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Abstract
An optimization protocol for a high authority shape morphing plate is
described. The shape morphing design incorporates an active back-plane
comprising a Kagome truss, capable of changing the shape of a solid face,
connected to the back-plane by means of a tetrahedral truss core. Several
members of the Kagome truss are replaced by actuators, enabling the
structure to deform. The trusses to be replaced depend on the desired
deformation, subject to the load capacity of the individual actuators. A
two-level scheme is used comprising a heuristic algorithm with a simplex
based optimization providing the cost function. It is shown that methods
capable of avoiding entrapment in local minima, such as simulated
annealing and the genetic algorithm, give good results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Shape morphing structures are designed to displace surfaces
while being resisted by large pressure loads (or heavy
weights) [1–6]. One approach for addressing this challenge
is to use the Kagome structure depicted in figure 1 [2, 3, 6].
The basic structure consists of a solid face-sheet with a Kagome
back-plane and a tetrahedral core. The configuration is rigidly
supported at one end. Replacing various truss elements in the
back-plane with linear actuators enables the shape of the solid
face to be changed.

While this structure can undergo a wide range of
deformations, it is limited by yielding and buckling failure
of the passive structure as well as the load specification of
the actuators. Previous investigations concluded that the
deformations are limited by the incorporated actuators rather
than by the structure itself [6–8]. Structural failure, if it is the
limiting factor, can easily and cheaply be remedied by making
it sturdier. The inherent increase in weight and resistance
against actuation is small compared to the increase in load
capacity of the structure [7]. In contrast, incorporation of more
actuators or higher authority actuators to overcome actuation
as the limiting factor usually results in a significant increase
in weight and system complexity. It is therefore desirable to
reduce the number of actuators to limit the overall cost and

Figure 1. Schematic representation of the Kagome structure
consisting of the face-sheet, the core and the Kagome back-plane.
Actuators are placed in lieu of the Kagome members. The control
points are used to define the target deformation.

complexity of the system. Placement of a limited number of
actuators becomes a crucial design aspect.

The objective of the present study is to find actuator
configurations that maximize the deformation. The procedure
selects configurations of actuators and ascertains the quality
of every configuration by a second (local) optimization. The
results of the latter are used as cost functions for the global
optimization that determines the best configuration for a
limited number of actuators. Some key characteristics required
for the optimization are calculated by means of a finite element
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Figure 2. Kagome layer of the structure used in this study. Possible
locations of actuators in the Kagome layer are shown as solid lines.

analysis. Here, the length of the panel was chosen to include
six hexagonal units of the Kagome plate, while the width
incorporated four, resulting in 96 possible actuator locations
(figure 2). Multiple virtual control points define the shape
change to be achieved [6].

The search space for global optimization is discrete and
unordered, excluding the use of gradient based algorithms.
Moreover, probing the entire search space is prohibitive.
Optimization problems of this nature have been solved with
heuristic methods, such as simulated annealing and genetic
algorithms [9, 10]. The purpose of this study is to assess
the performance of these algorithms in actuator placement
optimization with the objective of actuating the structure to
a final shape as close as possible to a predefined shape.

2. Local optimization and the cost function

The local optimization is devised to find the largest possible
deformation for a given set of actuators subject to external
constraints, e.g. the load limit of the actuators. For local
optimization, n points are identified along the solid face
(figures 1, 3). The vertical displacement (vi , i = 1, . . . , n) of
each point is controlled and maximized by selecting actuator
strains (ε j , j = 1, . . . , m) for m independent actuators (where
m > n). The redundancy will be used to optimize the

Control
Points

Foremost 
Control Point

Figure 3. Finite element model of the Kagome structure. Six control points used in this study are highlighted. The foremost open control
point is used to discuss the quality of the results.

deformation within the force capabilities of the actuators: a
crucial requirement for actuator-limited structures [6]. For
the unloaded structure, a matrix A of influence coefficients
can be constructed such that

vi =
m∑

j=1

Ai jε j . (1)

The null-space of the matrix A has dimension m − n and
consists of combinations of actuator strains giving rise to
zero displacements at the control points along the edge to be
twisted [11]. One orthonormal basis for the null-space is the
set of m − n vectors εk

j , k = 1, . . . , m − n, such that

m∑

j=1

Ai jε
k
j = 0. (2)

These basis vectors εk
j can be found from equation (2) by

standard matrix manipulations [12]. Now calculate projections
of the actuator strain array into the null-space of A:

wk =
m∑

j=1

εk
jε j . (3)

Therefore, wk , k = 1, . . . , m − n, represent the degrees of
freedom for zero displacement of the control points. Now
introduce a matrix B defined as

Bi j =
{

Ai j , i = 1, . . . , n
εi−n

j , i = n + 1, . . . , m

}
. (4)

