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Preface to the Second Edition

During the decade that elapsed since the first printing of the text, sev-
eral trends have become clear. First, the decision to emphasize fun-
damental concepts and rely on convenient, high-level computational
languages to deduce consequences of these fundamentals has been
broadly validated. If anything, this trend has only accelerated since
the printing of the first edition. The authors therefore decided to make
the computational appendix available on the web and removed it from
the printed text, enabling more rapid updating of the material as com-
putational languages such as Octave and MATLAB evolve. This reduction
in total printed pages allowed addition of new material while main-
taining a reasonable length. See www.nobhillpublishing.com for the
computational appendix.

A second trend that has continued unabated during the last decade
is the increasingly prominent role of manufacturing solid or particulate
products in the chemical process industries. No general chemical engi-
neering reactor design textbook provides students with the tools to de-
scribe, analyze, or design reactors for this important class of materials.
To address this need, we have added a Chapter 10, covering particulate
reactors and the population balances required to describe particulate
products having a particle size distribution. Since the manufacture of
value-added products using biological cells is a prime example of this
class of systems, this new chapter is also a logical place to discuss the
balances required to describe and analyze bioreactors.

Finally, the trend to use discrete, stochastic models and stochastic
simulation to augment the core continuous, deterministic models of
classical chemical reaction engineering has also only increased during
the last decade. In some fields, such as systems biology, the use of
stochastic simulation has become a dominant method for system anal-
ysis and design. The fundamental concepts of stochastic kinetics were
already introduced in Chapter 4 of the first edition as a way to model
and understand reaction kinetics at the small scale. Stochastic simu-
lation is again found highly relevant in describing particulate reactors,
which often operate in regimes of small particle number where under-
standing and quantifying sources of variability become important.

In addition to their widely accepted place in graduate education, we
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look to a time in the near future when familiarity with the fundamen-
tal principles of particulate systems and population balances will also
be considered an indispensable component of the education of under-
graduate chemical and biological engineers.

JBR JGE
Madison, Wisconsin Austin, Texas

Added for the second edition, third printing

The second edition, third printing, is available as a paperback to reduce
the cost to the students.

JBR JGE
Santa Barbara, California Austin, Texas



Preface

Chemical reactors are at the core of the chemical engineering discipline,
and chemical reactor analysis and design is one of the distinguishing
courses that clearly separates the chemical engineers from the other
engineering professionals. Given that chemical reactor analysis and
design is a mature and stable topic in the curriculum of chemical engi-
neering, however, it is natural to ask what is the motivation for a new
text on this topic.

We offer our motivations here. This book grew out of the combined
experience of the two authors teaching this subject to undergradu-
ates for more than 30 years. Given the rapidly changing landscape
of scale and type of reactors of interest to practicing chemical engi-
neers (chemical vapor deposition reactors, pharmaceutical fermentors,
micro-reactors, as well as traditional catalytic crackers, bulk polymer-
ization reactors, etc.), it seems unwise to emphasize one industrial sec-
tor and treat its reactor types in detail. Practicing chemical engineers
work in a broad array of industrial sectors, and many will change sec-
tors during their careers. If chemical engineering has any important
distinguishing characteristic, it is a set of fundamentals that apply to
all scales and all types of reaction and transport processes involving
chemical change.

This book is all about reactor fundamentals. Rather than presenting
many facts about reactors, we focus on the framework for how to think
about reactors—a framework for thinking that enables one, with some
experience, to establish any of these facts for oneself, and discover new
facts given new situations. All engineering and science textbooks do
this to some extent; in this text, we will do it to a rather large extent.

Computations matter in this subject. Reactor fundamentals, like the
fundamentals in any subject, are few in number. But the diversity of
the consequences of these fundamentals is enormous. Computational
approaches provide a powerful and general approach to systematically
investigating these consequences without making unrealistic simplify-
ing assumptions. We attempt to exploit the significant advances in
computing algorithms, software, and hardware in order to revise and
streamline the presentation of reactor fundamentals. We focus on two
high-level languages intended for numerical computation, Octave and
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MATLAB. Octave is freely available for a variety of hardware platforms
and can be downloaded from www.octave.org. MATLAB is commercially
available from The MathWorks, Inc., and is becoming a commonly avail-
able tool of industrial engineering practice. These languages allow us
to focus on essentials and ignore programming details, which is the
goal of any “high-level” language.

Students should not feel compelled to recall the detailed informa-
tion in the figures, but recall only the concepts, principles and main
results. Students will have the computational tools to recreate the fig-
ures in this or any other textbook on this subject. For example, all
calculations required for the figures in this text were performed with
Octave. Students should not feel compelled to memorize design equa-
tions for reactor types. The goal is to develop sufficient expertise so
that students can set up appropriate models from the basic principles
for each new problem they encounter. That is the time-tested way to
instill confidence that one can analyze a new situation, which we fully
expect to be the experience of practicing engineers.

Newly practicing engineers certainly will need to learn the economics
of manufacturing their main products, main reactor configurations, de-
tailed energy-recovery schemes, contacting patterns, new catalysts, and
reactor monitoring and control systems. Rather than make inadequate
efforts to include all of this information as a survey during the reactor
design course, we feel this material deserves separate coverage, or can
be learned during the early years of engineering practice. We do not
regard it as poor preparation that some of this information is not in-
cluded in university curricula; rather, we regard learning this material
on the job as part of the maturation process of the practicing profes-
sional chemical engineer.

Finally, we hope the text conveys some of the excitement that chem-
ical engineers feel for chemical reactions and chemical reactors. Under-
standing the fundamentals prepares you to investigate new situations.
Grounding in the fundamentals enables you to explore with confidence
and be creative. Enjoy.

JBR JGE
Madison, Wisconsin Austin, Texas
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1
Setting the Stage

1.1 Introduction

The chemical reactor lies at the heart of most chemical processes. The
design and operation of the reactor often determine the success or fail-
ure of the entire process. In the overall process, feedstocks are deliv-
ered to the chemical reactor at the appropriate temperature, pressure,
and concentrations of species. The chemical reactor is that essential
component in which the feed is converted into the desired products.
The chemical reactor is the place in the process where the most value
is added: lower-value feeds are converted into higher-value products.

The reactor is normally followed by separation processes that sep-
arate the products from the unreacted feed and the reactor byprod-
ucts. The modern chemical processing plant, whether processing fine
or commodity chemicals, manufacturing pharmaceuticals, refining pet-
roleum, or fabricating microelectronic devices, is a highly integrated
operation. In addition to meeting production and purity goals, the pro-
cess design and operation also are influenced by the sometimes con-
flicting goals of minimizing energy consumption, and minimizing the
amount of feed or product that must be kept in storage.

Many aspects of reactor analysis and design are treated in this text,
including predicting performance, specifying initial and feed condi-
tions, sizing the reactor, specifying operating conditions, and selecting
the reactor type. To accomplish these goals, we construct and illustrate
a set of reactor analysis and design principles. As we will see, the prin-
ciples are small in number, but the consequences of the principles are
rich, diverse and complex. These principles can be applied at many size
scales to many different types of chemically reacting systems. While
the reactor of interest is often a man-made vessel, sometimes the re-
actor is a living organism. We will illustrate throughout the text, using

1



2 Setting the Stage

many different examples, the diversity of systems and issues addressed
by chemical reactor analysis and design.

Batch, continuous-stirred-tank, and plug-flow reactors. We model
many chemical reactors using three main reactor archetypes: batch,
continuous-stirred-tank, and plug-flow reactors. By virtue of their de-
sign and the typical operating conditions, many complex chemical re-
actors can be well approximated by these three simple reactor types.
The material and energy balances of these three reactors are sets of
first-order, nonlinear ordinary differential equations (ODEs) or nonlin-
ear algebraic equations, or in some situations, differential algebraic
equations (DAEs). The great simplification that has become standard
practice in introductory reactor design texts is to neglect the momen-
tum balance and a careful treatment of the fluid flow pattern within the
reactor.

Concentration, temperature and pressure are therefore the usual
dependent variables that are solved as functions of time or distance
along the reactor as the independent variable. Sometimes the reactor
model is quite simple, such as describing a single reaction in an iso-
thermal reactor, and a single ODE or algebraic equation describes a
single species concentration or extent of a single reaction. More often
the design involves many reactions and nonisothermal operation, and
coupled sets of ODEs or algebraic equations are needed to describe
the temperature, pressure and species concentrations. Regardless of
the complexity, the design problem is approached in the same manner
using the same set of principles. In all but the simplest cases, numer-
ical methods are required to solve the models. Fortunately, high-level
programming languages are readily available and easily can be used to
solve the complex models. We make extensive use of numerical meth-
ods and high-level programming languages in this text to solve complex
models.

1.2 Some Classifications and Terminology

Ideal mixing and plug flow. The batch, continuous-stirred-tank, and
plug-flow reactors are defined by certain idealized assumptions on the
fluid flow. The batch and continuous-stirred-tank reactors are assumed
to be ideally well mixed, which means that the temperature, pressure
and species concentrations are independent of spatial position within
the reactor. The plug-flow reactor describes a special type of flow in a
tube in which the fluid is well mixed in the radial direction and varies
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only in the axial or tube length direction. Plug flow often describes
well the limit of fully developed turbulent flow, i.e., flow in the limit of
large Reynolds number. If the flow in a tubular reactor is not turbulent
(Reynolds Number less than 103–104), then the flow may not be well
modeled as ideal plug flow, and other models are needed to describe
the reactor.

Homogeneous and heterogeneous reactions. Another important re-
actor classification pertains to the phase in which the reaction occurs.
The reactants and products of homogeneous chemical reactions are in
a single phase. Examples include: steam cracking of ethane to ethylene,
and the photochemical reactions of chlorocarbons in the troposphere
that lead to ozone destruction for gas-phase reactions; enzymatic iso-
merization of glucose to fructose, and esterification of an acid and al-
cohol to produce an ester for liquid-phase reactions; and, the fusing of
limestone and charcoal to produce calcium carbide, and the interfacial
reaction between strontium oxide and silicon dioxide to form strontium
silicate for solid-phase reactions. Sometimes the reactants and prod-
ucts are transported through the reactor in one phase, but the reaction
occurs in a different phase, often a solid phase. The heterogeneously
catalyzed reactions such as zeolite-catalyzed cracking of high-boiling
crude oil and iron-catalyzed ammonia synthesis from hydrogen and ni-
trogen involve two phases. Sometimes three phases are present simul-
taneously during the reaction, such as synthesis gas (CO + H2) reactions
over iron-based catalysts that are suspended in a high molecular weight
alkane to help moderate the reaction temperature and dissolve the re-
action product. Multiphase reactions need not involve heterogeneous
catalysts. The reaction of liquid p-xylene and gaseous O2 to produce liq-
uid terephthalic acid, occurs via free-radical intermediates in the liquid
phase of the reactor. Another two-phase, noncatalytic reaction is the
low-pressure epitaxial growth of Si(100) films from gas-phase disilane
(Si2H6).

Batch, semi-batch and continuous operation. The operation of the
reactor can be classified as batch, semi-batch and continuous. In batch
operation, the reactor is charged with reactants, the reaction takes
place, and after some processing time the contents of the reactor are
removed as product. Batch reactors, depicted in Figure 1.1, are often
used for liquid-phase reactions, and the manufacture of low-volume,
high value-added products, such as specialty fine chemicals, pharma-
ceuticals and fermentation products. Batch reactors also are used in
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Figure 1.1: Schematic diagram of a
batch reactor.

Figure 1.2: Expanded view of the
internals of a batch reactor. Cour-
tesy of Autoclave Engineers, Divi-
sion of Snap-tite, Inc.

situations where it is not prac-
tical to implement a continuous
process. The great flexibility of
batch processing allows the reac-
tor to be used for the manufacture
of many different products. Fig-
ure 1.2 provides an expanded view
of the internals used in a batch
reactor showing the cooling coils,
tubes for adding (sparge tube) and
removing (sample tube) fluid, and
baffles to ensure complete mixing.
This unit is placed in a cylindrical
vessel that comprises the exterior
of the batch reactor.

The batch cycle begins by
charging the reactants to the ves-
sel, and often heating the reac-
tants to the reaction temperature.
The cycle often ends by bring-
ing the contents to a discharge
temperature, emptying the vessel,
and cleaning the vessel before the
next charge of reactants. Product
may or may not form during these
preparation steps and they often
involve manual labor, so manufac-
turing costs can be considerably
higher than a corresponding con-
tinuous process.

The semi-batch process is sim-
ilar to the batch process except
feed addition occurs during the
batch cycle. Products may also
be removed during the semi-batch
process. The addition/removal
policy allows one to control the re-
action rate or heat release during
reaction. The semi-batch reactor
also may provide more complete
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Figure 1.3: Schematic diagram of a CSTR; the effluent composition
of the CSTR is identical to the conditions that exist in the
reactor.

use of the reactor volume in reactions such as polymerizations that
convert lower-density reactants to higher-density products during the
course of the reaction.

The continuous-stirred-tank reactor (CSTR) is shown in Figure 1.3.
Reactants and products flow into and out of the reactor continuously,
and the contents of the reactor are assumed to be well mixed. The well-
mixed assumption can be realized more easily for liquids than gases,
so CSTRs are often used for liquid-phase reactions. The fluid compo-
sition and temperature undergo a step change when passing from the
feed stream into the interior of the reactor; the composition and tem-
perature of the effluent stream are identical to those of the reactor.

The CSTR is used extensively in situations where intense agitation
is required, such as the addition of a gaseous reactant to a liquid by
transfer between the bubbles and the continuous liquid, and the sus-
pension of a solid or second liquid within a continuous liquid phase.
Polymerization reactions are sometimes conducted in CSTRs. It is com-
mon to employ a cascade or series of CSTRs in which the effluent from
the first reactor is used as feed to the second and so forth down the cas-
cade (Figure 1.4). The cascade permits one to realize high conversion
of reactant, while minimizing total reactor volume.

The plug-flow reactor (PFR) is a constant cross-section, tubular re-
actor as depicted in Figure 1.5. Under turbulent flow conditions, the
velocity profile becomes plug-like, which greatly simplifies the mate-
rial and energy balances. The velocity, composition and temperature
are functions of only the axial position. In this text, we are usually
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Figure 1.4: Schematic diagram of five CSTRs in series; the effluent of
each reactor becomes the feed to the next.
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Figure 1.5: Schematic diagram of a plug-flow reactor.

interested in only the steady-state profile in the tube and neglect the
dynamics.

Plug-flow reactors are used for gas-phase and liquid-phase reac-
tions. If the PFR is filled with a porous catalyst and the fluid flowing
in the void space is turbulent, the reactor is referred to as a fixed-bed
reactor. We will see that the isothermal PFR usually leads to higher con-
version of reactant per unit volume than the CSTR, i.e., there is more
efficient use of volume in a PFR. For this reason, PFRs are employed in
situations that require high capacity and high conversion. PFRs also
are used in situations involving highly exothermic or endothermic re-
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Figure 1.6: Cross-sectional view of a 1 µl combinatorial screening
reactor. Copyright 2001, Symyx Technologies, Inc., used
with permission.1

actions; a bundle of small-diameter tubes can be placed in a furnace
for endothermic reactions, or surrounded by a high-temperature boil-
ing fluid for exothermic reactions. PFRs are the reactor of choice for
gas-phase reactions due to the problems of mixing gases in a CSTR.

1.3 Scale

The size or volume of chemical reactors varies widely. Reactor volumes
can range from hundreds of nanoliters for combinatorial, lab-on-a-chip
reactor systems, to several hundred thousand liters for certain petro-
leum refining operations. In the combinatorial reactors, one is inter-
ested in determining if a reaction proceeds and in minimizing the scale
of the experiment so many combinations or conditions can be screened
rapidly. Figure 1.6 presents a schematic view of 1 µl test reactors that
are used for combinatorial screening of heterogeneous catalysts.

Figure 1.7 presents an assembled view of these reactors. As many
as 256 different catalyst formulations can be deposited into shallow
wells in a 3-in by 3-in support wafer. By changing the gas flowrates,
the residence time can be varied from 10 ms to 1 s. Uniform flow dis-
tribution to each of the reactors is but one of the design challenges for
this small-scale, massively parallel device. The B-tree flow distribution
network to accomplish this is shown in Figure 1.8.

1All rights reserved, U.S. Patent No. 5,985,356, 6,004,617. Additional U.S. and for-
eign patents pending.
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Figure 1.7: Assembled view of 256 1-µL reactors built into a 3-in by
3-in support wafer. Copyright 2001, Symyx Technolo-
gies, Inc., used with permission.1

At the opposite end of the spectrum, the size of petroleum refin-
ing reactors is dictated by a desire to maximize production given a
fixed reaction rate. These reactors are therefore large. For example,
Figure 1.9 displays a 950-L, low-density polyethylene polymerization
reactor. This process is discussed further in Section 1.4.3.

The time required for chemical reaction also varies widely. In the
batch reactor, the batch time determines the production rate for the
reactor. For flow systems we define residence time, which is the reactor
volume divided by the feed volumetric flowrate; this quantity has the
units of time, and can be thought of as the time required to displace the
equivalent of one reactor volume. Batch times and residence times can
be as short as milliseconds for high-temperature, gas-phase reactions,
such as ammonia oxidation and HCN synthesis in flow reactors, or as
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Figure 1.8: Top view of a combinatorial reactor gas-distribution net-
work. Copyright 2001, Symyx Technologies, Inc., used
with permission.1

Figure 1.9: Polyethylene reactor; this 16-in inner-diameter reactor is
designed to operate at 35,000 psi and 600◦F; in opera-
tion, this reactor is in a vertical configuration. Courtesy
of Autoclave Engineers, Division of Snap-tite, Inc.
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long as days for liquid-phase fermentation reactions in batch reactors.

The rate of chemical reaction has units of moles/time-volume and
is a function of temperature and composition. If the rate is high, as we
would anticipate for a high-temperature oxidation or pyrolysis reaction,
the time needed for a desired production rate is small. Similarly, if the
rate is low, a long time is needed. The reactor volume is determined by
the reaction rate and amount of product to be manufactured.

1.4 Some Examples

We live in a chemical world and most of the items you use in daily life
result from chemical processes, including the ink on this page and the
paper itself. Chances are one or more of the articles of clothing you
are wearing are made from synthetic fibers. We are surrounded by and
regularly use items that are made from plastics and polymers. The
automobiles we drive and the fuels we use to power them depend on
products made in chemical reactors. Electronic devices and computer
chips require a myriad of chemical reaction steps in their manufacture.
Chemical reaction engineering is the core discipline that designs, ana-
lyzes and creates the processes to convert natural resources into other
intermediate chemicals and final products.

1.4.1 Chemical Vapor Deposition of Silicon-Germanium Alloy Films

The demand for faster microelectronic devices with higher reliabil-
ity, lower power requirements, and lower cost is driving the current
silicon-based devices close to their physical limits. One solution that
permits the traditional silicon-based circuit design to be retained is to
use silicon-germanium alloys in place of silicon in the active region of
the device. Silicon-germanium alloys have higher mobilities than sili-
con and a lower bandgap enabling faster speeds and lower power. De-
vices such as heterojunction bipolar transistors and field-effect transis-
tors are fabricated by a series of steps that involve masking the semi-
conductor wafer with a coating, selectively removing regions of the
mask with lithography, implanting dopant ions such as boron or phos-
phorous, and adding layers of metal and dielectrics to build up the
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Figure 1.10: Top view of a single-wafer
CVD reactor; single-wafer processing
generally employs cluster tools that
permit a wafer to be shuttled between
the different reaction/process cham-
bers without exposing it to contami-
nation or ambient conditions; the top
view of one reactor shows the pins on
which a wafer rests during the CVD re-
action. Courtesy of Applied Materials.

device from the wafer sur-
face [19, 7, 11]. For silicon-
germanium alloy-based devices,
a thin film (tens of nanome-
ters to microns) is grown onto
Si(001) wafers. Typically the re-
actants are hydride gases, such
as disilane (Si2H6) and germane
(GeH4), at pressures on the or-
der of 0.1 to several Torr in
a process known as chemical
vapor deposition (CVD). Device
speed and performance are re-
lated to the amount of Ge in the
alloy, and control of the film
composition is critical.

As microelectronics manu-
facturing moves to ever larger
wafers (currently 300-mm di-
ameter wafers are routine),
single-wafer reactors are used
in the manufacturing process-
ing steps (Figure 1.10). In a
single-wafer reactor, the wafer
is supported in the horizontal
position, a gas distribution sys-
tem is used to ensure uniform
flow of reactants over the wafer
surface, and the wafer is heated
radiatively to maintain the entire cross section at a constant temper-
ature. When the pressure is low enough, the diffusion lengths of the
gas-phase components are long enough that one can assume the gas
phase to be well mixed, uniform and independent of position. This
means the gas phase can be modeled as a CSTR in which gas enters
and leaves the reactor in the flow streams and undergoes reaction at
the surface of the wafer.

Much is known about the chemistry that takes place during film
growth [5, 20, 15, 2, 12, 13]. This information can be compactly sum-
marized in a fairly small, reduced-order kinetic model that accounts
for surface and gas-phase components, and can be used to predict the
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film growth rate [9]. One such kinetic model consists of eight reactions
among nine species. The reactions are

Si2H6(g)+ 6Si(s) k1-→ 6SiH(s)+ 2Si(b)

Si2H6(g)+ 4Si(s)+ 2Ge(s) k2-→ 6SiH(s)+ 2Ge(b)

Si2H6(g)+ 5Si(s)+ Ge(s) k3-→ 6SiH(s)+ Si(b)+ Ge(b)

GeH4(g)+ 4Ge(s) k4-→ 4GeH(s)+ Ge(b)

GeH4(g)+ 3Si(s)+ Ge(s) k5-→ 2GeH(s)+ 2SiH(s)+ Si(b)

2SiH(s) k6-→ 2Si(s)+ H2(g)

2GeH(s) k7-→ 2Ge(s)+ H2(g)

SiH(s)+ Ge(s)
k8-⇀↽-
k−8

Si(s)+ GeH(s)

where the symbols (s), (b) and (g) refer to the wafer surface, the wafer
bulk, and the gas phase, respectively. The production rates of the nine
species follow from the stoichiometry of the eight reactions and the
reaction rates as we will see in Chapter 2, and are given by

RSi2H6 = −r1 − r2 − r3

RGeH4 = −r4 − r5

RSi(s) = −6r1 − 4r2 − 5r3 − 3r5 + 2r6 + r8

RGe(s) = −2r2 − r3 − 4r4 − r5 + 2r7 − r8

RSiH(s) = 6r1 + 6r2 + 6r3 + 2r5 − 2r6 − r8

RGeH(s) = 4r4 + 2r5 − 2r7 + r8

RSi(b) = 2r1 + r3 + r5

RGe(b) = 2r2 + r3 + r4

RH2 = r6 + r7

The production rates enable us to follow the changing composition of
the gas phase, the surface, the film growth rate, and the Si/Ge film alloy
composition.

1.4.2 Hydrodesulfurization

Crude oil contains a number of organosulfur compounds (RS), includ-
ing thiols, sulfides, thiophenes and alkyl-substituted thiophenes [8],
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Figure 1.11: Representative organosulfur compounds illustrating
the aromatic character of the molecules; when the alkyl
substitution position is near the S atom, it is difficult to
desulfurize the molecule.

some of which are shown in Figure 1.11. The sulfur must be removed
from the petroleum feeds to prevent it from poisoning precious metal
catalysts that are used in many refinery processes and to meet the re-
strictions for sulfur content in fuels. The total sulfur content of crude
oil can easily be several percent and it must be reduced to several parts
per million (ppm). This sulfur is removed by treating the petroleum
feed with hydrogen at high pressures in a fixed-bed or trickle-bed cat-
alytic reactor; the process is referred to as hydrodesulfurization (HDS)
[3]. During HDS the carbon-sulfur bonds are broken and the hydrogen
replaces the sulfur and H2S is formed.

RS+ 2H2 -→ RH2 +H2S

The fixed-bed reactors typically operate in the temperature range 525–
750 K, and hydrogen pressure range 35–100 atm.

Figure 1.12 presents a simplified process diagram. The feed is heated
and mixed with hydrogen in the inlet to a fixed-bed catalytic reactor.
HDS is an exothermic reaction and if the reactor temperature becomes
too high, undesired side reactions occur, such as the hydrogenation of
the unsaturated bonds and hydrogenolysis of the C C bonds. Multi-
ple beds operating in series and at different temperatures, with inter-
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1
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heat exchangers
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products
liquid

and furnaces

feed
separation process

H2S

HDS reactors

Figure 1.12: Simplified hydrodesulfurization process diagram; three
separate fixed-bed catalytic reactors in series; reactor 1
is used as a guard bed in which the metals are removed
to not poison the HDS catalyst; reactors 2 and 3 permit
control over temperature and sulfur removal. Adapted
from McCulloch [8].

bed cooling, is one way to control the temperature and to ensure the
complete removal of the sulfur. Separate reactors in series permit the
reactor sequence to be changed as catalyst activity degrades with time.
Figures 1.13 and 1.14 present two views of a multibed fixed-bed re-
actor in which the beds are built into one vessel. Within each section
containing catalyst, the reactor is modeled as a fixed bed. After cooling
the outflow of one of the beds, the reaction is allowed to proceed in the
next section. Multibed reactors are generally employed with exother-
mic reactions, and the fixed-bed sections are operated adiabatically. In
this way, the reactor temperature can be controlled by the heat removal.
These concepts are discussed in Chapter 6. Figure 1.14 shows an ex-
panded view of the internal construction of a fixed-bed reactor; trays to
support the catalyst particles and distribute the flows uniformly across
the reactor cross section are shown. Commercial HDS reactors such as
shown in Figure 1.14 can hold up to 60,000 kg of catalyst.

Optimal reactor operation and design are two methods to maximize
sulfur removal. In addition, considerable research effort is focused
on finding new catalysts to improve activity, selectivity and durability,
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Figure 1.13: Cross-sectional
view of a commercial HDS
reactor containing four fixed-
bed reactors with interstage
cooling/quenching; quench-
ing is necessary to limit the
temperature increase for
this exothermic reaction.
Adapted from UOP LLC.

and to adapt to the ever more
stringent emission standards [10].
The catalytic reaction chemistry is
quite complex. As can be seen
from Figure 1.11, the organosulfur
molecules are highly unsaturated,
and in addition to hydrogenation
of the C S bonds, one wants to
avoid saturation of all the C C
double bonds. The catalysts have
different types of sites, which com-
plicates the kinetic model [10]. Hy-
drogen must adsorb dissociatively.
The organosulfur molecule must
adsorb and orient itself so that the
sulfur atom is over an active site,
such as an exposed molybdenum
atom on a molybdenum disulfide
catalyst. The reaction rate is influ-
enced by the relative amounts of
reactants (adsorbed hydrogen and
organosulfur molecule) and the re-
activity of the catalyst. Describ-
ing the rate of these kinds of com-
plex reactions on catalyst surfaces
is covered in Chapter 5, where we
show the rate of the HDS reaction
can be expressed by

r =
−kcαH2

cβRS
(1+KH2cH2 +KRScRS)γ

1.4.3 Olefin Polymerization

Polyethylene is a major commodity plastic, with more than 33 billion
pounds of the resin produced in the United States in 2000 [1]. Poly-
ethylene encompasses a family of semicrystalline polymers with eth-
ylene as the major building block [6]. The resins are loosely grouped
into three classes: low-density polyethylene (LDPE), high-density poly-
ethylene (HDPE), and linear-low-density polyethylene (LLDPE). LDPE is
a homopolymer of ethylene with side-chain branching at a frequency
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Figure 1.14: Expanded view of
a multibed HDS reactor showing
the gas distribution tray at the
top and the catalyst support tray
in the middle; these reactors can
range in diameter from 1.5–5 m.
Courtesy of UOP LLC.

of 2–50 per 1000 carbons in the
chain. Its density is in the range
0.915–0.940 g/cm3. HDPE can be
a homopolymer or, more commonly,
a copolymer with butene or hex-
ene, and has a density greater than
0.940 g/cm3, and a much lower den-
sity of side branches than LDPE, 0.5–
10 branches per 1000 carbons in the
chain. LLDPE is a copolymer of eth-
ylene and small amounts of α-olefins.
By changing the density, molecu-
lar weight, and branching-group fre-
quency and type, the chemical resis-
tance and mechanical properties can
be tailored to a variety of uses. Poly-
ethylene is used in films for bags and
packaging, ranging from garbage and
trash bags to whole blood storage;
coatings for paper, metal and electri-
cal wires; containers; and piping and
tubing.

Low-density polyethylene is pro-
duced in a free-radical initiated, high-
pressure process. Free-radical poly-
merization mechanisms and kinetics
are discussed in Chapter 5. The poly-
merization process begins with an ini-
tiation reaction between ethylene and
an initiator to form a primary radi-
cal. The primary radical undergoes
step-wise chain growth (propagation)
until it is terminated by a variety of
mechanisms that stop chain growth.
The LDPE reactors are either stirred
autoclaves or tubular reactors. Fig-
ure 1.9 displays a commercial LDPE
tubular reactor. Typical tubular reac-
tors have diameters of 15–30 in and
lengths of 17–25 ft, and operate in the
pressure range of 30,000–45,000 psi
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Figure 1.15: Simplified polymerization
process. This material is used by permis-
sion of John Wiley & Sons, Inc., Copyright
©1996 [6].

and temperature range of
200-300◦C. The process tem-
peratures are high enough
that the polyethylene is in
the melt state, and the pres-
sures are high enough to
form a supercritical mixture
of ethylene and polyethyl-
ene, which acts as the poly-
merization medium. The
polymerization reaction it-
self is exothermic and the
process is operated to pre-
vent excessive temperature
increases. The temperature
control is accomplished by
limiting the amount of ethyl-
ene converted within the re-
actor and/or removing heat
through the reactor walls.

High-density polyethylene is produced at lower pressures, from
10–30 atm. HDPE requires a catalyst [23, 18, 6]. Various catalysts
have been used including: chromium oxide supported on an inert
porous substrate such as silica; a Ziegler catalyst consisting of tita-
nium or vanadium compounds (TiCl4, TiCl3, VOCl3) on a support (sil-
ica, MgCl2, graphite, carbon black) and an organoaluminum cocatalyst
(Al(C2H5)3); and, a metallocene (a complex of zirconium, titanium or
hafnium containing cyclopentadienyl rings) and an organoaluminum
cocatalyst. HDPE processes can employ a slurry of catalyst, polymer
and diluent. One such slurry process involves circulating the reaction
mixture at 5–12 m/s around a loop that can range from 0.5–1.0 m in
diameter and 200 m in total length. The heat of reaction is removed by
a cooling jacket that surrounds the reactor, and the high flowrate en-
sures turbulent flow within the loop [6]. Ethylene, catalyst and diluent
are fed continuously. Polymer particles form and are removed contin-
uously; these particles reside in the reactor loop for 0.5–2.5 hr, and are
removed after they settle in a side leg of the loop. Ethylene conversion
can reach 95–98%.

Gas-phase polymerization also is used for HDPE in the process rep-
resented schematically in Figure 1.15. The cylindrical reactor can be
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25–30 ft in diameter and have a five-to-one length-to-diameter ratio.
High linear velocities serve to fluidize the catalyst particles that form;
fluidization facilitates removing the heat of reaction. Catalyst is added
continuously and polymer particles are removed once they reach a par-
ticular size (about 500–1000 µm). The reactor diameter is larger at the
top, which lowers the linear velocity and acts to disengage the poly-
mer particles from the unreacted gases. These same reactors are used
for LLDPE. The choice of catalyst and the presence of inert gases and
comonomers are used to regulate the polymer resin properties and
molecular weight. The reactor typically operates at 220–370 psig and
160–205◦F.

1.4.4 Hepatitis B Virus Modeling

As a final example, we wish to display the wide scope of chemical reac-
tion modeling principles. Consider Figure 1.16, which shows some of
the biochemical reaction events that occur in a single cell during the re-
production cycle of the hepatitis B virus [4, p.767]. The understanding
and modeling of these biochemical events is an area of current research
activity [14, 21, 22, 16, 17]. The following is a simplified but useful
model of part of this reproductive system

nucleotides
cccDNA
−−−−−−−→ rcDNA (1.1)

nucleotides+ rcDNA −−−−−−−→ cccDNA (1.2)

amino acids
cccDNA
−−−−−−−→ envelope (1.3)

cccDNA −−−−−−−→ degraded (1.4)

envelope −−−−−−−→ secreted or degraded (1.5)

rcDNA+ envelope −−−−−−−→ secreted virus (1.6)

These reactions correspond to the following steps in Figure 1.16:

1. Reaction 1.1 accounts for Steps 5, 9–11.

2. Reaction 1.2 accounts for Step 12.

3. Reaction 1.3 accounts for Steps 5–7.

4. Reactions 1.4 and 1.5 are not present in Figure 1.16, but may prove
useful to explain potential loss of active cccDNA.

5. Reaction 1.6 accounts for Steps 13–15.
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Figure 1.16: The chemical events comprising the reproduction cycle
of the hepatitis B virus. Courtesy of ASM Press [4].

When we change to this context, the “chemical reactor” of interest
becomes the living cell or, if we also model the cell population, the hu-
man liver. The chemical reaction modeling principles remain valid. In
Chapter 4 we use this simple model to make quantitative predictions
about the evolution of the viral species concentrations. We also show
how to model systems that have small concentrations of species, down
to less than a few hundred molecules. In Chapter 9 we explore estimat-
ing the rate constants that appear in this virus model given the kinds
of laboratory measurements that are available.
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Tailoring a model to make successful quantitative predictions of a
system of interest is still more of an art than a science. We should
not underestimate the complexity of some of the systems of interest
to chemical engineers. Because we cannot include all the details, our
models are always incomplete, and it is possible to make naive use of
modeling approaches, and produce models with little connection to re-
ality and little predictive value. This caution is perhaps especially true
for biological systems. On the other hand, if we wish to increase our un-
derstanding of a chemically reacting system, skillful model building is
often an indispensable part of the overall investigation. Simple models
often can explain complex system behavior, especially when feedback
mechanisms or autocatalytic steps are involved. The main goal of this
text is to build the skill set with which chemical engineers apply reac-
tion modeling tools to understand chemically reacting systems.

1.5 An Overview of the Text

Chapter 2. The remaining text is divided into nine chapters and an
appendix. We begin in Chapter 2 by discussing stoichiometry or the
quantitative relationship between the different chemical species under-
going chemical reaction. We define chemical reaction rate and species
production rate, and develop the accounting system for tracking the
change in the reaction extent and the species concentration. Since
most processes involve multiple chemical reactions, we make free use
of matrices and linear algebra to summarize compactly the reaction
stoichiometry.

Chapter 3. Next, in Chapter 3, we briefly review the important facts
concerning the equilibrium state of a system undergoing chemical reac-
tion. Most chemical processes do not reach equilibrium, but knowledge
of the equilibrium state of the system allows one to define limits of re-
actor performance and identify operating conditions to realize desired
production rates. The conditions for equilibrium are developed using
the Gibbs energy and the chemical potential or species activity. We
also briefly review phase equilibrium so that we are prepared for mul-
tiphase reactions. The condition for chemical and phase equilibrium is
generally stated as the minimization of an appropriate energy function
or maximization of entropy. The use of numerical optimization meth-
ods is illustrated for solving complex reaction equilibrium problems
involving many reactions.
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Chapter 4. In Chapter 4 we develop the material balances for the
three reactor types: batch (and semi-batch), continuous-stirred-tank,
and plug-flow reactors. We consider homogeneous, single-phase, iso-
thermal reactions at this point. We derive and illustrate the use of the
basic material balances for single and multiple reactions using molar
concentration or molar flow as the only dependent variable. We also
consider the volume change upon reaction and show how to employ the
equation of state to complement the species material balances in situ-
ations in which the fluid density is not constant. We also introduce the
use of stochastic simulation to simulate reaction kinetics in well-mixed
reactors.

Chapter 5. We feel it works best to introduce the chemical reactor as
soon as possible in Chapter 4, so we delay a comprehensive study of
reaction rates and reaction rate expressions until Chapter 5. In Chap-
ter 5 we provide a simple, theoretical framework for predicting the rate
of a chemical reaction and for relating detailed statements of the reac-
tion chemistry to reaction rates. We treat both homogeneous and het-
erogeneous reactions. Because chemical reactions occur at extremely
different rates, and species are present in extremely different concen-
trations, we can often reduce the complexity of the reaction mechanism
without changing the main features of the model. We develop the two
main procedures for reducing the reaction mechanism complexity: the
reaction equilibrium assumption, and the quasi-steady-state assump-
tion. We illustrate the use of these assumptions in developing kinetic
expressions, such as free-radical polymerization kinetics. The chapter
concludes with a discussion of mechanisms for reactions occurring at
the surfaces of solid catalysts.

Chapter 6. In Chapter 6 we develop the energy balance for the chem-
ical reactor. The combined material and energy balances provide us
with a rich description of many chemically reacting systems. The cou-
pling of the material and energy balances also provides some surprises.
The reactor behavior can become complex and interesting, and we ex-
plore some of the complex behavior such as multiple steady states and
sustained oscillations. We explore such issues as how to remove or add
heat to the system to overcome equilibrium limitations on conversion,
and how to integrate a process to use the heat of reaction to preheat
the feed entering the reactor.

Chapter 7. Chapter 7 considers the industrially important case of het-
erogeneous reactions taking place in solid catalyst particles. In the
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catalyst particle, we must consider the combined reaction-diffusion
problem to be able to evaluate the temperature and the species con-
centrations. The material and energy balances for reaction-diffusion in
catalyst particles result in fairly challenging boundary-value problems,
and we discuss numerical methods for solving them. Packing the solid
catalyst particles in a tube and passing a fluid stream over them pro-
duces the fixed-bed reactor. We show how to couple the fluid balances
to the catalyst particle balances in order to predict the overall fixed-bed
reactor behavior.

Chapter 8. The tradition in introductory reactor design courses is to
neglect a careful treatment of the fluid flow and use the simplified, ideal
reactors for modeling. In Chapter 8 we explore what to do when the
reactor flow pattern is not well represented by these ideal mixing as-
sumptions. We introduce the reactor residence-time distribution and
describe the general issues of mixing in chemical reactors. We describe
the limitations of these approximate mixing models. In some cases, ac-
curate modeling requires one to solve for the complete velocity profile
in the reactor. Although that topic is beyond the scope of this text,
computational fluid dynamics software is evolving to the point that
this approach is becoming tractable for many problems of interest.

Chapter 9. The fundamental reactor modeling principles covered in
Chapters 2–8 provide the framework in which we think about chemi-
cal reactors. We understand which phenomena cause which observed
reactor behaviors, and which design variables should be changed if
we wish to alter the reactor performance. But when we want to make
quantitative predictions of reactor performance, we require values for
the model parameters. It is a simple fact that most of the parameters
needed for the chemistries and reactor configurations of interest are
not available in the literature. To make these models useful in stan-
dard industrial practice, therefore, we must be able to conveniently
determine or estimate these parameters from experimental data col-
lected on the system of interest. Chapter 9 covers this important topic
of parameter estimation, which is not usually addressed in a systematic
manner in introductory treatments of reactor analysis and design.

Chapter 10. Chapter 10 treats more complex situations in which the
reactor of interest contains one phase of matter dispersed in a second
phase. This dispersion is often a solid or particulate phase dispersed in
a liquid. The crystallization and purification of solid crystalline prod-
ucts, such as pharmaceuticals, from a solvent mixture is an important
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example of this kind of dispersion. The dispersion may also be one
liquid phase in small domains that are encapsulated by a separating
membrane or stabilization layer and dispersed in a second, continuous
liquid phase. Biological cells and emulsion polymers are important ex-
amples of this type of dispersion.

The chapter develops the evolution equation for the particle phase’s
particle size distribution, known as the population balance. In addi-
tion, multiphase mass and energy balances are derived for treating the
continuous phase. To complement the deterministic, continuous popu-
lation balance, discrete stochstic models are also introduced to model
particle nucleation and growth. The connections and differences be-
tween the deterministic and stochastic descriptions are then developed
to conclude the chapter.

Appendix A: Computational Methods. Finally, in Appendix A we
summarize the numerical methods that have been necessary to solve
the reactor models presented in the text. Linear algebra and matri-
ces are introduced to handle reaction stoichiometry involving multi-
ple reactions. Methods for solving ordinary differential equations and
differential-algebraic equations are the real workhorses of reaction en-
gineering; they are required in solving the material and energy balances.
We also make extensive use of methods to compute the sensitivities
of solutions of differential equations to the parameters appearing in
the model. These sensitivities are needed for two purposes. First,
they help in the problem of estimating model parameters from data.
Second, they provide one means for solving the challenging boundary-
value problems that arise with simultaneous reaction and diffusion in
catalyst pellets. Optimization methods are used extensively in science
and engineering. In this text, we used optimization for three main pur-
poses: finding the equilibrium state for complex situations involving
multiple reactions and multiple phases; estimating model parameters
from data; and solving reactor design problems.

See www.nobhillpublishing.com for the computational appendix.
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2
The Stoichiometry of Reactions

2.1 Introduction

Stoichiometry is defined as the determination of the proportions in
which chemical elements combine or are produced and the weight rela-
tions in any chemical reaction.1 In this chapter we explore and develop
these quantitative relations between the different chemical species un-
dergoing chemical reaction.

The next section establishes the accounting procedure for track-
ing chemical change and introduces the stoichiometric matrix. Sec-
tion 2.3 introduces the concept of linearly independent reactions and
discusses the implications of mass conservation on the stoichiometric
matrix. Section 2.4 defines the rates of reactions and rates of produc-
tion of chemical species due to the reactions. Section 2.5 explores the
issues involved in calculating production rates given reaction rates and
vice versa. We also formulate and solve the least-squares problem of
extracting best estimates of reaction rates given production rate mea-
surements containing errors.

Section 2.6 provides a summary of the important concepts and re-
lationships that may prove useful as a study guide or quick reference.
References for further study are provided at the end of the chapter.
Exercises are provided in Section 2.7 for reinforcing the concepts and
to further develop one’s understanding. The last several exercises in-
troduce new material and show how the stoichiometry fundamentals
presented in this chapter lead into other interesting topics. The reactor
analysis book by Aris [1] influenced several sections of this chapter.

1Webster’s New World College Dictionary, fifth edition, 2004.
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2.2 Chemical Reactions and Stoichiometry

We shall consider three primary examples as a means of illustrating
the main concepts in this chapter. The first example is one of the reac-
tions responsible for smog formation in the atmosphere. It consists of
a single reaction among three species. The second example is the wa-
ter gas shift reaction, and it illustrates the case of multiple reactions;
it consists of three reactions among six chemical species. The third
example illustrates the complexity of common industrial reactions of
interest, consisting of 20 reactions among 14 species. These reactions
have been proposed to describe a silicon chemical vapor deposition
process, which is an important step in the production of microelec-
tronic materials.

For the first example, consider two molecules of nitric oxide and one
molecule of oxygen reacting to form two molecules of nitrogen dioxide.
The stoichiometry of this reaction is

2NO+O2 -⇀↽- 2NO2 (2.1)

The convention that we follow is reactants appear on the left-hand side
of the chemical reaction symbol, -⇀↽-, and products appear on the right-

hand side. In this example, there is a single chemical reaction and three
different chemical species taking part in the reaction, NO, O2, and NO2.

The second example is known as the water gas shift reaction. The
overall stoichiometry of this reaction is

H2O+ CO -⇀↽- CO2 +H2 (2.2)

The rate of this reaction is important in determining the CO/CO2 ratio
in exhaust gases from internal combustion engines, and in determin-
ing the H2 content in the feed for fuel cells. It also is known that the
following two reactions are needed to describe what is happening at
the molecular level,

H2O+ H -⇀↽- H2 +OH (2.3)

OH+ CO -⇀↽- CO2 + H (2.4)

Reactions 2.2–2.4 comprise a simple reaction network. There are three
chemical reactions and six different chemical species taking part in the
three reactions, H, H2, OH, H2O, CO, and CO2.
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In order to organize the way we discuss chemical reactions, the fol-
lowing notation is convenient. Let the symbol, Aj , represent the jth
species taking part in a reaction. In the first example, we can choose
A1 = NO, A2 = O2, and A3 = NO2. In the water gas shift example,
we can choose A1 = H, A2 = H2, A3 = OH, A4 = H2O, A5 = CO, and
A6 = CO2. Using the Aj notation, we can express the water gas shift
reactions as

A4 + A5 -⇀↽- A6 + A2

A4 + A1 -⇀↽- A2 + A3

A3 + A5 -⇀↽- A6 + A1

(2.5)

Reactions 2.5 suppress the identities of the species for compactness.
We can further compress the description by moving all of the variables
to the right-hand side of the chemical reaction symbol and replacing it
with an equality sign,

−A4 −A5 +A6 +A2 = 0

−A4 −A1 +A2 +A3 = 0 (2.6)

−A3 −A5 +A6 +A1 = 0

Again notice the sign convention that products have positive coeffi-
cients and reactants have negative coefficients in Equations 2.6.2 Equa-
tions 2.6 now resemble a set of three linear algebraic equations and
motivates the use of matrices. Using the rules of matrix multiplication,
one can express Equations 2.6 as

 0 1 0 −1 −1 1
−1 1 1 −1 0 0

1 0 −1 0 −1 1




A1

A2

A3

A4

A5

A6


=

 0
0
0

 (2.7)

The matrix appearing in Equation 2.7 provides an efficient description
of the stoichiometry for the reaction network, and is appropriately
known as the stoichiometric matrix. Giving the stoichiometric ma-
trix the symbol ν, and writing A to denote the column vector of the
Aj , j = 1, . . . ,6, our final summary of the water gas shift reaction ap-
pears as

νA = 0
2Boldface letters provide a mnemonic device.
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The element νij in the stoichiometric matrix is the stoichiometric co-
efficient for the jth species in the ith reaction. The index i runs from
1 to nr , the total number of reactions in the network, and the index j
runs from 1 to ns , the total number of species in the network. We say
that ν is an nr × ns matrix. After piling up this much abstraction to
describe what started out as a simple set of three reactions, let us work
a few examples to reinforce the concept of the stoichiometric matrix.

Example 2.1: Stoichiometric matrix for a single reaction

Find the stoichiometric matrix for the nitric oxide example,

2NO+O2 -⇀↽- 2NO2

Solution

The nitric oxide example consists of one reaction and three species. We
can assign the species to theA as follows: A1 = NO,A2 = O2,A3 = NO2.
The reaction can then be written as

−2A1 −A2 + 2A3 =
[
−2 −1 2

] A1

A2

A3

 = 0

The stoichiometric matrix for a single reaction is a row vector, in this
case,

ν =
[
−2 −1 2

]
□

Example 2.2: Columns of ν

Since we are free to assign chemical species to the Aj in any order we
choose, consider what happens if we change the order of the species
in the water gas shift example. Instead of using A1 = H and A6 = CO2,
what is the stoichiometric matrix if A1 is chosen to be CO2 and A6 is
chosen to be H?

Solution

Switching the identities of the first and sixth species in the A vector
gives us the following modified vector, A′1 = CO2, A′2 = H2, A′3 = OH,
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A′4 = H2O, A′5 = CO, and A′6 = H. Reactions 2.5 are then modified to
give

A′4 + A′5 -⇀↽- A′1 + A′2
A′4 + A′6 -⇀↽- A′2 + A′3
A′3 + A′5 -⇀↽- A′1 + A′6

(2.8)

Extracting the modified ν matrix from Equations 2.8 gives

ν′ =


←
-

←
-

1 1 0 −1 −1 0
0 1 1 −1 0 −1
1 0 −1 0 −1 1

 (2.9)

It is clear from examining Equations 2.9 and 2.7 that switching the iden-
tities of species one and six in the A vector has necessitated switching
the first and sixth columns in the stoichiometric matrix. Therefore one
can make the connection between the columns of ν and the species
taking part in the reactions. More precisely, the jth column of the ν
matrix supplies the stoichiometric numbers of the jth species in all of
the reactions. □

Example 2.3: Rows of ν

Just as we are free to assign the species to the A vector in any order we
choose, we are also free to express the reactions in any order we choose.
We now explore what happens if instead of expressing the water gas
shift reaction as it appears in Reactions 2.2–2.4, we express it as

OH+ CO -⇀↽- CO2 + H (2.10)

H2O+ H -⇀↽- H2 +OH (2.11)

H2O+ CO -⇀↽- CO2 + H2 (2.12)

Notice we have written the original third reaction first and the original
first reaction third. What is the impact of this change on the ν matrix?

Solution

Using the original ordering of theA vector, we can ascribe the following
elements of a third stoichiometric matrix,

A3 + A5 -⇀↽- A6 + A1

A4 + A1 -⇀↽- A2 + A3

A4 + A5 -⇀↽- A6 + A2
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ν′′ =

-→ 1 0 −1 0 −1 1
−1 1 1 −1 0 0

-→ 0 1 0 −1 −1 1

 (2.13)

As one might expect, exchanging the orders of the first and third re-
actions causes us to exchange the first and third rows in the ν ma-
trix as evidenced by comparing the matrices in Equations 2.13 and 2.7.
We can therefore make the connection between the rows of ν and the
reactions.3 The ith row of the stoichiometric matrix contains the stoi-
chiometric numbers of all species in the ith reaction. □

From the previous two examples it is clear that one could develop
a large number of stoichiometric matrices to describe the same set of
chemical reactions. Since there is no reason to prefer one ordering of
species and reactions over another, one may permute the columns and
rows into any order and maintain a valid stoichiometric matrix.

We now introduce the third example, which is a more complicated
reaction network. The following chemistry has been proposed to de-
scribe a silicon chemical vapor deposition (CVD) reaction, which is an
important process in the production of microelectronic materials.

SiH4 -⇀↽- SiH2 + H2 SiH2 + SiH -⇀↽- Si2H3

SiH4 -⇀↽- SiH3 + H SiH2 + Si -⇀↽- Si2H2

SiH4 + SiH2 -⇀↽- Si2H6 SiH2 + Si3 -⇀↽- Si2H2 + Si2

Si2H4 + H2 -⇀↽- SiH4 + SiH2 H2 + Si2H2 -⇀↽- Si2H4

SiH4 + H -⇀↽- SiH3 + H2 H2 + Si2H4 -⇀↽- Si2H6

SiH4 + SiH3 -⇀↽- Si2H5 + H2 H2 + SiH -⇀↽- SiH3 (2.14)

SiH4 + SiH -⇀↽- SiH3 + SiH2 H2 + Si2 -⇀↽- Si2H2

SiH4 + SiH -⇀↽- Si2H5 H2 + Si2H3 -⇀↽- Si2H5

SiH4 + Si -⇀↽- 2SiH2 Si2H2 + H -⇀↽- Si2H3

Si + H2 -⇀↽- SiH2 Si + Si3 -⇀↽- 2Si2

The student should not be dismayed by the complexity of this reac-
tion network. Indeed the principles for analyzing a CVD reactor with
this chemistry are exactly the same as the principles for analyzing the

3Another mnemonic.
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simpler nitric oxide and water gas shift chemistries presented previ-
ously. The only difference is that Reactions 2.14 are complex enough
that we use a computer to keep track of the algebra for us. In fact, Reac-
tions 2.14 are a simplified version of 120 reactions that were originally
postulated for this reaction network [3].

Chemical engineers should also bear in mind that Reactions 2.14
are quite simple compared to many mechanisms that have been pro-
posed for combustion problems in which it is not uncommon to have
several hundred reactions. Polymerizations and long-chain-producing
reactions consist of thousands of species and associated reactions. Ob-
viously the stoichiometry of these complex problems is intractable if
we do not develop a systematic, automated procedure. Developing and
understanding that procedure is the topic of the next several sections.

Example 2.4: Stoichiometric matrix for CVD chemistry

Determine the stoichiometric matrix corresponding to Reactions 2.14.

Solution

The first thing we notice is that there are 20 reactions or nr = 20. We
then look through all of the reactions and identify the different species
taking part. After writing this out we notice that there are 14 different
species, ns = 14. A possible assignment to the A vector is: H, H2, Si,
SiH, SiH2, SiH3, SiH4, Si2, Si2H2, Si2H3, Si2H4, Si2H5, Si2H6, Si3. With
an A chosen, it is a simple matter to look through Reactions 2.14 and
find the stoichiometric coefficients of each species in each reaction. Do
not forget the convention that species appearing as products in a given
reaction have positive coefficients and those appearing as reactants
have negative coefficients. Practice filling out a few rows of the νmatrix
and check it with the values given in Equation 2.15.

Notice that for this example ν is a 20 × 14 matrix, and it contains
many zero entries. A matrix with many zero entries is called sparse.
The large number of zeros simply reflects the physical fact that very
few molecules can take part in a particular reaction. All of the reactions
in the CVD chemistry, for example, are unimolecular or bimolecular.
More will be said about this issue in the discussion of mechanisms in
Chapter 5.
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ν =



0 1 0 0 1 0 −1 0 0 0 0 0 0 0
1 0 0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 −1 0 0 0 0 0 1 0
0 −1 0 0 1 0 1 0 0 0 −1 0 0 0
−1 1 0 0 0 1 −1 0 0 0 0 0 0 0

0 1 0 0 0 −1 −1 0 0 0 0 1 0 0
0 0 0 −1 1 1 −1 0 0 0 0 0 0 0
0 0 0 −1 0 0 −1 0 0 0 0 1 0 0
0 0 −1 0 2 0 −1 0 0 0 0 0 0 0
0 −1 −1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 −1 −1 0 0 0 0 1 0 0 0 0
0 0 −1 0 −1 0 0 0 1 0 0 0 0 0
0 0 0 0 −1 0 0 1 1 0 0 0 0 −1
0 −1 0 0 0 0 0 0 −1 0 1 0 0 0
0 −1 0 0 0 0 0 0 0 0 −1 0 1 0
0 −1 0 −1 0 1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 −1 1 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 −1 0 1 0 0
−1 0 0 0 0 0 0 0 −1 1 0 0 0 0

0 0 −1 0 0 0 0 2 0 0 0 0 0 −1



(2.15)

□

Example 2.5: Conservation of mass

Show that conservation of mass in a chemical reaction can be stated as

νM = 0

in which Mj is the molecular weight of species j.

Solution

In a chemical reaction, the number of molecules is not conserved in
general. For example in the nitric oxide reaction, 2NO + O2 -⇀↽- 2NO2,

three reactant molecules react to form two product molecules. The
mass, however, is conserved in chemical (i.e., not nuclear) reactions. It
is clear in the above example that the atoms (N and O) are conserved,
so the mass is conserved. Another way to state conservation of mass
involves molecular weights of the species. In the nitric oxide reaction,
the molecular weights of reactants and products are related by 2MNO+
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MO2 = 2MNO2 . Equivalently

−2MNO −MO2 + 2MNO2 =
[
−2 −1 2

] MNO

MO2

MNO2

 = 0

If we put the molecular weights of the species in a vector, M, conser-
vation of mass for this single reaction can be written as,

νM = 0

For the water gas shift reaction, using the ordering of the species, A1 =
H, A2 = H2, A3 = OH, A4 = H2O, A5 = CO, and A6 = CO2,

M =
[
MH MH2 MOH MH2O MCO MCO2

]T
in which the superscript T means the transpose of the matrix. The
transpose of the matrix means to exchange the rows for columns and
vice versa. For the first reaction, H2O+ CO -⇀↽- CO2 +H2, we know

MCO2 +MH2 −MH2O −MCO = 0

or

[
0 1 0 −1 −1 1

]


MH

MH2

MOH

MH2O

MCO

MCO2


= 0

which is the first row of ν in Equation 2.7 multiplied byM. The second
and third reactions simply fill out the second and third rows of ν so
that again, for multiple reactions

νM = 0

□

2.3 Independent Reactions

To motivate the discussion of independence of chemical reactions, let
us again consider the water gas shift reaction

H2O+ CO -⇀↽- CO2 + H2

H2O+ H -⇀↽- H2 +OH (2.16)

OH+ CO -⇀↽- CO2 + H
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The issue of independence centers on the question of whether or not
we can express any reaction in the network as a linear combination of
the other reactions. If we can, then the set of reactions is not inde-
pendent. It is not necessary to eliminate extra reactions and work with
the smallest set, but it is sometimes preferable. In any case, the con-
cept is important and is examined further. Before making any of these
statements precise, we explore the question of whether or not the three
reactions listed in Reactions 2.16 are independent. Can we express the
first reaction as a linear combination of the second and third reactions?
By linear combination we mean multiplying a reaction by a number and
adding it to the other reactions. It is clear from inspection that the first
reaction is the sum of the second and third reactions, so the set of three
reactions is not independent.

H2O + H -⇀↽- H2 + OH

+ OH + CO -⇀↽- CO2 + H

H2O + CO -⇀↽- CO2 + H2

If we deleted the first reaction from the network, would the remaining
two reactions be independent?

H2O+ H -⇀↽- H2 +OH (2.17)

OH+ CO -⇀↽- CO2 + H (2.18)

The answer is now yes, because no multiple of Reaction 2.17 can equal
Reaction 2.18. There is no way to produce CO or CO2 from only Re-
action 2.17. Likewise there is no way to produce H2 or H2O from only
Reaction 2.18.

This discussion is not meant to imply that there is something wrong
with the first reaction in Reactions 2.16. Indeed if we focus attention on
the second reaction, we can again ask the question whether or not it can
be written as a linear combination of the first and third reactions. The
answer is yes because the second reaction is the first reaction minus
the third reaction.

H2O + CO -⇀↽- CO2 + H2

− { OH + CO -⇀↽- CO2 + H }

H2O + H -⇀↽- H2 + OH



2.3 Independent Reactions 37

So the first and third reactions could be chosen as the independent set
of two reactions. Finally, the third reaction in Reaction 2.16 is equal
to the first reaction minus the second reaction, so the first and sec-
ond reactions could be chosen as an independent set. For this example
then, any two of the reactions comprise an independent set. The situ-
ation is not always this simple as we will see from the chemical vapor
deposition chemistry.

Before making the problem more complicated, we explore how to
automate the preceding analysis by exploiting the stoichiometric ma-
trix. If you are familiar with linear algebra, the issue of independence of
reactions is obviously related to the rank of the stoichiometric matrix.
Familiarity with these concepts, although helpful, is not required to fol-
low the subsequent development. We now consider the stoichiometric
matrix for the water gas shift reaction presented in Equation 2.7

ν =

 0 1 0 −1 −1 1
−1 1 1 −1 0 0

1 0 −1 0 −1 1

 (2.19)

We can make an important mathematical connection to the preceding
physical arguments. The question of whether or not the ith reaction
can be written as a linear combination of the other reactions is the
same as the question of whether or not the ith row of the ν matrix
can be written as a linear combination of the other rows. The linear
independence of the reactions in a reaction network is equivalent to the
linear independence of the rows in the corresponding stoichiometric
matrix.

The rank of a matrix is defined as the number of linearly indepen-
dent rows (or equivalently, columns) in the matrix. Therefore, the num-
ber of linearly independent reactions in a network, ni, is equal to the
rank of ν. There are efficient numerical algorithms available for finding
the rank of a matrix and a set of linearly independent rows. The focus
of our attention is not on the algorithm, but on how we can exploit
the results of the algorithm to analyze sets of chemical reactions. You
should consult Strang [7] or another linear algebra text for a lucid ex-
planation of the algorithm, Gaussian elimination with partial pivoting.

Example 2.6: More species than reactions

Show that mass conservation implies that any independent set of reac-
tions has more species than reactions.
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Solution

From Example 2.5, we know that mass conservation is equivalent to

νM = 0

Consider the columns of the ν matrix as column vectors. This matrix-
vector multiplication can be expressed as a linear combination of the
columns of ν with the elements of the M vector as the coefficients in
the linear combination

νM =


ν11 ν12 · · · ν1ns

...
...

. . .
...

νni1 νni2 · · · νnins



M1

M2
...

Mns



=


ν11

...
νni1

M1 +


ν12

...
νni2

M2 + · · · +


ν1ns

...
νnins

Mns

=


0
...
0

 (2.20)

The last equation implies the columns of ν are linearly dependent be-
cause the molecular weights are nonzero.4 Because the rows are lin-
early independent, we conclude there are more columns (species) than
rows (independent reactions), ns > ni and ν is a wide matrix (i.e., not
a square or tall matrix).

Notice that one must consider linearly independent reactions for
the statement in the example to be true. If we considered an arbitrary
network for example,

2NO+ O2 -⇀↽- 2NO2

4NO+ 2O2 -⇀↽- 4NO2

6NO+ 3O2 -⇀↽- 6NO2

8NO+ 4O2 -⇀↽- 8NO2

4One could solve for column j of ν by moving the remaining terms to the other side
of the equality and dividing by Mj , which is nonzero. That is possible as long as one
of the Mj multipliers in Equation 2.20 is nonzero. In our case, all of the multipliers are
nonzero.
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These reactions are obviously not independent because they are the
same reaction written four times. In this case

ν =


−2 −1 2
−4 −2 4
−6 −3 6
−8 −4 8


Since we have not used independent reactions, ν is tall and not wide.
Recall ν =

[
−2 −1 2

]
for the single independent reaction, which

is in agreement with the example. □

Maximal sets of linearly independent reactions. Up to this point,
we have started with a set of reactions and investigated constructing
subsets of these reactions that are linearly independent. Now consider
the reverse problem. We start with a set of species, and we would like
to know the largest number of linearly independent valid chemical re-
actions among these species. In other words, a given set of reactions
may be linearly independent, but we want to be sure we have not left
out some valid reactions. By valid chemical reactions we mean element
conserving, which is a sufficient condition implying the weaker condi-
tion of mass conserving.

The following describes a systematic approach to this problem. First,
list formation reactions for every species in the list from its elements.
We may use molecules of pure elements (O2) rather than atoms (O) to
save work as long as the atoms themselves do not appear in the species
list. This set is guaranteed by construction to be a maximal linearly in-
dependent set for an enlarged species list, which includes the original
species plus any new elements introduced in the formation reactions.

Then eliminate through linear combinations of reactions any new
elements that were introduced in the formation reactions and that do
not appear in the original species list. The remaining set is a maximal
linearly independent set of reactions for the original species list.

This procedure is perhaps best illustrated by example.

Example 2.7: Maximal set of reactions for methane oxidation

Consider the oxidation of methane in which the observed species are:

A =
[

CO2 H2O CH4 CO H2 O2

]T
We first write formation reactions for all species from the elements. It
is necessary to write these reactions in the order in which the species
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appear in the species list. We can use O2 and H2 because O and H are
not in the species list

C+ O2 -⇀↽- CO2 (2.21)

2H2 + O2 -⇀↽- 2H2O (2.22)

C+ 2H2 -⇀↽- CH4 (2.23)

2C+ O2 -⇀↽- 2CO (2.24)

Notice we have introduced the element carbon, which is not in the orig-
inal species list, to express the formation reactions. We can add C to
the list and the enlarged species list is

Ã =
[

CO2 H2O CH4 CO H2 O2 C
]T

The stoichiometry of the formation reactions are then summarized by

ν̃Ã = 0

in which

ν̃ =


1 0 0 0 0 −1 −1
0 2 0 0 −2 −1 0
0 0 1 0 −2 0 −1
0 0 0 2 0 −1 −2

 (2.25)

Notice we have zeros below the diagonal of the first four rows and
columns. We know by inspection that these reactions are linearly inde-
pendent, which is why we wrote them in the first place.5 So the rank
of ν̃ is four. See Exercise 2.9 for a proof that there are no other valid
linearly independent reactions among these species and elements.

We now wish to eliminate carbon from the species list. The approach
is to replace formation reactions involving C with independent linear
combinations of the four reactions that eliminate C from the set. For
example we could replace Reaction 2.21 with the sum of Reaction 2.21
and the negative of Reaction 2.23. Equivalently we replace row 1 in
Equation 2.25 with the sum of row 1 and negative of row 3. We always
add linear combinations of rows below the row on which we are making
the zero in order not to disturb the pattern of zeros below the diagonal
in the first columns of the matrix. We leave the second row unchanged

5Examine the locations of the zeros in the first four rows and columns of ν̃. Because
these portions of the first four rows are independent, so are the entire rows, and,
therefore, the reactions.
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because the ν2,7 is zero already; i.e., C does not take place in the second
reaction. Proceeding down the rows we replace row 3 by twice row 3
minus row 4. When we reach the last row, either a zero already exists
in the last column or we remove this last row because we have no rows
below the last with which to zero that element. That reduces ν̃ to

ν̃′ =

 1 0 −1 0 2 −1 0
0 2 0 0 −2 −1 0
0 0 2 −2 −4 1 0


Inspection of the zeros in the first three columns of ν̃′ tells us that the
rows are independent, and, therefore, the matrix has full rank. If we
now multiply out these equations, the last column of zeros removes
the C from the species list and we have

νA = 0

in which

ν =

 1 0 −1 0 2 −1
0 2 0 0 −2 −1
0 0 2 −2 −4 1


Therefore the maximal linearly independent set for the original species
contains three reactions. The stoichiometric matrix above corresponds
to the following choice of reactions

CH4 + O2 -⇀↽- CO2 + 2H2

2H2 + O2 -⇀↽- 2H2O

2CO+ 4H2 -⇀↽- 2CH4 + O2

□

If we were going to remove other elements besides C, we would
repeat this procedure starting with ν. See also Exercise 2.6.

2.4 Reaction Rates and Production Rates

In order to describe the change in composition in a reactor, one has to
know the reaction rates. As an example, we consider the third reaction
in the CVD chemistry, Reactions 2.14

SiH4 + SiH2 -⇀↽- Si2H6 (2.26)
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Figure 2.1: Defining the reaction rate, r , for the reaction
SiH2 + SiH4 -⇀↽- Si2H6.

The reaction rate, r , is defined as the number of times this reaction
event takes place per time per volume. One can imagine turning SiH4,
SiH2 and Si2H6 molecules loose in a box of some fixed volume V as
depicted in Figure 2.1. We define the reaction extent, ε, to keep track
of the number of times this reaction event occurs. Imagine that we
could somehow count up the net number of times an SiH4 molecule
hit an SiH2 molecule and turned into an Si2H6 molecule during a short
period of time. The change in the reaction extent, ∆ε, is the net number
of reaction events that occur in the time interval ∆t. The reaction rate
is then

r = ∆ε
∆tV

(2.27)

If the forward event (an SiH4 molecule and an SiH2 molecule turn-
ing into an Si2H6 molecule) occurs more often than the reverse event
(an Si2H6 molecule decomposing into an SiH4 molecule and an SiH2

molecule), then the change in ε is positive and the reaction rate is pos-
itive. If the reverse event occurs more often than the forward event,
then the change in ε and reaction rate are negative. If the system is at
equilibrium, then the change in ε is zero and the forward and reverse
events occur in equal numbers. The extent ε is a number of molec-
ular change events and therefore the units of r in Equation 2.27 are
#/(time·volume). If one divides by Avogadro’s number, the units of ex-
tent are moles and the units of reaction rate are moles/(time·volume),
which are the usual units for extent and reaction rate in this text. Fi-
nally, we often deal with physical situations in which we assume the
material behaves as a continuum and we can ignore the discrete na-
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ture of the molecules. This means we can take the volume V large
enough to average the random fluctuations of the molecules, but small
enough that there is negligible spatial variation in the average concen-
trations of the components or the reaction rate within V . Under this
continuum assumption, we can speak of the reaction rate as defined at
a point in space within some larger reacting system or physical reactor
equipment.

Notice in the definition of reaction rate, we are taking the reac-
tion stoichiometry literally. We are postulating that these collision and
transformation events are taking place at the molecular level. These
literal reactions are known as elementary reactions. We delay a more
complete discussion of elementary reactions and reaction mechanisms
until Chapter 5. We will also see that for complex reacting systems,
it may be difficult to know whether or not a reaction is an elementary
reaction. But that is a separate issue, which we take up later, and that
issue does not prevent us from defining the reaction rate.

