The Scenario Approach Meets Uncertain Game Theory and Variational Inequalities

Dario Paccagnan
In collaboration with M.C. Campi
Theme of this talk: take decision based on data and quantify their risk
Theme of this talk: take decision based on data and quantify their risk

data \rightarrow decision making process \rightarrow solution

- scenario approach
- robust optimization

[Borelli, Calafiore, Campi, Esfahani, Garatti, Goulart, Kuhn, Lygeros, Margellos, Prandini, Ramponi, Sutter, Tempo, ...]

What if decision making is not an optimization problem?

In this talk: decision making process = variational inequality
Theme of this talk: take decision based on data and quantify their risk

If decision making = optimization problem \implies
- scenario approach
- robust optimization
- ...

Diagram:
\[
data \rightarrow \text{decision making process} \rightarrow \text{solution}\]
Theme of this talk: take decision based on data and quantify their risk

Data \rightarrow decision making process \rightarrow solution

If decision making $=$ optimization problem \implies
- scenario approach
- robust optimization
- ...

[Borelli, Calafiore, Campi, Esfahani, Garatti, Goulart, Kuhn, Lygeros, Margellos, Prandini, Ramponi, Sutter, Tempo, ...]
Theme of this talk: take decision based on data and quantify their risk

if decision making = optimization problem

- scenario approach
- robust optimization
- ...

[Borelli, Calafiore, Campi, Esfahani, Garatti, Goulart, Kuhn, Lygeros, Margellos, Prandini, Ramponi, Sutter, Tempo, ...]

What if decision making is not an optimization problem?
Theme of this talk: take decision based on data and quantify their risk

- data \rightarrow decision making process \rightarrow solution

if decision making = optimization problem \Rightarrow
- scenario approach
- robust optimization
- ...

[Borelli, Calafiore, Campi, Esfahani, Garatti, Goulart, Kuhn, Lygeros, Margellos, Prandini, Ramponi, Sutter, Tempo, ...]

What if decision making is not an optimization problem?

in this talk: decision making process = variational inequality
Why variational inequalities?

“[...] a multitude of interesting connections to numerous disciplines, and a wide range of important applications in engineering and economics”

F. Facchinei, J-S Pang
Why variational inequalities?

“[...] a multitude of interesting connections to numerous disciplines, and a wide range of important applications in engineering and economics”

F. Facchinei, J-S Pang

transportation networks

contact problems

demand-response markets

option pricing
OVERVIEW

1. Interconnected dynamics and stability analysis
2. Projected gradient flow on the power flow manifold
3. Numerical experiments

ROADMAP

1. Robust variational inequalities + scenario approach
 ~→ probabilistic bounds on the risk
 ~→ extension to quasi variational inequalities

2. Uncertain and robust games
 ~→ how likely that a Nash equilibrium remains such?
 ~→ application to demand-response

3. Outlook and opportunities
Variational inequalities

Definition (VI): given set $\mathcal{X} \subset \mathbb{R}^n$ and operator $F : \mathcal{X} \rightarrow \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x})^T(x - \bar{x}) \geq 0, \forall x \in \mathcal{X}$.
Variational inequalities

Definition (VI): given set $\mathcal{X} \subset \mathbb{R}^n$ and operator $F : \mathcal{X} \rightarrow \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x})^\top (x - \bar{x}) \geq 0$, $\forall x \in \mathcal{X}$
Definition (VI): given set $\mathcal{X} \subset \mathbb{R}^n$ and operator $F : \mathcal{X} \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x})^\top (x - \bar{x}) \geq 0$, $\forall x \in \mathcal{X}$

▷ convex optimization as a special case:

\bar{x} solution of $\min_{x \in \mathcal{X}} g(x) \iff \nabla g(\bar{x})^\top (x - \bar{x}) \geq 0$, $\forall x \in \mathcal{X}$
Variational inequalities

Definition (VI): given set $\mathcal{X} \subset \mathbb{R}^n$ and operator $F : \mathcal{X} \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x})^\top (x - \bar{x}) \geq 0$, $\forall x \in \mathcal{X}$

▷ convex optimization as a special case:

$$\bar{x} \text{ solution of } \min_{x \in \mathcal{X}} g(x) \iff \nabla g(\bar{x})^\top (x - \bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$$
Stochastic and robust VIs

Q: How to define a VI that incorporates notion of uncertainty?

\[\text{tentative: set } X, \text{ operator } F : X \times \Delta \rightarrow \mathbb{R}^n \]

find \(\bar{x} \in X \) s.t.

\[F(\bar{x}, \delta)^\top (x - \bar{x}) \geq 0 \quad \forall x \in X, \forall \delta \in \Delta \]

\[\Rightarrow \text{has a solution only exceptionally} \]

\[\text{literature: 1. expected-value formulation} \]

find \(\bar{x} \in X \) s.t.

\[E_{\delta \sim P}[F(\bar{x}, \delta)]^\top (x - \bar{x}) \geq 0 \quad \forall x \in X \]

\[\text{[Gürgan, Jiang, Nedić, Robinson, Shanbhag, Yousefian, ...]} \]

\[2. \text{expected residual formulation} \]

find \(\bar{x} \in X \) s.t.

\[\bar{x} \in \arg \min_{x \in X} E_{\delta \sim P}[\Phi(x, \delta)] \]

\[\text{[Chen, Fukushima, Lin, Shanbhag, Wets, Zhang, ...]} \]

this talk: robust VI, i.e.,

\[F : \mathbb{R}^n \rightarrow \mathbb{R}^n, (\Delta, F, P), \text{sets } \{X_\delta\}_{\delta \in \Delta} \]

find \(x \in \bigcap_{\delta \in \Delta} X_\delta \) s.t.