It follows that

m∑

j=1

Bi jε j =
{

vi , i = 1, . . . , n
wi−n, i = n + 1, . . . , m

}
. (5)

Since all its rows are linearly independent, the matrix B is
non-singular and inversion of equation (5) provides

ε j =
n∑

i=1

B−1
j i vi +

m∑

i=n+1

B−1
j i wi−n. (6)

The structure of (6) shows that a deformation can be achieved
by specifying the n displacements, vi , for the control points,
plus any values for the remaining m − n parameters, wk ,
because the latter do not affect the control point displacements.
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Now maximize the deformation without exceeding the
force limits of the actuators. In the absence of a load, the
relationship between the actuator forces Pk , k = 1, . . . , q, and
the actuator strains εi , i = 1, . . . , m, can be established as

Pk =
m∑

i=1

Cki εi . (7)

Note that q may be larger than m because actuators may be
operated in pairs or sets to have the same actuator strain, but
each actuator in general experiences different force levels,
even when they are paired or put together in sets. That
is, replacing two adjacent truss members with actuators being
actuated to exactly the same strain results in such a scenario.
Combining (6) and (7) gives

Pk =
m∑

j=1

Ckj

(
n∑

i=1

B−1
j i vi +

m∑

i=n+1

B−1
j i wi−n

)
. (8)

The control point displacements can be expressed in terms of
a single degree of freedom, φ, representing the deformation:

vi = φui (9)

where ui are the displacements for unit value of φ. As a result,
(9) becomes

Pk = βkφ +
m−n∑

i=1

Dkiw
i (10a)

where

βk =
m∑

j=1

n∑

i=1

Ckj B−1
j i ui and Dki =

m∑

j=1

Ckj B−1
j i+n.

(10b)
The remaining task is to maximize φ in (10a) subject to
minimum and maximum constraints on the actuator forces
Pk . It is a straightforward linear programming problem [11]
to find the m − n coordinates of wi . Once solved, the
resulting values of φ and wi are inserted into (9) and (10a)
to compute the actuator strains that produce the maximum
possible deformation within the actuator force constraints.

2.1. The cost function

The global optimization routines in the present work base their
actuator selection criteria on some measure of the quality of
the present actuator configuration. Therefore they require an
externally computed cost function for assessing the quality
of any given actuator configuration. In the present study
the quality measure, i.e. the cost function, accounts for the
difference between the optimized deformation and the desired
deformation.

The above local optimization algorithm calculates the
largest possible deformation for a single actuator configuration,
e.g. the present one. The resulting deformation parameter
φ as calculated using (10a) increases with increasing
deformation and would provide a good measure of the
achievable deformation. However, in our present computer
implementation of the local algorithm, the deformation vector
vi is extended by wi to form a generalized deformation vector
as shown on the right-hand side of equation (5). Therefore φ

cannot be used directly because it depends on the null-space
of A and hence the actual actuator set. Instead the root mean
square of the difference between the defined target deformation
ui and the optimized deformation vi is used as an absolute
measure:

f =
√√√√

n∑

i=1

(ui − vi )2. (11)

This cost function measures the quality of the optimized
deformation relative to the target deformation. Note that with
this choice of cost function, the target deformation should
be chosen sufficiently large, since a penalty is imposed on
solutions yielding a deformation larger than that defined.
Although this is not a problem per se, it reduces the safety
margin of the final assembly by requiring it to operate at its
limit.

2.2. Finite element analysis

The matrices A and C are calculated by a finite element
analysis. The mesh, depicted in figure 3, consists of linear
beams and linear four-point shell elements. The calculations
have been performed with the commercial FEA package
ANSYS. The actuator displacements have been modeled by
thermally expanding the beam elements by 1%. One FE
calculation was performed for every possible (active) actuator
position. Only one actuator was active in each run, resulting in
96 calculations. The stresses on all members are transposed to
a file. Additionally, the displacements at 60 separate locations
along the solid face were transposed. The control points for the
local optimization were chosen from among those locations.
The ANSYS script language APDL was used to automate
the task.

3. Global optimization algorithms

In this section, several algorithms are used to determine the
best possible placement of a limited number of actuators,
based on a prescribed set of target deformations. The load
limits of the actuators are incorporated into the optimization
by means of the local routine. All possible actuator locations
are numbered (shown as solid lines in figure 2). The following
algorithms invoke one (or more) actuator sets, each consisting
of m actuators. The number m is predetermined and is not
part of the optimization. The following steps are common.
The number of actuators and the desired target deformations
are defined before the analysis is started. To calculate the
cost function for a specific set of actuators, the matrices A

and C for the active set are assembled and passed to the
local optimizer. Only the active control points and the active
actuators are included. Completeness of the original files
is required since any actuator position may become active
during the optimization. All global and local algorithms are
implemented in a custom program written in Borland Delphi.