It is difficult to measure reaction rates directly, because we do not
directly sense molecular transformation events. We can measure con-
centrations, however. It is important to connect the reaction rate to
the rate of change of the concentrations of the various species in the
reactor, which are the quantities we usually care about in a commer-
cial reactor. We define production rate, Rj , as the rate at which the
jth species is produced (moles/(time·volume)) due to the chemical re-
actions taking place. It is clear looking at the stoichiometry in Reac-
tion 2.26 that each time the forward reaction event occurs, an Si2H6

molecule is produced. Each time the reverse reaction occurs, an Si2H6

molecule is consumed. The production rate of Si2H6, RSi2H6 , is therefore
directly related to the reaction rate,

RSi2H6 = r

Notice that if r is positive RSi2H6 is positive as we expect because Si2H6

is being produced. Similar arguments lead to relating the other pro-
duction rates to the reaction rate,

RSiH4 = − r
RSiH2 = − r

Notice that we have three production rates, one for each species, but
only one reaction rate, because there is only a single reaction. If we
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now introduce the production rate vector, R,

R =

 RSiH4

RSiH2

RSi2H6


we can summarize the connection between the three production rates
and the single reaction rate by

R =

 −1
−1

1

 r (2.28)

Notice that the column vector in Equation 2.28 is just the transpose
of the row vector that comprises ν = [−1 − 1 1], which follows from
Reaction 2.26

Consider what happens to the relationship between the production
and reaction rates if there is more than one reaction. Recall the water
gas shift reaction,

H2O+ CO -⇀↽- CO2 + H2

H2O+ H -⇀↽- H2 +OH

OH+ CO -⇀↽- CO2 + H

Three reaction rates are required to track all three reactions. Let ri
denote the reaction rate for the ith reaction. What production rate of
atomic hydrogen, H, results from these three reactions? We notice that
H does not take part in the first reaction, is consumed in the second
reaction, and is produced in the third reaction. We therefore write

RH = (0) r1 + (−1) r2 + (1) r3 = −r2 + r3

Consider the second species, H2. It is produced in the first and second
reactions and does not take part in the third reaction. Its production
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rate can therefore be expressed as

RH2 = (1) r1 + (1) r2 + (0) r3 = r1 + r2

You should examine the remaining four species and produce the fol-
lowing matrix equation,



RH

RH2

ROH

RH2O

RCO

RCO2


=



0 −1 1
1 1 0
0 1 −1
−1 −1 0
−1 0 −1

1 0 1


 r1

r2

r3

 (2.29)

The fundamental relationship between the reaction rates and the pro-
duction rates now emerges. Compare the matrices in Equations 2.7 and
2.29. Notice that the first row of the matrix in Equation 2.7 is the same
as the first column of the matrix in Equation 2.29. Moreover, each row
of the matrix in Equation 2.7 is the same as the corresponding column
of the matrix in Equation 2.29. In other words, the two matrices are
transposes of each other. We can therefore summarize Equation 2.29
as

R = νT r (2.30)

in which νT denotes the transpose of the stoichiometric matrix. Equa-
tion 2.30 implies that one can always compute the production rates
from the reaction rates. That computation is a simple matter of matrix
multiplication. The reverse problem, deducing the reaction rates from
the production rates, is not so simple as it involves solving a set of
equations. We will see in the next section under what conditions that
solution can be found.

Example 2.8: Production rate for SiH2

What is the production rate of SiH2 in terms of the reaction rates for
the CVD example?
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Solution

SiH4 -⇀↽- SiH2 + H2 (2.31) SiH2 + SiH -⇀↽- Si2H3 (2.41)

SiH4 -⇀↽- SiH3 + H (2.32) SiH2 + Si -⇀↽- Si2H2 (2.42)

SiH4 + SiH2 -⇀↽- Si2H6 (2.33) SiH2 + Si3 -⇀↽- Si2H2 + Si2 (2.43)

Si2H4 + H2 -⇀↽- SiH4 + SiH2 (2.34) H2 + Si2H2 -⇀↽- Si2H4 (2.44)

SiH4 + H -⇀↽- SiH3 + H2 (2.35) H2 + Si2H4 -⇀↽- Si2H6 (2.45)

SiH4 + SiH3 -⇀↽- Si2H5 + H2 (2.36) H2 + SiH -⇀↽- SiH3 (2.46)

SiH4 + SiH -⇀↽- SiH3 + SiH2 (2.37) H2 + Si2 -⇀↽- Si2H2 (2.47)

SiH4 + SiH -⇀↽- Si2H5 (2.38) H2 + Si2H3 -⇀↽- Si2H5 (2.48)

SiH4 + Si -⇀↽- 2SiH2 (2.39) Si2H2 + H -⇀↽- Si2H3 (2.49)

Si + H2 -⇀↽- SiH2 (2.40) Si + Si3 -⇀↽- 2Si2 (2.50)

Looking at Reactions 2.31–2.50, we note that SiH2 takes part in Reac-
tions 2.31, 2.33, 2.34, 2.37, and 2.39–2.43. Extracting the stoichiometric
numbers of SiH2 for each of these reactions gives6

RSiH2 = r1 − r3 + r4 + r7 + 2r9 + r10 − r11 − r12 − r13

or

RSiH2 =
[

1 0 −1 1 0 0 1 0 2 1 −1 −1 −1 0 0 0 0 0 0 0
]
r

SiH2 was chosen as the fifth species in Exercise 2.4 so the row vector
above is indeed the transpose of the fifth column of the ν matrix in
Equation 2.15. You may wish to choose another component such as
SiH4 and check another column of the ν matrix. □

2.5 Computational Aspects of Stoichiometry

As we have seen in this chapter, problems of realistic and complex
reaction stoichiometry involve matrices and linear algebra. After the
fundamental concepts are in place, application of the fundamentals re-
quires computational tools. Moreover, if the computing environment
is organized properly, the experience of solving nontrivial problems
reinforces the understanding of the fundamental concepts and further
prepares one to apply the fundamentals in realistic and complex indus-
trial situations. In Appendix A, we briefly summarize Octave and MATLAB

6We are so sure you will not forget that products have positive stoichiometric num-
bers and reactants have negative ones that we will not repeat it again.



2.5 Computational Aspects of Stoichiometry 47

as high-level programming languages for numerical solution of reactor
analysis and design problems. Octave is freely available for a variety
of hardware platforms and can be downloaded from www.octave.org.
MATLAB is commercially available from The MathWorks, Inc., and is be-
coming a commonly available tool of industrial engineering practice.

2.5.1 Computing Production Rates from Reaction Rates

As discussed previously, computing R from r is a simple matter of ma-
trix multiplication. Consider again the water gas shift reaction chem-
istry,

 0 1 0 −1 −1 1
−1 1 1 −1 0 0

1 0 −1 0 −1 1




H
H2

OH
H2O
CO
CO2


=

 0
0
0

 (2.51)

In Chapter 5 we discuss means for predicting reaction rates given
species concentrations, but for now just assume we know the three
reaction rates are, in some chosen units of moles/(time·volume), r1

r2

r3

 =
 1

2
3


The production rates of the six species due to these reactions are then
computed as



RH

RH2

ROH

RH2O

RCO

RCO2


=

 0 1 0 −1 −1 1
−1 1 1 −1 0 0

1 0 −1 0 −1 1


T  1

2
3

 =


1
3
−1
−3
−4

4


The effect of the three reactions is to produce H, H2 and CO2, and
to consume OH, H2O and CO at the given rates. Please perform this
calculation for yourself.
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2.5.2 Computing Reaction Rates from Production Rates

Another common task arising in the analysis of reactors and reaction
mechanisms is to measure production rates by monitoring changes in
species concentrations, to help infer the corresponding reaction rates.
To make the concept clear, consider the simple isomerization reactions
between species A, B and C,

A -⇀↽- B (2.52)

B -⇀↽- C (2.53)

C -⇀↽- A (2.54)

The stoichiometric matrix for these reactions is

ν =

 −1 1 0
0 −1 1
1 0 −1


and the production rates and reaction rates are related by RA

RB
RC

 =
 −1 0 1

1 −1 0
0 1 −1


 r1

r2

r3


It might appear at first glance that we can compute r given R because
we have three equations and three unknowns, but because the reac-
tions are not linearly independent, such is not the case. It is clear from
inspection of Reactions 2.52–2.54 that the third reaction is the sum of
the first two. Computing the rank of ν confirms that only two reactions
are independent.

Before we continue with the full set of three reactions, we explore
what happens if we use an independent set. If we omit the third reac-
tion, for example,

A -⇀↽- B

B -⇀↽- C

the production rates and new reaction rates are related by RA
RB
RC

 =
 −1 0

1 −1
0 1

[ r̂1

r̂2

]
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By inspection, the first equation gives

r̂1 = −RA

and the third equation gives

r̂2 = RC

The second equation tells us RB = r̂1 − r̂2 = −(RA + RC). In other
words, using the linearly independent reactions, we can compute both
reaction rates and we find a restriction on the possible production rates.
We explore subsequently what happens when this restriction is violated
by the production-rate measurements.

If we now return to the original set of three isomerization reactions,
we can deduce that r3 is not determined by the production rates, and
that from the first equation

r1 = −RA + r3 (2.55)

and from the third equation

r2 = RC + r3 (2.56)

and r3 is arbitrary. The second equation places the restriction RB =
r1− r2, which upon substitution of Equations 2.55 and 2.56 gives RB =
−(RA + RC) as before. Because r3 is arbitrary, we cannot deduce the
reaction rates from production rates, which is characteristic of using
sets of reactions that are not linearly independent.

So we conclude that measuring production rates is not enough to
tell us reaction rates. We require more information. As we discuss in
Chapter 5, the extra information usually is provided by postulating a
reaction mechanism and applying the laws of mass action to the ele-
mentary reactions. In that case we seek to determine the rate constants
from the production rate measurements, not the reaction rates them-
selves. We take up that important problem in Chapter 9.

Finally, we emphasize that using linearly dependent sets of reac-
tions presents no problem at all if one is interested only in computing
the production rates from given reaction rates, which is the usual case
when working with reaction mechanisms.

2.5.3 Measurement Errors and Least-Squares Estimation

As a final topic in this chapter, we explore what happens when the extra
conditions on the production rates are violated by the data. Imagine
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the following two linearly independent reactions of the water gas shift
are taking place

H2O+ CO -⇀↽- CO2 + H2

H2O+ H -⇀↽- H2 +OH

so the production rates are given by

RH

RH2

ROH

RH2O

RCO

RCO2


=



0 −1
1 1
0 1
−1 −1
−1 0

1 0


[
r1

r2

]
(2.57)

We can compute the production rates when the two reaction rates are[
r1

r2

]
=
[

1
2

]
and we obtain

R =
[
−2 3 2 −3 −1 1

]T
(2.58)

Now if R is determined by measuring species concentrations, unmod-
eled effects undoubtedly cause discrepancy between predicted and mea-
sured values of R. For example, let’s assume that the production rate
of the first species, H, is in error by a small amount so the measured

R is R =
[
−2.1 3 2 −3 −1 1

]T
. The effect of this error is to

make the equations inconsistent, so there no longer is an exact solu-
tion for the reaction rates, which is not too surprising because we have
six equations and only two unknowns in Equation 2.57. A system with
more equations than unknowns is called over-determined. Normally
we would not expect to find a solution for arbitrary R, only those R
that are generated by multiplying an r by νT . When the equations are
inconsistent, one is usually interested in knowing the values of the two
reaction rates that come closest to satisfying the six equations simulta-
neously. If we measure how close the equations are to zero by squaring
the error in each equation and summing over all equations, then we are
using the classic least-squares approach.

Computing least-squares solutions to over-determined equations is
a useful computation in linear algebra. If one is given R and trying to
solve for r from

R = νT r (2.59)
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then the least-squares solution is given by

r = (ν νT )−1νR

in which the superscript −1 indicates a matrix inverse. If the reactions
are linearly independent, then the matrix product ν νT has an inverse
and the least-squares solution is unique. If the reactions are not linearly
independent this inverse does not exist and the least-squares solution
is not unique as before.

If we compute the least-squares solution to the inconsistent data
given above, we find r = [ 0.983 2.03 ]T instead of the correct value
r = [ 1 2 ]T . Notice a small error in the H production rate has trans-
lated into small errors in both inferred reaction rates.

As a final example, let’s consider the case in which we have repeated
measurements of the production rates, all of which are subject to small
random errors. If we add small amounts of random noise to the data
given in Equation 2.58, we produce the following six measurements.

Rmeas =



−2.05 −2.06 −1.93 −1.97 −2.04 −1.92
2.94 3.02 3.04 2.93 3.06 3.04
2.01 1.94 2.01 1.92 2.01 2.04
−2.98 −2.98 −2.98 −2.99 −2.96 −2.96
−1.03 −1.03 −0.98 −1.07 −0.95 −1.08

0.97 1.05 1.06 1.09 1.00 1.07


If we take each column of Rmeas, that is each production-rate measure-
ment, and compute the least-squares estimate of r for that measure-
ment, we obtain six estimates of the reaction rates, one for each mea-
sured production rate. We can perform these operations in one matrix
equation via

rest = (ν νT )−1νRmeas

and the result is

rest =
[

0.97 1.03 1.03 1.06 0.98 1.05
2.01 1.99 1.98 1.92 2.03 1.96

]

Figure 2.2 shows the estimated reaction rates for the six production-
rate measurements. Notice that we obtain reasonable estimates of the
true reaction rates, r = [ 1 2 ]T . Next consider what happens when
we have many measurements available. Figure 2.3 displays the esti-
mated reaction rates given 500 production-rate measurements. Notice
that the estimated rates are again scattered about the true value, the
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Figure 2.2: Estimated reaction rates from six production-rate mea-
surements subject to measurement noise.
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Figure 2.3: Estimated reaction rates from 500 production-rate mea-
surements subject to measurement noise.
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mean of these values is close to the true value, and the shape of the fre-
quency distribution for the reaction rate estimates begins to emerge.
You might want to generate the same plot with 5000 random mea-
surements and see how much more detail is apparent in the probabil-
ity distribution of estimates. Further discussion of parameter estima-
tion from data is delayed until Chapter 9, but engineers benefit from
thinking about extracting information from data and models at an early
stage.

2.6 Summary

In this chapter we have introduced the compact notation for keeping
track of the stoichiometry of chemical reactions,

ns∑
j=1

νijAj = 0, i = 1,2, . . . , nr

in which Aj represents chemical species j, j = 1, . . . , ns and ns is the
number of species in the reaction network. The stoichiometric coeffi-
cients are contained in the stoichiometric matrix ν, in which νij is the
stoichiometric coefficient for species j in reaction i, i = 1, . . . , nr and
nr is the number of reactions in the network. We can summarize the
reaction stoichiometry with one vector equation

νA = 0

A set of reactions is linearly independent if no reaction in the set
can be written as a linear combination of the other reactions in the set.
Linear independence of reactions is equivalent to linear independence
of the rows of ν. The rank of a matrix is the number of linearly inde-
pendent rows (equivalently columns) of the matrix, so the rank of ν is
the number of linearly independent reactions in the network.

The reaction rate is a fundamental concept that allows quantitative
prediction of rates of conversions of reactants to products. We define
the rate of reaction i, ri, to be the net number of times a reaction event
occurs per time per volume. Given the rates of all reactions, we can
calculate directly the production rates of all species,

Rj =
nr∑
i=1

νijri, j = 1, . . . ns
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or as an equivalent vector equation,

R = νT r (2.60)

Given the rates of reactions, it is a simple matter to compute the species
production rates with Equation 2.60. One cannot solve uniquely the re-
verse problem, in general. Given observed production rates, computing
the corresponding reaction rates requires additional information, such
as rate expressions for the elementary reactions in a reaction mecha-
nism. If the set of chemical reactions is linearly independent, then one
can uniquely solve the reverse problem. If the observed production
rates contain experimental errors, there may not exist an exact solu-
tion of reaction rates, r, that satisfy Equation 2.60. In this situation,
one is normally interested in finding the reaction rates that most closely
satisfy Equation 2.60. The closest solution in a least-squares sense is
easily computed with standard linear algebra software.

Notation

ajl formula number for element l in species j
Aj jth species in the reaction network

El lth element comprising the species

i reaction index, i = 1,2, . . . , nr
j species index, j = 1,2, . . . , ns
Mj molecular weight of the jth species

ni number of independent reactions in reaction network

nr total number of reactions in reaction network

ns total number of species in reaction network

ri reaction rate for ith reaction

Rj production rate for jth species

εi extent of reaction i
νij stoichiometric number for the jth species in the ith reaction
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2.7 Exercises

Exercise 2.1: Finding independent sets of reactions

Consider the following set of chemical reactions,

2N2O5 -⇀↽- 2N2O4 + O2 (2.61)

N2O5 -⇀↽- NO2 +NO3 (2.62)

NO2 + NO3 -⇀↽- N2O5 (2.63)

NO2 + NO3 -⇀↽- NO2 + O2 +NO (2.64)

NO+ N2O5 -⇀↽- 3NO2 (2.65)

NO2 + NO2 -⇀↽- N2O4 (2.66)

(a) Determine the stoichiometric matrix, ν, and the species list, A, for this reaction
system so the reaction network is summarized by

νA = 0

(b) Use Octave, MATLAB, or your favorite software package to determine the rank of
the stoichiometric matrix. How many of the reactions are linearly independent?

(c) Now that you have found the number of independent reactions, ni, which ni of
the original set of 6 reactions can be chosen as an independent set? Try guess-
ing some set of ni reactions and determine the rank of the new stoichiometric
matrix. Stop when you have determined successfully one or more sets of ni
independent reactions.

Hint: you want to examine the rank of sub-matrices obtained by deleting rows
(i.e., reactions) from the original stoichiometric matrix. In Octave, if you assign
the original stoichiometric matrix to a name, stoi, then you can obtain the rank
of the stoichiometric matrix associated with deleting the fifth reaction, for ex-
ample, by

stoi2 = stoi([1:4,6],:)
rank(stoi2)

Do you see how the indices in forming stoi2 work out? Notice we do not have
to enter any more matrices after we build the original stoichiometric matrix to
test the ranks of various reaction networks.

(d) What do you think of a colleague’s answer that contains Reactions 2.62 and 2.63
in the final set. Can this be correct? Why or why not?

Exercise 2.2: The stoichiometric matrix

(a) What is the stoichiometric matrix for the following reaction network [2]? By
inspection, how many of the reactions are linearly independent? How would
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you check your answer if you had access to a computer?

H2 + I2 -⇀↽- 2HI

I2 -⇀↽- 2I

I+H2 -⇀↽- HI+H

H+ I2 -⇀↽- HI+ I

(b) Given a stoichiometric matrix for a reaction network with ns species and nr
reactions

ns∑
j=1

νijAj = 0, i = 1,2, . . . , nr

What is the production rate of the jth species, Rj , in terms of the reaction rates
for the reactions, ri?

Exercise 2.3: Finding reaction rates from production rates

Consider again the water gas shift reaction presented in Equation 2.51. Assume the
production rates have been measured and are, in some units of moles/(time·volume),

RH
RH2

ROH
RH2O
RCO
RCO2

 =


−1
3
1
−3
−2

2


(a) If you choose the first two reactions as a linearly independent set, what are the

two reaction rates that are consistent with these data. Is this answer unique?

(b) Repeat the calculation if you choose the second and third reactions as the linearly
independent set of reactions. Is this answer unique?

(c) How can these reaction rates differ, when the production rates are the same? Can
we determine which set of reactions is really causing this measured production
rate?

Exercise 2.4: Independent reactions for bromine hydrogenation

Consider the following set of chemical reactions [4, 5],

H2 + Br2 -⇀↽- 2HBr

Br2 -⇀↽- 2Br

Br+ H2 -⇀↽- HBr+ H

H+ Br2 -⇀↽- HBr+ Br

H+HBr -⇀↽- H2 + Br

2Br -⇀↽- Br2

(a) Determine the stoichiometric matrix, ν, and the species list, A, for this reaction
system so the reaction network is summarized by

νA = 0
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(b) Use Octave or MATLAB to determine the rank of the matrix using the rank func-
tion. How many reactions are linearly independent?

(c) Now that you have found the number of independent reactions,ni, which ni of
the original set of six reactions can be chosen as an independent set? Try guess-
ing some set of ni reactions and determine the rank of the new stoichiometric
matrix. Stop when you have determined successfully one or more sets of ni
independent reactions.

Exercise 2.5: Independent reactions for methane oxidation

Consider a mixture of CO, H2, and CH4 that is fed into a furnace with O2 and produces
CO, CO2, and H2O. The following chemical reactions have been suggested to account
for the products that form.

CO+ 1
2

O2 -⇀↽- CO2

H2 +
1
2

O2 -⇀↽- H2O

CH4 + 2O2 -⇀↽- CO2 + 2H2O

CH4 +
3
2

O2 -⇀↽- CO+ 2H2O

(a) Are these reactions linearly independent? What is the number of linearly inde-
pendent reactions, ni?

(b) List all sets of ni linearly independent reactions. Which reaction is included in
all of the linearly independent sets of reactions? Why?

Exercise 2.6: Methane oxidation and maximal independent sets

(a) List a maximal set of linearly independent reactions if O2 as well as C are not
observed as species in the methane oxidation reactions in Example 2.7.

(b) Repeat if H2, O2 and C are not observed as species.

Exercise 2.7: Production rates from reaction rates

(a) Consider the following set of chemical reactions,

2N2O5 -⇀↽- 2N2O4 + O2

N2O5 -⇀↽- NO2 +NO3

NO2 + NO3 -⇀↽- N2O5

NO2 + NO3 -⇀↽- NO2 + O2 +NO

NO+ N2O5 -⇀↽- 3NO2

NO2 + NO2 -⇀↽- N2O4

Determine the rates of production of each component in terms of the rates of
each reaction.
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(b) Butene isomerization reactions are shown below.

1− butene
k1-⇀↽-
k−1

cis− 2− butene

1− butene
k2-⇀↽-
k−2

trans− 2− butene

1− butene
k3-⇀↽-
k−3

isobutene

cis− 2− butene
k4-⇀↽-
k−4

trans− 2− butene

cis− 2− butene
k5-⇀↽-
k−5

isobutene

Determine the rates of production of each component in terms of the rates of
each reaction.

Exercise 2.8: Restrictions from element balancing

Let the s species,Aj , j = 1, . . . , s be comprised of the e elements, El, l = 1, . . . , e. Writing
the chemical formulas for the species in the usual way

A1 = E1
a11
E2
a12
· · ·Eea1e

A2 = E1
a21
E2
a22
· · ·Eea2e

...

As = E1
as1E

2
as2 · · ·E

e
ase

in which ajl is the formula number for species j corresponding to element l. Show
that any chemical reaction,

∑
j νjAj = 0 satisfies the following e equations to balance

the elements

[
ν1 ν2 · · · νs

]

a11 a12 · · · a1e
a21 a22 · · · a2e

...
...

. . .
...

as1 as2 · · · ase

 =
[

0 0 · · · 0
]

If we define the s × e matrix A to hold the formula numbers, we can express the
element balance by

νA = 0 (2.67)

DetermineA, EandA for the species hydrogen (molecular), oxygen (molecular) and
water.

Exercise 2.9: Null space and fundamental theorem of linear algebra

Equation 2.67 in Exercise 2.8 is begging to be analyzed by the fundamental theorem of
linear algebra [7], so we explore that concept here. Consider an arbitrarym×nmatrix,
B . The null space of matrix B , written N (B ), is defined to be the set of all vectors
x such that B x = 0. The dimension of N (B ) is the number of linearly independent
vectorsx satisfyingB x = 0. One of the remarkable results of the fundamental theorem
of linear algebra is the relation

rank(B )+ dim(N (B )) = n
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The numerical support for computing null spaces is excellent. For example, the Octave
command null(B) returns a matrix with columns consisting of linearly independent
vectors in the null space of matrix B .

(a) Armed with this result, consider Equation 2.67 and establish that the number of
linearly independent reactions that satisfy the element balances is

i = s − rank(A )

(b) Determine A, E and A for the methane oxidation in Example 2.7.

(c) Determine rank(A ) and i for this example. Do you obtain the same size maximal
set as in Example 2.7?

Exercise 2.10: Limits on numbers of independent reactions

(a) Species A, B and C are observed in a reacting system. What is the largest possible
number of linearly independent reactions among these species, nmax?

(b) What is the smallest possible number, nmin?

(c) List a chemical example that has a maximal set with n reactions for each n in
nmin ≤ n ≤ nmax.

Exercise 2.11: Generating possible independent reaction sets

(a) If one has s species comprised of e elements, what are the largest and small-
est numbers of linearly independent reactions that can be written among the s
species? Give an example with more than one species in which you cannot write
any reactions.

(b) If s > e, the usual case, how many reactions can be written? Prove you can write
at least one valid reaction, or find a counterexample to this statement.

Exercise 2.12: An alchemist’s view of stoichiometry

In the early 1700s, the alchemists were unaware of the defining role that electrons
played in bond formation and transformation of chemical species. The structure of
the nucleus, elucidation of bond formation with electron sharing and the construction
of the periodic table were major triumphs of the chemical and physical sciences in the
nineteenth and early twentieth centuries [6, pp.113–166]. Before these developments,
chemical transformation of the elements themselves, such as lead to gold, was on the
table as an early goal of research.

Imagine a more flexible chemical world in which we demand conservation of only
mass for a valid chemical reaction; any mass-conserving rearrangements of the protons
and neutrons in the nuclei are also considered valid chemical reactions.

Assume we observe H2, O2 and H2O as chemical species.

(a) Write a few mass-conserving reactions among these species that are not valid
chemical reactions.

(b) How many linearly independent mass-conserving reactions can be constructed?
You may want to use the result of Example 2.5 and the idea of the null space
introduced in Exercise 2.9 to be sure you have accounted for all linearly inde-
pendent reactions.
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(c) If you enforce the stronger condition of element balancing, then, by inspection,
how many linearly independent valid chemical reactions are possible?

Exercise 2.13: Generalizing independent reactions

Consider s species comprised of e elements, in which c of the species are chemical
compounds, i.e., not elements. Assume any elements appearing as species are in a
single form, e.g., O2 only, and not O2 and O3. Let i be the number of reactions in the
maximal independent set. Show

max(0, s − e) ≤ i ≤min(s − 1, c)

Hint: use the result i = s− rank(A ) from Exercise 2.9 and determine upper and lower
bounds on the rank of A based on s, e and c.

Exercise 2.14: Eliminating reaction intermediates

Consider the following reaction mechanism with five reactions and eight species, A–H.

A -→ B+ C (2.68)

C -→ B+D (2.69)

A+ B -→ E+ F (2.70)

F -→ G + B (2.71)

B+ F -→ H (2.72)

and assume that species B, C, and F are highly reactive intermediates.

(a) What is the maximum number of linearly independent linear combinations of
these five reactions that do not contain species B, C, and F as reactants or prod-
ucts. Justify your answer.

(b) List one set of these independent reactions that contains only small, integer-
valued stoichiometric coefficients.

Exercise 2.15: Reaction rates from production rates

Consider the two reactions

A -⇀↽- B

2B -⇀↽- C

The following production rates were observed in the laboratory for this mechanism:

RA = −4.0 mol/(time vol) RB = 2.2 mol/(time vol) RC = 1.0 mol/(time vol)

(a) From these measurements, provide a least-squares estimate of the two reaction
rates. Recall the least-squares estimate formula is

rest = (ν νT )−1νRmeas

(b) Write out the production rates for all the species in terms of the two reaction
rates.

(c) Calculate the three production rates using the estimated reaction rates. Compare
this result to the measured production rates. Comment on why the two sets of
production rates are or are not different from each other.
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We should point out that these limits on numbers of reactions in
Exercises 2.8–2.13 presume that conserving elements in the chemical
reactions is the only restriction. If other quantities are conserved, the
method of analysis remains valid, but the answers change. We will see
one such conserved quantity, the surface site, when we study reactions
with catalytic surfaces in Chapter 5.
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3
Review of Chemical Equilibrium

3.1 Introduction

T , P,nj

Figure 3.1: Thermodynamic
system.

This chapter is intended to remind the
reader of some important facts concern-
ing the equilibrium state of a system
that can undergo chemical reaction. It
is by design a review, and assumes the
reader is familiar with the fundamental
concepts of classical thermodynamics as
discussed in the many introductory text-
books on the subject [15, 6, 10, 17, 5, 4].

Although essentially all reactors in
operation are not at chemical equilib-
rium, it is still important to understand
what equilibrium is and how to draw
quantitative conclusions from considering the equilibrium state of a
system. Chemical reactors are not at equilibrium because the net rates
of chemical reactions are seldom allowed to become zero. The calcu-
lation of the equilibrium state, however, can allow one to draw conclu-
sions about the limits of reactor performance that would be achievable
if this state were reached. In addition, the consideration of the ther-
modynamic restrictions on reactor performance may motivate one to
make operations or design changes that allow these restrictions to be
changed and reactor performance improved. For these reasons we be-
gin with a review of chemical equilibrium.

Consider the single-phase, multicomponent system depicted in Fig-
ure 3.1. It is convenient for our purposes to describe the state of this
system by the variables temperature, T , pressure, P , and the number
of moles of each component, nj . Specifying the temperature, pressure,
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and number of moles of each component then completely specifies the
equilibrium state of the system. The Gibbs energy of the system, G, is
the energy function of these state variables that conveniently describes
the condition of equilibrium. In particular the equilibrium state has
a minimum Gibbs energy with respect to any changes in the number
of moles at fixed T and P . The difference in Gibbs energy between
two states at slightly different temperatures, pressures, and number
of moles of each component is developed in standard textbooks to be

dG = −SdT + VdP +
∑
j
µjdnj (3.1)

in which S is the system entropy, V is the system volume and µj is the
chemical potential of component j.

3.2 Condition for Reaction Equilibrium

Consider a closed system in which the nj can change only by the single
chemical reaction, ∑

j
νjAj = 0

Given the definition of reaction extent in Chapter 2, for a small change
in the extent of this single reaction, the numbers of moles of each com-
ponent change by

dnj = νjdε

Substituting this relation into Equation 3.1 gives an expression for the
change in the Gibbs energy due to a small change in the reaction extent,

dG = −SdT + VdP +
∑
j

(
νjµj

)
dε (3.2)

For the closed system, G is only a function of T , P and ε. The expansion
of a total differential in terms of the partial derivatives allows one to
deduce from Equation 3.2

S = −
(
∂G
∂T

)
P,ε

(3.3)

V =
(
∂G
∂P

)
T ,ε

(3.4)

∑
j
νjµj =

(
∂G
∂ε

)
T ,P

(3.5)
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G

∂G
∂ε
=
∑
j
νjµj = 0

ε

Figure 3.2: Gibbs energy versus reaction extent at constant T and P .

Consider a plot of G at some fixed T and P versus the reaction extent,
sketched in Figure 3.2. A necessary condition for the Gibbs energy to
be a minimum is that the derivative be zero, or in light of Equation 3.5,

∑
j
νjµj = 0 (3.6)

The direct use of Equation 3.6 to compute equilibrium composition
is inconvenient because chemical potential is often expressed in terms
of other quantities such as activity or fugacity. One can express µj in
terms of the activity of component j,

µj = G◦j + RT lnaj (3.7)

in which aj is the activity of component j in the mixture referenced
to some standard state and G◦j is the Gibbs energy of component j in
the same standard state. The activity and fugacity of component j are
related by

aj =
fj
f ◦j

in which fj is the fugacity of component j and f ◦j is the fugacity of
component j in the standard state.

Standard state. It is common convention in reaction equilibrium cal-
culations to use the following standard state for gaseous, liquid, and
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solid mixtures: pure component j at 1.0 atm pressure and the system
temperature. Sometimes the gaseous mixture standard state is defined
to be the pressure corresponding to unit fugacity, but this pressure is
close to 1.0 atm for most gases. It is obvious from the definition of
the standard state that G◦j and f ◦j are not functions of the system pres-
sure or composition, because the standard state is 1.0 atm pressure
and pure component j. G◦j and f ◦j are, however, strong functions of
the system temperature.

Multiplying both sides of Equation 3.7 by νj and summing yields∑
j
νjµj =

∑
j
νjG◦j + RT

∑
j
νj lnaj (3.8)

The term
∑
j νjG◦j is known as the standard Gibbs energy change for

the reaction, ∆G◦. Using the equilibrium condition, Equation 3.6, and
simple logarithm addition and exponentiation identities yields

∆G◦ + RT ln
∏
j
aνjj = 0 (3.9)

Equation 3.9 motivates the definition of the equilibrium constant,
K◦,

K◦ = e−∆G◦/RT (3.10)

Rearrangement of Equation 3.9 and exponentiation leads to the follow-
ing simple condition for chemical equilibrium

K◦ =
∏
j
aνjj (3.11)

From the definitions of K◦ (Equation 3.10) and the standard state, it is
clear that K◦ also is a function of the system temperature, but not a
function of the system pressure or composition.

The following example illustrates these concepts and the calcula-
tion of the equilibrium composition in the simplest possible setting, an
ideal-gas mixture.

Example 3.1: Ideal-gas equilibrium

The reaction of isobutane and linear butenes to branched C8 hydro-
carbons is used to synthesize high octane fuel additives. One such
reaction is

isobutane+ 1–butene -⇀↽- 2,2,3–trimethylpentane

I + B -⇀↽- P
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Determine the equilibrium composition for this system at a pressure of
2.5 atm and temperature of 400 K. You may assume the gases are ideal
at this temperature and pressure and this reaction is the only one that
occurs. The standard Gibbs energy change for this reaction at 400 K is
−3.72 kcal/mol [18].

Solution

We recall that the fugacity of a component in an ideal-gas mixture is
equal to its partial pressure,

fj = Pj (3.12)

The quantity f ◦j is the fugacity of component j in the standard state,
which is pure component j at 1.0 atm pressure and the system tem-
perature, 400 K. From Equation 3.12, f ◦j = 1.0 atm because the partial
pressure of a pure component j at 1.0 atm total pressure is 1.0 atm.
The activity of component j is then simply

aj =
Pj

1 atm
(3.13)

Notice that when we suppress the 1.0 atm in Equation 3.13 in subse-
quent discussion, the units of Pj have to be atm or aj is not dimension-
less as it should be.

We now attempt to calculate the equilibrium composition from Equa-
tion 3.11,

K◦ = aP
aIaB

(3.14)

in which P represents the trimethylpentane, I represents isobutane, and
B represents the butene. Since ∆G◦ is given at the system temperature,
we can simply calculate K◦ at 400 K from Equation 3.10, K◦ = 108.
Substituting the activity of the components in Equation 3.14 then gives

K◦ = PP
PIPB

If we choose to use the mole fractions of the components, yj , as the
unknown variables rather than the partial pressures, we have

K◦ = yP
yIyBP

(3.15)

in which P is 2.5 atm. The problem is that we have three unknowns,
the gas-phase mole fractions at equilibrium, and only one equation,
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Equation 3.15. We can of course add the equation that mole fractions
sum to one, ∑

j
yj = 1

but we still have three unknowns and only two equations. In other
words, the equilibrium composition cannot be determined with the in-
formation given. All we know at this point is that any set of mole frac-
tions satisfying Equation 3.15 (and summing to one) could be an equi-
librium composition. It is important to realize that the mere statement
that a system is at equilibrium at a certain temperature and pressure
does not necessarily tell one everything about the system. □

The next example illustrates what kind of additional information is
required to be able to find the equilibrium composition.

Example 3.2: Ideal-gas equilibrium, revisited

Compute the equilibrium composition of Example 3.1 with the follow-
ing additional information. The gas is contained in a closed vessel that
is initially charged with an equimolar mixture of isobutane and butene.

Solution

We show how the initial composition of the gas in a closed vessel allows
us to determine the equilibrium composition. Notice in particular that
we do not know the volume of the vessel or the initial number of moles,
just that the vessel initially contains an equimolar mixture of the two
reactants. We proceed to describe the mole fractions of all components
in terms of a single variable, the extent of reaction. Let nj0 represent
the unknown number of moles of each component initially contained
in the vessel. Since the vessel is closed, the number of moles at some
other time can be related to the reaction extent from the stoichiometry
using nj = nj0 + νjε,

nI = nI0 − ε, nB = nB0 − ε, nP = nP0 + ε (3.16)

Summing Equations 3.16 produces

nT = nT0 − ε

in which nT is the total number of moles in the vessel. The total num-
ber of moles decreases with reaction extent because more moles are



3.2 Condition for Reaction Equilibrium 69

consumed than produced by the reaction. Dividing both sides of Equa-
tions 3.16 by nT produces equations for the mole fractions in terms of
the reaction extent,

yI =
nI0 − ε
nT0 − ε

yB =
nB0 − ε
nT0 − ε

yP =
nP0 + ε
nT0 − ε

(3.17)

Dividing top and bottom of the right-hand side of the previous equa-
tions by nT0 yields,

yI =
yI0 − ε′
1− ε′ yB =

yB0 − ε′
1− ε′ yP =

yP0 + ε′
1− ε′ (3.18)

in which ε′ = ε/nT0 is a dimensionless reaction extent that is scaled
by the initial total number of moles. Notice that the mole fractions are
now expressed in terms of the initial mole fractions, which are known,
and a reaction extent, which is the single unknown. Notice also that
the mole fractions in Equations 3.18 sum to one for all ε′. Substituting
Equations 3.18 into Equation 3.15 then provides the single equation to
determine ε′,

K◦ = (yP0 + ε′)(1− ε′)
(yB0 − ε′)(yI0 − ε′)P

Multiplying through by the denominator and collecting terms gives

(yB0 − ε′)(yI0 − ε′)K◦P − (yP0 + ε′)(1− ε′) = 0

The equilibrium equation is quadratic in ε′. Substituting in the given
initial composition, yP0 = 0, yB0 = yI0 = 1/2 gives

ε′2(1+K◦P)− ε′(1+K◦P)+ (1/4)K◦P = 0

The two solutions are

ε′ =
1±

√
1

1+K◦P
2

(3.19)

The correct solution is chosen by considering the physical constraints
that mole fractions must be positive. If the positive sign is chosen in
Equation 3.19, the reaction extent is greater than 1/2, which is physi-
cally impossible because it would result in negative numbers of moles
of the reactants. The negative sign is therefore chosen, and the solu-
tion is ε′ = 0.469. The equilibrium mole fractions are then computed
from Equation 3.18 giving

yI = 5.73× 10−2 yB = 5.73× 10−2 yP = 0.885

The equilibrium at 400 K favors the product trimethylpentane. The
reaction has moved from the initial condition of pure reactants to an
equilibrium state of relatively pure product. □
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Second derivative of G. Before leaving the equilibrium of ideal gases,
it is instructive to show that the equilibrium state is in fact a minimum
in the Gibbs energy and that this minimum is unique. The procedure in
the preceding example determined the value of the reaction extent for
which ∂G/∂ε = 0. To show that this value corresponds to a minimum
(and not a maximum or inflection), we would like to show ∂2G/∂ε2 > 0
at this value of reaction extent as depicted in Figure 3.2. If we can show
that ∂2G/∂ε2 > 0 for every ε, then the minimum is unique.

We begin by performing the same steps we used to determine the
mole fractions in Example 3.2, only for an arbitrary number of compo-
nents. Recall that for the closed system undergoing a single reaction,
we can describe the number of moles by

nj = nj0 + νjε ≥ 0 (3.20)

Since the reaction extent only has physical significance when it corre-
sponds to a nonnegative number of moles for all components, we have
the inequality in Equation 3.20. Summing over all components yields

nT = nT0 + ν̄ε > 0 (3.21)

in which ν̄ =
∑
j νj . Notice ν̄ = 0 if moles are conserved in the reaction.

The total number of moles is strictly positive to preclude the case of no
material in the system, an uninteresting case. Dividing Equation 3.20
by Equation 3.21 gives

yj =
nj0 + νjε
nT0 + ν̄ε

(3.22)

Defining the dimensionless extent as before,

ε′ = ε/nT0 (3.23)

Equation 3.22 can be written as

yj =
yj0 + νjε′

1+ ν̄ε′ (3.24)

We remark in passing for later use that

nT
nT0

= 1+ ν̄ε′ > 0 (3.25)

We now proceed to calculate ∂2G/∂ε2. We start with Equation 3.5,
repeated here, (

∂G
∂ε

)
T ,P
=
∑
j
νjµj (3.26)
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From Equation 3.23, we can express the derivative with respect to the
dimensionless reaction extent,

1
nT0

(
∂G
∂ε′

)
T ,P
=
∑
j
νjµj (3.27)

Differentiation with respect to ε′ yields

1
nT0

(
∂2G
∂ε′2

)
T ,P
=
∑
j
νj

(
∂µj
∂ε′

)
T ,P

(3.28)

The chemical potential of a component in an ideal gas is

µj = G◦j + RT ln(Pj/1 atm) = G◦j + RT
[
lnyj + lnP

]
(3.29)

Substituting Equation 3.24 into Equation 3.29 yields

µj = G◦j + RT
[
ln(yj0 + νjε′)− ln(1+ ν̄ε′)+ lnP

]
Differentiating this equation with respect to ε′ (T and P are constant)
gives (

∂µj
∂ε′

)
T ,P
= RT

[
νj

yj0 + νjε′
− ν̄

1+ ν̄ε′

]
Substituting into Equation 3.28 gives

1
nT0RT

(
∂2G
∂ε′2

)
T ,P
=
∑
j
νj

[
νj

yj0 + νjε′
− ν̄

1+ ν̄ε′

]

Performing the summation on the two terms yields

1
nT0RT

(
∂2G
∂ε′2

)
T ,P
=
∑
j

ν2
j

yj0 + νjε′
− ν̄2

1+ ν̄ε′

Multiplying through by 1+ ν̄ε′ gives

1+ ν̄ε′
nT0RT

(
∂2G
∂ε′2

)
T ,P
=
∑
j

ν2
j

yj0 + νjε′
(1+ ν̄ε′)− ν̄2 (3.30)

Although Equation 3.30 may not appear very useful, if we define two
variables,

aj =
νj√

yj0 + νjε′
bj =

√
yj0 + νjε′



72 Review of Chemical Equilibrium

Equation 3.30 can be written as

1+ ν̄ε′
nT0RT

(
∂2G
∂ε′2

)
T ,P
=
∑
j
a2
j

∑
j
b2
j −

∑
j
ajbj

2

(3.31)

The Cauchy inequality [2], also known as the Schwarz inequality, states
that for any two vectors a and b

∑
j
ajbj ≤

∑
j
a2
j

1/2∑
j
b2
j

1/2

(3.32)

The equality is achieved if and only if the two vectors are nonnegatively
proportional (aj = kbj for every j, with k ≥ 0). Since aj = νj

yj0+νjε′bj ,
it is clear that the vectors a and b are not proportional, and strict
inequality holds in Equation 3.31. Since 1+ ν̄ε′ > 0 from Equation 3.25
and nT0, R and T are positive, we can conclude(

∂2G
∂ε′2

)
T ,P

> 0 (3.33)

Due to the definition of ε′, Equation 3.33 is equivalent to(
∂2G
∂ε2

)
T ,P

> 0

which is what we set out to show. Notice that this inequality is true for
every ε corresponding to physically meaningful compositions. Since
the G function has positive curvature at every ε, Figure 3.2 is indeed
the correct picture for an ideal gas, and the equilibrium state is unique.
Aris provides an alternative treatment of this same question [1].

Evaluation of G. As the last example on the equilibrium of an ideal
gas, we calculate the actual function G(T , P, ε′). As we shall see, the
equilibrium extent then can be determined by plotting G versus ε′.

The Gibbs energy of a single phase can be computed from the chem-
ical potentials and mole numbers of the components from (see Exer-
cise 3.6 for a derivation)

G =
∑
j
µjnj (3.34)

The chemical potential of a component in an ideal gas is given by Equa-
tion 3.29, repeated here,

µj = G◦j + RT
[
lnyj + lnP

]
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Substituting the above into Equation 3.34 gives

G =
∑
j
njG◦j + RT

∑
j
nj
[
lnyj + lnP

]
(3.35)

Note that for this single reaction case, nj = nj0 + νjε, which gives∑
j
njG◦j =

∑
j
nj0G◦j + ε∆G◦ (3.36)

We now define a modified Gibbs function to measure changes from the
initial standard Gibbs energy and to scale by the temperature and the
total initial moles as follows,

G̃(T , P, ε′) =
G −

∑
j nj0G◦j

nT0RT
(3.37)

Substituting Equations 3.35 and 3.36 into Equation 3.37 gives

G̃ = ε′∆G
◦

RT
+
∑
j

nj
nT0

[
lnyj + lnP

]
(3.38)

From Equation 3.20, the ratio nj/nT0 is easily seen to be equal to yj0+
νjε′. Substituting this relation, the definition of K◦ and Equation 3.24
into Equation 3.38 yields

G̃ = −ε′ lnK◦ +
∑
j
(yj0 + νjε′)

[
ln

(
(yj0 + νjε′)

1+ ν̄ε′

)
+ lnP

]

which can be rearranged to

G̃ = −ε′ lnK◦ + (1+ ν̄ε′) lnP +
∑
j
(yj0 + νjε′) ln

(
yj0 + νjε′

1+ ν̄ε′

)
(3.39)

Notice that because T and P are known values, G̃ is simply a shift of the
G function up or down by a constant and then rescaling by the positive
constant 1/(nT0RT). In particular, the shape of the function G̃ is the
same as G, and the minimum with respect to ε′ is at the same value of
ε′ for the two functions.

Example 3.3: Minimum in G for an ideal gas

Plot the G̃ function for Example 3.2 and show that ε′ corresponding to
the minimum of G̃ agrees with the result of Example 3.2.
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Solution

We apply Equation 3.39 to the chemistry of Example 3.2,

I+ B -⇀↽- P

For this stoichiometry,
∑
j νj = ν̄ = −1. The reaction started with an

equimolar mixture of reactants, so yP0 = 0, yI0 = yB0 = 0.5. Substitut-
ing these values into Equation 3.39 gives

G̃(T , P, ε′) = −ε′ lnK◦(T)+ (1− ε′) lnP+
ε′ ln(ε′)+ 2(0.5− ε′) ln(0.5− ε′)− (1− ε′) ln(1− ε′) (3.40)

Recall that the range of physically significant ε′ values is

0 ≤ ε′ ≤ 0.5

The equilibrium constant at 400 K has been computed to be K◦ = 108.
The pressure is 2.5 atm. Recall we must use atm for the pressure units
because of the way we expressed chemical potential in Equation 3.29.
Substituting these values into Equation 3.40 and plotting the results
gives Figure 3.3. Because the minimum is close to ε′ = 0.5 we see again
that the equilibrium favors the product. Magnifying this region of the
plot in Figure 3.3 shows that ε′ = 0.47 at equilibrium, which is in good
agreement with the value 0.469 calculated in Example 3.2. Although we
prefer the simple calculation in Example 3.2 to obtain a numerical value
for ε′, the graphical representation of G̃ is more informative on issues
of whether or not the solution is indeed a minimum and whether or not
the minimum is unique. It also gives us confidence that the analysis of
the previous section is correct because G̃ has positive curvature for all
ε′ of physical interest. □

Notice from Equation 3.39 that for an ideal gas, the pressure enters
directly in the Gibbs energy with the lnP term. The effect of pres-
sure on the equilibrium extent depends on the sign of ν̄ . If positive,
which means there are more product than reactant molecules in the
stoichiometry of the reaction, then an increase in the pressure causes a
decrease in the equilibrium reaction extent, in agreement with Le Chate-
lier’s principle. This can be verified by examining the term (1+ε′ν̄) lnP
in Equation 3.39. If ν̄ is positive, increasing the pressure increases this
term more at larger values of ε′ than at smaller values, thus pushing the
minimum in the G̃ function to smaller values of ε. Hence for ν̄ > 0 an
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Figure 3.3: Gibbs energy G̃ versus reaction extent ε′.

equilibrium shift favoring reactants is the effect of a pressure increase.
If ν̄ is negative, the opposite situation arises. For ν̄ = 0, the pres-
sure does not affect the equilibrium, because the term (1+ ε′ν̄) lnP is
then constant with ε′ and does not affect the location of the minimum.
For single liquid-phase or solid-phase systems, the effect of pressure
on equilibrium is usually small, because the chemical potential of a
component in a liquid-phase or solid-phase solution is usually a weak
function of pressure.

The temperature effect on the Gibbs energy is contained in the
lnK◦(T) term. This term often gives rise to a large effect of temper-
ature on equilibrium. We turn our attention to the evaluation of this
important temperature effect in the next section.

3.2.1 Evaluation of the Gibbs Energy Change of Reaction

We usually calculate the standard Gibbs energy change for the reaction,
∆G◦, by using the Gibbs energy of formation of the species, which are
commonly available thermochemical data. The standard Gibbs energy
of formation of species j is defined as the difference in the Gibbs energy
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of the species and its constituent elements in some standard state.

G◦jf = G◦j −
ne∑
l=1

ajlG◦El

The standard state for the elements are usually the pure elements in
their common form at 25◦C and 1.0 atm. For example, the Gibbs energy
of formation of H2O is

G◦H2Of = G◦H2O −G◦H2
− 1

2
G◦O2

We then take the appropriate linear combinations of the species
Gibbs energy of formation to compute the Gibbs energy change for the
reaction at 25◦C

∆G◦i =
∑
j
νijG◦jf (3.41)

As shown in Exercise 3.11, the Gibbs energy of the elements cancel,
leading to Equation 3.41.

Finding appropriate thermochemical data remains a significant chal-
lenge for solving realistic, industrial problems. Vendors offer a variety
of commercial thermochemical databases to address this need. Many
companies also maintain their own private thermochemical databases
for compounds of special commercial interest to them.1

The standard state temperature 25◦C is often not the temperature
of the system of interest, so we need to convert from 25◦C to the system
temperature. To accomplish this conversion, the temperature depen-
dence of ∆G◦ is discussed in the next section.

3.2.2 Temperature Dependence of the Standard Gibbs Energy

Recall from Equation 3.3 that the change of the Gibbs energy with tem-
perature is the negative of the entropy,(

∂G
∂T

)
P,nj

= −S

1For educational purposes and to gain some experience with thermochemical
databases, you may wish to try the Design Institute for Physical Properties (DIPPR)
database. A web-based student version of the database provides students with ac-
cess to data for 2000 common compounds at no charge: http://dippr.byu.edu/
students/chemsearch.asp.
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This expression can be used to evaluate the change in the Gibbs energy
in the standard state, pure component j at a pressure of 1.0 atm,(

∂G◦j
∂T

)
P,nj

= −S◦j (3.42)

Notice in this context that the subscripts P and nj denoting constant
pressure and composition are redundant due to the definition of the
standard state and are dropped to avoid confusion. Summing Equa-
tion 3.42 with the stoichiometric coefficients of a single reaction gives

∑
j

∂(νjG◦j)
∂T

=
∑
j
−νjS◦j

Defining the term on the right-hand side to be the standard entropy
change of reaction, ∆S◦ gives

∂∆G◦

∂T
= −∆S◦ (3.43)

LetH denote the enthalpy and recall its connection to the Gibbs energy,

G = H − TS (3.44)

Partial molar properties. Recall the definition of a partial molar prop-
erty is

Xj =
(
∂X
∂nj

)
T ,P,nk

in which X is any extensive mixture property (U,H,A,G,V , S, etc.). In
other words, the partial molar property of component j measures the
change in an extensive property as a small amount of component j is
added to the mixture at constant T , P and other mole numbers.

Equation 3.44 is valid also for the corresponding partial molar quan-
tities

Gj = Hj − TSj (3.45)

Writing Equation 3.45 for a component in its standard state gives G◦j =
H◦j − TS◦j , and summing with the stoichiometric coefficient yields

∆G◦ = ∆H◦ − T∆S◦ (3.46)

Solving Equation 3.46 for the entropy change and substituting into
Equation 3.43 gives

∂∆G◦

∂T
= ∆G

◦ −∆H◦
T
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Rearranging this equation and division by RT gives

1
RT

∂∆G◦

∂T
− ∆G

◦

RT 2
= −∆H

◦

RT 2

Using differentiation formulas, the left-hand side can be rewritten as

∂
(
∆G◦
RT

)
∂T

= −∆H
◦

RT 2

which finally can be expressed in terms of the equilibrium constant

∂ lnK◦

∂T
= ∆H

◦

RT 2
(3.47)

Equation 3.47, known as the van ’t Hoff equation, expresses how the
equilibrium constant varies with temperature. Equation 3.47 can be
integrated between two temperatures to give∫ T2

T1

∂ lnK◦

∂T
dT =

∫ T2

T1

∆H◦

RT 2
dT

To evaluate the integral one needs to have the standard enthalpy change
as a function of temperature. This information can be computed from
the partial molar heat capacities. The partial molar heat capacity for
component j is defined by

CPj =
(
∂Hj
∂T

)
P,nk

(3.48)

Evaluating this expression at the standard state, multiplying by the
stoichiometric numbers and summing produces

∆C◦P =
∂∆H◦

∂T

in which ∆C◦P is the heat capacity change upon reaction

∆C◦P =
∑
j
νjC◦Pj

The standard enthalpy change between a reference temperature T0 and
an arbitrary temperature T can be evaluated from

∆H◦(T) = ∆H◦(T0)+
∫ T
T0

∆C◦PdT
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If the standard heat capacity change of reaction is zero over the temper-
ature range, then ∆H◦ is constant and Equation 3.47 can be integrated
directly to give

ln

(
K◦2
K◦1

)
= −∆H

◦

R

(
1
T2
− 1
T1

)
(3.49)

Notice the H◦j themselves may be strong functions of temperature, but
if ∆C◦P = 0, then ∆H◦ is still independent of temperature and Equa-
tion 3.49 is correct. Equation 3.49 also may be a useful approximation,
but the error in assuming constant standard change in enthalpy should
be examined if heat capacity data are available.

3.3 Condition for Phase Equilibrium

Consider a multicomponent, multiphase system that is at equilibrium
and denote two of the phases as α and β. Let T k and Pk represent the
temperature and pressure of phase k and nkj represent the number of
moles of component j in phase k. The chemical potential of component
j in phase k is denoted by µ̂kj . The hat is to emphasize that this is the
chemical potential of component j in the multicomponent mixture. The
conditions for equilibrium when more than one phase are present are
developed in standard texts to be

Tα = Tβ

Pα = Pβ

µ̂αj = µ̂
β
j , j = 1,2, . . . , ns (3.50)

Since these equations apply to any two phases, the temperatures of all
phases are equal and the distinction of temperatures for each phase is
unnecessary and one can speak of the system temperature T . Similarly
for the pressure. Most of our attention then is focused on the condition
that the chemical potential of component j must be equal in all phases.

A loose but useful physical intuition is connected to the equilibrium
conditions. If the temperatures of the phases of a two-phase mixture
are not equal, one expects to see a transfer of heat from the hotter to
the colder phase until the equilibrium condition is satisfied. Similarly if
the pressures are not equal, one expects a momentum transfer from the
system at higher pressure to the one at lower pressure. Finally, if the
chemical potential of a component is higher in one phase than another
phase, one expects a mass transfer of the component from the phase
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with higher chemical potential to the phase with lower chemical poten-
tial until the chemical potentials become equal. In reality, of course, the
gradients and fluxes do not separate so ideally and we observe the si-
multaneous transfer of heat, momentum and mass of all components
while the system approaches equilibrium from some arbitrary initial
condition [3, pp. 767–768].

Again, the chemical potential is often expressed in terms of the fu-
gacity, which is defined by

µ̂j = µ◦j + RT ln
f̂j
f ◦j

(3.51)

in which µ◦j and f ◦j denote the chemical potential and fugacity of com-
ponent j in a standard state. The standard state is again pure compo-
nent j at the system temperature and 1.0 atm pressure. If we express
Equation 3.51 for two phases α and β and equate their chemical poten-
tials we deduce

f̂αj = f̂
β
j j = 1,2 . . . , ns

One can therefore use either the equality of chemical potentials or fu-
gacities as the condition for equilibrium.

3.3.1 Ideal Mixtures

In this and the next section we briefly review the methods for express-
ing the fugacity of components in a mixture and calculating the phase
equilibrium. The simplest rule for evaluating the fugacity of a compo-
nent in a mixture is the ideal mixture assumption. We review this case
first.

Gaseous Solutions

Consider a gas-phase mixture of interest at some temperature and pres-
sure. Let fGj denote the fugacity of pure component j in the gas phase
at the temperature and pressure of the mixture. The simplest mixing
rule for calculating the fugacity of component j in the mixture con-
taining component j at some mole fraction yj is the following linear
mixing rule

f̂Gj = fGj yj (ideal mixture)

An ideal gas, for example, obeys this mixing rule and furthermore
the fugacity of pure j at the mixture T and P is simply the system pres-
sure, fGj = P . The fugacity of component j in an ideal gas is therefore
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the partial pressure of component j, Pj , defined as

f̂Gj = Pj := Pyj (ideal gas)

Liquid (and Solid) Solutions

Again the simplest mixing rule for liquid (and solid) mixtures is that
the fugacity of component j in the mixture is the fugacity of pure j at
the temperature and pressure of the mixture times the mole fraction
of j in the mixture. We let xj denote the mole fraction to distinguish
liquid-phase and solid-phase from gas-phase compositions.

f̂ Lj = f Lj xj
This approximation is usually valid when the mole fraction of a com-

ponent is near one. In a two-component mixture, one can establish
from the Gibbs-Duhem relations that if the first component obeys the
ideal mixture, then the second component follows Henry’s law:

f̂ L2 = k2x2

in which k2 is the Henry’s law constant for the second component. Note
that it is not generally equal to f L2 (unless the mixture is ideal over the
entire composition range).

Fugacity pressure dependence. Sometimes we know the fugacity of
a component at one pressure and we need to evaluate it at another
pressure. We start with the standard relation(

∂ ln f̂j
∂P

)
T ,xk

= V j
RT

in which V j is the partial molar volume. We integrate between the two
pressures of interest to obtain

f̂j
∣∣∣
P2
= f̂j

∣∣∣
P1

exp

[
1
RT

∫ P2

P1

V jdP
]

(3.52)

For condensed phases, the partial molar volume is usually constant
over reasonable pressure ranges giving

f̂j
∣∣∣
P2
= f̂j

∣∣∣
P1

exp

[
V j(P2 − P1)

RT

]
(3.53)

The exponential term in Equations 3.52 and 3.53 is called the Poynting
correction factor. For liquids and solids, the partial molar volume is
generally small, and the Poynting correction may be neglected if the
pressure does not vary by a large amount.
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3.3.2 Nonideal Mixtures

For mixtures that display significant deviations from ideality, correct-
ing factors from the ideal mixture assumption are used. For gaseous
mixtures, one defines the fugacity coefficient, φ̂j , as follows

f̂Gj = Pyjφ̂j

The analogous correcting factor for the liquid phase is the activity co-
efficient, γj .

f̂ Lj = f Lj xjγj
The introduction of these coefficients obviously has shifted the bur-

den from evaluating the fugacities to evaluating the activity and fugac-
ity coefficients. These coefficients may be available in several forms.
Correlations may exist for systems of interest or phase equilibrium data
may be available from which the coefficients can be calculated. The fol-
lowing list is a representative sample of the numerous texts devoted to
this important topic [12, 13, 19, 14, 6].

3.4 Equilibrium Composition for Heterogeneous
Reactions

In this section we illustrate the calculation of chemical equilibrium
when there are multiple phases as well as a chemical reaction taking
place. The following example illustrates the important issues.

Example 3.4: Chemical and phase equilibrium for a nonideal mixture

Consider the liquid-phase reaction

A(l)+ B(l) -⇀↽- C(l)

that occurs in the following three-phase system.
Phase I: nonideal liquid mixture of A and C only. For illustration pur-
poses, assume the activity coefficients are given by the simple Margules
equation,

lnγA = x2
C [AAC + 2(ACA −AAC)xA]

lnγC = x2
A [ACA + 2(AAC −ACA)xC]

Phase II: pure liquid B.
Phase III: ideal-gas mixture of A, B and C.
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All three phases are in intimate contact and we have the following
data:

AAC = 1.4 P0
A = 0.65 atm

ACA = 2.0 P0
B = 0.50 atm

P0
C = 0.50 atm

in which P0
j is the vapor pressure of component j at the system tem-

perature.

1. Plot the partial pressures of A and C versus xA for a vapor phase
that is in equilibrium with only the A–C liquid phase. Compute
the Henry’s law constants for A and C from the Margules equation.
Sketch the meaning of Henry’s law on the plot and verify your
calculation from the plot.

2. Use Henry’s law to calculate the composition of all three phases
for K◦ = 4.7. What is the equilibrium pressure?

3. Repeat for K◦ = 0.23.

4. Assume K◦ = 1. Use the Margules equation to calculate the com-
position of all three phases.

5. Repeat 4 with an ideal mixture assumption and compare the re-
sults.

Solution

Part 1. The calculation of the partial pressures of A and C in a vapor
phase in equilibrium with a liquid-phase mixture of A and C follows
from equating the chemical potentials of the components in the differ-
ent phases. Since the gas phase is assumed an ideal-gas mixture,

f̂G
A = PA (3.54)

In the liquid phase, the fugacity of A is computed from the activity
coefficient

f̂ L
A = f L

AxAγA (3.55)

The fugacity of pure liquid A at the system T and P is not known. The
fugacity of pure liquid A at the system temperature and the vapor pres-
sure of A at the system temperature is known, however; it is simply the
vapor pressure, P◦A. If the system pressure is not greatly different from
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Figure 3.4: Partial pressures of components A and C versus liquid-
phase composition in a nonideal solution; solid line: Mar-
gules equation; dashed line: ideal mixture.

the vapor pressure of A at the system temperature, then the following
approximation is valid because, as discussed in Section 3.3.1, fugacities
of liquids are only weak functions of pressure

f L
A = P◦A (3.56)

Substituting Equation 3.56 into 3.55 and equating to 3.54 gives,

PA = P◦AxAγA (3.57)

The analogous expression is valid for PC . Figure 3.4 plots PA, PC and
PT = PA + PC versus the composition in the liquid phase, xA, using the
Margules equation to compute the activity coefficient in Equation 3.57.
Notice that the system exhibits positive deviations from an ideal mix-
ture, which is also plotted in the figure.

Henry’s law for component A is

f̂ LA = kAxA
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which is valid for xA small. Comparing to Equation 3.55 and using
Equation 3.56 gives

kA = P◦AγA
which is also valid for small xA. Computing γA from the Margules
equation for xA = 0 gives

γA(0) = eAAC

So the Henry’s law constant for component A is

kA = P◦AeAAC

The analogous expression holds for component C. Substituting in the
values gives

kA = 2.6, kC = 3.7

These values can be checked by examining Figure 3.4. The slope of the
tangent line to the PA curve at xA = 0 is equal to kA. The negative of
the slope of the tangent line to the PC curve at xA = 1 is equal to kC .

Part 2. For K◦ = 4.7, one expects a large value of the equilibrium con-
stant to favor the formation of the product, C. We therefore assume
that xA is small and Henry’s law is valid for component A. The validity
of this assumption can be checked after the equilibrium composition is
computed. The unknowns in the problem arexA andxC in the A–C mix-
ture, yA, yB and yC in the gas phase, and the system pressure. There
are therefore six unknowns. We require six equations for a well-posed
problem. We can equate the fugacities of each component in the gas
and liquid phases, and use the fact that the mole fractions sum to one
in the gas and A–C liquid phases. Finally, the chemical equilibrium
provides the sixth equation and the problem can be solved. In general
we would set up six equations in six unknowns and solve the prob-
lem numerically, but the structure of this problem allows an analytical
solution. Consider first the condition for reaction equilibrium,

K◦ = âC
âAâB

in which K◦ is evaluated for a liquid-phase standard state. Evaluating
the activities first of component A, the component for which we assume
Henry’s law,

âLA =
f̂ LA
f ◦A
= kAxA

f ◦A
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From the standard state for reactions, f ◦A is the fugacity of pure liquid
A at the system temperature and 1.0 atm. Again, this value is unknown,
but we do know that P◦A is the fugacity of pure liquid A at the system
temperature and the vapor pressure of A at this temperature. The dif-
ference between 0.65 and 1.0 atm is not large, so we assume f ◦A = P◦A.
Since xA is assumed small, xC is assumed near one. The fugacity is
then evaluated from

âLC =
f̂ LC
f ◦C
= f

L
CxC
f ◦C

Now f LC and f ◦C are the fugacities of pure liquid C at the system temper-
ature and the system pressure and 1.0 atm, respectively. If the system
pressure turns out to be reasonably small, then it is a good assumption
to assume these fugacities are equal giving,

âLC = xC

Since component B is in a pure liquid phase, the same reasoning leads
to

âLB =
f̂ LB
f ◦B
= f

L
B
f ◦B
= 1

Substituting these activities into the reaction equilibrium condition gives

K◦ = xC
xAkA/P◦A · 1

(3.58)

Using xC = 1− xA and solving Equation 3.58 for xA yields

xA =
(

1+ kAK
◦

P◦A

)−1

xC =
(

1+ P◦A
kAK◦

)−1

Substituting in the provided data gives

xA = 0.05, xC = 0.95

Therefore, from Figure 3.4, the assumption of Henry’s law for compo-
nent A is reasonable.

The vapor compositions now are computed from the phase equi-
librium conditions. The fugacities of all components in the ideal-gas
mixture are equal to their partial pressures. Therefore, equating these
to the fugacities of the liquid phase gives

PA = kAxA, PB = P◦B , PC = P◦CxC
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Substituting in the provided data, Henry’s law constant and known
liquid-phase compositions gives

PA = 0.13 atm, PB = 0.50 atm, PC = 0.48 atm

The system pressure is therefore P = 1.11 atm. This low pressure
justifies the assumptions we have made about fugacities of pure liquids
at the system pressure. Finally, the vapor-phase concentrations can be
computed from the ratios of partial pressures to total pressure, which
gives

yA = 0.12, yB = 0.45, yC = 0.43

Part 3. For K◦ = 0.23 one expects the reactants to be favored so
Henry’s law is assumed for component C. You are encouraged to work
through the preceding development again for this situation. The an-
swers are

xA = 0.97, xC = 0.03

yA = 0.51, yB = 0.40, yC = 0.09

P = 1.24 atm

Again the assumption of Henry’s law is justified and the system pres-
sure is low.

Part 4. ForK◦ = 1, the equilibrium composition may not allow Henry’s
law to be assumed for either A or C. In this case we must solve the reac-
tion equilibrium condition using the Margules equation for the activity
coefficients,

K◦ = xCγC
xAγA

By expressing xC = 1− xA, we have one equation in one unknown,

K◦ =
(1− xA) exp

[
x2
A(ACA + 2(AAC −ACA)(1− xA))

]
xA exp [(1− xA)2(AAC + 2(ACA −AAC)xA)]

(3.59)

Equation 3.59 can be solved numerically to give xA = 0.35. From this
value, the rest of the solution can be computed. Recall that the partial
pressures of A and C now must be computed from the fugacity of the
liquid phase using the activity coefficients

Pj = P◦jxjγj , j = A,C

The solution is
xA = 0.35, xC = 0.65
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yA = 0.36, yB = 0.37, yC = 0.28

P = 1.37 atm

Using the full Margules equation instead of Henry’s law for the other
K◦ values gives xA = 0.054 for K◦ = 4.7 and xA = 0.96 for K◦ = 0.23,
in good agreement with the Henry’s law solution presented above.

Part 5. Finally, if one assumes that the A–C mixture is ideal, the equi-
librium condition becomes

K◦ = xC
xA

which can be solved to give xA = 1/(1+ K◦). For K◦ = 1, the solution
is

xA = 0.5, xC = 0.5

yA = 0.30, yB = 0.47, yC = 0.23

P = 1.08 atm

As can be seen from comparison with the solution to Part 4, the ideal
mixture assumption leads to significant error as might be expected
from the strong deviations from ideality shown in Figure 3.4. □

3.5 Multiple Reactions

Determining equilibria for reacting systems with multiple phases and
reactions can require significant computational effort. The phase and
reaction equilibrium conditions generally lead to mathematical prob-
lems of two types: solving nonlinear algebraic equations and minimiz-
ing a nonlinear function subject to constraints. In this section it is
assumed that the required thermochemical data are available, but find-
ing or measuring these data is often another significant challenge in
computing equilibria for systems of industrial interest.

3.5.1 Algebraic Approach

We again consider a single-phase system but allow nr reactions∑
j
νijAj = 0, i = 1,2, . . . , nr
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ε2

ε1

G(εi)

∂G
∂εi

=
∑
j
νijµj = 0

Figure 3.5: Gibbs energy versus two reaction extents at constant
T and P .

Letting εi be the reaction extent for the ith reaction, the change in the
number of moles of component j for a closed system due to the nr
chemical reactions is

nj = nj0 +
∑
i
νijεi (3.60)

We can compute the change in Gibbs energy as before

dG = −SdT + VdP +
∑
j
µjdnj

Substituting in the change in the number of moles with reaction extents,
dnj =

∑
i νijdεi, gives

dG = −SdT + VdP +
∑
j
µj
∑
i
νijdεi

= −SdT + VdP +
∑
i

∑
j
νijµj

dεi (3.61)

At constant T and P , G is a minimum as a function of the nr reaction
extents. Necessary conditions are therefore(

∂G
∂εi

)
T ,P,εl≠i

= 0, i = 1,2, . . . , nr

as illustrated in Figure 3.5 for the case of two reactions. Evaluating the
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partial derivatives in Equation 3.61 gives∑
j
νijµj = 0, i = 1,2, . . . , nr (3.62)

In other words, the necessary condition for a single reaction applies for
each reaction in the network for the multiple reaction case.

Substituting Equation 3.7 for the chemical potential in terms of the
activity into Equation 3.62 gives∑

j
νijµj =

∑
j
νijG◦j + RT

∑
j
νij lnaj

Defining the standard Gibbs energy change for reaction i,∆G◦i =
∑
j νijG◦j

gives ∑
j
νijµj = ∆G◦i + RT

∑
j
νij lnaj

Finally, defining the equilibrium constant for reaction i as

K◦i = e−∆G
◦
i /RT (3.63)

allows one to express the reaction equilibrium condition as

K◦i =
∏
j
aνijj , i = 1,2, . . . , nr (3.64)

Example 3.5: Equilibrium composition for multiple reactions

In addition to the formation of 2,2,3-trimethylpentane in Example 3.2,
it is known that 2,2,4-trimethylpentane may also form with the same
stoichiometry,

isobutane+ 1–butene -⇀↽- 2,2,4–trimethylpentane (3.65)

Recalculate the equilibrium composition for this example given that
∆G◦ = −4.49 kcal/mol for this reaction at 400 K.

