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Abstract

A database derived from tests on specimens with a large range of ligament (b) and thickness (B) dimensions was sys-
tematically analyzed to evaluate constraint loss and statistical size effects on cleavage fracture toughness. The objectives
were to: (1) decouple size effects related to constraint loss, mediated by b and B, from those arising from statistical effects,
primarily associated with B; and, (2) develop procedures to transfer toughness data to different conditions of constraint
and B. The toughness database for a Shoreham pressure vessel steel plate, tested at a common set of conditions, was
described in a companion paper. Quantification of constraint loss was based on an independently calibrated 3D finite-ele-
ment critical stress-area, r� � ½KJm=KJ c �, model. The measured toughness data, KJm

, were first adjusted using computed
½KJm=KJc � constraint loss factors to the corresponding values for small scale yielding conditions, KJ c ¼ KJm=½KJm=KJ c �.
The KJc

were then statistically adjusted to a KJr
for a reference Br = 25.4 mm. The B adjustment was based on a critically

stressed volume criterion, modified to account for a minimum toughness, Kmin, consistent with modest modifications of the
ASTM E 1921 Standard procedure. The combined r� � ½KJm=KJ c � � Kmin adjustment procedure was applied to the Shore-
ham b � B database, producing a homogeneous population of KJr

data, generally within the expected scatter. The analysis
suggests that: (1) there may be a maximum B beyond which statistical size effects diminish, and (2) constraint loss in the
three-point bend specimens begins at a relatively low deformation level. A corresponding analysis, based on a Weibull
stress, rw � ½KJm=KJ c � � Kmin, adjustment procedure, yielded similar, but somewhat less satisfactory, results. The optimized
adjustment procedure was also applied to other KJm

data for the Shoreham plate from this study, as well as a large data-
base taken from the literature. The population of 489KJr

data points, covering an enormous range of specimen sizes, geo-
metries and test temperatures, was found to be consistent with the same master curve T0 = �84 �C derived from the b � B

database. Thus, calibrated micromechanical models can be used to treat size and geometry effects on KJm
, facilitating using

small specimens and data transfer to predict the fracture limits of structures.
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Nomenclature

A stressed area
hAi stressed area averaged over the crack front thickness direction
A0 non-dimensional stressed area
Ap plastic area under the load–displacement curve use to calculate J

A* critical area
Assy stressed area under small scale yielding conditions
a crack length
B specimen thickness
Bmax thickness limit for statistical size scaling
Br reference thickness
b ligament size
ci linear regression coefficients
Ci polynomial regression coefficients for the non-dimensional stressed area as a function of r22/ry

deff effective trigger particle size
E elastic modulus
J elastic–plastic J-integral
Jm critical measured JI equivalent to KJm

Jc critical J at SSY
Jcr Jc equivalent to KJr

at the reference thickness Br

Jcrs small scale yielding Jcr at the reference thickness Br

Jcrl large scale yielding Jcr at the reference thickness Br

Jp experimental plastic J

KI mode I stress intensity factor
KJ elastic–plastic K derived from J
KJc

small scale yielding toughness
KJ 0c nominal SSY value for a specified B
KJm

measured KJ at cleavage
KJmax

maximum value of toughness
KJ0

maximum likelihood median toughness
KJr

reference KJ

KJB KJm
adjusted to thickness B

Kmin threshold K below which Pf = 0
Ku KJc

at Pf = 0.63
½KJm

=KJ c
� computed constraint loss adjustment factor

mr Weibull strength modulus
mk Weibull toughness modulus
M in-plane deformation factor � br0=J ¼ Er0b=K2

Jm

Mlim data censoring limit with Mlim = 30 in ASTM E 1921 procedure
n fit for Bmax

ns number of SSY toughness data points
nl number of LSY toughness data points
p B-size scaling exponent
Pf fracture probability
R r22/ry

S loading span for bend tests
T temperature
T0 reference temperature
V* critical stressed volume
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Vr reference volume
W specimen width
x, y spatial dimensions in vicinity of crack tip
z out-of-plane, thickness direction position
d CTOD
e strain
/ssy square root of the sum of the squares of Jcrs

/lsy square root of the sum of the squares of Jcrl

r stress
r* critical stress
ry yield stress
rw Weibull stress
ru Weibull stress at Pf = 0.63
r1 first principal stress
r22 normal stress tensor component in the y-direction perpendicular to the crack plane
rmin minimum Weibull stress
g factor to define Jp from Ap as Jp = gAp/bB

m Poison’s ratio
q(mr) error metric for the difference between /ssy and /lsy

hxi average value of variable x

Acronyms

3PB single edge notched 3 point bend specimens
AP adjustment procedure
ASTM American Society for Testing and Materials
CDF cumulative distribution function
CT compact tension specimen
CL constraint loss
FE finite element
LSY large scale yielding
PCC pre-cracked Charpy
PPC post processing code
SSY small scale yielding
SPCC shallow pre-cracked Charpy
UCSB University of California Santa Barbara
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1. Introduction and background

It is well known that measured values of fracture toughness often depend on the test specimen size and geom-
etry. For example, materials science textbooks typically describe the increase in toughness associated with the
transition from conditions of plane strain to plane stress with decreasing specimen thickness (B – see Fig. 1
showing standard specimen geometries). However, this is only one manifestation of size effects that are related
to the stress and stress-state distributions in the local volume of material near the tip of a blunting crack. Under
plane strain, the crack tip stresses are higher than the materials’ flow stress due to triaxial constraint, with peak
stresses P3 times the yield stress, ry. In general, the crack tip stress fields depend on the true stress–strain con-
stitutive properties of the material, r(e), the size and geometry of the cracked body and loading. Loading is
described by the elastic–plastic J, or equivalent KJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Jð1� m2Þ=E�

p
, where E and m are the elastic modulus

and Poisson’s ratio, respectively. For limited conditions of deep cracks with a/W � 0.5, (where a is the crack
depth, W the specimen width and S the loading span – see Fig. 1) loaded in bending, and with a small plastic
zone embedded in a larger elastic region, the stress fields have a self-similar, fixed shape in distances normalized



Fig. 1. Standard 3PB specimens of various sizes with self-similar geometry.
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by J/[bry], or the crack tip opening displacement, d. Such small scale yielding (SSY) fields depend on the con-
stitutive properties and J, but are independent of the size and geometry of the cracked body.

Size and geometry factors that reduce the amplitude of the crack tip stress fields below SSY levels are
responsible for what are collectively known as constraint loss effects. There is a large literature on constraint
loss effects based on finite element simulations of crack tip fields for various specimen configurations.2 Con-
straint loss increases measured fracture toughness, KJm

, of body-centered cubic alloys in the cleavage transition
over corresponding SSY values, KJc

, (KJm
/KJc

> 1).3 Even under plane strain conditions, constraint loss is
caused by large scale in-plane plastic deformation, when the size of the plastic zone is no longer small com-
pared to the uncracked ligament, b, or other key cracked body dimensions, leading to a size dependence of
KJm

. For example, non-singular compressive T-stress fields, associated with shallow cracks or loading in ten-
sion, reduce constraint and increase KJm

[1–3].
In addition to constraint loss effects, there are also statistical size effects related to the volume of material

under high stress near the crack tip. At equal SSY J-loading, the highly stressed volume increases roughly with
the specimen thickness, B (neglecting side-surface effects). A larger volume increases the statistical probability
that a sufficiently high stress will encounter a sufficiently weak, so-called, trigger particle that produces a prop-
agating microcrack resulting in macroscopic cleavage. Trigger particles include large grain boundary carbides,
or clusters of carbides, and other brittle inclusions. The trigger particles fracture under the high crack tip stress
fields, enhanced by local strain incompatibilities. However, the critical event is continued propagation of the
particle nucleated cleavage microcrack through the ferrite matrix. Based on a modified Griffith criterion, the
stress required to produce a propagating microcrack varies as 1=

ffiffiffiffiffiffiffi
deff

p
, where deff is the effective trigger particle

size. The probability of triggering a large weak microcrack nucleation site not only varies with the stressed
volume, but also from specimen to specimen. Thus, statistical effects are also responsible for the natural scatter
in measured cleavage fracture toughness.