\[F(x)^\top (x - x) \geq 0 \quad \forall x \in \bigcap_{\delta \in \Delta} X_\delta \]
Stochastic and robust VIs

Q: How to define a VI that incorporates notion of uncertainty?

tentative: set \mathcal{X}, operator $F : \mathcal{X} \times \Delta \rightarrow \mathbb{R}^n$

find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x}, \delta)^\top (x - \bar{x}) \geq 0 \quad \forall x \in \mathcal{X}, \forall \delta \in \Delta$
Stochastic and robust VIs

Q: How to define a VI that incorporates notion of uncertainty?

tentative: set \mathcal{X}, operator $F : \mathcal{X} \times \Delta \rightarrow \mathbb{R}^n$

find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x}, \delta) \top (x - \bar{x}) \geq 0 \quad \forall x \in \mathcal{X}, \forall \delta \in \Delta$

\sim has a solution only exceptionally
Stochastic and robust VIs

Q: How to define a VI that incorporates notion of uncertainty?

tentative: set \mathcal{X}, operator $F : \mathcal{X} \times \Delta \rightarrow \mathbb{R}^n$

find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x}, \delta)^\top (x - \bar{x}) \geq 0 \quad \forall x \in \mathcal{X}, \forall \delta \in \Delta$

\rightsquigarrow has a solution only exceptionally

literature: 1. expected-value formulation

find $\bar{x} \in \mathcal{X}$ s.t. $\mathbb{E}_{\delta \sim \mathbb{P}}[F(\bar{x}, \delta)]^\top (x - \bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$

[Gürkan, Jiang, Nedić, Robinson, Shanbhag, Yousefian, ...]
Stochastic and robust VIs

Q: How to define a VI that incorporates notion of uncertainty?

Tentative: set \mathcal{X}, operator $F : \mathcal{X} \times \Delta \rightarrow \mathbb{R}^n$

find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x}, \delta)^\top (x - \bar{x}) \geq 0 \quad \forall x \in \mathcal{X}, \forall \delta \in \Delta$

\Rightarrow has a solution only exceptionally

Literature:

1. expected-value formulation

 find $\bar{x} \in \mathcal{X}$ s.t. $E_{\delta \sim P}[F(\bar{x}, \delta)]^\top (x - \bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$

 [Gürkan, Jiang, Nedić, Robinson, Shanbhag, Yousefian, ...]

2. expected residual formulation

 find $\bar{x} \in \mathcal{X}$ s.t. $\bar{x} \in \arg \min_{x \in \mathcal{X}} \mathbb{E}_{\delta \sim P}[\Phi(x, \delta)]$

 [Chen, Fukushima, Lin, Shanbhag, Wets, Zhang, ...]
Stochastic and robust VIs

Q: How to define a VI that incorporates notion of uncertainty?

tentative: set \mathcal{X}, operator $F : \mathcal{X} \times \Delta \rightarrow \mathbb{R}^n$

find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x}, \delta)^\top (x - \bar{x}) \geq 0 \quad \forall x \in \mathcal{X}, \forall \delta \in \Delta$

\rightsquigarrow has a solution only exceptionally

literature:
1. expected-value formulation

find $\bar{x} \in \mathcal{X}$ s.t. $\mathbb{E}_{\delta \sim \mathbb{P}}[F(\bar{x}, \delta)]^\top (x - \bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$

[Gürkan, Jiang, Nedić, Robinson, Shanbhag, Yousefian, ...]

2. expected residual formulation

find $\bar{x} \in \mathcal{X}$ s.t. $\bar{x} \in \arg \min_{x \in \mathcal{X}} \mathbb{E}_{\delta \sim \mathbb{P}}[\Phi(x, \delta)]$

[Chen, Fukushima, Lin, Shanbhag, Wets, Zhang, ...]

this talk: robust VI, i.e., $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$, $(\Delta, \mathcal{F}, \mathbb{P})$, sets $\{\mathcal{X}_\delta\}_{\delta \in \Delta}$
Stochastic and robust VIs

Q: How to define a VI that incorporates notion of uncertainty?

tentative: set \mathcal{X}, operator $F : \mathcal{X} \times \Delta \to \mathbb{R}^n$

find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x}, \delta)^\top (x - \bar{x}) \geq 0 \quad \forall x \in \mathcal{X}, \forall \delta \in \Delta$

$\sim\sim$ has a solution only exceptionally

literature: 1. expected-value formulation

find $\bar{x} \in \mathcal{X}$ s.t. $E_{\delta \sim P}[F(\bar{x}, \delta)]^\top (x - \bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$

[Gürkan, Jiang, Nedić, Robinson, Shanbhag, Yousefian, ...]