Solution

Let reaction 1 be the formation of 2,2,3 trimethylpentane denoted as
P1 and reaction 2 be the formation of 2,2,4-trimethylpentane denoted
as P2. From the Gibbs energy changes, we have

K◦1 = 108, K◦2 = 284
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We now set up a table to calculate the four compositions from the ex-
tents of the two reactions,

nI = nI0 − ε1 − ε2 nP1 = nP10 + ε1

nB = nB0 − ε1 − ε2 nP2 = nP20 + ε2

The total number of moles is then nT = nT0 − ε1 − ε2. Forming the
mole fractions yields

yI =
yI0 − ε′1 − ε′2
1− ε′1 − ε′2

yP1 =
yP10 + ε′1

1− ε′1 − ε′2

yB =
yB0 − ε′1 − ε′2

1− ε′1 − ε′2
yP2 =

yP20 + ε′2
1− ε′1 − ε′2

(3.66)

Applying Equation 3.64 to the two reactions gives

K◦1 =
yP1

yIyBP
K◦2 =

yP2

yIyBP

Substituting in the mole fractions gives two equations for the two un-
known reaction extents,

PK◦1(yI0 − ε′1 − ε′2)(yB0 − ε′1 − ε′2)− (yP10 + ε′1)(1− ε′1 − ε′2) = 0

PK◦2(yI0 − ε′1 − ε′2)(yB0 − ε′1 − ε′2)− (yP20 + ε′2)(1− ε′1 − ε′2) = 0

These two equations are solved with the initial condition of an equimo-
lar mixture of reactants, yI = yB = 0.5, yP1 = yP2 = 0.2 Using the
initial guess from the solution of Example 3.2, ε′1 = 0.469, ε′2 = 0, gives
the solution

ε′1 = 0.133, ε′2 = 0.351

Other initial guesses result in the same solution, leading us to believe
that this solution is the unique, physically meaningful solution.3 The
mole fractions are computed from Equations 3.66 giving

yI = 0.031, yB = 0.031, yP1 = 0.258, yP2 = 0.680

Notice that the existence of the second reaction causes the produc-
tion of considerably less 2,2,3-trimethylpentane in favor of the 2,2,4

2It is best to use a numerical tool to solve these equations when there is more than
one reaction.

3The mole fractions are real and positive.
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isomer. This is bad news in this example because the production of
2,2,3 is preferable due to its high octane content. The news only gets
worse when we consider that a host of other products are also possible,
such as the 2,3,3 and 2,3,4 isomers as well as 2,2,3,3-tetramethylbutane
and still others. The Gibbs energy of formation of many of these pos-
sible products show that they are present in significant amounts at
equilibrium. It is clear that one cannot allow the system to reach equi-
librium and still hope to obtain a high yield of the desired product. The
solution to problems like these is often to develop a catalyst that selec-
tively increases the reaction rate for the desired reaction in comparison
to the undesired side reactions. If such a catalyst is available, the re-
action is halted after a high yield of the desired product is formed and
before the equilibration to the other products can reduce the yield. This
use of catalysts to promote the rates of desirable reactions is discussed
further in Chapter 5. □

3.5.2 Optimization Approach

The other main approach to finding the reaction equilibrium is to mini-
mize the appropriate energy function, in this case the Gibbs energy [20].
This optimization-based formulation of the problem, as shown in Ex-
ample 3.3, can be more informative than the algebraic approach dis-
cussed above.

We first extend our evaluation of the Gibbs energy for the single
reaction case to allow multiple reactions. We start with

G =
∑
j
µjnj (3.67)

and express the chemical potential in terms of activity

µj = G◦j + RT lnaj

We again use Equation 3.60 to track the change in mole numbers due
to multiple reactions,

nj = nj0 +
∑
i
νijεi

Using the two previous equations we have

µjnj = nj0G◦j +G◦j
∑
i
νijεi +

nj0 +
∑
i
νijεi

RT lnaj (3.68)
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It is convenient to define the same modified Gibbs energy function
that we used in Equation 3.37

G̃(T , P, ε′i) =
G −

∑
j nj0G◦j

nT0RT
(3.69)

in which ε′i = εi/nT0. If we sum on j in Equation 3.68 and introduce
this expression into Equations 3.67 and 3.69, we obtain

G̃ =
∑
i
ε′i
∆G◦i
RT

+
∑
j

yj0 +
∑
i
νijε′i

 lnaj

Using the definition of the equilibrium constant, Equation 3.63, we can
write the energy function as

G̃ = −
∑
i
ε′i lnK◦i +

∑
j

yj0 +
∑
i
νijε′i

 lnaj (3.70)

To find the equilibrium composition, we minimize this modified
Gibbs energy over the physically meaningful values of the nr extents.
The main restriction on these extents is, again, that they produce non-
negative mole numbers, or, if we wish to use intensive variables, non-
negative mole fractions. We can express these constraints as

−yj0 −
∑
i
νijε′i ≤ 0, j = 1, . . . , ns (3.71)

Our final statement, therefore, for finding the equilibrium composition
for multiple reactions is to solve the optimization problem

min
ε′i
G̃(ε′i) (3.72)

subject to Equation 3.71. The min notation means to minimize the
function G̃(ε′i) with respect to the argument ε′i.

Example 3.6: Multiple reactions with optimization

Revisit the two-reaction trimethylpentane example, and find the equi-
librium composition by minimizing the Gibbs energy.
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Solution

We start with the modified energy function, Equation 3.70. We recall for
an ideal-gas mixture, the activity of component j, is simply its partial
pressure divided by 1.0 atm,

aj =
P

1 atm
yj (ideal-gas mixture)

Substituting this relation into Equation 3.70 and rearranging gives

G̃ = −
∑
i
ε′i lnK◦i +

1+
∑
i
ν̄iε′i

 lnP

+
∑
j

yj0 +
∑
i
νijε′i

 ln

[
yj0 +

∑
i νijε′i

1+
∑
i ν̄iε′i

]
(3.73)

in which
ν̄i =

∑
j
νij

The minimization of this function of ε′i then determines the two equi-
librium extents. The constraints on the extents are found from Equa-
tion 3.71. For this problem they are

−yI0 + ε′1 + ε′2 ≤ 0 −yP10 − ε′1 ≤ 0

−yB0 + ε′1 + ε′2 ≤ 0 −yP20 − ε′2 ≤ 0

Substituting in the initial conditions gives the constraints

ε′1 + ε′2 ≤ 0.5, 0 ≤ ε′1, 0 ≤ ε′2
Figure 3.6 shows the lines of constant Gibbs energy determined by
Equation 3.73 as a function of the two reaction extents. We see im-
mediately that the minimum is unique. Notice in Figure 3.6 that G̃ is
defined only in the region specified by the constraints. The numerical
solution of the optimization problem is

ε′1 = 0.133, ε′2 = 0.351, G̃ = −2.569

The solution is in good agreement with the extents computed using
the algebraic approach, and the Gibbs energy contours depicted in Fig-
ure 3.6. □

Optimization is a powerful tool for solving many types of engineer-
ing modeling and design problems. We also rely heavily on optimiza-
tion tools in Chapter 9 on parameter estimation.



3.6 Summary and Notation 95

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

−2.559
-2.55
-2.53

-2.5
-2
-1
0

ε′2

ε′1

Figure 3.6: Gibbs energy contours for the pentane reactions as a
function of the two reaction extents.

3.6 Summary

In this review of reaction equilibrium, the Gibbs energy was chosen
as the convenient function for solving reaction equilibrium problems
when the temperature and pressure are specified. The fundamental
equilibrium condition is that the Gibbs energy is minimized. This fun-
damental condition leads to several conditions for equilibrium such
as ∑

j
νjµj = 0

K◦ =
∏
j
aνjj

for a single reaction or∑
j
νijµj = 0, i = 1, . . . , nr

K◦i =
∏
j
aνijj , i = 1, . . . , nr
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for multiple reactions, in which the equilibrium constant is defined to
be

K◦i = e−∆G
◦
i /RT

You should feel free to use whichever formulation is most convenient
for the problem. The equilibrium “constant” is not so constant, because
it depends on temperature via

∂ lnK◦

∂T
= ∆H

◦

RT 2

or, if the enthalpy change does not vary with temperature,

ln

(
K◦2
K◦1

)
= −∆H

◦

R

(
1
T2
− 1
T1

)
The conditions for phase equilibrium were presented: equalities of

temperature, pressure and chemical potential of each species in all
phases. The evaluation of chemical potentials of mixtures was dis-
cussed, and the following methods and approximations were presented:
ideal mixture, Henry’s law, and simple correlations for activity coeffi-
cients.

When more than one reaction is considered, which is the usual sit-
uation faced in applications, we require numerical methods to find the
equilibrium composition. Two approaches to this problem were pre-
sented. We either solve a set of nonlinear algebraic equations or solve
a nonlinear optimization problem subject to constraints. If optimiza-
tion software is available, the optimization approach is more powerful
and provides more insight.

Notation

aj activity of species j
ajl formula number for element l in species j
Aj jth species in the reaction network

CPj partial molar heat capacity of species j
El lth element constituting the species in the reaction network

fj fugacity of species j
G Gibbs energy

Gj partial molar Gibbs energy of species j
∆G◦i standard Gibbs energy change for reaction i
H enthalpy
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Hj partial molar enthalpy of species j
∆H◦i standard enthalpy change for reaction i
i reaction index, i = 1,2, . . . , nr
j species index, j = 1,2, . . . , ns
k phase index, k = 1,2, . . . , np
K◦ equilibrium constant

K◦i equilibrium constant for reaction i
l element index, l = 1,2, . . . , ne
nj moles of species j
nr total number of reactions in reaction network

ns total number of species in reaction network

P pressure

Pj partial pressure of species j
R gas constant

S entropy

Sj partial molar entropy of species j
T temperature

V volume

V j partial molar volume of species j
xj mole fraction of liquid-phase species j
yj mole fraction of gas-phase species j
z compressibility factor of the mixture

γj activity coefficient of species j in a mixture

ε reaction extent

εi reaction extent for reaction i
µj chemical potential of species j
νij stoichiometric number for the jth species in the ith reaction

νj stoichiometric number for the jth species in a single reaction

ν̄
∑
j νj

ν̄i
∑
j νij

φ̂j fugacity coefficient of species j in a mixture
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3.7 Exercises

Exercise 3.1: Calculating an equilibrium composition

Consider the following reaction in a closed vessel at a pressure of 1.0 atm and temper-
ature of 500◦K

isobutane+ 1–butene -⇀↽- 2,2,3–trimethylpentane

I + B -⇀↽- P

The standard Gibbs energy and enthalpy changes for this reaction at 500 K are ∆G◦ =
−4.10 kcal/mol, ∆H◦ = −20.11 kcal/mol.

(a) Determine the equilibrium composition for this system for an initial equimolar
mixture of isobutane and butene. What assumptions did you make?

(b) What is the equilibrium conversion of the reactants in part 3.1a? Assume for
economic reasons that you must increase the equilibrium conversion to 97%. At
what pressure must you run this reaction at a temperature of 500 K to achieve
this conversion?

(c) At what temperature must you run this reaction at a pressure of 1.0 atm to
achieve 97% conversion?

(d) What do you know about this system that prevents you from taking these an-
swers too seriously?

Exercise 3.2: Equilibrium and linearly independent reactions

Butene isomerization reactions are shown below.

1− butene
k1-⇀↽-
k−1

cis− 2− butene

1− butene
k2-⇀↽-
k−2

trans− 2− butene

1− butene
k3-⇀↽-
k−3

isobutene

cis− 2− butene
k4-⇀↽-
k−4

trans− 2− butene

cis− 2− butene
k5-⇀↽-
k−5

isobutene

The Gibbs energy of formation of the components at 400 K are [18]

Components ∆Gf (kcal/mol)

1-butene 23.10

cis-2-butene 21.94

trans-2-butene 21.33

isobutene 20.23
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(a) Determine the minimum number of reactions that are needed to calculate the
equilibrium composition of the butenes.

(b) Set up the linear algebra problem to determine the equilibrium extents of the
reactions. What assumptions have you made?

(c) Compute the equilibrium composition at 400 K and 1.0 atm pressure starting
from pure 1-butene.

(d) Why is isobutene the predominate butene formed?

Exercise 3.3: More than one reaction

Consider the following two gas-phase reactions

A+ B -⇀↽- C

2 C -⇀↽- D

(a) What are the two equilibrium equations relating the two unknown extents of
reaction and the initial gas-phase compositions? You can assume the pressure
is low enough that the gases are ideal.

(b) What is the equilibrium gas-phase composition at 2.0 atm total pressure given
initial gas-phase composition yA = yB = 0.5, yC = yD = 0, and K◦1 = 1.0,
K◦2 = 2.5? Solve the two nonlinear equations numerically. If a computer is not
available, you can use trial and error (partial answer: yA = 0.31).

(c) What is the equilibrium gas-phase composition at 2.0 atm total pressure given
initial gas-phase composition yA = yC = 0.5, yB = yD = 0 (partial answer:
yA = 0.62)?

Exercise 3.4: Temperature effect on reaction equilibria

Hexane can equilibrate to methyl-substituted pentanes and methylcyclopentane ac-
cording to

hexane
k1-⇀↽-
k−1

methylcyclopentane+H2

hexane
k2-⇀↽-
k−2

2−methylpentane

Component ∆H600 K
f (kcal/mol) ∆G600 K

f (kcal/mol)

n-hexane −46.10 43.02

methylcyclopentane −31.69 45.76

2-methylpentane −47.63 42.39

hydrogen 0 0

in which ∆H600 K
f and ∆G600 K

f are the heats of formation and the Gibbs free energy

of formation of the compounds at 600 K from the elements, respectively [18]. Find
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T , P,nj

2

1

T , P, βnj

Figure 3.7: Two systems with identical intensive properties and dif-
ferent extensive properties.

the temperature where equal amounts of methylcyclopentane and 2-methylpentane

form if pure hexane is allowed to equilibrate at 1.0 atm total pressure. Also find the

composition of the mixture at this temperature. At this condition the hydrocarbons

are gases.

Exercise 3.5: Other equilibrium conditions

In the text, we focused our attention on minimizing Gibbs energy to determine the
chemical equilibrium at fixed temperature and pressure. To be fair to the other energy
functions, what system function would be at an extremum (maximum or minimum) if
the following were specified. Provide a short derivation verifying your result starting
with the second law, dStot ≥ 0.

(a) T and P are fixed.

(b) T and V are fixed.

(c) S and P are fixed.

(d) S and V are fixed.

(e) The system is insulated and V is fixed. In
addition to V , what other thermodynamic
property is fixed?

(f) The system is insulated and P is fixed. In
addition to P what other thermodynamic
property is fixed?

Exercise 3.6: Partial molar Gibbs energy and chemical potential

(a) Derive Equation 3.34 in the text. Consider first a system at equilibrium depicted
in Figure 3.7 at given T , P,nj , j = 1, . . . , ns . Now consider system 2 to be simply
β identical copies of system 1. The equilibrium state of system 2 therefore has
the same temperature and pressure (intensive properties) as system 1 but the
number of moles of each component (extensive property) changes by constant
factor β. System 2 is specified by the variables T , P, βnj , j = 1, . . . ns . Consider
a reversible change from system 1 to system 2, imagine slowly removing the
partition depicted in Figure 3.7, for example, and integrate Equation 3.1

∫ 2

1
dG =

∫ 2

1

−SdT + VdP +∑
j
µjdnj


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Because µj is an intensive variable, it remains constant during the process, along
with T and P . Perform the integration and express G2 and nj2 in terms of G1
and nj1 and β to complete the argument.

(b) Show this same argument produces the following result for any partial molar
property

X =
∑
j
Xjnj

in which X is any extensive thermodynamic property.

Exercise 3.7: Creating a second phase with reaction

Consider the gas-phase reaction

A+ B -⇀↽- C

Product C has a fairly low vapor pressure, so we are concerned about the formation
of a liquid phase in the reactor. The Clausius-Clapeyron equation well represents the
vapor pressure of component C as a function of temperature

lnP0
C = c −

∆Hvap

RT

The reactor is initially filled with an equimolar mixture of A and B. The equilibrium
constant at T = 298 K is K◦ = 8, the reaction is exothermic with ∆H◦ = −10 kcal/mol,
and the system pressure is P = 1.0 atm. Components A and B are not very soluble in
liquid C. The heat of vaporization of component C is ∆Hvap = 5 kcal/mol, and value of
the Clausius-Clapeyron constant is c = 7.53.

(a) Over what temperature range does the reactor contain a liquid phase?

(b) If the reaction is endothermic with ∆H◦ = 10 kcal/mol, over what temperature
range does the reactor contain a liquid phase?

Exercise 3.8: The van ’t Hoff relation

Methanol can be manufactured by the gas-phase reaction

CO+ 2H2 -⇀↽- CH3OH

A batch reactor is charged with a H2 and CO mixture at 1.0 atm and the pressure is
maintained at 1.0 atm. The initial mole fraction of H2 is 0.6 and CO is 0.4. At 400 K,
∆G◦ = −333 cal/mol and ∆H◦ = −22,580 cal/mol.

Determine the temperature at which the equilibrium mole fraction of H2 is 0.05.

Exercise 3.9: Semipermeable membrane and chemical reaction

Consider the membrane separation shown in Figure 3.8. An isothermal rigid vessel
initially contains pure component B at pressure P0 and temperature T0. It is separated
by a semipermeable membrane from a source of pure component A at pressure Pe. The
membrane is permeable to component A but not component B. The system undergoes
chemical reaction

2A -⇀↽- B
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P
T0

A, B mixture

2 A -⇀↽- B

A

Pe

pure A

Figure 3.8: Vessel with semipermeable membrane and chemical re-
action 2A -⇀↽- B.

inside the vessel due to the presence of a catalyst. No reaction occurs outside the
vessel. The equilibrium constant at temperature T0 isK◦ = 0.5. What is the equilibrium
composition and pressure in the vessel if Pe = 5.0 atm, P0 = 1.0 atm? An ideal-gas
mixture may be assumed.

Exercise 3.10: Reconciling kinetics and thermodynamics

Consider the gas-phase reaction

A
kf
-⇀↽-
kr

2B

Anticipating the discussion of kinetics in Chapter 5, we suppose everyone is familiar
with the classical rate expressions for the forward and reverse reactions

rf = kf cA, rr = kr c2
B

The forward rate expression follows from assuming that the unimolecular forward re-
action is proportional to the concentration of A molecules. The reverse rates expression
follows from assuming the bimolecular reverse reaction is proportional to the proba-
bility of collisions of two B molecules, which is proportional to c2

B given the typically
large numbers of molecules. The net reaction rate is given by the difference of forward
and reverse rates

r = kf cA − kr c2
B

The forward and reverse rate constants,kf , kr , quantify the fraction of collisions that
result in successful reactions. We expect these rate constants to depend on temperature
because the frequency and energy of collisions increases with the mean velocity of
the molecules which increases with temperature. A kinetic view of the equilibrium
condition is obtained by setting the net reaction rate to zero.

(a) In order for this kinetic view to be in agreement with the results of thermody-
namics, show that the rate constants also satisfy the restriction

kf
kr
= K◦

RTz
φ̂A
φ̂2
B

in which z is the compressibility factor of the mixture. What can you conclude
about the dependences of rate constants kf and kr on the composition?



3.7 Exercises 103

(b) If A and B form an ideal-gas mixture, what can you conclude about the depen-
dence of kf , kr on the composition?

Exercise 3.11: Gibbs energy of formation

Consider the Gibbs energy of formation of species j

G◦jf = G
◦
j −

ne∑
l=1

ajlG◦El

in whichG◦El is the Gibbs energy of element l and ajl is the formula number for element
l in species j. Multiply this equation by the stoichiometric coefficient νij and sum on
j to produce

ns∑
j=1

νijG◦jf = ∆G
◦
i −

ns∑
j=1

νij
ne∑
l=1

ajlG◦El (3.74)

Using the result of Exercise 2.8, verify Equation 3.41 in the text for the Gibbs energy of

reaction.

Exercise 3.12: Reactions going to completion

In a single-phase system, show the equilibrium condition∑
j
νijµj = 0, i = 1, . . . , nr

cannot be satisfied by any reaction going to completion and completely eliminating one
of the components. Hint: consider Equations 3.63 and 3.64.

Can reactions go to completion in a multiple-phase system? If no, prove it. If yes,
provide an example.

Exercise 3.13: Phase rule

Consider a system at equilibrium with n components and π phases. Let f be the
number of independently variable intensive properties of the composite system not
allowing chemical reactions. Gibbs’s phase rule states

f = n+ 2−π (3.75)

(a) In many textbooks, the following style of argument is used to derive the phase
rule. Specify the following intensive variables to define the state of the system:
temperature, pressure, and n− 1 mole fractions in each phase

Tk, Pk, xkj j = 1, . . . , n− 1 k = 1, . . . , π

Count these unknowns and show that there are π(n+ 1) unknowns.

Apply the set of equilibrium relations given in Equation 3.50. Count these equa-
tions and show there are (n+ 2)(π − 1) equations.

Call f the difference between the number of equations and the number of un-
knowns, and show that this difference produces Equation 3.75.

In particular, if f = 0, we have the same number of equations and unknowns,
and are supposed to conclude that the intensive variables of the equilibrium
state are therefore uniquely determined. What is missing from this argument?
Provide sets of two equations with two unknowns that have (i) no solution, (ii)
exactly one solution, and (iii) infinitely many solutions.
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(b) Rather than reject the phase rule, for which we have abundant experimental
evidence, let’s work a little harder to derive it, following the discussion by Fein-
berg [7]. Gibbs himself used the following style of argument [9, pp.87–96]. Start
with the usual set of variables

dG = −SdT + VdP +
∑
j
µjdnj

To obtain a relation among only intensive variables, differentiate Equation 3.67,
G =

∑
j µjnj , and subtract to obtain the Gibbs-Duhem relations

0 = −SdT + VdP −
∑
j
njdµj

which applies to every phase, so we can write the set of equations


S1 −V1 n1

1 · · · n1
n

S2 −V2 n2
1 · · · n2

n
...

...
...

. . .
...

Sπ −Vπ nπ1 · · · nπn





dT
dP
dµ1

...
dµn

 =


0
0
...
0

 (3.76)

The phase equilibrium relations tell us that the variables T , P, µj , j = 1, . . . , n are
equal in all phases. Therefore, the number of independently variable intensive
properties is simply the number of linearly independent solutions to the set of
linear equations listed in Equation 3.76.

So, how many linearly independent solutions does Equation 3.76 admit? Use the
result of Exercise 2.9 to show

f = n+ 2− rank(M)

in which M is the π × (n + 2) matrix appearing in Equation 3.76. Because the
rank can exceed neither the number of rows (π ) nor the number of columns
(n+ 2), we know that f is nonnegative, and that

f ≥ n+ 2−π

(c) What assumption about equilibrium states is required before we can conclude
rank(M) = π and therefore

f = n+ 2−π
See Noll [11] and Feinberg [7] for further discussion of this issue.

(d) Consider r linearly independent chemical reactions and add the reaction equi-
librium conditions to Equation 3.76. What are the dimensions of the modified
M matrix? Show the modified phase rule with reaction is

f = n+ 2−π − r

Notice we cannot state a phase rule with chemical reaction if we have not defined
linearly independent reactions, which is another motivation for defining linearly
independent reactions in Chapter 2.
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Exercise 3.14: Multiple reactions and ideal-gas equilibrium

We would like to show that, for multiple reactions, the equilibrium state of an ideal gas
is unique. The following argument extends the single-reaction discussion starting on
page 70 to multiple reactions [20, 16, 8]. In the single reaction case, we showed that the
Gibbs energy G̃(T , P, ε) has a positive second derivative in the single reaction extent,
or

∂2G̃
∂ε2 > 0

corresponding to Figure 3.2. To reduce notational complexity we consider T and P
constant in all partial derivatives of this problem. Assume we have nr linearly inde-
pendent reactions. Then we must show that the nr ×nr matrix of second derivatives,
H̃

H̃ik =
∂2G̃
∂εi∂εk

is a positive definite matrix, corresponding to Figure 3.5 for nr = 2.
A matrix H is positive definite if

xTHx > 0, for every x ≠ 0

A matrix H is positive semidefinite if

xTHx ≥ 0, for every x ≠ 0

(a) Consider the functionG(T , P,nj) =
∑
l µlnl and its first derivative ∂G/∂nj = µj .

Taking the second derivative gives a matrix H with elements

Hjl =
∂2G

∂nj∂nl
=
∂µj
∂nl

Use the ideal-gas chemical potential µj = G◦j + RT ln(Pyj) and show

∂µj
∂yl

= RT
yj
δjl in which δjl =

{
0, j ≠ l
1, j = l

Using the definition of mole fraction yj = nj/nT , show

∂yj
∂nl

=
δjl
nT
−
yj
nT

(b) Using the chain rule
∂µj
∂nl

=
∑
p

∂µj
∂yp

∂yp
∂nl

show

Hjl =
RT
nT

[
δjl
yj
− 1

]
(3.77)

(c) To show H is positive semidefinite, we must show that the following quadratic
form is nonnegative

xTHx =
∑
j

∑
l
xjHjlxl ≥ 0, for every x ≠ 0

Substitute Equation 3.77 into the above equation and show

xTHx = RT
nT

∑
l

x2
l
yl
−
∑
l
xl

2

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Next use the Cauchy inequality, Equation 3.32, to show the right-hand side is non-
negative. When is equality achieved in the Cauchy inequality? We have therefore
shown H is a positive semidefinite matrix. Note that it is not positive definite,
however.

(d) We now find the second derivatives of G̃ with respect to reaction extent. Given
the relation nj = nj0 +

∑
i νijεi use the chain rule to show

∂G̃
∂εi

=
∑
j

∂G
∂nj

νij
∂2G̃
∂εi∂εk

= H̃ik =
∑
j

∑
l
νijHjlνkl

Let H̃ be the matrix of second derivatives in extents. In matrix notation we have
shown

H̃ = νHνT

(e) Finally, use the Cauchy inequality again to show that H̃ is a positive definite
matrix.

Notice the same argument applies if we make the weaker assumption of an ideal mixture
rather than an ideal gas.

Exercise 3.15: Ammonia equilibrium

The following gas-phase reaction operates at equilibrium in a constant pressure reac-
tor.

N2 + 3H2 -⇀↽- 2NH3

The feed only contains a 3:1 molar mixture of H2:N2. The equilibrium constant at
298 K is K◦ = 5.27 × 105 and the heat of reaction, which may be assumed constant,
is ∆H = −23,000 cal/mol. Determine the temperature to operate the reactor at a
pressure of 300 atm that leads to yNH3 = 0.70, i.e., mole fraction of NH3 is 0.7.
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4
The Material Balance for Chemical

Reactors

4.1 General Mole Balance

Consider an arbitrary reactor volume element depicted in Figure 4.1,
which has inlet and outlet streams with volumetric flowrates Q0 and
Q1, respectively. The molar concentrations of component j in the two
streams are given by cj0 and cj1 and the production rate of component
j due to chemical reactions is Rj . The statement of conservation of
mass for this system takes the form,

rate of
accumulation

of component j

 =
{

rate of inflow
of component j

}
−
{

rate of outflow
of component j

}

+


rate of generation
of component j by
chemical reactions

 (4.1)

Rj

V

Q1

cj1

Q0

cj0

Figure 4.1: Reactor volume element.
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In terms of the defined variables, we can write Equation 4.1 as,

d
dt

∫
V
cjdV = Q0cj0 −Q1cj1 +

∫
V
RjdV (4.2)

Equation 4.2 applies to every chemical component in the system, j =
1,2, . . . , ns , including inerts, which do not take place in any reactions.
One can, of course, include volume elements with more than two flow
streams by summing with the appropriate sign over all streams enter-
ing and leaving the reactor. For the balances in this chapter, there will
be two or fewer flow streams. Notice also that we are assuming that
component j enters and leaves the reactor volume element only by
convection with the inflow and outflow streams. In particular, we are
neglecting diffusional flux through the boundary of the volume element
due to a concentration gradient. The diffusional flux will be considered
during the development of the material balance for the packed-bed re-
actor.

Rate expressions. To solve the reactor material balance, we require
an expression for the production rate, Rj , for each component. As
shown in Chapter 2, the production rate can be computed directly from
the stoichiometry and the reaction rates for all reactions, ri. Therefore
we require an expression for the reaction rates in terms of the concen-
trations of the species. This topic occupies the majority of Chapter 5.
For the purposes of illustrating the material balances in this chapter,
we simply use some common reaction-rate expressions without deriva-
tion. These rate expressions may be regarded as empirical facts until
the next chapter when the theoretical development of the rate expres-
sions is provided.

4.2 The Batch Reactor

The batch reactor is assumed to be well stirred, so there are no con-
centration gradients anywhere in the reactor volume. In this case it is
natural to consider the entire reactor contents to be the reactor volume
element as in Figure 4.2, and V = VR. Because the reactor is well stirred,
the integrals in Equation 4.2 are simple to evaluate,∫

VR
cjdV = cjVR (4.3)∫

VR
RjdV = RjVR (4.4)
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Rj

Figure 4.2: Batch reactor
volume element.

Because the reactor is charged with reac-
tants at t = 0, and nothing is added or
removed from the reactor until the stop-
ping time, the inflow and outflow stream
flowrates are zero, Q0 = Q1 = 0.

Substituting these results into Equa-
tion 4.2 gives the general batch reactor
design equation,

d
(
cjVR

)
dt

= RjVR (4.5)

Equation 4.5 applies whether the reactor
volume is constant or changes during the
course of the reaction. If the reactor vol-
ume is constant, which is sometimes a good approximation for liquid-
phase reactions, VR can be divided out of both sides of Equation 4.5 to
give

dcj
dt
= Rj (4.6)

Be sure to use Equation 4.5 rather than Equation 4.6 if the reactor vol-
ume changes significantly during the course of the reaction.

4.2.1 Analytical Solutions for Simple Rate Laws

In complex and realistic situations, the material balance for the batch
reactor must be solved numerically. However, if the reactor is iso-
thermal, and the rate laws are assumed to be quite simple, then an-
alytical solutions of the material balance are possible. Analytical solu-
tions are valuable for at least two reasons. First, due to the closed form
of the solution, analytical solutions provide insight that is difficult to
achieve with numerical solutions. The effect of parameter values on
the solution is usually more transparent, and the careful study of ana-
lytical solutions can often provide insight that is hard to extract from
numerical computations. Secondly, even if one must compute a numer-
ical solution for a problem of interest, the solution procedure should
be checked for errors by comparison to known solutions. Comparing a
numerical solution procedure to an analytical solution for a simplified
problem provides some assurance that the numerical procedure has
been constructed correctly. Then the verified numerical procedure can
be used with more assurance on the full problem for which no other
solution is available.
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The next several sections derive analytical solutions for some simple
rate laws. Of course, the batch reactor is assumed to be operating at
constant temperature in this discussion.

First-order, irreversible. Consider the first-order, irreversible reac-
tion

A
k
-→ B (4.7)

in which the reaction rate is given by r = kcA. The units of the first-
order rate constant are (time)−1. Application of the material balance
for a constant-volume reactor gives the following differential equation

dcA
dt

= −kcA (4.8)

in which the negative sign arises because the production rate of A is
RA = −r due to the stoichiometry of the reaction. Equation 4.8 requires
an initial condition to have a unique solution. We denote the initial
concentration of A in the reactor as cA0,

cA(t) = cA0, t = 0

The solution to the differential equation with this boundary condition
is

cA = cA0e−kt (4.9)

which is plotted in Figure 4.3 for several values of the rate constant
k. Because the reaction is irreversible, the A concentration decreases
exponentially from its initial value to zero with increasing time. The
rate constant determines the shape of this exponential decrease. Rear-
ranging Equation 4.9 and taking logarithms gives

ln(cA/cA0) = −kt

which is plotted by using a log scale in Figure 4.4. Notice one can get an
approximate value of the rate constant by calculating the slope of the
straight line given by ln(cA/cA0) versus t. This procedure is sometimes
recommended as a way to determine rate constants for first-order reac-
tions by plotting experimental concentration data and determining this
slope. As will be discussed in more detail in Chapter 9, this procedure
is a poor way to determine a rate constant and should be viewed only
as a rough approximation.
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Figure 4.3: First-order, irreversible kinetics in a batch reactor.
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Figure 4.4: First-order, irreversible kinetics in a batch reactor, log
scale.
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The B concentration is easily determined from the A concentration.
One could write down the material balance for component B,

dcB
dt

= RB = kcA (4.10)

and solve this differential equation with the initial condition for B,
cB(0) = cB0, after substituting the known solution for cA(t). It is sim-
pler to note, however, that the sum of concentrations A and B is a
constant. Adding Equations 4.8 and 4.10 gives

d(cA + cB)
dt

= RA + RB = 0

Therefore, cA + cB is a constant and independent of time. The value of
this constant is known at t = 0,

cA + cB = cA0 + cB0

which can be rearranged for the B concentration,

cB = cA0 + cB0 − cA (4.11)

First-order, reversible. Consider now the same first-order reaction,
but assume it is reversible

A
k1-⇀↽-
k−1

B (4.12)

and the reaction rate is r = k1cA − k−1cB . The material balances for A
and B are now

dcA
dt

= −r = −k1cA + k−1cB

dcB
dt

= r = k1cA − k−1cB

with the same initial condition cA(0) = cA0, cB(0) = cB0. Notice that
cA + cB remains constant, so cB can be computed from Equation 4.11.
Substituting Equation 4.11 into the material balance for A gives

dcA
dt

= −k1cA + k−1(cA0 + cB0 − cA)

which can be rearranged into

dcA
dt

+ (k1 + k−1)cA = k−1(cA0 + cB0) (4.13)
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Equation 4.13 is a nonhomogeneous, linear differential equation. The
solution can be written as the sum of what is called the particular solu-
tion and the solution to the homogeneous equation [2]. One particular
solution to the equation is the constant solution

cAp =
k−1

k1 + k−1
(cA0 + cB0)

You should substitute this back into Equation 4.13 to check that it is
indeed a solution. The homogeneous equation refers to the differential
equation with a zero forcing term on the right-hand side,

dcAh
dt

+ (k1 + k−1)cAh = 0

The solution to this equation already has appeared in the previous sec-
tion, cAh = a exp(−(k1 + k−1)t), in which a is an arbitrary constant
to be determined from the initial condition. The full solution to Equa-
tion 4.13 is then cA = cAh + cAp,

cA = ae−(k1+k−1)t + k−1

k1 + k−1
(cA0 + cB0) (4.14)

The constant a is now determined from the initial condition. Writing
Equation 4.14 for t = 0 gives

cA0 = a+
k−1

k1 + k−1
(cA0 + cB0)

Solving this equation for a yields

a = cA0 −
k−1

k1 + k−1
(cA0 + cB0)

Substituting in this value of a into Equation 4.14 and rearranging terms
gives the final solution

cA = cA0e−(k1+k−1)t + k−1

k1 + k−1
(cA0 + cB0)

[
1− e−(k1+k−1)t

]
(4.15)

The B concentration can be determined by substituting Equation 4.11
into 4.15 and rearranging, or more simply, by switching the roles of A
and B and k1 and k−1 in Reaction 4.12, yielding

cB = cB0e−(k1+k−1)t + k1

k1 + k−1
(cA0 + cB0)

[
1− e−(k1+k−1)t

]
(4.16)
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Figure 4.5: First-order, reversible kinetics in a batch reactor, k1 = 1,
k−1 = 0.5, cA0 = 1, cB0 = 0.

Equations 4.15 and 4.16 are plotted in Figure 4.5. Notice that with the
reversible reaction, the concentration of A does not go to zero as in
the irreversible case, but goes to a nonzero steady-state value. We next
calculate the values of the steady-state concentrations. Taking the limit
t -→ ∞ in Equation 4.15 gives

cAs =
k−1

k1 + k−1
(cA0 + cB0)

in which cAs is the steady-state concentration of A. Defining K1 =
k1/k−1 allows us to rewrite this as

cAs =
1

1+K1
(cA0 + cB0)

Performing the same calculation for cB gives

cBs =
K1

1+K1
(cA0 + cB0)
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These results are shown in Figure 4.5 for K1 = 1/0.5 = 2 and cA0 = 1,
cB0 = 0. Notice that because K1 is larger than 1, the forward reaction is
favored and the steady state favors the product B, cBs = 2/3, cAs = 1/3.
For small K1 values, the steady state would favor the reactant A.

Second-order, irreversible. Consider the irreversible reaction

A
k
-→ B (4.17)

in which the rate expression is second order, r = kc2
A. The units of the

second-order rate constant are (vol/mol)(time)−1. The material balance
and initial condition are

dcA
dt

= −kc2
A, cA(0) = cA0 (4.18)

This is our first nonlinear differential equation. Nonlinear differential
equations do not have analytical solutions in general, but certain ones
do. Equation 4.18 can be solved analytically because the equation is
separable. Dividing both sides by c2

A and putting the time differential
on the right-hand side gives

dcA
c2
A
= −kdt

in which only a function of cA appears on the left-hand side and only a
function of time appears on the right-hand side. Integrating both sides
between the initial condition and a final condition of interest gives∫ cA

cA0

dcA
c2
A
= −k

∫ t
0
dt

Performing the integrals gives

1
cA0

− 1
cA
= −kt

Finally solving for cA gives

cA = cA0 (1+ cA0kt)−1 (4.19)

You should check that this solution does indeed satisfy the differential
equation and initial condition.

Figure 4.6 displays this solution and the first-order solution with a
rate constant chosen such that the initial rates are equal. Notice that
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Figure 4.6: Second-order and first-order kinetics in a batch reactor;
for second-order, kcA0 = 1, and for first order, k = 1, so
the rates are equal initially.

although both solutions have the same qualitative features, the second-
order reaction decays more slowly to zero than the first-order reaction
at small concentration.

Consider another second-order, irreversible reaction,

A+ B
k
-→ C (4.20)

in which the rate law is r = kcAcB . The material balance for compo-
nents A and B are

dcA
dt

= −r = −kcAcB (4.21)

dcB
dt

= −r = −kcAcB (4.22)

In general we need to solve sets of nonlinear equations numerically, but
again the special structure of this problem allows an analytical solution.
Notice that we can subtract the material balance for B from the material
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balance for A to obtain
d(cA − cB)

dt
= 0

which implies that in this reaction, cA − cB is independent of time.
Because this value is known initially, one can solve for the concentration
of B in terms of A,

cB = cA − cA0 + cB0 (4.23)

Substituting this expression into the material balance for A yields

dcA
dt

= −kcA(cA − cA0 + cB0)

This equation also is separable and can be integrated to give (you should
work through these steps),

cA = (cA0 − cB0)
[

1− cB0

cA0
e(cB0−cA0)kt

]−1

, cA0 ≠ cB0 (4.24)

Notice that if cA0 = cB0, then from Equation 4.23 cA(t) = cB(t) for all
t and this case reduces to the solution previously presented in Equa-
tion 4.19. One also can obtain that result by taking the limit in Equa-
tion 4.24 as discussed in Exercise 4.11. Component B can be com-
puted from Equation 4.23, or by switching the roles of A and B in Re-
action 4.20, giving

cB = (cB0 − cA0)
[

1− cA0

cB0
e(cA0−cB0)kt

]−1

The concentration of component C also can be computed from cA by
noticing that the material balance for C is

dcC
dt

= kcAcB

and therefore, d(cA + cC)/dt = 0. The concentration of C is given by

cC = cA0 − cA + cC0

Notice that if cA0 > cB0, the steady-state solution is

cAs = cA0 − cB0, cBs = 0, cCs = cB0 + cC0

In this case, A starts out in excess and all of the B is depleted. Compo-
nent A remains at steady state even though the reaction is irreversible.
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Figure 4.7: Reaction rate versus concentration fornth-order kinetics,
r = kcnA , n ≥ 0, k = 1 for all orders.

The final amount of C is equal to its starting value plus all the B that is
present initially. For cB0 > cA0, the steady-state solution is

cAs = 0, cBs = cB0 − cA0, cCs = cA0 + cC0

In this case, B starts out in excess and all of the A is depleted. Compo-
nent B is present at steady state and the final amount of C is equal to
its starting value plus all the A that is present initially.

nth-order, irreversible. The nth-order rate expression r = kcnA is
displayed in Figure 4.7 for a variety of positive n values. The units of
the rate constant are (vol/mol)n−1(time)−1. The material balance for
Reaction 4.17 with nth-order reaction rate expression is

dcA
dt

= −r = −kcnA

This equation also is separable and can be rearranged to

dcA
cnA

= −kdt
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Performing the integration and solving for cA gives

cA =
[
c−n+1
A0 + (n− 1)kt

] 1
−n+1 , n ≠ 1

We can divide both sides by cA0 to obtain

cA
cA0

= [1+ (n− 1)k0t]
1

−n+1 , n ≠ 1 (4.25)

in which

k0 = kcn−1
A0

has units of (time)−1. The n = 1 case already is given in Equation 4.9,
which also can be recovered by taking the appropriate limit in Equa-
tion 4.25 as discussed in Exercise 4.11. Figure 4.8 shows the behavior
of cA versus t for values of n greater than one. Notice the larger the
value of n, the more slowly the A concentration approaches zero at
large time. Some care should be exercised when using Equation 4.25
for n < 1. First notice in Figure 4.9 that cA reaches zero in finite time
for n < 1. This time can be obtained by setting the term in brackets to
zero in Equation 4.25 yielding

tzero =
{

1/k0(1−n), n < 1
∞, n ≥ 1

(4.26)

Finally notice in Figure 4.10 that for n < 0, the rate decreases with in-
creasing reactant concentration; the reactant inhibits the reaction. Inhi-
bition reactions are not uncommon, but care must be exercised in using
this kinetic model when the concentrations are small. Notice the rate
becomes unbounded as cA approaches zero, which is not physically re-
alistic. When using an ODE solver to compute solutions that can reach
zero in finite time, it is often necessary to modify the right-hand sides
of the material balance as follows

dcA
dt

=
{
−kcnA , cA > 0

0, cA = 0
(4.27)

Note that this amendment of the material balance is equivalent to put-
ting a discontinuity in r(cA) at cA = 0 in Figure 4.10, so, again, models
with order less than one, and especially order less than zero, should
be examined carefully if the concentration reaches zero during model
solution.
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Figure 4.8: Batch reactor with nth-order kinetics, r = kcnA , k0 =
kcn−1

A0 = 1, n ≥ 1.
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Figure 4.9: Batch reactor with nth-order kinetics, r = kcnA , k0 =
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A0 = 1; note the concentration reaches zero in finite
time t = 1/(k0(1−n)) for n < 1.
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Figure 4.10: Reaction rate versus concentration for nth-order kinet-
ics, r = kcnA , n ≤ 0, k = 1 for all orders.

Two reactions in series. Consider the following two irreversible re-
actions,

A
k1-→ B (4.28)

B
k2-→ C (4.29)

Reactant A decomposes to form an intermediate B that can further react
to form a final product C. Let the reaction rates be given by simple first-
order rate expressions in the corresponding reactants,

r1 = k1cA, r2 = k2cB

The material balances for the three components are

dcA
dt

= RA = −r1 = −k1cA

dcB
dt

= RB = r1 − r2 = k1cA − k2cB

dcC
dt

= RC = r2 = k2cB
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The material balance for component A can be solved immediately to
give cA = cA0e−k1t as before. The material balance for B becomes

dcB
dt
+ k2cB = k1cA0e−k1t

The homogeneous solution is again cBh = a1e−k2t . The particular so-
lution can be guessed to be of the form cBp = a2e−k1t due to the form
of the forcing term on the right-hand side. Substituting the particular
solution into the differential equation and solving for a2 gives

a2 = cA0
k1

k2 − k1
, k1 ≠ k2

so the particular solution is known. The initial condition then deter-
mines a1,

cB(0) = cB0 = a1 + a2

Solving for a1 yields a1 = cB0 − k1cA0/(k2 − k1). Substituting a1 and
a2 into the cB solution gives

cB = cB0e−k2t + cA0
k1

k2 − k1

[
e−k1t − e−k2t

]
, k1 ≠ k2 (4.30)

Notice that the case of k1 = k2 can be handled by taking limits of Equa-
tion 4.30. To determine the C concentration, notice from the material
balances that d(cA + cB + cC)/dt = 0, which implies cA + cB + cC is
constant. Therefore cC can be computed from

cC = cA0 + cB0 + cC0 − cA − cB

The concentrations of A, B and C are displayed in Figure 4.11 for an
initial condition of pure reactant A. Notice that A decays exponentially
as before; B forms at intermediate times and then disappears leaving
only C as the final product. Exercise 4.10 asks for the optimal time to
quench the reaction to achieve the maximum amount of intermediate
B.

Two reactions in parallel. Consider next two parallel reactions of A
to two different products, B and C,

A
k1-→ B (4.31)

A
k2-→ C (4.32)
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Figure 4.11: Two first-order reactions in series in a batch reactor,
cA0 = 1, cB0 = cC0 = 0, k1 = 2, k2 = 1.

Assume the rates of the two irreversible reactions are given by r1 =
k1cA and r2 = k2cA. The material balances for the components are

dcA
dt

= RA = −r1 − r2 = −k1cA − k2cA

dcB
dt

= RB = r1 = k1cA

dcC
dt

= RC = r2 = k2cA

The material balance for A can be solved directly to give

cA = cA0e−(k1+k2)t (4.33)

Substituting cA(t) into the material balance for B gives

dcB
dt

= k1cA0e−(k1+k2)t

This equation is now separable and can be integrated directly to give

cB = cB0 + cA0
k1

k1 + k2

(
1− e−(k1+k2)t

)
(4.34)
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Figure 4.12: Two first-order reactions in parallel in a batch reactor,
cA0 = 1, cB0 = cC0 = 0, k1 = 1, k2 = 2.

Finally, component C can be determined from the condition that cA +
cB + cC is constant or by switching the roles of B and C, and k1 and k2

in Equation 4.34,

cC = cC0 + cA0
k2

k1 + k2

(
1− e−(k1+k2)t

)
(4.35)

These results are plotted in Figure 4.12. Notice that because the two
parallel reactions compete for the same reactant, A, the rate constants
determine which product is favored. Large values of k1/k2 favor the
formation of component B compared to C and vice versa.

When two or more reactions are in this kind of competition, it is
convenient to define selectivity, yield, and conversion to quantify the
efficiency of the reaction in forming a desired final product. There are
several ways to define selectivity, yield and conversion. However, these
terms are often invoked without careful definition in the hope that the
meaning is clear from context. This practice often confuses the issue
and should be avoided.
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Point selectivity: The point (or instantaneous) selectivity is the ratio
of the production rate of one component to the production rate
of another component.

Overall selectivity: The overall selectivity is the ratio of the amount of
one component produced to the amount of another component
produced.

Yield: The yield of component j is the fraction of a reactant that is
converted into component j.

Conversion: Conversion is normally defined to be the fraction of a
component that has been converted to products by the reaction
network. Conversion has several definitions and conventions. It
is best to state the definition in the context of the problem being
solved.

4.3 The Continuous-Stirred-Tank Reactor (CSTR)

Q

cj

Qf

cjf Rj

Figure 4.13: CSTR volume element.

The continuous-stirred-tank re-
actor (CSTR) is also a well-stirred
reactor so there are no concen-
tration gradients anywhere in
the reactor volume. We again
consider the entire reactor con-
tents to be the reactor volume
element as in Figure 4.13, and
V = VR. Since the reactor is well
stirred, the relations in Equa-
tions 4.3 and 4.4 apply to the
CSTR also. The difference be-
tween the CSTR and batch reac-
tor is the flow streams shown in
Figure 4.13. We denote the feed stream with flowrate Qf and com-
ponent j concentration cjf . The outflow stream is flowing out of a
well-mixed reactor and is therefore assumed to be at the same concen-
tration as the reactor. Its flowrate is denoted Q. Writing Equation 4.2
for this reactor gives,

d
(
cjVR

)
dt

= Qf cjf −Qcj + RjVR, j = 1, . . . , ns (4.36)
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If the reactor volume is constant and the volumetric flowrates of the
inflow and outflow streams are the same, Equation 4.36 reduces to

dcj
dt
= 1
τ
(cjf − cj)+ Rj (4.37)

in which
τ = VR/Qf

is called the mean residence time of the CSTR. The residence-time dis-
tribution will be discussed further in Chapter 8. We refer to this bal-
ance as the constant-density case. It is often a good approximation for
liquid-phase reactions.

The steady state of the CSTR is described by setting the time deriva-
tive in Equation 4.36 to zero,

0 = Qf cjf −Qcj + RjVR (4.38)

Conversion of reactant j is defined for a steady-state CSTR as follows

xj =
Qf cjf −Qcj
Qf cjf

(steady state) (4.39)

One can divide Equation 4.38 through byQf to obtain for the constant-
density case

cj = cjf + Rjτ (steady state, constant density) (4.40)

Example 4.1: Reaching steady state in a CSTR

Consider a first-order, liquid-phase reaction in an isothermal CSTR
shown in Figure 4.13

A
k
-→ 2B r = kcA

the feed concentration of A is cAf = 2 mol/L, the residence time of the
reactor is τ = 100 min, and the rate constant is k = 0.1 min−1.

1. Find the steady-state concentration of A in the effluent for the
given feed.

2. Plot the concentration of A versus time for constant feed concen-
tration cAf = 2 mol/L if the reactor is initially filled with an inert
so cA0 = 0 mol/L.
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3. Plot the concentration of A versus time for constant feed concen-
tration cAf = 2 mol/L if the reactor is initially filled with feed so
cA0 = 2 mol/L.

Solution

Part 1. Because the reaction is isothermal and takes place in the liq-
uid phase, we assume the fluid density is constant. Starting with Equa-
tion 4.40 for component A

cA = cAf + RAτ
Substituting the production rate RA = −kcA and solving for cA gives
the steady-state concentration

cAs =
cAf

1+ kτ
Substituting in the numerical values gives

cAs =
2 mol/L

1+ (0.1 min−1)(100 min)
= 0.182 mol/L

Parts 2 and 3. The constant-density mass balance for component A
is given by Equation 4.37

dcA
dt

= 1
τ

(
cAf − cA

)
− kcA (4.41)

cA(0) = cA0

Equation 4.41 can be arranged in the form

dcA
dt

+
(

1
τ
+ k

)
cA =

1
τ
cAf

a linear differential equation of the same form as Equation 4.13, which
was solved earlier. Exercise 4.6 provides another convenient method
for solving linear differential equations analytically. Using either of
these methods, we find the analytical solution

cA(t) = cA0e−((1/τ)+k)t +
cAf

1+ kτ
[
1− e−((1/τ)+k)t

]
(4.42)

Figure 4.14 shows the transient solution for the two initial conditions
cA0 = 0 and cA0 = 2 mol/L. Notice both solutions converge to the same
steady-state solution as time increases even though the starting condi-
tions are quite different. We will see in Chapter 6 that the nonisother-
mal reactor behavior can be much more complex than that shown in
Figure 4.14. □
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Figure 4.14: Reaching steady state in a CSTR.

Example 4.2: Phenol production in a CSTR

Next we consider a simple reactor-sizing problem. Consider the reac-
tion of cumene hydroperoxide (CHP) to phenol and acetone

(C6H5)C(CH3)2OOH -→ (C6H5)OH+ (CH3)2CO

This liquid-phase reaction is conducted using a small amount of acid
as a catalyst [13], and the reaction rate is first order in the concentra-
tion of CHP and acid [5]. For the reactor temperature (85◦C) and feed
conditions, the reaction rate is given by r = kcCHP, which means this
is a pseudo-first-order reaction. Find the reactor volume to achieve
85% conversion of CHP at steady state. The flowrate into the reactor is
Qf = 26.9 m3/hr and k = 4.12 hr−1.

Solution

The reactants and products are liquids at 85◦C and the volume change
is neglected. Therefore we assume Q = Qf and Equation 4.40 applies,

cA = cAf + RAτ
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where A designates CHP. Substituting in for the production rate of CHP,
RA = −kcA, and solving for the CHP concentration gives

cA =
cAf

1+ kτ (4.43)

The conversion of CHP (for Q = Qf ) is

xA =
cAf − cA
cAf

= 1− cA
cAf

Substituting Equation 4.43 into the above equation gives

xA =
kτ

1+ kτ
Solving for τ in terms of conversion gives

τ = xA
k(1− xA)

Substituting the relation VR = Qfτ and solving for VR gives

VR =
QfxA

k(1− xA)
Substituting in the known values gives the required CSTR volume

VR =
(26.9 m3/hr)(0.85)
(4.12 hr−1)(0.15)

= 37 m3

□

4.4 The Semi-Batch Reactor

The semi-batch reactor is a cross between the batch reactor and CSTR.
The semi-batch reactor is initially charged with reactant, like the batch
reactor, but allows a feed addition policy while the reaction takes place,
like the CSTR. Normally there is no outflow stream. We then set Q = 0
in Equation 4.36 to obtain for the semi-batch reactor

d
(
cjVR

)
dt

= Qf cjf + RjVR, j = 1, . . . , ns (4.44)

One may choose to operate a semi-batch reactor to control the reaction
rate or heat release during reaction by slowly adding one of the reac-
tants in the feed stream. Compared to the batch reactor, the semi-batch
reactor provides more complete use of the reactor volume in reactions
such as polymerizations that convert from lower density to higher den-
sity during the course of the reaction.
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4.5 Volume Change Upon Reaction

The preceding examples in the batch reactor and CSTR sections were
solved under the simplifying assumption that the composition of the
reaction mixture has no effect on the density of the mixture. This as-
sumption is useful for ideal-liquid mixtures in which the pure compo-
nents have similar densities, and is a correct statement for ideal-gas
mixtures. In this section we establish the appropriate modeling equa-
tions for the general case. We start with the material balance for a
well-mixed reactor, Equation 4.36,

d
(
cjVR

)
dt

= Qf cjf −Qcj + RjVR, j = 1,2, . . . , k, . . . ns (4.45)

Equation 4.45 covers the batch, CSTR and semi-batch reactors, depend-
ing on how we specify Qf and Q.

If we multiply Equation 4.45 by the molecular weight of species j
and sum over all species we obtain,

d(
∑
j cjMjVR)
dt

= Qf
∑
j
cjfMj −Q

∑
j
cjMj +

∑
j
RjMjVR (4.46)

The term
∑
j cjMj is the mass density of the reactor contents, which

we denote ρ

ρ =
ns∑
j=1

cjMj (4.47)

The term
∑
j cjfMj is the mass density of the feedstream, ρf . We know

that conservation of mass in chemical reactions implies
∑
j RjMj = 0

(see Example 2.5). Substitution into Equation 4.46 leads to

d(ρVR)
dt

= Qfρf −Qρ (4.48)

Equation 4.48 is clearly a total mass balance, in which the total mass in
the reactor changes in time due to the inflow and outflow of mass. No-
tice that chemical reactions play no role in the total mass balance. The
total mass balance is the starting point for the derivation of governing
equations for numerous special situations in which the density and the
volume of the reactor change, depending on the physical properties of
the reaction mixture and the manner in which the reactor is operated.

Notice that because the total mass balance is a linear combination
of the mole balances, it is not independent information. We may some-
times prefer to include the mass balance in place of one of the mole
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balances, j = k, to ensure that numerical roundoff does not cause small
violations of the mass balance. The concentration of the kth species is
then obtained by subtraction

ck =
ρ −

∑
j≠k cjMj
Mk

Notice that one should always replace a high-concentration species
mole balance with the total mass balance so that catastrophic loss of
precision does not occur in the subtraction to obtain ck.

If we have a single-phase system at equilibrium, the molar concen-
trations of the components, and the temperature and the pressure com-
pletely specify all intensive variables of the system. In this chapter we
consider the temperature and the pressure to be known, fixed quan-
tities. Therefore, the density of the reaction mixture, which is an in-
tensive variable, is known if the cj are known. This relationship is one
form of the equation of state for the mixture

ρ = f̃ (T , P, c1, c2, . . . , cns ) (4.49)

Substituting the definition of density, Equation 4.47, into Equation 4.49
shows that the equation of state is a single constraining relationship on
the set of possible mixture concentrations. Because T and P are fixed
constants, it is convenient to express the equation of state as

f(c1, c2, . . . , cns ) = 0 (4.50)

For example, we could express the equation of state in terms of the
partial molar volumes as ∑

j
cjV j = 1

in which V j is the partial molar volume of component j in the mixture.
The partial molar volumes are functions of T , P and cj . If we assume
an ideal mixture, this reduces to∑

j
cjV ◦j = 1, ideal mixture

in which V ◦j is the specific volume of pure component j, which is a func-
tion of only T and P . We shall assume that a thermodynamic equation
of state is valid even when the reactor is not at equilibrium. We briefly
review the situation when the density does not vary with composition
and then treat the general case.
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Constant density. Because the mixture density, ρ, is independent of
composition, it does not vary with time either and we can set it to the
feed value,

ρ = ρf
The total mass balance then reduces to

dVR
dt

= Qf −Q (4.51)

which is sometimes referred to as a “volume balance.” This terminol-
ogy should be avoided because one cannot write a conservation state-
ment for volume. The differential equation for the reactor volume is
a consequence of the mass balance and the simplifying assumption of
constant-mixture density. The three reactor types we have considered
thus far are summarized below.

• Batch reactor. For the batch reactor, Q = Qf = 0. We can there-
fore conclude from Equation 4.51 that a batch reactor with con-
stant density has constant volume.

• CSTR (dynamic and steady state). If the outflow of the CSTR is
regulated so that the CSTR has constant volume, then we can con-
clude from Equation 4.51 that Q = Qf .

• Semi-batch reactor. In the semi-batch reactor, the reactor is filled
during operation so Qf is specified and positive for some time
and Q = 0. The solution to Equation 4.51 then determines the
change in volume of the reactor during the filling operation.

Nonconstant density. In the general case, we can consider the follow-
ing variables to fully determine the state of the reactor: T , P,nj , VR. We
assume throughout that the feed conditions, Qf , cjf , are specified. In
the nonconstant density case, we switch to nj from cj because the ma-
terial balance is fundamentally a balance on total moles in the reactor,
not molar concentrations. If we know the nj and VR, then the values of
the cj are known, as required in the reaction rate expressions and the
equation of state. To specify the right-hand sides of the material bal-
ances, Equation 4.45, we also require the value of Q. Because T , P are
regarded as known, fixed constants in this chapter, the set of unknowns
is nj , VR,Q. We therefore have ns + 2 unknowns to determine and re-
quire ns +2 equations. We have the ns equations from the component
mole balances, Equations 4.45. The equation of state, Equation 4.50,
provides one additional equation. The final equation is provided by
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a statement of reactor operation. We consider here three important
cases of reactor operations.

1. Constant-volume reactor. The constant-volume reactor can be
achieved by allowing overflow of the reactor to determine flow-
rate out of the reactor. In this situation, VR is specified as the
additional equation.

2. Constant-mass reactor. The constant-mass reactor can be achieved
if a differential pressure measurement is used to control the flow-
rate out of the reactor and the reactor has constant cross-sectional
area. The difference in pressure between the top and bottom of
the reactor is determined by ρh in which h is the height differ-
ence. If the cross-sectional area is independent of height, then the
pressure difference is also proportional to ρVR, the total mass in
the reactor. So if the flow controller maintains constant pressure
difference, it also maintains constant mass. In this situation ρVR
is specified as the additional equation.

3. Flowrate out of the reactor is specified. This type of operation
may be achieved if the flowrate out of the reactor is controlled
by a flow controller. In this case Q(t) is specified. A semi-batch
reactor is operated in this way withQ = 0 until the reactor is filled
with the reactants.

The calculations for the nonconstant-density case may be greatly
simplified by using a differential-algebraic equation (DAE) solver. All
three cases enumerated above can be handled by modifying the residual
equations provided to the DAE solver. We do not have to differentiate
the equation of state or perform other algebraic manipulations that are
required if one uses an ordinary differential equation (ODE) solver.

In the general case, to produce a differential equation for the reactor
volume, we begin by taking the differential of the equation of state
f(cj) = 0 to obtain

df
dt
=
∑
j

∂f
∂cj

dcj
dt
=
∑
j
fj
dcj
dt
= 0 (4.52)

in which

fj =
∂f
∂cj

Now differentiating the product term (cjVR) gives the relation

VR
dcj
dt
= d(cjVR)

dt
− cj

dVR
dt
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Multiplying by fj and summing gives

VR
∑
j
fj
dcj
dt
=
∑
j
fj
d(cjVR)
dt

−
∑
j
fjcj

dVR
dt

= 0

in which we have used Equation 4.52. Substituting the material balance
into this equation and solving for the rate of change of reactor volume
gives

dVR
dt

=
∑
j fj

(
Qf cjf −Qcj + RjVR

)
∑
j fjcj

Expressing the production rate in terms of the reaction rate yields

dVR
dt

= Qf
∑
j fjcjf∑
j fjcj

−Q+
∑
i∆firiVR∑
j fjcj

(4.53)

in which ∆fi is defined to be

∆fi =
∑
j
νijfj =

∑
j
νij

∂f
∂cj

which is a change in a derivative property upon reaction. For example, if
an ideal mixture is assumed for the equation of state, fj = V ◦j , the pure
component specific volumes, and ∆fi = ∆V ◦i , the change in specific
volume upon reaction i.

The constant-density and ideal-mixture cases for the three reactor
operations are summarized in Table 4.1. We have ns+2 unknowns and
the component balances at the top of Table 4.1 provide ns equations.
The remaining two equations for the constant-mass, constant-volume
and specified-outflow operations are provided lower in the table. In
these cases, these two extra equations are either differential equations
or merely specify the values of constants.

The general equation of state case for the three reactor operations
is summarized in Table 4.2. The ns component balances are the same
as in Table 4.1. But for the remaining two equations, we have a choice.
We can either specify algebraic equations to obtain DAEs for the model,
or differentiate the algebraic relations to obtain ODEs. DAEs may be
preferred because the ODEs require the partial derivatives of the equa-
tion of state, fj = ∂f/∂cj , as shown in Equation 4.53. Depending on
the form of the equation of state, these derivatives may be complex ex-
pressions. In the following example, we set up and solve a nonconstant-
density case, in which the products are denser than the reactants.
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Example 4.3: Semi-batch polymerization

Consider a solution polymerization reaction, which can be modeled as
a first-order, irreversible reaction

M
k
-→ P r = kcM

A 20 m3 semi-batch reactor is initially charged with solvent and initia-
tor to half its total volume. A pure monomer feed is slowly added at
flowrate Qf0 = 1 m3/min to fill the reactor in semi-batch operation to
control the heat release.

Consider two cases for the subsequent reactor operation.

1. The monomer feed is shut off and the reaction goes to completion.

2. The monomer feed is adjusted to keep the reactor filled while the
reaction goes to completion.

Calculate the total polymer mass production, and the percentage in-
crease in polymer production achieved in the second operation. You
may assume an ideal mixture; the densities of monomer and polymer
are ρM = 800 kg/m3, ρP = 1100 kg/m3. The monomer molecular
weight is MM = 100 kg/kmol, and the rate constant is k = 0.1 min−1.

Solution

While the reactor is filling, the monomer mole balance is

d(cMVR)
dt

= Qf0cMf − kcMVR

in which cMf = ρM/MM is given, and Qf = Qf0 is constant during the
filling operation. We denote the total number of moles of monomer by
M = cMVR, and can write the monomer balance as

dM
dt
= Qf0cMf − kM (4.54)

M(0) = 0

For an ideal mixture, the volume is given by

dVR
dt

= Qf0 +∆VkM (4.55)

VR(0) = 10 m3
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in which
∆V = (1/ρP − 1/ρM)MM

To compute the polymer mass, we note from the stoichiometry that the
mass production rate of polymer R̃P is

R̃P = −RMMM

so the mass balance for total polymer P̃ is given by

dP̃
dt
= R̃pVR = kcMMMVR = (kMM)M (4.56)

Let t1 be the time that the reactor fills. Equation 4.54 is of the same
form as Equation 4.13 and can be solved in the same manner, yielding

M(t) =
Qf0cMf
k

(
1− e−kt

)
, t ≤ t1 (4.57)

Substituting this result into Equations 4.55 and 4.56 and integrating
gives

VR(t) = VR(0)+
(

1+∆VcMf
)
Qf0 t

−
∆VQf0cMf

k

(
1− e−kt

)
, t ≤ t1 (4.58)

P̃ (t) = Qf0cMfMM
(
t − 1

k
(1− e−kt)

)
, t ≤ t1 (4.59)

We can solve Equation 4.58 for the time t1 when the reactor fills, VR(t1) =
20 m3. Note we have a single nonlinear equation that must be solved
numerically. Substituting in the numerical values and solving for t1
yields

t1 = 11.2 min

Note the reactor would have filled in 10 min if the density were con-
stant. The extra time reflects the available volume created by convert-
ing some of the monomer to polymer during filling. After t1 we con-
sider the two operations.

Operation 1. In the first operation, Qf = 0 after t1. Substituting this
value of Qf into Equations 4.54 and 4.55 gives

dM
dt
= −kM (4.60)

dVR
dt

= ∆VkM (4.61)
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in which initial condition M(t1) is given by substituting t1 in Equa-
tion 4.57, and VR(t1) = 20 m3. We solve Equation 4.60 to obtain

M(t) = M(t1)e−k(t−t1), t1 ≤ t

and substitution into Equations 4.61 and 4.56 and integration gives

VR(t) = VR(t1)+∆VM(t1)
(

1− e−k(t−t1)
)
, t1 ≤ t (4.62)

P̃ (t) = P̃ (t1)+MMM(t1)
(

1− e−k(t−t1)
)
, t1 ≤ t (4.63)

Notice the reactor volume decreases after t1 because ∆V is negative.
These results are plotted in Figures 4.15–4.18.

Operation 2. Because the reactor volume is constant, we can solve
Equation 4.55 for the feed flowrate during the secondary monomer ad-
dition

Qf = −∆VkM

Substitution of this flowrate into Equation 4.54 gives

dM
dt
= −(1+∆VcMf )kM

which can be solved to give

M(t) = M(t1) exp
(
−(1+∆VcMf )k(t − t1)

)
, t1 ≤ t

The polymer mass can be calculated by substituting this result into
Equation 4.56 and integrating

P̃ (t) = P̃ (t1)+
MMM(t1)

(1+∆VcMf )
[
1− exp

(
−(1+∆VcMf )k(t − t1)

)]
, t1 ≤ t

These results also are plotted in Figures 4.15–4.18. Notice the final
polymer production is larger in Operation 2 because of the extra mon-
omer addition. We can perform an independent, simple calculation of
the total polymer in Operation 2. In Operation 2, 10 m3 of polymer
are produced because in an ideal mixture, the volumes are additive.
Therefore

P̃2 = (VR − VR0)ρP = 10 m3 × 1100 kg/m3 = 11000 kg
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Figure 4.15: Semi-batch reactor volume for primary monomer ad-
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Figure 4.17: Semi-batch reactor monomer content for primary
monomer addition (Operation 1) and primary plus sec-
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in good agreement with the long-time solution for Operation 2 in Fig-
ure 4.18. For Operation 1, we have no simple calculation, so we take
the limit as t -→ ∞ in Equation 4.63 to obtain

P̃1 = P̃ (t1)+MMM(t1)

Both P̃ (t1) and M(t1) can be evaluated by substituting t1 = 11.2 min
in Equations 4.57 and 4.59, respectively. The results are

P̃ (t1) = 3582 kg, M(t1) = 53.95 kmol, P̃1 = 8977 kg

Note the value P̃1 = 8977 kg is in good agreement with the long-time
solution for Operation 1 in Figure 4.18. Finally, the increase in produc-
tion rate is

P̃2 − P̃1

P̃1
× 100% = 22.5%

By using the volume of the reactor more efficiently, the total polymer
production increases 22.5%. □

4.6 The Plug-Flow Reactor (PFR)

Plug flow in a tube is an ideal-flow assumption in which the fluid is
well mixed in the radial and angular directions. The fluid velocity is
assumed to be a function of only the axial position in the tube. Plug
flow is often used to approximate fluid flow in tubes at high Reynolds
number. The turbulent flow mixes the fluid in the radial and angular
directions. Also in turbulent flow, the velocity profile is expected to be
reasonably flat in the radial direction except near the tube wall.

4.6.1 Thin-Disk Volume Element

Because of the plug-flow assumption, it is natural to take a thin disk for
the reactor volume element as shown in Figure 4.19. The concentration
does not change over the volume element because there is complete
mixing in the radial and angular directions and because the axial dis-
tance ∆z is small. The element has volume ∆V = Ac∆z in which Ac
is the tube cross-sectional area. Writing Equation 4.2 in this situation
gives

∂
(
cj∆V

)
∂t

= cjQ
∣∣∣
z
− cjQ

∣∣∣
z+∆z + Rj∆V
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Figure 4.19: Plug-flow reactor volume element.

