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Abstract

Portability becomes an increasingly important and desirable property
of parallel programs as the rate at which new machines are introduced
increases. The principal reasons are an extended life of the
application, and the flexibility to scale the application to different
platforms.

A major concern in the design and development of parallel
programs is the choice of communication paradigms. Message
passing is probably the most widely used parallel programming model
today. We will concentrate on portable message passing systems, as
they offer the largest degree of portability and flexibility for
developing parallel programs and in particular on the Message
Passing Interface (MPI).

Two modules, based on: 1. finite difference scheme with SOR,
applied to a wet chemical etching problem; and 2. adaptive mesh

finite element analysis, applied to a free surface porous medium flow
problem; initially written using the NX library (Intel Paragon) were
ported to MPI and run on the Intel Paragon, Meiko CS-2, SP-2, and
T3E.

A critical evaluation of the implementations and the problems
related to porting the parallel applications from NX to MPI is
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presented, followed by a detailed performance and scalability analysis.

The Cray MPP Apprentice and IBM’s VT (Visualization Tool) will be

used to help analyze and understand execution behavior such as:
communication patterns, processor load balance, computation versus
communication ratios, timing characteristics, and processor idle time.

1 Introduction

Two problems from the class of free and moving boundary problems
will be used as the working examples for the computer software that
will be investigated. These problems are non-linear and have one
boundary which is a priori unknown and is obtained in the process
of solving the problem. Short descriptions and basic theoretical
considerations for the problem formulations will be given in Sections
2-2.2 and 3-3.2. For more details, consuit the references listed. The
basic problem formulations will then be shown in the form of figures.

The porting of the parailel programs that solve these free and
moving boundary problems to various parallel platforms and detailed
performance and scalability analyses are discussed in Sections
2.3-2.6.2 and 3.3-3.6, respectively.

2 Wet chemical etching

The first problem from the class considered is that of wet chemical
etching in semiconductor fabrication problems (Bruch et al. [1] and
Vuik and Cuvelier [2]). An approximation for the physical problem
is shown in Fig. 1. Here a gap of width 24 and length L is to be

mask mask

gap /

L
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plate /

Figure 1: Physical problem.
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etched in a flat plate. The remainder of the plate is covered with a
protective (photoresist) layer. Since it is assumed that L is much
larger than 2a, the problem can be considered as two dimensional.

The following four simplifying assumptions are used to make the
problem tractable. There is no convection in the etching medium; the
etching process is isotropic; the thickness of the photoresist layer is
infinittely small; and only one component of the etching liquid
determines the process.

Figure 2 presents the mathematical mode! that is derived using
the previous assumptions. The etching fluid Q(¢) is bounded by the
outer boundary I';, the photoresist layer I';(f), and the moving
boundary S(z). D\ (¢} denotes part of the solid. Let £2(3) be a
square region in the caustic fluid which is large enough so that
increasing the size of £(0) will not change the etching process. Let
D, be a rectangular region in the plate’s cross section such that all
the etching will occur in D fort € [0, T]. Denote by 'y the slit of
length 24, [y = M M aDl. Then the domain of the problem, D,
is the union of the upper rectangular region £(0), the lower
rectangular region D, in the plate, and '3 along the boundary
between the two, ie. D = Q(0) W D U (3(0) M dDy). Let Q)
be the open region in D at time ¢ € (0, T) that is wet. Denote by I'y
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Figure 2: Side view of physical problem showing mathematical
solution setup.
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the boundary of €(0) that is not along the mask or T3, and ['5(#) for
the upper and lower surfaces of the mask that are exposed to the
caustic fluid.

In Fig. 2, C = C(x,y,r) is the concentration of the component
in Q(z) with Cy = C(x,y,0) being the initial concentration. D is the
diffusion coefficient; v, is the normal velocity of the boundary
S(¢); ¢ is a material constant; k denotes the rate of reaction; and n
is the outward unit normal vector,

Non-dimensionalizing the problem, two non-dimensional groups
arise, B = f):‘(UCO) and Sh = ak/ D, the Sherwood number. Herein
k is assumed to tend to infinity which means the Sherwood number is

large. Therefore, the lower boundary condition on S(t) becomes
C = 0. The upper boundary flux conditicn becomes

3@: ~Bv,, on S(f). (1)
oA

2.1 Fixed domain formulation

Now applying the method of variational inequalities which uses a
fixed domain method and a Baiocchi type transformation,

I -
wix,y,1)=] C(x,y,1)dt (x,yye D, te{0, 1), (2)
1]

where C‘(x,y,t) is an intermediate dependent variable which i1s equal
to C(x,yf) in the etching fluid domain and has been extended
continucusly across the moving boundary, S(r), into the fixed
domain D\Q(#), yielding the fixed domain formulation shown in Fig.
3. (Note Aw stands for the Laplacian of w.) This is the problem that
shall be solved numerically using a parallel supercomputer.

If w is a solution of the above problem, then C=dw/dr solves
the original problem.

2.2 Numerical algorithm

The basic numerical algorithm is:
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Figure 3: Fixed domain mathematical formulation.
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Figure 4: Domain decomposition of mathematical problem into
sixteen subregons showing the flow of computations in each.
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Figure 5: Computed results for the etched region (asterisks) att = 1.
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Figure 6: Computed results for the etched region (asterisks) atz="7.

in D |, where use was made of a first order backwards difference
formula for dw/ 37, second order central difference formulas for Aw,
n denotes the SOR iterate, and @ is the SOR relaxation factor. Since
there is a line of symmetry along the y-axis through the middle of
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the region, only the right half of the region will be solved
numerically. '

The parallel scheme presented in Bruch et al. [1] is used on the
problem divided into horizontal strips, such as the subregion case seen
in Fig. 4. For the details concerning the parallel algorithm see Bruch
et al. [1]. Figures 5 and 6 show the computed results at times ¢ = |
and ¢ = 7, respectively, for the etching process using 4 processors.

