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Abstract

A finite element, adaptive mesh, free surface seepage parallel algorithm is studied using performance analysis tools in
order to optimize its performance. The physical problem being solved is a free boundary seepage problem which is non-
linear and whose free surface is unknown a priori. A fixed domain formulation of the problem is discretized and the
parallel solution algorithm is of successive over-relaxation type. During the iteration process there is message-passing
of data between the processors in order to update the calculations along the interfaces of the decomposed domains. A
key theoretical aspect of the approach is the application of a projection operator onto the positive solution domain.
This operation has to be applied at each iteration at each computational point.

The VAMPIR and PARAVER performance analysis software are used to analyze and understand the execution
behavior of the parallel algorithm such as: communication patterns, processor load balance, computation versus com-
munication ratios, timing characteristics, and processor idle time. This is all done by displays of post-mortem trace-files.
Performance bottlenecks can easily be identified at the appropriate level of detail. This will numerically be demon-
strated using example test data and comparisons of software capabilities that will be made using the Blue Horizon par-
allel computer at the San Diego Supercomputer Center.
© 2004 Published by Elsevier B.V.
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1. Introduction

The problem studied is the free surface seepage problem shown in Fig. 1. The following assumptions are
made: the soil in the flowfield is homogeneous and isotropic; capillary and evaporation effects are neglected;
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the flow obeys Darcy’s Law; the flow is two-dimensional and at steady state. Because of the assumptions
made, the problem is described by the velocity potential function, ¢, whose governing differential equation
and boundary conditions are also shown in Fig. 1. The relevant dimensions are taken to be: x; = 40, y, = 10
and y, = 3. In Fig. 1, Q is the seepage region abdf. The location of the curve fd, y = f(x), is unknown a
priori.

A fixed domain formulation for this problem can be obtained by using the Baiocchi method and trans-
formation (see [2,10,11,3,6]). In this approach the a priori unknown solution region is extended across
the free surface into a known region. The dependent variable is also continuously, similarly extended.
Then a new dependent variable is defined using Baiocchi’s transformation within these regions. The
resulting problem formulation leads to a ‘complementarity system’ associated with its respective varia-
tional inequality formulation. This method has proven effective not only from the purely theoretical
point of view, but also from the point of view of yielding new, simple, and efficient numerical solution
schemes.

Fig. 2 shows the governing equations and boundary conditions that describe the fixed domain formula-
tion of the problem presented in Fig. 1. D is the region abef. The variable w is the Baiocchi transformation
of the extended potential function, i.e.,

wiry) = | " G0 — M7, (1)
where
_ @)

The detailed derivations of these equations are given in [3].
The problem shown in Fig. 2 can be written as a ‘complementary system’ and its corresponding varia-
tional inequality formulation. Then the following theorem can be stated:
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Fig. 1. The example physical problem (free boundary seepage).
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Fig. 2. The example physical problem (free boundary seepage) for numerical implementation.

Let p(x, y) be the Dirichlet data in Fig. 2 and define
K = {v(x,y)|v € H'(D), v|aD’=p, v > 0 ae. on D},
a closed convex set, K ¢ H'(D).

Theorem 1. If w € K satisfies the governing equations and boundary conditions shown in Fig. 2, then it also
satisfies the variational inequality:

alw,v—w) = Llv—w) YveKk, (3)
where
a(w,v—w) = / /Vw V(v —w)dxdy = //{wx(v,C —wy) +w,(v, — wy)}dxdy (4)
D D
and
L(v—w):—//(v—w)dxdy. (5)
D
The finding of w € K is equivalent to solving the minimization problem
Jw) <J(v) WveKk, (6)
where
J(v) = a(v,v) +2(f,v) (7)
in which a(v, v) is a bilinear form, continuous, symmetric, positive definite on R and f€ R, i.e.,
a(v,v) = / /Vv - Vvdxdy, (8)
D
(o) = [ [focxay ©)
D

For this example problem, f= 1. The functional J has one and only one minimum in a closed convex set.
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The minimum is found using the following finite element algorithm:

1 i-1 N
1/2 1 n
u§n+ /2 = "a—i; (; az’juj‘w- ) + Z aiju](' ) +ﬁ>, (10)

j=itl

" = p, (uE") + w(uE"H/z) — uﬁ"’)) = max (0, U™ 4 w(u,("ﬂ/z) — u,‘”)), (11)

where a; = a(N;, N)), f;= (f, N)), N; is the canonical basis of RY, P; is the projection on the convex set,
i=1,..., N, Nis the number of nodal points and w is the relaxation factor. The relaxation factor is deter-
mined empirically. Linear triangular elements will be used in the discretization. It should be noted that the
projection operation in the numerical scheme must be applied during the iteration process. It cannot be ap-
plied after the iteration process has been completed since if it were, an incorrect solution would be obtained.

