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Abstract

Wet chemical etching is an important process in the manufacturing of micro-
electronic devices. This technique removes material selectively from the surface of
~a solid body by the application of caustic fluids. Predicting and understanding the
etching profile growth (a moving boundary) is therefore very useful. A mathemati-
cal model describing this process can be formulated in terms of a partial differential
equation valid in a time dependent, a priori unknown domain. Depending upon the
magnitude of the physical parameters of the problem, a variational inequality formu-
lation can be obtained valid in a fixed domain. An iterative numerical scheme with
projection has been developed for this latter problem and implemented on an iPSC/860
parallel computer. The highly efficient parallel algorithm, some numerical results and
other computational details are discussed for a representative example.

1 Introduction

Wet chemical etching ([2] - [5], [7]) is an important technique in the fabrication of semicon-
ductors. In this process, an impermeable mask is placed on some part of the surface of the
body to be etched. Caustic fluids are then allowed to come into contact with the body and
etch into the body wherever the mask is not present. As time proceeds, more and more
of the body is cut away by the fluids. Thus, this problem falls into the class of moving
boundary problems. A mathematical model describing this process can be formulated in
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terms of a partial differential equation valid in a time dependent,a priori unknown domain.
During this process, undercutting, or removal of solid material from under the mask, occurs.
If the area of undercutting is too large, it can cause short-circuits and other problems with
the integrity of the semiconductor. Thus it is important to describe this behavior as well
as possible. Predicting the profile of the moving boundary over time would allow improved
manufacturing of semiconductors.

Vuik and Cuvelier [8] presented a representative example of an etching problem of this type.
Their numerical results were obtained using the finite element method on a serial computer.
They considered two cases of the problem. One for which the Sherwood number is assumed
to be large and the other where it is not. The latter required a moving mesh approach.
The first case is the one pursued herein. With these assumptions a variational inequality
formulation can be found in a fixed domain. This fixed domain problem will be solved using
a finite difference scheme with projection. See Crank [1] for references to researchers who
have solved problems of this type using finite differences with projection for the serial case.
Wang [9] has developed a parallel SOR algorithm with projection and has applied it to a free
boundary seepage problem. Herein this algorithm will be adapted to the moving boundary
problem. This problem has a more interesting geometry as well as the fact that the derived
partial differential equation (PDE) has a step discontinuity in the solution region. Details
of how these difficulties were handled are described in Section 4. It was found that the
problem parallelized extremely well, and the results of Vuik and Cuvelier were reproduced
with reasonable accuracy although different methods of solution were used.

The outline of the paper is as follows: In Section 2 we shall introduce the physical problem. In
Section 3 the mathematical model and derivation of the complementarity system is described.
In Sections 4.1 and 4.2 the numerical algorithm and the parallel scheme are described,
respectively, and in Section 4.3 numerical results are presented. From the numerical results
we see that the method parallelizes well and that acceptable speedups are maintained from
1 to 64 nodes on the iPSC/860 architecture. With the large amount of computing time
required by this problem, it becomes clear that efficient parallel numerical algorithms for the
new architectures, such as this, must be developed.

2 Physical Problem

Chemical etching has been used for many different types of applications, for example the
manufacture of television tubes, production of lasers, production of semiconductors and any
other process where fine depth control of a physical body is to be performed. Here we
shall look at the case of semiconductor fabrication. This is the physical problem that was
considered by Vuik and Cuvelier [8]. Following their physical model, we shall place two
photoresist layers (masks) onto a flat plate of length L (Figure 1). We shall allow a gap of
length 2a between the two layers and caustic fluid to flow on top of the plate. Further, we
shall assume that only one component of the caustic fluid determines the process, there is no
convection in the etching medium, and that the etching process is isotropic. We shall also
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assume that the thickness of the mask is infinitely thin and that L is large in comparison
with a.

mask mask

gap /

L
- 2 —>
plate /

Figure 1: Physical problem.

I, T, (1) x)
Q—J
D\Q(Y)

Figure 2: Side view of physical problem showing mathematical solution setup.

