0) = f t(0) =
0, and f t(n+ 1) = f t(n), for all (ct, f t) ∈ T .

Although ct, f t were previously defined as mappings from
N → R, we extend their definition to ease the notation. Let

I :={(x, y, z)∈N3 | 1 ≤ x+ y − z ≤ n},
IR :={(x, y, z)∈I |x+ y − z=n or (x− z)(y − z)z=0}.

Theorem 4. For every class of local resource allocation
games GnT , it holds

PoA(GnT) = GPoA(GnT). (12)

Proof. The proof can be found in the Appendix.

The above theorem shows that generalized smoothness ar-
guments provide tight upper-bounds on the price-of-anarchy
in local resource allocation games, and proposes a method-
ology for constructing worst-case instances. We now exploit
this result to obtain easily computable and concrete bounds
on the price-of-anarchy.

Theorem 5. For the class GnT , PoA(GnT) = GPoA(GnT)=
1/C∗, where C∗ is the value of the following linear program,

C∗ = max
ν∈R≥0,ρ∈R

ρ

s.t. ct(y)− ρct(x)

+ ν
[
(x− z)f t(x)− (y − z)f t(x+ 1)

]
≥ 0

∀(ct, f t) ∈ T , ∀(x, y, z) ∈ IR,

(13)

Proof. The proof can be found in the Appendix.

The above linear program extends [20, Thm. 2] to any
class of games GnT .

C. Optimizing the price-of-anarchy

Whereas the previous subsection was devoted to calcu-
lating the price-of-anarchy for given pairs {(ct, f t)}|T |t=1, we
now shift our focus to designing the distribution rules such
that the price-of-anarchy is minimized.

Theorem 6. Consider the cost functions {c1, . . . , c|T |}, and
positive integer n. Define f tOPT as the solution to,

f tOPT ∈ arg max
f∈Rn,ρ∈R

ρ

s.t. 1{y≥1}c
t(y)− ρ1{x≥1}c

t(x) + (x− z)f(x)

− (y − z)f(x+ 1) ≥ 0,∀(x, y, z) ∈ IR,

(14)



for all t ∈ {1, . . . , |T |}. The set of distribution rules fOPT =

{f1OPT, . . . , f
|T |
OPT} satisfies,

fOPT ∈ arg min
f∈Rn×|T |

≥0

PoA(GnT ). (15)

Proof. The proof can be found in the Appendix.

Theorem 6 shows that a set of optimal distribution rules
can be calculated using the linear program in [20, Thm. 3].
It is worth noting that for a given class of games GnT with an
arbitrary basis set T , it is not possible, in general, to compute
the price-of-anarchy as the worst price-of-anarchy over each
individual pair (ct, f t), i.e. the expression PoA(GnT ) =
maxt∈T {PoA (Gnt )} does not hold, as further elaborated in
Lemma 5. Nevertheless, this property is recovered for the
specific choice of f t = f tOPT, see Lemma 6. This constitutes
the key observation towards proving Theorem 6.

D. Returning to Atomic Congestion Games

Here we apply the results presented in this section to the
class of congestion games, as presented in Section V-A.

Congestion games with affine costs. Using a particular
analytical structure, and by exploiting a known polynomial
inequality, the authors of [24] prove that the price-of-anarchy
for the class of congestion games with affine costs is 5/2.
A direct application of the linear program in Theorem 5
recovers the same result for any number of agents greater
than 3. Additionally, we determine a worst-case instance
construction with only n = 3 agents.3

Impossibility results in tolling. The idea of improving the
price-of-anarchy in congestion games using a local edge toll
as a control mechanism originates from [27]. In order to
influence agents’ decisions, a toll τe is added to the agents’
local edge costs such that,

Ji(ai, a−i) =
∑
e∈ai

le(|a|r) + τe(|a|r).