2. Adaptive mesh finite element analysis

Error estimation and local mesh refinement are two major concepts of adaptive mesh finite element
analysis. In addition, a mesh refinement algorithm is required to perform remeshing after obtaining the
error of a finite element system. The error estimate decides how the computed results deviate from the exact
solution. Local mesh refinement testing is performed to determine how the mesh is to be refined. The
remeshing algorithm is then used to automatically generate a refined mesh according to the error obtained.

The error estimation procedure used herein was introduced by Zienkiewicz and Zhu [18]. It allows an
accurate assessment of errors while remaining so simple that it can readily be implemented as a post-
processor involving minimal computation. This computationally simple error estimator with the modifica-
tion introduced by Burkley and Bruch [4] and Burkley et al. [5] is used for the solution of the free surface
flow through an earth dam using a parallel computer. The modification used by Burkley and Bruch [4] was
that, instead of using the Zienkiewicz—Zhu procedure (a projection method) to calculate the nodal estimates
for the exact nodal fluxes, they performed a simple averaging technique. That is, for each node they added
up say the x-fluxes (which were constants since linear elements were used) from the elements that contained
that node and divided that sum by the number of contributing elements. The same was done for the y-
fluxes. A mesh generator and a mesh refiner were used to perform the finite element analysis and the
post-processing of the mesh refinement. Isosceles right triangle elements were used for the purpose of this
study. A simple mesh generator and refiner for these elements were implemented to generate the initial
mesh. The concept behind the mesh generation and mesh refinement is simple: divide an element into
two by refining across its longest side. Also, in this study, incompatible elements were not allowed. There-
fore, a recursive process proposed by Rivara [12,13] was used to avoid having such elements.

2.1. Notation and error definition

The example problem addressed is a free surface flow through a porous medium. The error estimator will
be discussed here using Eq. (12) as an example. Let the governing equation for the dependent variable
u(x, y) in solution domain R be

Vu(x,y) = STSu=f inR, (12)

where
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and u(x, y) is subject to appropriate boundary conditions (either Dirichlet data or zero Neumann data).
The corresponding functional for the problem is

- [ (E @)

For clarity the following notion is defined:

+ uf} dR. (14)

Ou Ou
=—, == 15
“=5 H=3, (15)
" above a symbol refers to the approximate value of that symbol; ~ above a symbol refers to the nodal val-
ues of that symbol; the subscript 7 associates the term with a particular element; N are the shape functions—
in this case linear triangles; and terms without any modifications represent the exact value.
In the finite element approximation using these definitions, values would be represented as

u~u=Nu. (16)

The linear system of equations used is derived by the Galerkin method using Eq. (12) or the Ritz method
using Eq. (14) and is

Ku=F, (17)
where

K= /R (SN)T(SN) dR (18)
and

F= /R /NTdR. (19)

The derivatives are approximated by
q ~ g = Siu = SNu. (20)
Error is defined as the difference between the exact solution and the approximate solution

e, =u—1i (21)
and
e, =q—4q. (22)

Zienkiewicz and Zhu [18] presented the argument for the use of an improved estimate of § which could
be used as an approximation for ¢ in Eq. (22). A summary of their argument applied to the case of linear
triangles which we used herein is:

‘From Eq. (17) a linear approximation for u is calculated, this is noted as #. The variable ¢ is defined as
the derivative of u, thus §, being the derivative of #, must be constant in a given element. It then follows that
g will be discontinuous across neighboring elements and a potentially poor approximation to ¢. To find
better results for an approximation of g, nodal values (g) are calculated so that a § which is interpolated

by the same shape function as # can be found. g will vary linearly across an element and will be a better
approximation to g.’
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Eq. (22) then becomes
GG -g=2¢ (23)

with § = Ng. An averaging method is used for calculating the values of .
2.2. Averaging technique

As the name implies, the averaging technique used solves for the value of the derivative, g, at a node by
averaging the values of the derivatives of all elements which contain that node. The assumption is that the
value of the node will be most heavily influenced by neighboring elements, thus simplifying the computa-
tions by making it only dependent on the neighboring elements. The technique is simple to implement and
computationally inexpensive.