2. expected residual formulation

find $\bar{x} \in \mathcal{X}$ s.t. $\bar{x} \in \arg\min_{x \in \mathcal{X}} E_{\delta \sim P} [\Phi(x, \delta)]$

[Chen, Fukushima, Lin, Shanbhag, Wets, Zhang, ...]

this talk: robust VI, i.e., $F : \mathbb{R}^n \to \mathbb{R}^n$, (Δ, \mathcal{F}, P), sets $\{\mathcal{X}_\delta\}_{\delta \in \Delta}$

find $x_R \in \cap_{\delta \in \Delta} \mathcal{X}_\delta$ s.t. $F(x_R)^\top (x - x_R) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_\delta$
Robust and sampled VI, risk

RVI: find $x_R \in \cap_{\delta \in \Delta} X_\delta$ s.t. $F(x_R)^\top (x - x_R) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} X_\delta$
Robust and sampled VI, risk

RVI: find $x_R \in \cap_{\delta \in \Delta} \mathcal{X}_\delta$ s.t. $F(x_R)^T (x - x_R) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_\delta$

S-RVI: find $x_S \in \cap_{i=1}^N \mathcal{X}_{\delta_i}$ s.t. $F(x_S)^T (x - x_S) \geq 0 \quad \forall x \in \cap_{i=1}^N \mathcal{X}_{\delta_i}$

δ_i iid $\sim \mathbb{P}$
Robust and sampled VI, risk

RVI: \[\text{find } x_R \in \bigcap_{\delta \in \Delta} \mathcal{X}_\delta \text{ s.t. } F(x_R)^\top (x - x_R) \geq 0 \quad \forall x \in \bigcap_{\delta \in \Delta} \mathcal{X}_\delta \]

S-RVI: \[\text{find } x_S \in \bigcap_{i=1}^N \mathcal{X}_{\delta_i} \text{ s.t. } F(x_S)^\top (x - x_S) \geq 0 \quad \forall x \in \bigcap_{i=1}^N \mathcal{X}_{\delta_i} \]

\[\delta_i \text{ iid } \sim \mathbb{P} \]

Q: How “likely” is a solution to S-RVI to be a solution of RVI?
Robust and sampled VI, risk

RVI: find $x_R \in \bigcap_{\delta \in \Delta} X_\delta$ s.t. $F(x_R)^T (x - x_R) \geq 0 \quad \forall x \in \bigcap_{\delta \in \Delta} X_\delta$

S-RVI: find $x_S \in \bigcap_{i=1}^{N} X_{\delta_i}$ s.t. $F(x_S)^T (x - x_S) \geq 0 \quad \forall x \in \bigcap_{i=1}^{N} X_{\delta_i}$

δ_i iid $\sim \mathbb{P}$

Q: How “likely” is a solution to S-RVI to be a solution of RVI?

\[\rightsquigarrow \text{notion of risk:} \] the risk $V(x)$ associated to $x \in \mathbb{R}^n$ is

$V(x) = \mathbb{P}\{\delta \in \Delta \text{ s.t. } x \notin X_\delta\}$
Robust and sampled VI, risk

RVI: find $x_R \in \cap_{\delta \in \Delta} x_\delta$ s.t. $F(x_R)^T(x - x_R) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} x_\delta$

S-RVI: find $x_S \in \cap_{i=1}^N x_{\delta_i}$ s.t. $F(x_S)^T(x - x_S) \geq 0 \quad \forall x \in \cap_{i=1}^N x_{\delta_i}$

$\delta_i \text{ iid } \sim P$

Q: How “likely” is a solution to S-RVI to be a solution of RVI?

\leadsto notion of risk: the risk $V(x)$ associated to $x \in \mathbb{R}^n$ is

$$V(x) = P\{\delta \in \Delta \text{ s.t. } x \notin x_\delta\}$$

$$(\delta_1, \ldots, \delta_N) \quad \longrightarrow \quad \text{Sampled RVI} \quad \longrightarrow \quad \text{solution } x_S \text{ risk } V(x_S)$$
Robust and sampled VI, risk

\[
\text{RVI: } \text{find } x_R \in \cap_{\delta \in \Delta} X_\delta \quad \text{s.t.} \quad F(x_R)^T (x - x_R) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} X_\delta
\]

\[
\text{S-RVI: } \text{find } x_S \in \cap_{i=1}^N X_{\delta_i} \quad \text{s.t.} \quad F(x_S)^T (x - x_S) \geq 0 \quad \forall x \in \cap_{i=1}^N X_{\delta_i}
\]

\[
\delta_i \text{ iid } \sim \mathbb{P}
\]

Q: How “likely” is a solution to S-RVI to be a solution of RVI?

\[\leadsto \textbf{notion of risk:} \text{ the risk } V(x) \text{ associated to } x \in \mathbb{R}^n \text{ is } \]

\[V(x) = \mathbb{P}\{\delta \in \Delta \text{ s.t. } x \notin X_\delta\}\]

\[\{\delta_1, \ldots, \delta_N\} \quad \xrightarrow{\text{Sampled RVI}} \quad \text{solution } x_S \quad \text{risk } V(x_S)\]

\[\leadsto \textbf{assume:} \text{ existence \& uniqueness of solution } x_S \text{ for all } \{\delta_i\}_{i=1}^N\]
First result

For any $\beta \in (0, 1)$, $k \in \{0, \ldots, N - 1\}$, let $\varepsilon(k)$ be the unique solution of

$$
\frac{\beta}{N + 1} \sum_{l=k}^{N} \binom{l}{k} (1 - \varepsilon)^{l-k} - \binom{N}{k} (1 - \varepsilon)^{N-k} = 0.
$$
First result

For any $\beta \in (0, 1)$, $k \in \{0, \ldots, N - 1\}$, let $\varepsilon(k)$ be the unique solution of

$$
\frac{\beta}{N + 1} \sum_{l=k}^{N} \binom{l}{k} (1 - \varepsilon)^{l-k} - \binom{N}{k} (1 - \varepsilon)^{N-k} = 0.
$$

For any $\beta \in (0, 1)$, $k \geq N$, let $\varepsilon(k) = 1$.

