Hamilton-Jacobi ENO

The goal is to construct ϕ_x^- and ϕ_x^+ at each grid point x_i . We write $\phi_x = \frac{dQ}{dx} = \frac{dQ_1}{dx} + \frac{dQ_2}{dx} + \frac{dQ_3}{dx}$. We suppose that we have computed the divided difference tables D^1 , D^2 and D^3 .

Algorithm:

- 1. To find ϕ_x^- , start with k = i 1, and to find ϕ_x^+ , start with k = i.
- 2. Define $\frac{dQ_1}{dx}(x_i) = D^1_{k+1/2}\phi$.
- 3. (a) If $|D_k^2 \phi| < |D_{k+1}^2 \phi|$ set $c = D_k^2 \phi$ and $k^* = k 1$,
 - (b) Else set $c = D_{k+1}^2 \phi$ and $k^* = k$.
 - (c) Define $\frac{dQ_2}{dx}(x_i) = c \left(2(i-k)-1\right) \bigtriangleup x$.
- 4. (a) If $|D^3_{k^*+1/2}\phi| < |D^3_{k^*+3/2}\phi|$ set $c^* = D^3_{k^*+1/2}\phi$,
 - (b) Else set $c^* = D^3_{k^*+3/2}\phi$.
 - (c) Define $\frac{dQ_3}{dx}(x_i) = c^* \left(3(i-k^*)^2 6(i-k^*) + 2\right) \triangle x^2$.

Notes: $\phi_y^-, \phi_y^+, \phi_z^-$ and ϕ_z^+ are obtained similarly.