2.3. Error norm

A convenient form for expressing the error is the L, norm. It can be used with the errors predicted in any
calculation. Its general form is

12
lel., = [ / eTedR] o (24)
R
For the specific example of the e, error, Eq. ‘(22), it becomes
1/2
legl, = | [ ) erar] es)

Thus, for the example presented, the L, norm and the energy norm are the same.
The above norm is defined over the entire domain R. It can also be specified by the sum of the squares
over all the elements.

Ne

lell* =" llell?, | (26)

i=1

where the subscript i represents the element number and N, is the total number of elements. It is optimal to
have the elemental error norms equal for all elements [1,7].
For this case

leali = [ [(ea)(en) + )" (ex)] 27)

s A

where the i subscript denotes a particular element with area A; which is approximated by

leoli = | [~ Ve + @~ Ng, ] (28)

2.4. Error measures

An easily examined value for error is the relative percentage error » defined as

n=Leal s 1009, (29)

~ lall
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where

loll= | [ #ar] ) (30)

1 can be defined on both the local and global levels. The importance being that with a known percentage
error there is the possibility to refine on the elemental level. The above formula is the exact value of 5. The
predicted value of #, denoted as %, is

o’7 — lM:I " (31)
lal*]
where
lal ~ @l = [ @ +a)ar= [ [va) + g, ] ar (32)

Finally, an index to measure the effectiveness of the error estimate is defined by
_ predicted error _ [[&,]|
~ actual error e,

(33)

While 6 is a worthwhile quantity, since relative error is a more relevant quantity than absolute error, an

index for measuring performance of relative error predictions would be useful. This will be defined by
0

=1
p= (34)

An empirical correction factor has been found for 6 [18]. It depends upon the elements being used. For the
purpose of this paper, no correction factors were used in the example.

2.5. Mesh refinement

The refinement procedure herein uses the desired tolerance for error and compares it to the predicted
value for error. As described in the previous section, it is desirable to be allowed to specify the error tol-
erance in a percentage (relative) form. Further, it should be possible to specify both the overall maximum
percentage error as well as a local maximum percentage error. This is useful because the global error could
meet the specified tolerance while the local error in a few elements could be dramatically greater than de-
sired. The condition thus specified is then

11 < rlmax: (35)
where 7.« 1s the specified error tolerance.
Assuming that the error is equally distributed between elements, the requirement, Eq. (35), can be trans-

lated into calculation of a maximum absolute error. For a mesh having N, elements satisfaction of Eq. (35)
requires

12 172
Héqu < Nmax [l|]€/! } = €max; (36)

where e, 1s the maximum allowable elemental error.
Criteria for refinement are calculated by comparison of elemental error versus ey,,. Defining

g = Ll (7)

€max
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gives the criteria. Values of ¢; < 1 indicate that larger elements can be adopted, while £; > 1 requires smaller
elements. Denoting A4; as the current element area size and the refinement follows

(A1) ew =% for & > 1 (38)
giving the predicted element area size. Since the domain being modeled is a rectangle, the elements used are
isosceles right triangles. The starting mesh for the problem considered is uniform.

Refinement consists of targeting an element for refinement, then dividing the element in two by refining
across its longest side (remember isosceles right triangles are being used). Because it is desirable to keep the
elements in an optimum shape (see [14]) if the common nodes between the element being refined and its
neighbor do not define the longest side of the neighbor, the neighbor must be refined first. This sets up
the possibility of a recursive process. This strategy causes all elements to be similar triangles.

3. Parallel iterative scheme

Wang and Bruch [16] proposed parallel iterative Gauss—Seidel and SOR iterative schemes. Conventional
Gauss—Seidel and SOR iteration schemes need to be performed sequentially. Reordering the equations al-
ters these two schemes into fully parallel iterative schemes. Wang and Bruch [16] used this intuitive idea and
implemented it on a free boundary seepage problem. Speed-ups were obtained that were superlinear (speed-
up larger than the number of processors used).

The basic essence of the approach is as follows: after the computation domain is subdivided into subdo-
mains (see [16] for the procedure for this load balancing), the problem domain boundary remains a bound-
ary and the interfaces of a subdomain become new boundaries. Thus, the computation of values at interior
mesh points for one subdomain is uncoupled from the other subdomains. Also, the computation of values
at mesh points of an interface is uncoupled from the other interfaces. The iterative schemes use a combi-
nation of newly computed values and old values at mesh points surrounding a mesh point to compute the
new value at that mesh point. Therefore, the iterative process can be performed for the interior mesh points
of a subdomain using the old values at interface mesh points. Moreover, the values at interface mesh points
can be updated using the newly computed values at interior mesh points by the iterative process. An exam-
ple and explanation are given in [16,17].