The system cost remains unchanged. In this context, the
strength of Theorem 6 stems from the simple recipe it
provides for constructing a set of optimal tolls. Indeed,
solving for the optimal tolls is equivalent to finding the
optimal set of distribution rules in the corresponding class
of local resource allocation games, where ct(x) = xle(x)
for all edges e of type t, for all t ∈ {1, . . . , |T |}. Thus, for
a given class of congestion games, the result in Theorem 6
provides tight lower-bounds on the best achievable price-
of-anarchy using local tolling mechanisms. In Table 1, we
compile these bounds for three classes of congestion games
considered in [28].

3Consider the game G with six edges {ei}6i=1 with identical value
(i.e. ve = v) and latency function le(x) = x. We endow the n =
3 agents with the action sets, A1 = {(e4, e5, e6), (e1, e2)}, A2 =
{(e1, e2, e5), (e3, e4)}, and A3 = {(e1, e3, e4), (e5, e6)}. The Nash
equilibrium ane corresponds to each agent selecting its three-tuple action,
and the optimal actions in aopt are the two-tuple actions. It can easily
be verified that (2) is met. PoA(G) = 5/2, since the system costs are
C(ane) = 45v and C(aopt) = 18v. Note that, in general, drawing a worst-
case instance as a graph requires additional edges e with value ve = 0.

TABLE 1: Prices-of-anarchy of the original and optimally tolled
congestion games, when the number of agents is n = 10.

Edge Costs PoA without tolling PoA with optimal tolls
Affine 2.50 2.01

Quadratic 9.58 5.10

Cubic 41.5 15.53

VI. EXTENSIONS

In this section, we demonstrate that the above results
extend to i) coarse-correlated equilibria; and, ii) welfare-
maximization problems.

A. Coarse-Correlated Equilibria

A significant advantage of using a smoothness argument
is that it provides performance bounds for the class of
coarse-correlated equilibria, a far broader class of equilibria
compared to the class of pure Nash equilibria [22], [29]. A
coarse-correlated equilibrium is a probability distribution σ
over all allocations a ∈ A such that for all i ∈ [n], and
a′ ∈ A, it holds that,

Ea∼σ[Ji(a)] ≤ Ea∼σ[Ji(a
′
i, a−i)],

where Ea∼σ[Ji(a)] is the expected utility for the agent i. In
the next lemma, we show that the price-of-anarchy bounds
stemming from generalized smoothness arguments extend to
all coarse-correlated equilibria.

Lemma 1. For every game G in the class of games G,

GPoA(G) ≥
maxσ∈CCE(G) Ea∼σ[C(a)]

mina∈AC(a)
,

where CCE(G) is the set of all coarse-correlated equilibria
of the game G.

Proof. The proof follows the same reasoning as [14, Thm.
3.2], and is omitted due to space constraints.

Since the sets of pure and mixed Nash equilibria of a game
are subsets of its coarse-correlated equilibria, the GPoA is
an upper-bound on the efficiency of all equilibria within
these classes. This result is particularly important toward the
tractability of the final algorithm. Indeed, although finding a
pure Nash equilibrium can be intractable, coarse-correlated
equilibria can often be computed in polynomial time [21].

B. Welfare-Maximization Problems

In welfare-maximization problems, we consider games for
which the agent set is N , each agent’s action set is Ai, and
each agent i evaluates its actions using some local utility
function Ui : A → R. The system-level welfare induced
by a given allocation a ∈ A is measured by the function
W : A → R. A Nash equilibrium is defined as any allocation
ane ∈ A such that Ui(ane) ≥ Ui(ai, ane

−i) for all ai ∈ Ai and
all i ∈ N , and our objective is to find an allocation aopt ∈ A
that solves the system-level optimization problem,

aopt ∈ arg max
a∈A

W (a). (16)



The results obtained for cost-minimization problems in this
work may be derived analogously for welfare-maximization,
although the various linear program formulations may differ.
Toward this goal, we propose the following modified notion
of generalized smoothness:

Consider a class of welfare-maximization games G, and
suppose there exist λ > 0, µ > −1 such that, for all
allocations a, a∗ ∈ A, it holds that,∑
i∈[n]

Ui(a
∗
i , a−i)−

∑
i∈[n]

Ui(a) ≥ λW (a∗)− (1 + µ)W (a).