For any $\beta \in (0, 1)$, let $k \in \{0, \ldots, N-1\}$, let $\varepsilon(k)$ be the unique solution of

$$\beta N + 1 = \sum_{l=k}^{N-1} (l_k)(1 - \varepsilon(l - k) - k - \binom{N-k}{1 - \varepsilon(N-k))}-0$$

For any $\beta \in (0, 1)$, let $k \geq N$, let $\varepsilon(k) = 1$.

Theorem: assume existence + uniqueness & non-degeneracy

\[\Delta \]

a-priori bound on risk:

$$P_N \left[V(x_S) \leq \varepsilon(n) \right] \geq 1 - \beta$$

a-posteriori bound on risk:

$$P_N \left[V(x_S) \leq \varepsilon(s) \right] \geq 1 - \beta$$

where s is the number of support constraints.

"with high probability (larger than $1 - \beta$), the risk is small (below ε)"
First result

For any $\beta \in (0, 1)$, let $k \in \{0, \ldots, N-1\}$, let $\epsilon(k)$ be the unique solution of

$$
\beta N + \sum_{l=k}^{N-1} (l-k)(1-\epsilon)^{l-k} - k - (N-k)(1-\epsilon)^{N-k} = 0.
$$

For any $\beta \in (0, 1)$, let $k \geq N$, let $\epsilon(k) = 1$.

Theorem: assume existence + uniqueness & non-degeneracy

\[n = 10, \ N = 100 \]

\[n = 10, \ N = 100 \]

\[\beta \]

\[\cdot 10^{-2} \]

\[\epsilon \]

\[\beta \]

\[0 \]

\[0.2 \]

\[0.4 \]

\[0.6 \]

\[0.8 \]

\[1 \]

\[0 \]

\[0.2 \]

\[0.4 \]

\[0.6 \]

\[0.8 \]

\[1 \]

\[\cdot 10^{-2} \]

Theorem: assume existence + uniqueness & non-degeneracy
For any $\beta \in (0, 1)$, let $\varepsilon(k)$ be the unique solution of

$$\beta N + 1 N \sum_{l=k}^{N-1} \binom{N}{k} (1 - \varepsilon(l) - k - \binom{N}{k} (1 - \varepsilon) N - k = 0.$$

For any $\beta \in (0, 1)$, let $\varepsilon(k) = 1$.

Theorem: Assume existence + uniqueness & non-degeneracy

▷ a-priori bound on risk: $\mathbb{P}^N[V(x_s) \leq \varepsilon(n)] \geq 1 - \beta$

\[n = 10, N = 100 \]
First result

For any $\beta \in (0, 1)$, let $\epsilon(k)$ be the unique solution of

$$\beta N + 1 = N \sum_{l=k}^{N-1} (1 - \epsilon(l)) l - k - (N-k)(1 - \epsilon) N - k = 0.$$

For any $\beta \in (0, 1)$, let $\epsilon(k) = 1$.

Theorem: assume existence + uniqueness & non-degeneracy

- a-priori bound on risk: $\mathbb{P}^N[V(x_S) \leq \epsilon(n)] \geq 1 - \beta$
- a-posteriori bound on risk: $\mathbb{P}^N[V(x_S) \leq \epsilon(s)] \geq 1 - \beta$

where s is the number of support constraints.
First result

For any $\beta \in (0, 1)$, let $\varepsilon(k)$ be the unique solution of

$$\beta N + 1 = \sum_{l=k}^{N-1} (1 - \varepsilon) l - k - \binom{N-k}{2} (1 - \varepsilon) N - k = 0.$$

For any $\beta \in (0, 1)$, let $\varepsilon(k) = 1$.

Theorem: assume existence + uniqueness & non-degeneracy

- a-priori bound on risk: $\mathbb{P}^N[V(x_S) \leq \varepsilon(n)] \geq 1 - \beta$

- a-posteriori bound on risk: $\mathbb{P}^N[V(x_S) \leq \varepsilon(s)] \geq 1 - \beta$

where s is the number of support constraints

“with high probability (larger than $1 - \beta$), the risk is small (below ε)”
The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \rightrightarrows 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^\top(x - \bar{x}) \geq 0$, $\forall x \in \mathcal{X}(\bar{x})$
The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \rightrightarrows 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^\top (x - \bar{x}) \geq 0$, $\forall x \in \mathcal{X}(\bar{x})$

▷ informal: *a VI where the feasible set depends on the point x*
The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \Rightarrow 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^\top (x - \bar{x}) \geq 0$, $\forall x \in \mathcal{X}(\bar{x})$

- informal: a VI where the feasible set depends on the point x
- we will use QVI to describe games with uncertain costs
The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \rightrightarrows 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X} (\bar{x})$ s.t. $F(\bar{x})^T (x - \bar{x}) \geq 0$, $\forall x \in \mathcal{X} (\bar{x})$

▷ informal: *a VI where the feasible set depends on the point x*
▷ we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F : \mathbb{R}^n \to \mathbb{R}^n$, $(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\{\mathcal{X}_\delta\}_{\delta \in \Delta}$
The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map \(\mathcal{X} : \mathbb{R}^n \rightrightarrows 2^{\mathbb{R}^n} \) and \(F : \mathbb{R}^n \to \mathbb{R}^n \), find \(\bar{x} \in \mathcal{X}(\bar{x}) \) s.t. \(F(\bar{x})^\top(x - \bar{x}) \geq 0 \), \(\forall x \in \mathcal{X}(\bar{x}) \)