2.3 Porting the ‘etch’ module to MPI

The module for the etching problem was initially written in Fortran-
77 using the NX communication library [3] and run on the Intel
iPSC/860 and Inte! Paragon. NX is a high performance library, being,
however, customized for a particular platform.

As the computer hardware changes at a rapid pace, porting the
modules to the MPI library seems the best option available. The MPI
library {4], [5]} is a standard and with its portability, efficiency and
functionality, is also the best library for multidisciplinary applications.

The ‘etch’ module was ported to MPI and run on the Meiko CS-
2 [6], IBM SP-2 [7] and Cray T3E [8].

As most of the NX routines have MPI counterparts, porting is
relatively straightforward. Some difficulties might be present where
hardware/software is different: host/node programs, cooperative I/Q
and Intel-specific optimization [4], [9]. As the ‘etch’ module was
initially a host/node program (running on Intel iPSC/860), the
host/node logic and structure was changed. Good correspondence
exists between nonblocking NX and MPI point-to-point
communication.

Data in the NX library are untyped - the message buffers are a
string of bytes and the length of message is specified in bytes. Most
data in MPI are typed - the message buffers are arrays of integers,
reals, doubles, or more complicated structures. The length of the
message is specified by the number of data elements. In NX, the
synchronous send has the form:

csend(tag, buf, size, dest, ptype)

example:  real tmp(330)
csend(250, tmp, 330, 1, O)

In MPI, the basic send has the form:

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)

example:  real tmp(330)
MPI_Send(tmp, 330, MPI_Real, i, 250,
MPI_COMM_WORLD, ierr)
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All the NX collective operations have MPI counterparts. While
NX provides access to basic parallel /O capabilities, the MPI does not
currently define any parallel I/O calls.

2.4 Test case

The mathematical problem considered for the test case is shown in
Fig. 3 and the Input entries are shown in Table 1.

Table 1. Input data for etch

maxrowl = 280 maxrow?2 = 80

maxcoll = 321 maxcol?2 =161

maxtime = 5 At = 1.0
a9 = 1.935 B = 1000

where: maxrowl number of rows in the top region,

maxcoll = number of columns in the top regioun,
maxrow2 = number of rows in the bottom region,
maxcol2 = number of columns in the bottom region,
maxtime = number of time steps,

At = size of time step,

2] = successive gver-relaxation factor,

B = non-dimensional number.

The domain decomposition for the 16 node case is shown in Fig.
4. The load balancing for the test case is shown in Table 2.

Table 2. Load balancing information for the test case

Nodes 2 4 8 16 32 64
bottom nodes 1 1 1 2 4 8
bottom points 12880 12880 12880 6440 3220 1610
top nodes 1 3 7 14 28 56
top points 80880 30174 12840 6420 3210 1605

2.5 Performance considerations

The *etch’ module was run on the T3E, SP-2 and Meiko CS-2. The
speed-up on the T3E is shown in Table 3 and Fig. 7 for the third time
step.
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Table 3. Ideal and obtained speed-up SR

Nr..of PE's e d- ain eed-u
1 1.0 1.0
4 4.0 3.66
8 8.0 7.20
16 i6.0 13.85
32 32.0 26.12
64 64.0 47.40
Jdeal va. EVCH spend-up
100 :
‘sl + +
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Figure 7: Ideal versus obtained speed-up.

2.6 Performance tools

The Cray’'s MPP Apprentice and the IBM’s VT tools were used to
find and correct performance anomalies and inefficiencies in the
medule.

2.6.1 MPP Apprentice

MPP Apprentice [10] is a performance tool that can help tune the
performance of the application run on a Cray platform through an X
Window System user interface.

The MPP Apprentice has the following characteristics:

- It is a postexecution performance analysis tool, that provides
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information about the program by examining data files that were
created at compile time and run time. '

- It uses program summary information, not event traces. The
MPP Apprentice tool records the amount of time spent in execution
of each portion of the code (called elapsed time).

- It shows the total execution time, time to execute a subroutine,
communication time and number of instruction executed.

To use the MPP Apprentice:

- compile with the Apprentice option
- link the object files

- execute the program

- invoke the Apprentice tool

When accessed, the following windows and displays are available:

- Navigational display (Fig. 8). It shows the total time of each
code object and permits navigation through the code structure. For
each code object displayed, there is a graphic representation of the
time spent in overhead, parallel work and Input/Output operations.
The display includes the toggle buttons ‘Include’ and ‘Exclude’,
which enable you to show data for ail instrumented routines in the
code. When ‘Exclude’ is selected, the total time is the time for the
code object excluding time spent in called subroutines. When
‘Include’ is selected, the total time is for the code object including
time spent in called routines. The Navigational display lists all
functions and subroutines in the program and the time spent in each.
Functions and subroutines are shown in decreasing order of time
spent.

- Legend button (Fig. 9). It is shown as bar graphs of various
colors.

- Costs display (Fig. 8). This display is actually three separate
displays and appears in the middle of the MPP main window. It
consists of the following displays, each of which can be accessed by
clicking on the appropriate button in the display title:

- Instructions display
- Shared Memory display
- Message Passing dispay

- Information display (Fig. 8), which appears at the bottom of the
MPP Apprentice main window and displays informational and error
messages.

The MPP Apprentice tool can analyse and offer specific
guidance for problems such as:
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Figure 8: MPP Apprentice. Navigational: costs and information

display.

- Load imbalance

- Excessive serialization

- Excessive communication

- Network contention

- Poor use of the memory hierarchy
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Load imbalance problems can occur in many ways, and all result
in processing elements (PE) being blocked on some form of
synchronization. One example of this is when a computation includes
a global reduction of some value across all PEs. If one PE is delayed
reaching the global reduction, all other PEs are blocked until the
delayed PE can participate. This is one problem we can identify for
the ‘etch’ module: the MPI_ALLREDUCE has a relatively high value
(Table 4). We use MPI_ALLREDUCE to check for some
convergence criteria and this check is used starting with the first
iteration, which is clearly excessive. Study and testing is under way to
improve this situation. More information is obtained by using the
IBM’s VT and is presented and discussed in Section 2.6.2.

| Legezzd
- NAVICATIONAL LEGEND
B Overhead Tine R .
| . Umnst.rmted Overhead Routine Time -
. Parallel Hork Time | |

] ot

117 ninstrimented 10 Routine Time
B colled Routine Tine

] tnitrmented Rauine Tin

Figure 9: MPP Apprentice legend.