The American Society for Testing and Materials (ASTM) standard E 1921, ‘‘Standard Test Method for

Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range’’ specifically recognizes
both constraint loss and statistical size effects [4]. Constraint loss effects are treated indirectly, by a censoring
procedure, that assumes a maximum value of toughness, KJmax ¼ ðE0ryb=30Þ1=2, when a test KJm

exceeds a plas-
tic deformation limit defined by a parameter M
2 Th
papers
procee
Journa

3 Th
microv
M ¼ E0ryb

K2
Jm

< 30 ð1Þ
where E 0 = E/(1 � m2). The censored data are combined with uncensored KJm
< KJmax

, and then statistically ad-
justed to a reference thickness, Br = 25.4 mm, based on an equivalent stressed volume resulting in an equal
probability of fracture, Pf, that is 0 below a minimum Kmin, as,
e literature on constraint loss effects is far too extensive to fully cite. Pertinent information can be found in Anderson [2], scientific
in ASTM STP proceedings on Fracture, Fatigue and Fracture and two conferences specifically focused on constraint loss effects,

dings of various ASME PVP symposia, as well in archival journals such as Engineering Fracture Mechanics and International
l of Fracture. Hence, here we will cite only the most pertinent and representative references.

e crack tip stress state also influences ductile fracture toughness associated with the nucleation, growth and coalescence of
oids. However, we focus here on the effects of specimen size and geometry on cleavage initiation fracture toughness.
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KJB ¼ ½KJm � Kmin�
B
Br

� �1=4

þ Kmin ð2Þ
Analysis of a large database used to establish the master curve method in ASTM E 1921 resulted in a best fit
value of Kmin = 20 MPa

ffiffiffiffi
m
p

[4,5]. The KJB are then used to evaluate a maximum likelihood median toughness,
KJ0

, as well as the corresponding temperature T0 at KJ0
= 100 MPa

ffiffiffiffi
m
p

, based on the assumption of a univer-
sal master toughness temperature curve shape. The master curve method also allows setting lower and upper
bound confidence limits on cleavage toughness–temperature curves. More detailed discussion of the implica-
tions of our study to the ASTM E 1921 Standard are presented elsewhere [6]. Here, we focus on distinguishing
between the two mechanisms that lead to size (and geometry) effects by quantitatively modeling their conse-
quences to KJm

. The calibrated model can then be used to adjust KJm
data to SSY KJc

values and the KJc
to a

reference toughness, KJr
, at the reference Br.

Before proceeding further, it is useful to summarize and explain the logical nomenclature used in this paper.

• KJm
is the measured toughness that may depend on both constraint loss and statistical size effects.

• KJc
is the KJm

adjusted to SSY conditions at a specified B, that may be lower than KJm
due to constraint loss

effects.
• KJB is the statistically adjusted KJm

at Br, that may be higher or lower than KJm
due to statistical effects.

• KJr
is the SSY toughness at Br.

• KJ0
is the median toughness (note that ASTM E 1921 uses KJ cðmedÞ to define median toughness).

This non-standard nomenclature supports the basic objective of this work, which is to quantify the differ-
ences between KJm

and KJc
due to constraint loss effects and KJc

and KJr
due to statistical effects.

Prior to developing the database described in the companion paper [7], there was no direct basis to unam-
biguously discriminate constraint loss from statistical size effects. This was due to the fact that the vast major-
ity of toughness data was for specimens that varied in dimension, but had self-similar geometries, like the ones
shown in Fig. 1, with a relatively small range of B/b ratios. Notably, models of the initial stages of constraint
loss predict roughly the same size scaling as statistical size effects (b�1/4 versus B�1/4) in self-similar specimens
[8]. Thus, reductions in B attributed to statistical size effects could actually be associated with reductions in b

originating from constraint loss effects.
The statistical size effect adjustment has a reasonable physical foundation based on the fact that, for SSY,

the highly stressed volume scales as BK4
J . Thus, equal stressed volumes for two different B (B1 and B2) require a

corresponding applied KJ ratio, KJ1
/KJ2

= [B2/B1]1/4. This volume scaling does not itself provide a basis for a
Kmin, which is theoretically based on conditional probability concepts [2]. Indeed, it is not clear that Kmin is
a constant, or if it depends on other factors, such as KJ0

, or varies with temperature and/or from material
to material.

Alternative micromechanical models based on sympathetic events along the crack front [9], or process zone
damage coalescence instabilities [10] leading to cleavage could be expected to modify a simple and unbounded
[B2/B1]1/4 � Kmin type scaling. Further, both upper and lower B limits on [B2/B1]1/4 � Kmin type scaling can be
anticipated for a variety of reasons. Physical limits on the trigger particle distribution would be expected to
place some absolute upper bound on B for such scaling. It has also been proposed that B-scaling cannot
reduce KJc

below the equivalent arrest toughness value [11]. Further, an isolated microscopic pop-in damage
event, that would be sub-critical at larger B, may occupy a significant area fraction of the ligament in very thin
specimens, leading to immediate macroscopic fracture.

In order to better distinguish between constraint loss and statistical size effects, a full matrix of three point
bend fatigue pre-cracked fracture specimens with B from 8 to 254 mm (6 sizes) and b from 3.2 to 25.4 mm
(4 sizes) were fabricated from a single plate of steel taken from the Shoreham reactor pressure vessel and tested
at �91 �C at an otherwise common set of conditions. The experimental details and b � B database developed
in this single variable study are described in a companion paper [7]. We focus here on an analysis of this b � B

database using both deterministic and statistical micromechanical models coupled with three-dimensional
(3D) finite element (FE) simulations of the crack tip stress fields. The deterministic model was calibrated to
the local fracture properties of the Shoreham steel based on an independent set of fracture tests. The statistical
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model was self-calibrated, using the overall b � B database. The single variable database combined with the
model-based analysis has allowed, for the first time, an explicit de-coupling of statistical and constraint loss
mediated size effects. Further, the calibrated adjustment procedure facilitates both the use of small specimens,
and the transfer of such test data to predicting the fracture limits of structures.

The deterministic model was based on a critical stress, r*-critical stressed volume, V*, criterion modified by
a Kmin. The necessary calibration of r* was based on a set of high constraint data independent of the b � B

matrix. The procedure adjusts the measured KJm
data to the SSY KJc

using a calculated ½KJm=KJ c � constraint
loss factor, as KJ c ¼ KJm=½KJm=KJ c �, and then adjusts KJc

to KJr
with a modified statistical size effect scaling of

the general type given in Eq. (2), but with various modifications described below. The model based ½KJm=KJ c � is
based on FE calculations that specify the conditions when loading to KJc

under SSY and KJm
in an actual test,

at deformation levels beyond SSY, or large scale yielding (LSY), result in the same thickness averaged in-plane
stressed area, hA(r22)i, within a contour for a specified stress normal to the crack plane, r22 = r*. For a given
B, the cleavage fracture condition is that hA(r*)i = A*. The subsequent use of the statistical size effect adjust-
ment with a modified form of Eq. (2) then establishes conditions for equal stressed volumes, modified by a
probability of cleavage fracture Pf = 0 below Kmin, as well as a possible saturating effect of B. Note, the
sequential application of the constraint loss and statistical size effect adjustments is necessary to use the Kmin

modification for equivalent stressed volumes as represented by Eq. (2). These combined steps are referred to as
the r� � ½KJm=KJ c � � Kmin adjustment procedure (AP).