Accordingly, this parallel iterative scheme simply reorders the computing sequence such that the values
at interior mesh points are computed first, then those at the interface mesh points are computed. With this
parallel scheme, all processors can compute concurrently for the new values at the interior mesh points.
Also, all processors update the values at mesh points on the interface in parallel.

4. Performance tools and considerations

The VAMPIR [19] and PARAVER [20] performance analysis software are used to analyze and under-
stand the execution behavior of the finite element parallel program. Performance optimization of parallel
programs is dominated by many more different and complex principles than its sequential counterpart.
Typically, the parallel program is monitored while it is executed. Monitoring produces performance data
that is interpreted in order to reveal areas of poor performance. The program is altered and the process
is repeated until an acceptable level of performance is reached.

VAMPIR (Visualization and Analysis of MPI Resources [19]) is a post-mortem trace visualization tool
from Pallas GmbH. It uses the profiling extensions to MPI (Message Passing Interface) and permits
analysis of the message events where data is transmitted between processors during execution of a parallel
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program. It has a convenient user-interface and an excellent zooming and filtering. Global displays show all
selected processes:

Global Timeline: detailed application execution over time axis.
Activity Chart: presents per-process profiling information.
Summaric Chart: aggregated profiling information.
Communication Statistics: message statistics for each process pair.
Global Communication Statistics: collective operations statistics.

The Activity Chart display shows a statistic about time spent in each activity for each process. By de-
fault, the Activity Chart display gives information for the “execution” time of all activities. The display
can be made to show the states belonging to a particular activity by using a submenu of the context menu.
By selecting on the activity names, the display will show the “execution” times of all the states belonging to
that activity.

Considering the seepage test example, all tracing was done on the IMB SP2 Blue Horizon, using a 4-node
run. Selection of “Global Displays/Activity Chart,” pops up a window that consists of pie charts for every
process [4 nodes]. Load imbalances can be identified by this view.

PARAVER (Parallel Program Visualization and Analysis Tool [20]) is a flexible parallel program visu-
alization and analysis tool based on an easy-to-use Motif GUL. PARAVER was developed to respond to
the basic need to have a qualitative global perception of the application behavior by visual inspection and
then to be able to focus on the detailed quantitative analysis of the problems.

PARAVER provides a large amount of information on the behavior of an application. This information
directly improves the decisions on whether and where to invest the programming effort to optimize an
application. The result is a reduction of the development time as well as the minimization for the hardware
resources required for it.

5. Running the test case

To run the adaptive mesh finite element program, a user must generate the initial mesh first, then run the
finite element program with an error estimate. With the error estimate, a new refined mesh will be created
for another finite element analysis. This process is repeated until the error from the finite element analysis
is satisfied. The program GEN is used to create the initial mesh and perform mesh refinement. The GEN
also performs the domain decomposition and generates data for the parallel finite element analysis.
The program FEA is a parallel finite element analysis program that performs finite element analysis in
parallel.

The physical problem considered for the test case is shown in Fig. 2. A relaxation factor of 1.85, a stop-
ping error criterion of 10~ for the maximum absolute difference between iterates at a mesh point and
Nmax = 0.05 were used in obtaining the numerical results.

Every stage is run in two steps:

e mesh generation, by running the GEN module;
¢ running the parallel module FEA, using the mesh generated by GEN.

The mesh map for Stage 1 is presented in Fig. 3 for processor 0 and in Fig. 4 for processor 3 using 32
elements on each processor.

The speed-up on the Blue Horizon for the first adaptive mesh refinement solution (designated as Stage 1)
is shown in Table 1 resulting in a super-scalar speed-up, due to the cache effect.
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Fig. 3. Stage 1—Processor 0—Mesh Map.
pé/Stage 1
10 v T T T
e
8| 4
sf 4
2
H
4 4
2t 4
0 . ; . A
28 Y 2 4 36 38 40
x-axis
Fig. 4. Stage 1—Processor 3—Mesh Map.
Table 1
Ideal and FEA speed-up
# of processors Ideal speed-up FEA speed-up (Time/Proc.)
1 1.0 1.00 0.8702
2 2.0 2.04 0.4250
4 4.0 4.30 0.2023
8 8.0 8.27 0.1051
16 16.0 18.79 0.0463
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VAMPIR [19] and PARAVER [20] were used to find and correct performance anomalies and inefficien-
cies in the FEA program. Both utilities can analyze and offer specific guidance for problems such as:

load imbalance

excessive communication
excessive serialization

poor use of memory hierarchy

The Activity Chart of Stage 1 obtained with the VAMPIR utility is presented in Fig. 5 and is confirming
the good performance of the FEA code Stage 1 of computation. The green areas refer to the amount of
computer operations not including message passing, while the red areas refer to the amount of message
passing. The Zoom Display of Stage 1 obtained with the PARAVER utility is presented in Fig. 6 and con-
firms the results of the VAMPIR utility. Here again the green designations refer to computer operations not
including message passing, while the yellow refer to message passing.