Communication Problems. In message passing, one processing
element (PE) explicitly sends a message to another PE, who explicitly
receives it. When the sending PE has more work to do than the
receiving PE, the receiving PE might become idle until the message
arrives. This is a second problem we can identify for the ‘etch’
module: also MPL_RECYV has a relatively high value (Table 4). Study
and testing is under way to improve this situation (using user-specified
Send - MPI_BSend, nonblocking Send - MPI_ISend, etc). More
information is obtained by using the IBM's VT and is presented and
discussed in Section 2.6.2.
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Table 4. Report window

INSTRUMENTED SUBROQUTINE ETCH

Exclusive Time 2.6564 microseconds
Inclusive Time 7.52662e+08 microseconds
Time in Called Routines 7.52662e+08 microseconds

Parallel Work Time 2.6564 microseconds

INSTRUMENTED SUBROUTINE ETCH6H
Exclusive Time 1.16211e+07 microseconds
Inclusive Time 1.80862e+08 microseconds
Time in Called Routines 1.69241e+08 microseconds
Parallel Work Time 3.46205e+06 microsecends

INSTRUMENTED SUBROUTINE ETCHON
Exclusive Time 5.45637e+08 microseconds
Inclusive Time 7.39061e+08 microseconds
Time in Called Routines 1.93424e+08 microseconds

Parallel Work Time 5.45477e+08 microseconds
UNINSTRUMENTED
ROUTINES TYPE TIME
f$init Misc 3798.74 microseconds
MPI_INIT Misc 6461.19 microseconds
MPI_COMM_RANK Misc 13.092 microseconds
MPI_COMM_SIZE Misc 13.332 microseconds
MPI_FINALIZE Misc 1.29491e+06 microseconds
_fed_copy Misc 62336.2 microseconds
_STOP Misc 0 microseconds
_FWF 10 945780 microseconds
_FRF 10 7.37313e+06 microseconds
_OPEN Misc 80971 microseconds
_CLOSE Misc 4004.05 microseconds
$sldiv Misc 3.05636 microseconds
MPI_SEND Misc 1.4102e+06 microseconds
MPI_WTIME Misc 118153 microseconds
MPI_RECV Misc 1.21083e+08 microseconds
MPI BARRIER Misc 2.99616e+06 microseconds
MPI_ALLREDUCE Misc 6.83446e+07 microseconds

2.6.2 VT - the Parallel Environment’s Visualization Tool

VT [11]), [12] is essentially an animation of the communication and
system events that occurred while the program was running. The
presentation of data graphically rather than textually allows one to
quickly discern differences among parallel tasks.
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Figure 10: View Selector window.

The components of VT are:

- Trace Analysis (Trace Visualization)

The information is graphically displayed. You can select a variety
of preconfigured displays by pressing a button. The displays are time

synchronized so you can understand the sequence of program
activity.

- Performance Moenitor
The Performance Monitor is used while running the application
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program to obtain a basic understanding of the system resources .
being used. .

The VT views enable you to visualize:

- communication among processor nodes

- the type and duration of communication events

- a parallel program’s source code as it relates to the executable’s

run
- CPU utilization of processor nodes
- load balance
The VT arranges the views into the following categories (Fig. 10):
- Computation
- Communication/Program
- System
- Network
- Disk
To use the VT tool:
- compile the program with the -g option
- set the trace level and the sampling interval to the desired values
- run the program to generate a trace file
- start the VT session
The View Selector window (Fig, 10} and the Trace Visualization

Figure 11: VT window for trace visualization.
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window (Fig. 11) automatically opens at the start of a VT session.

We selected the:

- User Load Balance

- Interprocessor Communication

- Source Code
User Load Balance.

This view uses three overlapping polygons to show the CPU
utilization for each of the processor nodes, and the overall processor
load balance. The largest of the polygons represents 100% utilization
for all of the processor nodes.

VT draws the second polygon inside the first. This polygon
represents the instanianeous CPU utilization for each of the processor

nodes. On each node’s spoke, VT draws a point which represents the
current CPU utilization for that node. VT then connects the points to

Figure 12: User load balance.
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form a polygon with a solid fill pattern. The more regular the
polygon, the better the processor load balance.

The third polygon is similar to the second. It shows the average
CPU utilization and has a hatched fill pattern.

The user load balance for the ‘etch’ module is shown in Fig. 12
and in Table 5.

Table 5. User load balance for ‘etch’

PE Instantaneous Average
0 100% 82%
1 100% 96%
2 100% 97%
3 100% 98%

PE O has a lcad balance of 82% compared to the other PE’s with
aproximately 97%. As the first (}00% utilization) polygon is tdentical
to the second polygon (instantaneous CPU utilization - 100%), they
are overlapped in Fig. 12.

Interprocessor communication

This view uses a bar chart to visualize the type and duration of
communication events. Each bar represents a processor node on
which the program was run, and the chart’s horizontal axis represents
a range of time. A label to the right of each bar shows the node
number, and is colored based on the current state of that node. Each
bar in the chart will be made up of a number of colored blocks. Each
block represents a communication event involving the processor. The
size of the block represents the event's duration, and the color
indicates the type of event. For example, blocking sends are shown in
one color, non-blocking sends in another, broadcasts in another, and
so on. When messages are sent between processor nodes, a message
line is drawn between the appropriate bars in the chart and the node
labels light up. When nodes are involved in collective communication,
a polygon 1s drawn covering the collective communication events.

In Fig. 13 the MPI_ALLReduce are in light blue, the MPI_Send
(blocking) in dark blue, the MPI_Recv (blocking) in red, and
No_Communication in light grey.