Dividing the above equation by ∆V and taking the limit as ∆V goes to
zero yields,

∂cj
∂t︸ ︷︷ ︸

accumulation

= −
∂
(
cjQ

)
∂V︸ ︷︷ ︸

convection

+ Rj︸︷︷︸
reaction

(4.64)

If the tube has constant cross section, Ac , then velocity, v , is related
to volumetric flowrate by v = Q/Ac , and axial length is related to tube
volume by z = V/Ac , so Equation 4.64 can be rearranged to the familiar
form [1, p.584]

∂cj
∂t
= −

∂
(
cjv

)
∂z

+ Rj (4.65)

4.6.2 Steady-State Operation

One is often interested in the steady-state operation of a plug-flow re-
actor. Setting the time derivative in Equation 4.64 to zero gives,

d(cjQ)
dV

= Rj (4.66)

The product cjQ = Nj is the total molar flow of component j. One also
can express the PFR mole balance in terms of the molar flow,

dNj
dV

= Rj (4.67)
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4.6.3 Volumetric Flowrate for Gas-Phase Reactions

To use Equation 4.67 for designing a gas-phase reactor, one has to be
able to relate the volumetric flowrate, Q, to the molar flows, Nj , j =
1,2, . . . , ns . The important piece of information tying these quantities
together is, again, the equation of state for the reaction mixture. The
equation of state is a function relating the system temperature, pres-
sure, and all molar concentrations, f(T , P, cj) = 0. Because the molar
flow and concentration are directly related,

Nj = cjQ (4.68)

the equation of state is also a relation between temperature, pressure,
molar flows, and volumetric flowrate. For example, the ideal-gas equa-
tion of state, c = P/RT , can be stated in terms of molar concentrations,
cj , as ∑

j
cj =

P
RT

In terms of molar flows, the equation of state is∑
j Nj
Q

= P
RT

One can solve the previous equation for the volumetric flowrate,

Q = RT
P

∑
j
Nj (4.69)

Equation 4.69 is used with the mole balance, Equation 4.67, to solve
gas-phase PFR problems under the ideal-gas assumption. To evaluate
the concentrations for use with the reaction rate expressions, one then
rearranges Equation 4.68 to obtain

cj =
Nj
Q
= P
RT

Nj∑
j Nj

(4.70)

4.6.4 Volumetric Flowrate for Liquid-Phase Reactions

Consider the equation of state for a liquid-phase system to be arranged
in the form

ρ = f(T , P, cj)
The mass density is related to the volumetric flowrate and total mass
flow, M =

∑
j NjMj , via

M = ρQ (4.71)
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Multiplying Equation 4.67 by Mj and summing on j produces

dM
dV

= 0, M(0) = Mf

in whichMf is the feed mass flowrate. The total mass balance indicates
that the total mass flow is constant with respect to axial position in the
PFR because chemical reaction cannot alter the total mass flow. We can
solve for the volumetric flowrate by rearranging Equation 4.71

Q =
Mf
ρ

(4.72)

If the liquid density is considered constant, ρ = ρf , then

Q = Qf , constant density (4.73)

and the volumetric flowrate is constant and equal to the feed value.
Equation 4.73 is used often for liquid-phase reactions. If the density
variation is significant, however, Equation 4.72 should be used instead.
Finally, if we denote the time spent in the tube by τ = V/Q, if Q is
constant, we can rewrite Equation 4.66 as

dcj
dτ

= Rj , constant flowrate (4.74)

which is identical to the constant-volume batch reactor, Equation 4.6.
In other words, for the constant-flowrate case, the steady-state profile
in a PFR starting from a given feed condition is also the transient profile
in a batch reactor starting from the equivalent initial condition.

4.6.5 Single Reaction Systems

Example 4.4: Changing flowrate in a PFR

A pure vapor stream of A is decomposed in a PFR to form B and C

A
k
-→ B+ C

Determine the length of 2.5 cm inner-diameter tube required to achieve
35% conversion of A. The reactor temperature is 518◦C and the pressure
is 2.0 atm. Assume the pressure drop is negligible. The reaction rate is
first order in A, k = 0.05 s−1 at the reactor temperature, and the feed
flowrate is 35 L/min.
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Solution

Writing the mole balance for component A gives

dNA
dV

= RA

The production rate of A is RA = −r = −kcA. Substituting the produc-
tion rate into the above equation gives,

dNA
dV

= −kNA/Q (4.75)

The volumetric flowrate is not constant, so we use Equation 4.69, which
assumes an ideal-gas equation of state,

Q = RT
P
(NA +NB +NC) (4.76)

The ideal-gas assumption is reasonable at this reactor temperature and
pressure. One can relate the molar flows of B and C to A using the
reaction stoichiometry. The mole balances for B and C are

dNB
dV

= RB = r ,
dNC
dV

= RC = r

Adding the mole balance for A to those of B and C gives

d(NA +NB)
dV

= 0,
d (NA +NC)

dV
= 0

The stoichiometry does not allow the molar flow NA +NB or NA +NC
to change with position in the tube. Because both of these quantities
are known at the tube entrance, one can relate NB and NC to NA,

NA +NB = NAf +NBf
NA +NC = NAf +NCf

Rearranging the previous equations gives,

NB = NAf +NBf −NA
NC = NAf +NCf −NA

Substituting the relations for NB and NC into Equation 4.76 gives

Q = RT
P

(
2NAf +NBf +NCf −NA

)



4.6 The Plug-Flow Reactor (PFR) 149

Because the feed stream is pure A, NBf = NCf = 0, yielding

Q = RT
P

(
2NAf −NA

)
Substituting this expression in Equation 4.75 gives the final mole bal-
ance,

dNA
dV

= −k P
RT

NA
2NAf −NA

The previous differential equation can be separated and integrated,∫ NA
NAf

2NAf −NA
NA

dNA =
∫ V

0
− kP
RT

dV

Performing the integration gives,

2NAf ln
(
NA/NAf

)
+
(
NAf −NA

)
= − kP

RT
V

The conversion of component j for a plug-flow reactor operating at
steady state is defined as

xj =
Njf −Nj
Njf

Because we are interested in the V corresponding to 35% conversion
of A, we substitute NA = (1 − xA)NAf into the previous equation and
solve for V,

V = −RT
kP
NAf [2 ln(1− xA)+ xA]

BecauseQf = NAfRT/P is given in the problem statement and the tube
length is desired, it is convenient to rearrange the previous equation to
obtain

z = −
Qf
kAc

[2 ln(1− xA)+ xA]

Substituting in the known values gives

z = −
(

35× 103 cm3/min
0.05 s−1 60 s/min

)(
4

π(2.5 cm)2

)
[2 ln(1− .35)+ .35]

z = 1216 cm = 12.2 m

□
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4.6.6 Multiple-Reaction Systems

The modeler has some freedom in setting up the material balances for
a plug-flow reactor with several reactions. The most straightforward
method is to write the material balance relation for every component,

dNj
dV

= Rj , j = 1,2, . . . , ns

Recall the production rate of each species is a simple linear combination
of the reaction rates times the appropriate stoichiometric coefficients,

Rj =
nr∑
i=1

νijri, j = 1,2, . . . , ns

The reaction rates are expressed in terms of the species concentrations.
The cj are calculated from the molar flows with Equation 4.68, and Q
is calculated from Equation 4.69, if an ideal-gas mixture is assumed.

Example 4.5: Benzene pyrolysis in a PFR

Hougen and Watson [10] analyzed the rate data for the pyrolysis of
benzene by the following two reactions. Diphenyl is produced by the
dehydrogenation of benzene,

2C6H6
k1-⇀↽-
k−1

C12H10 +H2 (4.77)

Triphenyl is formed by the secondary reaction,

C6H6 + C12H10
k2-⇀↽-
k−2

C18H14 +H2 (4.78)

The reactions are assumed to be elementary so that the rate expressions
are

r1 = k1

(
c2
B −

cDcH
K1

)
r2 = k2

(
cBcD −

cTcH
K2

)
(4.79)

in which the subscripts, B, D, T and H represent benzene, diphenyl,
triphenyl and hydrogen, respectively. Calculate the tube volume re-
quired to reach 50% total conversion of the benzene for a 60 kmol/hr
feed stream of pure benzene. The reactor operates at 1033 K and
1.0 atm. Plot the mole fractions of the four components versus re-
actor volume. The rate and equilibrium constants at T = 1033 K and
P = 1.0 atm are given in Hougen and Watson,

k1 = 7× 105 L/mol · hr K1 = 0.31

k2 = 4× 105 L/mol · hr K2 = 0.48
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Solution

The mole balances for the four components follow from the stoichiom-
etry,

dNB
dV

= −2r1 − r2
dNH
dV

= r1 + r2

dND
dV

= r1 − r2
dNT
dV

= r2

The initial condition for the ODEs areNB(0) = NBf andND(0) = NH(0) =
NT (0) = 0. Because the number of moles are conserved in both reac-
tions, the total molar flux does not change with reactor volume. The
volumetric flowrate can be evaluated from Equation 4.69, which in this
case reduces to,

Q = RT
P
NBf (4.80)

The rate expressions are substituted into the four ODEs and they are
solved numerically. The total conversion of benzene, xB = (NBf −
NB)/NBf , is plotted versus reactor volume in Figure 4.20. A reactor
volume of 403 L is required to reach 50% conversion. The composition
of the reactor versus reactor volume is plotted in Figure 4.21. □

In the previous approach, a differential equation is required for each
component. Therefore ns differential equations are solved simultane-
ously in this approach. One can instead solve the problem by using
one differential equation for each independent reaction for a total of
ni differential equations. Because ni < ns , this second approach pro-
duces fewer differential equations. Normally ni is not much less than
ns , and the computational expenses of the two approaches are similar.
Whether we write differential equations for the species or the reaction
extents is largely a matter of taste.

In any case, the following procedure is guaranteed to give the mini-
mal set of differential equations. Instead of writing the material balance
for each component, define extents for each reaction that satisfy

dεi
dV

= ri, i = 1,2, . . . , ni

The initial conditions for these extents can be defined to be zero,

εi(0) = 0, i = 1,2, . . . , ni
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Figure 4.20: Benzene conversion versus reactor volume.
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The molar flow for each species can be computed by summing the stoi-
chiometric number times each extent,

Nj = Njf +
ni∑
i=1

νijεi, j = 1,2, . . . , ns

As with the previous method, the cj are calculated from the molar flows
with Equation 4.68, and Q is calculated from Equation 4.69.

Example 4.6: Benzene pyrolysis, revisited

Rework the previous example using the minimum number of differen-
tial equations.

Solution

Defining the extents to track the rates of the two reactions in Equa-
tions 4.77 and 4.78 gives

dε1

dV
= r1, ε1(0) = 0 (4.81)

dε2

dV
= r2, ε2(0) = 0 (4.82)

The stoichiometry allows all molar flows to be calculated from these
two extents,

NB + 2ε1 + ε2 = NBf NH − ε1 − ε2 = NHf
ND − ε1 + ε2 = NDf NT − ε2 = NTf

Substituting in the feed conditions gives,

NB = NBf − 2ε1 − ε2 NH = ε1 + ε2

ND = ε1 − ε2 NT = ε2

These relations can be used along with Equation 4.80 and Equations 4.79
to evaluate the rates r1 and r2 in Equations 4.81 and 4.82 in terms of ε1

and ε2. In this approach one only has to solve two differential equations
rather than the four required in the previous approach. The solutions
are the same in the two approaches. □
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Example 4.7: Ethane pyrolysis in the presence of NO

Nitric oxide participates in the pyrolysis of ethane to form ethylene by
an initiation reaction to form ethyl radicals and a competition reaction
for H atoms through the formation of HNO. Laidler and Wojciechowski
[11] have suggested the following sequence of elementary reactions to
describe pyrolysis

C2H6 + NO
k1-⇀↽-
k−1

C2H5 + HNO

C2H5
k2-→ H+ C2H4

H+ C2H6
k3-→ C2H5 + H2

H+ NO
k4-⇀↽-
k−4

HNO

The rate expressions and rate constants are given below, in which ki =
Ai exp(−Ei/RT)

r1 = k1cC2H6cNO − k−1cC2H5cHNO

r2 = k2cC2H5

r3 = k3cHcC2H6

r4 = k4cHcNO − k−4cHNO

i Ai Ei (kJ/mol)

1 1.0× 1014 cm3/mol s 217.6

−1 1.0× 1012 cm3/mol s 0

2 3.0× 1014 s−1 165.3

3 3.4× 1012 cm3/mol s 28.5

4 1.0× 1012 cm3/mol s 0

−4 1.0× 1013 s−1 200.8

Assume the reaction takes place in an isothermal, 1500-cm3 PFR oper-
ating at constant pressure (1.0 atm). The feed to the reactor consists
of a mixture of ethane and NO with a molar ratio of 95% ethane and 5%
NO. The inlet volumetric flowrate is 600 cm3/s. Consider a base-case
reactor temperature of 1050 K.

1. Develop the necessary design equations to calculate the molar
flow of ethane, NO and ethylene, and determine the effluent com-
position from the reactor. Be sure to specify the initial conditions.
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2. Solve the design equations and calculate the molar flowrates of
ethane, ethylene and NO as a function of reactor volume for a
reactor temperature of 1050 K.

3. Examine the effect of increasing and decreasing the temperature
50 K on the molar flowrate of ethane. Why do you think a small
change in temperature creates such a large effect on the amount
of ethane reacting?

Solution

The reaction rates are functions of molar concentrations of the compo-
nents, and the concentrations can be found from the molar flowrates
of each component

cj =
Nj
Q
= Nj

RT
P
∑
j Nj

= P
RT

Nj∑
j Nj

We need to know all the molar flows, and they can be found from the
PFR mass balance

dNj
dV

= Rj =
∑
i
νijri

which produces for this example

dNC2H6

dV
= −r1 − r3

dNH

dV
= r2 − r3 − r4

dNNO

dV
= −r1 − r4

dNC2H4

dV
= r2

dNC2H5

dV
= r1 − r2 + r3

dNH2

dV
= r3

dNHNO

dV
= r1 + r4

(4.83)

The rates are calculated from the rate constants and concentrations;
for example, the first rate is

r1 =
(
P
RT

)2
(
k1
NC2H6NNO

N2
tot

− k−1
NC2H5NHNO

N2
tot

)

in which

Ntot = NC2H6 +NNO +NC2H5 +NHNO +NH +NC2H4 +NH2
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The feed contains only C2H6 and NO at molar flows given by

Njf = yjf
P
RT

Qf

leading to NC2H6f = 6.62× 10−3 mol/s and NNOf = 3.48× 10−4 mol/s.
The numerical solution of Equations 4.83 at 1050 K is shown in Fig-

ure 4.22. We see the consumption of ethane and the production of
ethylene. The ethane molar flows at the three different reactor temper-
atures are shown in Figure 4.23. The solution shows a small change in
ethane molar flow initially, followed by a more rapid change of molar
flow with increasing distance in the reactor. The rate is low initially
until a sufficient amount of H is formed so the third reaction can begin
to contribute to the ethane consumption. The rates are very sensitive
to temperature because the activation energies are quite high for the
reactions that lead to the loss of ethane. For example, the first reaction
that initiates the pyrolysis and the second reaction that produces H,
which contributes to the consumption of ethane, have high activation
energies. □

4.7 Some PFR-CSTR Comparisons

Given the two continuous reactors in this chapter, the CSTR and the
PFR, it is natural to compare their steady-state efficiencies in convert-
ing reactants to products. For simplicity, consider a constant-density,
liquid-phase reaction with nth-order, irreversible reaction rate

A
k
-→ B r = kcnA

For this situation, the steady-state PFR material balance is given by
Equation 4.74

dcA
dτ

= −r(cA)

We rearrange and solve for the time required to change from the feed
condition cAf to some exit concentration cA

τ =
∫ cAf
cA

1
r(c′A)

dc′A

in which the prime is to remind us that this variable is a dummy variable
of integration. Figure 4.24 shows the graphical interpretation of this
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Figure 4.22: Molar flowrate of ethane, ethylene and NO versus reac-
tor volume for ethane pyrolysis example.
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Figure 4.23: Molar flowrate of ethane versus reactor volume for inlet
temperatures of 1000, 1050 and 1100 K.
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1
r(c′A)

cAfcA c′A

PFR

CSTR

Figure 4.24: Inverse of reaction rate versus concentration; area un-
der curve is the PFR residence time τ; area of the rectan-
gle is the CSTR residence time; PFR is more efficient; ir-
reversible,nth-order kinetics with positive order,n > 0.

result. The area under the curve 1/r(c′A) is the total time required to
achieve the desired concentration change.

To achieve this same concentration change in the CSTR, we start
with Equation 4.40, and solve for τ giving

τ =
cAf − cA
r(cA)

This result also can be interpreted as an area in Figure 4.24. Notice
that this area is the height, 1/r(cA), times the width, cAf − cA, of the
rectangle shown in Figure 4.24. Obviously if 1/r(cA) is a decreasing
function of cA, or, equivalently, r(cA) is an increasing function of cA,
to achieve the same conversion, the PFR time (or volume, VR = Qfτ) is
less than the CSTR time (volume). We make a final comment to reinforce
this point. The reaction rate for the PFR varies with length. The rate is
high at the entrance to the tube where the concentration of A is equal to
the feed value, and decreases with length as the concentration drops.
At the exit of the PFR, the rate is the lowest of any location in the tube.
Now considering that the entire volume of the CSTR is reacting at this
lowest rate of the PFR, it seems intuitively clear that more volume is
required for the CSTR to achieve the same conversion as the PFR.

So for this simple, single-reactant case, we only need to know if
r(cA) is an increasing or decreasing function of cA to know which re-
actor is more efficient, i.e., requires less volume. If the reaction order
is positive (the usual case), the PFR is more efficient, as shown in Fig-
ure 4.24. If the reaction order is negative, the CSTR is more efficient,
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Figure 4.25: To achieve the same conversion, the CSTR is smaller
than the PFR for irreversible, nth-order kinetics, nega-
tive order, n < 0.

as shown in Figure 4.25.
If the reaction rate is neither strictly increasing nor strictly decreas-

ing, the reactor configuration with the smallest volume becomes a se-
ries of CSTRs and PFRs. Such an example is shown in Chapter 8, Ex-
ample 8.4. Levenspiel provides further discussion of these interesting
cases [12, pp.128–156].

Example 4.8: The PFR versus CSTR with separation

We have noticed that a PFR achieves higher conversion than an equiva-
lent volume CSTR for the irreversible reaction with first-order kinetics

A -→ B r = kcA

Consider the case in which we add separation. Find a single CSTR and
separator combination that achieves the same conversion as the PFR.
You may assume a perfect separation of A and B, the feed is a pure A
stream, and kτ = 1 for the PFR.

Solution

The PFR achieves a fractional conversion of A

xPFR = 1−NA/NA0 = 1− exp(−kτ) = 0.632

For an equivalent volume CSTR without separation, the conversion of
A is

xCSTR = 1−NA/NA0 = kτ/(1+ kτ) = 0.5
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Figure 4.26: PFR versus CSTR with recycle and separation.

The goal is to increase the achievable conversion in the CSTR using
separation. Education in chemical engineering principles leads one im-
mediately to consider recycle of the unreacted A as a means to increase
this conversion. Consider the flowsheet depicted in Figure 4.26. A frac-
tion of the outflow from the CSTR is recycled, the product B is removed
and the unreacted A is combined with the feed as the inflow of the CSTR.
Given the assumption of perfect separation, we can achieve essentially
complete conversion of A for kτ = 1 with complete recycle, so our goal
here is to calculate the fractional recycle, α, that achieves exactly the
PFR conversion. For kτ < 1 the achievable conversion is less than one
as discussed in Exercise 4.14.

Notice first that the mean residence time of the CSTR, τ′, is less
than that for the PFR, τ , because the flowrate has increased due to
the recycle. Notice that with perfect separation, pure A streams are
combined at the mixer, and Q0/Q1 = NA0/NA1 so

τ′ = VR/Q1 = (VR/Q0)(Q0/Q1) = τNA0/NA1

We may consider four variables to specify the state of the system:
α,NA1, NA2, NA; and we can write three component A material balances
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for the reactor, splitter at reactor exit and mixer at reactor inlet

reactor: NA2 = NA1/(1+ kτNA0/NA1)
splitter: NA = (1−α)NA2

mixer: NA1 = NA0 +αNA2

The separator balance is trivial because the separation of A is perfect,
and, therefore, the molar flow of A is conserved across the recycle
stream. Because the inlet flow of A is not specified, it is convenient
to divide the preceding equations by NA0, define dimensionless molar
flows, and rearrange to obtain

reactor: NA2(1+ kτ/NA1)−NA1 = 0

splitter: NA − (1−α)NA2 = 0

mixer: 1+αNA2 −NA1 = 0 (4.84)

We can specify a single variable as known and solve for the remaining
three with the three equations. For example, if we specify the recycle
fraction, α, we can solve Equations 4.84 forNA, NA1, NA2, and compute
the conversion from xA = 1 − NA. Figure 4.27 shows the resulting
conversion of A plotted as a function of α. We can see from Figure 4.27
that the PFR conversion is achieved at about α = 0.65. If we want a
more accurate answer, we can set NA = exp(−kτ) = 0.3678 and solve
numerically for α,NA1, NA2, with Equations 4.841 , and the result is

α = 0.6613

□

CSTR equivalence principle. Example 4.8 is motivated by a recent
result of Feinberg and Ellison called the CSTR equivalence principle of
reactor-separator systems [4]. This surprising principle states:

For a given reaction network with ni linearly independent re-
actions, any steady state that is achievable by any reactor-
separator design with total reactor volume V is achievable by
a design with not more than ni + 1 CSTRs, also of total reac-
tor volume V . Moreover the concentrations, temperatures and
pressures in the CSTRs are arbitrarily close to those occurring
in the reactors of the original design.

1Note one can solve this simple problem analytically as well. Eliminate αNA2 from
the second and third equations in Equation 4.84. Substitute the result into the first
equation and solve the resulting quadratic equation.
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Figure 4.27: Overall and per-pass conversion of A as a function of
fractional recycle, α.

Applying this principle to the last example, we know that any achiev-
able concentration of the PFR for a single reaction is achievable with a
CSTR and separation. Note the number of CSTRs can be reduced from
ni + 1 to ni in certain situations, such as the one considered in Exam-
ple 4.8. And we know the concentration in the CSTR will be achieved
somewhere in the PFR.

4.8 Stochastic Simulation of Chemical Reactions

We wish to introduce next a topic of increasing importance to chemi-
cal engineers, stochastic (random) simulation. In stochastic models we
simulate quite directly the random nature of the molecules. We will
see that the deterministic rate laws and material balances presented
in the previous sections can be captured in the stochastic approach
by allowing the numbers of molecules in the simulation to become
large. From this viewpoint, deterministic and stochastic approaches
are complementary. Deterministic models and solution methods are
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quite efficient when the numbers of molecules are large and the ran-
dom behavior is not important. The numerical methods for solution
of the nonlinear differential equations of the deterministic models are
also highly developed. The stochastic modeling approach is appropri-
ate if the random nature of the system is one of the important fea-
tures to be captured in the model. These situations are becoming in-
creasingly important to chemical engineers as we explore reactions at
smaller and smaller length scales. For example, if we are modeling the
chemical transformation by reaction of only a few hundreds or thou-
sands of molecules at an interface, we may want to examine explicitly
the random fluctuations taking place. In biological problems, we often
consider the interactions of only several hundred or several thousand
protein molecules and cells. In sterilization problems, we may wish to
model the transient behavior until every last organism is eliminated.

It is perhaps best to illustrate features of the stochastic approach
with a simple example. Instead of the common case in which we have
on the order of Avogadro’s number of reacting molecules, assume we
have only a hundred molecules moving randomly in the gas phase and
we wish to follow the reaction

A
k1-→ B

B
k2-→ C

in a constant-volume batch reactor. In this section we take reaction
statements quite literally. We assume these reactions are not merely
observed stoichiometries, but actual molecular events.

The probability of a reaction is assumed proportional to the number
of combinations of the molecules that can be taken with the reaction
stoichiometry. For a uni-molecular reaction, the number of combina-
tions is simply the number of molecules, so the probabilities for the
two reactions are2

r1 = k1xA, r2 = k2xB

in which xj is the number of component j molecules in the reactor
volume. Note xj is an integer, unlike cj of the deterministic model,
which is a real number. The reaction probabilities play the role of the
rate expressions in the deterministic models. Given the stoichiometry

2For the nth-order reaction nA -→ B, the number of combinations is(
xA
n

)
= xA(xA − 1) · · · (xA − (n− 1))

n!
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and the reaction probabilities, we would like to simulate the expected
behavior of the reaction network. One way to accomplish this task is
the Gillespie algorithm, which we describe next. The basic idea of the
Gillespie algorithm is to: (i) choose randomly the time at which the
next reaction occurs, and (ii) choose randomly which reaction occurs
at that time. Of course we do not choose arbitrarily. If the total reac-
tion probabilities are large, it is intuitively clear that the time interval
until the next reaction should be small, and, if reaction probability r1

is much larger than r2, the first reaction is more likely to occur at the
next reaction time. The beauty of the Gillespie algorithm is the simple
and statistically correct manner in which these two random choices are
made.

In a series of papers, Gillespie makes an elegant argument for the
use of stochastic simulation in chemical kinetic modeling [7, 9] and
provides the following simulation algorithm [7, p.2345].

1. Initialize. Set integer counter n to zero. Set the initial species
numbers, xj(0), j = 1, . . . ns . Determine stoichiometric matrix ν
and reaction probability laws (rate expressions)

ri = kih(xj)

for all reactions.

2. Compute reaction probabilities, ri = kih(xj). Compute total re-
action probability rtot =

∑
i ri.

3. Select two random numbers, p1, p2, from a uniform distribution
on the interval (0,1). Let the time interval until the next reaction
be

t̃ = − ln(p1)/rtot (4.85)

Determine reaction m to take place at this time. The idea here is
to partition the interval (0,1) by the relative sizes of each reaction
probability and then “throw a dart” at the interval to pick the
reaction that occurs. In this manner, all reactions are possible,
but the reaction is selected in accord with its probability. See
Figure 4.28.

4. Update the simulation time t(n+1) = t(n)+ t̃. Update the species
numbers for the single occurrence of the mth reaction via

xj(n+ 1) = xj(n)+ νmj , j = 1, . . . ns

Let n = n+ 1. Return to Step 2.
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Figure 4.28: Randomly choosing a reaction with appropriate proba-
bility; the interval is partitioned according to the rela-
tive sizes of the reaction rates; a random number p2

between zero and one is generated to determine the re-
action; in this case, m = 2 and the second reaction is
selected.

If rtot is the total reaction rate, rtote−rtot t̃ is the probability that a re-
action has not occurred during time interval t̃, which leads directly to
Equation 4.85 for choosing the time of the next reaction. We will derive
this fact in Chapter 8 when we develop the residence-time distribution
for a CSTR. Shah, Ramkrishna and Borwanker call this time the “interval
of quiescence,” and use it to develop a stochastic simulation algorithm
for particulate system dynamics rather than chemical kinetics [15].

Figure 4.29 shows the results of this algorithm when starting with
xA = 100 molecules. Notice the random aspect of the simulation gives
a rough appearance to the number of molecules versus time, which
is quite unlike any of the deterministic simulations presented in Sec-
tion 4.2. In fact, because the number of molecules is an integer, the
simulation is actually discontinuous with jumps at the reaction times.
But in spite of the roughness, we already can make out the classic be-
havior of the series reaction: loss of starting material A, appearance and
then disappearance of the intermediate species B, and slow increase in
final product C. Note also that Figure 4.29 is only one simulation of the
stochastic model. Unlike the deterministic models, if we repeat this
simulation, we obtain a different sequence of random numbers and a
different simulation. To talk about expected or average behavior of the
system, we must perform many of these random simulations and then
compute the averages of quantities we wish to report.

Next we explore the effect of increasing the initial number of A
molecules on a single simulation [8, p.371]. The results for 1000 and
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Figure 4.29: Stochastic simulation of the first-order reactions
A -→B -→C starting with 100 A molecules.

4000 initial A molecules are shown in Figures 4.30 and 4.31, respec-
tively. We see the random fluctuations become less pronounced. No-
tice that even with only 4000 starting molecules, Figure 4.31 compares
very favorably with the deterministic simulation shown in Figure 4.11
of Section 4.2.

Another striking feature of the stochastic approach is the trivial
level of programming effort required to make the simulations. In fact,
the biggest numerical challenge is producing the random numbers,3

and many well-developed algorithms are available for that task. The
computational time required for performing the stochastic simulation
may, however, be large. The solution time depends on the number of
simulation steps, and also on whether or not we must repeat the simu-
lations to calculate averages. Usually large numbers of simulation steps
are chosen when one has large numbers of initial molecules. If reliable
deterministic rate laws are available, at some point it becomes more
efficient to use the deterministic models as the number of molecules

3It is more accurate to use the term pseudorandom number here to distinguish
something we compute from a truly random number.



4.8 Stochastic Simulation of Chemical Reactions 167

0

200

400

600

800

1000

0 1 2 3 4 5

xA

xB

xC

xj

t

Figure 4.30: Stochastic simulation of the first-order reactions
A -→B -→C starting with 1000 A molecules.
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Figure 4.31: Stochastic simulation of the first-order reactions
A -→B -→C starting with 4000 A molecules.
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increases.
But the stochastic approach is invaluable in several ways. It builds

a clear intuitive connection between the microscopic and the macro-
scopic. The microscopic level is characterized by discontinuous, ran-
dom molecular motion and the probability of collision as the basis
for chemical reaction rate. The macroscopic level is characterized by
smoothly varying concentrations, and deterministic rate laws and ma-
terial balances. Watching the transition in Figures 4.29–4.31 and then
finally to the deterministic Figure 4.11 is a nice illustration of this con-
nection and provides logical support for the construction of the deter-
ministic rate laws. It is possible to prove that the average of stochastic
simulations converges to the deterministic simulation as the number of
molecules becomes large, which is known as the thermodynamic limit.

As stressed earlier, the random fluctuations may be an important
physical behavior to include in the model. In this situation, the stochas-
tic approach is essential and a deterministic approach cannot be sub-
stituted. We illustrate with the hepatitis B virus model introduced in
Chapter 1.

Example 4.9: Stochastic versus deterministic simulation of a virus
model

Consider the hepatitis B virus model given in Chapter 1.

nucleotides
cccDNA
−−−−−−−→ rcDNA (4.86)

nucleotides+ rcDNA −−−−−−−→ cccDNA (4.87)

amino acids
cccDNA
−−−−−−−→ envelope (4.88)

cccDNA −−−−−−−→ degraded (4.89)

envelope −−−−−−−→ secreted or degraded (4.90)

rcDNA+ envelope −−−−−−−→ secreted virus (4.91)

Assume the system starts with a single cccDNA molecule, and no rcDNA
and no envelope protein, and use the following rate constants

[
xA xB xC

]T
=
[

1 0 0
]T

(4.92)

kT =
[

1 0.025 1000 0.25 2 7.5× 10−6
]
(day−1) (4.93)
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Figure 4.32: Species cccDNA versus time for hepatitis B virus model;
deterministic and average stochastic models.
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Figure 4.33: Species rcDNA versus time for hepatitis B virus model;
deterministic and average stochastic models.
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Figure 4.34: Envelope versus time for hepatitis B virus model; deter-
ministic and average stochastic models.
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Figure 4.35: Species cccDNA versus time for hepatitis B virus model;
two representative stochastic trajectories.

Compare the results of a deterministic simulation to the average of 500
stochastic simulations. If these results are not the same, explain why
not.

Solution

The reaction rates and production rates for Reactions 4.86–4.91 are
given by

r1

r2

r3

r4

r5

r6


=



k1xA
k2xB
k3xA
k4xA
k5xC
k6xBxC


 RA
RB
RC

 =
 r2 − r4

r1 − r2 − r6

r3 − r5 − r6

 (4.94)

in which A is cccDNA, B is rcDNA, and C is envelope.
Figures 4.32–4.34 show the deterministic model simulation and an

average of 500 stochastic simulations. Notice these results are not the
same, and we should investigate why not. Figure 4.35 shows two rep-
resentative stochastic simulations for only the cccDNA species. Notice
the first stochastic simulation does fluctuate around the deterministic
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simulation as expected. The second stochastic simulation, however,
shows complete extinction of the virus. That is another possible steady
state for the stochastic model. In fact, it occurs for 125 of the 500 simu-
lations. So the average stochastic simulation in Figures 4.32–4.34 con-
sist of 75% trajectories that fluctuate about the deterministic trajectory
and 25% trajectories that go to zero. The two types of stochastic trajec-
tories therefore explain why the average stochastic model is not equal
to the deterministic model. We should bear this feature in mind when
using deterministic models with small numbers of molecules. The in-
terested reader may wish to consult [16] for further discussion of this
virus model.

□

4.9 Summary

We have introduced four main reactor types in this chapter: the batch
reactor, the continuous-stirred-tank reactor (CSTR), the semi-batch re-
actor, and the plug-flow reactor (PFR). Table 4.3 summarizes the mole
balances for these four reactors. We also have introduced some of the
basic reaction-rate expressions:

• first order, irreversible

• first order, reversible

• second order, irreversible

• nth order, irreversible

• two first-order reactions in series

• two first-order reactions in parallel

• two second-order, reversible reactions

We developed the equations required to compute the volume of the
reactor if there is a significant volume change upon reaction. We require
an equation of state for this purpose. Tables 4.1 and 4.2 describe the
appropriate balances for a constant-density mixture, an ideal mixture,
and a mixture with a general equation of state.

Several of these simple mass balances with basic rate expressions
were solved analytically. In the case of multiple reactions with nonlin-
ear rate expressions (i.e., not first-order reaction rates), the balances
must be solved numerically. A high-quality ordinary differential equa-
tion (ODE) solver is indispensable for solving these problems. For a
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BATCH
d(cjVR)
dt

= RjVR (4.95)

constant volume
dcj
dt

= Rj (4.96)

CSTR
d(cjVR)
dt

= Qf cjf −Qcj + RjVR (4.97)

constant density
dcj
dt

=
1
τ
(cjf − cj)+ Rj (4.98)

steady state cj = cjf + Rjτ (4.99)

SEMI-BATCH
d(cjVR)
dt

= Qf cjf + RjVR (4.100)

PFR
∂cj
∂t

= −∂(cjQ)
∂V

+ Rj (4.101)

steady state
d(cjQ)
dV

= Rj (4.102)

constant flowrate
dcj
dτ

= Rj , τ = V/Qf (4.103)

Table 4.3: Summary of mole balances for several ideal reactors.

complex equation of state and nonconstant-volume case, a differential-
algebraic equation (DAE) solver may be convenient.

We showed that the PFR achieves higher conversion than the CSTR
of the same volume if the reaction rate is an increasing function of
a component composition (n > 0 for an nth-order rate expression).
Conversely, the CSTR achieves higher conversion than the same-volume
PFR if the rate is a decreasing function of a component composition
(n < 0).

Finally, we introduced stochastic simulation to model chemical re-
actions occurring with small numbers of molecules. Each of these ran-
dom simulation trajectories has a rough appearance and the average
of many of these simulations is required to show the expected system
behavior. The stochastic model uses basic probability to compute reac-
tion rate. The probability of occurrence of a given reaction is assumed
proportional to the number of possible combinations of reactants for
the given stoichiometry. Two pseudorandom numbers are chosen to
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determine: (i) the time of the next reaction and (ii) the reaction that oc-
curs at that time. The smooth behavior of the macroscopic ODE models
is recovered by the random simulations in the limit of large numbers
of reacting molecules. With small numbers of molecules, however, the
average of the stochastic simulation does not have to be equal to the
deterministic simulation. We demonstrated this fact with the simple,
nonlinear hepatitis B virus model.

Notation

Ac reactor tube cross-sectional area

Ai preexponential factor for rate constant i
cj concentration of species j
cjf feed concentration of species j
cjs steady-state concentration of species j
cj0 intial concentration of species j
Ei activation energy for rate constant i
ki reaction rate constant for reaction i
Ki equilibrium constant for reaction i
M total mass flow,

∑
j NjMj

M total monomer mass

Mf total feed mass flow,
∑
j NjfMj

Mj molecular weight of species j
n reaction order

nj moles of species j, VRcj
nr number of reactions in the reaction network

ns number of species in the reaction network

Nj molar flow of species j, Qcj
Njf feed molar flow of species j, Qcj
p uniformly distributed random number on (0,1)
P pressure

P̃ total polymer mass

Q volumetric flowrate

Qf feed volumetric flowrate

ri reaction rate for ith reaction

rtot total reaction rate,
∑
i ri

R gas constant

Rj production rate for jth species

R̃P mass production rate of polymer

t time
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t̃ time interval in a stochastic simulation

T temperature

V reactor volume variable

V j partial molar volume of species j
V ◦j specific molar volume of species j
VR reactor volume

∆Vi change in volume upon reaction i,
∑
j νijV j

xj number of molecules of species j in a stochastic simulation

xj molar conversion of species j
yj mole fraction of gas-phase species j
z reactor length variable

εi extent of reaction i
νij stoichiometric coefficient for species j in reaction i
ρ mass density

τ reactor residence time, VR/Qf

4.10 Exercises

Exercise 4.1: Order versus rate of reaction

Liquid A decomposes with nth-order kinetics in a batch reactor

A -→ B, r = kcnA

The conversion of A reaches 50% in a five-minute run.
What is the order of the reaction if it takes 10 minutes to reach 75% conversion?

What is the order of the reaction if it takes 20 minutes to reach 75% conversion? What
is the order of the reaction if it takes 30 minutes to reach 75% conversion?

Exercise 4.2: Constant volume versus constant pressure batch reactor

Consider the following two well-mixed, isothermal gas-phase batch reactors for the
elementary and irreversible decomposition of A to B,

A
k
-→ 2B

reactor 1: The reactor volume is held constant (reactor pressure therefore changes).

reactor 2: The reactor pressure is held constant (reactor volume therefore changes).

Both reactors are charged with pure A at 1.0 atm and k = 0.35 min−1.

(a) What is the fractional decrease in the concentration of A in reactors 1 and 2 after
five minutes?

(b) What is the total molar conversion of A in reactors 1 and 2 after five minutes?
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Exercise 4.3: CSTR performance

A liquid-phase reaction

A+ B
k
-→ C, r = kcBc2A

takes place in a CSTR of volume VR in the presence of a large excess of reactant B.
Assume the reactor achieves 50% conversion of A at steady state.

(a) What is the steady-state conversion if the original reactor is replaced by two
CSTRs of volume VR/2 in series?

(b) What is the conversion if the original reactor is replaced by three CSTRs of vol-
ume VR/3 in series?

(c) What is the conversion if the original reactor is replaced by a plug-flow reactor
of volume VR?

Exercise 4.4: Catalyst deactivation in a batch reactor

Consider the irreversible, liquid-phase isomerization reaction carried out in a solvent
containing dissolved catalyst at 25◦C in a batch reactor

A
ka-→ B

The apparent first-order reaction-rate constant, ka, decreases with time because of cat-
alyst deterioration. A chemist colleague of yours has studied the catalyst deactivation
process and has proposed that it can be modeled by

ka =
k

1+ kdt
in which k is the fresh catalyst rate constant and kd is the deactivation-rate constant.

(a) Write down the mole balance for this reactor.

(b) Solve the mole balance for cA(t). Sketch your solution.

(c) If it takes two hours to reach 50% conversion and the fresh catalyst has a rate
constant of 0.6 hr−1, what is kd?

(d) How long does it take to reach 75% conversion?

Exercise 4.5: Dynamic CSTR

A CSTR is used to convert A to products B and C via the following liquid-phase reaction

A
k
-→ B+ C

The reaction is first order in A and irreversible. The tank initially is charged with species
A at concentration cA0. At time zero, the feed pump is turned on and delivers constant
flowrate, Qf . The feed concentration of A is cAf , which is also constant. The tank
volume is VR . Liquid density change due to reaction may be neglected.
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(a) Write down and solve the dynamic material balance for component A.

(b) Sketch the solution, cA(t) versus t, for the tank initially filled with solvent, cA0 =
0. On the same plot, sketch the solution for the tank initially filled with feed,
cA0 = cAf . Clearly label on your plot the initial and steady-state concentrations
for both curves.

(c) For a 50 m3 tank with flowrate of 7 L/s and rate constant k = 0.02 min−1, what
is the steady-state conversion of A?

Exercise 4.6: Linear differential equations and Laplace transforms

Consider the linear, first-order, constant-coefficient differential equation

dx
dt
= Ax + b

x(0) = x0 (4.104)

The Laplace transform is a handy method for solving linear differential equations.

(a) Take the Laplace transform of Equation 4.104 and show

x(s) = x0

s −A +
b

s(s −A)

(b) Invert the transform and show

x(t) = x0eAt −
b
A

[
1− eAt

]
(4.105)

You may want to use the following partial fraction formula

1
s(s −A) = −

1
A

[
1
s
− 1
s −A

]
(c) Substitute Equation 4.105 into Equation 4.104 and show that it satisfies the dif-

ferential equation and initial condition.

(d) IdentifyA,b, so that Equation 4.104 applies to the reversible, first-order reaction
case given in Equation 4.13. Substitute these values into Equation 4.105 and
verify Equation 4.15.

(e) IdentifyA,b, so that Equation 4.104 applies to the reversible, first-order reaction
case given in Equation 4.41. Substitute these values into Equation 4.105 and
verify Equation 4.42.

Exercise 4.7: Multiple reactions in CSTRs in series

The following liquid-phase reactions take place in two identical CSTRs in series,

A -→ B+ C r1 = k1c2
A

B -→ D r2 = k2cB

in which k1 = 0.05 L/mol·min and k2 = 0.022 min−1. The feed to the first reactor is
pure A, cAf = 1.5 mol/L, and the residence time in each reactor is 15 min. Determine
the overall conversion of A and the yield of B for the series of reactors. Recall yield is
the fraction of reactant converted into a specified product.
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Exercise 4.8: Nonconstant density with a liquid-phase reaction

Propylene glycol is produced by the hydrolysis of propylene oxide according to the
following reaction

O

propylene oxide

+ H2O
HO OH

propylene glycol

In the presence of excess water, the reaction has been found to be first-order in propy-
lene oxide

r = kcPO

and the rate constant is [6]

k = k0e−Ea/RT k0 = 4.71× 109 s−1 Ea = 18.0 kcal/mol

Methanol is added as a solvent, and the reaction is performed in a 1000 L CSTR oper-
ating at 60◦C. The feed conditions and physical properties are as follows [17]:

Component Density Mol. wt. Inlet feedrate
(g/cm3) (g/mol) (L/hr)

propylene oxide 0.859 58.08 1300
water 1.000 18.02 6600
propylene glycol 1.0361 76.11 0
methanol 0.7914 32.04 1300

Assume the mixture is ideal so that

1 =
∑
j
cjV◦j

in which V◦j = Mj/ρ◦j are the pure component specific molar volumes. Neglect any
change in the pure component densities with temperature in the temperature range
25–60◦C.

(a) Compute the steady-state concentrations of all components, Q, and VR for the
following two situations.

1. A float in the top of the tank is used to adjustQ to maintain reactor volume
constant at 1000 L.

2. The reactor is initially charged with pure solvent, and a differential pres-
sure measurement is used to adjust Q to maintain constant reactor mass.

Which operation do you recommend, constant volume or constant mass? Look
at the conversion of propylene oxide and the total reactor production rate of
propylene glycol for the two cases. What are you wasting in constant mass
operation?

(b) Resolve the constant reactor volume operation under the assumption that all
component densities are equal to the density of water. How much error in the
conversion and production rate do you commit under this assumption?
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Exercise 4.9: Linear density versus concentration assumption

Consider the important case of liquid-phase reaction in an excess of solvent. Let com-
ponent j = s be the solvent and consider the solution density at some reference con-
centrations, cj = cj0,

ρ0 = cs0Ms +
∑
j≠s

cj0Mj

In this situation, a useful approximation for the density-concentration relationship is
the linear form [14]

ρ = ρ0 +
∑
j≠s

(
cj − cj0

)
Mj

or, equivalently, upon substitution of the previous equation

ρ = Mscs0 +
∑
j≠s

cjMj (4.106)

(a) Show that even though the density is not assumed constant in Equation 4.106,
one still obtains for the reactor volume in a CSTR

dVR
dt

= Qf −Q

(b) Show that the approximation error in the density in Equation 4.106 is

(cs − cs0)Ms

in which cs is the actual solvent concentration in the mixture, which also changes,
in general, upon reaction even though the solvent does not take part in any
reactions.

Exercise 4.10: Maximizing an intermediate

We considered the following two first-order, irreversible reactions in Reaction 4.28

A
k1-→ B

B
k2-→ C

and derived Equation 4.30 for the intermediate B concentration

cB = cB0e−k2t + cA0
k1

k2 − k1

[
e−k1t − e−k2t

]
, k1 ≠ k2

(a) What is the optimal stopping time in order to maximize the concentration of
intermediate B starting with pure A?

(b) Check your result against Figure 4.11.

(c) How does this result simplify for the case k1 = k2?

Exercise 4.11: Some limits

(a) For the second-order, irreversible reaction

A+ B
k
-→ C r = kcAcB
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in the batch reactor, we showed solving the material balance produces Equa-
tion 4.24

cA = (cA0 − cB0)
[

1− cB0

cA0
e(cB0−cA0)kt

]−1
cA0 ≠ cB0

Take the limit cA0 − cB0 → 0 in this equation and show it produces the other
second-order reaction result given in Equation 4.19

cA =
(

1
cA0

+ kt
)−1

(b) For the n-order, irreversible chemical reaction

A -→ B r = kcnA
in the batch reactor, we showed solving the material balance produces Equa-
tion 4.25

cA
cA0

= [1+ (n− 1)k0t]
1

−n+1 , n ≠ 1

in which
k0 = kcn−1

A0

Take the limit n → 1 in this equation and show that it produces the first-order
reaction result cA

cA0
= e−kt , n = 1

Exercise 4.12: Constant gas flowrate; large or small error?

One of the interesting features of (ideal) gas molecules is that they demand a certain
amount of “territory.” It doesn’t matter if they are heavy or light, big or small — all
gas molecules occupy the same amount of space at a given temperature and pressure;
hence the ideal gas law.

Consider the following hypothetical reaction taking place in the gas phase in an
isothermal, constant pressure PFR with a pure A feed stream

A -→ b B (4.107)

Derive an expression for the tube volume required to achieve molar conversion of A,
xA, for the following two cases.

(a) Ideal gas equation of state, which we call the correct answer, VRc .

(b) Constant volumetric flowrate, which we call the dubious assumption, VRd.

(c) Compute the fractional error committed when using the dubious assumption

e = VRc − VRd
VRc

Your result should be a function of only xA and b.

(d) Plot e versus xA for b = 1,2,5,100. Note for b = 100, Reaction 4.107 is very
hypothetical.

(e) If you are unwilling to commit errors larger than 10%, for what b and xA values
must you object to the dubious assumption?
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NA

pure B

αNA2
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Figure 4.36: An alternative CSTR-separator design.

Bottom line: are you generally making large or small errors when you neglect the change
in the number of moles when modeling a gas-phase reaction in a PFR?

Exercise 4.13: Ethane pyrolysis, revisited

Using the reaction chemistry and kinetics presented in Example 4.7, change the feed
concentration of NO from 5% to 5 ppm, and examine the effect on the concentration
profile for ethane in the PFR at 1050 K. Assume the feed consists only of ethane and NO,
and that the pressure and volumetric flowrate are the same as in Example 4.7. Explain
the effect of the feed NO concentration on the ethane conversion.

Exercise 4.14: Recycle effects

Consider again Example 4.8, and compute the limiting conversion for a CSTR with
recycle for kτ = 0.5. What is the corresponding limiting fractional recycle, α? What
happens if one attempts to achieve a higher conversion than this limiting value by
recycling more material?

Exercise 4.15: An alternative reactor-separator design

Feinberg and Ellison considered an alternative design for Example 4.8 shown in Fig-
ure 4.36. Notice the separator is placed ahead of the recycle split in this design, and
after the recycle split in Figure 4.26.

(a) Calculate the flowrate of the recycle stream that achieves the PFR conversion
given in Example 4.8.

(b) Compare the two reactor-separator designs. What are the advantages and dis-
advantages of each design?

Exercise 4.16: Stochastic simulation of a virus model

Perform several random simulations of the virus model given in Equations 4.86–4.93.
Perform enough simulations so that some of your trajectories lead to extinction of all
three species: cccDNA, rcDNA and envelope protein.

(a) Compare and contrast a simulation that leads to a steady-state infection, and a
simulation that leads to extinction.
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(b) During the first 25–50 days, is it possible to tell by looking at the trajectory
whether it will lead to infection or extinction? About how many days are required
before you have a reliable idea of where a trajectory will finish?

(c) Of the trajectories that lead to extinction, what is the longest time required to
reach extinction? What fraction of your trajectories lead to extinction?

(d) Which parameters in the model have the largest affect on the behavior?

Exercise 4.17: Stochastic simulation for nonlinear kinetics

Consider the reversible, second-order reaction

A+ B
k1-⇀↽-
k−1

C r = k1cAcB − k−1cC

(a) Solve the deterministic material balance for a constant-volume batch reactor
with

k1 = 1 L/mol·min k−1 = 1 min−1

cA(0) = 1 mol/L cB(0) = 0.9 mol/L cC(0) = 0 mol/L

Plot the A, B and C concentrations out to t = 5 min.

(b) Compare the result to a stochastic simulation using an initial condition of 400 A,
360 B and zero C molecules. Notice from the units of the rate constants that k1
should be divided by 400 to compare simulations. Figure 4.37 is a representative
comparison for one sequence of pseudorandom numbers.

(c) Repeat the stochastic simulation for an initial condition of 4000 A, 3600 B, zero C
molecules. Remember to scale k1 appropriately. Are the fluctuations noticeable
with this many starting molecules?

Exercise 4.18: From microscopic to macroscopic

It is often easier to provide a correct explanation than it is to find the error in someone
else’s incorrect explanation. Consider the following situation from an instructor’s point
of view. A student in your class asks you to explain the following difficulty he is having.
“I start with the continuity equation for species j,”

∂cj
∂t
+∇ · (cjvj)− Rj = 0

“Since this equation is true at all points in the volume element, I integrate it over the
CSTR reactor volume element (as depicted in Figure 4.13),”∫

V

[
∂cj
∂t
+∇ · (cjvj)− Rj

]
dΩ = 0

“I then use the divergence theorem that we learned in the Transport Phenomena course
to convert the divergence term to a surface integral and obtain,”∫

V

[
∂cj
∂t
− Rj

]
dΩ +

∫
S
cj(vj · n)dσ = 0 (4.108)
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Figure 4.37: Deterministic simulation of reaction A + B -⇀↽- C com-

pared to stochastic simulation starting with 400 A
molecules.

“It is clear to me that the surface integral picks up the flux of species j into and out of
the reactor with the flow streams,”∫

S
cj(vj · n)dσ = −Qf cjf +Qcj (4.109)

“Substituting this into Equation 4.108 gives”∫
V

[
∂cj
∂t
− Rj

]
dΩ −Qf cjf +Qcj = 0

“Finally since cj and Rj don’t vary over the well-mixed reactor, I simplify to”

VR
dcj
dt

= Qf cjf −Qcj + RjVR

“But this doesn’t agree with Equation 4.97!” How do you respond to this student?
Remember, he does not really want to hear a restatement of why Equation 4.97 is
correct; he really wants to know what is wrong with his derivation.

Exercise 4.19: Index and DAEs

We saw in Section 4.5 that it was convenient to specify reactor models for nonconstant-
density cases by using DAEs instead of ODEs. Compare, for example, the complexity
of the ODE and DAE models appearing in Table 4.2. Some care should be exercised,
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however, to avoid creating a DAE that is difficult to solve. The DAEs in Table 4.2 are of
the following form in which the time derivatives of only thex variables appear explicitly
in the model,

dx
dt
= f (x,y) (4.110)

0 = g(x,y) (4.111)

The total moles of the species, nj , are the x variables and VR andQ are the y variables.

xT =
[
n1 n2 · · ·nns

]
yT = [VR Q]

The index of a DAE is the number of times that the algebraic equations must be differ-
entiated with respect to t to determine dy/dt [3]. An ODE, with no algebraic relations,
has index zero. Differentiating Equation 4.111 with respect to time produces

0 = ∂g(x,y)
∂xT

dx
dt
+ ∂g(x,y)

∂yT
dy
dt

in which ∂g/∂yT is a Jacobian matrix with elements(
∂g
∂yT

)
ij
= ∂gi
∂yj

If ∂g/∂yT is a nonsingular matrix, then we can solve this equation for dy/dt and
the DAE has index one. DAEs with index zero and one are generally much easier to
solve than those with index two or higher [3]. Notice if the y variables do not appear
explicitly in the algebraic equations, for example, then ∂g/∂yT = 0 and the DAE has
index two or higher.

Consider the algebraic equations appearing in Table 4.2 for the nonconstant-density
cases: 1: reactor volume constant, 2: reactor mass constant, and 3: Q specified. Show
that, as expressed in Table 4.2, cases 1 and 2 are high-index DAEs and case 3 is index
one. Without differentiating the equation of state, how can case 2 be modified to be
index one? Can you find a simple way to modify case 1 to be index one?

Exercise 4.20: Matrix exponential

Consider the general linear kinetic expression written in vector-matrix form

R(c) = Kc
in which R is an ns -vector of production rates, c is an ns -vector of concentrations, and
K is an ns × ns matrix of rate constants. The batch reactor material balance can be
written as

dc
dt
= Kc

c(0) = c0 (4.112)

The solution to Equations 4.112 can be written as c = eKtc0, in which eKt is the
matrix exponential. The matrix exponential can be defined using the power series

eA = I +A+ 1
2!
A2 + 1

3!
A3 + · · ·

This series converges for all A.

(a) Write K for two first-order series reactions in a batch reactor

A
k1-→ B B

k2-→ C



184 The Material Balance for Chemical Reactors

A,B,C,D
A

B

Reactor Configuration 1

Reactor Configuration 2

A,B,C,D
A

B

Qf
2

Qf Qf

Qf

Qf
4

Qf
4

3Qf
4Qf

2

Qf
2

cAf

cBf

cAf

cBf

Figure 4.38: Two 2-CSTR reactor configurations with bypass of reac-
tant A in the second configuration.

(b) Write out the series expansion for eKt and verify the solution derived in Sec-
tion 4.2.1.

(c) Repeat for two first-order parallel reactions in a batch reactor

A
k1-→ B A

k2-→ C

Exercise 4.21: Reaction probabilities in stochastic kinetics

Consider a stochastic simulation of the following reaction

a A+ b B
k1-⇀↽-
k−1

c C+ d D

(a) Write out the two reaction probabilitieshi(xj), i = 1,−1 considering the forward
and reverse reactions as separate events.

(b) Compare these to the deterministic rate expressions ri(cj), i = 1,−1 for the
forward and reverse reactions considered as elementary reactions. Why are the
hi and ri expressions different? When do they become close to being the same?

Exercise 4.22: Yield, conversion and reactor configuration

Consider the two liquid-phase, irreversible reactions

A + B
k1-→ C r1 = k1cAcB

2A
k2-→ D r2 = k2c2

A
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We wish to achieve a high yield of product C. Consider the two 2-CSTR reactor config-
urations depicted in Figure 4.38.

(a) Without doing any calculations, which of these configurations do you think gives
the higher yield of C? Which gives the higher conversion of A? Explain your
reasoning.

yield of C = moles of C produced
moles of A consumed

conversion of A = moles of A consumed
moles of A fed

(b) Given the following parameters, list the equations that you will solve to calculate
the yield of C and conversion of A at the exit of the two reactor configurations.
The only symbols appearing in these equations should be numbers and the un-
knowns for which you are solving. You should have as many equations as you
have unknowns. Clearly indicate which set of equations will be solved for which
reactor configuration.

Parameter Value Units
VR1 1000 L
VR2 1000 L
Qf 1000 L/hr
k1 1 L/mol hr
k2 1 L/mol hr
cAf 2 mol/L
cBf 2 mol/L

(c) Solve the equations of Part 4.22b numerically, and compare your numerical re-
sults to your answers in Part 4.22a. Explain any differences.
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5
Chemical Kinetics

5.1 Introduction

The purpose of this chapter is to provide a framework for determining
the reaction rate given a detailed statement of the reaction chemistry.
We use several concepts from the subject of chemical kinetics to illus-
trate two key points:

1. The stoichiometry of an elementary reaction defines the concen-
tration dependence of the rate expression.

2. The quasi-steady-state assumption (QSSA) and the reaction equi-
librium assumption allow us to generate reaction-rate expressions
that capture the details of the reaction chemistry with a minimum
number of rate constants.

The concepts include:

• the elementary reaction

• Tolman’s principle of microscopic reversibility

• elementary reaction kinetics

• the quasi-steady-state assumption

• the reaction equilibrium assumption

This chapter complements Chapter 9 on data analysis and empirical
reaction-rate expressions in which the goal is to find a mathematical
relation that describes the reaction rate over the range of experimental
conditions. The goals here are to develop a chemical kinetics basis
for the empirical expression, and to show that kinetic analysis can be
used to take mechanistic insight and describe reaction rates from first
principles.

189
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In this chapter we also discuss heterogeneous catalytic adsorption
and reaction kinetics. Catalysis has a significant impact on the world
economy1 and many important reactions employ catalysts.2 We de-
scribe the kinetic principles that are needed for rate studies and demon-
strate how the concepts for homogeneous reactions apply to heteroge-
neously catalyzed reactions with the added constraint of surface-site
conservation. The physical characteristics of catalysts are discussed in
Chapter 7.

5.2 Elementary Reactions and Microscopic Reversibility

Stoichiometric statements such as

A+ B -⇀↽- C

are used to represent the changes that occur during a chemical reac-
tion. These statements can be interpreted in two ways. The reaction
statement may represent the change in the relative amounts of species
that is observed when the reaction proceeds. Or the reaction statement
may represent the actual molecular events that are presumed to occur
as the reaction proceeds. The former is referred to as an overall stoi-
chiometry or an overall reaction statement. The latter is referred to as
an elementary reaction. The elementary reaction is characterized by a
change from reactants to products that proceeds without identifiable
intermediate species forming. We show subsequently that for an ele-
mentary reaction, the reaction rates for the forward and reverse paths
are proportional to the concentration of species taking part in the re-
action raised to the absolute value of their stoichiometric coefficients.
The reaction order in all species is determined directly from the stoichi-
ometry. Elementary reactions are usually unimolecular or bimolecular
because the probability of collision between several species is low and
is not observed at appreciable rates. For an overall stoichiometry, on
the other hand, any correspondence between the stoichiometric coeffi-
cients and the reaction order is purely coincidental.

We use three examples to illustrate overall reaction stoichiometry
and elementary reactions. The first involves the mechanism proposed

1One-third of material gross national product in the United States involves a cat-
alytic process somewhere in the production chain [4]. The market value of products
generated through catalysis has reached about $900 billion per annum in 2003 [1].

2Catalysts are used in 90% of the world’s chemical processes to produce 60% of its
chemical products [2].
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for the thermal decomposition of acetone at 900 K to ketene and methyl-
ethyl ketone (2-butanone) [35]. The overall reaction can be represented
by

3CH3COCH3 -→ CO+ 2CH4 + CH2CO+ CH3COC2H5 (5.1)

and is proposed to proceed by the following elementary reactions

CH3COCH3 -→ CH3 + CH3CO (5.2)

CH3CO -→ CH3 + CO (5.3)

CH3 + CH3COCH3 -→ CH4 + CH3COCH2 (5.4)

CH3COCH2 -→ CH2CO + CH3 (5.5)

CH3 + CH3COCH2 -→ CH3COC2H5 (5.6)

In the first elementary reaction, acetone undergoes unimolecular de-
composition to a methyl radical and to an acetyl radical. These radi-
cals continue to react: the methyl radical reacts to methane and a third
radical (CH3COCH2) in elementary Reaction 5.4, and the methyl radi-
cal combines with the third radical to produce methyl ethyl ketone in
elementary Reaction 5.6. The acetyl radical undergoes unimolecular
decomposition to a methyl radical and carbon monoxide in the second
elementary reaction. The third radical also undergoes unimolecular de-
composition in elementary Reaction 5.5 to ketene and a methyl radical.
The thermal decomposition of acetone generates four stable molecules
that can be removed from the reaction vessel: CO, CH4, CH2CO and
CH3COC2H5. Three radicals are formed and consumed during the ther-
mal decomposition of acetone: CH3, CH3CO and CH3COCH2. These
three radicals are reaction intermediates and cannot be isolated out-
side of the reaction vessel.

The overall reaction stoichiometry, Reaction 5.1, is explained as a
linear combination of the five reactions in the proposed mechanism. By
balancing the species in the overall stoichiometry, one can determine
that the overall stoichiometry is produced by adding twice the third
reaction to the remaining reactions. If the elementary reactions cannot
be combined to form the overall stoichiometry, then the mechanism is
not a valid description of the observed stoichiometry.

If we assign the species to the A vector as follows
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Species Formula Name
A1 CH3COCH3 acetone
A2 CH3 methyl radical
A3 CH3CO acetyl radical
A4 CO carbon monoxide
A5 CH3COCH2 acetone radical
A6 CH2CO ketene
A7 CH4 methane
A8 CH3COC2H5 methyl ethyl ketone

then the stoichiometric matrix is

ν =


−1 1 1 0 0 0 0 0

0 1 −1 1 0 0 0 0
−1 −1 0 0 1 0 1 0

0 1 0 0 −1 1 0 0
0 −1 0 0 −1 0 0 1


If we multiply ν by

[
1 1 2 1 1

]
we obtain[

−3 0 0 1 0 1 2 1
]

which is the overall stoichiometry given in Reaction 5.1.
The second example involves one of the major reactions responsible

for the production of photochemical smog. The overall reaction is

2NO2 + hν -→ 2NO+O2 (5.7)

and one possible mechanism is [15, 13]

NO2 + hν -→ NO+ O (5.8)

O+NO2 -⇀↽- NO3 (5.9)

NO3 +NO2 -→ NO+O2 +NO2 (5.10)

NO3 + NO -→ 2NO2 (5.11)

O+NO2 -→ NO+O2 (5.12)

In this reaction mechanism, nitrogen dioxide is activated by absorbing
photons and decomposes to nitric oxide and oxygen radicals (elemen-
tary Reaction 5.8). As in the previous example, stable molecules are
formed, in this case NO and O2, and radicals, O and NO3, are gener-
ated and consumed during the photochemical reaction. The student
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should work through the steps to determine the linear combination of
the mechanistic steps that produces the overall reaction.

The third example involves the synthesis of methane from synthesis
gas, CO and H2, over a ruthenium catalyst [11]. The overall reaction is

3H2(g)+ CO(g) -→ CH4(g)+H2O(g) (5.13)

and one possible mechanism is

CO(g)+ S -⇀↽- COs (5.14)

COs + S -⇀↽- Cs +Os (5.15)

Os +H2(g) -→ H2O(g)+ S (5.16)

H2(g)+ 2S -⇀↽- 2Hs (5.17)

Cs + Hs -⇀↽- CHs + S (5.18)

CHs + Hs -⇀↽- CH2s + S (5.19)

CH2s + Hs -⇀↽- CH3s + S (5.20)

CH3s + Hs -→ CH4(g)+ 2S (5.21)

in which subscripts g and s refer to gas phase and adsorbed species,
respectively, and S refers to a vacant ruthenium surface site. During
the overall reaction, the reagents adsorb (elementary Reactions 5.14
and 5.17), and the products form at the surface and desorb (elementary
Reactions 5.16 and 5.21). Adsorbed CO (COs) either occupies surface
sites or dissociates to adsorbed carbon and oxygen in elementary Reac-
tion 5.15. The adsorbed carbon undergoes a sequential hydrogenation
to methyne, methylene, and methyl, all of which are adsorbed on the
surface. Hydrogenation of methyl leads to methane in elementary Re-
action 5.21. In this example, the overall reaction is twice the fourth
reaction added to the remaining reactions.

In each of these examples, the elementary reactions describe the
detailed pathway between reactants and products. Numerous factors
must be considered in proposing, developing and verifying a mecha-
nism and a complete discussion of these factors is beyond the scope of
this text. Keep in mind that the elementary reactions must be possible
chemically, that is to say the reactants could form the products (and
the products could form the reactants), and the elementary reactions
should be kinetically significant, that is to say the reaction contributes
to the appearance of intermediates or products. For example, during



194 Chemical Kinetics

acetone pyrolysis several radicals are produced and these could recom-
bine in a variety of processes that are chemically possible such as

CH3 + CH3COCH2 -→ CH3COC2H5

CH3 + CH3 -→ C2H6

2CH3COCH2 -→ (CH3COCH2)2

However, only Reaction 5.6 is listed in the mechanism presented above
because the other two radical recombination reactions occur at rates
too small to be significant. Methyl recombination was ruled out because
the methyl concentration is anticipated to be much lower than the con-
centration of CH3COCH2; therefore the probability of methyl recombin-
ing is much lower than the methyl being consumed in the other steps.
Furthermore, the recombination of CH3COCH2 can be discounted be-
cause the chemical instability of the bond formed in the recombination
product (CH3COCH2)2 would cause this product to decompose rapidly
back into the radical CH3COCH2. Laidler [24] and Hill [17] provide a
good discussion of some of these kinetic arguments and present addi-
tional examples of complex reactions.

One criterion for a reaction to be elementary is that as the reactants
transform into the products they do so without forming intermediate
species that are chemically identifiable. A second aspect of an ele-
mentary reaction is that the reverse reaction also must be possible on
energy, symmetry and steric bases, using only the products of the ele-
mentary reaction. This reversible nature of elementary reactions is the
essence of Tolman’s principle of microscopic reversibility [39, p. 699].

This assumption (at equilibrium the number of molecules
going in unit time from state 1 to state 2 is equal to the
number going in the reverse direction) should be recognized
as a distinct postulate and might be called the principle of
microscopic reversibility. In the case of a system in thermo-
dynamic equilibrium, the principle requires not only that the
total number of molecules leaving a given quantum state in
unit time is equal to the number arriving in that state in unit
time, but also that the number leaving by any one particular
path, is equal to the number arriving by the reverse of that
particular path.

Various models or theories have been postulated to describe the rate
of an elementary reaction. Transition-state theory (TST) is reviewed
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briefly in the next section to describe the flow of systems (reactants -→
products) over potential-energy surfaces. Using Tolman’s principle, the
most probable path in one direction must be the most probable path
in the opposite direction. Furthermore, the Gibbs energy difference in
the two directions must be equal to the overall Gibbs energy difference
— the ratio of rate constants for an elementary reaction must be equal
to the equilibrium constant for the elementary reaction.

5.3 Elementary Reaction Kinetics

In this section we outline the transition-state theory (TST), which can
be used to predict the rate of an elementary reaction. Our purpose
is to show how the rate of an elementary reaction is related to the
concentration of reactants. The result is

ri = ki
∏
j∈Ri

c−νijj − k−i
∏
j∈Pi

cνijj (5.22)

in which j ∈ Ri and j ∈ Pi represent the reactant species and the
product species in the ith reaction, respectively.

Equation 5.22 forms the basis for predicting reaction rates and is
applied to homogeneous and heterogeneous systems. Because of its
wide use, the remainder of this section describes the concepts and as-
sumptions that underlie Equation 5.22. Transition-state theory is based
on the principles of statistical mechanics and, for the purposes here,
you need only an understanding of molecular partition functions at the
level presented in undergraduate physical chemistry texts.

Before describing TST it is necessary to develop the concept of the
reaction coordinate. We use a two-body reaction example to calculate
and illustrate a potential energy surface from which a reaction coordi-
nate diagram is constructed. Elementary reaction kinetics is a rich field
[29, 24, 42] and the material outlined here is far from comprehensive —
it is intended to provide a framework for developing a physical picture
and mathematical model of a chemical reaction.

Molecules containing N atoms require 3N Cartesian coordinates
to specify the locations of all the nuclei. For convenience, we may
use three coordinates to locate the center of mass of the molecule,
and three more coordinates to orient a chosen axis passing through
the molecule. Only two are needed to describe the orientation if the
molecule is diatomic. The remaining 3N − 6 coordinates are used to
specify the relative positions of the atoms. The potential energy V(r)
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Figure 5.1: Morse potential for H2 and HF.

of the molecule is related to the relative position of the atoms, and
for a diatomic molecule the potential energy can be represented with a
Morse function

V(r) = D
[
e−2βr − 2e−βr

]
in which D is the dissociation energy, r is the displacement from the
equilibrium bond length, and β is related to the vibrational frequency
of the molecule. Figure 5.1 presents the Morse functions for HF and H2

molecules. The depth of the well is governed by the magnitude ofD and
the curvature at the bottom is governed by the vibrational frequency.
The potential energy is a strong function of the distance of separation
between the atoms.

If we increase the number of atoms in the molecule to three, we
require three coordinates to describe the internuclear distances. We
might choose the two distances from the center atom and the bond
angle as the three coordinates. The potential energy is a function of
all three coordinate values. A plot of the energy would be a three-
dimensional surface, requiring four dimensions to plot the surface.
If we fix the bond angle by choosing a collinear molecule, say, only
the two distances relative to a central atom are required to describe
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Figure 5.2: Potential-energy surface for the F, H2 reaction.

the molecule. The potential energy can be expressed as a function of
these two distances, and we can view this case as a three-dimensional
plot. Figure 5.2 shows a representative view of such a surface for the
collinear collision between F and H2.