A second adjustment procedure was based on the Weibull stress, rw, concept. Here, the statistical proba-
bility, Pf, for fracture is a function of an applied Weibull stress, rw, loading parameter, a minimum stress, rmin,
below which the probability of fracture is 0 and two other material parameters that are found by fits to the
KJm

b � B database. The Weibull stress exponent, mr, is the best-fit exponential weighting of the crack tip stress
distribution in computing rw, and ru is the rw at Pf = 0.63. The Weibull model was self-calibrated by defining
b � B database groups that represent SSY conditions and various subsets of the b � B database that represent
LSY conditions, or a mix of LSY and SSY. The rw � J trajectory up to the point of fracture was evaluated for
both SSY conditions and the specific specimen geometry. The ratio of the critical specimen Jm at fracture to
the corresponding SSY J (Jc) at the same rw was used to establish the corresponding ½KJm=KJ c �. The KJc

were
then adjusted to KJr

, again using various modifications to Eq. (2). The self-calibration involves finding an opti-
mal mr that results in a minimum difference between the root mean square of the SSY and adjusted KJr

b � B

datasets, plus additional criteria described below. We refer to this approach as the rw � ½KJm=KJ c � � Kmin AP.
Note, since the rw � ½KJm=KJ c � adjustments intrinsically involve a stressed volume and rmin, it might be
assumed that the Weibull model does not require a separate B-scaling adjustment. However, the use of rmin

does not have the same effect as Kmin. Overall, the rw � ½KJm=KJ c � � Kmin adjustments were generally less sat-
isfactory than those for the r� � ½KJm=KJ c � � Kmin AP.

The paper proceeds as follows. Section 2 describes the r� � ½KJ m=KJ c � � Kmin AP, and the resulting de-cou-
pling and quantification of statistical versus constraint loss effects on KJr

. Section 3 presents the corresponding
rw � ½KJm=KJ c � � Kmin AP, and compares its predictions to those of the r� � ½KJm=KJ c � � Kmin AP. Section 4
applies the r� � ½KJm=KJ c � � Kmin AP to the b � B database and additional UCSB data, including some inde-
pendent low constraint KJm

, as well as to a database of the Shoreham steel, from tests using conventional spec-
imens over a wide range of temperatures, reported by Joyce and Tregoning. The results of this study are
summarized in Section 5.

2. The r* � [KJc
/KJm

] � Kmin model

2.1. Finite element simulations of crack tip stress fields

The r� � ½KJm=KJ c � constraint loss adjustment factor was computed by finite element (FE) simulations of
the crack tip stress fields using the general purpose ABAQUS FE code [12] based on the small strain approxi-
mation. The material property input to the FE simulations are the elastic modulus E(=207.9 GPa), Poison’s
ratio m(=0.29), ry and true plastic stress–strain constitutive law, r(e), for the Shoreham steel. The r(e) was
measured using tensile tests over a range of temperatures, including at the test condition for the b � B matrix
at �91 �C. The crack tip stress in the y-direction normal to the x � z crack plane, r22, was used to define cleav-
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age conditions; note, r22 is similar to the first principal stress. The area, A(r22/ry), within a normalized r22/ry

stress contour was evaluated as a function of the non-dimensional J/[bry]. Following Nevalainen and Dodds
[13], the SSY Assy(KJ,r22/ry) were computed based on a plane strain elastic boundary layer analysis. The SSY
boundary layer mesh consisted of 1200 two-dimensional, eight-noded plane strain elements. The finite radius
mesh was very refined near the crack tip, and increased in size out to a large boundary radius to ensure that the
plastic zone was deeply embedded in an elastic zone. Elastic displacements were imposed on the boundary
nodes with a T-stress equal to 0. As expected, the A(r22) increased in proportion to K4

J . The post-processing
procedures are described below.

A quarter-symmetry mesh composed of 2480 20-noded quadratic brick elements was used in the 3D FE
simulations of A(KJ,r22/ry,z) for all the independent specimen geometries in the b � B matrix, where z is
the out of plane, thickness direction position. In addition to the crack tip fields for the b � B matrix at
�91 �C, FE simulations were also carried out for both smooth sided and side-grooved compact tension spec-
imens, as well as deep and shallow pre-cracked bend specimens with B/W = 0.5 and 1 over a range of temper-
atures corresponding to all the other test data analyzed in this study. Wedge-shaped elements, with
overlapping nodes at an initially sharp crack tip, were used to model blunting up to high levels of plastic defor-
mation, corresponding to a minimum M of less than 10. The out of plane direction was divided into 10 mesh
layers that decreased in thickness from the specimen middle to the surface at a constant ratio of 0.8, in order to
better account for the out-of-plane z-direction stress field and J gradients. Bend tests were simulated by apply-
ing specified increments of displacement to the loading pin in the middle of the specimen spanning two support
pins. The path independence of J computed by ABAQUS was verified and sensitivity studies were carried out
to assure the adequacy of the baseline mesh. Note, the r22 fields based on the small strain approximation (dic-
tated by the size of the 3D FE calculations) continue to increase above the corresponding peak for an anal-
ogous large geometry change, large strain blunting solutions. However, except in some very special
circumstances described below, the small strain approximation had little or no effect on the results or conclu-
sions of this study.

A post-processing code (PPC) was developed to determine the Assy(r22/ry) and A(r22/ry). The PPC reads in
all nodal coordinates, stress and J-integral values for each deformation increment in the ABAQUS simulation.
The PPC then determined the nodes surrounding a specified r22/ry stress contour point on designated radial
lines emanating from the crack tip, as shown in Fig. 2. The coordinate on this line at the specified r22/ry was
obtained by linear interpolation between the stresses and positions of the bounding nodes. The total area
within the stress contour was then calculated as a sum of the corresponding areas of the individual radial seg-
ments. The thickness-averaged J and corresponding average stressed areas hA(r22/ry, KJ)i were based on the
Fig. 2. Illustration of the evaluation of the in-plane area, A, within a stress r22/ry stress contour.



Fig. 3. The r* � A* model fit to the high constraint characterization data.
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volume-weighted average of the 10 out-of-plane sections. The load–displacement results were also used along
with the average J to compute g-factors4 for the various non-dimensional specimen geometries.

Both the SSY and 3D FE methods used in this study were verified by comparisons to the results of Nev-
alainen and Dodds [13] and other workers [15]. Note, however, that since some of the details of the 3D versus
2D plane strain SSY FE computations and analysis procedures were slightly different, the nominal ½KJm=KJ c �
falls slightly below unity at high M (e.g., M ’ 200 for r22/ry � 3). Thus, no constraint adjustment is applied
for specimens with measured M P 200 or ½KJm=KJ c � < 1. Note that one reason for ½KJm=KJ c � < 1 in some cases
for large M values is due to the large positive T-stress in deep noded specimens. Finally, since Assy scales with
K4

J it is not necessary to evaluate directly KJm
and KJc

at a common Assy = hAi since, in practice, it is simpler to
use the equivalent ½KJm=KJ c � ¼ ½AssyðKJ Þ=hAðKJ Þi�1=4 relation. However, it was necessary to calibrate the model
for r* for the Shoreham steel.