The latter allows us to treat the problem as two dimensional, and we shall consider the cross
section (Figure 2) of our original problem. We shall let §(0) be a square region in the caustic
fluid which is large enough so that increasing the size of £(0) will not change the etching
process. We shall let D, be a rectangular region in the plate’s cross section such that all the
etching will occur in D, for ¢ € [0, T). Denote by I's the slit of length 2a, I's = 9Q(0) N aD;.
Then the domain of the problem, D, is the union of the upper rectangular region Q(0), the
lower rectangular region D, in the plate, and T's along the boundary between the two, i.e.
D = ©(0) U Dy U (09(0) N ODy). Let Q(t) be the open region in D at time ¢ € (0,T) that
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is wet. Denote by I'; the boundary of Q(0) that is not along the mask or I's, and Ta(t) for
the upper and lower surfaces of the mask that are exposed to the caustic fluid. This is the
problem that we shall solve numerically using a parallel supercomputer.

3 Mathematical Model

3.1 Dimensionless Model

We shall start with the dimensionless form of the above problem when the Sherwood number
is assumed to be large. Following Vuik and Cuvelier [8] the problem becomes: Find the
concentration function C = C(z,y,t) in Q(t) and the moving boundary S(t) such that

ocC

(1) —ét— —AC=0in QQ = {(Z, y1t) l (xsy) € Q(t)at € (0’ T)}
with initial condition

(2 C(z,y,0)=1in Q

and boundary conditions ‘

3) C = 1lonTly =T x(0,T)

@) S = OonTu= {08 (@) €T:(0)t € (0,7))
(5 C = 0on St) = {(z,9,t) | (2,9) € S(t),t € (0, T)}
© g—g = —Bu, on Si(t)

where 7i denotes the unit normal vector on T's(t) pointing outward with respect to Q(t), vy, is
the normal velocity of the boundary S(t), and B = % ( D is the diffusion coefficient, o is a
material constant, and Cj is the initial concentration). Although one can also formulate the
problem when the magnitude of the Sherwood number is small as well (Vuik and Cuvelier
(8]), it will not lead to a fixed domain formulation similar to the one that follows.

3.2 Fixed Domain Formulation

The following fixed domain method using a Baiocchi type transformation will transform the
problem from a moving boundary problem to one with fixed boundaries. It is this problem
that will be solved numerically in the next section. The following formulation of this problem
is equivalent to the one-phase Stefan problem which has an equivalent variational formulation
(6]. For the fixed domain formulation we shall replace (2) - (4) by:

(7 C = Co(z,y) in Q(0)
(8) C = g¢(z,y,t)onT; =T, UTy,
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where we assume from the physical conditions that the functions C and g are nonnegative,
and that B is a strictly positive constant.

Define an extension C of C to a domain @p = D x (0,T), where D is the domain that is
large enough to strictly contain Q(t) for ¢ € (0,T), by:

A C(z,y,t) in Qq

9 t) = .
9) C(z,y,t) { 0 in Qp \ Qa
and in a similar manner extend g and Cy(z, y), more precisely:

~ - g('t’ y’t) on I‘t
(10) §(z,9,1) = { 0 on (D x (0,T)) \ T

' 5 — ] Co(z,y) in Q(0)

(11) Co(z,y) = { 0 in D\ Q(0).

With these extensions, C satisfies in a distributional sense ([6)):

ac 5 Xq .
(12) -a—t - AC: = —-B-Et— mn QD
(13) C = §gondDx(0,T)
(14) C(z,9,0) = Co(z,y) in D

where Xg is defined to be the characteristic function for Qq in Q@p. Then as in Vuik and
Cuvelier [8] the following Baiocchi transformation is introduced:

(15) w@yt)= [ Cayndr @y)eD, te@1)

and if we integrate equation (12) with respect to t, then
ow

(16) ’a't_ Aw = éO(z7 y) + B(Xﬂ(za Y, 0) - Xﬂ(z’ y’t))'
This leads to the following complementarity system :
(17) %:}-—Aw~f > 0in @p
(18) w > 0in@p
(19) (%% —Aw — f) w = 0in@p
t
(20) w(z,y,t) = /0 §(z,y,7)dr =G(t) ondD x (0,T)
(21) w(z,y,0) = 0in D

where f(z,y) = C(z,y,0) — B(1 — Xq(z,y,0)) is independent of time. If w is a solution
of the above problem, then C = %2 solves the original problem. Associated with this
complementarity system is a variational inequality which Vuik and Cuvelier formulated and
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solved numerically for the case of a large Sherwood number. They went on and showed
that there exists an unique and strong solution of the etching problem such that the moving
boundary separates the regions: {(z, ¥,t) € Qp | w(z,y,t) > 0} and {(z,y,t) € Qp |
w(z,y,t) =0} if Cy € Ly(D) and G € Ly(0,T; H'/2(8D)). They continue on with the finite
element solution of the variational inequality. Herein a parallel adaptation of Wang’s scheme
(9] for this problem is considered.

4 Numerical Scheme and Resﬁlts

4.1 Numerical Algorithm

An adaptation of Wang’s [9] iterative parallel SOR method will now be applied to (17) - (19).
The regions (0) and D, will be discretized and the problem solved using a finite difference
SOR scheme with projection. For the non-parallelized case the scheme will solve the problem
pointwise from right to left and top to bottom with an exception at the interface between
£2(0) and D; which will be discussed below. We shall denote by (w1)ijk the i,j position of
the solution in region Q(0) at time step k where i and j are the column and row numbers,
respectively. Similarly (w;); ;x denotes the i,j position of the solution in the region D; at
time step k. We shall let maxrow1 denote the maximum number of rows, and maxcoll the
maximum number of columns in Q(0). Similarly for maxrow2 and maxcol? in D;. The
reason that the region must be divided into two regions is the jump discontinuity in the
differential equation (16). To concentrate our computation in the region of interest, namely

Dy, the bottom mesh will be 1 /4 the size of the top mesh. The basic numerical algorithm
is:

-1
(n+1/2) _ 1, 2 2 BRI
(wl)zg,k . (At + (A.’L‘)2 + (Ay)2) {CO + At(wl)lg,k—l
1 n n
* By (w42, + (w){) e
1 \(n n
(22) + o [ + (woﬁjﬂ,k]}
with
(23) (w)FED = (w) {3 + 6[(01) 4D = (wy)]
in 2(0) and
-1
(n1/2) _ i 32 32 _ _1- N
(w2)m’}, = (At + _—_(A.’B)2 + '—'—(Ay)z B+ At(w2):,],k—1
16 n n
t ey (@) + )P
16 " n
20 + g 5+ ]
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with ‘
(25) (w2){ = max{0, (wa){, + 0[(ws) 4D — ()]}

in Dy, where use was made of a first order backwards difference formula for %’f—, second

order central difference formulas for Aw, n denotes the SOR iterate, and 6 is the SOR
relaxation factor. Since there is a line of symmetry along the y-axis through the middle of
the region, only the right half of the region will be solved numerically. For the points along
the line of symmetry we shall use reflection and a second order central difference to obtain
the additional equation:

(“’1).(':;;1/2) = (2% + (Ti? + (_:1;—)3) B {C'o + ‘Al‘{(wl)i,j,k—l
+ )
(26) + g 5+ 3]
for ©2(0) and the corresponding equation for D; with wy, 943, %’1 and — B replacing w;, Az,

Ay and Cy, respectively. Also along the top and bottom of the mask, I 2(t), we use a second
order central difference for the normal derivative, i.e. -

-1
(n41/2) _ 1, 2 2 1w
()5 79 = (At + (Bo)? + (Ay)’) {Co + At(wl)z,],k—l
(n+1)

+ (—Alz—)Q [(w; Tk + (w1)) ik

for ©2(0) and the corresponding equation for D; with wo, %, %1 and —B replacing wy, Az,
Ay and Cy, respectively along with (wg)f:;i})k replacing (w; )53"_'112,‘ in the last term. Equations
(23) and (25) are also used in conjunction with equations (26) and (27), respectively. For

the remainder of the boundary conditions we set:

(28) (W) =
(29) (w)GH) = ¢
(30) (w)7h) = 0
(31) (w2)'(',’:r-:-alz?row2,k 0

At the interface we first solve for (wl)‘(.,”;"':z),owl 4 along the top of the mask using (27) until we

reach a; — 1, where q, is the integer number of the mesh point where the mask terminates
and the gap begins. Starting at a,, solve for (wl),(,’;';lz),wl & on I's using an average of the
values of w above and below, namely: '

1
n 2
(32) (wl ):(,n;‘-ul:!rgwl.k = 5 [(wl)i,nn)mzrawl—l,k + (w2)l(,'-;),k]
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Then we start at the left and work towards the right for the first row of D;. In the etched
region up to the end of the mask, point numbered a2, we use a linear interpolation of the
values of (32) on T3 to fill in the smaller mesh. Then starting at a; — 1 we use equation
(27) to find (w; )f';";l/ ?) along the underside of the mask. For rows 2 through maxrow2-1 we
proceed as usual from right to left. This is the algorithm that was used to solve the problem
serially.

4.2 Parallel Scheme

To adapt Wang’s [9] parallel scheme to the above algorithm it will be necessary to divide up
the region into horizontal strips, subregions, (see Figure (3)). The fact that there is a jump
in the second derivative along I's in the slit made it necessary to put a division there. Each
subregion, R;, will have rows denoted 1 to Np,, where Np, is the number of rows in R;. The
parallelization algorithm is as follows for I =1,... ,e (e is the total number of subregions):

1. In R, calculate w,(:;};l) for j = 2, Np, — 1 using equations (22) and (23) or (24) and
(25) with the corresponding form of (26) at the symmetry boundary for Q(0) or D,
respectively.

2. Pass w,(m)_l,k'from R; to R4y except for R,.

3. Calculate w,("{f;,l) in Ry, using data from step (2) and equations (22) and (23) or (24)
_ and (25) with the corresponding form of (26) at the symmetry boundary for Q(0) or
D, respectively. .

4. Pass w,(";f;l) from Rj41 to R; except for R; to update R, for the next SOR iteration.

where R, denotes the last subregion of the division. For the two interface regions R;, € Q(0)U
s and Ry,,, € D, UT; between regions §2(0) and D;, steps (1) - (4) of the parallelization
algorithm are performed, but the details are more complex, i.e.

1. In Ry, and Ry,,, calculate (wl)fgr) for j =2, Ng,, and (wg)f";r) for j =2, Ng,,, -1
by:
(a) calculate (wl),(,'}r) for j =2, Ng,, — 1 by equations (22), (23), and (26) in Q(0).
(b) calculate (w,){%+") x for i =1,a; — 1 using equation (27) for 2(0).

"NRII

(c) calculate (wl)f'},?:‘) & for # = @, maxrowl using equation (32).
1

(d) calculate (wg),(";;l) for j =2, Npg,,,, — 1 by equations (24), (25), and (26) in D;.

2. Pass (wl),‘."‘;;‘)ﬁ,, from Ry, to Ry,,.
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3. Calculate (wg)f"m” for i = maxcol2, 1 by:
(a) calculate (wg)g:;-;:) for i = maxcol2, a; by copying the value from (wl)fx:‘)l 4 and
using linear interpolation to fill in the smaller mesh.

(b) calculate (U)Q)g";:;l) for i = a3 — 1,1 using equation (27) for D;.

4. Pass (wg)f"g'j‘” from Ry,,, to Ry, for the next SOR iteration.

R1
R2
| |
! ]
R13
H14 ) -
—
R1.'5
: RIG

Figure 3: Domain decomposition of mathematical problem into sixteen subregions showing
the flow of computations in each.

The advantage of this scheme is that for each iteration, step 1 only depends on data from
within the subregion to be calculated and thus this step, which is the bulk of the computation,
can be performed in parallel. To maximize the efficiency a load balancing scheme was
developed for the particular problem that was solved. This will be discussed in the Results
Section.