F+H H -⇀↽- {F H H} -⇀↽- F H+H

Several sources provided the data used to calculate this potential-energy
surface [32, 34, 33]. Moore and Pearson provide a more detailed dis-
cussion of computing potential-energy surfaces [29].

Figure 5.3 gives a contour representation of Figure 5.2. The contour
lines are isoenergetic. Figures 5.2 and 5.3 illustrate, for a collinear col-
lision between a diatomic molecule and an atom, the potential-energy
surface consists of two valleys connected by a pass. A slice through
the energy surface of Figure 5.2 at large values of rHF — in which F
atoms exist along with H2 molecules — reproduces the curve for H2 in
Figure 5.1. A slice at large rHH — in which H atoms exist along with HF
molecules — reproduces the curve for HF in Figure 5.1. As the F atom is
brought into contact with H2 in a collinear fashion, a surface of energies
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Figure 5.3: Contour representation of the potential-energy surface.

is possible that depends on the values of rHF and rHH. There is a mini-
mum energy path along the valley of decreasing rHF and constant rHH.
This path is shown by the dashed line in Figures 5.2 and 5.3. The re-
action starts in the H2 valley at large rHF, proceeds along the minimum
energy path and ends in the HF valley at large rHH. Because of the re-
pulsive and attractive forces present during the collision, the maximum
value of the energy along the minimum energy path is a saddle point.
The dashed line is referred to as the reaction-coordinate pathway, and
movement along this pathway is the reaction coordinate, ξ.

Figure 5.4 is a reaction-coordinate diagram, which displays the en-
ergy change during this reaction. The reaction coordinate represents
travel along the minimum energy path from reactants to products. For
this example, there is a one-to-one correspondence between the energy
associated with a rHF–rHH coordinate pair in Figure 5.3 and the energy
presented in Figure 5.4. The difference in energies between reactants
and products is the heat of reaction; in this case it is exothermic by
34 kcal/mol. The barrier height of 4 kcal/mol between reactants and
products is used to calculate the activation energy for the reaction.

Potential-energy surfaces such as Figures 5.2 and 5.3 cannot be de-
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Figure 5.4: Reaction-coordinate diagram.

picted for polyatomic systems with N > 3 because more variables
would be needed to describe all the relative positions of the nuclei.
However, a reaction-coordinate diagram can always be constructed from
a minimum energy path along a potential-energy surface. The saddle-
point location defines the relative positions of all nuclei in the system,
just as in Figure 5.3.

The principle of microscopic reversibility for this elementary reac-
tion implies that the same structure at the saddle point must be realized
if the reaction started at HF + H and went in reverse. The molecular
structure (the relative positions of F, and two H’s) at the saddle point is
called the transition-state complex. This transition-state complex is not
a chemically identifiable reaction intermediate; it is the arrangement of
atoms at the point in energy space between reactants and products.
Any change of relative positions of F and the two H’s for the transition-
state complex (as long as the motions are collinear) results in the com-
plex reverting to reactants or proceeding to products.

Statistical mechanics uses the properties of individual molecules
to describe the thermodynamic properties of the bulk system such as
the energy, which is the average energy of all molecules in the system.
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This energy is found by summing over the product of all possible en-
ergies and the probability of finding each energy in the system. The
individual probabilities are normalized with a quantity known as the
partition function, Q. Therefore, the partition function is a normaliza-
tion function and we use a microscopic description of the molecules
in the system to calculate the partition function. All thermodynamic
properties can be expressed in terms of the partition function, includ-
ing the internal energy, entropy, Helmholtz energy, pressure, enthalpy
and Gibbs energy. It is also possible to compute the chemical potential
of a component in a mixture from the partition function. This ability to
take a microscopic description of the molecules and determine macro-
scopic properties is exploited to calculate equilibrium constants for a
reaction, and rate constants using TST.

The partition function of the system Q is related to the molecular
partition function of the individual molecules in the system. In our
development of rate constants we make use of the molecular partition
functions. The molecular partition function per unit volume for an
ideal gas is the product of the translational, rotational, vibrational and
electronic energy states in the molecule(

q
V

)
j
=
(
q
V

)
tran

qrotqvibqelec

Table 5.1 lists relationships needed to calculate the various terms of
the molecular partition function. Further, the activity for any species j
is

aj =
(
q
V

)
j

kBT
f ◦j

The molecular partition functions can be used to calculate the equi-
librium constant for the reaction between F and H2. For this gas-phase
reaction

K = aHFaH

aFaH2

=

(
q
V

)
HF

(
q
V

)
H(

q
V

)
F

(
q
V

)
H2

f ◦F f
◦
H2

f ◦HFf
◦
H

(5.23)

This example serves to illustrate how a microscopic description — the
bond distances in HF and H2, the vibrational frequencies of HF and H2,
the degeneracies of the electronic states of HF, H2, F and H, and the
electronic energy levels of HF, H2, F and H — can be used to deter-
mine a thermodynamic property. This same microscopic description
can equally well be used to calculate the enthalpy or any other thermo-
dynamic property of the system.



5.3 Elementary Reaction Kinetics 201

Component Units Expression

translation length−3
(
q
V

)
tran

=
(2πmkBT)3/2

h3

rotation
(linear)

— qrot =
8π2IkBT
σh2

rotation
(nonlinear)

— qrot =
8π28π3(IAIBIC)1/2(kBT)3/2

σh3

vibration — qvib =
3N−6∏
i

exp (−hνi/2kBT)
1− exp (−hνi/kBT)

electronic — qelec =
states∑
i
gei exp (−ϵi/kBT)

Table 5.1: Molecular partition function terms.

The reaction-coordinate diagram illustrates the idea that, at some
particular orientation of atoms, the reacting molecules (atoms) are in
a configuration that either goes forward to products or reverts back
to reactants. TST is based on the assumption that the transition-state
complex is in equilibrium with the reactants forming it. We use X to
designate the transition-state complex, A to denote one reactant, and
B to denote the other reactant

A+ B -→ X

Using the principles of statistical mechanics we can write for this gas-
phase reaction

K = aX
aAaB

=

(
q
V

)
X(

q
V

)
A

(
q
V

)
B

f ◦Af
◦
B

f ◦X

1
kBT

(5.24)

The concentration of the transition-state complex is required to express
the rate as a function of concentration. If activity is defined as

aj =
fj
f ◦j
= φjPj

f ◦j
(5.25)

and the equation of state is,

PjV = zkBTnj (5.26)
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then
ax
aAaB

= φX
φAφB

f ◦Af
◦
B

f ◦X

1
zkBT

cX
cAcB

(5.27)

Combining Equations 5.24 and 5.27 and solving for cX gives

cX =

(
q
V

)
X(

q
V

)
A

(
q
V

)
B

φAφBz
φX

cAcB (5.28)

TST invokes the idea that the rate in the forward direction (H2 +
F -→ HF + H) is equal to the number of transition-state complexes

moving to the right of on the reaction coordinate diagram. For the
example worked here, the rate has units of molecules/time·volume.
Since movement along the reaction coordinate describes molecules (or
atoms) coming together and bonds rearranging, TST assumes that the
complex either moves to the right or to the left within the frequency of
the single vibration (molecular motion) that best represents the bond
to be made (or broken). We refer to this special frequency as ν∗, and
we can write

r = ν∗cX = ν∗
(
q
V

)
X(

q
V

)
A

(
q
V

)
B

φAφBz
φX

cAcB (5.29)

The vibrational partition function is

qvib =
3N−6∏
i

exp (−hνi/2kBT)
1− exp (−hνi/kBT)

in which 3N−6 vibrational modes are needed to describe a polyatomic,
nonlinear molecule comprised of N atoms (3N − 5 modes describe a
linear molecule). In the limit of a very weak vibration (small νi), the
quantity

exp (−hνi/2kBT)
1− exp (−hνi/kBT)

-→ kBT
hνi

(5.30)

This approximation is valid for hνi/kBT ≤ 0.1. This limit is some-
times referred to as the classical high-temperature limit. The argument
hν/kBT equals 0.1 at a temperature of 28,800 K for a stretching fre-
quency of 2000 cm−1, and it equals 0.1 at a stretching frequency of
20.8 cm−1 for a temperature of 300 K. A frequency of 20.8 cm−1 is
reasonable for a rocking motion or a hindered rotation about a bond.
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At this point, we assume a weak bond is made (or broken) as the
transition-state complex transforms to products. We then rewrite the
molecular partition function for the transition-state complex as(

q
V

)
X
=
(
q
V

)
tran

qrotqelecq∗vib
exp (−hν∗/2kBT)

1− exp (−hν∗/kBT)
(5.31)

in which q∗vib now has 3N − 7 (or 3N − 6 linear) vibrational modes re-
maining because one was used in the argument containing ν∗. At the
classical high-temperature limit (shown in Equation 5.30) Equation 5.31
becomes (

q
V

)∗
X
=
(
q
V

)
tran

qrotqelecq∗vib
kBT
hν∗

Combining this result with Equation 5.29 gives

r = kBT
h

(
q
V

)∗
X(

q
V

)
A

(
q
V

)
B

φAφBz
φX

cAcB (5.32)

The rate constant contains all the terms on the right-hand side of
Equation 5.32 except for the concentration of reactants,

k = kBT
h

(
q
V

)∗
X(

q
V

)
A

(
q
V

)
B

φAφBz
φX

(5.33)

which leads to
r = kcAcB (5.34)

Equation 5.33 can be rewritten as

k = k◦f(cj) (5.35)

in which

k◦ = kBT
h

(
q
V

)∗
X(

q
V

)
A

(
q
V

)
B

(5.36)

represents all the terms that are composition independent. For a reac-
tion involving ideal gases, f(cj) = 1.

Most rate expressions use the form of Equation 5.34. The variable k
is the rate constant and many texts consider this to be a composition-
independent term. The rate “constant” is not strictly constant. It
changes with temperature and even composition. The composition
dependence is absent for ideal gases and it is reasonable to neglect
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compositional dependence of k in many situations. The temperature
dependence is rigorously found by accounting for the effect of temper-
ature on each term in Equation 5.33. The Arrhenius rate expression is
one common way of representing the temperature dependence.

k = k0 exp (−Ea/kBT) (5.37)

in which k0 is temperature independent, and Ea is known as the acti-
vation energy. Often k0 varies weakly with temperature

k0 = AT B

with −2 ≤ B ≤ 1. The Arrhenius expression is accurate provided Ea≫
BkBT .

With Equation 5.32 and a potential-energy surface, it is possible, in
principle, to calculate the rate of any elementary reaction. This is a use-
ful result because, as computational chemistry develops better empir-
ical methods for determining the potential-energy surface, it becomes
possible to predict reaction rates from first principles and compare
them against experimental information or possibly avoid experimental
determination of the reaction rate.

TST teaches us that elementary reactions depend on the amount
(concentration) of each reactant raised to the absolute value of its stoi-
chiometric coefficient because of the equilibrium assumed between the
transition-state complex and the reactants. This allows us to general-
ize the results illustrated above to all elementary reactions3 and adopt
the convention

ri = ki
∏
j∈Ri

c−νijj − k−i
∏
j∈P⟩

cνijj (5.38)

Equation 5.38 cannot be set to zero to define the equilibrium concentra-
tion, nor is the ratio of the forward and reverse rate constants equal to
the equilibrium constant for the elementary reaction. The equilibrium
constant K is given by

K =
k◦i
k◦−i

ns∏
j

(
kBT
f ◦j

)νij

The equilibrium constant is equal to a ratio of activities. The compo-
sition at equilibrium is found by expressing the activities in terms of
concentrations.

3There is an exception for unimolecular reactions in the low-pressure regime.
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Note that k−i may be small compared to ki, in which case the reverse
reaction is insignificant. The reversibility condition, although true in
general, may not be important in a particular reaction. Recall also that
the production rate of any species j is

Rj =
nr∑
i=1

νijri (5.39)

Applying Equations 5.38 and 5.39 to NO3 in the photochemical smog
example gives

RNO3 = k2cOcNO2 − k−2cNO3 − k3cNO3cNO2 − k4cNO3cNO

Example 5.1: Computing a rate constant for trioxane decomposition

Using TST, predict the value of the rate constant for the unimolecular
decomposition of 1,3,5-trioxane at 750 K. The decomposition proceeds
by the concerted rupture of three C O bonds in the ring to form CH2O.

O O

O

3 CH2O

The ring expands during the reaction. The vibrational frequencies and
moments of inertia of the molecule and the transition complex are
listed in Table 5.2, and the experimentally observed rate constant is [19].

k = k0e−Ea/RT k0 = 1015.28±0.06 s−1 Ea = 47.5± 2.4 kcal/mol

Solution

It is reasonable to assume the reacting mixture is ideal and k is given
by Equation 5.36.

k = kBT
h

(
q
V

)∗
complex(

q
V

)
trioxane

(5.40)

Because the masses of the transition-state complex and the trioxane
are equal,

(
q
V

)
tran

is the same for the complex and trioxane molecule.
A ratio of the qrot reduces to

(qrot)complex

(qrot)trioxane
=
(√
IAIBIC

)
complex(√

IAIBIC
)

trioxane
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Parameter Value
frequencies, cm−1

trioxane 296, 296, 524, 524, 945, 945,
1070, 1070, 1178, 1178,
1305, 1305, 1410, 1410,
1481, 1481, 2850, 2850,
3025, 3025, 1122, 1242,
1383, 466, 752, 978, 1235,
1495, 2850, 3025

transition complex 100, 100, 200, 200, 945, 945,
1400, 1400, 1178, 1178,
1200, 1200, 1200, 1200,
1481, 1481, 2850, 2850,
3025, 3025, 1000, 1242,
1100, 200, 700, 1200, 1495,
2850, 3025

moments of inertia, amu-Å2

trioxane 96.4, 96.4, 173.0

transition complex 125.3, 120.5, 249.2

potential-energy barrier, kcal/mol 51.4

Table 5.2: Parameters for the trioxane reaction.

(qrot)complex

(qrot)trioxane
=
√
(125.3)(120.5)(249.2)√
(96.4)(96.4)(96.4)

= 1.53

The vibrational terms use the frequency ν in reciprocal time and we
are given the frequency in wave numbers (cm−1). To use wave number
units, the following is used in place of h/kBT

hc
kBT

= (6.626× 10−34J s)(2.998× 1010cm/s)
(1.381× 10−23J/K)(750 K)

= 1.92× 10−3 cm

Using the vibrational frequencies listed in Table 5.2, the vibrational
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partition functions are

qvib, complex =
29∏
i=1

exp(−1/2(1.92× 10−3cm)(νicm−1))
1− exp(−(1.92× 10−3cm)(νicm−1))

= 1.94× 10−13

qvib, trioxane =
30∏
i=1

exp(−1/2(1.92× 10−3cm)(νicm−1))
1− exp(−(1.92× 10−3cm)(νicm−1))

= 3.25× 10−16

qvib, complex

qvib, trioxane
= 596

The reaction frequency is

kBT
h
= (1.381× 10−23 J/K)(750 K)

6.626× 10−34J s

= 1.56× 1013s−1

Assuming degeneracies of unity the electronic terms are

qelec, complex = (1) exp
( −51400 cal/mol
(1.987 cal/mol K)(750 K)

)
= 1.05× 10−15

qelec, trioxane = 1

and the ratio of electronic terms is 1.05× 10−15.
Substituting all the individual terms into Equation 5.40 yields

k = (1.56× 1013 s−1)(1.53)(596)(1.05× 10−15)

= 14.9 s−1

This value compares reasonably well to the experimentally determined
value of 27.4 s−1 at this temperature. A factor of two is not a large
disagreement if you consider the temperature dependence of the rate
constant. Figure 5.5 compares the experimental and calculated values
of the rate constant over the temperature range 700–800 K. □

5.4 Fast and Slow Time Scales

One of the characteristic features of many chemically reacting systems
is the widely disparate time scales at which reactions occur. It is not un-
usual for complex reaction mechanisms to contain rate constants that
differ from each other by several orders of magnitude. Moreover, the
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Figure 5.5: Comparison of measured and calculated rate constant
versus temperature for trioxane decomposition.

concentrations of highly reactive intermediates may differ by orders of
magnitude from the concentrations of relatively stable reactants and
products. These widely different time and concentration scales present
challenges for accurate estimation of rate constants, measurement of
low-concentration species, and even numerical solution of complex
models.

On the other hand, these disparate scales often allow us to approx-
imate the complete mechanistic description with simpler rate expres-
sions that retain the essential features of the full problem on the time
scale or in the concentration range of interest. Although these approx-
imations were often used in earlier days to allow easier model solu-
tion, that is not their primary purpose today. Most models, even stiff
differential equation models with fairly disparate time scales, can be
solved efficiently with modern ODE solvers. On the other hand, the
physical insight provided by these approximations remains valuable.
Moreover the reduction of complex mechanisms removes from con-
sideration many parameters that would be difficult to estimate from
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available data. The next two sections describe two of the most widely
used methods of model simplification: the equilibrium assumption and
the quasi-steady-state assumption.

5.4.1 The Reaction Equilibrium Assumption

In the reaction equilibrium assumption, we reduce the full mechanism
on the basis of fast and slow reactions. In a given mechanism consist-
ing of multiple reactions, some reactions may be so much faster than
others, that they equilibrate after any displacement from their equi-
librium condition. The remaining, slower reactions then govern the
rate at which the amounts of reactants and products change. If we
take the extreme case in which all reactions except one are assumed
at equilibrium, this remaining slow reaction is called the rate-limiting
step. But the equilibrium approximation is more general and flexible
than this one case. We may decompose a full set of reactions into two
sets consisting of any number of slow and fast reactions, and make the
equilibrium assumption on the set of fast reactions.

We illustrate the main features with the simple series reaction

A
k1-⇀↽-
k−1

B, B
k2-⇀↽-
k−2

C (5.41)

Assume that the rate constants k2, k−2 are much larger than the rate
constants k1, k−1, so the second reaction equilibrates quickly. By con-
trast, the first reaction is slow and can remain far from equilibrium for
a significant period of time. Because the only other reaction in the net-
work is at equilibrium, the slow, first reaction is called the rate-limiting
step. We show that the rate of this slow reaction does indeed determine
or limit the rate at which the concentrations change.

It is perhaps clearest to start with the full model and demonstrate
what happens if k2, k−2 ≫ k1, k−1. Consider the solution to the full
model with rate constants k1 = 1, k−1 = 0.5, k2 = k−2 = 1 and initial
conditions cA(0) = 1.0, cB(0) = 0.4, cC(0) = 0 shown in Figure 5.6. Now
consider what happens as k2 and k−2 become larger. Figure 5.7 shows
the solution for k2 = k−2 = 10. Notice the characteristic feature is that
equilibrium is now quickly established between species B and C. The
time scale for this equilibration is about 0.1 min. The remaining slow
part of the system takes about 4 min to reach equilibrium. Figure 5.8
shows the rapid equilibration of cB and cC at small times for increasing
k2 holding K2 = k2/k−2 = 1.
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Figure 5.6: Full model solution for k1 = 1, k−1 = 0.5, k2 = k−2 = 1.
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Figure 5.7: Full model solution for k1 = 1, k−1 = 0.5, k2 = k−2 = 10.
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Figure 5.8: Concentrations of B and C versus time for full model with
increasing k2 with K2 = k2/k−2 = 1.

We now analyze the kinetic model. We can express the mole bal-
ances in terms of either the extents of the two reactions or the con-
centrations of the three species. Both approaches are instructive so we
examine both, but we start with the two reaction extents because there
are only two independent reactions. The full model can be expressed
as

dε1

dt
= r1 = k1cA − k−1cB , ε1(0) = 0

dε2

dt
= r2 = k2cB − k−2cC , ε2(0) = 0

in which, for the batch reactor,

cA = cA0 − ε1, cB = cB0 + ε1 − ε2, cC = cC0 + ε2 (5.42)

To describe the fast time-scale behavior displayed in Figure 5.8, let τ
denote a fast time variable via

τ = k−2t
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so a small change in t is equivalent to a large change in τ . If we divide
both full model equations by k−2 we produce

dε1

dτ
= 1
k−2

(k1cA − k−1cB) ,
dε2

dτ
= K2cB − cC

in which K2 = k2/k−2 is the equilibrium constant of the fast reaction.
Now if we take the limit as k−2 →∞, these equations reduce to

dε1

dτ
= 0,

dε2

dτ
= K2cB − cC

which shows the extent of the slow reaction does not change, ε1(τ) = 0,
over the small time during which the fast reaction equilibrates. We com-
pute the steady state achieved by ε2 on this fast time scale by substitut-
ing Equations 5.42 into the right-hand side of the differential equation
for ε2, and setting the equation to zero, which yields

ε1s = 0, ε2s =
K2

1+K2
cB0 −

1
1+K2

cC0

Given this steady state achieved on the fast time scale, we can com-
pute the relaxation on the slow time scale. On the slow time scale, we
wish to impose the equilibrium condition K2cB − cC = 0. In terms of
extents, this equation is equivalent to

ε2 =
K2

1+K2
ε1 +

K2

1+K2
cB0 −

1
1+K2

cC0 (5.43)

This equilibrium relationship takes the place of the differential equa-
tion for ε2 on the slow time scale. Notice the time derivative of ε2

should not be set to zero on the long time scale because

dε2

dt
= k−2 (K2cB − cC)

Although the term in parentheses approaches zero for a fast second
reaction, k−2 approaches infinity, and the product does not go to zero.
To determine a differential equation for ε2, if one is desired, we instead
differentiate the equilibrium condition, Equation 5.43, to obtain4

dε1

dt
= r1

dε2

dt
= K2

1+K2
r1

4Notice we again are choosing between a DAE and an ODE description of the model
as in Section 4.5 and Exercise 4.19.
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Equations Fast Time Scale (τ = k−2t) Slow Time Scale (t)

dε1

dτ
= 0

dε1

dt
= r1

ODEs
dε2

dτ
= K2cB − cC

dε2

dt
= K2

1+K2
r1

ε1(0) = 0 ε1(0) = 0

ε2(0) = 0 ε2(0) = ε2s =
K2cB0 − cC0

1+K2

ε1 = 0
dε1

dt
= r1

DAEs
dε2

dτ
= K2cB − cC ε2 =

K2

1+K2
ε1 +

K2cB0 − cC0

1+K2

ε2(0) = 0 ε1(0) = 0

cA = cA0 − ε1, cB = cB0 + ε1 − ε2, cC = cC0 + ε2

Table 5.3: Fast and slow time-scale models in extents of reactions.

Table 5.3 summarizes the results so far. A network with fast and
slow reactions leads to fast and slow time-scale reduced models, shown
in the left- and right-hand columns of Table 5.3, respectively. We can
express the model either as a set of two ODEs or a DAE consisting
of one ODE and one algebraic equation, shown in the top and bottom
portions of the table. In either case, the dynamics of the slow time
scale are determined only by r1, verifying that the slow first reaction
is the rate-limiting step. The steady state of the fast model becomes
the initial condition for the slow model. If we solve the slow time-scale
model, we produce the results in Figure 5.9. Notice the concentrations
of all components are in excellent agreement after a short time. The big
advantage of the reduced model is that values of k2 and k−2, which are
large and hard to estimate from data, are not required. In the reduced
model, only their ratio, K2, appears.

Extents of reaction are convenient variables for a batch reactor, but
are inadequate to describe systems with flow terms such as the CSTR.
We require species balances for reactors with flow terms, so we reexam-
ine the equilibrium assumption in terms of the concentration variables.
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Figure 5.9: Comparison of equilibrium assumption to full model for
k1 = 1, k−1 = 0.5, k2 = k−2 = 10.

The mole balances for the full model are

dcA
dt

= −r1,
dcB
dt

= r1 − r2,
dcC
dt

= r2

We know that only two of these differential equations are independent;
we could add the three expressions to deduce the implied algebraic
constraint, which could serve as a replacement for any one of the ODEs
above

d(cA + cB + cC)
dt

= 0, cA + cB + cC = cA0 + cB0 + cC0 (5.44)

The short time-scale model is similar to the case with reaction extents.
Table 5.4 shows the short time-scale result in the left hand column. De-
riving the correct slow time-scale model is less obvious and sometimes
leads to confusion. The equilibrium assumption is made by adding the
algebraic constraint that r2/k−2 = 0 or K2cB − cC = 0. This algebraic
equation coupled with Equation 5.44 and the mole balance for compo-
nent A, in which the second reaction does not appear, then constitute a
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complete set of equations for the slow time scale, shown in the lower,
right portion of Table 5.4. If we prefer differential equations, we can
add the mole balances for components B and C to eliminate r2

d(cB + cC)
dt

= r1 (5.45)

Notice we have not set r2 = 0 to obtain this result. Equation 5.45 in-
volves no approximation. If we differentiate the equilibrium condition,
we obtain a second relation, K2dcB/dt − dcC/dt = 0, which allows us
to solve for both dcB/dt and dcC/dt,

dcB
dt

= 1
1+K2

r1
dcC
dt

= K2

1+K2
r1

This result also is listed in Table 5.4. Notice that this result is not
derivable by setting r2 = 0 in the full model. We see immediately from
the slow time-scale differential equations that all concentrations are
driven by r1, again showing the first reaction is the rate-limiting step.

Normally one is interested in the solution to only the slow time-scale
model and ignores the small errors at early times. One can also knit
the slow and fast time-scale models together, however, and obtain a
more accurate reduced model valid at all times. This knitting proce-
dure is known as matching the inner (fast) and outer (slow) solutions
in the mathematical theory of singular perturbations [31, 26, 37]. The
inverse of the large rate constant plays the role of the perturbation pa-
rameter in this theory. The inner (fast) solution is valid in a boundary
layer (small time) that decreases in size as the perturbation parameter
goes to zero (k−2 goes to infinity) as shown in Figure 5.8. The slow and
fast time-scale models presented in Tables 5.3 and 5.4 are zero-order
terms in a full perturbation series solution. Higher-order corrections
also can be computed as shown by O’Malley [31], for example. Although
this series solution may be of interest to gain analytical insight into
nonlinear kinetic models, the higher-order terms depend on the values
of k2 and k−2. In other words, the higher-order corrections require as
much information as the solution of the full model. It is usually sim-
pler to compute numerically the solution to the full model if these rate
constants are known. Kumar, Christofides and Daoutidis provide fur-
ther discussion of the application of the singular perturbation method,
and also discuss the resulting control problems arising with chemical
reactors having both fast and slow time-scale kinetics [23].

Another interesting extension is the case of larger sets of reactions.
The equilibrium assumption for larger sets of reactions is elegantly
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handled by finding the null space of the stoichiometric matrix of the
fast reactions. Ramkrishna and coworkers [14] provide a more com-
plete discussion of this approach.

Finally, if the fast reactions are irreversible, further simplification
is possible. In the simple series reactions, let the second reaction be
fast and irreversible in Equation 5.41. We start with the slow time-scale
model given in Table 5.4 and take the limit as K2 -→ ∞ giving

dcA
dt

= −r1, cA(0) = cA0

dcB
dt

= 0, cB(0) = 0

dcC
dt

= r1, cC(0) = cB0 + cC0

In this limit the B disappears, cB(t) = 0, and r1 = k1cA, which describes
the irreversible reaction of A directly to C with rate constant k1

A
k1-→ C (5.46)

We see in the next section that this case is well described also by making
the quasi-steady-state assumption on species B.

If we take the second reaction as irreversible in the backward direc-
tion, K2 = 0, we obtain from Table 5.4

dcA
dt

= −r1, cA(0) = cA0

dcB
dt

= r1, cB(0) = cB0 + cC0

dcC
dt

= 0, cC(0) = 0

which describes the reversible reaction between A and B with no second
reaction, cC(t) = 0,

A
k1-⇀↽-
k−1

B (5.47)

Under the equilibrium assumption, we see that the two series reactions
in Equation 5.41 may reduce to A going directly and irreversibly to C,
Equation 5.46, or A going reversibly to B, Equation 5.47, depending on
the magnitude of the equilibrium constant of the second, fast reaction.
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5.4.2 The Quasi-Steady-State Assumption

In the quasi-steady-state assumption, we reduce the full mechanism
on the basis of rapidly equilibrating species rather than reactions as in
the reaction equilibrium assumption. We have seen in Section 5.2 that
reaction networks can involve the formation and consumption of inter-
mediate species. In some cases the intermediates are transitory, highly
reactive species that are chemically identifiable but unlikely to exist out-
side the reaction mixture. Examples of these transitory species include
atoms, radicals, ions and molecules in excited states. The examples in
Section 5.2 contained radicals (CH3, CH3CO, CH3COCH2 and NO3) and
an atom (O). When the transitory species (reaction intermediates) have
certain kinetic properties that we discuss next, their net rate of forma-
tion can be set equal to zero, which enables their concentration to be
determined in terms of reactants and products using algebraic equa-
tions. After solving for these small concentration species, one is then
able to construct reaction-rate expressions for the stable reactants and
stable products in terms of reactant and product concentrations only.

The idea to set the production rate of a reaction intermediate equal
to zero has its origins in the early 1900s [5, 7] and has been termed the
Bodenstein-steady-state, pseudo-steady-state, or quasi-steady-state as-
sumption. We use the term quasi-steady-state assumption (QSSA). The
intermediate species are referred to as QSSA species [40]. The condi-
tions are: the error in the concentration of the important species (re-
actants and products) calculated with the QSSA and without the QSSA
(the exact solution) be small, and the time domain over which the QSSA
is applied be selected to ensure the calculated error is minimized. A
number of other qualifying conditions have been applied, which may be
valid in certain circumstances, but as pointed out by Turànyi et al. [40,
p.172] are not universally applicable.

There have been several empirical observations or con-
clusions based on the investigation of small model reaction
systems that showed that the rates of consuming reactions
of QSSA species are unusually high, that the concentrations,
and the net rates of reaction of QSSA species are unusu-
ally low, that the induction period is usually short, and that
most QSSA species are radicals. These observations are sim-
ple consequences of the physical pictures presented above
and the error formulas derived from them.

Having stated that certain reactive characteristics (high rates of con-
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sumption, short lifetimes, short induction times, low concentrations,
radicals, etc.) do not necessarily make a good QSSA species, we still use
these characteristics to identify prospective QSSA species, but must
then test to determine if these reaction intermediates are QSSA species
[40, 29]. The key issue is how well the approximate solution that in-
vokes the QSSA describes the exact solution. A detailed discussion of
the error analysis is given by Turànyi et al. [40]. Here we illustrate the
features of the QSSA and its application to a QSSA species.

For a spatially homogeneous reaction system, such as a constant-
volume batch reactor, we write the following differential equation for
each component

dcj
dt
= Rj =

nr∑
i=1

νijri = f(T , cj) (5.48)

A system composed of ns species leads to ns differential equations,
and the exact solution is found by solving Equations 5.48. The QSSA is
applied to k QSSA species, where k < ns . This leads to the following
set of algebraic equations for the QSSA species

dcjs
dt

= 0 =
nr∑
i=1

νijri = g(T , cs) (5.49)

The system of differential-algebraic equations is solved subject to the
same initial conditions. We show in the next section how the solution
of Equations 5.49 leads to reaction-rate expressions in terms of only
the non-QSSA species concentrations, which is the goal. Given today’s
computing capability, not much has been gained by reducing the set of
ODEs required for the model solution. If one knows all the ki values,
it is just as easy to simulate the entire set of ODEs as it is to solve
the reduced set of ODEs. If experimental data are being fit to a kinetic
model, however, it is advantageous to reduce the number of estimated
kinetic parameters. A valuable feature of the QSSA is that it eliminates
hard-to-estimate rate constants from the model as demonstrated in
Example 5.5.

To illustrate the QSSA we consider two simple elementary reaction
schemes. Scheme I is given by

A
k1-→ B B

k2-→ C

and Scheme II is given by

A
k1-⇀↽-
k−1

B B
k2-→ C
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Let the initial concentration in a constant-volume, isothermal, batch
reactor be cA = cA0, cB = cC = 0. The exact solution to the set of
Equations 5.48 for Scheme I is

cA = cA0e−k1t (5.50)

cB = cA0
k1

k2 − k1

(
e−k1t − e−k2t

)
(5.51)

cC = cA0
1

k2 − k1

(
k2(1− e−k1t)− k1(1− e−k2t)

)
(5.52)

The exact solution to the set of Equations 5.48 for Scheme II is5

cA = cA0

(
k1(α− k2)
α(α− β) e

−αt + k1(k2 − β)
β(α− β) e

−βt
)

cB = cA0

(
−k1

α− βe
−αt + k1

α− βe
−βt

)

cC = cA0

(
k1k2

αβ
+ k1k2

α(α− β)e
−αt − k1k2

β(α− β)e
−βt

)

α = 1
2

(
k1 + k−1 + k2 +

√
(k1 + k−1 + k2)2 − 4k1k2

)
β = 1

2

(
k1 + k−1 + k2 −

√
(k1 + k−1 + k2)2 − 4k1k2

)
We next examine the effect of increasing k2 on the concentration

of C. Figure 5.10 shows the normalized concentration of C given in
Equation 5.52 versus time for different values of k2/k1. The curve
cC/cA0 =

(
1− e−k1t

)
is shown also (the condition where k2/k1 = ∞).

Figure 5.10 illustrates that as k2 ≫ k1, the exact solution is equivalent
to

cC = cA0

(
1− e−k1t

)
(5.53)

For k2 ≫ k1 the rate of decomposition of B is much greater than its
rate of formation, which is a necessary condition for B to be a QSSA
species.

If component B is defined to be a QSSA species, we write

dcBs
dt

= 0 = k1cAs − k2cBs

which leads to

cBs =
k1

k2
cAs (5.54)

5The Laplace transform is a good approach for solving these differential equations.
Also see Exercise 4.6.



5.4 Fast and Slow Time Scales 221

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

cC
cA0

k2/k1 = 1
k2/k1 = 10
k2/k1 = 50
k2/k1 = ∞

k1t

Figure 5.10: Normalized concentration of C versus dimensionless
time for the series reaction A → B → C for different val-
ues of k2/k1.

for Scheme I. Note cBs is not constant; it changes linearly with the con-
centration of A. The issue is not if cB is a constant, but whether or not
the B equilibrates quickly to its quasi-steady value.

Substitution of Equation 5.54 into Equation 5.48 for components A
and C results in

dcAs
dt

= −k1cAs (5.55)

dcCs
dt

= k1cAs (5.56)

for Scheme I. The solutions to Equations 5.55 and 5.56 are presented
in Table 5.5 for the initial condition cAs = cA0, cBs = cCs = 0.

Similarly, for Scheme II, when component B is defined to be a QSSA
species,

cBs =
k1

k−1 + k2
cAs (5.73)

Substitution of Equation 5.73 into Equation 5.48 for components A and



222 Chemical Kinetics
Sc

h
em

e
I:

A
k 1 -→

B
k 2 -→

C
(5

.5
7

)

Ex
ac

t
So

lu
ti

o
n

c A
=
c A

0
e−
k 1
t

(5
.5

8
)

c B
=
c A

0
k 1

k 2
−
k 1

( e−k
1
t
−
e−
k 2
t)

(5
.5

9
)

c C
=
c A

0
1

k 2
−
k 1

( k 2(
1
−
e−
k 1
t )
−
k 1
(1
−
e−
k 2
t )
)

(5
.6

0
)

Q
SS

A
So

lu
ti

o
n

c A
s
=
c A

0
e−
k 1
t

(5
.6

1
)

c B
s
=
c A

0
k 1 k 2
e−
k 1
t

(5
.6

2
)

c C
s
=
c A

0

( 1
−
e−
k 1
t)

(5
.6

3
)

Sc
h

em
e

II
:

A
k 1 -⇀ ↽
-

k −
1

B
k 2 -→

C
(5

.6
4

)

Ex
ac

t
So

lu
ti

o
n

c A
=
c A

0

( k 1
(α
−
k 2
)

α
(α
−
β
)
e−
α
t
+
k 1
(k

2
−
β
)

β
(α
−
β
)
e−
β
t)

(5
.6

5
)

c B
=
c A

0

( −
k 1

α
−
β
e−
α
t
+

k 1
α
−
β
e−
β
t)

(5
.6

6
)

c C
=
c A

0

( k 1
k 2
α
β
+

k 1
k 2

α
(α
−
β
)e
−
α
t
−

k 1
k 2

β
(α
−
β
)e
−
β
t)

(5
.6

7
)

α
=

1 2

( k 1
+
k −

1
+
k 2
+
√ (k

1
+
k −

1
+
k 2
)2
−

4
k 1
k 2
)

(5
.6

8
)

β
=

1 2

( k 1
+
k −

1
+
k 2
−
√ (k

1
+
k −

1
+
k 2
)2
−

4
k 1
k 2
)

(5
.6

9
)

Q
SS

A
So

lu
ti

o
n

c A
s
=
c A

0
e−

k 1
k 2

k −
1
+
k 2
t

(5
.7

0
)

c B
s
=
c A

0
k 1

k −
1
+
k 2
e−

k 1
k 2

k −
1
+
k 2
t

(5
.7

1
)

c C
s
=
c A

0

( 1
−
e−

k 1
k 2

k −
1
+
k 2
t)

(5
.7

2
)

T
a

b
le

5
.5

:
Ex

ac
t

an
d

Q
SS

A
so

lu
ti

o
n

s
fo

r
ki

n
et

ic
Sc

h
em

es
I

an
d

II.



5.4 Fast and Slow Time Scales 223

C results in

dcAs
dt

= − k1k2

k−1 + k2
cAs (5.74)

dcCs
dt

= k1k2

k−1 + k2
cAs (5.75)

The solutions to Equations 5.74 and 5.75 are presented in Table 5.5 for
the initial condition cAs = cA0, cBs = cCs = 0.

For the QSSA to be accurate, the error in the predicted concentra-
tions of the reactants and products must be acceptable and the induc-
tion time should be small. The results in Table 5.5 permit us to examine
the error in the predicted concentration of an important species, the
reaction product C, and the induction time to reach the quasi-steady
state. Equation 5.60 is used in Figure 5.10 to show cC/cA0 versus di-
mensionless time (k1t) for different values of k2/k1. The dotted curve
shows cCs/cA0 (Equation 5.63). The fractional error between the QSSA
and exact values for cC is shown in Figure 5.11 for much larger ratios
of k2/k1 and for shorter dimensionless times than are presented in
Figure 5.10. Figure 5.11 illustrates several points. As the lifetime of
the intermediate product decreases (the reciprocal of k2), the error de-
creases and the induction time (dimensionless because we plotted k1t)
to reach an acceptable error, such as 10−2, decreases. Turànyi et al. [40]
have shown that the induction period to reach the QSSA is likely to be
several times the lifetime of the longest-lived QSSA species. Figure 5.11
illustrates this change in induction time with decreasing lifetime. The
induction time should be such that the quasi-steady state is established
rapidly (i.e., before a significant amount of reactant A has disappeared).
An error of 1% is reached at k1t = 0.1 for k2/k1 = 104, which corre-
sponds to a conversion of about 10% for A. As k2/k1 increases, the
amount of A that reacts before an error of 1% is reached decreases as
indicated in Figure 5.11.

If component B were a radical or atom, it could be treated as a QSSA
species provided k2/k1 were large enough because large k2/k1 leads to
small errors in the predicted concentration of product. In this simple
example the net rate of production of the intermediate never reached
zero over the values of k1t examined, demonstrating it is not neces-
sary for the net rate of production of QSSA species to be zero. At
sufficiently large values of k2/k1 the intermediate B can be considered
a QSSA species because the error in the actual and approximate con-
centration of the QSSA reaches an acceptable level.
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Figure 5.11: Fractional error in the QSSA concentration of C versus
dimensionless time for the series reaction A → B → C
for different values of k2/k1.

Similar concentration plots can be developed for the components in
Scheme II to examine the effect of increasing the rate of decomposition
of intermediate B relative to its rate of formation. Now both k−1 and
k2 need to varied. Figure 5.12 was generated using Equations 5.67
and 5.72 to illustrate the effect of decreasing the lifetime τ of B, here
τ = (1/k−1 + 1/k2). As the lifetime decreases, the error in cC reaches
an acceptable level such as 10−2 more rapidly. This effect can be seen
by comparing the two curves for k−1 = k2 = 100k1 and k−1 = k2 =
1000k1. Note also that the error at long times does depend on the
relative values of k−1 and k2, and there are subtle differences in the
induction time for comparable τ . Then provided τ is sufficiently small
and k−1 and/or k2 are sufficiently large, we would be justified in letting
B be a QSSA species.

In summary, we write for a QSSA species

Rj = 0, j = QSSA species (5.76)

The QSSA was developed for a constant-volume batch reactor, but can
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Figure 5.12: Fractional error in the QSSA concentration of C versus
dimensionless time for the series-parallel reaction,
A -⇀↽- B→ C.

be applied equally well to a PFR. For this reason, it is best to define the
QSSA based on the production rate of species j, rather than the time
derivative of the concentration of species j.

The QSSA is a useful tool in reaction analysis. Material balances for
batch and plug-flow reactors are ordinary differential equations. By
applying Equation 5.76 to the components that are QSSA species, their
material balances become algebraic equations. These algebraic equa-
tions can be used to simplify the reaction expressions and reduce the
number of equations that must be solved simultaneously. In addition,
appropriate use of the QSSA can eliminate the need to know several
difficult-to-measure rate constants. The required information can be
reduced to ratios of certain rate constants, which can be more easily
estimated from data. In the next section we show how the QSSA is used
to develop a rate expression for the production of a component from a
statement of the elementary reactions, and illustrate the kinetic model
simplification that results from the QSSA model reduction.
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5.5 Developing Rate Expressions from Complex
Mechanisms

In this section we develop rate expressions for the mechanistic schemes
presented in Section 5.1. The goal is to determine the rate in terms of
measurable quantities, such as the concentrations of the reactants and
products, and the temperature. Heterogeneous problems are consid-
ered in Section 5.6. The approach taken for homogeneous and het-
erogeneous reactions is similar, but additional constraints are placed
on heterogeneous problems so the synthesis reaction example is pre-
sented after discussing these constraints.

The following procedure enables one to develop a reaction-rate ex-
pression from a set of elementary reactions.

1. Identify the species that do not appear in equilibrium reactions
and write a statement for the rate of production of these species
using Equations 5.38 and 5.39.

2. If the rate of production statement developed in step 1 contains
the concentration of reaction intermediates that are QSSA species,
their concentrations can be found in terms of reactant and prod-
uct concentrations by writing a necessary number of algebraic
statements. These algebraic statements come from applying the
QSSA to reaction intermediates. In some cases, either by assump-
tion or because of kinetic insight, an elementary reaction is treated
as being at equilibrium.

3. Perform the necessary algebraic manipulations and substitute the
resulting intermediate concentrations into the rate of production
statement from step 1.

Example 5.2: Production rate of acetone

The thermal decomposition of acetone is represented by the following
stoichiometry

3CH3COCH3 -→ CO+ 2CH4 + CH2CO+ CH3COC2H5

Use the following mechanism to determine the production rate of ace-
tone [35]. You may assume the methyl, acetyl and acetone radicals are
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QSSA species.

CH3COCH3
k1-→ CH3 + CH3CO (5.77)

CH3CO
k2-→ CH3 + CO (5.78)

CH3 + CH3COCH3
k3-→ CH4 + CH3COCH2 (5.79)

CH3COCH2
k4-→ CH2CO + CH3 (5.80)

CH3 + CH3COCH2
k5-→ CH3COC2H5 (5.81)

Solution

Let the species be designated as:

Species Formula Conc. Name
A1 CH3COCH3 can acetone
A2 CH3 cmr methyl radical
A3 CH3CO calr acetyl radical
A4 CO cco carbon monoxide
A5 CH3COCH2 canr acetone radical
A6 CH2CO cke ketene
A7 CH4 cme methane
A8 CH3COC2H5 cmek methyl ethyl ketone

Write the production rate of acetone (an) using Reactions 5.77 and 5.79

Ran = −k1can − k3cancmr (5.82)

The methyl radical (mr), acetyl radical (alr) and acetone radical (anr) are
QSSA species. Apply the QSSA to each of these species

Rmr = 0 = k1can + k2calr − k3cancmr + k4canr − k5cmrcanr (5.83)

Ralr = 0 = k1can − k2calr (5.84)

Ranr = 0 = k3cancmr − k4canr − k5cmrcanr (5.85)

From Equation 5.84

calr =
k1

k2
can (5.86)

Adding Equations 5.83, 5.84 and 5.85 gives

canr =
k1

k5

can

cmr
(5.87)
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Inserting the concentrations shown in Equations 5.86 and 5.87 into
Equation 5.83 gives

k3c2
mr − k1cmr −

k1k4

k5
= 0

cmr =
k1

2k3
+

√√√√ k2
1

4k2
3
+ k1k4

k3k5
(5.88)

in which the positive sign is chosen to obtain a positive concentration.
This result can be substituted into Equation 5.82 to give the rate in
terms of measurable species.

Ran = −
3

2
k1 +

√√√k2
1

4
+ k1k3k4

k5

 can (5.89)

Equation 5.89 can be simplified to

Ran = −keffcan (5.90)

by defining an effective rate constant

keff =
3
2
k1 +

√√√k2
1

4
+ k1k3k4

k5

This simplified form illustrates the rate is first order in the acetone
concentration. If, based on kinetic theories, we knew all the individ-
ual rate constants, we could calculate the rate of acetone production.
Alternately, we can use Equation 5.90 as the basis for designing exper-
iments to determine if the rate of production is first order in acetone
and to determine the magnitude of the first-order rate constant, keff .

□

Example 5.3: Production rate of oxygen

Given the following mechanism for the overall stoichiometry

2NO2 + hν -→ 2NO+O2 (5.91)

derive an expression for the production rate of O2. Assume atomic O
and NO3 radicals are QSSA species. The production rate should be in
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terms of the reactant, NO2, and products, NO and O2.

NO2 + hν k1-→ NO+ O (5.92)

O+NO2
k2-⇀↽-
k−2

NO3 (5.93)

NO3 +NO2
k3-→ NO+O2 +NO2 (5.94)

NO3 + NO
k4-→ 2NO2 (5.95)

O+NO2
k5-→ NO+O2 (5.96)

Solution

From the reaction stoichiometry, the production rate of molecular oxy-
gen is

RO2 = k3cNO2cNO3 + k5cNO2cO (5.97)

Applying the QSSA to the reaction intermediates, O and NO3, gives

RO = 0 = k1cNO2 − k2cNO2cO + k−2cNO3 − k5cNO2cO (5.98)

RNO3 = 0 = k2cNO2cO − k−2cNO3 − k3cNO2cNO3 − k4cNOcNO3 (5.99)

Adding Equations 5.98 and 5.99

0 = k1cNO2 − k3cNO2cNO3 − k4cNOcNO3 − k5cNO2cO (5.100)

This result can be used to simplify the rate expression. Adding Equa-
tions 5.97 and 5.100

RO2 = k1cNO2 − k4cNOcNO3 (5.101)

The intermediate NO3 concentration is found by solving Equation 5.98
for cO.

cO =
k1

k2 + k5
+ k−2

k2 + k5

cNO3

cNO2

(5.102)

Substituting Equation 5.102 into Equation 5.99 and rearranging gives

cNO3 =
k1k2cNO2

(k2k3 + k3k5)cNO2 + (k2k4 + k4k5)cNO + k−2k5
(5.103)

The rate expression now can be found using Equations 5.101 and 5.103

RO2 = k1cNO2−
k1k2k4cNO2cNO

(k2k3 + k3k5)cNO2 + (k2k4 + k4k5)cNO + k−2k5
(5.104)
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Equation 5.104 is rather complex; under reaction conditions several
terms in the denominator are expected to be kinetically unimportant
leading to a simple power-law reaction-rate expression. □

Example 5.4: Free-radical polymerization kinetics

Polymers are economically important and many chemical engineers are
involved with some aspect of polymer manufacturing during their ca-
reers. Polymerization reactions raise interesting kinetic issues because
of the long chains that are produced. Consider free-radical polymer-
ization reaction kinetics as an illustrative example. A simple polymer-
ization mechanism is represented by the following set of elementary
reactions.

Initiation:

I
k1-→ R1

Propagation:

R1 +M
kp1
-→ R2

R2 +M
kp2
-→ R3

R3 +M
kp3
-→ R4

...

Rj +M
kpj
-→ Rj+1

...

Termination:

Rm + Rn
ktmn-→ Mm+n

in which M is monomer, Mj is a dead polymer chain of length j, and
Rj is a growing polymer chain of length j. In free-radical polymeriza-
tions, the initiation reaction generates the free radicals, which initiate
the polymerization reactions. An example is the thermal dissociation
of benzoyl peroxide as initiator to form a benzyl radical that subse-
quently reacts with styrene monomer to form the first polymer chain.
The termination reaction presented here is a termination of two grow-
ing polymer chains by a combination reaction.
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Develop an expression for the rate of monomer consumption using
the assumptions that kpj = kp for all j, and ktmn = kt is independent
of the chain lengths of the two terminating chains. You may make the
QSSA for all growing polymer radicals.

Solution

From the propagation reactions we can see the rate of monomer con-
sumption is given by

RM = −
∞∑
j=1

rpj = −kpcM
∞∑
j=1

cRj (5.105)

in which the rate of the jth propagation reaction is given by

rpj = kpcMcRj
Making the QSSA for all polymer radicals, we set their production rates
to zero

rI − kpcR1cM − ktcR1

∑∞
j=1 cRj = 0

kpcR1cM − kpcR2cM − ktcR2

∑∞
j=1 cRj = 0

kpcR2cM − kpcR3cM − ktcR3

∑∞
j=1 cRj = 0

+
...

...
...

rI − kt
∑∞
i=1 cRi

∑∞
j=1 cRj = 0

(5.106)

The first term is the formation of growing chain i by propagation (initi-
ation for i = 1), the second term is loss of chain i by propagation with
monomer, and the third term is loss of chain i by termination reac-
tion with chains of all other lengths. Notice if we add these equations,
propagation terms on each line cancel corresponding entries on the
lines directly above and below. It is valid to perform the infinite sum in
Equation 5.106 because the polymer concentration for long chains goes
to zero, limj→∞ cPj = 0. We solve Equation 5.106 for the total growing
polymer concentration and obtain

∞∑
j=1

cRj =
√
rI/kt

Substituting this result into Equation 5.105 yields the monomer con-
sumption rate

RM = −kpcM
√
rI/kt
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Reaction A0 E(kJ/mol)
1 1.0× 1017 356
2 2.0× 1011 44
3 3.0× 1014 165
4 3.4× 1012 28
5 1.6× 1013 0

Table 5.6: Ethane pyrolysis kinetics.

From the initiation reaction, the initiation rate is given by rI = kIcI ,
which upon substitution gives the final monomer consumption rate

RM = −kp
√
kI/kt

√
cIcM (5.107)

Notice that this result also provides a mechanistic justification for the
production rate used in Example 4.3 in which monomer consumption
rate was assumed linear in monomer concentration. □

Example 5.5: Ethane pyrolysis

This example illustrates how to apply the QSSA to a flow reactor. We
are interested in determining the effluent concentration from the reac-
tor and in demonstrating the use of the QSSA to simplify the design
calculations. Ethane pyrolysis to produce ethylene and hydrogen also
generates methane as an unwanted reaction product. The overall stoi-
chiometry for the process is not a simple balance of ethane and the
products. The following mechanism and their kinetics have been pro-
posed for ethane pyrolysis [25]

C2H6
k1-→ 2CH3

CH3 + C2H6
k2-→ CH4 + C2H5

C2H5
k3-→ C2H4 + H

H+ C2H6
k4-→ H2 + C2H5

H+ C2H5
k5-→ C2H6

The rate constants are listed in Table 5.6 for the elementary reactions,
in which k = A0 exp(−E/RT). The preexponential factor A0 has units
of s−1 or cm3/mol s for first- and second-order reactions, respectively.
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The pyrolysis is performed in a 100 cm3 isothermal PFR, operating at
a constant pressure of 1.0 atm and at 925 K. The feed consists of ethane
in a steam diluent. The inlet partial pressure of ethane is 50 Torr and
the partial pressure of steam is 710 Torr. The feed enters at a flowrate
of 35 cm3/s. The exact solution of this problem uses the methods
developed in Chapter 4 and involves solving a set of eight initial-value
ODEs of the form

dNj
dV

= Rj (5.108)

subject to the initial conditions. In this numerical solution, each of the
molar flows are computed as the volume increases from 0 to 100, with
the concentrations of each component given by

cj =
Nj∑
j Nj

P
RT

The results for C2H6, C2H4 and CH4 are plotted in Figure 5.13. The
H2 concentration is not shown because it is almost equal to the C2H4

concentration. Note the molar flowrate of CH4 is only 0.2% of the molar
flowrate of the other products, C2H4 and H2. The concentrations of the
radicals, CH3, C2H5 and H, are on the order of 10−6 times the ethylene
concentration.

Assuming the radicals CH3, C2H5 and H are QSSA species, develop
an expression for the rate of ethylene formation. Verify that this ap-
proximation is valid.

Solution

The rate of ethylene formation is

RC2H4 = k3cC2H5 (5.109)

Next use the QSSA to relate C2H5 to stable reactants and products

RCH3 = 0 = 2k1cC2H6 − k2cCH3cC2H6 (5.110)

RH = 0 = k3cC2H5 − k4cHcC2H6 − k5cHcC2H5 (5.111)

RC2H5 = 0 = k2cCH3cC2H6 − k3cC2H5 + k4cC2H6cH − k5cHcC2H5 (5.112)

Adding Equations 5.110, 5.111 and 5.112 gives

cH =
k1

k5

cC2H6

cC2H5

(5.113)
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Figure 5.13: Molar flowrates of C2H6, C2H4 and CH4 corresponding
to the exact solution.

Inserting Equation 5.113 into Equation 5.111 yields

0 = k3k5c2
C2H5

− k4k1c2
C2H6

− k1k5cC2H6cC2H5

cC2H5 =

 k1

2k3
+

√√√√( k1

2k3

)2

+ k1k4

k3k5

 cC2H6 (5.114)

Finally

RC2H4 = k3

 k1

2k3
+

√√√√( k1

2k3

)2

+ k1k4

k3k5

 cC2H6 (5.115)

which can be rewritten as

RC2H4 = kcC2H6 (5.116)

in which

k = k3

 k1

2k3
+

√√√√( k1

2k3

)2

+ k1k4

k3k5


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At 925 K, k = 0.797 s−1. The student should prove that

cH =
k1/k5

k1/2k3 +
√
(k1/2k3)2 + k1k4/k3k5

(5.117)

cCH3 =
2k1

k2
(5.118)

The validity of the QSSA is established by solving the set of ODEs

dNC2H6

dV
= −r1 − r2 − r4 + r5

dNH2

dV
= r4

dNCH4

dV
= r2

dNH2O

dV
= 0

dNC2H4

dV
= r3

subject to the initial molar flowrates. During the numerical solution
the concentrations needed in the rate equations are computed using

cC2H6 =
(

NC2H6

NC2H6 +NCH4 +NC2H4 +NH2 +NH2O

)
P
RT

(5.119)

and Equations 5.114, 5.117 and 5.118. Note we can neglect H, CH3

and C2H5 in the molar flowrate balance (Equation 5.119) because these
components are present at levels on the order of 10−6 less than C2H6.

Figure 5.14 shows the error in the molar flowrate of ethylene that
results from the QSSA. The error is less than 10% after 3.1 cm3 of reactor
volume; i.e., it takes about 3% of the volume for the error to be less than
10%. Similarly, the error is less than 5% after 5.9 cm3 and less than 1%
after 18.6 cm3. Figure 5.14 provides evidence that the QSSA is valid
for sufficiently large reactors, such as 100 cm3. If the reactor volume
were very small (a very short residence time), such as 20 cm3, the QSSA
would not be appropriate.

The reader might question what has been gained in this QSSA exam-
ple. After all, the full model solution requires the simultaneous solu-
tion of eight ODEs and the reduced model requires solving five ODEs. If
one had experimental data, such as effluent ethane, ethylene, hydrogen
and methane concentrations for different residence times (VR/Qf ), one
would need to fit these data to find the five rate constants for either the
full or the reduced model. The results in Figure 5.13, however, demon-
strate that CH4 is a minor product at this temperature and this also
would be found in the experimental data. This suggests we can neglect
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Figure 5.14: Fractional error in the QSSA molar flowrate of C2H4 ver-
sus reactor volume.

CH4 in a species balance when computing mole fractions. Therefore
the mass action statement

C2H6
k
-→ C2H4 +H2 (5.120)

does a reasonable job of accounting for the changes that occur in the
PFR during ethane pyrolysis. QSSA analysis predicts the ethane py-
rolysis rate should be first order in ethane concentration and the rate
constant is k = 0.797 s−1. Using the mass action statement to describe
the reaction stoichiometry and the definition of the rate of production
of a component in a single reaction

Rj = νjr

to relate RC2H6 and RH2 to the result for C2H4 found in Equation 5.116,
it is possible to solve the problem analytically. Figure 5.15 shows that
nearly equivalent predictions are made for the simplified scheme based
on the mass action statement, Reaction 5.120 using Equation 5.116 for
the rate expression.
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Figure 5.15: Comparison of the molar flowrates of C2H6 and C2H4 for
the exact solution (solid lines) and the simplified kinetic
scheme (dashed lines).

This simple example demonstrates that when one has all the kinetic
parameters, they should be used because the QSSA buys very little in
this case. The reverse situation of knowing a mechanism but not the
rate constants could pose a difficult optimization problem when fit-
ting all the rate constants, and the QSSA analysis can provide a frame-
work for simplifying the kinetic expressions against which the data are
tested. Here one would expect a first-order expression to describe ad-
equately the appearance of ethylene. □

5.6 Reactions at Surfaces

Many books have been written on this topic and it continues to be an
area of intense research. Our intention in this chapter is to provide
the student with a simple picture of surfaces and to provide a basis for
evaluating heterogeneously catalyzed reaction kinetics and reaction-
rate expressions. Keep in mind the goal is to develop a rate expression
from a reaction mechanism. This rate expression can be used to direct
the regression of rate data when determining the parameters for a het-
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bcc (100) fcc (110)

fcc (100)bcc (110)fcc (111)

Figure 5.16: Surface and second-layer (dashed) atom arrangements
for several low-index surfaces.

erogeneously catalyzed reaction. To understand how we construct sur-
face reactions and develop rate expressions, it is necessary to discuss
the elementary steps that comprise a surface reaction — adsorption,
surface reaction and desorption. We also need to have a model of a
surface at which the elementary steps occur. To streamline the pre-
sentation, the discussion is limited to gas-solid systems and a single
chemical isotherm, the Langmuir isotherm. The interested student can
find a more complete and thorough discussion of adsorption, surface
reaction and desorption in numerous textbooks [8, 38, 3, 16, 27, 6].

A heterogeneously catalyzed reaction takes place at the surface of
a catalyst. Catalysts, their properties, and the nature of catalytic sur-
faces are discussed in Chapter 7. For this discussion, we approximate
the surface as a single crystal with a known surface order. The density
of atoms at the low-index planes of transition metals is on the order of
1015 cm−2. Figure 5.16 presents the atomic arrangement of low-index
surfaces for various metals. This figure illustrates the packing arrange-
ment and different combinations of nearest neighbors that can exist at
a surface. For example, an fcc(111) surface atom has six nearest-surface
neighbors, an fcc(100) surface atom has four nearest-surface neighbors,
and an fcc(110) surface atom has two nearest-surface neighbors. We
find that the interaction between an adsorbing molecule and the sur-
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Property Chemisorption Physisorption
amount limited to a monolayer multilayer possible
specificity high none
heat of adsorption typically > 10 kcal/mol low (2–5 kcal/mol)
activated possibly generally not

Table 5.7: Chemisorption and physisorption properties.

face of a single crystal depends on the surface structure.
To facilitate our discussion of heterogeneous reaction kinetics let us

consider the oxidation of CO on Pd, an fcc metal. The following mech-
anism has been proposed for the oxidation reaction over Pd(111) [12]

O2 + 2S -⇀↽- 2Oads (5.121)

CO+ S -⇀↽- COads (5.122)

COads +Oads -→ CO2 + 2S (5.123)

where the subscript ‘ads’ refers to adsorbed species and S refers to
vacant surface sites. This simple example illustrates the steps in a cat-
alytic reaction — adsorption of reactants in Reactions 5.121 and 5.122,
reaction of adsorbed components in Reaction 5.123, and desorption of
products also shown as part of Reaction 5.123.

Adsorption occurs when an incident atom or molecule sticks to the
surface. The adsorbing species can be bound weakly to the surface or
it can be held tightly to the surface. The manner by which the adsorbed
species is held and the properties it exhibits once adsorbed determine
the type of adsorption — physical or chemical. The dynamics of the
process by which the incident adsorbate finds the adsorption site is
used to construct a rate expression and rate constant for the adsorption
step from first principles.

A number of criteria have been applied to distinguish between phys-
ical and chemical adsorption. In some cases the distinction is not clear.
Table 5.7 lists several properties that can be used to distinguish be-
tween physisorption and chemisorption. The most distinguishing char-
acteristics are the degree of coverage and the specificity.

Chemisorption: Chemical adsorption occurs when a chemical bond or
a partial chemical bond is formed between the surface (adsorbent)
and the adsorbate, leading to the specificity of the process. In gen-
eral, but not always, the formation of a bond limits the coverage
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to at most one chemisorbed adsorbate for every surface atom.
This limit of a single layer or monolayer is exploited later to de-
rive a statement of conservation of sites. The upper limit need
not have a one-to-one adsorbate to surface atom stoichiometry;
for example, saturation can occur after one-third of all sites are
occupied.

Physisorption: Physical adsorption occurs once the partial pressure of
the adsorbate is above its saturation vapor pressure. Physisorp-
tion is similar to a condensation process and has practically no
dependence on the solid surface and the interaction between the
adsorbate and adsorbent. Just as water vapor condenses on any
cold surface placed in ambient, humid air, a gas such as N2 con-
denses on solids maintained at 77 K.

Adsorption is an exothermic process and the magnitude of the heat
of adsorption is used to distinguish chemisorption from physisorption.
Heats of adsorption greater than 10 kcal/mol are definitely associated
with chemisorbed species. Small heats of adsorption (2–5 kcal/mol)
do not always indicate physisorption, however. Therefore, it is best
to look at more than one property when trying to distinguish between
chemisorption and physisorption. Physical adsorption is used to mea-
sure the area of high-area oxide catalysts and oxide-supported metal
catalysts. Physisorption isotherms and their use are discussed in Chap-
ter 7. The discussion that follows treats only chemisorption.

Figure 5.17 depicts a schematic of a simple adsorption process. Ad-
sorption occurs when an incident CO molecule finds a vacant site. The
dynamics of the collision process, accommodation with the surface,
and binding to the surface are complex, and the overall rate of this pro-
cess can change for the same adsorbate on different metals or even dif-
ferent low-index surfaces of the same metal. The flux of CO molecules
to the surface (molecules/area·time) is proportional to the number den-
sity of incident molecules and the mean kinetic velocity, and is given
by

FCO =
PCO√

2πMCOkBT

which, for pressure in torr, equals 3.83 × 1020PCO molecule/s·cm2 at
300 K. Since most surfaces contain approximately 1015 atoms/cm2, at
2.6×10−6 Torr, the number of atoms in a monolayer strikes the surface
per second. At one atmosphere, 290 million times the number of atoms
in a monolayer strike the surface per second.
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Figure 5.17: Schematic representation of the adsorption/desorption
process.

Not every collision leads to adsorption. The rate of adsorption can
be written as the product of the flux times the probability of sticking

rads = FS(θ, T)

S is known as the sticking coefficient, and is a function of the surface
coverage and temperature; the exact functional dependence can be de-
termined once the dynamics of the adsorption process are known [27].
We use the Langmuir adsorption to model the adsorption process.

The Langmuir adsorption model assumes that all surface sites are
the same. As long as the incident molecules possess the necessary en-
ergy, and entropy considerations are satisfied, adsorption proceeds if a
vacant site is available. The Langmuir process also assumes adsorption
is a completely random surface process with no adsorbate-adsorbate
interactions. Since all sites are equivalent, and adsorbate-adsorbate
interactions are neglected, the surface sites can be divided into two
groups, vacant and occupied. The surface-site balance is therefore

Total number of
surface sites
per unit area

 =


Number of
vacant sites
per unit area

+


Number of
occupied sites
per unit area


or

cm = cv +
ns∑
j=1

cj (5.124)

Dividing by the total number of surface sites leads to the fractional
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form of the site balance.

1 = cv
cm
+

ns∑
j=1

cj
cm
= θv +

ns∑
j=1

θj (5.125)

Equations 5.124 and 5.125 represent the conservation of sites for non-
interacting adsorbates on uniform surfaces. Since active catalysts gen-
erally are dispersed on high-surface-area inert carriers, the units for cm
often are number of sites per gram of catalyst.

Figure 5.17 shows the model of a surface consisting of vacant sites
and sites covered by chemisorbed CO. The CO in the gas phase is ad-
sorbing on the surface and desorbing from the surface. The surface
reaction, and the forward rate of adsorption and the reverse rate of
desorption, are given by6

CO+ S
k1-⇀↽-
k−1

COads (5.126)

rads = k1cCOcv , rdes = k−1cCO

The units of the rate are mol/time·area. The rate expressions follow
directly from the reaction mechanism because the reactions are treated
as elementary steps. When the adsorption-desorption reactions are in
equilibrium, the amount of adsorbed CO is related to the gas-phase
partial pressure of CO, an equilibrium constant, and the total number
of surface sites. Equating the adsorption and desorption rates at equi-
librium gives

k1cCOcv = k−1cCO

Solving for the surface concentration gives

cCO =
k1

k−1
cCOcv = K1cCOcv (5.127)

The conservation of sites gives

cv = cm − cCO (5.128)

6This is an oversimplification of the adsorption process. A more acceptable view
is to have CO adsorb into a precursor state and move around on the surface until
it finds a suitable adsorption site, S. As long as the precursor state is in equilibrium
with the gas phase, the Langmuir description of the adsorption process represented by
Reaction 5.126 gives the same result as is obtained by a more accurate description of the
adsorption and desorption dynamics. Since experimental results are often consistent
with the precursor state in equilibrium with the gas phase, we present the Langmuir
model.
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Figure 5.18: Fractional coverage versus adsorbate concentration for
different values of the adsorption constant, K.

Substituting Equation 5.128 into Equation 5.127 and rearranging leads
to the Langmuir isotherm for single-component, associative adsorption

cCO =
cmK1cCO

1+K1cCO
(5.129)

Dividing both sides of Equation 5.129 by the total concentration of
surface sites cm leads to the fractional form of the single component,
associative Langmuir adsorption isotherm.

θCO =
K1cCO

1+K1cCO
(5.130)

Figure 5.18 presents the general shape of the fractional coverage as
a function of pressure for different values of K. In the limit K1cCO ≫ 1,
Equations 5.129 and 5.130 asymptotically approach cm and 1.0, respec-
tively. Since adsorption is exothermic, K1 decreases with increasing
temperature and higher CO partial pressures are required to reach sat-
uration. Figure 5.18 illustrates the effect of K on the coverage. In all
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cases the surface saturates with the adsorbate; however, the concen-
tration at which this saturation occurs is a strong function of K. Single
component adsorption is used to determine the number of active sites,
cm. The adsorption data can be fit to either the Langmuir isotherm
(Equation 5.129) or to the “linear” form of the isotherm. The linear
form is obtained by taking the inverse of Equation 5.129 and multiply-
ing by cCO

cCO

cCO
= 1
K1cm

+ cCO

cm
(5.131)

A plot of the linear form provides 1/(K1cm) for the intercept and 1/cm
for the slope.

Example 5.6: Fitting Langmuir adsorption constants to CO data

The active area of supported transition metals can be determined by
adsorbing carbon monoxide. Carbon monoxide is known to adsorb
associatively on ruthenium at 100◦C. Use the following uptake data
for the adsorption of CO on 10 wt % Ru supported on Al2O3 at 100◦C
to determine the equilibrium adsorption constant and the number of
adsorption sites.

PCO (Torr) 100 150 200 250 300 400
CO adsorbed (µmol/g cat) 1.28 1.63 1.77 1.94 2.06 2.21

Solution

Figures 5.19 and 5.20 plot the data for Equations 5.129 and 5.131,
respectively. From Figure 5.20 we can estimate using least squares the
slope, 0.35 g/µmol, and the zero concentration intercept, 1.822 cm3/g,
and then calculate

K1 = 0.190 cm3/µmol

cm = 2.89 µmol/g

□

We now consider multiple-component adsorption. If other compo-
nents, such as B and D, are assumed to be in adsorption-desorption
equilibrium along with CO, we add the following two reactions

B+ S
k2-⇀↽-
k−2

Bads

D+ S
k3-⇀↽-
k−3

Dads
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Following the development that led to Equation 5.127, we can show the
equilibrium surface concentrations for B and D are given by

cB = K2cBcv (5.132)

cD = K3cDcv (5.133)

The site balance becomes

cv = cm − cCO − cB − cD (5.134)

Substituting Equation 5.134 into Equation 5.127 and rearranging leads
to a different isotherm expression for CO.

cCO =
cmK1cCO

1+K1cCO +K2cB +K3cD
(5.135)

The terms in the denominator of Equation 5.135 have special signifi-
cance and the magnitude of the equilibrium adsorption constant, when
multiplied by the respective concentration, determines the component
or components that occupy most of the sites. Each of the terms Kicj
accounts for sites occupied by species j. From Chapter 3 we know the
equilibrium constant is related to the exponential of the heat of adsorp-
tion, which is exothermic. Therefore, the more strongly a component is
chemisorbed to the surface, the larger the equilibrium constant. Also, if
components have very different heats of adsorption, the denominator
may be well approximated using only one Kicj term.