The corresponding lower-bound on equilibrium efficiency for
all games G ∈ G is λ/(1 + µ).

VII. CONCLUSIONS

In this manuscript, we aimed at providing a novel method-
ology for characterizing and optimizing the price of anarchy
in connection to a broad class of problems, including con-
gestion games. Toward this goal, we introduced the notion
of generalized smoothness. Compared to traditional smooth-
ness arguments, we showed that generalized smoothness is
more widely applicable, and provides tighter bounds. We
applied generalized smoothness arguments to the class of
local resource allocation problems (which include congestion
games) and observed that it provides tight bounds on the
price-of-anarchy. Relative to this class of problems, we were
able to compute and optimize the price-of-anarchy of coarse-
correlated equilibria, by means of concrete and tractable
linear programs. Along with other possible future research
directions, this work paves the way for the design of optimal
tolling schemes through the linear programming approach
presented in [19], [20].
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B. Lucier, R. P. Leme, and É. Tardos, “Bounding the inefficiency of
outcomes in generalized second price auctions,” Journal of Economic
Theory, vol. 156, 2015.

[17] D. J. Foster, Z. Li, T. Lykouris, K. Sridharan, and E. Tardos, “Learning
in games: Robustness of fast convergence,” in Advances in Neural
Information Processing Systems, 2016.

[18] V. Syrgkanis and E. Tardos, “Composable and efficient mechanisms,”
in Proceedings of the forty-fifth annual ACM symposium on Theory of
computing. ACM, 2013.

[19] D. Paccagnan, R. Chandan, and J. R. Marden, “Distributed resource
allocation through utility design-part i: optimizing the performance
certificates via the price of anarchy,” arXiv preprint arXiv:1807.01333,
2018.

[20] R. Chandan, D. Paccagnan, and J. R. Marden, “Optimal price of
anarchy in cost-sharing games,” 2019 Annual American Control Con-
ference (ACC), 2019.

[21] C. H. Papadimitriou and T. Roughgarden, “Computing correlated
equilibria in multi-player games,” Journal of the ACM (JACM), vol. 55,
no. 3, 2008.

[22] T. Roughgarden, “Intrinsic robustness of the price of anarchy,” in
Proceedings of the forty-first annual ACM symposium on Theory of
computing. ACM, 2009.

[23] T. Roughgarden, V. Syrgkanis, and E. Tardos, “The price of anarchy
in auctions,” Journal of Artificial Intelligence Research, vol. 59, 2017.

[24] G. Christodoulou and E. Koutsoupias, “The price of anarchy of finite
congestion games,” in Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing. ACM, 2005, pp. 67–73.

[25] R. W. Rosenthal, “A class of games possessing pure-strategy nash
equilibria,” International Journal of Game Theory, vol. 2, no. 1, pp.
65–67, 1973.

[26] B. Awerbuch, Y. Azar, and A. Epstein, “The price of routing un-
splittable flow,” in Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing. ACM, 2005, pp. 57–66.

[27] H. Yang and H.-J. Huang, Mathematical and economic theory of road
pricing, 2005.

[28] T. Roughgarden, Selfish routing and the price of anarchy. MIT press
Cambridge, 2005, vol. 174.

[29] H. Moulin and J.-P. Vial, “Strategically zero-sum games: the class of
games whose completely mixed equilibria cannot be improved upon,”
International Journal of Game Theory, vol. 7, no. 3-4, pp. 201–221,
1978.