Lines are drawn when the communication is known to have been
completed. They are drawn from the start of the event which initiated
the communication to the end of the event which completed it. Thus
the lines are drawn from the start of blocking or non-blocking sends
to the ends of blocking receives, waits and status events. Lines are only
drawn when the wait or status for any non-blocking calls involved in
the communication have been completed.




Algorithms and Applications in Paraliel Computing 91

Figure 13: Interprocessor communication.

Source Code

This view shows the Fortran {or C or C++) source code of the
program associated with the most recent trace event. A series of
colored bars across the top of the display represent the different
program tasks. As we play back the trace file, the bars mave through
the code to show each task’s position in relation to the source. To be
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T 1 ¢ )
ciime # ctime + cotine - c
call HPT ALLREMKE(f .t
MPT S, MPT COMM_ WORLD,

"eer L err, ' flag= '
'otenpz L tenp, ' mode

= fl'T HITMEL)
Comavpinl + 1) then

HPFI WTIME()
HPE HTIME()
ime = stine
ct s vime - vstine
o .oz, ) call MPI_SEND(time, 3,MPL_INTEGER, 0,
A00+iam, MPI_COMM_MORLD, ierr}
1, maxronl/2
= l.maxcoll]l
1,0) = winen(i, i)
300 countinne
if (iam .ne. 0) call HPI 8 " anziz, Ml REAL. O,
1 300+ iarn, HPL_COHt WORLD, ierr)
do 510 i = maxrowl/d + 1, maxrowl
do 510 } = t,maxcalt
tenpili,j) = alnewi{i, j)
310 vonk Liwe
if {ian ,ne, pl, transiz, MPT REAL, Q,
1 )+ i Lot _HORLD,  ierr)

end uf pepl

Figure 14: Source code corresponding to the Interprocessor
Communication in Fig. 13.

more specific, for each time task entered into a communication
function such as blocking send, an environment initialization, or an
application marker call, its bar moves to that line in the source.

Figure 14 shows the Source Code corresponding to the
Interprocessor Communication shown in Fig. 13. We can clearly see
that the MPI_ALLReduce acts as a barrier, slowing down the
execution.

Figure 15 shows the Interprocessor Communication for the final
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Figure 15: Final part of the Interprocessor Communication.

part of the ‘etch’ module, corresponding to the Source Code shown
in Fig. 16.

The challenge of the message passing model is in reducing
message traffic while ensuring that the correct and updated values of
the passed data are promptly available to the tasks when required,




94 Algorithms and Applications in Parallel Computing

progran etch
This Progran Starts the TID Parailel Program for EICH

inGlude "npif. 1

| HORLD, ia
HH HORLD, nodes,

it from 0) then
¢all etehehitiam, nodes, jerr)

1 etehéniiam, nodes, ierr)
endif

{ierr}

Figure 16: Source Code comresponding to the Interprocessor
Communication in Fig. 15.

Optimizing message traffic is one way of boosting performance.

Optimization of the parallel code is usually carried out in an
iterative process involving several tools to investigate performance
issues.
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3 Free boundary problem

The second problem studied is the free surface seepage problem
shown in Fig. 17. The following assumptions are made: the soif in
the flowfield is homogeneous and isotropic; capillary and evaporation
effects are neglected; the flow obeys Darcy’s Law; the flow is two-
dimensional and at steady state. Because of the assumptions made, the
problem is described by the velocity potential function, ¢, whose
governing differential equation and boundary conditions are also
shown in Fig. 17. The relevant dimensions are taken to be: x =40,
y, =10 and y, = 3. In Fig. 17, Q is the seepage region abdf. The
location of the curve fd, y = f(x), is unknown a priori.

A fixed domain formulation for this problem can be obtained by
using the Baiocchi method and transformation. (See Baiocchi and
Capelo [13], Kinderlehrer and Stampacchia [14], Oden and Kikuchi
[13], Bruch [16] and Crank [17]). In this approach the a priori
unknown solution regien is extended across the free surface into a
known region. The dependent variable is also continuously, similarly
extended. Then a new dependent variable is defined using Baiocchi’s
transformation within these regions. The resulting problem
formulation leads to a ‘complementarity system' associated with its
respective variational or quasi-variational inequality formulation. This
method has proven effective not only from the purely theoretical
point of view, but also from the point of view of yielding new, simple,
and efficient numerical solution schemes.

Figure 18 shows the governing equations and boundary
conditions that describe the fixed domain formulation of the problem
presented in Fig. 17. D is the region abef. The variable w is the
Baiocchi transformation of the extended potential function, i.e.,

w(x,y)= I:l [(x.n)-7] dn . 7

where

o(x.y)=0(x,y) m Q

. R (8)
®(x,y)=y in D-Q

The detailed derivations of these equations are given in Bruch [16].
The problem shown in Fig. 18 can be written as a

‘complementarity system’ and its corresponding variaticnal

inequality formulation. Then the following theorem can be stated:
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Figure 17: The example physical problem (free boundary seepage).

Let p (xy) be the Dirichlet data in Fig. 18 and define

k=[x e B (D)vlp=Fv20ae. on o},

a closed convex set, K c HI(D).
Theorem: If we K satisfies the governing equations and boundary
conditions shown in Fig. 18, then it also satisfies the variational
inequality:

alw,v—-w)> Liv-w) Yvek, (%)

where

alw,v—w)=]] Vw - V(v—w)dx dy

D
=JDj{wx(vx—wx)+wy(vy~wy)}dx dy  (10)
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Figure 18: The example physical problem (free boundary seepage)
for numerical implementation.