4.3 Results

In order to compare results with Vuik and Cuvelier (8], we used the same slit opening of
2a = 2.0 and B = 10.0. It -was then necessary to find a region (0) large enough such
that if 2(0) were enlarged, the etching did not change its shape. We found this to be true
experimentally for the serial problem if: Az = Ay = 0.05, maxrowl = 280, and maxcoll
= 321 for Q(0) and Az = Ay = 0.0125, maxrow2 = 80, and maxcol2 = 161 for D using
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a time step At = 1.0, a tolerance of 0.1 x 1076 for the SOR iterates and 0.1 x 10-3 for the
free surface. By a tolerance for the free surface, the solution free surface after convergence
at each time step ¢ is defined to be the first value less than the tolerance moving in a
direction outward from Q(t) in D;. It was also found experimentally that § = 1.935, the
SOR relaxation factor, gave the fastest convergence. These parameters fully determine
the example problem that was run. Both the serial case and the numerous parallel cases
reproduced the results obtained by Vuik and Cuvelier 8] using the finite element method to
within approximately 2 gridpoints, i.e. by 0.025 by the twentieth time step, and the results
of the serial and parallel cases all agreed with each other exactly except at one point where
there was a difference of 0.1 x 10~3. These differences with Vuik and Cuvelier are probably
due to different tolerances and the fact that one method used finite elements and the other
used finite differences. Figure 4 shows the moving boundary for ¢t = 4,8,12,16,20 in D,
where the etching occurred.

0 0.5 1 1.5 2
Figure 4: Moving boundary at various times.

Based on the dimensions of the problem the following load balancing scheme was determined,
see Table I (and Figure 3), where nodes denotes the number of iPSC/860 CPU’s in use and

Table 1: Load Balancing Information for Example

Nodes 2 4 8 16 32 64
bottom nodes 1 1 1 2 4 8
bottom points | 12880 12880 12880 6440 3220 1610

top nodes 1 3 7 14 28 56
top points 89880 < 30174 12840 6420 3210 1605
diff points 77000 17294 40 20 10 5

how they were divided into the top, (0), and bottom, D, subregions and point‘s denotes
the number of gridpoints to be calculated by each node. Note, for 4 nodes we have < 30174
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points. This is because 2 nodes ran 29853 points while 1 node ran 30174 points since 280 is
not evenly divisible by 3. Hence the problem was load balanced for 8 - 64 nodes.

Figure 5 shows the speedup times for 1-64 nodes at t = 20, i.e. for the 20th time step.
Speedup is defined as the ratio of the time to solve the problem on one processor divisible
by the time to solve the problem on n processors, where n is the number of nodes. The
speedup times reflect the lack of load balancing for the 4 node case which had a significant
affect on the efficiency. Similar speedups for the time step at t=4,8,12,16 were achieved.
Each node-time combination took 166 + 6 iterations to run. As can be seen the speedup
times were closest to the ideal line (45° line) for 8 nodes, and only started to move off
quickly at 64 nodes. This is due to the fact that the communication cost becomes large with
respect to the calculation time for each node when the number of rows calculated per node
becomes small. One should note that the timing data only took into account the internode
communication costs and not the cost of going to and from the host. This is because after the
initial condition wy is downloaded, no additional communication is necessary with the host
because the numerical scheme needs no additional data. The output of the etching profile can
be uploaded to the host at the final time step, in our example at t = 20. It is clear that if the
mesh were refined or the region of calculation were enlarged, the calculation per node would
increase and the communication costs for a large number of nodes such as 32 and 64 would
become less significant thus improving the speedups. Although the scheme worked well,
there does appear to be an ideal number of nodes for the best speedup which is related to
the amount of computation performed by each node. This correlation is slightly complicated
by the fact that an increase in either the size of the original problem or a mesh refinement
would also lead to an increase in the average number of iterations that would increase the
communication cost, although more calculation per node and hence communication would
be performed at each iteration. The scheme thus appears to parallelize very well on a small
scale parallel architecture like the iPSC /860 and would not be well adapted to a large scale
parallel architecture such as a Connection Machine. :

0 ¢ * $ * * + 4
0 10 20 30 40 50 60 70
Number of nodes

Figure 5: Speedups for various numbers of nodes at t = 20.
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