▷ informal: *a VI where the feasible set depends on the point* \(x \)
▷ we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: \(F : \mathbb{R}^n \to \mathbb{R}^n \), \((\Delta, \mathcal{F}, \mathbb{P})\), set val. maps \(\{\mathcal{X}_\delta\}_{\delta \in \Delta} \)

- RQVI: find \(x_R \in \bigcap_{\delta \in \Delta} \mathcal{X}_\delta(x_R) \) s.t. \(F(x_R)^\top(x - x_R) \geq 0 \) \(\forall x \in \bigcap_{\delta \in \Delta} \mathcal{X}_\delta(x_R) \)
The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \rightrightarrows 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^\top (x - \bar{x}) \geq 0, \ \forall x \in \mathcal{X}(\bar{x})$

▷ informal: a VI where the feasible set depends on the point x
▷ we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F : \mathbb{R}^n \to \mathbb{R}^n$, $(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\{\mathcal{X}_\delta\}_{\delta \in \Delta}$

- **RQVI:** find $x_R \in \cap_{\delta \in \Delta} \mathcal{X}_\delta(x_R)$ s.t. $F(x_R)^\top (x - x_R) \geq 0 \ \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_\delta(x_R)$
- **S-RQVI:** find $x_S \in \cap_{i=1}^N \mathcal{X}_{\delta_i}(x_S)$ s.t. $F(x_S)^\top (x - x_S) \geq 0 \ \forall x \in \cap_{i=1}^N \mathcal{X}_{\delta_i}(x_S)$ where δ_i iid $\sim \mathbb{P}$

Risk: the risk associated to $x \in \mathbb{R}^n$ is $V(x) = \mathbb{P}\{\delta \in \Delta \text{ s.t. } x \notin \mathcal{X}_\delta(x)\}$

Theorem (informal): the same bounds on the risk hold for QVI.
The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \rightrightarrows 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^\top (x - \bar{x}) \geq 0$, $\forall x \in \mathcal{X}(\bar{x})$

▷ informal: *a VI where the feasible set depends on the point x*
▷ we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$, (Δ, \mathcal{F}, P), set val. maps $\{\mathcal{X}_\delta\}_{\delta \in \Delta}$

- RQVI: find $x_R \in \cap_{\delta \in \Delta} \mathcal{X}_\delta(x_R)$ s.t. $F(x_R)^\top (x - x_R) \geq 0$, $\forall x \in \cap_{\delta \in \Delta} \mathcal{X}_\delta(x_R)$
- S-RQVI: find $x_S \in \cap_{i=1}^N \mathcal{X}_{\delta_i}(x_S)$ s.t. $F(x_S)^\top (x - x_S) \geq 0$, $\forall x \in \cap_{i=1}^N \mathcal{X}_{\delta_i}(x_S)$, δ_i iid $\sim P$
The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \rightrightarrows 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^\top (x - \bar{x}) \geq 0, \ \forall x \in \mathcal{X}(\bar{x})$

- informal: a VI where the feasible set depends on the point x
- we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F : \mathbb{R}^n \to \mathbb{R}^n$, $(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\{\mathcal{X}_\delta\}_{\delta \in \Delta}$

- **RQVI:** find $x_R \in \cap_{\delta \in \Delta} \mathcal{X}_\delta(x_R)$ s.t. $F(x_R)^\top (x - x_R) \geq 0, \ \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_\delta(x_R)$
- **S-RQVI:** find $x_S \in \cap_{i=1}^N \mathcal{X}_{\delta_i}(x_S)$ s.t. $F(x_S)^\top (x - x_S) \geq 0, \ \forall x \in \cap_{i=1}^N \mathcal{X}_{\delta_i}(x_S)$

- δ_i iid $\sim \mathbb{P}$

Risk: the risk associated to $x \in \mathbb{R}^n$ is $V(x) = \mathbb{P}\{\delta \in \Delta \text{ s.t. } x \notin \mathcal{X}_\delta(x)\}$
The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \rightrightarrows 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^\top (x - \bar{x}) \geq 0$, $\forall x \in \mathcal{X}(\bar{x})$

▷ informal: *a VI where the feasible set depends on the point x*
▷ we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$, $(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\{\mathcal{X}_{\delta}\}_{\delta \in \Delta}$

RQVI: find $x_R \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}(x_R)$ s.t. $F(x_R)^\top (x - x_R) \geq 0$, $\forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}(x_R)$

S-RQVI: find $x_S \in \cap_{i=1}^N \mathcal{X}_{\delta_i}(x_S)$ s.t. $F(x_S)^\top (x - x_S) \geq 0$, $\forall x \in \cap_{i=1}^N \mathcal{X}_{\delta_i}(x_S)$

δ_i iid $\sim \mathbb{P}$

Risk: the risk associated to $x \in \mathbb{R}^n$ is $V(x) = \mathbb{P}\{\delta \in \Delta \text{ s.t. } x \notin \mathcal{X}_{\delta}(x)\}$

Theorem (informal): the same bounds on the risk hold for QVI.
Uncertain games
Uncertain games

- Each agent's decision $x_j \in X_j \subseteq \mathbb{R}^n$, let $X = X_1 \times \cdots \times X_M$.
- Each agent's cost function $C_j(x_j, x_{-j}; \delta)$:

 Robust NE ([Aghassi and Berstimas]):
 $x_R \in X$ is a robust NE if
 $$\max_{\delta \in \Delta} C_j(x_R; \delta) \leq \max_{\delta \in \Delta} C_j(x_j, x_{-j_R}; \delta)$$
 $\forall x_j \in X_j, \forall j$.

- Often agents have access to past realizations δ_i from (Δ, F, P).