The CO oxidation example also contains a dissociative adsorption
step

O2 + 2S
k1-⇀↽-
k−1

2Oads (5.136)

Adsorption requires the O2 molecule to find a pair of adsorption sites
and desorption requires two adsorbed O atoms to be adjacent. Hill [18]
and Kisliuk [21, 22] discuss lattice statistics and the probability of find-
ing pairs of sites in two-dimensional arrays presented by the regular
arrangement of surface atoms illustrated in Figure 5.16. Boudart and
Djega-Mariadassou [6],and Hayward and Trapnell [16], describe how the
probability of finding pairs of sites is used to develop rate expressions
on surfaces. When a bimolecular surface reaction occurs, such as dis-
sociative adsorption, associative desorption, or a bimolecular surface
reaction, the rate in the forward direction depends on the probability
of finding pairs of reaction centers. This probability, in turn, depends
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A B

Figure 5.21: Two packing arrangements for a coverage of θ = 1/2.

on whether or not the sites are randomly located, and whether or not
the adsorbates are mobile on the surface.

The probability of finding pairs of vacant sites can be seen by con-
sidering adsorption onto a checkerboard such as Figure 5.21. Let two
sites be adjacent if they share a common line segment (i.e., do not
count sharing a vertex as being adjacent) and let θ equal the fraction of
surface covered. The checkerboard has a total 24 adjacent site pairs,
which can be found by counting the line segments on adjoining squares.
Figure 5.21 presents two possibilities where half the sites (the shaded
squares) are covered. For Figure 5.21A the probability an incident gas
atom striking this surface in a random location hits a vacant site is 1−θ
and the probability a gas-phase molecule can dissociate on two adjacent
vacant sites is p = 0. Figure 5.21B has 10 vacant adjacent site pairs.
Therefore, the probability of dissociative adsorption is p = 10/24. The
probability of finding vacant adsorption sites is 0 ≤ p ≤ 1/2 for these
two examples because the probability depends on the packing arrange-
ment.

For random or independent packing of the surface the probability
for finding pairs of vacant adjacent sites is p = (1−θ)2. The probabil-
ity for random packing can be developed by considering five different
arrangements for a site and its four nearest neighbors, with the cen-
ter site always vacant, as shown in Figure 5.22. The probability of any
configuration is (1 − θ)nθm, in which n is the number of vacant sites
and m is the number of occupied sites. Arrangement 1 can happen
only one way. However, arrangement 2 can happen four ways because
the covered site can be in four different locations. Similarly, arrange-
ment 3 can happen six different ways, 4 can happen four ways, and 5
can happen only one way. Therefore, the probability of two adjacent
sites being vacant is

p1 + 4p2 + 6p3 + 4p4 + 0p5 (5.137)
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21 3 4 5

Figure 5.22: Five possible arrangements around a single site.

An incoming gas molecule can hit the surface in one of four positions,
with one atom in the center and the other pointing either north, south,
east or west. For random molecule orientations, the probabilities that
a molecule hits the arrangement with a correct orientation are: p1,
(3/4)4p2, (1/2)6p3 and (1/4)4p4. Therefore, the probability of a suc-
cessful collision is

p = p1 + 3p2 + 3p3 + p4

p = (1− θ)5 + 3(1− θ)4θ + 3(1− θ)3θ2 + (1− θ)2θ3

p = (1− θ)2[(1− θ)3 + 3(1− θ)2θ + 3(1− θ)θ2 + θ3]

Using a binomial expansion, (x + y)3 = x3 + 3x2y + 3xy2 + y3, the
term in brackets can be written as

p = (1− θ)2[(1− θ)+ θ]3

or
p = (1− θ)2

Therefore, we use θv · θv to represent the probability of finding pairs
of vacant sites for dissociative adsorption. The probability of finding
other pair combinations is the product of the fractional coverage of the
two types of sites.

Returning to Reaction 5.136

O2 + 2S
k1-⇀↽-
k−1

2Oads

and using concentrations of vacant sites instead of fractional coverage,
we write the rates of dissociative adsorption and associative desorption
of oxygen as

rads = k1c2
vcO2 (5.138)

rdes = k−1c2
O (5.139)
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The units on k1 are such that rads has the units of mol/time·area. At
equilibrium, the rate of adsorption equals the rate of desorption leading
to

cO =
√
K1cO2 cv (5.140)

Combining Equation 5.140 with the site balance, Equation 5.124, and
rearranging leads to the Langmuir form for single-component dissocia-
tive adsorption

cO =
cm
√
K1cO2

1+
√
K1cO2

(5.141)

The Langmuir isotherms represented in Equations 5.129 and 5.141
are different because each represents a different gas-surface reaction
process. Both share the asymptotic approach to saturation, however,
at sufficiently large gas concentration.

Example 5.7: Equilibrium CO and O surface concentrations

Determine the equilibrium CO and O surface concentrations when O2

and CO adsorb according to

CO+ S
k1-⇀↽-
k−1

COads

O2 + 2S
k2-⇀↽-
k−2

2Oads

Solution

At equilibrium the net rates of the two reactions are zero (adsorption
rate equals desorption rate)

r1 = 0 = k1cCOcv − k−1cCO

r2 = 0 = k2cO2c
2
v − k−2c2

O

Solving for the surface coverages in terms of the concentration of va-
cant sites gives

cCO = K1cCOcv (5.142)

cO =
√
K2cO2cv (5.143)

The remaining unknown is cv , which can be found using the site bal-
ance

cm = cv + cCO + cO (5.144)
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Combining Equations 5.142–5.144 yields

cv =
cm

1+K1cCO +
√
K2cO2

(5.145)

We next substitute the vacant site concentration into Equations 5.142
and 5.143 to give the surface concentrations in terms of gas-phase con-
centrations and physical constants

cCO =
cmK1cCO

1+K1cCO +
√
K2cO2

cO =
cm
√
K2cO2

1+K1cCO +
√
K2cO2

□

The CO oxidation reaction involves associative adsorption of CO,
dissociative adsorption of O2, and the bimolecular surface reaction

CO+ S
k1-⇀↽-
k−1

COads

O2 + 2S
k2-⇀↽-
k−2

2Oads

COads +Oads
k3-→ CO2 + 2S

The reaction requires COs and Os to occupy adjacent sites. If this reac-
tion step is essentially irreversible, the rate expression is

r3 = k3cCOcO (5.146)

Note this rate expression is based on the probability of finding two
dissimilar paired adsorbates.

Example 5.8: Production rate of CO2

Find the rate of CO2 production using the reaction mechanism listed
above for CO oxidation. Assume the O2 and CO adsorption steps are at
equilibrium. Make a log-log plot of the production rate of CO2 versus
gas-phase CO concentration at constant gas-phase O2 concentration.
What are the slopes of the production rate at high and low CO concen-
trations?
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Solution

The rate of CO2 production is given by

RCO2 = k3cCOcO (5.147)

The surface concentrations for CO and O were determined in the pre-
ceding example,

cCO =
cmK1cCO

1+K1cCO +
√
K2cO2

cO =
cm
√
K2cO2

1+K1cCO +
√
K2cO2

Substituting these concentrations onto Equation 5.147 gives the rate of
CO2 production

RCO2 =
k3c2

mK1cCO
√
K2cO2(

1+K1cCO +
√
K2cO2

)2 (5.148)

For ease of visualization, we define a dimensionless production rate

R̃ = RCO2/(k3c2
m)

and plot this production rate versus dimensionless concentrations of
CO and O2 in Figure 5.23. Notice that the production rate goes to zero
if either CO or O2 gas-phase concentration becomes large compared to
the other. This feature is typical of competitive adsorption processes
and second-order reactions. A large reaction rate in Equation 5.147
requires large surface CO and surface O concentrations. But if one gas-
phase concentration is large relative to the other, then that species sat-
urates the surface and the other species surface concentration is small,
which causes a small reaction rate. If we hold one of the gas-phase con-
centrations constant and vary the other, we are taking a slice through
the surface in Figure 5.23. Figure 5.24 shows the result when each of
the dimensionless gas-phase concentrations is held fixed at 1.0. Notice
again that increasing the gas-phase concentration of either reactant in-
creases the rate until a maximum is achieved, and then decreases the
rate upon further increase in concentration. High gas-phase concen-
tration of either reactant inhibits the reaction by crowding the other
species off the surface. Notice from the plot shown in Figure 5.24 that
log R̃ versus log(K1cC0) changes in slope from 1.0 to −1.0 as CO con-
centration increases. As the concentration of O2 increases, the slope
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Figure 5.23: Dimensionless CO2 production rate versus dimension-
less gas-phase CO and O2 concentrations.

changes from 0.5 to −0.5. These values also can be deduced by taking
the logarithm of Equation 5.148. □

Rate expressions of the form of Equation 5.148 are known as Hougen-
Watson or Langmuir-Hinshelwood kinetics [20]. This form of kinetic
expression is often used to describe the species production rates for
heterogeneously catalyzed reactions. We complete the section on the
kinetics of elementary surface reactions by returning to the methane
synthesis reaction listed in Section 5.2. The development proceeds ex-
actly as outlined in Section 5.2. But now it is necessary to add a site-
balance expression (Equation 5.124) in Step 3.

Example 5.9: Production rate of methane

Develop a rate expression for the synthesis of methane. The reaction
is proposed to proceed as follows over a ruthenium catalyst [11]. The
overall reaction is

3H2(g)+ CO(g) -→ CH4(g)+H2O(g) (5.149)
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and one possible mechanism is

CO(g)+ S
k1-⇀↽-
k−1

COads (5.150)

COads + S
k2-⇀↽-
k−2

Cads +Oads (5.151)

Oads +H2(g)
k3-→ H2O(g)+ S (5.152)

H2(g)+ 2S
k4-⇀↽-
k−4

2Hads (5.153)

Cads + Hads
k5-⇀↽-
k−5

CHads + S (5.154)

CHads + Hads
k6-⇀↽-
k−6

CH2ads + S (5.155)

CH2ads + Hads
k7-⇀↽-
k−7

CH3ads + S (5.156)

CH3ads + Hads
k8-→ CH4(g)+ 2S (5.157)
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You may assume the reactions shown to be reversible are at equilibrium
and that the surface is dominated by adsorbed CO.

Solution

Let the species be designated as:

Species Formula Conc. Name
A1 CO(g) cCO carbon monoxide
A2 S cv vacant site
A3 COads cCO adsorbed carbon monoxide
A4 Cads cC adsorbed carbon
A5 Oads cO adsorbed atomic oxygen
A6 H2(g) cH2 hydrogen
A7 H2O(g) cH2O water
A8 Hads cH adsorbed atomic hydrogen
A9 CHads cCH adsorbed methyne
A10 CH2ads cCH2 adsorbed methylene
A11 CH3ads cCH3 adsorbed methyl
A12 CH4(g) cCH4 methane

The rate of methane formation is given by Reaction 5.157.

RCH4 = k8cHcCH3 (5.158)

From statements of equilibrium for the reversible reactions

cCO = K1cCOcv cC = K2
cCOcv
cO

cH =
√
K4cH2cv

cCH = K5
cCcH

cv
cCH2 = K6

cCHcH

cv
cCH3 = K7

cCH2cH

cv

Substituting the expressions for cCH2 , cCH, and cC into the expression
for cCH3 gives

cCH3 = K2K5K6K7
c3

HcCO

c2
vcO

(5.159)

From the reaction stoichiometry, RCH4 = RH2O and7

cO =
k8

k3

cHcCH3

cH2

(5.160)

7See Exercises 5.9 and 5.10 for a more complete description of when you can legiti-
mately make this assumption.
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Substituting Equation 5.160 into Equation 5.159 and rearranging gives

c2
CH3
= k3

k8
K2K5K6K7cH2

c2
HcCO

c2
v

Substitution of this expression into Equation 5.158 gives

RCH4 =
√
k3k8

√
K2K5K6K7

√
cH2

c2
H

√
cCO

cv
(5.161)

We are told the surface is saturated with CO, i.e., θCO ≊ 1. If only CO
adsorbs

θ3 =
cCO

cm
= K1cCO

1+K1cCO
≊ 1

Therefore K1cCO ≫ 1 and

cv =
cm

1+K1cCO
≊ cm
K1cCO

(5.162)

Substituting Equation 5.162 into the expressions for the hydrogen and
carbon monoxide surface concentrations, and combining the resulting
expressions with Equation 5.161 leads to

RCH4 =
√
k3k8K2K5K6K7cm3/2K4

K1

(cH2)3/2

cCO

which simplifies to

RCH4 = keff
(cH2)3/2

cCO

□

5.7 Summary

We introduced several concepts in this chapter that are the building
blocks for reaction kinetics.

• Most reaction processes consist of more than one elementary re-
action. The reaction process can be represented by a mass action
statement, such as C2H6 -→ C2H4 + H2 in Example 5.5, but this

statement does not describe how the reactants convert into the
products. The atomistic description of chemical events is found
in the elementary reactions. First principles calculations can be
used to predict the order of these elementary reactions and the
values of their rate constants.
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• The reaction order for elementary reactions is determined by the
stoichiometry of the reaction

ri = ki
∏
j∈Ri

c−νijj − k−i
∏
j∈Pi

cνijj

• Two assumptions are generally invoked when developing simpli-
fied kinetic rate expressions: (i) some of the elementary reactions
are slow relative to the others; the fast reactions can be assumed
to be at equilibrium. If only one step is slow, this single reaction
determines all production rates, and is called the rate-limiting
step; and (ii) the rate of formation of highly reactive intermediate
species can be set to zero; the concentration of these intermedi-
ates is found from the resulting algebraic relations rather than
differential equations.

• The chemical steps involved in heterogeneous reactions (adsorp-
tion, desorption, surface reaction) are generally treated as ele-
mentary reactions. In many cases, one reaction is the slow step
and the remaining steps are at equilibrium. For heterogeneous
reactions, we add a site balance to account for the vacant and
occupied sites that take part in the reaction steps.

Notation

aj activity of species j
cj concentration of species j
cjs steady-state concentration of j
cj concentration of species j on the catalyst surface

cm total active surface concentration (monolayer coverage concentra-
tion)

cv concentration of vacant surface sites

fj fugacity of species j
f ◦j standard-state fugacity of pure species j
Fj flux of species j from the gas phase to the catalyst surface

gei degeneracy of the ith electronic energy level

h Planck’s constant

I moment of inertia for a rigid rotor

Ii moment of inertia about an axis

kB Boltzmann constant

K reaction equilibrium constant
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m mass of a molecule (atom)

Mj molecular weight of species j
nj moles of species j
Nj molar flowrate of species j
p probability of finding adjacent pairs of sites

P total pressure

Pj partial pressure of species j
Pi product species in reaction i(
q
V

)
j

molecular partition function of species j

qelec electronic partition function

qrot rotational partition function

qvib vibrational partition function

Q partition function

Qf volumetric flowrate at the reactor inlet

ri reaction rate for ith reaction

R gas constant

Rj production rate for jth species

Ri reactant species in reaction i
t time

T absolute temperature

V(r) intermolecular potential energy

VR reactor volume

z compressibility factor

ϵi energy of the ith electronic level

εi extent of the ith reaction

θj fractional surface coverage of species j
θv fractional surface coverage of vacant sites

νij stoichiometric number for the jth species in the ith reaction

σ symmetry number, 1 for a heteronuclear molecule, 2 for homonu-
clear molecule

τ lifetime of a component

φj fugacity coefficient for species j
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5.8 Exercises

Exercise 5.1: Equilibrium assumption and nonlinear kinetics

It is common to add groups to difunctional molecules in two consecutive steps:

A+ B
k1-⇀↽-
k−1

C, C+ B
k2-⇀↽-
k−2

D

The difunctional starting material (A) combines with the primary reactant (B) to form
the monofunctional intermediate (C), which subsequently combines with B to produce
the desired final product (D).

(a) Write down the material balances for components A, B, C and D if this reaction
takes place in a batch reactor.

(b) Let’s assume the first step is very slow compared to the second. Solve for the
equilibrium concentration of component D by setting the rate of the second
reaction to zero (i.e., the second reaction is at equilibrium compared to the first).
Then we can eliminate the ODE for component D in the simplified model and
replace it with this algebraic equation.

(c) What are the differential equations for concentrations of components A, B and
C in the simplified model? Hint: don’t just set r2 = 0 in the full model but
eliminate r2 instead.

(d) A numerical ODE solver like Octave can solve the full set of four ODEs in part 5.1a
as easily as the set of three ODEs in part 5.1c.

Why might you prefer the simplified model anyway? Be specific.

Exercise 5.2: Nitrogen dioxide reaction mechanism

The following overall stoichiometry has been observed for the decomposition of gaseous
dinitrogen pentoxide to gaseous nitrogen dioxide and oxygen [30].

2N2O5 -⇀↽- 4NO2 +O2

Consider the following proposed mechanism to explain this stoichiometry.

N2O5 -⇀↽- NO2 +NO3

NO2 + NO3 -→ NO+ O2 +NO2

NO+ NO3 -→ 2NO2

(a) Write down the production rate of each species in the mechanism.

(b) After making the quasi-steady-state assumption (QSSA) for the intermediates,
write down the production rate of the reactants and products.

(c) How many rate constants would you need to determine experimentally to use
the full model to predict the concentrations of N2O5, NO2 and O2 in the reactor?
How many rate constants would you need to determine experimentally to use
the QSSA model to predict these same concentrations?
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Exercise 5.3: Using the QSSA

Consider the simple series reaction mechanism taking place in a constant-volume batch
reactor

A
k1-⇀↽-
k−1

B, B
k2-⇀↽-
k−2

C

(a) Write down the mole balance differential equations for species A, B and C. We
call this set of differential equations the full model.

(b) For what values of rate constants would you expect the QSSA to be valid for
species B?

(c) Make the QSSA on species B and write down the resulting differential equations
for species A and C.

(d) Plot cA, cB and cC versus time for the solution to the full model for initial
conditions cA(0) = 1, cB(0) = cC(0) = 0, and rate constants k1 = k−2 = 1,
k2 = k−1 = 20. You can solve this model analytically or numerically.

(e) Now solve the simplified model, either analytically or numerically. Make three
plots, one for each species, showing cj(t) for the full model and the simplified
model. Are you satisfied using the QSSA for this situation? What advantage does
the simplified model provide?

Exercise 5.4: Applying the QSSA to develop a rate expression

The thermal decomposition of bis-pentafluorosulfurtrioxide (SF5O3SF5)

SF5O3SF5 -→ SF5O2SF5 +
1
2

O2

is postulated to proceed by the following mechanism for oxygen partial pressures
greater than 100 Torr [10].

SF5OOOSF5
k1-⇀↽-
k−1

SF5O+ SF5O2

SF5O2 + SF5O2
k2-→ 2SF5O+O2

2SF5O
k3-→ SF5OOSF5

The first reaction is not at equilibrium and SF5O and SF5O2 are radicals. Develop
an expression for the rate of bis-pentafluorosulfurtrioxide decomposition in terms of
stable molecules.

Exercise 5.5: Using QSSA to develop a simplified rate expression

Example 4.7 presented elementary reactions for ethane pyrolysis in the presence of
NO. Use the data provided in Example 4.7 to answer the following questions.

(a) Apply the quasi-steady-state analysis to these reactions, where HNO, H, and
C2H5 are reaction intermediates to find the rate of ethylene production in terms
of stable molecules.
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(b) Detailed analysis of the products in a PFR reveals that the reactions can be rep-
resented with the following mass action statement

C2H6 +NO
keff-→ C2H4 +H2 +NO

where
r = keffcC2H6

keff = k2

√
k1k3k−4

k−1k2k4

and it is necessary to follow only the concentrations of C2H6, C2H4, H2 and NO.

Assume the reaction takes place in an isothermal PFR operating at constant pres-
sure (1.0 atm) and constant temperature of 1100 K. The feed to the reactor con-
sists of a mixture of ethane and NO with a molar ratio of 95% ethane and 5% NO.
The inlet volumetric flowrate is 600 cm3/s. Predict the reactor volume required
for 98% of the ethane to react, and determine the activation energy for keff .

(c) Compare the answer for this simplified model that uses keff with the full so-
lution to this problem in which all components are followed as illustrated in
Example 4.7.

Exercise 5.6: Acetaldehyde decomposition mechanism and kinetics

The pyrolysis of acetaldehyde, CH3CHO, has been proposed to involve the following
reactions [35].

CH3CHO
k1-→ CH3 + CHO

CH3 + CH3CHO
k2-→ CH4 + CH3CO

CH3CO
k3-→ CH3 + CO

2CH3
k4-→ C2H6

In this mechanism CH3, CH3CO and CHO are reaction intermediates. The radical CHO
undergoes further reactions than are shown, but for simplicity they are ignored here.
Assuming the reaction intermediates (CH3 and CH3CO) are quasi-steady-state interme-
diates, determine the rate of methane formation in terms of only stable molecules.

Exercise 5.7: Two candidate reduced models

Consider the simple series reaction mechanism taking place in a constant-volume batch
reactor

A
k1-⇀↽-
k−1

B, B
k2-⇀↽-
k−2

C

(a) Write down the mole balance differential equations for species A, B and C. We
call this set of differential equations the full model.

(b) For what range of rate constants would you think it is reasonable to assume the
second reaction is at equilibrium compared to the first reaction?
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(c) We write down two candidate simplified models to try to describe this situation.
In the first one, set r2 = 0 and solve for cC . Then set r2 = 0 in the remaining
ODEs for cA and cB .

(d) In the second one, solve for cC as above, but now eliminate r2 from the dif-
ferential equations, rather than setting it to zero, and write down differential
equations for cA and cB .

(e) Solve the three models for the following values (choose any time and concen-
tration units you like). Feel free to solve it analytically or numerically. Plot the
concentrations versus time for each model.

k1 = 1 k−1 = 0 k2 = 100 k−2 = 200

cA0 = 0.5 cB0 = 0.5 cC0 = 0

Which simplified model correctly describes the full model in the limit of a fast
second reaction?

What went wrong in the approach that didn’t work?

Exercise 5.8: Mechanisms and elementary reactions

(a) What is the important difference between a reaction with an observed stoichi-
ometry and an elementary reaction?

(b) List two simple tests a mechanism must pass to be considered a valid description
of an overall stoichiometry.

(c) Name and describe the two major assumptions that are made to simplify the
rate expressions for complex reaction networks.

(d) Describe the transition-state concept and give a chemical example.

Exercise 5.9: Disproportionation of cumene

The disproportionation of cumene (C6H5CH(CH3)2) to benzene and propylene

C -→ B+ P

proceeds by the following catalytic mechanism [9]:

C(g)+ X
k1-⇀↽-
k−1

C · X

C · X
k2-⇀↽-
k−2

B · X+ P(g)

B(g)+ X
k3-⇀↽-
k−3

B · X

in which C, B, P and X represent cumene, benzene, propylene and vacant sites, re-
spectively. The A·X symbol denotes an A molecule adsorbed on the catalyst surface.
Propylene does not adsorb on the surface. Develop production-rate expressions for
the following two situations.

(a) The surface reaction is rate limiting and irreversible, and the adsorption and
desorption of benzene and cumene are at equilibrium. Develop the production-
rate expression for propylene.
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(b) The adsorption of cumene is rate limiting and irreversible, and the adsorption
and desorption of benzene and the surface reaction are at equilibrium. Develop
the production-rate expression for cumene.

(c) After glancing at the overall stoichiometry,

C -→ B+ P

a colleague claims that the production rate of cumene must also be the negative
of the production rates of propylene and benzene. Do you agree? Why or why
not?

Exercise 5.10: Overall stoichiometry and production rates

Consider again the disproportionation of cumene described in Exercise 5.9.

(a) Assume you are running this reaction in a well-mixed gas-phase CSTR contain-
ing a small, solid-catalyst bed. Gas-phase cumene is fed to the reactor, and the
effluent gas containing propylene, benzene, and any unreacted cumene is with-
drawn. If this reactor achieves steady state, from the CSTR material balances
what can you say about the relationships between the steady-state production
rates of gas-phase cumene, benzene and propylene?

(b) Assume that you run the experiment while maintaining low concentrations of
adsorbed cumene and benzene compared to the gas-phase concentrations. What
can you conclude about the production rates of gas-phase cumene, benzene and
propylene under these conditions?

(c) Corrigan et al. [9] used initial rates to support the mechanism given in Exer-
cise 5.9. What simple experiments can you do to determine which of the two
sets of mechanistic assumptions in Exercise 5.9 better describes the chemistry
of cumene disproportionation? Explain how you would interpret the results of
your proposed experiments to make this determination.

Exercise 5.11: Fractional coverage for multicomponent adsorption

The conversion of carbon monoxide and hydrogen into synthetic fuels occurs over
metals. Carbon monoxide and hydrogen compete for surface sites in the adsorption
phase of the synthesis process.

Determine the fraction of surface sites that are covered by CO and atomic hydrogen
in the absence of any subsequent reactions. The adsorption reactions are:

CO(g)+ X -⇀↽- CO · X KCO = 3.8× 104 cm3/mol

H2(g)+ 2X -⇀↽- 2H · X KH2 = 4.9× 103 cm3/mol

The gas-phase conditions are PCO = 3 atm, PH2 = 6 atm and T = 398 K.

Exercise 5.12: Oxygen adsorption

The data in Table 5.8, which are plotted in Figure 5.25, were collected for adsorption
of oxygen on a Pd catalyst. The adsorption is dissociative

O2 + 2X
k1-⇀↽-
k−1

2O · X
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cO2 × 103

(mol/L)
3.05 6.10 9.15 12.2 15.2 61.0 76.2 91.5 107 122 137 152

cO × 106

(mol/g·cat)
1.00 1.62 2.30 2.88 2.88 4.51 4.59 4.95 5.21 5.35 5.30 5.59

Table 5.8: Gas-phase oxygen concentration and adsorbed oxygen
concentration.

0× 100

1× 10−6

2× 10−6

3× 10−6

4× 10−6

5× 10−6

6× 10−6
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c O
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o
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ca

t)

cO2 (mol/L)

Figure 5.25: Adsorbed oxygen concentration versus gas-phase oxy-
gen concentration.

(a) Derive an expression for the Langmuir isotherm to model the concentration of
adsorbed oxygen in terms of the concentration of gas-phase oxygen. How many
unknown parameters does your model contain?

(b) Use the experimental data to obtain preliminary estimates of these parameters.
You may wish to replot the data as 1/cO versus 1/√cO2 . Don’t just plug these
numbers into a least-squares calculation without looking at the replotted data
first. Table 5.8 provides the numerical values of the data plotted in Figure 5.25.

Does the Langmuir model look reasonable for these data? Explain why or why
not.

We revisit these data in Exercise 9.9 after we have developed more general param-
eter estimation methods in Chapter 9.
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Exercise 5.13: Adsorption of propane8

Assume we are going to place a large adsorption bed underneath our automobile to
store adsorbed propane, which we desorb while driving, to use as a fuel replacement
for liquid gasoline. Let’s assume that propane adsorbs on the adsorbent material as a
Langmuir isotherm,

c = cmKP
1+KP

in which c is the molar concentration of adsorbed propane, cm is the monolayer cover-
age, K is the adsorption equilibrium constant and P is the gas-phase propane pressure.

Assume the propane “filling station” can charge the bed with a propane supply
pressure of P2 = 10 atm and the bed is exhausted at a propane partial pressure of
P1 = 0.1 atm. We are interested in selecting an adsorbent material that maximizes the
amount of propane that desorbs while changing from P2 to P1.

(a) Write down an expression for ∆c = c(P2) − c(P1). What is ∆c for K = 0, for
K →∞? Sketch a plot of ∆c versus K.

(b) What is the optimal adsorbent material (K value) and what fraction of the ad-
sorbed propane can be taken off as fuel when using this optimal adsorbent ma-
terial?

Exercise 5.14: Competitive adsorption and reaction rate

Consider the following heterogeneous reaction in which A and B associatively adsorb
on a catalyst surface and undergo reaction to product P, which subsequently desorbs.

A+ X
k1-⇀↽-
k−1

A · X

B+ X
k2-⇀↽-
k−2

B · X

A · X+ B · X
k3-→ P · X+ X

P+ X
k4-⇀↽-
k−4

P · X

At 373 K the equilibrium constants for adsorption are

K1 = 190,000 K2 = 580,000 K4 = 75,000 cm3/mol

The heats of adsorption are

∆H1 = −20,000 ∆H2 = −30,000 ∆H4 = −12,000 cal/mol

The rate constant for r3 is

k3 = 7.6× 1028 exp(−15000/T)
(gcat2)

(s)(cm3)(mol)
where T is in Kelvin.

(a) Develop a Langmuir-Hinshelwood rate expression (i.e., the rate is expressed in
terms of gas-phase components) for the surface reaction when you assume the
surface reaction is the slow step and the adsorption and desorption processes
are at equilibrium.

8This exercise came from a seminar given at UT–Austin by Professor Eduardo Glandt
on April 18, 1995 [28].
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(b) Determine the magnitude of rate of the surface reaction (r3) at 373 K if the gas
contains a 50:50 mixture of A and B at a pressure of 1.0 atm. What is the value
of the rate if a 50:10:40 mixture of A:B:P is present instead? cm = 0.0008 mol/g
cat.

(c) Examine the effect of changing the composition of the gas in contact with the
catalyst on the rate. Plot r3 for the case where the temperature is 400 K, the
total pressure is 1.0 atm, the mole fraction of P is zero, the mole fraction of A is
0.1 and the mole fraction of B is varied between 0 and 0.9. (An inert component
that does not adsorb makes up the balance of the gas phase.) Discuss the shape
of the curve.

(d) Now repeat part (c) for the 5 and 10 atm total pressure. Why is there a maximum
in the rate versus composition curve at higher pressures?

Exercise 5.15: Competitive adsorption

Consider two gas-phase components that adsorb associatively on a heterogeneous cat-
alyst

A+ X
k1-⇀↽-
k−1

A · X B+ X
k2-⇀↽-
k−2

B · X

At 373 K the equilibrium constants for adsorption are

K1 = 190,000 K2 = 580,000 cm3/mol

The heats of adsorption are

∆H1 = −30,000 ∆H2 = −20,000 cal/mol

(a) Examine the effect of changing the temperature from 300 to 500 K on the frac-
tional coverage of A and B. Plot θA and θB versus T when the pressure is 1.0 atm
and the gas contains an equimolar mixture of A and B. Comment on the shape
of the curves. Why do the curves for the two components have the shapes they
do?

(b) Examine the effect of pressure on the fractional coverage of A and B. Plot θA
and θB versus pressure between 0 and 3 atm when the temperature is 373 K
and the gas contains an equimolar mixture of A and B. Comment on the shape
of the curves. Why does one of the components appear to reach an asymptotic
saturation level at a lower pressure than the other one?

(c) Examine the effect of the gas-phase composition on the coverage of A and B.
Plot θA and θB versus the mole fraction of A as it is varied from 0 to 1 when the
temperature is 373 K and the pressure is 1.0 atm. Why are the y-axis intercepts
different for yA = 0 and yA = 1?

Exercise 5.16: Associative versus dissociative adsorption

The active area of supported group-VIII metals can be determined by adsorbing carbon
monoxide. Problems arise with the use of CO because it can adsorb associatively or
dissociatively. The type of adsorption is a function of the metal type and the adsorption
temperature. The following data describe the adsorption of CO on 10% Ru on Al2O3 at
100◦C.
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PCO (Torr) CO ads (µmol/g cat)
100 1.28
150 1.63
200 1.77
250 1.94
300 2.06
400 2.21

(a) Test the data to determine if the adsorption is associative or dissociative.

CO(g)+ Ru -⇀↽- CO · Ru

CO(g)+ 2Ru -⇀↽- C · Ru+O · Ru

(b) What is the concentration of total surface ruthenium atoms in terms of mol of
sites/g of catalyst?

Exercise 5.17: Hougen-Watson kinetics

The irreversible heterogeneous catalytic reaction

A+ B -→ C+D

was studied over a wide range of partial pressures of reactants A and B, and products
C and D. In the experimental observations reported below the partial pressure of one
component was varied while holding the partial pressures of the other three compo-
nents fixed. Use the observations to establish the reaction mechanism. Specifically,
which candidate reaction mechanism is consistent with all of the data. Explain your
reasoning and justify your answer.

Observations:

Partial Partial
pressure pressures Characteristics of the plot of
varied fixed log rate versus log P varied
A B, C, D 1. At low PA the curve has a slope of 1.

2. At intermediate PA the curve has a positive slope
less than 1.

B A, C, D 1. At low PB the curve has a positive slope
slightly less than 1.
2. At intermediate PB the curve has a maximum.
3. At high PB the curve has a slope of −1.

C A, B, D 1. At low PC the curve has zero slope.
2. At high PC the curve has slope −2.

Mechanism 1:
A(g)+ X -⇀↽- A · X

B(g)+ X -⇀↽- B · X

C(g)+ X -⇀↽- C · X

D(g)+ X -⇀↽- D · X

A · X+ B · X -→ C · X+D · X rate-limiting step
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Mechanism 2:

A(g)+ X -⇀↽- A · X

B(g)+ X -⇀↽- B · X

C(g)+ X -⇀↽- C · X

D(g)+ X -⇀↽- D · X

A(g)+ B · X -→ C · X+D(g) rate-limiting step

Exercise 5.18: Power-law approximation of Hougen-Watson kinetics

The following catalytic reaction is conducted in a 0.25 cm radius spherical pellet.

A+ B2 -→ C

The mechanism for this reaction is shown below. A, B2 and C are in adsorption-
desorption equilibrium with the surface. The bimolecular surface reaction is irre-
versible and rate limiting.

A+ S
k1-⇀↽-
k−1

Aads

B2 + 2S
k2-⇀↽-
k−2

2Bads

Aads + Bads
k3-→ Cads + S

C+ S
k4-⇀↽-
k−4

Cads

Additional data for this problem follow.

Item Value Units

K1 130,100 cm3/mol

K2 6,500 cm3/mol

K4 6,440 cm3/mol

cA 5.83×10−5 mol/cm3

cB2 1.40×10−4 mol/cm3

cC 1.17×10−5 mol/cm3

k3 7.41×108 g cat2/(mol cm3 s)

cm 1.8 ×10−5 mol/g cat

(a) Determine the fractional surface coverages of A, B and C (i.e., θA, θB and θC ) at
the tabulated conditions.

(b) Assume you can perform experiments that would enable you to determine the
rate of the surface reaction as the concentrations of A, B and C are varied plus
and minus 50% from the values in the table. You then fit the rate data to the
following power-law rate expression

r = kcαAc
β
B2
cγC

What do you expect the values of α, β and γ to be and why?
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Exercise 5.19: Ethylene hydrogenation

The hydrogenation of ethylene to ethane is found experimentally to follow the reaction
orders given in the following table [36].

Catalyst Order in H2 Order in C2H4

Rh 0.85 −0.74
Ru 0.95 −0.59
Co 0.55 −0.19

The following steps have been suggested for the catalytic reaction mechanism [41,
p.53]. In this mechanism ethylene adsorbs associatively and H2 adsorbs dissociatively.
There is a stepwise addition of adsorbed hydrogen to form an adsorbed ethyl group,
C2H5,ads, and then adsorbed ethane, C2H6,ads.

C2H4 + S
k1-⇀↽-
k−1

C2H4,ads

H2 + 2S
k2-⇀↽-
k−2

2Hads

C2H4,ads + Hads
k3-⇀↽-
k−3

C2H5,ads + S

C2H5,ads + Hads
k4-⇀↽-
k−4

C2H6,ads + S

C2H6,ads
k5-⇀↽-
k−5

C2H6 + S

where S is a vacant surface site. The rate of the formation of ethane is that of the
rate-limiting surface hydrogenation step. There are two choices. For Scheme I, the
rate-limiting step is Reaction 3. For Scheme II, the rate-limiting step is Reaction 4.

(a) Develop a rate expression for the rate of ethane formation for Scheme I. Let
Reaction 3 be the rate-limiting step and assume all other reactions are at equi-
librium. Assume that adsorption from the gas phase follows a Langmuir ad-
sorption isotherm. Neglect the reverse of Reaction 3. When performing a site
balance, assume the surface is either vacant or covered with adsorbed ethylene,
i.e., the coverage of ethyl, atomic hydrogen and adsorbed ethane are negligible.

(b) Develop a rate expression for the rate of ethane formation for Scheme II. Let
Reaction 4 be the rate-limiting step and assume all other reactions are at equilib-
rium. Assume that adsorption from the gas phase follows a Langmuir adsorption
isotherm. Neglect the reverse of Reaction 4. When performing a site balance,
assume the surface is either vacant or covered with adsorbed ethylene and ethyl,
i.e., the coverage of atomic hydrogen and adsorbed ethane are negligible.

(c) Based on the experimental data listed in the table, is Scheme I or II the more
probable mechanism and why?
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6
The Energy Balance for Chemical

Reactors

6.1 General Energy Balance

To specify the rates of reactions in a nonisothermal reactor, we require
a model to determine the temperature of the reactor. The tempera-
ture is determined by the energy balance for the reactor. We derive
the energy balance by considering an arbitrary reactor volume element,
shown in Figure 6.1, as we did in deriving the material balance in Chap-
ter 4. The volume element has inlet and outlet streams with mass
flowrates m0 and m1, respectively. In this chapter, we are again ne-
glecting flux of mass through the surface of the volume element except
at stream locations 0 and 1. The molar concentrations of component j
in the two streams are given by cj0 and cj1, and the total energy mass
densities of the streams are denoted by Ê0 and Ê1. The rate of heat

m1

Ê1

cj1

m0

Ê0

cj0

V

Q̇ Ẇ

Figure 6.1: Reactor volume element.
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added to the system is denoted by Q̇, and Ẇ is the rate of work being
done on the system. Be aware that the opposite convention in which
Ẇ points out of the system in Figure 6.1 is also in use. The statement
of conservation of energy for this system takes the form,

{
rate of energy
accumulation

}
=


rate of energy

entering system
by inflow

−


rate of energy
leaving system

by outflow


+
{

rate of heat
added to system

}
+
{

rate of work
done on system

}
(6.1)

In terms of the defined variables, we can write Equation 6.1 as,

dE
dt
=m0Ê0 −m1Ê1 + Q̇+ Ẇ (6.2)

in which the hat indicates an energy per unit mass.

6.1.1 Work Term

It is convenient to split the work term into three parts: Ẇf , the work
done by the flow streams while moving material into and out of the
reactor, Ẇs , the shaft work being done by stirrers, compressors, etc.,
and Ẇb, the work done when moving the system boundary

Ẇ︸︷︷︸
total work

= Ẇf︸︷︷︸
flow streams

+ Ẇs︸︷︷︸
shaft work

+ Ẇb︸︷︷︸
boundary work

(6.3)

To calculate the work done by the flow streams, we assume the
entering fluid has pressure P0 and a uniform velocity v0 normal to the
bounding surface, and the exiting stream has pressure P1 and velocity
v1, and let A0 and A1 be the areas on the bounding surface where the
streams intersect the boundary as shown in Figure 6.2. In this case Ẇf
is 1

Ẇf = v0A0P0 − v1A1P1 = Q0P0 −Q1P1

We also can express the volumetric flowrate as a mass flowrate divided
by the density, Q =m/ρ

Ẇf =m0
P0

ρ0
−m1

P1

ρ1

1We are neglecting any normal viscous forces, which are usually much smaller than
the pressure force. Consult Bird for a more detailed development from microscopic
considerations [5, 6].
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P0

v0

v1

P1

A0

A1V

Figure 6.2: Flow streams entering and leaving the volume element.

Note that the units in the product mP/ρ are (m/t)(m/lt2)/(m/l3),
which gives (ml2/t2)/t, a unit of energy per time as we expect. The
overall rate of work can then be expressed as

Ẇ = Ẇf + Ẇs + Ẇb =m0
P0

ρ0
−m1

P1

ρ1
+ Ẇs + Ẇb (6.4)

6.1.2 Energy Terms

The total energy may be regarded as composed of many forms. Obvious
contributions to the total energy arise from the internal, kinetic and
potential energies.2

Ê = Û + K̂ + Φ̂ + · · ·

For our purposes in this chapter, we consider only these forms of en-
ergy. Recalling the definition of enthalpy, H = U+PV , or expressed on
a per-unit mass basis, Ĥ = Û + P/ρ, allows us to rewrite Equation 6.2
as

d
dt
(U +K + Φ) =m0

(
Ĥ + K̂ + Φ̂

)
0
−m1

(
Ĥ + K̂ + Φ̂

)
1

+ Q̇+ Ẇs + Ẇb (6.5)

6.2 The Batch Reactor

Since the batch reactor has no flow streams Equation 6.5 reduces to

d
dt
(U +K + Φ) = Q̇+ Ẇs + Ẇb (6.6)

2In some cases one might need to consider also electrical and magnetic energies. For
example, we might consider the motion of charged ionic species between the plates in
a battery cell.
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In chemical reactors, we normally assume the internal energy is the
dominant contribution and neglect the kinetic and potential energies.
Normally we neglect the work done by the stirrer, unless the mixture is
highly viscous and the stirring operation draws significant power [14].
Neglecting kinetic and potential energies and shaft work yields

dU
dt
+ P dVR

dt
= Q̇ (6.7)

in which Ẇb = −PdVR/dt. It is convenient to use enthalpy rather than
internal energy in the subsequent development. Taking the differential
of the definition of enthalpy gives for V = VR

dH = dU + PdVR + VRdP

Forming the time derivatives and substitution into Equation 6.7 gives

dH
dt
− VR

dP
dt
= Q̇ (6.8)

For single-phase systems, we consider the enthalpy as a function of tem-
perature, pressure and number of moles, and express its differential as

dH =
(
∂H
∂T

)
P,nj

dT +
(
∂H
∂P

)
T ,nj

dP +
∑
j

(
∂H
∂nj

)
T ,P,nk

dnj (6.9)

The first partial derivative is the definition of the heat capacity, CP .
Notice this heat capacity is the extensive heat capacity of the reactor
contents. Normally we express this quantity as an intensive heat ca-
pacity times the amount of material in the reactor. We can express the
intensive heat capacity on either a molar or mass basis. We choose to
use the heat capacity on a mass basis, so the total heat capacity can be
expressed as

CP = VRρĈP
The second partial derivative can be expressed as (see Exercise 6.23)(

∂H
∂P

)
T ,nj

= V − T
(
∂V
∂T

)
P,nj

= V(1−αT)

in which α = (1/V)(∂V/∂T)P,nj is the coefficient of expansion of the
mixture. The partial derivatives appearing in the sum in Equation 6.9
are the partial molar enthalpies, Hj(

∂H
∂nj

)
T ,P,nk

= Hj
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so Equation 6.9 can be written compactly as

dH = VRρĈPdT + (1−αT)VRdP +
∑
j
Hjdnj (6.10)

Forming the time derivatives from this expression and substituting into
Equation 6.8 gives

VRρĈP
dT
dt
−αTVR

dP
dt
+
∑
j
Hj
dnj
dt

= Q̇ (6.11)

We note that the material balance for the batch reactor is

dnj
dt

= RjVR =
nr∑
i=1

νijriVR, j = 1, . . . , ns (6.12)

which upon substitution into Equation 6.11 yields

VRρĈP
dT
dt
−αTVR

dP
dt
= −

∑
i
∆HRiriVR + Q̇ (6.13)

in which ∆HRi is the heat of reaction

∆HRi =
∑
j
νijHj (6.14)

We now consider several special cases. If the reactor operates at
constant pressure (dP/dt = 0) or the fluid is incompressible3 (α = 0),
then Equation 6.13 reduces to

Incompressible-fluid or constant-pressure reactor.

VRρĈP
dT
dt
= −

∑
i
∆HRiriVR + Q̇ (6.15)

To derive the constant-volume case, we consider the pressure as a
function of T ,V(V = VR),nj , and express the pressure differential as

dP =
(
∂P
∂T

)
V,nj

dT +
(
∂P
∂V

)
T ,nj

dV +
∑
j

(
∂P
∂nj

)
T ,V ,nk

dnj

3We take incompressible to mean constant density, which is a common practice in
fluid mechanics [7, p. 338].
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For reactor operation at constant volume, dV = 0, and forming time
derivatives and substituting into Equation 6.11 gives[
VRρĈP −αTVR

(
∂P
∂T

)
V,nj

]
dT
dt
+
∑
j

Hj −αTVR
(
∂P
∂nj

)
T ,V ,nk

 dnj
dt

= Q̇

We note that the first term in brackets is CV = VRρĈV (see Exercise
6.23)

VRρĈV = VRρĈP −αTVR
(
∂P
∂T

)
V,nj

The pressure derivative with respect to the moles can be shown to be
(see Exercise 6.23) (

∂P
∂nj

)
T ,V ,nk≠j

= V j
VκT

in which κT = −(1/V)(∂V/∂P)T ,nj is the isothermal compressibility
of the mixture, and V j is the partial molar volume. Substitution of
these two thermodynamic relations and the material balance yields the
energy balance for the constant-volume batch reactor

Constant-volume reactor.

VRρĈV
dT
dt
= −

∑
i

(
∆HRi −

α
κT
T∆VRi

)
riVR + Q̇ (6.16)

in which ∆VRi is the volume change of reaction

∆VRi =
∑
j
νijV j

If we consider an ideal gas, it is straightforward to calculate αT = 1,
κTP = 1, and ∆VRi = ν̄i(RT/P), where ν̄i =

∑
j νij . Substitution into

the constant-volume energy balance gives

Constant-volume reactor, ideal gas.

VRρĈV
dT
dt
= −

∑
i

(
∆HRi − RTν̄i

)
riVR + Q̇ (6.17)

If we consider the constant-volume reactor with incompressible fluid
(α = 0, ĈV = ĈP ), Equation 6.16 reduces to Equation 6.15 as it should
because Equation 6.15 is valid for any reactor operation with an incom-
pressible fluid. We also notice that, in the constant-pressure case, the
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same energy balance applies for any fluid mixture (ideal gas, incom-
pressible fluid, etc.), and that this balance is the same as the balance
for an incompressible fluid in a constant-volume reactor. Although the
same final balances are obtained for these two cases, the physical situ-
ations they describe are completely different.

Liquid-phase reactions often are carried out in batch reactors. Equa-
tion 6.15 is therefore a common batch-reactor energy balance. Two
cases where Equation 6.15 can be simplified include the case of adia-
batic operation (Q̇ = 0) and the case of heat transfer through a jacket
or cooling coil

Q̇ = UoA(Ta − T) (6.18)

in which Uo is the overall heat-transfer coefficient. Note that Equa-
tion 6.15 must be solved simultaneously, and usually numerically, with
the batch-reactor material balance, Equation 6.12.

Example 6.1: Constant-pressure versus constant-volume reactors

Consider the following two well-mixed, adiabatic, gas-phase batch re-
actors for the exothermic, elementary decomposition of A to B,

A
k
-→ 2B (6.19)

Reactor 1: The reactor volume is held constant (reactor pressure there-
fore changes).

Reactor 2: The reactor pressure is held constant (reactor volume there-
fore changes).

Both reactors are charged with pure A at 1.0 atm and k has the usual
Arrhenius activation energy dependence on temperature,

k(T) = k0 exp(−E/T)

The heat of reaction, ∆HR, and heat capacity of the mixture, ĈP , may
be assumed constant over the composition and temperature range ex-
pected.

Write the material and energy balances for these two reactors. Which
reactor converts the reactant more quickly?

Solution

Material balance. The material balance for component A in the batch
reactor is

d(cAVR)
dt

= RAVR
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Substituting in the reaction-rate expression, r = k(T)cA, and using the
number of moles of A, nA = cAVR yields

dnA
dt

= −k(T)nA (6.20)

Notice the temperature dependence of k(T) prevents us from solv-
ing this differential equation immediately like we did for the isothermal
reactor. We must solve it simultaneously with the energy balance,
which provides the information for how the temperature changes. The
material balance, Equation 6.20, is the same for both reactors.

Energy balance. The energy balances for the two reactors are not the
same. We consider first the constant-volume reactor. For the A →
2B stoichiometry, we substitute the rate expression and ν̄ = 1 into
Equation 6.17 to obtain

CV
dT
dt
= − (∆HR − RT)knA

in which CV = VRρĈV is the total constant-volume heat capacity.
The energy balance for the constant-pressure case follows from

Equation 6.15

CP
dT
dt
= −∆HRknA

in which CP = VRρĈP is the total constant-pressure heat capacity. For
an ideal gas, we know from thermodynamics that the two total heat
capacities are simply related,

CV = CP −nR (6.21)

Comparing the production rates of A and B produces

2nA +nB = 2nA0 +nB0

Because there is no B in the reactor initially, subtracting nA from both
sides yields for the total number of moles

n = nA +nB = 2nA0 −nA

Substitution of the above and Equation 6.21 into the constant-volume
case yields

dT
dt
= − (∆HR − RT)knA

CP − (2nA0 −nA)R
constant volume (6.22)
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and the temperature differential equation for the constant-pressure
case is

dT
dt
= −∆HRknA

CP
constant pressure (6.23)

We see by comparing Equations 6.22 and 6.23 that the numerator in the
constant-volume case is larger because ∆HR is negative and the posi-
tive RT is subtracted. We also see the denominator is smaller because
CP is positive and the positive nR is subtracted. Therefore the time
derivative of the temperature is larger for the constant-volume case.
The reaction proceeds more quickly in the constant-volume case. The
constant-pressure reactor is expending work to increase the reactor
size, and this work results in a lower temperature and slower reaction
rate compared to the constant-volume case. □

Example 6.2: Liquid-phase batch reactor

The exothermic elementary liquid-phase reaction

A+ B
k
-→ C, r = kcAcB

is carried out in a batch reactor with a cooling coil to keep the reactor
isothermal at 27◦C. The reactor is initially charged with equal concen-
trations of A and B and no C, cA0 = cB0 = 2.0 mol/L, cC0 = 0.

1. How long does it take to reach 95% conversion?

2. What is the total amount of heat (kcal) that must be removed by
the cooling coil when this conversion is reached?

3. What is the maximum rate at which heat must be removed by
the cooling coil (kcal/min) and at what time does this maximum
occur?

4. What is the adiabatic temperature rise for this reactor and what
is its significance?

Additional data:

Rate constant, k = 0.01725 L/mol·min, at 27◦C
Heat of reaction, ∆HR = −10 kcal/mol A, at 27◦C
Partial molar heat capacities, CPA = CPB = 20 cal/(mol K),
CPC = 40 cal/(mol K)
Reactor volume, VR = 1200 L
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Solution

1. Assuming constant density, the material balance for component A
is

dcA
dt

= −kcAcB

The stoichiometry of the reaction, and the material balance for B
gives

cA − cB = cA0 − cB0 = 0

or cA = cB . Substitution into the material balance for species A
gives

dcA
dt

= −kc2
A

Separation of variables and integration gives

t = 1
k

[
1
cA
− 1
cA0

]
Substituting cA = 0.05cA0 and the values for k and cA0 gives

t = 551 min

2. We assume the incompressible-fluid energy balance is accurate
for this liquid-phase reactor. If the heat removal is manipulated
to maintain constant reactor temperature, the time derivative in
Equation 6.15 vanishes leaving

Q̇ = ∆HRrVR (6.24)

Substituting dcA/dt = −r and multiplying through by dt gives

dQ = −∆HRVRdcA

Integrating both sides gives

Q = −∆HRVR(cA − cA0) = −2.3× 104 kcal

3. Substituting r = kc2
A into Equation 6.24 yields

Q̇ = ∆HRkc2
AVR

The right-hand side is a maximum in absolute value (note it is a
negative quantity) when cA is a maximum, which occurs for cA =
cA0, giving

Q̇max = ∆HRkc2
A0VR = −828 kcal/min
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4. The adiabatic temperature rise is calculated from the energy bal-
ance without the heat-transfer term

VRρĈP
dT
dt
= −∆HRrVR

Substituting the material balance dnA/dt = −rVR gives

VRρĈPdT = ∆HRdnA (6.25)

Because we are given the partial molar heat capacities (see Equa-
tion 3.48 for the definition of partial molar heat capacity), it is
convenient to evaluate the total heat capacity as

VRρĈP =
ns∑
j=1

CPjnj

For a batch reactor, the number of moles can be related to the
reaction extent by nj = nj0 + νjε, so we can express the right-
hand side of the previous equation as

ns∑
j=1

CPjnj =
∑
j
CPjnj0 + ε∆CP

in which ∆CP =
∑
j νjCPj . If we assume the partial molar heat

capacities are independent of temperature and composition we
have ∆CP = 0 and

VRρĈP =
ns∑
j=1

CPjnj0

Integrating Equation 6.25 with constant heat capacity gives

∆T = ∆HR∑
j CPjnj0

∆nA

The maximum temperature rise corresponds to complete conver-
sion of the reactants and can be computed from the given data

∆Tmax =
−10× 103 cal/mol

2(2 mol/L)(20 cal/(mol K))
(0− 2 mol/L)

∆Tmax = 250 K

The adiabatic temperature rise indicates the potential danger of a
coolant system failure. In this case the reactants contain enough
internal energy to raise the reactor temperature by 250 K.

□
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6.3 The CSTR

Dynamic Operation

For the continuous-stirred-tank reactor (CSTR), we again assume that
the internal energy is the dominant contribution to the total energy
and take the entire reactor contents as the volume element. Again we
denote the feed stream with flowrate Qf , density ρf , enthalpy Ĥf , and
component j concentration cjf . The outflow stream is flowing out of a
well-mixed reactor and its intensive properties are therefore assumed
the same as the reactor contents. Its flowrate is denoted Q. Writing
Equation 6.5 for this reactor gives,

dU
dt
= Qfρf Ĥf −QρĤ + Q̇+ Ẇs + Ẇb (6.26)

And if we neglect the shaft work

dU
dt
+ P dVR

dt
= Qfρf Ĥf −QρĤ + Q̇ (6.27)

or if we use the enthalpy rather than internal energy

dH
dt
− VR

dP
dt
= Qfρf Ĥf −QρĤ + Q̇ (6.28)

As in the batch reactor, for single-phase systems we consider the
change in enthalpy due to changes in temperature, pressure and the
number of moles of component j,

dH = VRρĈPdT + (1−αT)VRdP +
∑
j
Hjdnj

Substitution into Equation 6.28 gives

VRρĈP
dT
dt
−αTVR

dP
dt
+
∑
j
Hj
dnj
dt

= Qfρf Ĥf −QρĤ + Q̇ (6.29)

The material balance for the CSTR is

dnj
dt

= Qf cjf −Qcj +
∑
i
νijriVR (6.30)

Substitution into Equation 6.29 and rearrangement yields

VRρĈP
dT
dt
−αTVR

dP
dt
= −

∑
i
∆HRiriVR +

∑
j
cjfQf (Hjf −Hj)+ Q̇

(6.31)
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Again, a variety of important special cases may be considered. These
are listed in Table 6.8 in the chapter summary. A common case is
the liquid-phase reaction, which usually is well approximated by the
incompressible-fluid equation,

VRρĈP
dT
dt
= −

∑
i
∆HRiriVR +

∑
j
cjfQf (Hjf −Hj)+ Q̇ (6.32)

In the next section we consider further simplifying assumptions that
require less thermodynamic data and yield useful approximations.

Steady-State Operation

If the CSTR is at steady state, the time derivatives in Equations 6.30
and 6.31 can be set to zero yielding,

Qf cjf −Qcj +
∑
i
νijriVR = 0 (6.33)

−
∑
i
∆HRiriVR +

∑
j
cjfQf (Hjf −Hj)+ Q̇ = 0 (6.34)

Equations 6.33 and 6.34 provide ns +1 algebraic equations that can be
solved simultaneously to obtain the steady-state concentrations and
temperature in the CSTR. Note that the heats of reaction ∆HRi are eval-
uated at the reactor temperature and composition.

For a liquid-phase reaction, there is a final approximation that is
often useful. If the heat capacity of the liquid phase does not change
significantly with composition or temperature, possibly because of the
presence of a large excess of a nonreacting solvent, and we neglect the
pressure effect on enthalpy, which is normally small for a liquid, we
obtain

Hjf −Hj = CPj(Tf − T)
Substitution into Equation 6.34 gives

−
∑
i
ri∆HRiVR +Qfρf ĈP(Tf − T)+ Q̇ = 0 (6.35)

Example 6.3: Temperature control in a CSTR

An aqueous solution of species A undergoes the following elementary
reaction in a 2000 L CSTR as depicted in Figure 6.3.

A
k1-⇀↽-
k−1

R ∆HR = −18 kcal/mol
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Q̇1

Q̇2

25◦C25◦C

Figure 6.3: CSTR and heat exchangers.

The feed concentration, CAf , is 4 mol/L and feed flowrate, Qf , is
250 L/min. The reaction-rate constants have been determined experi-
mentally

k1 = 3× 107e−5838/T min−1

K1 = 1.9× 10−11e9059/T

1. At what temperature must the reactor be operated to achieve 80%
conversion?

2. What are the heat duties of the two heat exchangers if the feed
enters at 25◦C and the product is to be withdrawn at this tem-
perature? The heat capacity of feed and product streams can be
approximated by the heat capacity of water, ĈP = 1 cal/(g K).

Solution

1. The steady-state material balances for components A and R in a
constant-density CSTR are

Q(cAf − cA)− rVR = 0

Q(cRf − cR)+ rVR = 0

Adding these equations and noting cRf = 0 gives

cR = cAf − cA
Substituting this result into the rate expression gives

r = k1(cA −
1
K1
(cAf − cA))
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Substitution into the material balance for A gives

Q(cAf − cA)− k1(cA −
1
K1
(cAf − cA))VR = 0 (6.36)

If we set cA = 0.2cAf to achieve 80% conversion, we have one equa-
tion and one unknown, T , because k1 and K1 are given functions
of temperature. Solving this equation numerically gives

T = 334 K

A word of caution is in order here. Because the reaction is re-
versible, we do not know if 80% conversion is achievable for any
temperature when we attempt to solve Equation 6.36. It may be
valuable to first make a plot of the conversion as a function of
reactor temperature. If we solve Equation 6.36 for cA, we have

cA =
Q/VR + k1/K1

Q/VR + k1(1+ 1/K1)
cAf

or for xA = 1− cA/cAf

xA =
k1

Q/VR + k1(1+ 1/K1)
= k1τ

1+ k1τ(1+ 1/K1)

Figure 6.4 displays xA versus T and we see that the conversion
80% is just reachable at 334 K, and that for any conversion lower
than this value, there are two solutions.

2. A simple calculation for the heat-removal rate required to bring
the reactor outflow stream from 334 K to 298 K gives

Q̇2 = QfρĈP∆T
= (250 L/min)(1000 g/L)(1 cal/(g K))(298− 334 K)

= −9× 103 kcal/min

Applying Equation 6.35 to this reactor gives

Q̇1 = k1(cA −
1
K1
(cAf − cA))∆HRVR −QfρĈP(Tf − T)

= −5.33× 103 kcal/min

□
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Figure 6.4: Conversion of A versus reactor temperature.

6.3.1 Steady-State Multiplicity

The coupling of the material and energy balances for the CSTR can give
rise to some surprisingly complex and interesting behavior. Even the
steady-state solution of the material and energy balances holds some
surprises. In this section we explore the fact that the steady state of
the CSTR is not necessarily unique. As many as three steady-state so-
lutions to the material and energy balances may exist for even the sim-
plest kinetic mechanisms. This phenomenon is known as steady-state
multiplicity.

We introduce this topic with a simple example [24]. Consider an adi-
abatic, constant-volume CSTR with the following elementary reaction
taking place in the liquid phase

A
k
-→ B

We wish to compute the steady-state reactor conversion and tempera-
ture. The data and parameters are listed in Table 6.1.

The material balance for component A is

d(cAVR)
dt

= Qf cAf −QcA + RAVR
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Parameter Value Units
Tf 298 K
Tm 298 K
ĈP 4.0 kJ/kg K
cAf 2.0 kmol/m3

km 0.001 min−1

E 8.0× 103 K
ρf 103 kg/m3

∆HR −3.0× 105 kJ/kmol
Uo 0

Table 6.1: Parameter values for multiple steady states.

The production rate is given by

RA = −k(T)cA
For the steady-state reactor with constant-density, liquid-phase streams,
the material balance simplifies to

0 = cAf − (1+ kτ)cA (6.37)

Equation 6.37 is one nonlinear algebraic equation in two unknowns: cA
and T . The temperature appears in the rate-constant function,

k(T) = kme−E(1/T−1/Tm)

A second equation is provided by the energy balance, and, in this
example, we assume the heat capacity of the mixture is constant and in-
dependent of composition and temperature. With these assumptions,
the steady-state energy balance reduces to

0 = −kcA∆HRVR +Qfρf ĈP(Tf − T)+UoA(Ta − T)

Dividing through by VR and noting Uo = 0 for the adiabatic reactor
gives

0 = −kcA∆HR +
CPs
τ
(Tf − T) (6.38)

in which CPs = ρf ĈP , a heat capacity per volume. The solution of
Equations 6.37 and 6.38 for cA and T provide the steady-state CSTR
solution. The parameters appearing in the problem are: cAf , Tf , τ ,
CPs , km, Tm, E, ∆HR. We wish to study this solution as a function of
one of these parameters, τ , the reactor residence time. Consider the
heat of reaction taking values in one of three cases.
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Thermoneutral reaction. Assume the heat of reaction is zero, ∆HR =
0. Equation 6.38 then implies T = Tf for all residence times. In this
case, we already have shown that

cA =
cAf

1+ kτ x = kτ
1+ kτ

The x and T values for this case are plotted versus residence time
as the ∆HR = 0 lines in Figures 6.5 and 6.6. This case is much as
we expect, the conversion of A increases monotonically with residence
time because the reactant molecules have more time to react at longer
residence times.

Endothermic reaction. Let ∆HR = +5 × 104 kJ/kmol. Because the
heat of reaction is positive, the steady-state temperature decreases with
increasing conversion and residence time. The lower temperature de-
creases the rate constant and one has to operate the reactor at signif-
icantly longer residence times to achieve the same conversion as the
isothermal case as shown in Figure 6.5.

Exothermic reaction. The solution for the exothermic reaction is plot-
ted in Figures 6.5 and 6.6, for ∆HR = −5,−10,−20,−30×104 kJ/kmol.
In these cases, temperature increases with conversion and hence res-
idence time. The rate constant increases significantly with tempera-
ture, and higher conversions are achieved at smaller residence times
as the exothermicity increases. Note that if the heat of reaction is more
exothermic than −10 kJ/kmol, there is a range of residence times in
which there is not one but several steady-state solutions, three solu-
tions in this case. The reactor is said to exhibit steady-state multiplic-
ity for these values of residence time. For intermediate values of the
heat of reaction, one can see the formation of the s-shaped steady-state
temperature curves. We also should note that we have assumed the re-
action mixture remains in the liquid phase at these temperatures and
the reactor pressure.

The points at which the steady-state curves turn are known as ig-
nition and extinction points. Figures 6.7 and 6.8 show the ∆HR =
−3×105 kJ/kmol case again, without a log scale on the residence-time
axis. Consider a reactor at steady state for a small value of residence
time, 10 min, at low conversion of A and low temperature. If the feed
flowrate were decreased slightly (τ increased), there would be a small
upset and the reactor would increase in conversion and temperature as
it approached the new steady state at the new residence time. Consider
the situation at the ignition point, however. Let the reactor be at steady
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Figure 6.5: Steady-state conversion versus residence time for differ-
ent values of the heat of reaction (∆HR × 10−4 kJ/kmol).
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Figure 6.6: Steady-state temperature versus residence time for dif-
ferent values of the heat of reaction (∆HR×10−4 kJ/kmol).



292 The Energy Balance for Chemical Reactors

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45

ignition point

extinction point

x

•

•

τ (min)

Figure 6.7: Steady-state conversion versus residence time for ∆HR =
−3× 105 kJ/kmol; ignition and extinction points.

280

300

320

340

360

380

400

420

440

460

0 5 10 15 20 25 30 35 40 45

ignition point

extinction point

T (K)

•

•

τ (min)

Figure 6.8: Steady-state temperature versus residence time for
∆HR = −3× 105 kJ/kmol; ignition and extinction points.
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state for τ = 30.9 min at x = 0.09 and T = 311 K. If there is a small
decrease in feed flowrate so the residence time is 32 min, there is no
steady state near the temperature and concentration of the reactor. A
large release of heat occurs and the reactor ignites and moves to the
steady state near x = 1 and T = 448 K. We can compute this maximal
temperature corresponding to complete conversion as follows.

Tmax − Tf = −
cA0∆HR
CPs

= 150 K

A reactor operating near the extinction point can exhibit the opposite
phenomenon. A small increase in feed flowrate causes the residence
time to decrease enough so that no steady-state solution exists near the
current temperature and concentration. A rapid drop in temperature
and increase in concentration of A occurs as the reactor approaches
the new steady state. The curves of low temperature and low conver-
sion connecting to the ignition point are known as the lower branch of
solutions. The curves connecting the extinction point to the high tem-
perature and conversion at large residence time are known as the upper
branch. The curves connecting the ignition and extinction points to-
gether are called the middle branch. The points on the middle branch,
while satisfying the steady-state equations, are unstable solutions. An
unstable steady-state solution has the property that small perturba-
tions to a reactor operating at this steady state causes the reactor to
leave this solution and approach either the steady state on the upper or
lower branch. The choice of which branch the reactor approaches de-
pends on the exact nature of the perturbation the reactor experiences.
This situation is much the same as a pencil initially balanced on end
on a desk. Which direction the pencil falls is not easily predicted and
depends in a sensitive way on the actual perturbation the pencil expe-
riences. The upper and lower branches, on the other hand, are stable
steady states. The reactor returns to these steady states after small
perturbations.

6.3.2 Stability of the Steady State

We next discuss why some steady states are stable and others are unsta-
ble. This discussion comes in two parts. First we present a plausibility
argument and develop some physical intuition by constructing and ex-
amining van Heerden diagrams [26]. In the next section we present a
rigorous mathematical argument, which has wide applicability in ana-
lyzing the stability of any system described by differential equations.
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Figure 6.9: Steady-state temperature versus residence time for
∆HR = −3× 105 kJ/kmol.

Point A B C D E F G
τ(min) 1.79 15 30.9 15 1.79 15 30.9
T (K) 298.2 300.5 311 338 421 446.5 447

Table 6.2: Selected values of steady-state temperatures and resi-
dence times.

Reactor Stability — Plausibility Argument

Consider again the steady-state temperature versus the residence-time
curve shown in Figure 6.9. We have labeled seven points on this curve:
A, B and C on the lower branch; D on the middle branch; and E, F and
G on the upper branch. The numerical values at these points are listed
in Table 6.2. If we first substitute the solution of the mass balance,
Equation 6.37, for cA into the energy balance, Equation 6.38, we obtain
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a single equation for the single unknown T

0 = − k
1+ kτ cAf∆HR︸ ︷︷ ︸

Q̇g

+ CPs
τ
(Tf − T)︸ ︷︷ ︸
−Q̇r

(6.39)

The first term, the reaction rate times the negative of the heat of re-
action, we call the heat-generation rate, Q̇g . The second term is the
enthalpy difference between the inflow and outflow streams, which we
call the heat-removal rate, Q̇r ,

Q̇g = −
k(T)

1+ k(T)τ cAf∆HR, Q̇r =
CPs
τ
(T − Tf )

in which we emphasize the temperature dependence of the rate con-
stant,

k(T) = kme−E(1/T−1/Tm)

Obviously we have a steady-state solution when these two quantities
are equal. Consider plotting these two functions as T varies. The
heat-removal rate is simply a straight line with slope CPs/τ . The heat-
generation rate is a nonlinear function that is asymptotically constant
at low temperatures (k(T) much less than one) and high temperatures
(k(T) much greater than one). These two functions are plotted for
τ = 1.79 min in Figure 6.10. Notice the two intersections of the heat-
generation and heat-removal functions corresponding to steady states
A and E. If we decrease the residence time slightly, the slope of the heat-
removal line increases and the intersection corresponding to point A
shifts slightly. Because the two curves are just tangent at point E, how-
ever, the solution at point E disappears, another indicator that point E
is an extinction point.