2.2. Calibration of r� � ½KJm=KJc � CL factor adjustment procedure

For a given constitutive law [E, m and r(e)] and specimen geometry, [KJm
/KJc

] is a function of KJ and
r22/ry = r*/ry = R. In deeply cracked bend specimens, [KJc

/KJm
] increases with decreasing R, or lower r22,

due to increased distance from the crack tip. Thus, to apply the r*-model we must estimate r* for the
Shoreham plate. This was done using a r* � A* model for KJc

(T), where T is temperature, developed to predict
the shape of the SSY master curve [14]. The model uses an empirical ry(T) and assumes that r* and A* are
constant and independent of temperature below �0 �C. For SSY conditions, Assy(r22,KJ) increases with
K4

J , and cleavage occurs when at Assy(r*,KJc
) = A*. The finite element Assy results can be represented in a

compact non-dimensional form, A0, as [13]
4 Th
A0 ¼ log Assyðr22=ryÞr4
y=K4

J

h i
ð3Þ
The FE evaluation of the SSY A0(r22/ry) was fitted (C0,C1,C2) to a simple polynomial as
A0ðr22=ryÞ ¼ C0 þ C1ðr22=ryÞ þ C2ðr22=ryÞ2 ð4Þ

Eqs. (3) and (4) can be used to evaluate KJc

at specified values of r22 = r*, Assy = A* as
KJ cðT Þ � ryðT Þ½A�10A0ðr�=ryÞ�1=4 ð5Þ

Eq. (5) can be calibrated by fitting the set of SSY KJc

(T) data shown in Fig. 3. The independent set of calibra-
tion data, statistically adjusted to a thickness of 25.4 mm, and assumed to represent SSY conditions, was used
e g factor is use to define the experimental plastic J(Jp) from the plastic area under the load displacement curve (Ap) as Jp = g Ap/bB.



Fig. 4. The computed ½KJm=KJc � factor for R = 3 versus M and B/W.
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to estimate r* � A* for the Shoreham plate. The filled squares are data from 25.4 mm thick compact tension
specimens (1TCT) and the open circles are 10 mm thick pre-cracked Charpy specimens (PCC). In both cases,
the specimens were pre-cracked with a/W � 0.5 and side grooved to a depth of 0.1B on each side. The data are
adjusted to a common Br = 25.4 mm. Assessment of the preliminary data gave a master curve T0 � �91 �C.
This T0 and the data are consistent with the predictions of Eq. (5) shown as the solid line for
A* = 3.7 · 10�8 m2 and r*/ry = 3.0. Note, the additional fitting criterion for A* was that the predicted KJc

(T)
be consistent with the master curve shape in the lower shelf-knee regime with a minimum KJr

of �30 MPa
ffiffiffiffi
m
p

.
The dashed lines for r*/ry = 2.75 and 3.25 bound the data. The calibration data set was re-examined with the
final constraint loss adjustment model to verify that it provided a good SSY basis for calibration of r*.

Fig. 4 shows the predicted [KJc
/KJm

] versus M ¼ bryE0=K2
J for R = 3 and various B/W at �91 �C. Constraint

loss is rapid and large for small B/b 6 0.6. This can be understood in terms of rapid loss of out-of-plane con-
straint (or conditions that approach plane stress for much of the specimen thickness). The results also suggest
that slightly higher constraint loss occurs at larger B/b P 5. This may due to the fact that, in bending, these
specimens act more like cracked plates than cracked beams. Note that anticlastic deformations may play a role
at large B/W; however, both FE analysis and strain gauging measurements suggested that they had a mini-
mum effect on the test results themselves [15].

2.3. Statistical size adjustments

In the companion paper, we showed that the b � B database is generally consistent with statistical size
adjustments given in Eq. (2). In this study, we consider combinations of three modifications of the basic
ASTM E 1921 model: (1) a B-scaling exponent p that is not fixed at 0.25; (2) a Kmin that is not fixed a
20 MPa

ffiffiffiffi
m
p

; (3) a maximum B limit, Bmax, on statistical scaling. Thus, a generalized form of Eq. (2) used
for fitting the average adjusted KJc

data at the various B, hKJc
(B)i
hKJ cðBÞi ¼ ½hKJ cðBrÞi � Kmin�
Br

B0

� �1=4

þ Kmin ð6aÞ

B0 ¼ Bmax½1� expð�B=BmaxÞn�1=n ð6bÞ
Here, hKJc
(Br)i, p, Kmin and Bmax are the fitting parameters. A value of n = 10 that provides rapid transition to

a saturating B limit for statistical scaling was used in this study. The value of n = 10 was used for numerical
convenience, but itself bears no physical significance, other than that the B-effect saturates above some size for
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the test matrix in this study. Since there is a strong covariance between p and Kmin, only one of these para-
meters could be fit at a time, while the other must be set at a fixed value.

2.4. Application of the ½KJm=KJc � � Kmin constraint adjustment procedure

Fits of Eq. (6) to the averaged ½KJm=KJ c � adjusted hKJc
(B)i data were carried out for four variations of the

statistical adjustment procedure: (1) p = 0.25, Kmin = 20 MPa
ffiffiffiffi
m
p

and no Bmax (the ASTM E 1921 proce-
dure); (2) p = 0.25 and Kmin = 20 with a fitted Bmax; (3) Kmin = 20 MPa

ffiffiffiffi
m
p

with fitted p and Bmax; and (4)
p = 0.25, with fitted Kmin and Bmax. The fit results are shown in Fig. 5 and summarized in Table 1. Fig. 6 shows
the corresponding average hKJr

i for all b � B combinations as a function of B. Linear regression statistical
tests of the significance of the c1 and c2 coefficients of least square fit expressions in the form of
hKJr
i = c1 + c2B show no significant overall systematic trend with B, except for the ASTM model without a

Bmax, with hKJr
i = 86.9 + 0.0555B. This suggests that there may be a maximum limit for statistical B-scaling
Fig. 5. The hKJc
(B)i versus B for the r� � ½KJm=KJc � � Kmin AP for the four B-scaling models.

Table 1
Fit parameters for the four different B-scaling models

B-scaling model KJr
(MPa

ffiffiffiffi
m
p

) p Kmin (MPa
ffiffiffiffi
m
p

) Bmax (mm) SDa (MPa
ffiffiffiffi
m
p

)

ASTM E 1921 89.7 ± 1.7 0.25 20 – 10.2
ASTM w/Bmax 88.8 ± 0.98 0.25 20 121.6 ± 20.7 8.7
p fitted w/Bmax 89.3 ± 0.66 0.224 ± 0.01 20 153.6 ± 24.8 8.5
Kmin fitted w/Bmax 89.1 ± 0.67 0.25 26.8 ± 2.7 157.3 ± 29.5 8.7

a Standard deviation of the adjusted hKJr
(b,B)i data.



Fig. 6. The hKJr
(B,b)i versus B for the r� � ½KJm=KJ c � � Kmin AP for the four B-scaling models.

Fig. 7. The CDF of all the averaged hKJr
i data for the r� � ½KJm=KJc � � Kmin AP for the four B-scaling models.
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in the b � B database, with a Bmax � 120–160 mm. This conclusion is also consistent with an analysis of only
high constraint data with ½KJm=KJ c � 6 1:05, which reduces possible bias introduced by the constraint
adjustments.

Similar fits to hKJr
i = c3 + c4b showed no significant and systematic effect of b, although on average hKJr

i
for the smallest b = 3.2 mm is somewhat lower than for the others (see discussion below). This is primarily
associated with low average values of KJm

, hence, hKJr
i for b = 3.2 mm at both B = 16 and 32 mm. However,
Fig. 8. The CDF of all the KJr
data for the r� � ½KJ m=KJc � � Kmin AP for the four B-scaling models.

Fig. 9. An empirical estimate of the constraint loss, ðKJm � KJ 0c Þ, versus the r� � ½KJm=KJ c � � Kmin AP, (KJm
� KJc

), for the fitted p and
Bmax statistical-scaling model.
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there is also a hKJr
i point for b = 25.4 mm and B = 127 mm that is even lower. The scatter in the hKJr

i of �8.5–
10.2 MPa

ffiffiffiffi
m
p

is consistent with both standard statistical estimates and Monte Carlo simulations predict
standard deviation of the average hKJr

i for 8 tests per b � B condition of �8.2 MPa
ffiffiffiffi
m
p

for an overall pop-
ulation of KJr

data with a standard deviation of about �±23 MPa
ffiffiffiffi
m
p

.
Fig. 7 shows the corresponding cumulative distribution function (CDF) plots of the hKJr

i data along with a
fitted normal distribution function. Fig. 8 shows CDF plots and fits to all the b � B KJr

data (184 points) for
the various b. In all cases, the smallest b = 3.2 mm specimens have lower adjusted toughness values, especially
at KJr

P �98 MPa
ffiffiffiffi
m
p

; below this value the smaller deviations are <7 MPa
ffiffiffiffi
m
p

lower than the average CDF
for the specimens with the three larger b values. The overall standard deviation of the KJr

data is also lower for
the b = 3.2 mm dataset.