[30] J. R. Marden and T. Roughgarden, “Generalized efficiency bounds
in distributed resource allocation,” IEEE Transactions on Automatic
Control, vol. 59, no. 3, 2014.



APPENDIX

Proof of Theorem 3

Proof. When
∑
i∈N Ji(a) = C(a), (8) is equivalent to (5).

When
∑
i∈N Ji(a) > C(a), for all λ, µ satisfying (5), the

following must hold for all a, a∗ ∈ A,∑
i∈[n]

Ji(a
∗
i , a−i)−

∑
i∈[n]

Ji(a)+C(a) < λC(a∗)+µC(a).

Thus, there must exist some ε > 0 such that (8) holds for
λ̄ = λ∗ − ε or µ̄ = µ∗ − ε, where λ∗, µ∗ optimize (6).
Since λ/(1 − µ) is increasing in both λ and µ, GPoA <
λ∗/(1− µ∗) = RPoA.

Preliminaries to the proof of Theorem 4

Definition 1. S(GnT ) is the set of parameters λ > 0, µ < 1
such that, for all (ct, f t) ∈ T and all (x, y, z) ∈ IR,

(z−x)f t(x) + (y− z)f t(x+ 1) + ct(x) ≤ λct(y) +µct(x).
(17)

Definition 2. γ(GnT ) is defined as,

γ(GnT ) := inf
λ,µ

{
λ

1− µ
: (λ, µ) ∈ S(GnT )

}
(18)

Lemma 2. For the given class of games GnT ,

γ(GnT ) ≥ GPoA(GnT ).

Proof. Let |ane| = {x1, . . . , xm}, and |aopt| = {y1, . . . , ym}.
We define zr as the number of agents that select resource r
in both ane and aopt,

zr := |{i ∈ N : r ∈ ane
i } ∩ {i ∈ N : r ∈ aopt

i }|

where zr ≤ min{xr, yr}, and 1 ≤ xr + yr − zr ≤ n.
The following simplification, adapted from [30], is instru-

mental in our proof of tightness,∑
i∈[n]

Ji(a
opt
i , a

ne
−i)−

∑
i∈[n]

Ji(a
ne) + C(ane) (19)

=
∑
r∈R

[zrfr(xr) + (yr − zr)fr(xr + 1)]

−
∑
r∈R

xrfr(xr) +
∑
r∈R

cr(xr)

=
∑
r∈R

[(zr−xr)fr(xr)+(yr−zr)fr(xr+1)+cr(xr)] .

We have shown that (19) can be represented as a sum over a
subset of the left-hand side expressions in (17) corresponding
to the resources in R weighted by their values. For the proof
that it is sufficient to consider (x, y, z) ∈ IR, see the second
part of the proof of [20, Thm. 2], and note that (x, y, z) in this
paper are equivalent to (j, l, x) in their notation. Thus, the
parameters (λ, µ) ∈ S(GnT ) are sure to satisfy the constraint
in (8). This is because C(ane) is guaranteed to be less than
or equal to (19). This implies that γ(GnT ) ≥ GPoA(Gn

T).

Lemma 3. Consider the class of games GnT . Suppose there
exist (λ̂, µ̂) ∈ S(GnT ) such that,

λ̂

1− µ̂
= γ(GnT ).

Then, there must be (c1, f1), (c2, f2) in T , (x1, y1, z1),
(x2, y2, z2) in IR, and η ∈ [0, 1] such that,

(zj − xj)f j(xj) + (yj − zj)f j(xj + 1) + cj(xj)

= λ̂ cj(yj) + µ̂ cj(xj)
(20)

for j = 1, 2; and,

η[z1 f
1(x1) + (y1 − z1) f1(x1 + 1)]

+ (1−η)[z2 f
2(x2) + (y2 − z2) f2(x2 + 1)]

= η x1 f
1(x1) + (1− η)x2 f

2(x2).