3.1. The random algorithm

The random algorithm is used as a benchmark. All m actuators
are chosen randomly in every step. The best solution is the only
information retained from previous steps (figure 4). After the
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Figure 4. Flow diagram of the random search algorithm.
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Figure 5. Flow diagram of the iterative replacement algorithm.

actuators are chosen, the cost function is calculated. If the cost
is lower than that of the best previous solution, it is stored.

3.2. Iterative replacement

This algorithm utilizes some information inherent to the
structure in addition to the cost function. The passive member
subject to the highest stress is determined, along with the
actuator that undergoes the least extension. Reasoning that the
former position is most likely to benefit from being extended
and the latter the least amenable to actuation, the two positions
are interchanged. The new configuration is transitioned onto
the local optimizer and the procedure repeated. After every
pass, the new configuration is stored if more favorable than the
previous best solution (figure 5).

3.3. Simulated annealing

This algorithm is amongst the most widely used algorithms
when little knowledge of the objective function is
available [13], especially when the search space is unordered.
To overcome local optima, the method permits some higher
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Figure 6. Flow diagram of the simulated annealing algorithm.

cost steps to proceed. After the cost function has been
calculated with the local optimization algorithm, one randomly
chosen actuator in the set is swapped with a randomly chosen
truss member and the fitness of the new set is determined. If
the new set is superior to the old one, it is accepted. Moreover,
if the new set has a higher cost than the old, it is still accepted
provided that

r � exp(−�/T ), (12)

where r is a random number (0 � r < 1), T is the annealing
temperature and � (= fnew − fold) is the difference in cost
between the new and the old solutions. If equation (12) is
satisfied, the new set is stored and the cycle restarted (figure 6).

The annealing temperature T has to be adapted during
optimization. Various methods have been devised for
determining the initial values and the subsequent cooling [13].
In the present study, a simple cooling schedule is used. That
is, after a predetermined number of cycles (k), T is reduced to
αT (0 < α < 1). Simultaneously, the number of cycles to be
completed is increased to βk (1 < β). Initially, T is chosen to
accept almost all bad sets and slowly lowered (0.8 < α < 1).
The parameters are α = 0.9, β = 1.1 and an initial cycle
length k = 100.

3.4. The genetic algorithm

This algorithm is a technique that ‘converges’ to the best
possible solution [14, 15]. Similar to simulated annealing, it
is suitable when no prior knowledge is available regarding the
optimum and especially where the search space is unordered.
The genetic algorithm works with � sets of m actuators
simultaneously. Each set of actuators is mapped into a
chromosome. Each actuator corresponds to a particular
position in a chromosome. The chromosome length depends
on the number of actuators in a set. A binary representation
of the location number with 7 bits/actuator was chosen for
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Figure 7. Flow diagram of the genetic algorithm.

this study: bits 1–7 represent the first actuator, bits 8–14 the
second etc. The chromosomes are grouped into a population of
� chromosomes, with population size determined by the length
of each chromosome [16]. In the present study a population
size of 20 satisfies the minimum requirements.

The initial population is chosen randomly and the cost
function, also known as the fitness, is calculated. The cost
of every individual chromosome is obtained by decoding,
resulting in a set of location numbers. The maximum
realizable deformation is calculated for every set using
the local optimization routine. Finally, the population is
sorted by cost, starting with the best. A new population
is generated. In order to retain the best solutions so
far, the two best chromosomes are copied to the new
population (known as ‘elitism’). The remainder of the
new population is filled by selecting chromosomes from
the previous population (‘selection’), exchanging information
between them (‘crossover’) and randomly changing bits
(‘mutation’) to introduce new information. Once the new
population is filled, the fitness is calculated and the cycle
restarted (figure 7).

Several variations have been defined [15, 16]. The
simplest selection procedure is to choose two chromosomes
randomly. This method does not rely on information about
the cost of the individual chromosomes. Other methods such
as ‘roulette-wheel’ or ‘rank’ selection base the probability
of selecting a chromosome on its cost, giving the best
chromosomes the highest chance of passing their information
onto the next generation. The crossover procedure exchanges
information between two selected chromosomes mimicking

sexual reproduction. This is performed by cutting the parent
chromosomes into several pieces at the same randomly selected
locations. The number of cuts is reflected in the name (a single
cut is a one-point crossover etc). A four-point crossover with
a probability of 95% and rank selection provides consistent
results in the present study. The new chromosomes are
assembled by alternating pieces from the two parents. The
last step is the mutation of the newly formed chromosomes,
conducted by randomly flipping some bits with a preset
probability. In the present study a probability of 5% gives
the best results.