These differences might be attributed to over-adjustment of the KJm
data by the r� � ½KJm=KJ c � � Kmin pro-

cedure, since the b = 3.2 mm specimens generally suffer the larger constraint loss. The difference between the
overall CDF for the b = 3.2 mm and other data with larger b is greater for all the models with a Bmax. This is
because most (5/7) of the b = 3.2 mm data at KJr

P 98 MPa
ffiffiffiffi
m
p

are for specimens with the largest B = 127
and 254 mm (note this number is 11/15 for KJr

P 90 MPa
ffiffiffiffi
m
p

). Both the higher Kmin (for p = 0.25) and lower
p (for Kmin = 20 MPa

ffiffiffiffi
m
p

) models with a Bmax result in a smaller (for B = 127 mm) to a much smaller (for
B = 254 mm) statistical B-scaling adjustment (KJr

/KJc
> 1) compared to the ASTM E 1921 model (no Bmax

and fixed p = 0.25 and Kmin = 20 MPa
ffiffiffiffi
m
p

). Thus, in addition to possible small over-adjustments for con-
straint loss, these deviations in the higher part of the KJr

CDF distribution for the b = 3.2 mm specimens could
be due to experimental bias, especially in cases with large B and hence very atypical B/b ratios of about 40–80.

The potential for bias in the b = 3.2 mm specimens can be qualitatively understood in terms of the sensi-
tivity of KJm

to b and a/W. The KJm
were based on the nominal a/W for each specimen evaluated using a stan-

dard 9 point averaging procedure, with an overall average of 3.0 ± 0.33 mm for all the specimens. However,
variations in a/W across the crack front were not accounted for in evaluating the KJm

. Of course, the effects of
such a/W deviations is greatest for b = 3.3 mm specimens. Further, the a/W deviations are expected to be gen-
erally more pronounced for larger B. Since cleavage would tend to initiate at the largest a/W, the data would
be biased towards lower KJm

, due to a potentially higher actual applied KI stress intensity factor at the site of
fracture than given by the nominal a/W. Further, it is conceivable that, due to alloy heterogeneities, the fatigue
pre-crack depth tends to be largest in the most brittle regions along a crack front, where initiation is also most
likely to occur. Differences in T-stresses and non-linear elastic–plastic loading would amplify a crack depth
bias effect. Thus, the deviations in CDF for b = 3.2 mm specimens may be partly due to experimental bias
in the data.

We have not carried out a more detailed evaluation that attempts to correlate the local initiation site and
crack depth in each case, nor have we fully quantified the effects of crack front depth deviations on a potential
bias in the KJm

data. However, examination of the 9-point average database used to establish the nominal a/W
for all the specimens supports the hypothesis outlined above. The deepest crack front deviations are largest for
the b = 3.2 mm specimens, averaging 5.7%, versus 1.5% for the larger b cases. Further, the deepest a/W deviate
from the average �5–18% (averaging �10%) in the b = 3.2 specimens with B P 127 mm, compared to 1–7%
(averaging �3%) for the thinner specimens with B 6 32 mm. Notably, corresponding deviations for the shal-
lowest crack fronts are much smaller.

Another approach to assessing the potential for constraint loss over-adjustment is to inversely adjust the
overall population average hKJr

i = 91.3 MPa
ffiffiffiffi
m
p

to the corresponding nominal SSY value for a specified
B, KJ 0cðBÞ, using a selected B-scaling model. Assuming the B-scaling model is correct, the resulting
KJmðBÞ � KJ 0cðBÞ provide an empirical estimate of constraint loss, albeit one that is scattered due to the intrin-
sic statistical distribution of the actual KJm

data itself. Fig. 9 plots KJm � KJ 0c versus the r� � ½KJ m=KJ c � � Kmin

constraint loss adjustment, KJm
� KJc

, for the fitted p and Bmax statistical-scaling model. As expected, the data
is scattered, but the general trend shows that KJm � KJ 0c is actually greater than KJm

� KJc
, especially for larger

adjustments. This is directly opposite to the trend that would be expected if the r� � ½KJm=KJ c � procedure over
adjusts the KJc

data.
In order to further distinguish the four models, Weibull plots were constructed by assigning a CDF lowest

to highest KJr
ranked probability of fracture, Pf, given by



Fig. 10. Weibull plots of KJm
, KJB and KJr

for the r� � ½KJm=KJ c � � Kmin AP for the four B-scaling models.

Fig. 11
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P f ¼ 0 KJ < Kmin ð7aÞ

P f ¼ 1� exp � KJ r � Kmin

Ku � Kmin

� �mk
� �

KJ > Kmin ð7bÞ
Here, Ku = KJc
at Pf = 0.63. For a critically stressed volume model, modified by Kmin, mk = 4, or 1/p. More

generally, plots of ln[� ln(1 � Pf)] versus ln[KJ � Kmin] have a slope of mk and an ordinate equal to 0 at
Pf = 0.63. Fig. 10 shows the Weibull plots, including the measured toughness KJm

(offset by +0.75); the mea-
sured toughness adjusted for statistical B-scaling, KJB ; and KJr

(offset by �0.5) for the four statistical B-scaling
models. Assuming Pf in the form given by Eq. (7), the deviations from the least squares fit lines at high tough-
. The hKJm
i, hKJc

i and hKJr
i adjustments as a function of b and B showing the pattern of constraint loss and statistical adjustments.



H.J. Rathbun et al. / Engineering Fracture Mechanics 73 (2006) 2723–2747 2737
ness indicate loss of constraint. Deviations at low toughness indicate that Eq. (7) does not describe well the
lower tail of the toughness distribution.

The combined constraint loss and statistical adjustments provide reasonable KJr
Weibull distributions with

minimum deviations from a best-fit mk. The least squares fits show that all the models with
Kmin = 20 MPa

ffiffiffiffi
m
p

give a mk close to the nominal value of 4. For the fitted Kmin = 26.8 MPa
ffiffiffiffi
m
p

model,
mk is lower by �3.5. Among the variants, the fitted p and ASTM models with a Bmax give a slightly better
overall Weibull fit than the others. Again, given the strong covariance, similar fits are provided by other paired
combinations of p (�0.22–0.25) and Kmin (�20–27 MPa

ffiffiffiffi
m
p

). For further discussion, we will use the
p = 0.224, Kmin = 20 MPa

ffiffiffiffi
m
p

and Bmax � 154 mm model, which appears to give the best overall results.
Fig. 11 shows the pattern constraint loss and statistical adjustments as a function of b and B. The open

symbols are measured KJm
data and the filled symbols fully adjusted KJr

data. The dashed line shows the con-
straint loss adjustment and the solid line the statistical adjustment. The former are dominant at small and
intermediate B, while the latter are most important at the larger B. The horizontal dashed lines mark the
one standard deviation scatter in hKJr

i. The strong decrease in hKJm
i with increasing B is evident, but it is clear

that this is partly due to constraint loss effects. For example, the thinnest specimens with B � 8 mm suffer sig-
nificant constraint loss even for the largest ligament with b = 25.4 mm. On the other hand, the constraint loss
is generally much less for specimens with the largest B, even for b = 3.2, due to the fact that the KJm

start out
Fig. 12. The magnitude of the constraint adjustments versus M for the various B/b for the r� � ½KJm=KJc � � Kmin AP.