(21)

Proof. We define Hc,f,x,y,z as the set of (λ, µ) ∈ R>0×R<1

that satisfy, for given c, f , x, y and z,

(z−x)f(x)+(y−z)f(x+1)+c(x) ≤ λ c(y)+µ c(x).

We denote by δHc,f,x,y,z the boundary of the set, i.e. the
points (λ, µ) that satisfy the above inequality with equality.
Some simplifications can be made for the cases when either
x = 0 or y = 0. When x = 0 and y > 0, then z = 0 =
min{x, y}, and the set Hc,f,0,y,0 contains all µ < 1, and
all λ ≥ f(1)y/c(y). When x > 0 and y = 0, z = 0 once
again, the set Hc,f,x,0,0 contains all λ > 0, and all µ ≥
1 − xf(x)/c(x). For the halfplanes with x > 0 and y > 0,
the boundary is,

µ = − c(y)

c(x)
λ+

1

c(x)

[
(z − x)f(x)+

(y − z)f(x+ 1) + c(x)
]
.

Note that finding γ(GnT ) is equivalent to finding the point
along the boundary that intersects the line with µ-intercept
equal to 1 with the most negative slope. Thus, we can
find the optimal (λ, µ) by starting on the boundary at
λ = maxy f(1)y/c(y), then following the boundary until
we reach a line with µ-intercept less than 1. There are three
possibilities for the optimal λ, µ: at λ = maxy f(1)y/c(y), at
the intersection of two halfplanes with x1, x2 > 0, y1, y2 >
0, z1, z2 ≥ 0, or at µ = 1−minx xf(x)/c(x).

If the optimal λ, µ occurs at λ = maxy f(1)y/c(y), then
x1 = 0, y1 > 0 and z1 = 0, and the other halfplane has
µ-intercept less than one, and x2 > 0, y2 ≥ 0 and z2 ≥ 0.
Note that it is also possible for the optimal λ, µ to occur at
λ = maxy>0 f(1)y/c(y) and µ = 1−minx>0 xf(x)/C(x).

For all these cases, there exists η ∈ [0, 1] such that,

η [z1 f
1(x1) + (y1 − z1) f1(x1 + 1)]

+ (1− η) [z2 f
2(x2) + (y2 − z2) f2(x2 + 1)]

= ηx1f
1(x1) + (1− η)x2f

2(x2)

If the optimal (λ, µ) occur on a halfplane Hc,f,x,y,z with
µ-intercept equal to 1, we select c1 = c2 = c, f1 = f2 = f ,
x1 = x2 = x, y1 = y2 = y and z1 = z2 = z, where any
η ∈ [0, 1] will satisfy the equality.



Lemma 4. For the class of games GnT , suppose no point
(λ, µ) ∈ S(GnT ) satisfies λ

1−µ = γ(GnT ). Then, there exists
(f, c) ∈ T and (x, y, z) ∈ IR such that

γ(GnT ) =
c(x)

c(y)
(22)

(y − z)f(x+ 1) + zf(x) > xf(x) (23)

Proof. Borrowing the notation and reasoning of the proof
for Lemma 3, we know that the strictest constraint must
come from a line corresponding to some (f, c) ∈ T that
for some values of x, y and z has µ-intercept greater than
1, and the least negative slope among all constraints. Since
the µ-intercept is greater than 1, (z−x)f(x)+(y−z)f(x+
1) > 0, which implies that (y − z)f(x + 1) + zf(x) >
xf(x). The least negative slope results from selecting y =
arg minj∈N c(j) and x = arg maxj∈N c(j). Much like in
[14, Lem. 5.5], we construct a sequence {(λk, µk)} in S(GnT )
such that λk

1−µk
↓ γ(Gnt ). Since λ

1−µ is increasing in both λ
and µ, it can be assumed that every point (λk, µk) lies on
the boundary of S(GnT ). The values λk are bounded from
below by the constraints (17) where x = z = 0, and for finite
γ(GnT ), µk ≤ b < 1. Since λ

1−µ is continuous, λk

1−µk
↓ γ(Gnt )

and γ(Gnt ) is not attained, the sequence {λk, µk)} has no
limit point. Thus, after some rearranging of (17),

γ(GnT ) = lim
k→∞

λk
1− µk

= lim
k→∞

c(x)

c(y)
+

(z − x)f(x) + (y − z)f(x+ 1)

c(y)(1− µk)
=
c(x)

c(y)
,

since µk → −∞, which completes the proof.