4. Scenarios and results

4.1. Scenarios

The four algorithms are used to optimize the actuator
placement for four different scenarios: hinging and twisting,
both using 8 and 16 actuators. Hinging refers to uniform lifting
of the free edge, while twisting raises one side of the free edge
while simultaneously lowering the other, while maintaining the
free edge in a straight line. Note that there are 1011 and 1017

combinations for placing 8 and 16 actuators, respectively, on
96 possible locations. All optimizations are performed using
six control points located along the outer edge (figure 3).

All algorithms are continued for 10 000 cycles for each
scenario. Every scenario is optimized 10 times to reduce
the effect of an unfavorable initial choice. The commonest
actuators of the 10 runs are manually selected and passed
through the local optimizer. If the cost of the manual
selection is worse than the best optimization result, a new
manual set (replacing some of the less common positions) is
rerun. Improvements were always found using fewer than five
manual runs.

4.2. Optimization results

These comprise the locations of the actuators as well as the
predicted displacement of every control point and the required
displacement of every actuator. The placement of actuators
for hinging is relatively simple. For 8 and 16 actuators,
filling all positions along row 3 and along rows 3 and 4,
respectively, maximizes the achievable deformation. Twisting
is more intricate (figure 8), but symmetric with respect to the
central axis.

The displacement at the control point on the edge is used to
illustrate the quality of the results (figure 3, open control point),
assembled in table 1 and visualized in figure 9. The iterative
replacement algorithm performs well in the first few cycles but
is then trapped in a local optimum. Conversely, the simulated
annealing and genetic algorithms perform well because they
accept some inferior solutions that inhibit trapping at a local
minimum. The difference in their performance is within one
standard deviation (table 1) and statistically insignificant.

Note that hinging yields higher deformations, because
twisting stretches the solid face, increasing the actuation
resistance. Doubling the number of actuators from 8 to 16
triples the achievable hinging (from 78 to 216 mm) and doubles
the twisting (from 19 to 53 mm). The results have been verified
by FE analysis (figure 10) with actuators at the locations
revealed by the optimization. The predicted displacements
are exactly reproduced.
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Table 1. Examples of the worst, average and best results, as well as the standard deviation. The best results from manual post-processing as
well as from the FEM verification are included. The displacement of the top left edge has been used.

Hinge Twist
Min/avg/max (mm)
Std deviation (mm) 8 actuators 16 actuators 8 actuators 16 actuators

Random 1.7/2.2/2.6 22.2/31.3/53.3 1.9/2.1/2.8 12.1/15.0/20.4
0.4 9.0 0.3 2.6

Iterative replacement 0.1/0.5/1.3 3.0/14.1/38.5 0.2/0.7/2.0 2.0/6.1/18.5
0.3 12.1 0.6 4.8

Simulated annealing 3.2/6.7/20.8 104.4/140.8/176.6 5.2/13.1/19.3 32.5/38.6/42.0
5.3 21.5 5.8 3.2

Genetic algorithm 7.2/23.7/67.3 129.8/149.6/164.5 6.9/12.6/19.3 34.4/39.9/46.3
15.3 11.1 4.2 4.2

Manual post-processing 78.1 216.2 19.3 53.3
FEM verification 78.1 216.2 19.3 53.3

8 Actuators 16 ActuatorsActuator Location

Truss Member

Figure 8. Optimized locations of the actuators for twisting with 8 and 16 actuators.
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Figure 9. Optimized deformation result for all scenarios and
algorithms. The span is marked by boxes with the average
highlighted by an open diamond. Closed diamonds represent the
result of the manual post-processing.

5. Concluding remarks

A heuristic global optimization routine combined with a fast
local optimization algorithm is efficient in assessing the best

placement of actuators in a Kagome morphing structure.
Because of the large, unordered search space, methods that
accept inferior cost moves must be used to avoid trapping at
a local minimum—such as simulated annealing and a genetic
algorithm. The two methods yield results of equal quality.
Given their random nature, repeating the runs and manually
assembling the common features increases the quality of the
results.

While all optimizations have been performed for only one
target shape, it is straightforward to implement an optimization
for multiple deformations. In that case, the local algorithm
would be run for every target deformation and the results stored
in a local cost vector. The global cost would be determined
from the local cost vector by means of an appropriate norm.
This method would allow simultaneous optimization for more
than one objective. For example, active vibration damping
could be explored, with some Kagome members replaced with
sensors and high frequency actuators. The resulting vibration
amplitude could be calculated by a modal FE analysis and used
as a second cost function.

874



Actuator placement optimization in a Kagome based high authority shape morphing structure

a  Twisting

b  Hinging

6 18 30 41 53-53a)

b)

-41 -30 -18 -6

Displacement, u [mm]

-2 22 46 71 95 119 143 168 192 216

Figure 10. Result of the FEM verification of the optimization results for twisting and hinging using 16 actuators.
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