Liv—w)==[ [ (v =w)dx dy. (11)
D A

The finding of we K is equivalent to solving the minimization
problem

Jwy<J(v) vvek, (12)
where
J) = a(v,v) + 2(f.v) (13)

in which a(v, v) is a bilinear form, continuous, symmetric, positive
definite on R and feR,ie,

a(v,vy=] § Vv-Vv dx dy, (14}
D

(f,v) =[] fdxdy. (15)
D
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For this example problem, f = 1. The functional J has one and only

one minimum in a closed convex set. T

The minimum is found using the following finite element
algorithm:

u§n+1!2) __ b

aj

i1 N .
_Zlaiju}"""]) + ‘ Z lafjufin) +fl) , (16)
= J=tt+

W - -‘}(u}") +G(u§"+”2] _u(n)])

2

= max(O,u!{n) + B(u}"“ 1) _ ugn))) , (hH

where ajj =a(N,-,NJ;), Ji=(f,N;), N; is the canonical basis of RN,
P, is the projection on the convex set, i = 1,..., N, N is the number

of nodal points and © is the relaxation factor. Linear triangular
elements will be used in the discretization. It should be noted that the
projection operation in the numerical scheme must be applied during
the iteration process. It cannot be applied after the iteration process
has been completed since if it were, an incorrect solution would be
obtained. For the numerical results given herein, the SOR relaxation
factor was 1.85, while the stopping error criterion was 104 for the
maximum absolute difference between iterates at a mesh point.

3.1 Adaptive mesh finite element analysis .

Error estimation and local mesh refinement are two major concepts of
adaptive mesh finite element analysis. In addition, a mesh refinement
algorithm is required to perform remeshing after obtaining the error
of a finite element system. The error estimate dectdes how the
computed results deviate from the exact solution. Local mesh
refinement testing is performed to determine how the mesh is to be
refined. The remeshing algorithm is then used to automatically
generate a refined mesh according to the error obtained.

The error estimation procedure used herein was introduced by
Zienkiewicz and Zhu [18]. It allows an accurate assessment of errors
whtle remaining so simple that it can readily be implemented as a
post-processor involving minimal computation. This computationally
simple error estimator with the modification introduced by Burkley
and Bruch {19] and Burkley er al. {20] is used for the solution of the
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free surface flow through an earth dam using a parallel computer.
The modification used by Burkley and Bruch {19] was that, instead of
using the Zienkiewicz-Zhu procedure (a projection method) to
calculate the nodal estimates for the exact nodal fluxes, they
performed a simple averaging technique. That is, for each node they
added up say the x-fluxes (which were constants since linear elements
were used) from the elements that contained that node and divided
that sum by the number of contributing elements. The same was done
for the y-fluxes. A mesh generator and a mesh refiner were used to
perform the finite element analysis and the post-processing of the
mesh refinement. Isosceles right triangle elements were used for the
purpose of this study. A simple mesh generator and refiner for these
elements was implemented to generate the initial mesh. The concept
behind the mesh generation and mesh refinement is simple: divide an
element into two by refining across its longest side. Also, in this
study, incompatible elements were not allowed. Therefore, a recursive
process proposed by Rivara ({21], [22]} was used to avoid having such
elements.

3.2 Parallel iterative scheme

Wang and Bruch [23] proposed parallel iterative Gauss-Seidel and
SOR iterative schemes. Conventional Gauss-Seidel and SOR iteration
schemes need to be performed sequentially. Reordering the equations
alters these two schemes into fully parallel iterative schemes. Wang
and Bruch [23] used this intuitive idea and implemented it on a free
boundary seepage problem. Speed-ups were obtained that were
superlinear (speed-up larger than the number of processors used).
The basic essence of the approach is as follows: after the
computation domain is subdivided into subdomains, the problem
domain boundary remains a boundary and the interfaces of a
subdomain become new boundaries. Thus, the computation of values
at interior mesh points for one subdomain is uncoupled from the
other subdomains. Also, the computation of values at mesh points of
an interface is uncoupled from the other interfaces. The iterative
schemes use a combination of newly computed values and old values
at mesh points surrounding a mesh point to compute the new value at
that mesh point. Therefore, the iterative process can be performed for
the interior mesh points of a subdomain using the old values at
interface mesh points. Moreover, the values at interface mesh points
can be updated using the newly computed values at interior mesh
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points by the iterative process. An example and explanation are given
in Wang and Bruch [23]. '

Accordingly, this parallel iterative scheme simply reorders the
computing sequence such that the values at interior mesh points are
computed first, then those at the interface mesh points are computed.
With this parallel scheme, all processors can compute concurrently for
the new values at the interior mesh points. Also, all processors update
the values at mesh points on the interface in parallel.

Figure 19 shows the domain subdivision meshes for the third
adaptive mesh refinement. See Wang and Bruch [24].

3.3 Porting the ‘fea’ module to MPI

The module for the seepage problem was initially written in Fortran-
77 using the NX communication library [3] and run on the Intel
iPSC/860 and Intel Paragon. The ‘fea’ module was ported to MPI and
run on the Meiko CS-2 6], IBM SP-2 [7] and Cray T3E [8].

As discussed in Section 2.3, as most of the NX routines have MPI
counterparts, porting was relatively straightforward:

- the ‘fea’ module has more collective operations than the ‘etch’
module. However, good correspondence exists between the NX
and MPI counterparts.

- the ‘fea’ module was initially a host/node program, so the
host/node logic and structure was changed.

3.4 Test case

The physical problem considered for the test case is shown in Fig. 18.
As presented in Section 3, the SOR relaxation factor is 1.85, while the
stopping error criterion is 10E-04 for the maximum absolute
difference between iterates at a mesh point.

Every case is run in two steps:

- mesh generation, by running the ‘gen’ module, with the option
of creating or refining a mesh,

- running the parallel module ‘fea’, using the mesh generated by
the ‘gen’ module.
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Figure 19: Domain subdividing for the third adaptive mesh
refinement.

A typical output from the ‘fea’ module is shown in Table 6.

Table 6. FEA output

no. of proc.: |

relaxation factor: 1.8500000000000001

number of nodes per processor: 1583

total ite #: 103

max sor time: 38.309401154518127

total error2 is: 7.2697689141931852

total q*2 is: 5908.3187666771555

calculated percentage error is: 3.50774766195832907E-2
desired percentage error is: 5.00000000000000023E-2
effective index theta is: 1.8253362634148849
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3.5 Performance considerations
The ‘fea’ module was run on the T3E, SP-2 and Meiko CS-2. The -

speed-up on the T3E is shown in Table 7 and Fig. 20 for the second
adaptive mesh refinement solution (designated by Pass no. 3).