Proof of Theorem 4

Proof. We first consider the case where the value γ(GnT ) is
not attained for any point (λ, µ) ∈ S(GnT ) as in Lemma 4.
We recover the pair (f, c) ∈ T that result in the strictest
constraint at λ → ∞, µ → −∞, as well as the values
x, y and z that give the least negative slope. We setup a
game with l = min{x+y, n} resources organized in a cycle
and l agents, i.e. R = {r1, . . . , rl} and N = [l], where
every resource has type corresponding to the pair (f, c). Each
agent i ∈ [l] is endowed with two actions, the first is to
select x consecutive resources starting with ri and ending
with ri+x−1 mod l, while the second is to select y consecutive
resources ending with ri+z−1 mod l. Condition (23) implies
that the former strategy is a Nash equilibrium, and by (22),
the price-of-anarchy is at least c(x)

c(y) = γ(GnT ), as required.
We retrieve (c1, f1), (c2, f2), (x1, y1, z1), (x2, y2, z2) and

η; the optimality parameters as in Lemma 3, where γ(GnT )
is an upper-bound on GPoA(GnT ) and is guaranteed to be
attained, by Lemma 2 and Definition 1. The worst-case game
G is constructed in the following way, define two disjoint
cycles E1 and E2 each with l = min{max{x1 + y1, x2 +
y2}, n} resources enumerated from 1 to l. The resources in
E1 are assigned cost function c1, distribution rule f1 and
value η, whereas the resources in E2 are assigned c2, f2 and
(1−η). There are also l ≤ n players, enumerated 1 through l

and we restrict the action set A to two strategies, ane and aopt.
In the first strategy, each player i ∈ [l] selects x1 consecutive
resources in E1, [i, i + 1, . . . , i + x1 − 1] mod l, and x2
consecutive resources in E2 starting with resource i. In the
second strategy, player i selects y1 consecutive resources in
E1 ending with resource i−1, and y2 consecutive resources
in E2 ending with resource i− 1.

We continue by demonstrating that the first strategy satis-
fies the conditions for a Nash equilibrium,

Ji(a
ne) = η x1 f

1(x1) + (1− η)x2 f
2(x2)

= η [z1 f
1(x1) + (y1 − z1) f1(x1 + 1)]

+ (1− η) [z2 f
2(x2) + (y2 − z2) f2(x2 + 1)] (24)

= Ji(a
opt
i , a

ne
−i),

where (24) holds due to Lemma 3. Now we show that the
price-of-anarchy of the game is lower-bounded by γ(GnT ),
thus implying equality.

C(ane) = C(ane)−
k∑
i=1

Ji(a
ne) +

k∑
i=1

Ji(a
opt
i , a

ne
−i)

= k η
[
λ̂ c1(y1) + µ̂ c1(x1)

]
+ k (1− η)

[
λ̂ c2(y2) + µ̂ c2(x2)

]
= λ̂ C(aopt) + µ̂ C(ane)

In the above, γ(GnT ) = PoA(G) ≤ PoA(GnT). Since γ(GnT ) ≥
GPoA(GnT ) ≥ PoA(GnT ) by Lemma 2, GPoA(GnT ) must be
tight.