We also can make a plausibility argument on the stability of steady-
state A. If we were to increase the reactor temperature slightly, we
would be to the right of point A in Figure 6.10. To the right of A we no-
tice that the heat-removal rate is larger than the heat-generation rate.
That causes the reactor to cool, which moves the temperature back to
the left. In other words, the system responds by resisting our applied
perturbation. Similarly, consider a decrease to the reactor tempera-
ture. To the left of point A, the heat-generation rate is larger than the
heat-removal rate causing the reactor to heat up and move back to the
right. Point A is a stable steady state because small perturbations are
rejected by the system. Using this argument we see the situation at
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Figure 6.10: Rates of heat generation and removal for τ = 1.79 min.

point E is quite different from the stability perspective. Increasing the
temperature causes the system to cool, but decreasing the temperature
also causes the system to cool. The system tends to increase the size
of a cooling perturbation and does not return to the steady state. That
is characteristic of an unstable solution.

Consider next the points on the middle branch. Figure 6.11 displays
the heat-generation and heat-removal rates for points B, D and F, τ =
15 min. Point B on the lower branch is stable as was point A. Point F on
the upper branch also is stable because the slope of the heat-generation
rate is smaller than the heat-removal rate at point F, just as at point A.
At point D, however, the slope of the heat-generation rate is larger than
the heat-removal rate. For point D, increasing temperature causes heat
generation to be larger than heat removal, and decreasing temperature
causes heat generation to be smaller than heat removal. Both of these
perturbations are amplified by the system at point D, and this solution
is unstable. All points on the middle branch are similar to point D.

Figure 6.12 displays the heat-generation and heat-removal rates for
τ = 30.9 min. Notice that point G on the upper branch is stable and
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Figure 6.11: Rates of heat generation and removal for τ = 15 min.
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Figure 6.12: Rates of heat generation and removal for τ = 30.9 min.
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point C, the ignition point, is similar to extinction point E, perturba-
tions in one direction are rejected, but in the other direction they are
amplified.

Reactor Stability — Rigorous Argument

The stability discussion of the previous section accompanying the van
Heerden diagrams is useful and provides insight, particularly in simple
situations. In this section we develop proper arguments that determine
stability rigorously in complex situations where physical intuition may
not be as readily forthcoming. We also develop analysis tools that tell
us more than just whether a steady state is stable or unstable; we also
gain insight on the dynamic response of the system to perturbations.

Consider again the dynamic model of the reactor

dcA
dt

=
cAf − cA

τ
− kcA (6.40)

dT
dt
= UoA
VRCPs

(Ta − T)+
Tf − T
τ

− ∆HR
CPs

kcA (6.41)

For convenience we summarize these two equations as the following
nonlinear differential equations

dcA
dt

= f1(cA, T )

dT
dt
= f2(cA, T ) (6.42)

Given some values of parameters, we define steady-state solutions to
these equations, cAs , Ts , as satisfying

0 = f1(cAs , Ts)
0 = f2(cAs , Ts)

Imagine the reactor is initially at this steady state and at t = 0 we per-
turb the temperature and concentration by small amounts. We would
like to know whether or not the system returns to the steady state af-
ter this initial condition perturbation. If so, we call the steady-state
solution (asymptotically) stable. If not, we call the steady state un-
stable. Obviously we can solve numerically the nonlinear differential
equations to answer this question, but then we answer the question on
a case-by-case basis. By linearizing the nonlinear differential equations,
we can gain further insight without resorting to full numerical solution.
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Consider the Taylor series expansion of the nonlinear functions f1, f2

around the steady state

f1(cA, T ) = f1(cAs , Ts)+
∂f1

∂cA
(cA − cAs)+

∂f1

∂T
(T − Ts)

+ higher-order terms

f2(cA, T ) = f2(cAs , Ts)+
∂f2

∂cA
(cA − cAs)+

∂f2

∂T
(T − Ts)

+ higher-order terms

Define deviation variables, ϵ1, ϵ2, that measure how far the system is
from the steady state

ϵ1 = cA − cAs
ϵ2 = T − Ts

We can differentiate these deviation variables to see that they also sat-
isfy Equation 6.42. Substituting the Taylor series expansion for f1, f2

and neglecting the higher-order terms, which are valid when the pertur-
bations are small, produce the following approximate linear equations
for the deviation variables

dϵ1

dt
= ∂f1

∂cA
ϵ1 +

∂f1

∂T
ϵ2

dϵ2

dt
= ∂f2

∂cA
ϵ1 +

∂f2

∂T
ϵ2

If we define the Jacobian matrix of f1, f2 with respect to cA, T

J =
 ∂f1

∂cA
∂f1
∂T

∂f2
∂cA

∂f2
∂T

 (6.43)

we can compactly summarize the linear deviation variable equations in
the convenient notation

dϵ
dt
= Jϵ (6.44)

For our case, taking partial derivatives shows the Jacobian is

J =
 − 1

τ − k −kcAs ET 2
s

−∆HRCPs k − UoA
VRCPs −

1
τ −

∆HR
CPs kcAs

E
T 2
s

 (6.45)

If Equation 6.44 governed exactly, rather than approximately, the
evolution of the perturbations, we would be essentially finished. Linear
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differential equations can be solved analytically. The important feature
for us to note is that the solution contains linear combinations of the
terms eλt in which λ are the eigenvalues of J. In our case the 2 × 2 J
matrix has two eigenvalues, which may be real or complex. If complex,
they come as complex conjugate pairs. Stability of the linear equations
is determined by the real parts of the eigenvalues. In fact,

The solution to the linear model, Equation 6.44, is asymptot-
ically stable if and only if the eigenvalues of J have strictly
negative real parts.

We also know that if the eigenvalues are complex, the solution to Equa-
tion 6.44 contains oscillatory terms due to the relation

e(a+bi)t = eat (cos(bt)+ i sin(bt))

and the period of these oscillatory terms is

T = 2π/b (6.46)

Finally, this linear problem is important to us only because it can be
connected to the solution of the full nonlinear problem. Although pre-
cise statements of this connection require more mathematics than we
can assume, the general result may be summed up for “nice” systems
by saying [12]

For small initial perturbations from the steady state, the lo-
cal behavior of the nonlinear model, Equation 6.42, is well
described by the corresponding behavior of the linear model,
Equation 6.44.

The interested reader should see the first chapter in Guckenheimer and
Holmes [12] for an introduction into the mathematical details and im-
portant restrictions on this general statement. For the models analyzed
in this text, this general statement is valid. This connection forms the
basis for all linear stability analysis.

We next use this result to analyze the multiple steady states of the
previous section. In Figure 6.13 we plot the eigenvalues of J versus the
steady-state reactor temperature and label the points A–G as indicated
in Table 6.2 and shown in Figure 6.9. Both eigenvalues are real for all
values of residence time. Notice that the steady state loses stability
at point C, the ignition point, as one of the eigenvalues changes sign
from negative to positive. Stability is regained on the upper branch at
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perature.
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Figure 6.15: Marble on a track
in a gravitational field; point A is
the unique, stable steady state.
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Figure 6.16: Marble on a track
with three steady states; points
A and C are stable, and point B
is unstable.
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Figure 6.17: Marble on a track
with an ignition point (A) and a
stable steady state (C).

point E, the extinction point, as
the eigenvalue changes sign back
from positive to negative. This
analysis validates the plausibility
argument and shows the entire
middle branch is unstable. Fig-
ure 6.14 provides another view of
the same phenomenon, in which
the eigenvalues are plotted versus
the conversion instead of temper-
ature; the ignition and extinction
points are labeled.

Students may find it helpful
to draw an analogy between the
chemical reactor with multiple
steady states and simple mechan-
ical systems that exhibit the same
behavior. Consider a marble on
a track in a gravitational field as
depicted in Figure 6.15. Based on
our physical experience with such
systems we conclude immediately
that the system has a single steady
state, position A, which is asymp-
totically stable. If we expressed
Newton’s laws of motion for this
system, and linearized the model
at point A, we would expect to see
eigenvalues with negative real part
and nonzero imaginary part be-
cause the system exhibits a decay-
ing oscillation back to the steady-
state position after a perturbation.
The oscillation decays because of
the friction between the marble
and the track.

Now consider the track de-
picted in Figure 6.16. Here we have
three steady states, the three posi-
tions where the tangent curve to
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the track has zero slope. This situation is analogous to the chemical
reactor with multiple steady states. The steady states A and C are ob-
viously stable and B is unstable. Perturbations from point B to the
right are attracted to steady-state C and perturbations to the left are
attracted to steady-state A. The significant difference between the reac-
tor and marble systems is that the marble decays to steady state in an
oscillatory fashion, and the reactor, with its zero imaginary eigenval-
ues, returns to the steady state without overshoot or oscillation. Now
consider the track depicted in Figure 6.17. We have flattened the track
between points A and B in Figure 6.16 so there is just a single point of
zero slope, now marked point A. Point A now corresponds to a reac-
tor ignition point as shown in Figures 6.7 and 6.8. Small perturbations
push the marble over to the only remaining steady state, point C, which
remains stable.

6.3.3 Sustained Oscillations, Limit Cycles

Param. Value Units

Tf 298 K

Ta 298 K

Tm 298 K

ĈP 4.0 kJ/(kg K)

cAf 2.0 kmol/m3

km(Tm) 0.004 min−1

E 1.5× 104 K

ρ 103 kg/m3

∆HR −2.2× 105 kJ/kmol

UoA/VR 340 kJ/(m3 min K)

Table 6.3: Parameter values for limit
cycles.

We next explore the fact that
the dynamic behavior of the
CSTR can be more compli-
cated than multiple steady
states with ignition, extinc-
tion and hysteresis. In fact,
at a given operating condi-
tion, all steady states may
be unstable and the reactor
may exhibit sustained oscil-
lations or limit cycles. Con-
sider the same simple ki-
netic scheme as in the pre-
vious section,

A
k
-→ B

but with the following parameter values. Notice that the activation
energy in Table 6.3 is significantly larger than in Table 6.1. If we com-
pute the solutions to the steady-state mass and energy balances, Equa-
tions 6.37 and 6.38, with these new values of parameters, we obtain
the results displayed in Figures 6.18 and 6.19. If we replot these results
using a log scaling to stretch out the x axis, we obtain the results in Fig-
ures 6.20 and 6.21. Notice the steady-state solution curve has become
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Figure 6.18: Steady-state conversion versus residence time.
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Figure 6.19: Steady-state temperature versus residence time.
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Figure 6.20: Steady-state conversion versus residence time—log
scale.
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Figure 6.21: Steady-state temperature versus residence time—log
scale.
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Point τ(min) x T(K) Re(λ)(min−1) Im(λ)(min−1)
A 11.1 0.125 305 0 0
B 0.008 0.893 396 0 0
C 19.2 0.970 339 −0.218 0
D 20.7 0.962 336 −0.373 0
E 29.3 0.905 327 0 0.159
F 71.2 0.519 306 0 0.0330

Table 6.4: Steady state and eigenvalue with largest real part at se-
lected points in Figures 6.20 and 6.21.

a bit deformed and the simple s-shaped multiplicities in Figures 6.7
and 6.8 have taken on a mushroom shape with the new parameters.
We have labeled points A–F on the steady-state curves in Figures 6.20
and 6.21. Table 6.4 summarizes the locations of these points in terms
of the residence times, the steady-state conversions and temperatures,
and the eigenvalue of the Jacobian with largest real part. Now we take
a walk along the steady-state solution curve and examine the dynamic
behavior of the system.

From the beginning of the curve through points A and B, the two
eigenvalues are real. Their values are plotted in Figure 6.22 versus the
conversion. As in the s-shaped multiplicity of the previous section,
we see that an eigenvalue becomes positive at point A, which is again
an ignition point. Figure 6.23 shows a magnified view. The middle
branch between A and B is unstable and the upper branch after point
B is stable again as the positive eigenvalue passes through zero and
becomes negative.

As we continue along the upper branch, some surprising things hap-
pen. The two eigenvalues remain real and negative as we pass through
point C and then merge into the same value at point D. Figure 6.24
shows the real and imaginary parts of the eigenvalues from points C–
F. Notice the two eigenvalues approach each other along the real axis
until they become identical at point D. After point D the imaginary
parts of the eigenvalues are no longer zero, and we have a complex
pair of eigenvalues. The two eigenvalues are complex conjugates; they
have the same real part and opposite imaginary parts so the eigenvalue
curves from D to F are mirror images. But the real parts of the eigenval-
ues remain negative from point D to E and the steady states along this
portion of the upper branch are stable. At point E, however, the pair
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Figure 6.24: Real and imaginary parts of the eigenvalues of the Jaco-
bian matrix near points C–F.

of eigenvalues cross back into the right half of the complex plane and
have positive real parts. From point E to F, the eigenvalue analysis indi-
cates the upper branch is unstable. Notice from Figures 6.18 and 6.19,
however, that there is no lower-branch steady state for these values of
residence time. It appears we have unique steady states and they are
unstable. So a pressing issue now is what the reactor does after it is
perturbed from these unique and unstable steady states.

Let us see what simulations can show us. A residence time of τ =
35 min is between points E and F as shown in Table 6.4. Solving the
dynamic mass and energy balances with this value of residence time
produces Figure 6.25. We see that the solution does not approach the
steady state but oscillates continuously. These oscillations are sus-
tained; they do not damp out at large times. Notice also that the am-
plitude of the oscillation is large, more than 80 K in temperature and
50% in conversion.

We can obtain another nice view of this result if we plot the conver-
sion versus the temperature rather than both of them versus time. This
kind of plot is known as a phase plot or phase portrait and is shown in
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Figure 6.25: Conversion and temperature vs. time for τ = 35 min.

Figure 6.26. Time increases as we walk along the phase plot; the reactor
ignites, then slowly decays, ignites again, and eventually winds onto the
steady limit cycle shown in Figure 6.26. Figure 6.27 explores the effect
of initial conditions. The trajectory starting with the feed temperature
and concentration as in Figure 6.26 is shown again. The trajectory start-
ing in the upper left of the figure has the feed temperature and zero
A concentration as its initial condition. Several other initial conditions
inside the limit cycle are shown also, including starting the reactor at
the unstable steady state. All of these initial conditions wind onto the
same final limit cycle. We say that the limit cycle is a global attractor
because all initial conditions wind onto this same solution.

If we decrease the residence time to τ = 30 min, we are close to point
E, where the stability of the upper steady state changes. A simulation
at this residence time is shown in Figure 6.28. Notice the amplitude of
these oscillations is much smaller, and the shape is more like a pure
sine wave. Near point E in Figure 6.24, where the transition to instabil-
ity occurs, the amplitude of the emerging oscillation is small and the
period of the oscillation is well predicted by Equation 6.46 (T = 2π/b).
Table 6.4 shows the imaginary part of the eigenvalue at point E is 0.159
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Figure 6.26: Phase portrait of conversion versus temperature for
feed initial condition; τ = 35 min.
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a stable steady state.

so the predicted period is

T = 2π/0.159 min = 40 min

which is in good agreement with the simulation shown in Figure 6.28.
As we pass point F, the eigenvalues in Figure 6.24 cross back into

the left-half plane and the steady state is again stable. A simulation
near point F is shown in Figure 6.29. Notice, in contrast to point E,
the amplitude of the oscillations is not small near point F. Indeed, even
though Figure 6.24 indicates the steady state is stable for τ ≥ 72.3 min,
that does not mean that limit-cycle solutions are not possible in this
part of the parameter space. To see how limit cycles can remain after
the steady state regains its stability, consider Figure 6.30, constructed
for τ = 73.1 min. The figure depicts the stable steady state, indicated
by a solid circle, surrounded by an unstable limit cycle, indicated by
the dashed line.4 The unstable limit cycle is in turn surrounded by a

4This curve was constructed by reversing time in the integration of the mass and
energy balances, which stabilizes the unstable limit cycle.
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g

B CA

Figure 6.31: Marble on a
track with three steady
states; dashed line in-
dicates frictionless track;
point C is not asymptot-
ically stable and is sur-
rounded by limit cycles.

stable limit cycle. Note that all initial
conditions outside of the stable limit cy-
cle would converge to the stable limit cy-
cle from the outside. All initial condi-
tions in the region between the unstable
and stable limit cycles would converge to
the stable limit cycle from the inside. Fi-
nally, all initial conditions inside the un-
stable limit cycle are attracted to the sta-
ble steady state. We see that the unstable
limit cycle is the boundary between the
regions of attraction of the stable steady
state and stable limit cycle. We also have
a quantitative measure of a perturbation
capable of knocking the system from the
steady state onto a periodic solution. Ex-
ercise 6.12 explores the regions of attrac-
tion of the steady state and the stable
limit cycle in further detail.

We may modify our simple mechanical system to illustrate some-
what analogous limit-cycle behavior. Consider the marble and track
system depicted in Figure 6.31. We have three steady states; steady-
state A is again stable and steady-state B is unstable as in Figure 6.16.
At this point we cheat thermodynamics a bit to achieve the desired be-
havior. Imagine the track consists of a frictionless material to the right
of point B. Although in violation of the second law, we can either use
our imagination or consider extremely low friction material. Without
friction in the vicinity of point C, the steady state is not asymptotically
stable. Perturbations from point C do not return to the steady state
but continually oscillate. The analogy is not perfect because a single
limit cycle does not surround the unstable point C as in the chemical
reactor shown in Figures 6.27 and 6.30. The amplitude of the oscil-
lation in the marble system depends on the initial perturbation and a
continuous family of limit cycles surrounds the unstable steady-state
C. But the analogy may prove helpful in demystifying these kinds of
reactor behaviors. The reader may also want to consider why we were
compelled to violate the second law to achieve sustained oscillations
in the simple mechanical system but the reactor can continually oscil-
late without such violation. Consider what is the essential difference
between these thermodynamic systems.
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Further Reading on CSTR Dynamics and Stability

Consideration of the coupled mass and energy balances for the CSTR
have led to possible behaviors that may seem surprisingly complex for
even the simplest kinetic mechanism, an irreversible first-order reac-
tion. Just because these behaviors are possible does not mean that they
are normally observed in reactor operation for something as simple as
A goes to B.

Complex kinetics, such as polymerization kinetics [19, 22], lead to
complex types of behavior, even under isothermal operation, i.e., with-
out the nonlinearity introduced by the rate constant’s exponential de-
pendence on temperature. Bailey [4] summarizes some cases of ex-
perimentally observed oscillations in CSTRs including chlorination of
methyl chloride [8], hydrolysis of acetyl chloride [3], the reaction be-
tween methanol and hydrogen chloride [13], and the reaction between
sodium thiosulfate and hydrogen peroxide [9].

In addition to the multiple steady states and sustained oscillations,
chemical reactors are a rich source of other types of behavior including
deterministic chaos [18, 17, 23, 15]. The chemical engineer should be
aware of the complex behavior that is possible with simple nonlinear
CSTR models, especially if confronted with apparently complex oper-
ating data.

6.4 The Semi-Batch Reactor

The development of the semi-batch reactor energy balance follows di-
rectly from the CSTR energy balance derivation by setting Q = 0. The
main results are summarized in Table 6.9 at the end of this chapter.
Note in particular that Equations 6.81–6.82 in the semi-batch reactor
Table 6.9 are identical to the corresponding Equations 6.72–6.73 in the
CSTR Table 6.8.

It is good practice to enumerate the unknowns and applicable equa-
tions when setting up a model for the nonisothermal semi-batch reac-
tor. As discussed in Chapter 4, for a single-phase system, the molar
concentrations of the components, and the temperature and the pres-
sure specify all intensive variables of the reactor. If we use the reactor
volume as the single extensive variable, then we have ns+3 unknowns.
As in Chapter 4, we have ns equations from the material balances and
one equation of state. The energy balance of this chapter provides an
additional equation. Finally, we must specify the reactor pressure or
some other system constraint that determines the reactor pressure.
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Figure 6.32: Plug-flow reactor volume element.

As in Section 4.5 of Chapter 4, if the reactor outflow term is nonzero
as well, then an additional statement of reactor operation, such as con-
stant reactor volume or mass, is required to determine Q, which then
appears in the material and energy balances.

6.5 The Plug-Flow Reactor

To derive an energy balance for the plug-flow reactor (PFR), consider
the volume element in Figure 6.32. If we write Equation 6.5 for this
element and neglect kinetic and potential energies and shaft work, we
obtain

∂
∂t
(ρÛAc∆z) =mĤ|z −mĤ|z+∆z + Q̇

in which Ac is the cross-sectional area of the tube, R is the tube outer
radius, and Q̇ is the heat transferred through the wall, normally ex-
pressed using an overall heat-transfer coefficient

Q̇ = Uo2πR∆z(Ta − T)

Dividing by Ac∆z and taking the limit ∆z → 0, gives

∂
∂t
(ρÛ) = − 1

Ac
∂
∂z
(QρĤ)+ q̇
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in which q̇ = (2/R)Uo(Ta − T) and we express the mass flowrate as
m = Qρ. In the steady state, we have

d
dV

(Q
∑
j
cjHj) = q̇

in which we use the volume instead of length of the reactor, V = Acz,
and partial molar enthalpy to express the enthalpy per volume,

ρĤ =
∑
j
cjHj

The enthalpy term can be broken apart into two terms

d
dV

(Q
∑
j
cjHj) =

∑
j

[
Qcj

dHj
dV

+Hj
d
dV

(Qcj)
]

(6.47)

We treat the
∑
j cjdHj term by deriving the Gibbs-Duhem equation for

enthalpy as follows. We have H =
∑
j njHj because Hj is a partial

molar enthalpy (see also Exercise 3.6 in Chapter 3). Its differential is
therefore

dH =
∑
j
Hjdnj +njdHj

Subtracting this expression from Equation 6.10, which is valid for single-
phase systems,

dH = VρĈPdT + (1−αT)VdP +
∑
j
Hjdnj

yields a Gibbs-Duhem equation for enthalpy

0 = VρĈPdT + (1−αT)VdP −
∑
j
njdHj

We express an intensive version of this result by dividing by V and
rearranging to obtain∑

j
cjdHj = ρĈPdT + (1−αT)dP Gibbs-Duhem equation (6.48)

We can form the derivative of Equation 6.48 with reactor volume to
obtain ∑

j
cj
dHj
dV

= ρĈP
dT
dV
+ (1−αT)dP

dV
(6.49)
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The second term in Equation 6.47 is expressed using the material
balance for the PFR

d
dV

(Qcj) = Rj =
∑
i
νijri

Substitution of this result and Equation 6.49 into Equation 6.47 then
gives

QρĈP
dT
dV
+Q(1−αT)dP

dV
= −

∑
i
∆HRiri + q̇ (6.50)

In unpacked tubes, the pressure drop is usually negligible, and for an
ideal gas, αT = 1. For both of these cases, we have

Ideal gas, or neglect pressure drop.

QρĈP
dT
dV

= −
∑
i
∆HRiri + q̇ (6.51)

If the fluid is incompressible, α = 0, and Equation 6.50 reduces to

Incompressible fluid.

QρĈP
dT
dV
+QdP

dV
= −

∑
i
∆HRiri + q̇ (6.52)

Equation 6.51 is the usual energy balance for PFRs in this chapter.
The next chapter considers packed-bed reactors in which the pressure
drop may be significant. Equation 6.50 is more appropriate in that
situation unless one can safely make the ideal-gas assumption.

Example 6.4: PFR and interstage cooling

Consider the reversible, gas-phase reaction

A
k1-⇀↽-
k−1

B

The reaction is carried out in two long, adiabatic, plug-flow reactors
with an interstage cooler between them as shown in Figure 6.33. (Refer
to the discussion in Section 1.4.2 for more on interstage cooling.) The
feed consists of component A diluted in an inert N2 stream, NAf /NIf =
0.1, NBf = 0, andQf = 10,000 ft3/hr at Pf = 180 psia and Tf = 830◦R.
Since the inert stream is present in such excess, we assume that the heat
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Q̇

Figure 6.33: Tubular reactors with interstage cooling.

capacity of the mixture is equal to the heat capacity of nitrogen and
is independent of temperature for the temperature range we expect.
The heat of reaction is ∆HR = −5850 BTU/lbmol and can be assumed
constant. The value of the equilibrium constant is K = k1/k−1 = 1.5 at
the feed temperature.

1. Write down the mole and energy balances that would apply in the
reactors. Make sure all variables in your equations are expressed
in terms of T and NA. What other assumptions did you make?

2. If the reactors are long, we may assume that the mixture is close
to equilibrium at the exit. Using the mole balance, express NA at
the exit of the first reactor in terms of the feed conditions and the
equilibrium constant, K.

3. Using the energy balance, express T at the exit of the first reactor
in terms of the feed conditions and NA.

4. Notice we have two equations and two unknowns because K is
a strong function of T . Solve these two equations numerically
and determine the temperature and conversion at the exit of the
first reactor. Alternatively, you can substitute the material bal-
ance into the energy balance to obtain one equation for T . Solve
this equation to determine the temperature at the exit of the first
reactor. What is the conversion at the exit of the first reactor?

5. Assume that economics dictate that we must run this reaction
to 70% conversion to make a profit. How much heat must be
removed in the interstage cooler to be able to achieve this conver-
sion at the exit of the second reactor? What are the temperatures
at the inlet and outlet of the second reactor?

6. How would you calculate the actual conversion achieved for two
PFRs of specified sizes (rather than “long” ones) with this value of
Q̇?
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Solution

1. The steady-state molar flow of A is given by the PFR material bal-
ance

dNA
dV

= RA = −r (6.53)

and the rate expression for the reversible reaction is given by

r = k1cA − k−1cB = (k1NA − k−1NB)/Q

The molar flow of B is given by dNB/dV = r , so we conclude

NB = NAf +NBf −NA = NAf −NA

If we assume the mixture behaves as an ideal gas at these condi-
tions, c = P/RT or

Q = RT
P

nS∑
j=1

Nj

The material balance for inert gives dNI/dV = 0, so we have the
total molar flow is

∑ns
j=1Nj = NAf +NIf and the volumetric flow-

rate is

Q = RT
P
(NAf +NIf )

and the reaction rate is

r = P
RT

(
k1NA − k−1(NAf −NA)

NAf +NIf

)

which is in terms of T and NA. The adiabatic PFR energy balance
for an ideal gas is given by

dT
dV

= − ∆HR
QρĈP

r (6.54)

2. For long reactors, r = 0 or

k1NA − k−1(NAf −NA) = 0

Dividing by k−1 and solving for NA gives

NA =
NAf

1+K1
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Figure 6.34: Temperatures and molar flows for tubular reactors with
interstage cooling.

3. Substituting r = −dNA/dV into the energy balance and multiply-
ing through by dV gives

dT = ∆HR
QρĈP

dNA

The termQρ =m in the denominator is the mass flowrate, which
is constant and equal to the feed mass flowrate. If we assume the
heat of reaction and the heat capacity are weak functions of tem-
perature and composition, we can perform the integral yielding

T1 − T1f =
∆HR
mĈP

(NA −NAf )

4. T1 − 830+ 80.1
(

1
1+ 0.0432e2944/T1

− 1
)
= 0,

T1 = 874◦R, x = 0.56

5. We compute the equilibrium T2 to achieve 70% conversion, T2f
from T2, and the interstage cooler duty from T1 and T2f

T2 = 738◦R T2f = 726◦R Q̇ = 200,000 BTU/hr

6. Integrate Equations 6.53 and 6.54.

The results are summarized in Figure 6.34. □

6.5.1 Plug-Flow Reactor Hot Spot and Runaway

For exothermic, gas-phase reactions in a PFR, the heat release generally
leads to the formation of a reactor hot spot, a point along the reactor
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length at which the temperature profile achieves a maximum. If the
reaction is highly exothermic, the temperature profile can be very sen-
sitive to parameters, and a small increase in the inlet temperature or
reactant feed concentration, for example, can lead to large changes in
the temperature profile. A sudden, large increase in the reactor temper-
ature due to a small change in feed conditions is known as reactor run-
away. Reactor runaway is highly dangerous, and operating conditions
are normally chosen to keep reactors far from the runaway condition.
The following example, oxidation of o-xylene to phthalic anhydride,
illustrates the PFR hotspot and reactor runaway.

Example 6.5: Oxidation of o-xylene to phthalic anhydride

The gas-phase oxidation of o-xylene to phthalic anhydride

CH3

CH3

+ 3 O2

C

O

O

C

O

+ 3 H2O

is highly exothermic. The reaction is carried out in PFR tube bundles
with molten salt circulating as the heat transfer fluid [11]. The o-xylene
is mixed with air before entering the PFR. The reaction rate is limited
by maintaining a low concentration of hydrocarbon in the feed. The
mole fraction of o-xylene is less than 2%.

Under these conditions, the large excess of oxygen leads to a pseudo-
first-order rate expression

r = km exp
[
−E

(
1
T
− 1
Tm

)]
cx

in which cx is the o-xylene concentration. The operating pressure is at-
mospheric. Calculate the temperature and o-xylene composition pro-
files. The kinetic parameters are adapted from Van Welsenaere and
Froment and given in Table 6.5 [27].

Solution

If we assume constant thermochemical properties, an ideal gas mixture,
and express the mole and energy balances in terms of reactor length,
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Parameter Value Units
km 2.0822 s−1

Ta 625 K
Tm 625 K
Pf 1.0 atm
l 1.5 m
R 0.0125 m
ĈP 0.992 kJ/(kg K)
Uo 0.373 kJ/(m2 s K)
yxf 0.019
E 1.3636× 104 K
∆HR −1.284 × 106 kJ/kmol
Qρ 2.6371× 10−3 kg/s

Table 6.5: PFR operating conditions and parameters for o-xylene ex-
ample.

we obtain

dNx
dz

= −Acr

dT
dz
= −βr + γ(Ta − T)

r = k P
RT

Nx
N

in which

β = ∆HRAc
QρĈP

, γ = 2πRUo

QρĈP
and the total molar flow is constant and equal to the feed molar flow
because of the stoichiometry. Figure 6.35 shows the molar flow of o-
xylene versus reactor length for several values of the feed temperature.
The corresponding temperature profile is shown in Figure 6.36. We see
a hotspot in the reactor for each feed temperature. Notice the hotspot
temperature increases and moves down the tube as we increase the
feed temperature. Finally, notice if we increase the feed temperature
above about 625 K, the temperature spikes quickly to a large value and
all of the o-xylene is converted by z = 0.6 m, which is a classic example
of reactor runaway. To avoid this reactor runaway, we must maintain
the feed temperature below a safe value. This safe value obviously also
depends on how well we can control the composition and temperature
in the feed stream. Tighter control allows us to operate safely at higher
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Figure 6.35: Molar flow of o-xylene versus reactor length for differ-
ent feed temperatures.
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Figure 6.37: Autothermal plug-flow reactor; the heat released by the
exothermic reaction is used to preheat the feed.

feed temperatures and feed o-xylene mole fractions, which increases
the production rate. □

6.5.2 The Autothermal Plug-Flow Reactor

In many applications, it is necessary to heat a feed stream to achieve
a reactor inlet temperature having a high reaction rate. If the reaction
also is exothermic, we have the possibility to lower the reactor oper-
ating cost by heat integration. The essential idea is to use the heat
released by the reaction to heat the feed stream. As a simple exam-
ple of this concept, consider the heat integration scheme depicted in
Figure 6.37 [1]. This reactor configuration is known as an autothermal
plug-flow reactor. The reactor system is an annular tube. The feed
passes through the outer region and is heated through contact with
the hot reactor wall. The feed then enters the inner reaction region,
which is filled with the catalyst, and flows countercurrently to the feed
stream. The heat released due to reaction in the inner region is used
to heat the feed in the outer region. When the reactor is operating at
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steady state, no external heat is required to preheat the feed. Of course,
during the reactor start up, external heat must be supplied to ignite the
reactor.

Although recycle of energy can offer greatly lower operating costs,
the dynamics and control of these reactors may be complex. We next
examine an ammonia synthesis example to show that multiple steady
states are possible. Ammonia synthesis is also interesting because of
its large impact on the early development of the chemical engineering
discipline. Quoting Aftalion [2, p. 101]

While physicists and chemists were linking up to understand
the structure of matter and giving birth to physical chem-
istry, another discipline was emerging, particularly in the
United States, at the beginning of the twentieth century, that
of chemical engineering . . . it was undoubtedly the synthesis
of ammonia by BASF, successfully achieved in 1913 in Op-
pau, which forged the linking of chemistry with physics and
engineering as it required knowledge in areas of analysis,
equilibrium reactions, high pressures, catalysis, resistance
of materials, and design of large-scale apparatus.

Example 6.6: Ammonia synthesis

Calculate the steady-state conversion for the synthesis of ammonia us-
ing the autothermal process shown in Figure 6.37 [26]. A rate expres-
sion for the reaction

N2 + 3H2
k1-⇀↽-
k−1

2NH3

over an iron catalyst at 300 atm pressure is suggested by Temkin [21]

r = k−1/RT
[
K2(T)

PNP
3/2
H

PA
− PA
P3/2
H

]

in which PN , PH , PA are the partial pressures (divided by 1.0 atm) of ni-
trogen, hydrogen and ammonia, respectively, and K is the equilibrium
constant for the reaction forming one mole of ammonia. For illustra-
tion, we assume the thermochemical properties are constant and the
gases form an ideal-gas mixture. More accurate thermochemical prop-
erties and a more accurate equation of state do not affect the funda-
mental behavior predicted by the reactor model.
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The steady-state material balance for the ammonia is

dNA
dV

= RA = 2r

NA(0) = NAf

and the other molar flows are calculated from

NN = NNf − 1/2(NA −NAf )
NH = NHf − 3/2(NA −NAf )

If we assume an ideal gas in this temperature and pressure range, the
volumetric flowrate is given by

Q = RT
P
(NA +NN +NH)

The energy balance for the reactor is the usual

QρĈP
dT
dV

= −∆HRr + q̇ (6.55)

in which q̇ is the heat transfer taking place between the reacting fluid
and the cold feed

q̇ = 2
R
Uo(Ta − T)

The material balances for the feed-heating section are simple be-
cause reaction does not take place without the catalyst. Without reac-
tion, the molar flow of all species are constant and equal to their feed
values and the energy balance for the feed-heating section is

QaρaĈPa
dTa
dVa

= −q̇ (6.56)

Ta(0) = Taf

in which the subscripta represents the fluid in the feed-heating section.
Notice the heat terms are of opposite signs in Equations 6.56 and 6.55.
If we assume the fluid properties do not change significantly over the
temperature range of interest, and switch the direction of integration
in Equation 6.56 using dVa = −dV , we obtain

QρĈP
dTa
dV

= q̇ (6.57)

Ta(VR) = Taf (6.58)
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Parameter Value Units
P 300 atm

Qf 0.05713 m3/s
xAf 0.015
xNf 0.985(1/4)
xHf 0.985(3/4)
Ac 1 m2

l 12 m
Taf 323 K

γ = 2πRUo

QρĈP
0.5 1/m

β = ∆HRAc
QρĈP

−2.342 m2 s K/mol

∆G◦ −4.25× 103 cal/mol

∆H◦ −1.2× 104 cal/mol
k−10 7.794× 1011 atm/s

E−1/R 2× 104 K

Table 6.6: Parameter values for Example 6.6; heat of reaction and
mixture heat capacity assumed constant.

Finally we require a boundary condition for the reactor energy balance,
which we have from the fact that the heating fluid enters the reactor
at z = 0, T (0) = Ta(0). Combining these balances and boundary con-
ditions and converting to reactor length in place of volume gives the
model

dNA
dz

= 2Acr NA(0) = NAf
dT
dz
= −βr + γ(Ta − T) T(0) = Ta(0)

dTa
dz

= γ(Ta − T) Ta(l) = Taf

(6.59)

in which

β = ∆HRAc
QρĈP

γ = 2πRUo

QρĈP
Equation 6.59 is a boundary-value problem, rather than an initial-value
problem, because Ta is specified at the exit of the reactor. A simple
solution strategy is to guess the reactor inlet temperature, solve the
model to the exit of the reactor, and then compare the computed feed
preheat temperature to the specified value, Taf . This strategy is known
as a shooting method. We guess the missing values required to pro-
duce an initial-value problem. We solve the initial-value problem, and
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Figure 6.38: Coolant temperature at reactor outlet versus temper-
ature at reactor inlet, Ta(l) versus Ta(0); intersec-
tion with coolant feed temperature Taf indicates three
steady-state solutions (A,B,C).

then iterate on the guessed values until we match the specified bound-
ary conditions. We will see more about boundary-value problems and
shooting methods when we treat diffusion in Chapter 7.

Solution

Figure 6.38 shows the results for the parameter values listed in Ta-
ble 6.6, which are based on those used by van Heerden [26]. The feed
consists of 1.5% ammonia and 98.5% stoichiometric mixture of nitro-
gen and hydrogen. For given values of Ta(0), we solve the initial-value
problem, Equation 6.59, and plot the resulting Ta(VR) as the solid line
in Figure 6.38. The intersection of that line with the feed temperature
Taf = 323 K indicates a steady-state solution. Notice three steady-state
solutions are indicated in Figure 6.38 for these values of parameters.
The profiles in the reactor for these three steady states are shown in
Figures 6.39 and 6.40. It is important to operate at the upper steady
state so that a reasonably large production of ammonia is achieved. □
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Neglect kinetic and potential energies

dU
dt
= Q̇+ Ẇs + Ẇb (6.60)

Neglect shaft work
dU
dt
+ P dVR

dt
= Q̇ (6.61)

dH
dt
− VR

dP
dt
= Q̇ (6.62)

Single phase

VRρĈP
dT
dt
−αTVR

dP
dt
+
∑
j
Hj
dnj
dt

= Q̇ (6.63)

VRρĈP
dT
dt
−αTVR

dP
dt
= −

∑
i
∆HRiriVR + Q̇ (6.64)

a. Incompressible-fluid or constant-pressure reactor

VRρĈP
dT
dt
= −

∑
i
∆HRiriVR + Q̇ (6.65)

b. Constant-volume reactor

VRρĈV
dT
dt
= −

∑
i

(
∆HRi −

α
κT
T∆VRi

)
riVR + Q̇ (6.66)

b.1 Constant-volume reactor, ideal gas

VRρĈV
dT
dt
= −

∑
i

(
∆HRi − RTν̄i

)
riVR + Q̇ (6.67)

Table 6.7: Energy balances for the batch reactor.

6.6 Summary

Tables 6.7–6.10 summarize the important energy balances for the batch,
continuous-stirred-tank, semi-batch, and plug-flow reactors. In con-
trast to the material balance, which is reasonably straightforward, choos-
ing the proper energy balance requires some care. It is unwise to se-
lect an energy balance from a book without carefully considering the
assumptions that have been made in the derivation of that particular
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Neglect kinetic and potential energies

dU
dt
= Qfρf Ĥf −QρĤ + Q̇+ Ẇs + Ẇb (6.68)

Neglect shaft work

dU
dt
+ P dVR

dt
= Qfρf Ĥf −QρĤ + Q̇ (6.69)

dH
dt
− VR

dP
dt
= Qfρf Ĥf −QρĤ + Q̇ (6.70)

Single phase

VRρĈP
dT
dt
−αTVR

dP
dt
+
∑
j
Hj
dnj
dt

= Qfρf Ĥf −QρĤ + Q̇ (6.71)

VRρĈP
dT
dt
−αTVR

dP
dt
= −

∑
i
∆HRiriVR +

∑
j
cjfQf (Hjf −Hj)+ Q̇ (6.72)

a. Incompressible-fluid or constant-pressure reactor

VRρĈP
dT
dt
= −

∑
i
∆HRiriVR +

∑
j
cjfQf (Hjf −Hj)+ Q̇ (6.73)

b. Constant-volume reactor

VRρĈV
dT
dt
= −

∑
i

(
∆HRi −

α
κT
T∆VRi

)
riVR +

∑
j
cjfQf (Hjf −Hj)

+ α
κT
T
∑
j
V j(cjfQf − cjQ)+ Q̇ (6.74)

b.1 Constant-volume reactor, ideal gas

VRρĈV
dT
dt
= −

∑
i
(∆HRi − RTν̄i) riVR +

∑
j
cjfQf (Hjf −Hj)

+ RT
∑
j
(cjfQf − cjQ)+ Q̇ (6.75)

c. Steady state, constant ĈP , P = Pf

−
∑
i
∆HRiriVR +Qfρf ĈP (Tf − T)+ Q̇ = 0 (6.76)

Table 6.8: Energy balances for the CSTR.
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Neglect kinetic and potential energies

dU
dt
= Qfρf Ĥf + Q̇+ Ẇs + Ẇb (6.77)

Neglect shaft work

dU
dt
+ P dVR

dt
= Qfρf Ĥf + Q̇ (6.78)

dH
dt
− VR

dP
dt
= Qfρf Ĥf + Q̇ (6.79)

Single phase

VRρĈP
dT
dt
−αTVR

dP
dt
+
∑
j
Hj
dnj
dt

= Qfρf Ĥf + Q̇ (6.80)

VRρĈP
dT
dt
−αTVR

dP
dt
= −

∑
i
∆HRiriVR +

∑
j
cjfQf (Hjf −Hj)+ Q̇ (6.81)

a. Incompressible-fluid or constant-pressure reactor

VRρĈP
dT
dt
= −

∑
i
∆HRiriVR +

∑
j
cjfQf (Hjf −Hj)+ Q̇ (6.82)

a.1 Constant ĈP

VRρĈP
dT
dt
= −

∑
i
∆HRiriVR +Qfρf ĈP (Tf − T)+ Q̇ (6.83)

Table 6.9: Energy balances for the semi-batch reactor.

energy balance. Adding to the confusion, many books do not state
clearly what assumptions have been made in deriving various energy
balances, and some books list energy balances that are simply incorrect.
See Denn [10] for a thorough discussion of common errors in energy
balances and a list of books containing incorrect energy balances.

Nonisothermal reactor design requires the simultaneous solution
of the appropriate energy balance and the species material balances.
For the batch, semi-batch, and steady-state plug-flow reactors, these
balances are sets of initial-value ODEs that must be solved numerically.
In very limited situations (constant thermodynamic properties, single
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Neglect kinetic and potential energies and shaft work

∂
∂t
(ρÛ) = − 1

Ac
∂
∂z
(QρĤ)+ q̇ (6.84)

Heat transfer with an overall heat-transfer coefficient

q̇ = 2
R
Uo(Ta − T) (6.85)

Steady state
d
dV

(QρĤ) = q̇ (6.86)

Single phase

QρĈP
dT
dV
+Q(1−αT)dP

dV
= −

∑
i
∆HRiri + q̇ (6.87)

a. Neglect pressure drop, or ideal gas

QρĈP
dT
dV

= −
∑
i
∆HRiri + q̇ (6.88)

b. Incompressible fluid

QρĈP
dT
dV
+QdP

dV
= −

∑
i
∆HRiri + q̇ (6.89)

Table 6.10: Energy balances for the plug-flow reactor.

reaction, adiabatic), one can solve the energy balance to get an algebraic
relation between temperature and concentration or molar flowrate.

The nonlinear nature of the energy and material balances can lead
to multiple steady-state solutions. Steady-state solutions may be un-
stable, and the reactor can exhibit sustained oscillations. These reac-
tor behaviors were illustrated with exothermic CSTRs and autothermal
tubular reactors.
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Notation

A heat transfer area

Ac reactor tube cross-sectional area

Ai preexponential factor for rate constant i
cj concentration of species j
cjf feed concentration of species j
cjs steady-state concentration of species j
cj0 initial concentration of species j
CP constant-pressure heat capacity

CPj partial molar heat capacity of species j
C◦Pj specific heat capacity of pure species j
CPs heat capacity per volume

ĈP constant-pressure heat capacity per mass

ĈV constant-volume heat capacity per mass

∆CP heat capacity change on reaction, ∆CP =
∑
j νjCPj

E activation energy (divided by the gas constant)

Ei activation energy for rate constant i
Ek total energy of stream k
Êk total energy per mass of stream k
∆G◦ Gibbs energy change on reaction at standard conditions

Hj partial molar enthalpy

Ĥ enthalpy per unit mass

∆HRi enthalpy change on reaction, ∆HRi =
∑
j νijHj

∆H◦ enthalpy change on reaction at standard conditions

ki reaction rate constant for reaction i
km reaction rate constant evaluated at mean temperature Tm
Ki equilibrium constant for reaction i
K̂ kinetic energy per unit mass

l tubular reactor length

mk total mass flow of stream k
n reaction order

nj moles of species j, VRcj
nr number of reactions in the reaction network

ns number of species in the reaction network

Nj molar flow of species j, Qcj
Njf feed molar flow of species j, Qcj
P pressure

Pj partial pressure of component j
q̇ heat transfer rate per volume for tubular reactor, q̇ = 2

RU
o(Ta − T)
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Q volumetric flowrate

Qf feed volumetric flowrate

Q̇ heat transfer rate to reactor, usually modeled as Q̇ = UoA(Ta − T)
ri reaction rate for ith reaction

rtot total reaction rate,
∑
i ri

R gas constant

Rj production rate for jth species

t time

T temperature

Ta temperature of heat transfer medium

Tm mean temperature at which k is evaluated

Uo overall heat transfer coefficient

Û internal energy per mass

vk velocity of stream k
V reactor volume variable

V j partial molar volume of species j
V ◦j specific molar volume of species j
VR reactor volume

∆Vi change in volume upon reaction i,
∑
j νijV j

Ẇ rate work is done on the system

xj number of molecules of species j in a stochastic simulation

xj molar conversion of species j
yj mole fraction of gas-phase species j
z reactor length variable

α coefficient of expansion of the mixture, α = (1/V)(∂V/∂T)P,nj
εi extent of reaction i
κT isothermal compressibility of the mixture, κT = −(1/V)(∂V/∂P)T ,nj
νij stoichiometric coefficient for species j in reaction i
ν̄i

∑
j νij

ρ mass density

ρk mass density of stream k
τ reactor residence time, τ = VR/Qf
Φ̂ potential energy per mass
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6.7 Exercises

Exercise 6.1: Batch energy balance with heat transfer

Consider Example 6.2 with the following additional data:

km = 0.01725 L/mol·min
Tm = 300 K
Ea/R = 2660 K

so the temperature dependence of the rate constant is given by

k = km exp
(
−Ea
R

(
1
T
− 1
Tm

))
(a) What is the adiabatic temperature rise for the reactor?

(b) How long does it take to reach 95% conversion if the reactor operates isother-
mally at 27◦C?

(c) How long does it take to reach 95% conversion if the reactor operates adiabati-
cally? Plot cA and T versus time for this case. Put in enough points so we can
see a smooth curve.

(d) Plot cA and T versus time for the nonadiabatic case with heat exchange:

UoA/VR = 0.01 kcal/(min L K)

and the temperature of the heat transfer fluid is Ta = 27◦C.

(e) Assume the batch is ruined if the temperature exceeds 350 K during the run.
What value of heat-transfer coefficient (UoA/VR) should your design achieve
so that this temperature is not exceeded. How long does it take to reach 95%
conversion with your design? How should you operate the reactor if you want
to speed things up but cannot violate the 350 K limit?

Exercise 6.2: Batch energy balance with constrained heat transfer

Consider Example 6.2 with the following additional data:

km = 0.01725 L/mol·min
Tm = 300 K
Ea/R = 2660 K

so the temperature dependence of the rate constant is given by

k = km exp
(
−Ea
R

(
1
T
− 1
Tm

))
The heat-transfer equipment accidentally has been underdesigned by using the

average rather than the maximum required rate of heat transfer

Q̇ = −2.3× 104

551
= −41.7 kcal/min (6.90)

which is much less in absolute value than the required −828 kcal/min calculated in
Example 6.2. Assume the control system can only remove heat at this constant rate.
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Component H298 K
f A B C D

kcal/mol (×102) (×105) (×109)

Cl2 0.00 6.432 0.8082 −0.9241 3.695

C3H6 4.88 0.866 5.602 −2.771 5.266

C3H5Cl −0.15 0.604 7.277 −5.442 17.42

HCl −22.06 7.235 −0.172 0.2976 −0.931

1,2−C3H6Cl2 −39.60 2.496 8.729 −6.219 18.49

Table 6.11: Thermodynamic data for allyl chloride example.

(a) What is the maximum temperature achieved in this reactor and when does this
maximum occur?

(b) How long does it take for the control system to return the temperature to 27◦C?

(c) When does the reactor achieve 95% conversion?

Exercise 6.3: CSTR energy balance with multiple reactions

Allyl chloride is to be produced in a 0.83 ft3 CSTR [20]

Cl2 + C3H6
k1-→ C3H5Cl+HCl

Cl2 + C3H6
k2-→ C3H6Cl2

The feed is a 4:1 molar ratio of propylene to chlorine and it enters at a feed rate of
0.85 lbmol/hr, 2.0 atm of pressure, and 392◦F. The reactor pressure may be assumed
constant.

The rate constants have units of lbmol/(hr ft3 atm2) and are

k1 = 2.06× 105 exp
−27200
RT

k2 = 11.7 exp
−6860
RT

where T is in degrees Rankine and R is in Btu/(lbmol◦R). The rate expressions are

r1 = k1PC3H6PCl2

r2 = k2PC3H6PCl2

The thermodynamic data for this reaction are listed in Table 6.11 [16]. The partial
molar heat capacities can be calculated using

CPj = Aj + BjT + CjT2 +DjT3 cal/mol K

(a) Compute the molar flowrates of Cl2, C3H5Cl and C3H6Cl2, and the reactor tem-
perature for adiabatic operation. You need to use an algebraic equation solver
for this problem, a reasonable first guess on the temperature is 1200◦R.
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(b) Now consider an approximate solution along the lines presented by Smith [20]
in which the heat of reaction is computed at the inlet temperature and assumed
constant. Compare the heat of reaction in Part 6.3a with the value at the inlet
temperature, and comment on the differences in the molar flowrates and the
temperatures in Parts 6.3a and 6.3b.

Exercise 6.4: CSTR stability

An adiabatic CSTR with a first-order, liquid-phase reaction

A -→ B, r = kcA

operates at the conditions shown below

Parameter Value Units
Tf 298 K
cAf 3 kmol/m3

Qf 60× 10−6 m3/s
∆HR −2.09× 108 J/kmol
ĈP 4.19× 103 J/(kg K)
ρ 103 kg/m3

VR 18× 10−3 m3

k 4.48× 106 exp(−7550/T) s−1; T in K

Find the steady-state temperatures and conversions. How many steady states can you
find? Which steady states are stable and which are unstable?

Exercise 6.5: CSTR energy balance

The liquid-phase reactions

A -→ B

A -→ C

are each first order in the concentration of A. The feed to a nonisothermal CSTR con-
tains pure A at 45 ◦C and 5 mol/L. Additional information for the reactions and the
reactor are provided below. We want to operate this reactor such that the selectivity to
B is greater than the selectivity to C, i.e., the rate at which B forms is greater than the
rate at which C forms.

Parameter Value Units
∆Hr1 −12,000 cal/mol
∆Hr2 −15,000 cal/mol
V 1000 L
Qf 100 L/min
ρf 0.932 g/cm3

Ĉpf 0.22 cal/(g K)
k1 3.16× 1014 exp(−12,500/T) min−1; T in K
k2 2.52× 109 exp(−8,500/T) min−1; T in K

(a) Defining the selectivity as S = RB/RC , determine the rate at which heat is trans-
ferred to the surroundings to achieve a selectivity of five.
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(b) Determine the rate at which heat is transferred to the surroundings to achieve
a selectivity of four.

(c) Explain why the answer to Part A or Part B is greater.

Exercise 6.6: Finding the CSTR steady state

The first-order reaction

A
k
-→ B r = k0e−E/T cA

takes place in a CSTR. Determine the effluent temperature(s) and concentration(s) of A
for a reactor operating at the conditions listed in the following table.

Parameter Value Units

E 7550 K
A 3600 cm2

Ta 312 K
Tf 298 K
cAf 3 kmol/m3

Uo 0.225 J/(cm2 s K)
∆HR −8.09× 108 J/kmol
k0 4.48× 106 1/s
ρ 103 kg/m3

ĈP 4.19× 103 J/(kg K)
VR 18× 10−3 m3

Qf 60× 10−6 m3/s

Exercise 6.7: Testing a CSTR operating condition for stability

The reaction

A
k
-→ B r = k0e−E/T cA

is carried out in a CSTR. Find the three steady states corresponding to the conditions
in the following table. Determine whether each of these three steady states is stable or
unstable.

Parameter Value Units

E 7550 K
Tf 298 K
cAf 3 kmol/m3

Uo 0
∆HR −2.09× 108 J/kmol
k0 4.48× 106 1/s
ĈP 4.19× 103 J/(kg K)
ρ 103 kg/m3

VR 18× 10−3 m3

Qf 60× 10−6 m3/s
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Exercise 6.8: CSTR ignition

Consider the CSTR parameter values listed in Table 6.1 and the steady-state x,T versus
residence time plots in Figures 6.7 and 6.8.

(a) Write down the dynamic CSTR equations for the adiabatic reactor. How many
parameters are there and what are their values? Choose consistent units.

(b) Choose a residence time of τ = 10 min. According to Figures 6.7 and 6.8, how
many steady-state solutions are there at this residence time? What are the stable
(cA, T ) steady-state values and what are the unstable ones? You can just read
these off the plots.

Next simulate the dynamic reactor. Choose as initial conditions for cA and T ,
values near the lower-branch and upper-branch steady states. Simulate the re-
actor for a time long enough for it to reach steady state. Check that the dynamic
simulation converges to a steady state consistent with Figures 6.7 and 6.8 (this
is your program debugging check). Once you are sure the program is working
correctly simulate the reactor starting from cA = cAf , T = Tf . Increase only the
initial temperature and simulate again. How warm can the reactor be started
before it ignites and reaches the upper branch steady state instead of the lower
branch. Hand in plots of cA(t) and T(t) starting one degree below and above
this critical temperature.

(c) If it were advantageous to operate at an unstable steady state, how might you
modify the reactor design to stabilize the steady state? Sketch your control
scheme. Be sure to show and label clearly your sensor and actuator (if you are
interested you can simulate the controlled reactor and see what controller gain
is required to achieve stability).

(d) Change the residence time to τ = 32 min. How many steady-state solutions
are there for this residence time. Start the reactor from the feed conditions
and simulate for 1000 min. Does anything unusual happen? Describe what the
reactor is doing. Does your simulation point out any safety issues? Can you
think of a less violent method to start up the reactor? What values of (cA, T ) are
you trying to avoid during start up?

Exercise 6.9: Removing heat in a CSTR

The liquid-phase reaction

A -→ B

r = kcA
is to be carried out in a nonisothermal, nonadiabatic CSTR operating at 95 ◦C. The feed
contains pure A at 45 ◦C and 5 mol/L. Using the additional information provided below
determine the temperature of the cooling fluid medium.
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Parameter Value Units
E 12,500 K

∆HR −3700 cal/mol
VR 1000 L
ρf 932 g/L
Qf 100 L/min
Uo 0.54 cal/(min cm2 K)
ĈP 0.22 cal/g K
k0 3.16× 1014 min−1

A 1.8× 104 cm2

Exercise 6.10: CSTR and energy balance

Consider the reaction

A
k
-→ B

in a liquid-phase, constant-volume CSTR with heating/cooling system. The heat ca-
pacity and density of the mixture can be assumed independent of temperature and
composition. The following data and parameters are known.

Parameter Value Units
E 7554 K
Tf 298 K
ĈPs 4.19 kJ/(kg K)
cAf 3.0 kmol/m3

VR 0.018 m3

k0 4.48× 106 s−1

∆HR −2.09× 105 kJ/kmol
ρ 103 kg/m3

Qf 6.0× 10−5 m3/s

(a) At what temperature must the reactor be operated to achieve 80% conversion?

(b) What is the heat duty on the heating/cooling system when operating at this
steady state and are you heating or cooling the reactor, i.e., what is the sign of
the heat duty?

Exercise 6.11: CSTR stability

(a) For the reaction of A to products, sketch the conversion of A versus mean reactor
residence time for an isothermal CSTR.

(b) Draw a separate sketch of conversion of A and reactor temperature versus resi-
dence time for an exothermic reaction in an adiabatic CSTR that exhibits steady-
state multiplicity.

(c) Describe an ignition and extinction point and locate them on the sketch of the
CSTR with steady-state multiplicity. What is special about these points? What
does hysteresis mean? What are the practical operational problems associated
with trying to operate a CSTR near one of these points. Is it possible to operate
near one of these points? If not, why not? If so, how do you overcome the
operational problems described above?
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Exercise 6.12: Attractors in the CSTR

Show which initial conditions are attracted to which solutions in Figure 6.30.

Exercise 6.13: Semi-batch reactor balance

Derive the CSTR energy balance given by Equation 6.72 in Table 6.8 by making the
assumptions listed in the table. Now derive the semi-batch reactor Equation 6.81 in
Table 6.9. Why are these two energy balances identical even though they apply to
different reactor types?

Exercise 6.14: Adiabatic plug-flow reactor

Consider the elementary, gas-phase isomerization reaction shown below:

A(g)
k1-⇀↽-
k−1

B(g)

This isomerization is to be carried out in an adiabatic PFR. Only A and B are present in
the reactor feed stream. The feed rate, Qf , concentrations, cAf and cBf , temperature,
Tf , and pressure, Pf , are known at the inlet to the PFR. Pressure drop in the reactor
can be neglected.

(a) What does the stoichiometry tell you about the relationship between the molar
flux of B, NB , and the molar flux of A, NA, at any point in the reactor?

(b) Write down the mole balance for component A. Remove any reference to cB
in this equation with the result from 6.14a. Also write down an expression to
evaluate the volumetric flowrate, Q, because it is not constant.

(c) Starting from the general energy balance equation for a PFR given below, deter-
mine the appropriate energy balance equation for the PFR in this problem. Be
sure that all variables in both the mole and energy balances can be evaluated in
terms of your dependent variables, T and NA

QρĈP
dT
dV

= −∆HRr +
2
R
Uo(Ta − T)

(d) Compute the equilibrium concentration and conversion of component A that
could be achieved if the reactor operated isothermally at the inlet temperature
given below. The molar ratio of A to B in the feed is 4:1. Assume ideal gas
behavior.

Tf = 830◦R ; Pf = 180 psia ; K = k1/k−1 = 1.5 ; R = 10.731 psi·ft3/lbmol◦R

(e) Calculate the minimal inlet temperature of an adiabatic reactor required to
achieve the equilibrium conversion of component A determined in 6.14d. As-
sume the heat capacities of A and B are the same and the heat capacity and heat
of reaction are constant at the values below.

∆HR = 5850 BTU/lbmol ; CP = 20.0 BTU/lbmol◦R; Qf = 10,000 ft3/hr

Exercise 6.15: PFR energy balance with a single reaction

The gas-phase reaction

A+ B -→ D+ E
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is carried out in a PFR. The reaction-rate expression is

r = kPAPB
in which

k = 2.06× 105 exp(−13,700/T)
The units for r are lbmol/hr ft3, P is in atm, and T is in ◦R. The feed is a 4:1 molar ratio
of A and B and enters at 500◦F, at a feed rate of 0.85 lbmol/hr and 2 atm pressure.

Assuming constant thermodynamic properties, determine the length of a 2-in inner-
diameter (ID) tubular reactor that operates adiabatically and provides 93% conversion
of B. The heat of reaction is ∆Hr = −48,000 Btu/lbmol and the mixture heat capacity
is CP = 110 Btu/lbmol◦R.

Exercise 6.16: Temperature and the equilibrium limit

The following exothermic, reversible, gas-phase reaction is to be conducted in an adi-
abatic PFR

A -⇀↽- B r = k
(
cA −

cB
K

)
You may assume the heat of reaction (∆Hr = −20,000 cal/mol) and the partial molar
heat capacities (CPA = CPB = 50 cal/(mol K)) are constant. The equilibrium constant
at 298 K is K = 105.

Determine the maximum possible conversion of A if the feed contains pure A at a
temperature of 300 K.

Exercise 6.17: PFR energy balance with multiple reactions

Allyl chloride is to be produced in a 25-ft long 2-in ID tube operating as a PFR [20].
The feed is a 4:1 molar ratio of propylene to chlorine and it enters at a feed rate of
0.85 lbmol/hr, 2 atm of pressure, and 392◦F. The reactor pressure may be assumed
constant.

Cl2 + C3H6
k1-→ C3H5Cl+HCl

Cl2 + C3H6
k2-→ C3H6Cl2

The rate constants have units of lbmol/(hr ft3 atm2) and are

k1 = 2.06× 105 exp (−27200/(RT))

k2 = 11.7× exp
−6860
RT

in which T is in ◦R and R is in Btu/(lbmol◦R). The rate expressions are

r1 = k1PC3H6PCl2

r2 = k2PC3H6PCl2

The thermodynamic data for this reaction are listed in Table 6.11[16]. The partial molar
heat capacities are expressed in units of cal/(mol K) and can be calculated using

CPj = Aj + BjT + CjT2 +DjT3

Two modes of operation have been considered for this PFR, adiabatic and constant
wall temperature. A constant wall temperature of 392◦F can be realized by boiling eth-
ylene glycol on the outer surface of the reactor wall. The inside heat-transfer coefficient
is 5 Btu/hr ft2◦F for a feed rate of 0.85 lbmol/hr and 2 atm total pressure.
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(a) Compute the molar flowrates of Cl2, C3H5Cl and C3H6Cl2, and the reactor tem-
perature as a function of reactor length for adiabatic operation. Plot these de-
pendent variables versus reactor length.

(b) Compute the molar flowrates of Cl2, C3H5Cl and C3H6Cl2, and the reactor tem-
perature as a function of reactor length for constant wall temperature operation.
Plot these dependent variables versus reactor length. What do you notice when
you compare the extent of product formation and reactor temperature for both
cases? Why do you think this happens?

(c) Now compare the exact solutions developed above to the approximate solution
presented in Smith [20] where the component heat capacities and the heat of
reaction are evaluated at the inlet temperature and assumed constant. Plot the
molar flowrates of C3H5Cl and C3H6Cl2 for the exact and approximate solu-
tions on different graphs, one for adiabatic and one for nonadiabatic operation.
Prepare similar plots for the temperature. Comment on the errors this approxi-
mation introduces. Is it sensible that the error is greater for adiabatic operation?
Why?

Exercise 6.18: The adiabatic limit in a PFR

We wish to convert the CO in a waste stream to CO2 by reaction in an adiabatic bundle
of empty tubes.

CO+ 1
2

O2 -⇀↽- CO2

The waste stream is a mixture of CO and air, and is mixed with a pure air stream to
achieve 100% excess air to CO. This stream enters the reactor tube bundle at 100 ◦C.
You want to calculate the maximum temperature that might be reached in the tube to
select appropriate material of construction for the tube bundle.

(a) What is the maximum outlet temperature that could be achieved? What assump-
tions do you make to compute this temperature?

(b) If this temperature is too high for the materials on hand, what simple process
design changes can lower the outlet temperature?

(c) What would you do next if you wanted a more accurate estimate of the temper-
ature of the effluent from the reactor?

Additional information.
The mean pure component heat capacities and heats of formation at 25 ◦C are as

follows.

Component C◦Pj −∆H◦jf
cal/mol ◦C kcal/mol

CO 6.98 26.42
CO2 12.9 94.05
O2 8.35 0
N2 7.92 0
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Exercise 6.19: Using a simplified PFR energy balance

Consider the following reaction in an adiabatic, constant-pressure PFR

Cl2 + C3H6
k1-→ C3H5Cl+HCl

The rate constant has units of lbmol/(hr ft3 atm2) and is given by

k1 = 2.06× 105 exp (−27200/RT)

where T is in ◦R and R is in Btu/(lbmol◦R). The rate expression is

r1 = k1PC3H6PCl2

The feed is a 4:1 molar ratio of propylene to chlorine and it enters at a feed rate of
0.85 lbmol/hr, 2.0 atm pressure, and 392◦F (852◦R). The reactor temperature must be
maintained below 880◦R. The heat of reaction is

∆HR = −48,000 Btu/lbmol

and the heat capacity of the reactor feed mixture is

CP = 110 Btu/lbmol◦R

If you assume ∆HR and CP are constant and do not change as an inert is added to
the feed, determine the minimum inert flowrate (in lbmol/hr) that must be added to
the feed to keep the reactor temperature below 880◦R when the conversion of chlorine
is 95%.

Exercise 6.20: The effect of heat transfer in an autothermal reactor

Consider what happens in the ammonia synthesis system described in Example 6.6 if
we decrease the heat-transfer parameter, γ. We wish to find the value of γ such that
the middle and upper steady states coalesce.

(a) For a range of Ta(0) values, solve the initial-value problem, Equation 6.59, and
plot the resulting Ta(l) as in Figure 6.38. Use the parameter values given in
Table 6.6.

(b) Decrease the heat-transfer rate by 20% and repeat this calculation. Continue to
decrease γ until you produce Figure 6.41. What is the critical value of γ that
corresponds to Figure 6.41?

(c) What happens if you operate the autothermal reactor with a value of γ less than
the critical value found in part 6.20b?

Exercise 6.21: Moving volume element in PFR

In Section 6.5 we derived the energy balance for the PFR by considering a fixed volume
element. Consider an adiabatic PFR Q̇ = 0, for which we showed

∂
∂t
(ρÛAc∆z) =mĤ|z −mĤ|z+∆z + Ẇb︸︷︷︸

zero

(6.91)

For the fixed volume element we have convection terms because material streams
through the boundary, but no work term for moving the boundary because the ele-
ment is fixed in space. Dividing by ∆z and taking the limit leads to the energy balance

∂(ρÛ)
∂t

+ ∂(vρĤ)
∂z

= 0 (6.92)
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Figure 6.41: Coolant temperature at reactor outlet versus temper-
ature at reactor inlet, Ta(l) versus Ta(0), at the criti-
cal value of heat-transfer coefficient; upper and middle
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Figure 6.42: Volume element moving with the PFR fluid velocity.
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in which v is the PFR fluid velocity.
Consider a volume element that moves with the fluid velocity as depicted in Fig-

ure 6.42. The location of the moving element traces out one of the lines shown in the
(z, t) plane. These lines are known as the characteristic lines for Equation 6.92. Notice
also the two circular ends of the element move with different velocities if the fluid den-
sity is not constant, so this volume element may expand or contract as it moves down
the reactor. Applying Equation 6.91 to this moving element produces

∂
∂t
(ρÛAc∆z) =mĤ|z︸ ︷︷ ︸

zero

−mĤ|z+∆z︸ ︷︷ ︸
zero

+Ẇb (6.93)

in which the underline represents the quantities in the moving element. Notice for
this choice of volume element the convection terms are zero, but the work term for
moving the boundary is nonzero. Show that we still arrive at the same energy balance,
Equation 6.92, starting with Equation 6.93 for the moving element. It is not difficult
to add the heat term to this development as well. The moral of the story is that the
choice of volume element is based on convenience; that choice does not affect the final
energy balance.

Hints:

1. First show

Ẇb = −Ac
∂(Pv)
∂z

∆z

by considering the work done while moving the two ends of the element.

2. Differentiate the left-hand side of Equation 6.93 to obtain

∂
∂t
(ρÛAc∆z) = Ac

[
∂(ρÛ)
∂t

∆z + ρÛ ∂∆z
∂t

]

3. Compute the change in the volume element size due to the change in the fluid
velocity with position, and show

∂∆z
∂t

= ∂v
∂z
∆z

Use the chain rule to show for ρÛ = ρÛ(z, t)

∂(ρÛ)
∂t

= ∂(ρÛ)
∂t

+ ∂(ρÛ)
∂z

∂z
∂t

(6.94)

in which ∂z/∂t = v is the fluid velocity because we consider the moving element.
The left-hand side of Equation 6.94 is the rate of change of internal energy as we
move with the fluid along a characteristic line in Figure 6.42. In the transport
literature this derivative also is called the material or substantial derivative. The
right-hand side contains the usual partial derivatives in which we hold either z
or t constant.

4. Combine these results to obtain Equation 6.92.

Exercise 6.22: CSTR steady-state isola

The first-order reaction

A -→ B

has reaction-rate expression
r = k0e−E/T cA
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in which the units for the rate are kmol/m3 s, cA is in kmol/m3, and T is in K. Consider
the reactor operating conditions listed in the table in Exercise 6.6.

Calculate the steady-state conversion and temperature as a function of reactor
residence time over the range 0 < τ < 800 s. Also use your steady-state plot to check
your answer to Exercise 6.6.

Hint: this reactor has multiple steady states. Be aware that steady-state multiplicity
may be more complex than the simple s-shaped curves shown in Figures 6.5 and 6.6
of Section 6.3.1 and Figures 6.18–6.21 of Section 6.3.3. Read the discussion of isola
multiplicity provided by Uppal, Ray and Poore [25] before deciding on a computational
approach for this problem.

Exercise 6.23: Useful thermodynamic identities

Establish the following thermodynamic results, which are useful in the derivations of
energy balances in the chapter.

(a) (
∂S
∂P

)
T ,nj

= −αV

Hint: consider the roles of entropy and volume in the Gibbs energy.

(b) (
∂P
∂nj

)
T ,V ,nk≠j

=
V j
VκT

Hint: use Euler’s cyclic chain rule.