Table 7. Ideal and FEA speed-up

Nr. of PE's Ideal Speed-up FEA Speed-up

1 1.0 1.0
4 4.0 3.59
8 8.0 7.46

16 16.0 15.59

32 32.0 30.76

idanl vs. FEA spaed-up
100 .
Tan" »
ml* -

L N o i
$

‘ A A " L
hi
Humber of processcrs

Figure 20: Ideal versus FEA speed-up.

3.6 Performance tools

The FEA speed-up is close to the ideal speed-up, which means that the
module is running very efficiently on a parallel machine.
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We used the MPP Apprentice [10] to analyze the load imbalance,
excessive serialization, excessive communication, network contention,
etc., for the ‘fea’ module.

Figure 21 shows the MPP Apprentice display after the second
pass of the mesh refinement, with 164 finite element nodes per
processor. Detailed data for this run, obtained from the Apprentice
Report Window, is shown in Table 8.

Figure 22 shows the MPP Apprentice display after the seventh
pass of the mesh refinement, with 1967 finite element nodes per
processor. The cotresponding data are shown in Table 9.

From Fig. 21 we can see a potential communication problem, i.e.
excessive communication. The Parallel Work Time for the subroutine
SOR, which should be the most time consuming routine, is (Table 8 -
INSTRUMENTED SUBROUTINE SOR) 1.79E+06 microseconds
from a total of 2.48E+07 microseconds. The number of mesh points
(finite element nodes) per processor is 164.

As we further refine the mesh, after the seventh pass, the number
of mesh points per processor is 1967. The Pasallel Work Time for the
subroutine SOR, is (Table 9 - INSTRUMENTED SUBROUTINE
SOR) 3.15E+08 from a total of 3.66E+08 microseconds, The result
can be seen in Fig. 22.

A significant factor that affects the performance of a parailel
application is the balance between communication and workload. At
a low number of mesh points the overheads, latency, etc., exceeds the
workload, creating an unbalance which affects the performance. At a
number of 1967 mesh points per processor we obtain an very good
performance. We actually see a goed performance starting with 600
mesh points per processor.

The good communication load is mainly due to the fact that the
most time consuming loop in the subroutine SOR does not have any
message passing. The locations of the message passing routines can
be easily visualized with the MPP Apprentices Source Code display.

A code object tree is an abridged representation of the source
code that the MPP Aprentice tool uses to report statistics. It consists of
a root node that represents the whole program, first level nodes, each
of which represents one function or subroutine, and additional, lower-
level nodes that recursively describe that function or subroutine.
These nodes are also known as code objects.

If we select the ‘Expose computing nodes in Navigational
display’ option in the Preference display of the MPP Apprentice, we
obtain Figs. 23 and 24 showing the Source Code display and the
Application Call Tree for the ‘fea’ module, respectively.
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Figure 21: MPP Apprentice - Navigational: costs and
information display for FEA with 164 nodes/processor.
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Exclusive Time
Inclusive Time

Time in Called Routines
Parallel Work Time

INSTRUMENTED SUBROUTINE FEANODE

5.15942e+06
2.48204e+07
1.9661e+07
63.5203

INSTRUMENTED SUBROUTINE OUTPUT

Exclusive Time 32913196
Inclusive Time 32939.6
Parallel Work Time 2996.26

INSTRUMENTED SUBROUTINE SOR
Exclusive Time
Inclusive Time
Time 1n Called Routines
Parallel Work Time

1.79072e+06
2.85131e+06
1.06059e+06
1.79072e+06

INSTRUMENTED SUBROUTINE NEWPHI

Exclusive Time 1806.23
Inclusive Time 334576
Time in Called Routines 332770
Paralle! Work Time 1806.23
INSTRUMENTED SUBROUTINE SUMBC
Exclusive Time 92819.5
Inclusive Time 101936
Time in Called Routines 9116.97
Parallel Work Time 92819.5
INSTRUMENTED SUBROUTINE SORBC
Exclusive Time 120846
Inclusive Time 212941
Time in Called Routines 92095.2
Parallel Work Time 120846

microseconds
microseconds
microseconds
microseconds

microseconds
microseconds
microseconds

microseconds
microseconds
microseconds
microseconds

microseconds
microseconds
microseconds
microseconds

microseconds
microseconds
microseconds
microseconds

microseconds
microseconds
microseconds
microseconds
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Table 8 (continued)

INSTRUMENTED SUBROUTINE TBCGRA

Exclusive Time 258.754 microseconds
Inclusive Time 143779 microseconds
Time in Calied Routines 143520 microseconds
Parallel Work Time 258.754 microseconds
INSTRUMENTED SUBROUTINE FEA
Exclusive Time 1.22808e+06 microseconds
Inclusive Time 5.03778e+06 microseconds
Time in Called Routines 3.80969¢+06 microseconds
Parallel Work Time 9427.59 microseconds
INSTRUMENTED SUBROUTINE STIFF
Exclusive Time 15214.2 microseconds
Inclusive Time 27739.9 microseconds
Time in Called Routines 12525.7 microseconds
Paralle! Work Time 15214.2 microseconds
INSTRUMENTED SUBROUTINE ERROR
Exclusive Time 176379 microseconds
Inclusive Time 382480 microseconds
Time in Called Routines 206102 microseconds
Parallel Work Time 11671.1 microseconds
INSTRUMENTED SUBROUTINE GRAD
Exclusive Time 12270.4 microseconds
Inclusive Time 156055 microseconds
Time in Called Routines 143784 microseconds
Parallel Work Time 122770.4 microseconds
INSTRUMENTED SUBROUTINE BAND
Exclusive Time 4674.96 microseconds
Inclusive Time 4674.96 microseconds

Paralle! Work Time 4674.96 microseconds
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Table 8 (continued)