 Sampled robust NE: \{ δ_i \}_{N_i=1} \text{iid} \sim P, x_S \in X$ is a sampled robust NE if
 $$\max_i C_j(x_S; \delta_i) \leq \max_i C_j(x_j, x_{-j_S}; \delta_i)$$
 $\forall x_j \in X_j, \forall j$.

Uncertain games

- M agents
Uncertain games

- M agents
- each agent’s decision $x^j \in \mathcal{X}^j \subseteq \mathbb{R}^n$, let $\mathcal{X} = \mathcal{X}^1 \times \cdots \times \mathcal{X}^M$
Uncertain games

- M agents
- each agent’s decision $x^j \in \mathcal{X}^j \subseteq \mathbb{R}^n$, let $\mathcal{X} = \mathcal{X}^1 \times \cdots \times \mathcal{X}^M$
- each agents’ cost function $C^j(x^j, x^{-j}; \delta) : \mathcal{X} \times \Delta \rightarrow \mathbb{R}$
Uncertain games

- M agents
- each agent’s decision $x^j \in \mathcal{X}^j \subseteq \mathbb{R}^n$, let $\mathcal{X} = \mathcal{X}^1 \times \cdots \times \mathcal{X}^M$
- each agents' cost function $C^j(x^j, x^{-j}; \delta) : \mathcal{X} \times \Delta \rightarrow \mathbb{R}$

Robust NE ([Aghassi and Berstimas]): $x_R \in \mathcal{X}$ is a robust NE if

$$\max_{\delta \in \Delta} C^j(x_R; \delta) \leq \max_{\delta \in \Delta} C^j(x^j, x_R^{-j}; \delta) \quad \forall x^j \in \mathcal{X}^j, \forall j$$
Uncertain games

- M agents
- each agent’s decision $x^j \in X^j \subseteq \mathbb{R}^n$, let $X = X^1 \times \cdots \times X^M$
- each agents’ cost function $C^j(x^j, x^{-j}; \delta) : X \times \Delta \rightarrow \mathbb{R}$

Robust NE ([Aghassi and Berstimas]): $x_R \in X$ is a robust NE if

$$\max_{\delta \in \Delta} C^j(x_R; \delta) \leq \max_{\delta \in \Delta} C^j(x^j, x_R^{-j}; \delta) \quad \forall x^j \in X^j, \forall j$$

▷ often agents have access to past realizations δ_i from $(\Delta, \mathcal{F}, \mathbb{P})$
Uncertain games

- M agents
- each agent’s decision $x^j \in \mathcal{X}^j \subseteq \mathbb{R}^n$, let $\mathcal{X} = \mathcal{X}^1 \times \cdots \times \mathcal{X}^M$
- each agents’ cost function $C^j(x^j, x^{-j}; \delta) : \mathcal{X} \times \Delta \to \mathbb{R}$

Robust NE ([Aghassi and Berstimas]): $x_R \in \mathcal{X}$ is a robust NE if

$$\max_{\delta \in \Delta} C^j(x_R; \delta) \leq \max_{\delta \in \Delta} C^j(x^j, x_R^{-j}; \delta) \quad \forall x^j \in \mathcal{X}^j, \forall j$$

▷ often agents have access to past realizations δ_i from $(\Delta, \mathcal{F}, \mathbb{P})$

Sampled robust NE: $\{\delta_i\}_{i=1}^N$ iid $\sim \mathbb{P}$, $x_S \in \mathcal{X}$ is a sampled robust NE if

$$\max_i C^j(x_S; \delta_i) \leq \max_i C^j(x^j, x_S^{-j}; \delta_i) \quad \forall x^j \in \mathcal{X}^j, \forall j$$
Risk associated to sampled robust NE

Setup: samples $\{\delta_i\}_{i \in N}$ are known to the agents, which decide to play x_S.

Answer: an application of the previous theory.

Let agent's risk be $V_j(x_S) = P\{\delta \in \Delta \text{ s.t. } C_j(x_S; \delta) \geq \max_i C_j(x_S; \delta_i)\}$

Theorem: existence, uniqueness, non-degeneracy $\Rightarrow \Delta$-a-priori bound on risk: $P_N[V_j(x_S) \leq \epsilon (nM + M)] \geq 1 - \beta$

Δ-a-posteriori bound on risk: $P_N[V_j(x_S) \leq \epsilon (s)] \geq 1 - \beta$
Risk associated to sampled robust NE

Setup: samples \(\{\delta_i\}_{i \in N} \) are known to the agents, which decide to play \(x_S \).

\[
(\delta_1, \ldots, \delta_N) \rightarrow \text{Sampled robust Nash} \rightarrow \text{solution } x_S
\]
Risk associated to sampled robust NE

Setup: samples $\{\delta_i\}_{i \in N}$ are known to the agents, which decide to play x_S.

$$(\delta_1, \ldots, \delta_N) \rightarrow \text{Sampled robust Nash} \rightarrow \text{solution } x_S$$

Q: how likely is each agent to incur a higher cost than what predicted? i.e., higher than $\max_i C^i(x_S; \delta_i)$?
Risk associated to sampled robust NE

Setup: samples \(\{\delta_i\}_{i \in \mathcal{N}} \) are known to the agents, which decide to play \(x_S \).

\[
(\delta_1, \ldots, \delta_N) \rightarrow \text{Sampled robust Nash} \rightarrow \text{solution } x_S
\]

Q: how likely is each agent to incur a higher cost than what predicted? i.e., higher than \(\max_i C^j(x_S; \delta_i) \)?