Fig. 13. The KJ0
obtained from ASTM E 1921-97 procedure with varied M-limit (Mlim) for the measured KJm

, and the r� � ½KJm=KJ c � �
Kmin adjusted KJr

toughness data sets.
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lower due to the statistical size effects. That is, there is a strong interaction between constraint loss and statis-
tical size effects in the b � B matrix, and both must be properly treated in order to understand how they act to
influence the measured KJm

.
Fig. 12 shows the magnitude of the calculated constraint loss adjustment, KJm

� KJc
, as a function of M for

the various B/b. The trends are similar, but the specimens with the smallest B/b < 1 lose constraint very rap-
idly, while the others form a band showing constraint loss beginning at M � 200. Clearly, constraint loss
begins at a deformation level that is much lower than the M = 30 censoring limit in the ASTM E921 standard.
The implication of this result are discussed elsewhere [6].

Fig. 13 shows the median KJ0
for specimens with B/b > 0.6 based on the measured KJm

analyzed using the
basic ASTM E 1921 procedure, but plotted against a varying limiting value of M (Mlim) for data censoring.
The KJ0

increases systematically below a Mlim starting at about 200. Fig. 13 also shows the corresponding anal-
ysis using the fully adjusted KJr

data for the fitted p � Bmax statistical adjustment. Clearly, the r� � ½KJm=KJ c ��
Kmin AP effectively eliminates the Mlim dependence of KJ0

, yielding a value of 100 ± 2 MPa
ffiffiffiffi
m
p

. Note, the
other statistical adjustment models produce generally similar results.

Thus, in summary, the r� � ½KJm=KJ c � � Kmin AP is effective in producing a homogeneous population of
size-adjusted KJr

data. The statistical B-scaling model judged to be best was based on the fitted p = 0.224
and Bmax � 154 mm. Note, since the B intervals vary by a factor of 2, this is only an order of magnitude esti-
mate, suggesting that Bmax occurs somewhat above 125 mm but significantly below 250 mm. Deviations of
some of the b = 3.2 mm data from the overall CDF data may, or may not, indicate the possibility of some
over adjustment for constraint loss using the r� � ½KJm=KJ c � � Kmin AP. However, this trend has other expla-
nations and a large over-adjustment is not supported by the overall data analysis. If there is some over-adjust-
ment for large values of ½KJm=KJ c � (or KJm

� KJc
) it is believed to be modest, and in most cases less than

�10 MPa
ffiffiffiffi
m
p

.

3. Weibull stress model

3.1. Overview

There are several important differences between the critical stress-volume, r� � ½KJm=KJ c � � Kmin AP and
the statistical Weibull stress, rw � ½KJm=KJ c � � Kmin AP:

• The statistical Weibull stress rw � ½KJm=KJ c � � Kmin AP accounts for the volume averaged power-weighted
contribution of high stresses near the crack tip in terms of a loading parameter called the Weibull stress rw.
In contrast, the r� � ½KJm=KJ c � � Kmin AP treats all stresses equally within a given stress contour.

• The rw � ½KJm=KJ c � � Kmin AP is explicitly based on the probability of fracture, Pf, as a function of the rw

and local material fracture properties including the Weibull stress modulus, mr, and the rw = ru at
Pf = 0.63. The version of the rw model used in this study also assumes a minimum threshold Weibull stress
rmin, below which Pf = 0. The rmin is somewhat akin to, and is derived from, Kmin, but is not functionally
equivalent to Kmin.

• The rw � ½KJm=KJ c � � Kmin AP explicitly depends on the highly stressed volume and manifests an inherent

pure (B/Br)
1/4-type scaling modified for out of plane constraint loss effects. Hence, the effects of a Kmin > 0

must be treated using a variant of Eq. (6), and incorporated in the self-calibration fitting procedure.
• The rw � ½KJm=KJ c � � Kmin AP was self-calibrated using the b � B database instead of an independent data

set. The calibration involved finding a optimized and self-consistent value mr along with a best fit B-scaling
model.

As discussed previously, rw represents a single loading parameter that accounts for the entire highly
stressed volume within the process zone based on a weakest link assumption of the cleavage initiation mech-
anism [16]. The three-parameter (mr, ru and rmin) rw model gives the probability of cleavage fracture Pf as
P f ¼ 1� exp � rw � rmin

ru � rmin

� �mr
� �

ð7aÞ
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The rw is defined as
Fig. 14
proced
rw ¼
1

V r

Z
r1>2ry

hr1imr dV ðr1Þ
( )1=mr

ð7bÞ
Here, hr1i is the average stress in a mesh element, dV is the corresponding differential volume and Vr is an
arbitrary reference volume. The first principal stress, r1, was used in evaluating rw, rather than the r22 normal
stress used in the r� � ½KJm=KJ c � � Kmin AP, although the differences between them are small.

A second post-processing code was developed to evaluate rw as a function of the elastic–plastic J. The hr1i
for the individual volume elements dV were defined by the finite element mesh as the average of the r1 stresses
at the 8 corner nodes for the 3D models, and 4 corner nodes for the 2D model. The hriimrDVi for all mesh
elements were summed over a process zone region, defined by r1 P 2ry [17,18]. The r1/ry was truncated at
4.2 since the small strain FE calculations are not accurate very close to the crack tip. The rw � J trajectory
was calculated using 3D FE simulations for each independent specimen geometry in the b � B test matrix,
as well as the boundary layer plane strain SSY model. Fig. 14 shows representative rw trajectories for both
a specimen and SSY model at the same thickness, B. Thus, the measured LSY KJm

to SSY KJc
AP shown

in Fig. 14 is similar to the ½KJm=KJ c � common stressed area (A) adjustment, but with the cleavage criteria based
on a common rw.

The rw balances effects of magnitudes of r1 with the stress weighted volume under the overall r1 distribu-
tion. The stressed volume increases with decreasing r1. Thus, cleavage may occur for larger volumes under a
lower r1, or smaller volumes for higher r1, where mr is the key local material property dictating this balance.
The r1/ry also inversely maps onto the distance from the crack tip. Thus, as mr increases, rw weights the high,
near tip r1 stresses more heavily. For a typical mr value of order 15, the largest contribution to the rw comes
from the region between r1/ry � 2.6–2.8.

The volume integrated Weibull model itself represents a pure B�1/4 scaling. Thus, it is again necessary to
separately adjust the KJc

to KJr
to account for a Kmin > 0. This was carried out using the different variants of

Eq. (6), as described in the following section on model calibration.

3.2. Calibration and application of the Weibull stress model

Calibration of the Weibull stress (rw) model requires determining the mr that provides uniform maximum
likelihood statistical properties for the entire adjusted KJr

database. Our approach was based on modification
of the procedure proposed by Gao and co-workers [17,18]. The rw � J trajectories were calculated for mr

between 10 and 20 for all independent specimen geometries in the b � B test matrix, as well as for the plane
strain SSY boundary element model to provide a rw � ½KJm=KJ c � constraint adjustment factor. The remaining
statistical sampling effect of B is subsequently addressed by adjusting all toughness values to the reference
Br = 25.4 mm using different variants of Eq. (6).
. Illustration of normalized rw/ry SSY and LSY versus J stress trajectories and the rw � ½KJ m=KJc � constraint loss adjustment
ure.
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The self-calibration involves grouping KJr
data into LSY and SSY subsets. This is justified by the wide

range of constraint conditions encountered in the b � B database itself. mr can be found by optimizing the
overlap between SSY and adjusted LSY data subsets. Note, adjustment of KJm

to KJr
does not require fits

to the other Weibull parameters, ru and rmin. This fitting was carried out as a separate exercise.
The calibration procedure seeks to minimize the difference between the defined SSY and LSY KJr

datasets
using a maximum likelihood statistical parameter /. However, instead of KJr

, the equivalent Jcr (Jcrs and Jcrl

for SSY and LSY, respectively) were used in the minimization. For a specified mr,
Fig. 15
(c) mr
/ssy ¼
1

ns

Xns

i¼1

J 2
crsi

" #1=2

ð8aÞ

/lsy ¼
1

nl

Xnl

i¼1

J 2
crli

" #1=2

ð8bÞ
Here, ns and nl are the number of adjusted toughness values in the SSY and LSY subsets, respectively. The
error metric is given by
qðmrÞ ¼
/lsy � /ssy

/ssy

ð9Þ
Thus, q is less than 0 for over-adjustments of the LSY data and vice versa. The ‘best fit’ mr is defined
q(mr) = 0, or at the absolute minimum of q(mr) in some cases.