INSTRUMENTED SUBROUTINE ELSTMF

Exclusive Time 12060.4 microseconds
Inclusive Time 12060.4 microseconds
Parallel Work Time 12060.4 microseconds
INSTRUMENTED SUBROUTINE MODIFY
Exclusive Time 3581.14 microseconds
Inclusive Time 3581.14 microseconds
Parallel Work Time 616.278 microseconds
INSTRUMENTED SUBROUTINE INISTIFF
Exclusive Time 1189.86 microseconds
Inclusive Time 39106 microseconds
Time in Called Routines 37916.1 microseconds
Parailel Work Time 1189.86 microseconds
UNINSTRUMENTED
ROUTINES TYPE TIME
f$init Misc 4004 .33 microseconds
MPI_INIT Misc 11059.7 microseconds
MPI_COMM_RANK Misc 13.8686 microseconds
MPI_COMM_SIZE Misc 12.4954 microseconds
_FWF 10 1.82209e+06 microseconds
_fed_copy Misc 60.3106 microseconds
_fed_blank Misc 14,2386 microseconds
_OPEN Misc 204981 microseconds
_FRF 10 4.75354e+06 microseconds
MPI_RECV Misc 1.46816e+07 microseconds
MPI_SEND Misc 14507.7 microseconds
MPI_ALLREDUCE Misc 739706 microseconds
_CLOSE Misc 155853 microseconds
MPI_FINALIZE Misc 337775 microseconds
_STOP Misc _ 0 microseconds
$sldiv Misc 16846.6 microseconds
MPI_WTIME Misc 260.767 microseconds

_SQRT Misc 556.838 microseconds
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Figure 22: MPP Apprentice - Navigational: costs and
information display for FEA with 1967 nodes/processor.
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Table 9. Pass number 7 report window

INSTRUMENTED SUBROUTINE FEANODE
Exclusive Time 7.11197e+06
Inclusive Time 3.66807e+08
Time in Called Routines 3.59695e+08
Parallel Work Time 62.7437

INSTRUMENTED SUBROUTINE OUTPUT
Exclusive Time
Inclusive Time
Parallet Work Time

457429
457429
34092.8

INSTRUMENTED SUBROUTINE SOR
Exclusive Time
Inclusive Time
Time i Called Routines
Parallel Work Time

3.15226e+08
3.33253e+08
1.80269e407
3.15226e+08

INSTRUMENTED SUBROUTINE NEWPHI
Exclusive Time
Inclusive Time
Time in Called Routines
Parallel Work Time

10561.5
4.8587e+06
4.84814e+06
10561.5

INSTRUMENTED SUBROUTINE SUMBC
Exclusive Time 4.65843e+06
Inclusive Time 4.68698e+06
Time in Called Routines 28557.5
Parallel Work Time 4.65843e+006

INSTRUMENTED SUBROUTINE S50ORBC

4.59151e+06
6.20363e+006
1.61212e+06
4.59151e+06

Exclusive Time
Inclusive Time

Time in Called Routines
Parallel Work Time

microseconds
microseconds
microseconds
microseconds

microseconds
microseconds
microseconds

microseconds
microseconds
microseconds
microseconds

microseconds
microseconds
microseconds
microseconds

microseconds
microseconds
microseconds
microseconds

microseconds
microseconds
microseconds
microseconds
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Table 9 (continued)

INSTRUMENTED SUBROUTINE TBCGRA

Exclusive Time 804.606
Inclusive Time 94006.6
Time in Called Routines 93202
Paraliel Work Time 804 .606

INSTRUMENTED SUBROUTINE FEA
Exclusive Time
Inclusive Time

2.30259%¢+06
3.39094e+08

Time in Called Routines 3.36792e+08

Paralle! Work Time 602731
INSTRUMENTED SUBROUTINE STIFF

Exclusive Time 212689

Inclusive Time 375786

Time in Called Routines 163097

Parallel Work Time 212689

INSTRUMENTED SUBROQUTINE ERROR
Exclusive Time 1.48581e+06
Inclusive Time 1.97804e+06

Time in Called Routines 492234

Paraltel Work Time 154690
INSTRUMENTED SUBROUTINE GRAD

Exclusive Time 172634

Inclusive Time 266647

Time in Called Routines
Parallef Work Time

94012.8
172634

INSTRUMENTED SUBROUTINE BAND
Exclusive Time
Inclusive Time
Parallel Work Time

62328
62328
62328

microseconds
microseconds
microseconds
microseconds

microseconds
microseconds
microseconds
microseconds

microseconds
microseconds
microseconds
microseconds

microseconds
microseconds
microseconds
microseconds

microseconds
microseconds
microseconds
microseconds

microseconds
microseconds
microseconds
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Table 9 (continued)

Exclusive Time
Inclusive Time

Parallel Work Time

Exclusive Time
Inclusive Time

Parallel Work Time

Exclusive Time
Inclusive Time

Time in Called Routines

Parallel Work Time
UNINSTRUMENTED
ROUTINES TYPE
f$init Misc
MPI_INIT Misc
MPI_COMM_RANK Misc
MPI_COMM_SIZE Misc
_FWF 10
_fed_copy Misc
_fed_blank Misc
_OPEN Misc
_FRF 10
MPI_RECV Misc
MPI_SEND Misc
MPI_ALLREDUCE Misc
_CLOSE Misc
MPI_FINALIZE Misc
_STOP Misc
$sldiv Misc
MPI_WTIME Misc
_SQRT Misc

INSTRUMENTED SUBROUTINE ELSTMF

158477
158477
158477

INSTRUMENTED SUBROUTINE MODIFY

13414.9
13414.9
2239.86

INSTRUMENTED SUBROUTINE INISTIFF

12022.6
183218
171196

12022.6

3962.5
107204
14.4985
12.4754

2.6991e+06
63.3103
14.5719
415112
7.8783e+06
2.67223e+07
33636.2
2.13027e+06
204651
334922

microseconds
microseconds
microseconds

microseconds
microsecends
microseconds

microseconds
microseconds
microseconds
microseconds

TIME
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds

0 microseconds
461219
192 .481
6674.36

microseconds
microseconds
microseconds
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Figure 23: MPP Apprentice - Source Code display.
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4 Conclusions

The two modules, one based on a finite difference scheme with SOR
and one on an adaptive mesh finite element approach, were ported to
MPI and run successfully on the Cray T3E, [BM SP-2 and Mciko CS-
2. In general, porting was straightforward, because MPI is for the
most part a functional superset of existing message passing libraries.