Answer: an application of the previous theory.
Risk associated to sampled robust NE

Setup: samples \(\{\delta_i\}_{i \in N} \) are known to the agents, which decide to play \(x_S \).

\[(\delta_1, \ldots, \delta_N) \rightarrow \text{Sampled robust Nash} \rightarrow \text{solution } x_S \]

Q: how likely is each agent to incur a higher cost than what predicted? i.e., higher than \(\max_i C^j(x_S; \delta_i) \)?

Answer: an application of the previous theory. Let agent’s \(j \) risk be

\[V^j(x) = \mathbb{P}\{\delta \in \Delta \text{ s.t. } C^j(x; \delta) \geq \max_i C^j(x; \delta_i)\} \]
Risk associated to sampled robust NE

Setup: samples \(\{\delta_i\}_{i \in N} \) are known to the agents, which decide to play \(x_S \).

\[
(\delta_1, \ldots, \delta_N) \rightarrow \text{Sampled robust Nash} \rightarrow \text{solution } x_S
\]

Q: how likely is each agent to incur a higher cost than what predicted? i.e., higher than \(\max_i C^j(x_S; \delta_i) \)?

Answer: an application of the previous theory. Let agent’s \(j \) risk be

\[
V^j(x) = \mathbb{P}\{\delta \in \Delta \text{ s.t. } C^j(x; \delta) \geq \max_i C^j(x; \delta_i)\}
\]

Theorem: existence, uniqueness, non-degeneracy \(\implies \)

- a-priori bound on risk: \(\mathbb{P}^N[V^j(x_S) \leq \varepsilon(nM + M)] \geq 1 - \beta \)
- a-posteriori bound on risk: \(\mathbb{P}^N[V^j(x_S) \leq \varepsilon(s)] \geq 1 - \beta \)
Robust Charging games
Robust Charging games

- A fleet of EVs to recharge
Robust Charging games

- A fleet of EVs to recharge

\[\begin{align*}
\text{players:} & \quad j \in \{1, \ldots, M\} \\
\end{align*} \]
Robust Charging games

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$ players: $j \in \{1, \ldots, M\}$

\[
x_1^j \quad x_2^j \quad x_{n-1}^j \quad x_n^j
\]
Robust Charging games

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

\[
x^j_1 x^j_2 x^j_{n-1} x^j_n
\]

players: $j \in \{1, \ldots, M\}$

cost of j: $p(\sum_j x^j + d)^T x^j$
Robust Charging games

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

$$x_j^1 x_j^2 \ldots x_{n-1}^j x_n^j$$

players: $j \in \{1, \ldots, M\}$
cost of j: $p(\sum_j x_j^j + d)^T x_j^j$
Robust Charging games

- A fleet of EVs to recharge
- Each vehicle min bill in \([1, n]\)
 \[x_1^j \quad x_2^j \quad x_{n-1}^j \quad x_n^j\]
- Charging requirements

players: \(j \in \{1, \ldots, M\}\)
cost of \(j\): \(p(\sum_j x_j^j + d)^\top x_j^j\)

\[\text{constr: } x_j^j \in \mathcal{X}_j\]
Robust Charging games

- A fleet of EVs to recharge
- Each vehicle minimizes bill in $[1, n]$

 $x_1^j \ x_2^j \ x_{n-1}^j \ x_n^j$

- Charging requirements
- Past non-EV demand

players: $j \in \{1, \ldots, M\}$

cost of j: $p(\sum_j x_j^j + d)^\top x_j^j$

constr: $x_j^j \in \mathcal{X}_j$

samples: $\{d_i\}_{i=1}^N$
Robust Charging games

- A fleet of EVs to recharge
- Each vehicle min bill in \([1, n]\)

\[
\begin{align*}
\sum_{j=1}^{n} x_j & \\
\sum_{j=1}^{n-1} x_j &
\end{align*}
\]
- Charging requirements
- Past non-EV demand

literature: \(d\) known in advance \[\text{[Callaway, Chen, Grammatico, Hiskens, Ma, ...]}\]

- Past non-EV demand

players: \(j \in \{1, \ldots, M\}\)

cost of \(j\): \(p(\sum_{j} x_j + d)^{\top} x_j\)

constr: \(x_j \in X_j\)

samples: \(\{d_i\}_{i=1}^{N}\)
Robust Charging games

- A fleet of EVs to recharge
- Each vehicle min bill in \([1, n]\]
 \[x_1^j \quad x_2^j \quad x_{n-1}^j \quad x_n^j\]
- Charging requirements
- Past non-EV demand

literature: \(d\) known in advance \([\text{Callaway, Chen, Grammatico, Hiskens, Ma, \ldots }\]

Q: What guarantees can we provide the users without this assumption?
Numerical experiments

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees
Numerical experiments

Charging profile coordinated to a sampled-robust NE \leadsto prob. guarantees

- How “likely” are users to pay more than “expected”? Little
Numerical experiments

Charging profile coordinated to a sampled-robust NE \leadsto prob. guarantees

- How “likely” are users to pay more than “expected”? Little
- How “likely” are users to deviate from agreed charging? Little
Numerical experiments

Charging profile coordinated to a sampled-robust NE ⇜ prob. guarantees

- How “likely” are users to pay more than “expected”? Little
- How “likely” are users to deviate from agreed charging? Little

![Graph showing consumption profile over time]
Numerical experiments

Charging profile coordinated to a sampled-robust NE \(\rightsquigarrow \) prob. guarantees

- How “likely” are users to pay more than “expected”? Little
- How “likely” are users to deviate from agreed charging? Little