Starting with Stage 3 we can detect a load imbalance, which is more evident in Stage 4, presented in
Fig. 7. We “zoom” into the part which shows the load imbalance, presented in Fig. 8. From Figs. 7

Fig. 5. Stage I —VAMPIR—Activity Chart.

bpl ication

Process 2
01s

Fig. 6. Stage 1 —PARAVER—Zoom Display.
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b’l ication

Process 3
11s

Fig. 7. Stage 4—VAMPIR—Activity Chart.

535 s .
Bepplication
L2

Fig. 8. Stage 4—VAMPIR—Zoom Display.

and 8 we conclude that processor 0 has the least amount of computation, i.e., the least amount of computer
operations not including message passing, to perform. As the number of mesh points and the amount of
mathematical operations is equal for all processors, we suspect a poor use of memory hierarchy in the
SOR routine.

We use the “HPMCOUNT” performance utility [8] in order to find quantitative information regarding

the resource usages. In Table 2 we see important differences between Stage 1 and Stage 4 for the TLB
misses.
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Table 2

TLB misses

Stages Proc. 1 Proc. 4
1 9464 7870

4 12,210 208,341

The Blue Horizon, as well as all modern virtual memory machines, has a special cache called a “trans-
lation lookaside buffer” or TLB for virtual to physical memory address translation. Like other kinds of
caches, the TLB is limited in size. It does not contain enough entries to handle all of the possible virtual
to physical address translations for all the programs that might run on the machine. Larger pools of address
translations are kept out in memory, in the page tables. If the program asks for a virtual to physical address
translation, and the entry does not exist in the TLB, then there is a “TLB miss”. A new page will have to be
created in memory and possibly, depending on the circumstances, refilled from disk. Although they take a
lot of time, page faults are not errors. Even under optimal conditions every program will suffer some num-
ber of page faults [9].

Mesh refining—from 32 elements/processor in Stage 1 to 1262 elements/processor in Stage 4—created
adjacent points with non-adjacent memory addresses, the main reason for large TLB misses. Figs. 9 and
10 present the mesh maps in Stage 4 for Processor 0 and Processor 3, respectively.

In order to correct the load imbalance due to the TLB misses, we decrease/increase the number of points/
processor proportional to the computational time on different processors in the SOR module—Table 3.

Analyzing the results again with VAMPIR and PARAVER we obtain the Activity Chart presented in
Fig. 11, the Zoom Display in Fig. 12 and the Zoom Display (which shows the message passing information
with the other computer operations filtered out) in Fig. 13. We actually did not correct the TLB misses, but
did a more correct load balance. We “zoom’ into a part which shows the load balance in Stage 4, presented
in Figs. 12 and 13. One way to correct the large number of TLB misses, would be to renumber the elements
and mesh points at each Stage so as to have a different memory access pattern in order to optimize the
memory references [15].

pi1/Stage 4
10 T T

[} 2 4 6 8 10 12
x-axis

Fig. 9. Stage 4—Processor 0—Mesh Map.
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Table 3
Stage 4 timing of the SOR module

Fig. 10. Stage 4—Processor 3—Mesh Map.

Processor Time spent in SOR
0 0.3671
1 0.4068
2 0.6940
3 0.8393

Prm

Ml ication

Process 3
14s

Fig. 11. Stage 4 —VAMPIR—Activity Chart.
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054 s 0.5 s 0,58 s 08s 0.62's

BApplication
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Fig. 12. Stage 4 —VAMPIR—Zoom Display.

Fig. 13. Stage 4 —PARAVER-—Zoom Display.

6. Conclusions

A significant factor that affects the performance of a parallel application is the balance between commu-
nication and workload. To fully understand the performance behavior of such applications, analysis and
visualization tools are needed. Two such tools, VAMPIR and PARAVER, were used to analyze the per-
formance of the seepage application. It was seen that optimization of the parallel code can be carried
out in an iterative process involving these tools to investigate performance issues.
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