The optimized mr depends on both the choice of the B-scaling model (the variant of Eq. (6)) and the choice
for the SSY versus LSY division. Various approaches to this division were examined, resulting in different
numbers of data points in the two groupings. For example, one simple approach was to determine the SSY
. hKJr
i versus B for the rw � ½KJ m=KJc � � Kmin AP for a p and Bmax fitted B-scaling model and: (a) mr = 15, (b) mr = 17 and

= 19 along with (d) pure Wiebull model B�1/4 scaling model with mr = 15.
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group based on a maximum constraint loss adjustment specified as 2 MPa
ffiffiffiffi
m
p

. However, a disadvantage of
this procedure is that the SSY versus LSY split depends on mr, and ns can be small. Another approach was to
specify the SSY data subset based on independent definitions of high constraint data, such as M P 200 and
B/b > 1. A third approach was to use the Mlim analysis to set a nominal Jcrs, and thus /ssy, while evaluating
/lsy for various subsets of the measured data. Finally, the Jcrs were evaluated from r� � ½KJm=KJ c � � Kmin

adjusted KJr
data. The different B-scaling approaches were discussed previously in conjunction with the

rw � ½KJm=KJ c � � Kmin model.
The alternative SSY versus LSY data partitioning and statistical B-scaling models yield different optimized

values of mr ranging from �12 to 20. The constraint loss adjustments, and corresponding KJr
distributions,

depend on mr. Further, note that optimizing mr does not itself result in a corresponding minimization of size
(b,B) effects in the overall KJr

dataset. However, overall minimization of such size effects should be a consid-
eration in selecting between various models.

Analysis of the results of many different models led to the following observations:

• Pure B�1/4-scaling, Kmin = 0 models performed very poorly, irrespective of the LSY–SSY data partitioning
procedure, and resulted in both over-adjustments for constraint loss compared to the r� � ½KJ m=KJ c � � Kmin

procedure, as well as a statistically significant effect of B variations in the adjusted KJr
data. These models

also resulted in large deviations in CDF for data from specimens with the smallest b = 3.2 mm, with lower
values at essentially all toughness levels.

• All models using LSY–SSY partitioning based on the M � B/b limit or the specified constraint loss criteria
yielded optimized mr 6 15. Such mr values resulted in larger constraint loss adjustments, and more signif-
icant deviations in CDF for data from specimens with the smallest b = 3.2 mm, compared to the optimized
r� � ½KJm=KJ c � � Kmin AP. The deviation increased with decreasing mr.

• The ASTM E 1921 procedure did not fully remove the deviation in the KJr
data at the largest B.
Fig. 16. The CDF for the KJr
data from rw � ½KJm=KJc � � Kmin AP with p and Bmax fitted B-scaling model and: (a) mr = 15, (b) mr = 17

and (c) mr = 19 along with (d) pure Weibull model B�1/4-scaling model with mr = 15.



Fig. 17. The CDF for the geometry averaged hKJr
i data from rw � ½KJm=KJ c � � Kmin AP with p and Bmax fitted B-scaling model and:

(a) mr = 15, (b) mr = 17 and (c) mr = 19 along with (d) pure Wiebull model B�1/4 scaling model with mr = 15.
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Unfortunately, there is no unique and obviously correct calibration procedure. Thus, we present the results
of 3 models with optimized mr = 15 (the ASTM E 1921 and M P 200 and B/b P 1), mr = 17 (Bmax and p fits
and Jcrs from the Mlim analysis) and mr = 19 (Bmax and p fits and Jcrs from the r� � ½KJm=KJ c � � Kmin model).
Note, larger values of mr would not be reliable, since in this case only very high stresses in a very small region
near the crack tip would be sampled in the rw integration.

Figs. 15–17 show the results of application of these three models along with the pure B�1/4 (Kmin = 0) scal-
ing model for comparison. The variation average hKJr

i for all b � B combinations as a function of B is shown
in Fig. 15. The solid line is the least square fit to the data. The B dependence is negligible for the mr = 15 and
17 cases and larger in others, especially for the pure B�1/4 (Kmin = 0) scaling. Fig. 18 shows that the CDF for
specimens with the three largest b are in good agreement, except for mr = 19. But, the KJr

for specimens with
the smallest b = 3.2 mm fall below the others in all cases, with the deviation increasing with decreasing mr. The
corresponding CDF of hKJr

i for all b � B combinations shown in Fig. 17 have discontinuities at low to inter-
mediate toughness for mr = 15 and, especially, mr = 17.

Following Gao and co-workers [17,18], rmin = 850 MPa was determined for the B = 25.4 mm SSY rw value
corresponding to a Jc at Kmin = 20 MPa

ffiffiffiffi
m
p

. The ru for various models defined by Pf = 0.63 are shown in
Table 2. Fig. 18 shows the corresponding Weibull plots for KJr

. All the models produce reasonable Weibull
slopes ranging from mk = 3.65 to 4.14 but the results for the Bmax and p fits using the Jcrs from the Mlim ana-
lysis AP is closest to the nominal value with mk = 3.94 � 4. Fig. 19 shows the corresponding KJr

predicted by
the various rw � ½KJm=KJ c � � Kmin AP versus the optimized r� � ½KJm=KJ c � � Kmin AP. The constraint loss
adjustments are larger for lower mr. As noted above, the overall discrepancy between the
rw � ½KJm=KJ c � � Kmin versus r� � ½KJm=KJ c � � Kmin adjusted KJr

is smallest at mr = 17, although on average
the Weibull based KJr

are generally still slightly lower (that is, the constraint loss adjustments are larger).
Based on all these considerations, it appears that the evaluation fitted p and Bmax model with Jcrs from the

Mlim analysis, with mr = 17, provides the optimal procedure for a Weibull-based size AP. However, it also



Fig. 18. Weibull plots of KJr
, KJB , and KJm

rw � ½KJm=KJc � � Kmin AP with p and Bmax fitted B-scaling model and: (a) mr = 15, (b) mr = 17
and (c) mr = 19.

Table 2
Fitted ru values for the three rw models

Model ru (MPa)

mr = 15 1335
mr = 17 1385
mr = 19 1436
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appears that the r� � ½KJm=KJ c � � Kmin AP is generally more reliable and easier to apply than any of the Wei-
bull models, assuming calibration of the R = r*/ry is possible.

4. Application of the r� � ½KJm
=KJc

� � Kmin model to other data

The optimized r� � ½KJm=KJ c � � Kmin AP was also applied to the calibration data as well as other low con-
straint data measured in this study. The low constraint data was associated with either small specimen size or a
shallow pre-crack. The former included 27 · 5 · 5 mm and 18 · 3.3 · 3.3 mm 3PB specimens with a/W � 0.5
scaled from the dimensions of a standard pre-cracked Charpy (PCC) designated as 1/2-PCCs and 1/3-PCCs.
Shallow pre-cracked Charpy sized 55 · 8 · 10 mm 3PB specimens with a/W � 0.2 were designated as SPCCs.
The PCCs tested at �76 �C were also classified as low constraint specimens. All these specimens were side-
grooved by 0.1B on both sides. Except for the temperature, the test procedures were generally similar to those
described for the b � B test matrix [6]. The r� � ½KJm=KJ c � � Kmin model was also applied to a large database
of 243KJm

measurements on the Shoreham plate developed by Joyce and Tregoning for standard CT and 3PB
specimen geometries with a range of sizes and tested over a range of temperatures [19–23].