Simulations with \(M = 100 \) agents, \(N = 500 \) days of history
Numerical experiments

Charging profile coordinated to a sampled-robust NE \leadsto prob. guarantees

▷ How “likely” are users to pay more than “expected”? Little
▷ How “likely” are user to deviate from agreed charging? Little

Simulations with $M = 100$ agents, $N = 500$ days of history
\leadsto a-priori bound is not useful as $nM + M = 2500$
Numerical experiments

Charging profile coordinated to a sampled-robust NE \(\rightsquigarrow\) prob. guarantees

- How “likely” are users to pay more than “expected”? Little
- How “likely” are user to deviate from agreed charging? Little

Simulations with \(M = 100\) agents, \(N = 500\) days of history

\(\rightsquigarrow\) a-priori bound is not useful as \(nM + M = 2500\)

\(\rightsquigarrow\) a-posteriori bound is useful as typically \(3 \leq s \leq 7\)
Numerical experiments

Charging profile coordinated to a sampled-robust NE \leadsto prob. guarantees

- How “likely” are users to pay more than “expected”? Little
- How “likely” are users to deviate from agreed charging? Little

Simulations with $M = 100$ agents, $N = 500$ days of history
\leadsto a-priori bound is not useful as $nM + M = 2500$
\leadsto a-posteriori bound is useful as typically $3 \leq s \leq 7$

with $s = 7$, $V^j(x_S) \leq 6.5\%$ with probability larger than $1 - 10^{-6}$
Numerical experiments

Charging profile coordinated to a sampled-robust NE \(\Rightarrow \) prob. guarantees

- How “likely” are users to pay more than “expected”? Little
- How “likely” are users to deviate from agreed charging? Little

Simulations with \(M = 100 \) agents, \(N = 500 \) days of history
\(\Rightarrow \) a-priori bound is not useful as \(nM + M = 2500 \)
\(\Rightarrow \) a-posteriori bound is useful as typically \(3 \leq s \leq 7 \)

\[
V^j(x_S) \leq 6.5\% \quad \text{with probability larger than } 1 - 10^{-6}
\]
\(\Rightarrow \) exact calculations reveal that \(0.11\% \leq V^j(x_S) \leq 0.16\% \)
Numerical experiments

Charging profile coordinated to a sampled-robust NE \(\rightsquigarrow\) prob. guarantees

- How “likely” are users to pay more than “expected”? Little
- How “likely” are users to deviate from agreed charging? Little

Simulations with \(M = 100\) agents, \(N = 500\) days of history
\(\rightsquigarrow\) a-priori bound is not useful as \(nM + M = 2500\)
\(\rightsquigarrow\) a-posteriori bound is useful as typically \(3 \leq s \leq 7\)

with \(s = 7\), \(V^j(x_S) \leq 6.5\%\) with probability larger than \(1 - 10^{-6}\)
\(\rightsquigarrow\) exact calculations reveal that \(0.11\% \leq V^j(x_S) \leq 0.16\%\)
Conclusions and Outlook

Theme of this talk: take decision based on data and quantify risk
Conclusions and Outlook

Theme of this talk: take decision based on data and quantify risk

data \rightarrow variational inequality \rightarrow solution risk

Opportunities:
- novel and unexplored framework
- explore different applications
- tightly bound agents' private risk?
Conclusions and Outlook

Theme of this talk: take decision based on data and quantify risk

```
data → variational inequality → solution risk
```

Technical results: - a-priori/a-posteriori bounds for VI and QVI

Opportunities: novel and unexplored framework ⇝ explore different applications ⇝ tightly bound agents' private risk

sites.engineering.ucsb.edu/∼dariop dariop@ucsb.edu
Conclusions and Outlook

Theme of this talk: take decision based on data and quantify risk

![Diagram showing data → variational inequality → solution risk]

Technical results:
- a-priori/a-posteriori bounds for VI and QVI
- scenario approach for uncertain game theory

Opportunities:
- explore different applications
- tightly bound agents' private risk?

sites.engineering.ucsb.edu/~dariop dariop@ucsb.edu
Conclusions and Outlook

Theme of this talk: take decision based on data and quantify risk

![Diagram](data → variational inequality → solution risk)

Technical results:
- a-priori/a-posteriori bounds for VI and QVI
- scenario approach for uncertain game theory

Application: EV charging
Conclusions and Outlook

Theme of this talk: take decision based on data and quantify risk

```
data  →  variational inequality  →  solution
                   | risk
```

Technical results:
- a-priori/a-posteriori bounds for VI and QVI
- scenario approach for uncertain game theory

Application: EV charging

Opportunities:
- novel and unexplored framework
 - explore different applications
 - tightly bound agents’ private risk?
Conclusions and Outlook

Theme of this talk: take decision based on data and quantify risk.

- data → variational inequality → solution
- risk

Technical results:
- a-priori/a-posteriori bounds for VI and QVI
- scenario approach for uncertain game theory

Application: EV charging

Opportunities: novel and unexplored framework

⇝ explore different applications
⇝ tightly bound agents’ private risk?

sites.engineering.ucsb.edu/~dariop dariop@ucsb.edu
Conclusions and Outlook

Theme of this talk: take decision based on data and quantify risk

- data → variational inequality → solution risk

Technical results:
- a-priori/a-posteriori bounds for VI and QVI
- scenario approach for uncertain game theory

Application: EV charging

Opportunities:
- novel and unexplored framework
- explore different applications
- tightly bound agents’ private risk?

sites.engineering.ucsb.edu/~dariop dariop@ucsb.edu