Proof of Theorem 5

Proof. We begin by noting that, by Definition 1, we need
only consider (x, y, z) ∈ IR when calculating the price-
of-anarchy in local resource allocation games. Observe that
the constraints in the linear program are equivalent to the
simplified conditions for (λ, µ)-generalized smoothness in
(17). The linear program constraints read as,

c(y)−ρ c(x)+ν [(x−z) f(x)−(y−z) f(x+1)] ≥ 0,

for all (x, y, z) ∈ IR, where ρ = 1−µ
λ , and ν = 1

λ .
Substituting the expressions for ν and ρ into the above, and
rearranging, we are left with,

(z − x) f(x) + (y − z) f(x+ 1) + c(x)

≤ λ c(y) + µ c(x),

for all (x, y, z) ∈ IR, which is identical to (17) when there is
a single type. Next, observe that maximizing ρ is equivalent
to minimizing λ/(1− µ), which concludes the proof.

Lemma 5. For a given class of local resource allocation
games GnT , it holds that,

PoA(GnT ) ≥ max
t∈T
{PoA (Gnt )} . (25)

Proof. We begin by proving that it is impossible to have
PoA(GnT ) < maxt∈T {PoA(Gnt )}. Simply note that the worst-
case game in Gnt for each t ∈ T is a member of the class of
games GnT .



Next, consider the class of games with n = 3, and
T = {T1, T2} = {(x2, x), (x, x)}. By [20, Thm. 2], the
prices-of-anarchy for the games with the individual types are
PoA(G3T1

) = 1.857 and PoA(G3T2
) = 2.0. But, PoA(GnT) =

2.6 by (13).

Lemma 6. For a given class of local resource allocation
games GnT , there exist scaling parameters αt ∈ R≥0, t ∈ |T |
such that,

PoA(Gnτ , n) = max
t∈T
{PoA(Gnt )},

where τ = {(ct, αtf t)}|T |t=1.

Proof. We denote by (ν∗t , ρ
∗
t ) the solution to [20, Thm. 2]

for the class of games with one type, (ct, f t) ∈ T . First,
note that uniform scaling of the distribution rules does not
affect the equilibrium conditions, so PoA({(ct, αtf t)}, n) =
PoA({(ct, f t)}, n) for all αt > 0 and all t ∈ T . Thus,
recalling Lemma 5,

PoA(Gnτ ) ≥ max
t∈T
{PoA(Gnt )},

where τ = {(ct, α1f
t)}|T |t=1. Select αt = ν∗t for all t ∈ [|T |],

such that τ := {(ct, ν∗t f t)}
|T |
t=1. We define ρ̂ := mint∈[|T |] ρ

∗
t .

By construction, (ρ̂, 1) satisfies all the constraints in (13) for
types in τ . Thus, PoA(Gnτ ) ≤ 1/ρ̂ = maxt∈T {PoA(Gnt )}.

Proof of Theorem 6

Proof. By Lemma 5, the lowest achievable price-of-anarchy
is maxt∈T∗{PoA(Gnt )} where T ∗ := {(ct, f tOPT)}|T |t=1. Ad-
ditionally, each of the f tOPT minimizes its corresponding
PoA(Gnt ) by [20, Thm. 3]. Finally, we have that the following
statement,

PoA(GnT∗) = max
t∈T
{PoA(Gnt )},

holds by the construction of fOPT,t in [20, Thm. 3]; the linear
program already multiplies the distribution rule and λ∗t , and
it was shown in the proof of Lemma 6 that αt = λ∗t for all
t ∈ T is an optimal set of scaling parameters.


	Introduction
	Related Works
	Our Contributions

	Problem Statement
	The smoothness framework
	Generalized smoothness
	Local resource allocation games
	An Illustrative Example: Atomic Congestion Games
	Computing the price-of-anarchy
	Optimizing the price-of-anarchy
	Returning to Atomic Congestion Games

	Extensions
	Coarse-Correlated Equilibria
	Welfare-Maximization Problems

	Conclusions
	References
	Appendix