These high performance computing systems provide a high
potential for sustained performance. A significant factor that affects
the performance of a parallel application is the balance between
communication and workload. The challenge of the message passing
model is in reducing message traffic over the interconnection
network. To fully understand the performance behavior of such
applications, analysis and visualization tools are needed. Two such
tools, the Cray MPP Apprentice and the IBM VT, were used to analyze
and visualize the performance of the two application modules. It was
seen that optimization of the parallel codes can be carried out in an
iterative process involving these tools to investigate performance
issues.

Acknowledgements

The parallel algorithms used to solve the free and moving boundary
problems were based upon work supported by the National Science
Foundation Grant No. ECS-9006516.

This research was conducted using the resources of the Cornell
Theory Center, San Diego Supercomputer Center and the Meiko
Computing Facility within the Computer Science Department at UC
Santa Barbara.

The Meiko CS-2 Computing Facility was acquired through NSF
funding, with support from the College of Engineering and UCSB
Office of Research, for research in parallel computing.

References

{11 Bruch, J.C., Ir., Papadopoulos, C.A., and Sloss, ].M., Parallel
Computing Used in Solving Wet Chemical FEtching
Semiconductor Fabrication Problems, GAKUTO International
Series, Mathematical Sciences and Applications, 1, Nonlinear
Mathematical Problems in Industry, pp. 281-292, 1993,




[2]

131

(4]

[5]

{6l

{71

[8]

19]

[10]
(L1]
[12]

(13]

(14]

[15]

Algorithms and Applications in Paralle! Computing 115

Vuik, C. and Cuvelier, C., Numerical Solution of an Etching
Problem, J. Comput. Phys., 59, pp. 247-263, 1985.

Intel Corporation, Paragon System Fortran Calls, Reference
Manual, 1995.

Gropp W., Lusk E. and Skjellum A., Using MPIL Portable

Parallel Programming with the Message-Passing Interface, The
MIT Press, 1994.

Snir M., Otto S,, Huss-Lederman S., Walker D and Dongara I.,
MPI: The Complete Reference, The MIT Press, 1996.

Meiko Scientific, CS-2 Documentation Ser, Meiko Scientific,
1993,

Parallel Programming on the IBM SP, Comell Theory Center,
http://www.tc.cornell.edu/UserDoc/SP/what.is.sp2.html.

Using the CRAY T3E at SDSC, San Diego Supercomputer
Center, hup://www.sdsc.edu/Resources/frameresources.html.

Saphir W., Porting Parallel Applications from NX to MPI,
NASA Ames Research Center, 1994,

MPP Apprentice, Cray Research Inc, IN-2511, 1994.
[BM AIX Parallel Environment, 1BM, SH26-7230-001.

Visualization Tool VT, Cornell Theory Center,
http://www tc.cornell.edu/Edu/Tutor/Vt.trace.

Baiocchi, C. and Capelo, A., Variational and Quasivariational
Inequalities, Yohn Wiley and Sons, New York, 1984.

Kindertehrer, D. and Stampacchia, G., An Introduction to
Variational Inequalities and Their Applications, Academic
Press, New York, 1980.

Oden, J.T. and Kikuchi, N., Theory of Variational Inequalities
with Applications to Problems of Flow Through Porous Media,
Int. J. of Engng. Sci., 18, pp. 1173-1284, 1980.




116

Algorithms and Applications in Parallel Computing

{16] Bruch, Jr., J.C,, A Survey of Free Boundary Value Problems in

[17]

(18]

[19]

[20]

[21]

{22}

[23]

[24]

the Theory of Fluid Flow Through Porous Media: Variational
Inequality Approach, Advances in Water Resources, Part 1, 3,
pp. 65-80, Part II, 3, pp. 115-124, 1980.

Crank, )., Free and Moving Boundary Problems, Clarendon
Press, Oxford, England, 1984.

Zienkiewicz, O.C. and Zhu, J.Z., A Simple Error Estimator and
Adaptive Procedure for Practical Engineering Analysis, Int. J.
Num. Meth. in Engr., 24, pp. 337-357, 1987.

Burkley, V.J. and Bruch, J.C., Jr., Adaptive Error Analysis in
Seepage Problems, Int. J. Num. Meth. Engng., 31, pp. 1333-
1356, 1991.

Burkley, V.1, Bruch, 1.C., Jr and Zieunkiewicz, O.C., Adaptive
Meshes Used in Solving a Free Surface Scepage Problem, The
Mathematics of Finite Elements and Applications, V11, edited
by J.R. Whiteman, Academic Press, pp. 101-110, 1991.

Rivara, M.C., Algorithms for Refining Triangular Grids Suitable
for Adaptive and Multigrid Techniques, fnt. J. Num. Meth.
Engng., 20, pp. 745-756, 1984,

Rivara, M.C., A Grid Generator Based on 4-Triangles
Conforming Mesh-Refinement Algorithms, Int. J. Num. Meth.
Engng., 24, pp. 1343-1354, 1987,

Wang, K.P. and Bruch, J.C., Ir, A SOR Iterative Algorithm for
the Finite Difference and the Finite Element Methods that is
Efficient and Parallelizable, Advances in Engineering Software,
21(1), pp. 37-48, 1994.

Wang, K.P. and Bruch, 1.C., Jr., An Efficient Iterative Parallel
Finite Element Computational Method, The Mathematics of
Finite Elements and Applications, edited by J.R. Whiteman,
John Wiley and Sons, Inc., Chapter 12, pp. 179-188, 1994