Fig. 19. Comparison the rw � ½KJm=KJ c � � Kmin versus r� � ½KJm=KJc � � Kmin adjusted KJr
for the p and Bmax fitted B-scaling model and:

(a) mr = 15, (b) mr = 17 and (c) mr = 19.

Fig. 20. The (a) measured KJm
and (b) r� � ½KJm=KJ c � � Kmin adjusted KJr

for the p and Bmax fitted B-scaling model versus temperature for
all the data measured in this study and the Joyce–Tregoning database and a master curve for T0 = �84 �C.
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Fig. 20 compares the measured KJm
(Fig. 20a) and the size adjusted KJr

(Fig. 20b) data for the entire Shore-
ham database consisting of 489 data points. This combined database covers an enormous and, indeed, unprec-
edented, range of specimen sizes and geometries. The solid and dashed lines in Fig. 20b are the median and 5%
and 95% confidence intervals, respectively, with a T0 = �84 �C found for the b � B database based on the fit-
ted p and Bmax model. Clearly, the r� � ½KJm=KJ c � � Kmin AP is very effective in producing a size and geometry
independent population of KJr

data over a wide range of specimen configurations and test temperatures. Fur-
ther, the KJr

data are consistent with a single master curve with a T0 of �84 �C.
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5. Summary and conclusions

A large single variable database on effects of large variations in thickness (B) and ligament length (b) of 3PB
specimens, described in a companion paper, was analyzed with a physically-based model treating both statis-
tical and constraint loss mediated size effects. Our objectives were to: (1) decouple statistical (B) and constraint
loss (b and B) size effects, and evaluate their interactions; (2) assess the validity and limits of theoretical Kmin

modified B�1/4 statistical scaling arising from the K4
J scaling of the highly stressed process zone volume; (3)

quantify the deformation (M) limits for approaching full constraint and the magnitude of the measured tough-
ness (KJm

) deviations beyond this limit versus small scale yielding (KJc
); and (4) develop optimized procedures

to adjust KJm
to KJc

and KJc
to KJr

. All of these objectives were met and led to the following conclusions:

• Both statistical and constraint loss effects occur over a wide range of specimen configurations and loading
levels (see Fig. 11).

• The interaction between statistical and constraint loss effects is primarily due to reductions in KJm
associ-

ated with large B that led to lower M, hence, higher constraint.
• However, the previous conclusion is modified for low B/b ratios due to rapid loss of out of plane constraint

in geometrically thin specimens (see Fig. 4).
• The B-scaling of the adjusted KJc

data is close to, but slightly less than the nominal value of p = 1/4 based
on a assumed Kmin = 20 MPa

ffiffiffiffi
m
p

. The Kmin and p are strongly covariant. Higher Kmin require a larger p

and vice versa.
• Analysis of the b � B database suggests that there may be an upper limit in the range of Bmax � 150 mm for

statistical size scaling. However, this conclusion is tentative, and may be due to subtle experimental factors,
and any such limit may vary from material to material. Nevertheless, this observation is certainly an issue
that merits further research.

• Constraint loss begins at M less than �200 for typical B/b ratios and is significant at M < 100 (see Fig. 11).
The potential effect of this result on possible non-conservative bias in the T0 evaluated using the current
ASTM E 1921 standard is discussed elsewhere [6].

• Two types of physical model-based procedures were successfully developed to adjust measured KJm
to SSY

KJc
and KJc

to a reference KJr
at a reference Br. The first method, based on an independently calibrated (r*)

deterministic r� � ½KJm=KJ c � � Kmin AP, was used to successfully decouple statistical and constraint loss
mediated size effects in the b � B database and to adjust this data to a single homogeneous population
of KJr

data well described by a single T0 = �84 �C. While the r� � ½KJm=KJ c � � Kmin AP may slightly
over-adjust the data at the smallest b = 3.2 mm at higher toughness levels within this sub-population, a
detailed evaluation of potential confounding factors and overall data trends suggests that this is probably
not the case. The r� � ½KJm=KJ c � � Kmin AP was optimized to account for both a Bmax and a p � 0.22,
slightly lower than the nominal value of 0.25. However, B-scaling based on the ASTM E 1921 procedure
also worked fairly well.

• The r� � ½KJm=KJ c � � Kmin procedure was also used to adjust other UCSB high and low constraint data as
well as a large independent database on the Shoreham steel taken from the literature for tests on conven-
tional 3PB and CT specimens tested over a range of temperatures. The overall adjusted database composed
of 489KJr

values was also well-represented by a MC with T0 � �84 �C.
• Self-calibrated statistical Weibull-type, rw � [KJm

/KJc
] � Kmin, models were also reasonably successful in

adjusting the KJm
to a homogeneous population of size independent KJr

data. However, there is not a single
best or unique method to self-calibrate the model for an optimized value of the Weibull modulus, mr, which
ranged from about 12 to 20, depending on details of the self-calibration method and choice of the B-scaling
model. The most successful calibration, which minimized the overall size and geometry effects in the KJr

database, was based on assessing small scale yielding values of Jcrs from a Mlim analysis. This analysis eval-
uated the KJ0

using the E 1921 procedure, but with an adjustable M censoring limit (Mlim) that increased
over the value of 30 in the E 1921 Standard, up to the level where KJ0

becomes independent of Mlim (�200).
Coupled with the best-fit values of Bmax and p found in the analysis using the r� � ½KJm=KJ c � � Kmin AP
suggests an optimal mr � 17. The optimized mr = 17, rw � ½KJm=KJ c � � Kmin AP slightly over-adjusts the
KJm

data relative to the r� � ½KJ m=KJ c � � Kmin AP.
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• The apparent over-adjustments of the rw � ½KJm=KJ c � � Kmin procedure increased with decreasing mr. This
is a result of the increased weighting given to lower crack tip principal stress, r1, values with larger con-
straint loss effects in deeply cracked bend geometries. Higher values of mr suffer both computational limits
and become physically suspect due to the small values of the volume which contribute to rw. More gener-
ally, the rw � ½KJm=KJ c � � Kmin AP was not as effective in eliminating size effects and was more difficult to
implement compared to the r� � ½KJm=KJ c � � Kmin AP.

• The use of a calibrated r� � ½KJm=KJ c � � Kmin model to adjust KJm
data to KJr

is a very attractive possibility
and has been successfully applied to evaluating T0 for a 8Cr martensitic steel [24]. The major limitation is
having sufficient high constraint data to calibrate a reliable value of R = r*/ry. However, in principle it is
possible to estimate r* based on corresponding estimates of T0 and practical approaches to using this
method where high constraint data are more limited are under development.

Finally, other outstanding interrelated questions not resolved, or even addressed, in this work include: (1)
the possible existence of a minimum B for statistical size scaling; (2) the overall question of a physically min-
imum value lower bound toughness; (3) the basis for a Kmin and its potential alloy to alloy variation and
dependence on temperature/toughness level; (4) the validity of Weibull statistics for the lower and upper tails
in toughness distributions; (5) the existence of, physical basis for and fracture mechanism limits on a universal
toughness–temperature curve shape; (6) the effects of irradiation, and other in-service degradation mecha-
nisms, on the validity of various assumptions and procedures used in the master curve method. All of these
issues are the subject of ongoing research and it is noted that the extremely detailed and comprehensive data-
base on the Shoreham steel makes it an ideal candidate for use in such studies.
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