(c) (
∂H
∂P

)
T ,nj

= V(1−αT)

(d)

CP = CV +αTV
(
∂P
∂T

)
V,nj

(e) (
∂P
∂T

)
V,nj

= α
κT
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7
Fixed-Bed Catalytic Reactors

7.1 Introduction

The analysis and rational design of reactors requires the simultaneous
solution of material and energy balances. For a steady-state, tubular,
plug-flow reactor, we showed in Chapter 6 that the molar flows and
temperature are governed by the following differential equations

d(cjQ)
dV

= Rj =
nr∑
i=1

νijri, j = 1,2, . . . , ns (7.1)

QρĈP
dT
dV

= −
nr∑
i=1

∆HRiri +
2
R
Uo(Ta − T) (7.2)

A rate expression, ri, as a function of concentration and temperature,
for each of the nr reactions is required to complete the problem de-
scription. Equations 7.1 and 7.2 can be used for any reaction within the
reactor as long as the plug-flow conditions are satisfied. These balances
are applicable to reactions that are homogeneous or heterogeneous; the
heterogeneous case is referred to as a fixed-bed reactor.

In a fixed-bed reactor the catalyst pellets are held in place and do not
move with respect to a fixed reference frame. Material and energy bal-
ances are required for both the fluid, which occupies the interstitial re-
gion between catalyst particles, and the catalyst particles, in which the
reactions occur. For heterogeneously catalyzed reactions, the effects
of intraparticle transport on the rate of reaction must be considered.
Catalytic systems operate somewhere between two extremes: kinetic
control, in which mass and energy transfer are very rapid; and intra-
particle transport control, in which the reaction is very rapid. Separate
material and energy balances are needed to describe the concentration
and temperature profile inside the catalyst pellet. The concentrations

351
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of each component and the temperature in the pellet are related to the
concentrations and temperature in the bulk fluid through the boundary
conditions that complete the problem description. Numerical methods
are used to solve the resulting coupled differential equations, except
in some special cases.

This chapter’s goal is to describe the reaction at any location within
the reactor. In certain cases, analytical solutions to the transport of
mass and energy within the catalyst pellet can be used to develop al-
gebraic relationships that couple the rate of reaction within the pellet
to the temperature and concentration that exist in the bulk fluid. Even
though the applicability of these relationships is limited, deriving ana-
lytical solutions develops intuition and clearly illustrates the coupling
between the pellet and the fluid.

Figure 7.1 presents several views of the fixed-bed reactor. Equa-
tion 7.1 applies to the bulk fluid in the interstitial volume. The species
production rates in the bulk fluid are essentially zero. That is the reason
we are using a catalyst. Essentially all reaction occurs within the cata-
lyst particles. The fluid in contact with the external surface of the cat-
alyst pellet is denoted with subscript s. When we need to discuss both
fluid and pellet concentrations and temperatures (see Section 7.7.1), we
use a tilde on the variables within the catalyst pellet.

During any catalytic reaction the following steps occur:

1. transport of reactants and energy from the bulk fluid up to the
catalyst pellet exterior surface,

2. transport of reactants and energy from the external surface into
the porous pellet,

3. adsorption, chemical reaction, and desorption of products at the
catalytic sites,

4. transport of products from the catalyst interior to the external
surface of the pellet, and

5. transport of products into the bulk fluid.

The coupling of transport processes with chemical reaction can lead
to concentration and temperature gradients within the pellet, between
the surface and the bulk, or both. For the remainder of this section,
the pellet, surface and bulk temperatures are assumed to be equal.

The five steps just listed describe the simultaneous processes that
occur in the fixed-bed reactor. Usually one or at most two of these
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Figure 7.1: Expanded views of a fixed-bed reactor.

steps are rate limiting and act to influence the overall rate of reaction
in the pellet. The other steps are inherently faster than the slow step(s)
and can accommodate any change in the rate of the slow step. The
system is intraparticle transport controlled if step 2 is the slow process
(sometimes referred to as diffusion limited). For kinetic or reaction
control, step 3 is the slowest process. Finally, if step 1 is the slowest
process, the reaction is said to be externally transport controlled.

In this chapter, we model the system on the scale of Figure 7.1C. The
problem is solved for one pellet by averaging the microscopic processes
that occur on the scale of Figure 7.1D over the volume of the pellet or
over a solid surface volume element. This procedure requires an effec-
tive diffusion coefficient, Dj , to be identified that contains information
about the physical diffusion process and pore structure.

7.2 Catalyst Properties

The chemical steps for catalytic reactions: adsorption, desorption and
surface reaction, are covered in Chapter 5. These processes occur at a
fluid-solid interface and the rates scale directly with the total number
of surface sites, cm. Table 7.1 lists some of the important commercial
catalysts and their uses [12]. References [12, 13, 14, 15] provide an
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excellent introduction to catalysis and catalytic processes. To make a
catalytic process commercially viable, the number of sites per unit re-
actor volume should be such that the rate of product formation is on
the order of 1 mol/L·hour [22]. In the case of metal catalysts, the metal
is generally dispersed onto a high-area oxide such as alumina. Metal
oxides also can be dispersed on a second carrier oxide such as vanadia
supported on titania, or it can be made into a high-area oxide. These
carrier oxides can have surface areas ranging from 0.05 m2/g to greater
than 100 m2/g. The carrier oxides generally are pressed into shapes
or extruded into pellets. The following shapes are frequently used in
applications: 20–100 µm diameter spheres for fluidized-bed reactors,
0.3–0.7 cm diameter spheres for fixed-bed reactors, 0.3–1.3 cm diame-
ter cylinders with a length-to-diameter ratio of 3–4, and up to 2.5 cm
diameter hollow cylinders or rings.

Figure 7.1D shows a schematic representation of the cross section
of a single pellet. The solid density is denoted ρs . The pellet volume
consists of both void and solid. The pellet void fraction (or porosity) is
denoted by ϵ and

ϵ = ρpVg
in which ρp is the effective particle or pellet density and Vg is the pore
volume. The pore structure is a strong function of the preparation
method, and catalysts can have pore volumes (Vg) ranging from 0.1–
1 cm3/g pellet. The pores can be the same size or there can be a bimodal
distribution with pores of two different sizes, a large size to facilitate
transport and a small size to contain the active catalyst sites. Pore
sizes can be as small as molecular dimensions (several Ångströms) or
as large as several millimeters.

Total catalyst area is generally determined using a physically ad-
sorbed species, such as N2. The procedure was developed in the 1930s
by Brunauer, Emmett and Teller [7], and the isotherm they developed is
referred to as the BET isotherm. In the physisorption process multiple
layers are allowed to form. The BET isotherm model treats the first
layer differently from all subsequent layers and leads to the following
expression

v = vmcP
(P0 − P) (1+ (c − 1)P/P0)

(7.3)

in which c is a parameter related to the heats of adsorption in the
first layer and subsequent layers, P0 is the normal saturation vapor
pressure of the adsorbate at the adsorption temperature, and v is the
volume of gas adsorbed at a particular pressure P . Uptake data are
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Catalyst Reaction

Metals (e.g., Ni, Pd, Pt, as powders C C bond hydrogenation, e.g.,
or on supports) or metal oxides olefin + H2 -→ paraffin
(e.g., Cr2O3)

Metals (e.g., Cu, Ni, Pt) C O bond hydrogenation, e.g.,
acetone + H2 -→ isopropanol

Metal (e.g., Pd, Pt) Complete oxidation of hydrocarbons,
oxidation of CO

Fe (supported and promoted with 3H2 + N2 -→ 2NH3
alkali metals)

Ni CO + 3H2 -→ CH4 + H2O (methanation)

Fe or Co (supported and promoted CO + H2 -→ paraffins + olefins + H2O
with alkali metals) + CO2 (+ other oxygen-containing organic

compounds) (Fischer-Tropsch reaction)

Cu (supported on ZnO, with other CO + 2H2 -→ CH3OH
components, e.g., Al2O3)

Re + Pt (supported on η-Al2O3 or Paraffin dehydrogenation, isomerization
γ-Al2O3 promoted with chloride) and dehydrocyclization

Solid acids (e.g., SiO2-Al2O3, zeolites) Paraffin cracking and isomerization

γ-Al2O3 Alcohol -→ olefin + H2O

Pd supported on acidic zeolite Paraffin hydrocracking

Metal-oxide-supported complexes of Olefin polymerization,
Cr, Ti or Zr e.g., ethylene -→ polyethylene

Metal-oxide-supported oxides of Olefin metathesis,
W or Re e.g., 2 propylene → ethylene + butene

Ag(on inert support, promoted by Ethylene + 1/2 O2 → ethylene oxide
alkali metals) (with CO2 + H2O)

V2O5 or Pt 2 SO2 + O2 → 2 SO3

V2O5 (on metal oxide support) Naphthalene + 9/2O2 → phthalic anhydride
+ 2CO2 +2H2O

Bismuth molybdate Propylene + 1/2O2 → acrolein

Mixed oxides of Fe and Mo CH3OH + O2 → formaldehyde
(with CO2 + H2O)

Fe3O4 or metal sulfides H2O + CO → H2 + CO2

Table 7.1: Industrial reactions over heterogeneous catalysts. This
material is used by permission of John Wiley & Sons, Inc.,
Copyright ©1992 [12].
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fit to Equation 7.3 to determine c and vm, in which vm is the volume
of gas that corresponds to a monolayer of the entire solid. One then
assumes each adsorbed molecule in the volume vm covers a particular
area, i.e., the footprint of the molecule at the adsorption temperature.
For N2 at 77 K the area of each molecule is 0.162 nm2. The total area
per gram of catalyst is denoted by Sg .

7.2.1 Effective Diffusivity

We define a diffusion coefficient that takes into account the random
distribution of solid and void as one moves from the exterior to the
interior of the pellet, so that the balance can be written over the en-
tire pellet. This idea leads to the concept of an effective diffusivity.
Starting at any pore opening in Figure 7.1D and moving inward along
a straight line to the center, one quickly encounters solid. Inside, any
void space transport can be described by the diffusion of a substance
under a concentration gradient. The diffusion rate is controlled by the
microscopic details of the transport in the voids.

Section 7.2 discussed pore sizes and pore size distributions. As-
sume here that all pores are straight cylinders and that the pellet has
a single pore size distribution. The average radius, ra, of the pores is
then

ra =
2Vg
Sg

(7.4)

The type of diffusion in the pore, bulk or Knudsen, depends on whether
the diffusing species collide more often with each other or with the
pore wall surface. Liquid-phase diffusion is described by liquid-liquid
intermolecular collisions. For a gas-phase molecule the mean free path,
λ, is

λ = kBT√
2πσ 2P

and it has a value of approximately 10−5 cm at 1.0 atm and room tem-
perature for simple gases. When λ < ra by an order of magnitude, bulk
flow dominates and diffusion is described by collisions in the gas phase.
When λ > ra by an order of magnitude, Knudsen flow dominates and
diffusion is described by collisions with the pore walls. Finally, when
ra is approximately equal to the dimensions of the diffusing reactants,
transport is described by surface or configurational diffusion. We only
consider the first two in this text.
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A number of correlations have been developed for bulk flow that
describe binary interactions. One such correlation is the Chapman-
Enskog relation,

DAB = 0.0018583

√
T 3
(

1
MA +

1
MB

)
Pσ 2

ABΩD,AB

which predicts the diffusivity in cm2/s for T in K, P in atm and σAB in
Ångström units. In multicomponent systems (ns species), all the binary
interactions must be considered, as well as the contributions relative
molar fluxes make to the transport of each component. The correct
and complete treatment requires the use of Stefan-Maxwell relations.
For example, when only one reaction is present for a multicomponent
system, the diffusivity of species j in the mixture, Djm, can be found
using

1
Djm

=
 ns∑
k≠j

1
Djk

yk +yj νk∣∣∣νj∣∣∣
 1

1+ δjyj

in which

δj =
∑ns

1 νk∣∣∣νj∣∣∣
in which νk and yk represent the stoichiometric coefficient and mole
fraction of component k, respectively. This one limiting case illustrates
that the diffusion coefficient can change with temperature, pressure
and composition.

For Knudsen flow the diffusivity of species j is

DjK =
8ra
3

√
RT

2πMj
(7.5)

Substitution of the gas constant gives

DjK = 9.7× 103ra

√
T
Mj

which predicts the diffusivity in cm2/s for T in K and Mj in g/mol.
Bulk or Knudsen flow dominate when ra and λ vary by at least an

order of magnitude. A combined diffusivity is needed when ra and λ
are of the same order of magnitude. Again for the single reaction

1
Djc

=
ns∑
k=1

1
Djk

(
yk −yj

Nk
Nj

)
+ 1
DjK

(7.6)
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in which Nk is the molar flux of component k in the pore. For binary
systems (components A and B) with equimolar counter diffusion, Equa-
tion 7.6 reduces to

1
DAc

= 1
DAB

+ 1
DAK

(7.7)

Equations 7.6 and 7.7 can be used to describe diffusion down a
straight cylindrical pore. A porous solid does not consist of straight
cylindrical pores, each having the same length and radius. Models for
pore structure have been proposed that describe the pore size distri-
bution and orientation as a function of location within the pellet [2].
These microscopic descriptions can be used to predict the porosity,
pore size distribution, pore volume and pore area, all of which can be
measured experimentally.

We also can use these microscopic models to describe diffusion ra-
dially inward, accounting for the changing pore shape and the presence
of void or solid as a function of any position (r , θ, φ) within the pellet.
The texts by Aris [2] and Petersen [18] illustrate the approach. In short,
the rate of mass transfer is solved rigorously in a pellet at the level
depicted in Figure 7.1D to give an equation of the form

Ij = −Dj4πr 2dcj
dr

ξ (7.8)

in which Dj refers to either Djm or DjK and ξ is an integral over the
bounding surface of a dimensionless concentration gradient for j that
depends on the microscopic description of the pore surfaces. As the mi-
croscopic description changes, ξ changes; however, this same ξ would
apply to other diffusing species as well. Now if one considers the solid
to be an equivalent homogeneous medium, which is the level depicted
in Figure 7.1C, then the same rate can described in terms of an effective
diffusion coefficient, De.

Ij = −Dej4πr 2dcj
dr

(7.9)

Comparison of Equations 7.8 and 7.9 leads to

Dej = Djξ

The integral ξ is generally represented as

ξ = ϵ
τ
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Catalyst ϵ τ
100–110µm powder packed into a tube 0.416 1.56
pelletized Cr2O3 supported on Al2O3 0.22 2.5
pelletized boehmite alumina 0.34 2.7
Girdler G-58 Pd on alumina 0.39 2.8
Haldor-Topsøe MeOH synthesis catalyst 0.43 3.3
0.5% Pd on alumina 0.59 3.9
1.0% Pd on alumina 0.5 7.5
pelletized Ag/8.5% Ca alloy 0.3 6.0
pelletized Ag 0.3 10.0

Table 7.2: Porosity and tortuosity factors for diffusion in catalysts.

in which τ is the tortuosity factor. The use of the ratio ϵ/τ has no
real physical significance. It is done to remind us that as a diffusing
molecule travels radially inward it encounters solid and void but it dif-
fuses mainly in the void regions. Similarly, the molecule cannot travel
in a straight line from the exterior to the center point, rather it must
follow a tortuous path that effectively adds to the distance of travel.

Rigorous models such as the parallel, cross-linked, pore model can
be used to predict the value of τ . If the pores are modeled as straight
cylindrical tubes of various lengths, one finds τ = 3. Table 7.2 lists
experimental values for τ [8]. The values of τ generally range from
about 2 to 7. As more anisotropy in the pore distribution is introduced
by the manufacturing process, τ increases. Because of this variability
in τ , it should be determined experimentally for the catalyst of inter-
est. Using effective transport properties to model transport in pores
and other microstructures has been effective in many contexts. For ex-
ample, Saltzman and Langer [20] find effective diffusion coefficients to
model protein transport in aqueous, constricted macropores.

7.3 The General Balances in the Catalyst Particle

In this section we consider the mass and energy balances that arise with
diffusion in the solid catalyst particle when considered at the scale
of Figure 7.1C. Consider the volume element depicted in Figure 7.2.
Assume a fixed laboratory coordinate system in which the velocities
are defined and let vj be the velocity of species j giving rise to molar
flux Nj

Nj = cjvj , j = 1,2, . . . , ns
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e Nj

E cj

Figure 7.2: Volume element in a stationary solid containing energy
density E and molar concentrations cj , with energy flux e
and mass fluxes Nj .

Let E be the total energy within the volume element and e be the flux
of total energy through the bounding surface due to all mechanisms of
transport. The conservation of mass and energy for the volume element
implies

∂cj
∂t
= −∇ ·Nj + Rj , j = 1,2, . . . , ns (7.10)

∂E
∂t
= −∇ · e (7.11)

in which Rj accounts for the production of species j due to chemical
reaction. As in Chapter 6, we consider the internal energy to be the
dominant contribution to total energy, and neglect kinetic, potential
and other forms of energy, so E = U .

Next we consider the fluxes. Since we are considering the diffusion
of mass in a stationary, solid particle, we assume the mass flux is well
approximated by

Nj = −Dj∇cj , j = 1,2, . . . , ns

in which Dj is an effective diffusivity for species j. Notice we are ne-
glecting a variety of other possible mechanisms of mass transport, in-
cluding the flux of species j due to gradients in the other species con-
centrations, and the flux of species j due to temperature gradients
(thermal diffusion), pressure gradients, and gravitational or other ex-
ternal fields (forced diffusion). Bird, Stewart and Lightfoot [5, pp. 767–
768] provide further discussion of these contributions to the mass flux.
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We approximate the total energy flux by

e = −k̂∇T +
∑
j
NjHj

This expression accounts for the transfer of heat by conduction, in
which k̂ is the effective thermal conductivity of the solid, and transport
of energy due to the mass diffusion. We have neglected any viscous
heating effects, and the flux of energy due to concentration gradients
(Dufour energy) and radiation. So the energy balance becomes

∂
(
ρÛ

)
∂t

=∇ · k̂∇T −
∑
j

[
(∇ ·Nj)Hj +Nj ·∇Hj

]
(7.12)

In this chapter, we are concerned mostly with the steady state. Set-
ting the time derivative to zero in Equation 7.10 produces

0 = −∇ ·Nj + Rj (7.13)

Substituting Equation 7.13 into Equation 7.12, using the definition of
the heat of reaction, and setting the time derivative to zero, yields

0 =∇ · k̂∇T −
∑
i
∆HRiri −

∑
j
Nj ·∇Hj

Finally, we often assume that the diffusivity, thermal conductivity and
partial molar enthalpies are independent of temperature and compo-
sition to produce the following coupled mass and energy balances for
the steady-state problem

0 = Dj∇2cj + Rj , j = 1,2, . . . , ns (7.14)

0 = k̂∇2T −
∑
i
∆HRiri (7.15)

In multiple-reaction, nonisothermal problems, we must solve these
equations numerically, so the assumption of constant transport and
thermodynamic properties is driven by the lack of data, and not ana-
lytical convenience.

7.4 Single Reaction in an Isothermal Particle

We start with the simplest cases and steadily remove restrictions and
increase the generality. In this section, therefore, we consider a single
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reaction taking place in an isothermal particle. We start with the spher-
ical particle, first-order reaction, and neglect the external mass-transfer
resistance. Next we consider other catalyst shapes, then other reaction
orders, and then other kinetic expressions such as the Hougen-Watson
kinetics of Chapter 5. We end this section by considering the effects of
finite external mass transfer.

7.4.1 First-Order Reaction in a Spherical Particle

In this section we consider a single, irreversible, first-order reaction
occurring in an isothermal spherical pellet

A
k
-→ B, r = kcA

Substituting the production rate into Equation 7.14, expressing the
equation in spherical coordinates, and assuming pellet symmetry in
θ and φ coordinates gives

DA
1
r 2

d
dr

(
r 2dcA
dr

)
− kcA = 0 (7.16)

in which DA is the effective diffusivity in the pellet for species A. As
written here, the first-order rate constant k has units of inverse time.
Be aware that the units for a heterogeneous reaction rate constant are
sometimes expressed per mass or per area of catalyst. In these cases,
the reaction rate expression includes the conversion factors, catalyst
density or catalyst area, as illustrated in Example 7.1. We require two
boundary conditions for Equation 7.16. In this section we assume the
concentration at the outer boundary of the pellet, cAs , is known, and the
symmetry of the spherical pellet implies the vanishing of the derivative
at the center of the pellet.1 Therefore the two boundary conditions for
Equation 7.16 are

cA = cAs , r = R
dcA
dr

= 0 r = 0

At this point we can obtain better insight by converting the problem
into dimensionless form. Equation 7.16 has two dimensional quanti-
ties, length and concentration. We might naturally choose the sphere

1Some may prefer to use other boundary conditions at r = 0, such as boundedness
of cA or dcA/dr , or a zero source/sink condition. These boundary conditions are
equivalent for the problems considered here.
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radiusR as the length scale, but we will find that a better choice is to use
the pellet’s volume-to-surface ratio. For the sphere, this characteristic
length is

a = Vp
Sp
=

4
3πR

3

4πR2
= R

3

The only concentration appearing in the problem is the surface con-
centration in the boundary condition, so we use that quantity to nondi-
mensionalize the concentration

r = r
a
, c = cA

cAs

Dividing through by the various dimensional quantities produces

1

r 2
d
dr

(
r 2 dc
dr

)
− Φ2c = 0 (7.17)

c = 1 r = 3

dc
dr
= 0 r = 0

in which Φ is given by

Φ =
√
ka2

DA
reaction rate
diffusion rate

Thiele modulus (7.18)

The single dimensionless group appearing in the model is referred to
as the Thiele number or Thiele modulus in recognition of Thiele’s pio-
neering contribution in this area [21].2 The Thiele modulus quantifies
the ratio of the reaction rate to the diffusion rate in the pellet.

Equation 7.18 can be considered as a special case of a more general
definition

Φj =

√√√√√∣∣∣Rjs∣∣∣a2

cjsDj
=
√
kcAsa2

cAsDA
=
√
ka2

DA
(7.19)

We now wish to solve Equation 7.17 with the given boundary con-
ditions. Because the reaction is first order, the model is linear and we

2In his original paper, Thiele used the term modulus to emphasize that this then
unnamed dimensionless group was positive. Later when Thiele’s name was assigned to
this dimensionless group, the term modulus was retained. Thiele number would seem
a better choice, but the term Thiele modulus has become entrenched.
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can derive an analytical solution. It is often convenient in spherical
coordinates to consider the variable transformation

c(r) = u(r)
r

(7.20)

Substituting this relation into Equation 7.17 provides a simpler differ-
ential equation for u(r),

d2u
dr 2 − Φ

2u = 0 (7.21)

with the transformed boundary conditions

u = 3 r = 3

u = 0 r = 0

The boundary condition u = 0 at r = 0 ensures that c is finite at
the center of the pellet. The student may recall from the differential
equations course that the solution to Equation 7.21 is

u(r) = c1 coshΦr + c2 sinhΦr (7.22)

This solution is analogous to the sine and cosine solutions if one re-
places the negative sign with a positive sign in Equation 7.21. These
functions are shown in Figure 7.3. Some of the properties of the hyper-
bolic functions are

cosh r = e
r + e−r

2
d cosh r
dr

= sinh r

sinh r = e
r − e−r

2
d sinh r
dr

= cosh r

tanh r = sinh r
cosh r

The constants c1 and c2 are determined by the boundary conditions.
Substituting Equation 7.22 into the boundary condition at r = 0 gives
c1 = 0, and applying the boundary condition at r = 3 gives c2 =
3/ sinh 3Φ. Substituting these results into Equations 7.22 and 7.20 gives
the solution to the model

c(r) = 3
r

sinhΦr
sinh 3Φ

(7.23)
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Figure 7.3: Hyperbolic trigonometric functions sinh, cosh and tanh.
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Figure 7.4: Dimensionless concentration versus dimensionless ra-
dial position for different values of the Thiele modulus.
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Figure 7.4 displays this solution for various values of the Thiele modu-
lus. Note for small values of Thiele modulus, the reaction rate is small
compared to the diffusion rate, and the pellet concentration becomes
nearly uniform. For large values of Thiele modulus, the reaction rate is
large compared to the diffusion rate, and the reactant is converted to
product before it can penetrate very far into the pellet.

We now calculate the pellet’s overall production rate given this con-
centration profile. We can perform this calculation in two ways. The
first and more direct method is to integrate the local production rate
over the pellet volume. The second method is to use the fact that, at
steady state, the rate of consumption of reactant within the pellet is
equal to the rate at which material fluxes through the pellet’s exterior
surface. The two expressions are

RAp =
1
Vp

∫ R
0
RA(r)4πr 2dr volume integral (7.24)

RAp = −
Sp
Vp
DA

dcA
dr

∣∣∣∣
r=R

surface flux
(assumes steady state)

(7.25)

in which the local production rate is given by RA(r) = −kcA(r). We
use the direct method here and leave the other method as an exercise.
Substituting the local production rate into Equation 7.24 and converting
the integral to dimensionless radius gives

RAp = −
kcAs

9

∫ 3

0
c(r)r 2dr

Substituting the concentration profile, Equation 7.23, and changing the
variable of integration to x = Φr gives

RAp = −
kcAs

3Φ2 sinh 3Φ

∫ 3Φ

0
x sinhxdx

The integral can be found in a table or derived by integration by parts
to yield finally

RAp = −kcAs
1
Φ

[
1

tanh 3Φ
− 1

3Φ

]
(7.26)

It is instructive to compare this actual pellet production rate to the rate
in the absence of diffusional resistance. If the diffusion were arbitrarily
fast, the concentration everywhere in the pellet would be equal to the
surface concentration, corresponding to the limit Φ = 0. The pellet rate
for this limiting case is simply

RAs = −kcAs (7.27)
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We define the effectiveness factor, η, to be the ratio of these two rates

η ≡ RAp
RAs

, effectiveness factor (7.28)

The effectiveness factor is a dimensionless pellet production rate that
measures how effectively the catalyst is being used. For η near unity,
the entire volume of the pellet is reacting at the same high rate be-
cause the reactant is able to diffuse quickly through the pellet. For η
near zero, the pellet reacts at a low rate. The reactant is unable to pen-
etrate significantly into the interior of the pellet and the reaction rate
is small in a large portion of the pellet volume. The pellet’s diffusional
resistance is large and this resistance lowers the overall reaction rate.
We can substitute Equations 7.26 and 7.27 into the definition of effec-
tiveness factor to obtain for the first-order reaction in the spherical
pellet

η = 1
Φ

[
1

tanh 3Φ
− 1

3Φ

]
(7.29)

Figures 7.5 and 7.6 display the effectiveness factor versus Thiele
modulus relationship given in Equation 7.29. The log-log scale in Fig-
ure 7.6 is particularly useful, and we see the two asymptotic limits of
Equation 7.29. At small Φ, η ≈ 1, and at large Φ, η ≈ 1/Φ. Figure 7.6
shows that the asymptote η = 1/Φ is an excellent approximation for
the spherical pellet for Φ ≥ 10. For large values of the Thiele modu-
lus, the rate of reaction is much greater than the rate of diffusion, the
effectiveness factor is much less than unity, and we say the pellet is
diffusion limited. Conversely, when the diffusion rate is much larger
than the reaction rate, the effectiveness factor is near unity, and we
say the pellet is reaction limited.

Example 7.1: Using the Thiele modulus and effectiveness factor

The first-order, irreversible reaction (A -→ B) takes place in a 0.3 cm
radius spherical catalyst pellet at T = 450 K. At 0.7 atm partial pressure
of A, the pellet’s production rate is−2.5×10−5 mol/(g s). Determine the
production rate at the same temperature in a 0.15 cm radius spherical
pellet. The pellet density is ρp = 0.85 g/cm3. The effective diffusivity
of A in the pellet is DA = 0.007 cm2/s.

Solution

We can use the production rate and pellet parameters for the 0.3 cm pel-
let to find the value for the rate constant k, and then compute the Thiele
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Figure 7.5: Effectiveness factor versus Thiele modulus for a first-
order reaction in a sphere.
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modulus, effectiveness factor and production rate for the smaller pel-
let.

We have three unknowns, k,Φ, η, and the following three equations

RAp = −ηkcAs (7.30)

Φ =
√
ka2

DA
(7.31)

η = 1
Φ

[
1

tanh 3Φ
− 1

3Φ

]
(7.32)

The production rate is given in the problem statement. Solving Equa-
tion 7.31 for k, and substituting that result and Equation 7.32 into 7.30,
give one equation in the unknown Φ

Φ
[

1
tanh 3Φ

− 1
3Φ

]
= −RApa

2

DAcAs
(7.33)

The surface concentration and pellet production rates are given by

cAs =
0.7 atm(

82.06 cm3 atm
mol K

)
(450 K)

= 1.90× 10−5mol/cm3

RAp =
(
−2.5× 10−5 mol

g s

)(
0.85

g
cm3

)
= −2.125× 10−5 mol

cm3 s

Substituting these values into Equation 7.33 gives

Φ
[

1
tanh 3Φ

− 1
3Φ

]
= 1.60

This equation can be solved numerically yielding the Thiele modulus

Φ = 1.93

Using this result, Equation 7.31 gives the rate constant

k = 2.61 s−1

The smaller pellet is half the radius of the larger pellet, so the Thiele
modulus is half as large or Φ = 0.964, which gives η = 0.685. The
production rate is therefore

RAp = −0.685
(

2.6s−1
)(

1.90× 10−5mol/cm3
)
= −3.38× 10−5 mol

cm3 s

We see that decreasing the pellet size increases the production rate by
almost 60%. Notice that this type of increase is possible only when the
pellet is in the diffusion-limited regime. □
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Figure 7.7: Characteristic length a for sphere, semi-infinite cylinder
and semi-infinite slab.

7.4.2 Other Catalyst Shapes: Cylinders and Slabs

Here we consider the cylinder and slab geometries in addition to the
sphere covered in the previous section. To have a simple analytical
solution, we must neglect the end effects; we therefore consider in
addition to the sphere of radius Rs , the semi-infinite cylinder of radius
Rc , and the semi-infinite slab of thickness 2L, depicted in Figure 7.7.
We can summarize the reaction-diffusion mass balance for these three
geometries by

DA
1
rq

d
dr

(
rq
dcA
dr

)
− kcA = 0 (7.34)

in which
q = 2 sphere

q = 1 cylinder

q = 0 slab

The associated boundary conditions are

cA = cAs


r = Rs sphere
r = Rc cylinder
r = L slab

dcA
dr

= 0 r = 0 all geometries



7.4 Single Reaction in an Isothermal Particle 371

The characteristic length a is again best defined as the volume-to-
surface ratio, which gives for these geometries

a = Rs
3

sphere

a = Rc
2

cylinder

a = L slab

The dimensionless form of Equation 7.34 is

1
rq

d
dr

(
rq
dc
dr

)
− Φ2c = 0 (7.35)

c = 1 r = q + 1

dc
dr
= 0 r = 0

in which the boundary conditions for all three geometries can be com-
pactly expressed in terms of q.

The effectiveness factor for the different geometries can be evalu-
ated using the integral and flux approaches, Equations 7.24–7.25, which
lead to the two expressions

η = 1
(q + 1)q

∫ q+1

0
crqdr (7.36)

η = 1
Φ2

dc
dr

∣∣∣∣
r=q+1

(7.37)

We have already solved Equations 7.35 and 7.36 (or 7.37) for the sphere,
q = 2. Analytical solutions for the slab and cylinder geometries also
can be derived. See Exercise 7.1 for the slab geometry. The results
are summarized in Table 7.3. Note that I0 and I1 are modified Bessel
functions of the first kind of orders zero and one, respectively.

The effectiveness factors versus Thiele modulus for the three ge-
ometries are plotted in Figure 7.8. Although the functional forms listed
in Table 7.3 appear quite different, we see in Figure 7.8 that these solu-
tions are quite similar. The effectiveness factor for the slab is largest,
the cylinder is intermediate, and the sphere is the smallest at all values
of Thiele modulus. The three curves have identical small Φ and large
Φ asymptotes. The maximum difference between the effectiveness fac-
tors of the sphere and the slab η is about 16%, and occurs at Φ = 1.6.
For Φ < 0.5 and Φ > 7, the difference between all three effectiveness
factors is less than 5%.
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Sphere η =
1
Φ

[
1

tanh 3Φ
− 1

3Φ

]
(7.38)

Cylinder η =
1
Φ
I1(2Φ)
I0(2Φ)

(7.39)

Slab η =
tanhΦ
Φ

(7.40)

Table 7.3: Closed-form solution for the effectiveness factor versus
Thiele modulus for the sphere, semi-infinite cylinder, and
semi-infinite slab.
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Figure 7.8: Effectiveness factor versus Thiele modulus for the
sphere, cylinder and slab.
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7.4.3 Other Reaction Orders

For reactions other than first order, the reaction-diffusion equation is
nonlinear and numerical solution is required. We will see, however,
that many of the conclusions from the analysis of the first-order reac-
tion case still apply for other reaction orders. We consider nth-order,
irreversible reaction kinetics

A
k
-→ B, r = kcnA

The reaction-diffusion equation and boundary conditions for this case
are

DA
1
rq

d
dr

(
rq
dcA
dr

)
− kcnA = 0 (7.41)

We might naturally define the Thiele modulus as in Equation 7.19, but
the results for various reaction orders have a common asymptote if we
instead define

Φ =

√√√√n+ 1
2

kcn−1
As a2

DA
Thiele modulus
nth-order reaction

(7.42)

1
rq

d
dr

(
rq
dc
dr

)
− 2
n+ 1

Φ2cn = 0

c = 1 r = q + 1

dc
dr
= 0 r = 0

η = 1
(q + 1)q

∫ q+1

0
cnrqdr

η = n+ 1
2

1
Φ2

dc
dr

∣∣∣∣
r=q+1

Figure 7.9 shows the effect of reaction order for n ≥ 1 in a spheri-
cal pellet. As the reaction order increases, the effectiveness factor de-
creases. Notice that the definition of Thiele modulus in Equation 7.42
has achieved the desired goal of giving all reaction orders a common
asymptote at high values of Φ. Figure 7.10 shows the effectiveness
factor versus Thiele modulus for reaction orders less than unity. No-
tice the discontinuity in slope of the effectiveness factor versus Thiele
modulus that occurs when the order is less than unity. Recall from
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Figure 7.9: Effectiveness factor versus Thiele modulus in a spherical
pellet; reaction orders greater than unity.
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Figure 7.10: Effectiveness factor versus Thiele modulus in a spheri-
cal pellet; reaction orders less than unity.
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Figure 7.11: Dimensionless concentration versus radius for zero-
order reaction (n = 0) in a spherical pellet (q = 2); for
large Φ the inner region of the pellet has zero A con-
centration.

the discussion in Chapter 4 that if the reaction order is less than unity
in a batch reactor, the concentration of A reaches zero in finite time.
Equation 4.27 shows the discontinuity that is introduced into the mass
balance when the concentration reaches zero, and Figure 4.8 displays
the discontinuity in the slope of concentration versus time. In the
reaction-diffusion problem in the pellet, the same kinetic effect causes
the discontinuity in η versus Φ. For large values of Thiele modulus,
the diffusion is slow compared to reaction, and the A concentration
reaches zero at some nonzero radius inside the pellet. For orders less
than unity, an inner region of the pellet has identically zero A concen-
tration. Figure 7.11 shows the reactant concentration versus radius
for the zero-order reaction case in a sphere at various values of Thiele
modulus. For Φ = 0.577, the A concentration reaches zero just at the
center of the pellet. Notice that the discontinuity in slope of η versus
Φ in Figure 7.10 occurs at this same Φ value. For larger values of Φ,
the A concentration reaches zero at finite radius. This radius increases
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with increase in Thiele modulus so that for Φ = 10, only a small outer
shell of the pellet has nonzero A concentration. The same qualitative
picture holds for all values of reaction order less than one.

7.4.4 Hougen-Watson Kinetics

Given the discussion in Section 5.6 of adsorption and reactions on cat-
alyst surfaces, it is reasonable to expect our best catalyst rate expres-
sions may be of the Hougen-Watson form. In this section we study
an example reaction mechanism of this form. Consider the following
reaction and rate expression

A -→ products r = kcm
KAcA

1+KAcA

This expression arises when gas-phase A adsorbs onto the catalyst sur-
face and the reaction is first order in the adsorbed A concentration. If
we consider the slab catalyst geometry, the mass balance is

DA
d2cA
dr 2

− kcm
KAcA

1+KAcA
= 0

and the boundary conditions are

cA = cAs r = L
dcA
dr

= 0 r = 0

We would like to study the effectiveness factor for these kinetics. First
we define dimensionless concentration and length as before to arrive
at the dimensionless reaction-diffusion model

d2c
dr 2 − Φ̃

2 c
1+φc = 0 (7.43)

c = 1 r = 1

dc
dr
= 0 r = 0 (7.44)

in which we now have two dimensionless groups

Φ̃ =
√
kcmKAa2

DA
, φ = KAcAs (7.45)
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We use the tilde to indicate Φ̃ is a good first guess for a Thiele modu-
lus for this problem, but we will find a better candidate subsequently.
The new dimensionless groupφ represents a dimensionless adsorption
constant. The effectiveness factor is calculated from

η = RAp
RAs

= −(Sp/Vp)DA dcA/dr |r=a−kcmKAcAs/(1+KAcAs)

which becomes upon definition of the dimensionless quantities

η = 1+φ
Φ̃2

dc
dr

∣∣∣∣
r=1

(7.46)

Now we wish to define a Thiele modulus so that η has a common
asymptote at large Φ for all values ofφ. This goal was accomplished for
thenth-order reaction as shown in Figures 7.9 and 7.10 by including the
factor (n+ 1)/2 in the definition of Φ given in Equation 7.42. We now
turn our attention to finding the right Thiele modulus for the Hougen-
Watson kinetics problem. First we calculate η for large Φ̃.

Asymptotic behavior for large Φ̃. As a first step we change the inde-
pendent variable from r to

z = Φ̃(1− r) (7.47)

in order to remove Φ̃ from the differential equation [18]. Then we take
the limit Φ̃ → ∞ to obtain the model describing the asymptotic case.
Changing variables in the reaction-diffusion model, Equations 7.43–
7.44, and taking the limit produces

d2c
dz2

− c
1+φc = 0 (7.48)

c = 1 z = 0

dc
dz
= 0 z = ∞

The effectiveness factor is obtained by changing variables in Equa-
tion 7.46, producing

η = −1+φ
Φ̃

dc
dz

∣∣∣∣
z=0

(7.49)

We need to perform one integral of Equation 7.48, without resorting to
numerical integration, to evaluate the effectiveness factor.
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Figure 7.12: Dimensionless concentration c versus z for large Φ̃;
consider the function z(c) in place of c(z).

Define p(z) = dc/dz to be the desired first derivative. The only
nonobvious step in this section is the next one. We make the follow-
ing variable transformation; instead of considering p as a function of
z, define a transformation that makes it a function of c. Figure 7.12
illustrates what we have in mind. The variable transformation is

p(z) = p(z(c)) = p̃(c)

We now use the familiar chain rule of differentiation

dp
dz
= dp̃
dc

dc
dz
= dp̃
dc
p(z) = dp̃

dc
p̃

and substitute the mass balance, Equation 7.48, to obtain

dp̃
dc
p̃ = c

1+φc

This equation can be separated to yield∫ p̃
0
p̃dp̃ =

∫ c
0

c
1+φcdc

Performing the integral on the left-hand side and solving for p̃ gives

p̃ = −
[

2
∫ c

0

c
1+φcdc

]1/2

in which we choose the correct sign to correspond to Figure 7.12. Per-
forming the integral on the right-hand side yields

p̃ = −
[

2
φ

(
c − 1

φ
ln(1+φc)

)]1/2

(7.50)
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Evaluating Equation 7.50 at c = 1, which corresponds to z = 0 (see
Figure 7.12), and substituting the result into Equation 7.49 produces

η = 1
Φ̃

(
1+φ
φ

)√
2 (φ− ln(1+φ)) (7.51)

Equation 7.51 tells us what we need to know. We wish to redefine the
Thiele modulus so that this equation reads simply

η = 1
Φ

We can accomplish this with a simple rescaling of the Thiele modulus
via

Φ =
(

φ
1+φ

)
1√

2 (φ− ln(1+φ)) Φ̃

So, in summary, we have the following two dimensionless groups for
this problem

Φ =
(

φ
1+φ

)√
kcmKAa2

2DA (φ− ln(1+φ)) , φ = KAcAs (7.52)

Obviously it does not pay to try to guess an appropriate Thiele modu-
lus for these more complex rate expressions. An asymptotic analysis
as presented here is required to find the appropriate scaling. This idea
appears to have been discovered independently by three chemical en-
gineers in 1965. To quote from Aris [2, p. 113]

This is the essential idea in three papers published inde-
pendently in March, May and June of 1965; see Bischoff [6],
Aris [1] and Petersen [19]. A more limited form was given as
early as 1958 by Stewart in Bird, Stewart and Lightfoot [4, p.
338].

The payoff for this analysis is shown in Figures 7.13 and 7.14. If
we use our first guess for the Thiele modulus, Equation 7.45, we obtain
Figure 7.13 in which the various values ofφ have different asymptotes.
Using the Thiele modulus defined in Equation 7.52, we obtain the re-
sults in Figure 7.14. Figure 7.14 displays things more clearly. First,
notice from the mass balance, Equation 7.48, that the dimensionless
reaction rate is

c
1+φc

dimensionless reaction rate
Hougen-Watson kinetics
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Figure 7.13: Effectiveness factor versus an inappropriate Thiele
modulus in a slab; Hougen-Watson kinetics.
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Figure 7.15: Effect of external mass transfer on pellet surface con-
centration.

and, as we have seen in Chapter 5, the apparent order of the reaction
changes depending on the size of the dimensionless adsorption con-
stant φ. For small φ, we expect first-order reaction behavior, and for
largeφ, we expect zero-order reaction behavior. Comparing Figure 7.14
to Figure 7.10 we see this trend. Recall that Figure 7.10 corresponds to
spherical geometry, and we are using the slab geometry in this section,
which causes the small differences in the effectiveness factor plots. No-
tice that we approximate the zero-order reaction discontinuity in the
slope of η versus Φ for large φ. Again we see that as long as we choose
an appropriate Thiele modulus, we can approximate the effectiveness
factor for all values of φ with the first-order reaction. The largest ap-
proximation error occurs near Φ = 1, and if Φ > 2 or Φ < 0.2, the
approximation error is negligible.

7.4.5 External Mass Transfer

If the mass-transfer rate from the bulk fluid to the exterior of the pellet
is not high, then the boundary condition

cA(r = R) = cAf

is not satisfied. Figure 7.15 provides a depiction of the concentration
profile under low and high external mass-transfer rates. If the exter-
nal mass-transfer rate is low, the concentrations in the bulk fluid and
external catalyst surface are significantly different. To obtain a simple
model of the external mass transfer, we replace the boundary condition
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above with a flux boundary condition

DA
dcA
dr

= km
(
cAf − cA

)
, r = R (7.53)

in which km is the external mass-transfer coefficient. If we multiply
Equation 7.53 by a/cAfDA, we obtain the dimensionless boundary con-
dition

dc
dr
= B (1− c) , r = 3 (7.54)

in which

B = kma
DA

(7.55)

is the Biot number or dimensionless mass-transfer coefficient.
Summarizing, for finite external mass transfer, the dimensionless

model and boundary conditions are

1

r 2
d
dr

(
r 2 dc
dr

)
− Φ2c = 0 (7.56)

dc
dr
= B (1− c) r = 3

dc
dr
= 0 r = 0

The solution to the differential equation satisfying the center boundary
condition can be derived as in Section 7.4 to produce

c(r) = c2

r
sinhΦr

in which c2 is the remaining unknown constant. Evaluating this con-
stant using the external boundary condition gives

c(r) = 3
r

sinhΦr
sinh 3Φ + (Φ cosh 3Φ − (sinh 3Φ)/3) /B

(7.57)

The effectiveness factor can again be derived by integrating the local
reaction rate or computing the surface flux, and the result is

η = 1
Φ

[
1/ tanh 3Φ − 1/(3Φ)

1+ Φ (1/ tanh 3Φ − 1/(3Φ)) /B

]
(7.58)

in which

η = RAp
RAb
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Figure 7.16: Dimensionless concentration versus radius for differ-
ent values of the Biot number; first-order reaction in
a spherical pellet with Φ = 1.

Notice we are comparing the pellet’s reaction rate to the rate that would
be achieved if the pellet reacted at the bulk fluid concentration rather
than the pellet exterior concentration as before.

Figure 7.16 plots Equation 7.57 for different values of B. When
B = ∞, Equation 7.57 reduces to Equation 7.23, and the curve for
Φ = 1.0 in Figure 7.4 is the same as the curve for B = ∞ in Figure 7.16.
With decreasing B, corresponding to slower external mass transfer, the
concentration profile in the pellet becomes more uniform and the di-
mensionless surface concentration decreases. The lower concentration
leads to lower reaction rates. Therefore one normally designs the re-
actor and chooses operating conditions, such as large gas velocities, to
enhance external mass transfer and make the Biot number large.

Figure 7.17 shows the effect of the Biot number on the effectiveness
factor or total pellet reaction rate. Notice that the slope of the log-log
plot of η versus Φ has a slope of negative two rather than negative
one as in the case without external mass-transfer limitations (B = ∞).
Figure 7.18 shows this effect in more detail. If B is small, the log-log
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Figure 7.17: Effectiveness factor versus Thiele modulus for differ-
ent values of the Biot number; first-order reaction in
a spherical pellet.

plot corners with a slope of negative two at Φ =
√
B. If B is large, the

log-log plot first corners with a slope of negative one at Φ = 1, then it
corners again and decreases the slope to negative two at Φ =

√
B. Both

mechanisms of diffusional resistance, the diffusion within the pellet
and the mass transfer from the fluid to the pellet, show their effect on
pellet reaction rate by changing the slope of the effectiveness factor
by negative one.3 Given the value of the Biot number, one can easily
sketch the straight line asymptotes shown in Figure 7.18. Then, given
the value of the Thiele modulus, one can determine the approximate
concentration profile, and whether internal diffusion or external mass
transfer or both limit the pellet reaction rate. The possible cases are
summarized in Table 7.4.

3Students who are taking or already have taken the process control course might
want to think about what happens to the amplitude of a signal as it passes through a
series of first-order processes.
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Figure 7.18: Asymptotic behavior of the effectiveness factor versus
Thiele modulus; first-order reaction in a spherical pellet.

Biot number Thiele modulus Mechanism controlling
pellet reaction rate

B < 1 Φ <
√
B reaction√

B < Φ < 1 external mass transfer
1 < Φ both external mass transfer

and internal diffusion
1 < B Φ < 1 reaction

1 < Φ < B internal diffusion
B < Φ both internal diffusion and

external mass transfer

Table 7.4: The controlling mechanisms for pellet reaction rate given
finite rates of internal diffusion and external mass trans-
fer.



386 Fixed-Bed Catalytic Reactors

7.4.6 Observed versus Intrinsic Kinetic Parameters

We often need to determine a reaction order and rate constant for some
catalytic reaction of interest. Assume the following nth-order reaction
takes place in a catalyst particle

A -→ B, r1 = kcnA

We call the values of k and n the intrinsic rate constant and reaction
order to distinguish them from what we may estimate from data. The
typical experiment is to change the value of cA in the bulk fluid, mea-
sure the rate r1 as a function of cA, and then find the values of the
parameters k and n that best fit the measurements. We explain this
procedure in much more detail in Chapter 9. Here we show only that
one should exercise caution with this estimation if we are measuring
the rates with a solid catalyst. The effects of reaction, diffusion and
external mass transfer may all manifest themselves in the measured
rate. We express the reaction rate as

r1 = ηkcnAb (7.59)

We also know that at steady state, the rate is equal to the flux of A into
the catalyst particle

r1 = kmA(cAb − cAs) = DA
dcA
dr

∣∣∣∣
r=R

(7.60)

We now study what happens to our experiment under different rate-
limiting steps.

Reaction limited. First assume that both the external mass transfer
and internal pellet diffusion are fast compared to the reaction. Then
η = 1, and we would estimate the intrinsic parameters correctly in
Equation 7.59

kob = k
nob = n

Everything goes according to plan when we are reaction limited.

Diffusion limited. Next assume that the external mass transfer and
reaction are fast, but the internal diffusion is slow. In this case we have
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η = 1/Φ, and using the definition of Thiele modulus and Equation 7.59

r1 = kobc
(n+1)/2
As (7.61)

kob =
1
a

√
2

n+ 1
DA

√
k (7.62)

nob = (n+ 1)/2 (7.63)

So we see two problems. The rate constant we estimate, kob, varies
as the square root of the intrinsic rate constant, k. The diffusion has
affected the measured rate of the reaction and disguised the rate con-
stant. We even obtain an incorrect reaction order: the first-order reac-
tion is correct, but a second-order reaction appears 3/2 order, and so
on.

Also consider what happens if we vary the temperature and try to
determine the reaction’s activation energy. Let the temperature depen-
dence of the diffusivity, DA, be represented also in Arrhenius form,
with Ediff the activation energy of the diffusion coefficient. Let Erxn be
the intrinsic activation energy of the reaction. The observed activation
energy from Equation 7.62 is

Eob =
Ediff + Erxn

2
so both activation energies show up in our estimated activation en-
ergy. Normally the temperature dependence of the diffusivity is much
smaller than the temperature dependence of the reaction, Ediff ≪ Erxn,
so we would estimate an activation energy that is one-half the intrinsic
value.

Mass transfer limited. Finally, assume the reaction and diffusion are
fast compared to the external mass transfer. Then we have cAb ≫ cAs
and Equation 7.60 gives

r1 = kmAcAb
If we vary cAb and measure r1, we would find the mass-transfer coeffi-
cient instead of the rate constant, and a first-order reaction instead of
the true reaction order

kob = kmA
nob = 1

Normally, mass-transfer coefficients also have fairly small temperature
dependence compared to reaction rates, so the observed activation en-
ergy would be almost zero, independent of the true reaction’s activation
energy.
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The moral to this story is that mass transfer and diffusion resis-
tances disguise the reaction kinetics. We can solve this problem in two
ways. First, we can arrange the experiment so that mass transfer and
diffusion are fast and do not affect the estimates of the kinetic param-
eters. We can accomplish this by making the catalyst particles small
(Φ small) and using a flow reactor with high fluid flowrates to ensure a
high mass-transfer coefficient. If this experimental design is impracti-
cal or too expensive, we can alternatively model the effects of the mass
transfer and diffusion, and estimate the parametersDA and kmA simul-
taneously with k and n. We develop techniques in Chapter 9 to handle
this more complex estimation problem.

7.5 Nonisothermal Particle Considerations

We now consider situations in which the catalyst particle is not iso-
thermal. Given an exothermic reaction, for example, if the particle’s
thermal conductivity is not large compared to the rate of heat release
due to chemical reaction, the temperature rises inside the particle. We
wish to explore the effects of this temperature rise on the catalyst
performance. We have already written the general mass and energy
balances for the catalyst particle in Section 7.3. Consider the single-
reaction case, in which we have RA = −r and Equations 7.14 and 7.15
reduce to

DA∇2cA = r
k̂∇2T = ∆HRr

We can eliminate the reaction term between the mass and energy bal-
ances to produce

∇2T = ∆HRDA
k̂

∇2cA

which relates the conversion of the reactant to the rise (or fall) in tem-
perature. Because we have assumed constant properties, we can inte-
grate this equation twice to give the relationship between temperature
and A concentration

T − Ts =
−∆HRDA

k̂
(cAs − cA) (7.64)

We now consider a first-order reaction and assume the rate constant
has an Arrhenius form,

k(T) = ks exp
[
−E

(
1
T
− 1
Ts

)]
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in which Ts is the pellet exterior temperature, and we assume fast ex-
ternal mass transfer. Substituting Equation 7.64 into the rate constant
expression gives

k(T) = ks exp

[
E
Ts

(
1− Ts

Ts +∆HRDA(cA − cAs)/k̂

)]

It now simplifies matters to define dimensionless concentration and
temperature, and three dimensionless parameters

c = cA
cAs

T = T − Ts
Ts

γ = E
Ts

β = −∆HRDAcAs
k̂Ts

Φ̃2 = k(Ts)
DA

a2

in which γ is a dimensionless activation energy, β is a dimensionless
heat of reaction, and Φ̃ is the usual Thiele modulus. Again we use the
tilde to indicate we will find a better Thiele modulus subsequently. With
these variables, we can express the rate constant as

k(T) = ks exp

[
γβ(1− c)

1+ β(1− c)

]

We then substitute the rate constant into the mass balance, and assume
a spherical particle to obtain the final dimensionless model

1

r 2
d
dr

(
r 2 dc
dr

)
= Φ̃2c exp

(
γβ(1− c)

1+ β(1− c)

)
c = 1 r = 3

dc
dr
= 0 r = 0 (7.65)

Equation 7.65 is sometimes called the Weisz-Hicks problem in honor
of Weisz and Hicks’s outstanding paper in which they computed ac-
curate numerical solutions to this problem [23]. Given the solution to
Equation 7.65, we can compute the effectiveness factor for the non-
isothermal pellet using the usual relationship

η = 1
Φ̃2

dc
dr

∣∣∣∣
r=3

If we perform the same asymptotic analysis of Section 7.4.4 on the
Weisz-Hicks problem, we find, however, that the appropriate Thiele
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Figure 7.19: Effectiveness factor versus normalized Thiele modulus
for a first-order reaction in a nonisothermal spherical
pellet.

modulus for this problem is

Φ = Φ̃/I(γ, β), I(γ, β) =
[

2
∫ 1

0
c exp

(
γβ(1− c)

1+ β(1− c)

)
dc
]1/2

(7.66)

The normalizing integral I(γ, β) can be expressed as a sum of expo-
nential integrals [2] or evaluated by quadrature.

Figure 7.19 shows the effectiveness factor versus Thiele modulus
for activation energy γ = 30 and a variety of heats of reaction, β. Note
that Φ is well chosen in Equation 7.66 because the large Φ asymptotes
are the same for all values of γ and β. The first interesting feature of
Figure 7.19 is that the effectiveness factor is greater than unity for some
values of the parameters. Notice that feature is more pronounced as
we increase the exothermic heat of reaction. If we consider what is hap-
pening within the pellet, this effect may not be too surprising. For the



7.6 Multiple Reactions 391

highly exothermic case, the pellet’s interior temperature is significantly
higher than the exterior temperature Ts . The rate constant inside the
pellet is therefore much larger than the value at the exterior, ks . Even
though the concentration is lower inside the pellet because A is con-
sumed, the increase in the rate constant is more significant and the
product r = kcA is larger inside the pellet. Because the effectiveness
factor compares the actual rate in the pellet to the rate at the surface
conditions, it is possible for the effectiveness factor to exceed unity in
a nonisothermal pellet, which we see in Figure 7.19.

A second striking feature of the nonisothermal pellet is that multi-
ple steady states are possible. Consider the case Φ = 0.01, β = 0.4 and
γ = 30 shown in Figure 7.19. The effectiveness factor has three possi-
ble values for this case. We show in Figures 7.20 and 7.21 the solution
to Equation 7.65 for this case. The three temperature and concentra-
tion profiles correspond to an ignited steady state (C), an extinguished
steady state (A), and an unstable intermediate steady state (B). As we
showed in Chapter 6, whether we achieve the ignited or extinguished
steady state in the pellet depends on how the reactor is started. Aris
provides further discussion of these cases and shows that many steady-
state solutions are possible in some cases [3, p. 51]. For realistic values
of the catalyst thermal conductivity, however, the pellet can often be
considered isothermal and the energy balance can be neglected [17].
Multiple steady-state solutions in the particle may still occur in prac-
tice, however, if there is a large external heat transfer resistance.

7.6 Multiple Reactions

As the next step up in complexity, we consider the case of multiple
reactions. Some analytical solutions are available for simple cases with
multiple reactions, and Aris provides a comprehensive list [2], but the
scope of these is limited. We focus on numerical computation as a
general method for these problems. Indeed, we find that even numeri-
cal solution of some of these problems is challenging for two reasons.
First, steep concentration profiles often occur for realistic parameter
values, and we wish to compute these profiles accurately. It is not un-
usual for species concentrations to change by 10 orders of magnitude
within the pellet for realistic reaction and diffusion rates. Second, we
are solving boundary-value problems because the boundary conditions
are provided at the center and exterior surface of the pellet. Boundary-
value problems (BVPs) are generally much more difficult to solve than
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initial-value problems (IVPs).
A detailed description of numerical methods for this problem is

out of place here. We use the collocation method, which is described
in more detail in Appendix A. The next example involves five species,
two reactions with Hougen-Watson kinetics, and both diffusion and
external mass-transfer limitations.

Example 7.2: Catalytic converter

Consider the oxidation of CO and a representative volatile organic such
as propylene in a automobile catalytic converter containing spheri-
cal catalyst pellets with particle radius 0.175 cm. The particle is sur-
rounded by a fluid at 1.0 atm pressure and 550 K containing 2% CO, 3%
O2 and 0.05% (500 ppm) C3H6. The reactions of interest are

CO+ 1
2

O2 -→ CO2

C3H6 +
9
2

O2 -→ 3CO2 + 3H2O

with rate expressions given by Oh et al. [16]

r1 =
k1cCOcO2

(1+KCOcCO +KC3H6cC3H6)2

r2 =
k2cC3H6cO2

(1+KCOcCO +KC3H6cC3H6)2

The rate constants and the adsorption constants are assumed to have
Arrhenius form. The parameter values are given in Table 7.5 [16]. The
mass-transfer coefficients are taken from DeAcetis and Thodos [9]. The
pellet may be assumed to be isothermal. Calculate the steady-state
pellet concentration profiles of all reactants and products.

Solution

We solve the steady-state mass balances for the three reactant species,

Dj
1
r 2

d
dr

(
r 2dcj
dr

)
= −Rj

with the boundary conditions

dcj
dr

= 0 r = 0

Dj
dcj
dr

= kmj
(
cjf − cj

)
r = R
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Parameter Value Units Parameter Value Units

P 1.013× 105 N/m2 k10 7.07× 1019 cm3/mol·s
T 550 K k20 1.47× 1021 cm3/mol·s
R 0.175 cm KCO0 8.099× 106 cm3/mol

E1 13,108 K KC3H60 2.579× 108 cm3/mol

E2 15,109 K DCO 0.0487 cm2/s

ECO −409 K DO2 0.0469 cm2/s

EC3H6 191 K DC3H6 0.0487 cm2/s

cCOf 2.0 % kmCO 3.90 cm/s

cO2f 3.0 % kmO2 4.07 cm/s

cC3H6f 0.05 % kmC3H6 3.90 cm/s

Table 7.5: Kinetic and mass-transfer parameters for the catalytic con-
verter example.

j = {CO,O2,C3H6}. The model is solved using the collocation method.
The reactant concentration profiles are shown in Figures 7.22 and 7.23.
Notice that O2 is in excess and both CO and C3H6 reach very low values
within the pellet. The log scale in Figure 7.23 shows that the concen-
trations of these reactants change by seven orders of magnitude. Obvi-
ously the consumption rate is large compared to the diffusion rate for
these species. The external mass-transfer effect is noticeable, but not
dramatic.

The product concentrations could simply be calculated by solving
their mass balances along with those of the reactants. Because we have
only two reactions, however, the concentrations of the products are
computable from the stoichiometry and the mass balances. If we take
the following mass balances

DCO∇2cCO = −RCO = r1

DC3H6∇2cC3H6 = −RC3H6 = r2

DCO2∇2cCO2 = −RCO2 = −r1 − 3r2

DH2O∇2cH2O = −RH2O = −3r2

and form linear combinations to eliminate the reaction-rate terms for
the two products, we obtain

DCO2∇2cCO2 = −DCO∇2cCO − 3DC3H6∇2cC3H6

DH2O∇2cH2O = −3DC3H6∇2cC3H6
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Figure 7.22: Concentration profiles of reactants; fluid concentration
of O2 (×), CO (+), C3H6 (∗).
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Figure 7.23: Concentration profiles of reactants (log scale); fluid con-
centration of O2 (×), CO (+), C3H6 (∗).
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Because the diffusivities are assumed constant, we can integrate these
once on (0, r ) to obtain for the products

DCO2

dcCO2

dr
= −DCO

dcCO

dr
− 3DC3H6

dcC3H6

dr

DH2O
dcH2O

dr
= −3DC3H6

dcC3H6

dr

The exterior boundary condition can be rearranged to give

cj − cjf = −
Dj
kmj

dcj
dr

Substituting in the relationships for the products gives

cCO2 = cCO2f +
1

kmCO2

[
DCO

dcCO

dr
+ 3DC3H6

dcC3H6

dr

]
cH2O = cH2Of +

1
kmH2O

[
3DC3H6

dcC3H6

dr

]
The right-hand sides are available from the solution of the material bal-
ances of the reactants. Plotting these results for the products gives Fig-
ure 7.24. We see that CO2 is the main product. Note the products flow
out of the pellet, unlike the reactants shown in Figures 7.22 and 7.23,
which are flowing into the pellet. □

7.7 Fixed-Bed Reactor Design

Given our detailed understanding of the behavior of a single catalyst
particle, we now are prepared to pack a tube with a bed of these par-
ticles and solve the fixed-bed reactor design problem. In the fixed-bed
reactor, we keep track of two phases. The fluid-phase streams through
the bed and transports the reactants and products through the reactor.
The reaction-diffusion processes take place in the solid-phase catalyst
particles. The two phases communicate to each other by exchanging
mass and energy at the catalyst particle exterior surfaces. We have
constructed a detailed understanding of all these events, and now we
assemble them together.

7.7.1 Coupling the Catalyst and Fluid

We make the following assumptions:
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Figure 7.24: Concentration profiles of the products; fluid concentra-
tion of CO2 (×), H2O (+).

1. Uniform catalyst pellet exterior. Particles are small compared to
the length of the reactor.

2. Plug flow in the bed, no radial profiles.

3. Neglect axial diffusion in the bed.

4. Steady state.

Fluid. In the fluid phase, we track the molar flows of all species, the
temperature and the pressure. We can no longer neglect the pressure
drop in the tube because of the catalyst bed. We use an empirical cor-
relation to describe the pressure drop in a packed tube, the well-known
Ergun equation [10]. Therefore, we have the following differential equa-
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tions for the fluid phase

dNj
dV

= Rj (7.67)

QρĈp
dT
dV

= −
∑
i
∆HRiri +

2
R
Uo(Ta − T) (7.68)

dP
dV

= −(1− ϵB)
Dpϵ3

B

Q
A2
c

[
150

(1− ϵB)µf
Dp

+ 7
4
ρQ
Ac

]
(7.69)

The fluid-phase boundary conditions are provided by the known feed
conditions at the tube entrance

Nj = Njf , z = 0

T = Tf , z = 0

P = Pf , z = 0

Catalyst particle. Inside the catalyst particle, we track the concen-
trations of all species and the temperature. We neglect any pressure
effect inside the catalyst particle. We have the following differential
equations for the catalyst particle

Dj
1
r 2

d
dr

(
r 2dc̃j
dr

)
= −R̃j (7.70)

k̂
1
r 2

d
dr

(
r 2dT̃
dr

)
=
∑
i
∆HRir̃ i (7.71)

The boundary conditions are provided by the mass-transfer and heat-
transfer rates at the pellet exterior surface, and the zero-slope condi-
tions at the pellet center

dc̃j
dr

= 0 r = 0 (7.72)

Dj
dc̃j
dr

= kmj(cj − c̃j) r = R (7.73)

dT̃
dr
= 0 r = 0 (7.74)

k̂
dT̃
dr
= kT (T − T̃ ) r = R (7.75)

Coupling equations. Finally, we equate the production rate Rj expe-
rienced by the fluid phase to the production rate inside the particles,
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which is where the reaction takes place. Analogously, we equate the
enthalpy change on reaction experienced by the fluid phase to the en-
thalpy change on reaction taking place inside the particles. These ex-
pressions are given below

Rj︸︷︷︸
rate j / vol

= − (1− ϵB)︸ ︷︷ ︸
vol cat / vol

Sp
Vp

Dj
dc̃j
dr

∣∣∣∣∣
r=R︸ ︷︷ ︸

rate j / vol cat

(7.76)

∑
i
∆HRiri︸ ︷︷ ︸

rate heat / vol

= (1− ϵB)︸ ︷︷ ︸
vol cat / vol

Sp
Vp

k̂
dT̃
dr

∣∣∣∣∣
r=R︸ ︷︷ ︸

rate heat / vol cat

(7.77)

Notice we require the bed porosity to convert from the rate per volume
of particle to the rate per volume of reactor. The bed porosity or void
fraction, ϵB , is defined as the volume of voids per volume of reactor.
The volume of catalyst per volume of reactor is therefore 1− ϵB . This
information can be presented in a number of equivalent ways. We can
easily measure the density of the pellet, ρp, and the density of the bed,
ρB . From the definition of bed porosity, we have the relation

ρB = (1− ϵB)ρp
or if we solve for the volume fraction of catalyst

1− ϵB = ρB/ρp
Figure 7.25 shows the particles and fluid, and summarizes the coupling
relations between the two phases.

Equations 7.67–7.77 provide the full packed-bed reactor model given
our assumptions. We next examine several packed-bed reactor prob-
lems that can be solved without solving this full set of equations. Fi-
nally, we present Example 7.7, which requires numerical solution of the
full set of equations.

Example 7.3: First-order, isothermal fixed-bed reactor

Use the rate data presented in Example 7.1 to find the fixed-bed reactor
volume and the catalyst mass needed to convert 97% of A. The feed to
the reactor is pure A at 1.5 atm at a rate of 12 mol/s. The 0.3 cm
pellets are to be used, which leads to a bed density ρB = 0.6 g/cm3.
Assume the reactor operates isothermally at 450 K and that external
mass-transfer limitations are negligible.
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Rj

r̃ i
R̃j

ri

Mass

Rj = (1− ϵB)R̃jp

R̃jp = −
Sp
Vp
Dj

dc̃j
dr

∣∣∣∣∣
r=R

Energy∑
i
∆HRiri = (1− ϵB)

∑
i
∆HRir̃ ip

∑
i
∆HRir̃ ip =
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dT̃
dr

∣∣∣∣∣
r=R

Figure 7.25: Fixed-bed reactor volume element containing fluid and
catalyst particles; the equations show the coupling be-
tween the catalyst particle balances and the overall re-
actor balances.

Solution

We solve the fixed-bed design equation

dNA
dV

= RA = −(1− ϵB)ηkcA

between the limitsNAf and 0.03NAf , in which cA is the A concentration
in the fluid. For the first-order, isothermal reaction, the Thiele modulus
is independent of A concentration, and is therefore independent of
axial position in the bed

Φ = R
3

√
k
DA
= 0.3cm

3

√
2.6s−1

0.007cm2/s
= 1.93

The effectiveness factor is also therefore a constant

η = 1
Φ

[
1

tanh 3Φ
− 1

3Φ

]
= 1

1.93

[
1− 1

5.78

]
= 0.429

In Chapter 4, Equation 4.70, we express the concentration of A in terms
of molar flows for an ideal-gas mixture

cA =
P
RT

(
NA

NA +NB

)



7.7 Fixed-Bed Reactor Design 401

The total molar flow is constant due to the reaction stoichiometry so
NA +NB = NAf and we have

cA =
P
RT

NA
NAf

Substituting these values into the material balance, rearranging and
integrating over the volume gives

VR = −
(

1
1− ϵB

)(RTNAf
ηkP

)∫ 0.03NAf

NAf

dNA
NA

VR = −
(

0.85
0.6

)
(82.06)(450)(12)
(0.429)(2.6)(1.5)

ln(0.03) = 1.32× 106cm3

and

Wc = ρBVR =
0.6

1000

(
1.32× 106

)
= 789 kg

We see from this example that if the Thiele modulus and effectiveness
factors are constant, finding the size of a fixed-bed reactor is no more
difficult than finding the size of a plug-flow reactor. □

Example 7.4: Mass-transfer limitations in a fixed-bed reactor

Reconsider Example 7.3 given the following two values of the mass-
transfer coefficient

km1 = 0.07 cm/s

km2 = 1.4 cm/s

Solution

First we calculate the Biot numbers from Equation 7.55 and obtain

B1 =
(0.07)(0.1)
(0.007)

= 1

B2 =
(1.4)(0.1)
(0.007)

= 20

Inspection of Figure 7.17 indicates that we expect a significant reduc-
tion in the effectiveness factor due to mass-transfer resistance in the
first case, and little effect in the second case. Evaluating the effective-
ness factors with Equation 7.58 indeed shows

η1 = 0.165

η2 = 0.397



402 Fixed-Bed Catalytic Reactors

which we can compare to η = 0.429 from the previous example with no
mass-transfer resistance. We can then calculate the required catalyst
mass from the solution of the previous example without mass-transfer
limitations, and the new values of the effectiveness factors

Wc1 =
(

0.429
0.165

)
(789) = 2051 kg

Wc2 =
(

0.429
0.397

)
(789) = 852 kg

As we can see, the first mass-transfer coefficient is so small that more
than twice as much catalyst is required to achieve the desired con-
version compared to the case without mass-transfer limitations. The
second mass-transfer coefficient is large enough that only 8% more cat-
alyst is required. □

Example 7.5: Second-order, isothermal fixed-bed reactor

Estimate the mass of catalyst required in an isothermal fixed-bed reac-
tor for the second-order, heterogeneous reaction.

A
k
-→ B

r = kc2
A k = 2.25× 105cm3/mol s

The gas feed consists of A and an inert, each with molar flowrate of
10 mol/s, the total pressure is 4.0 atm and the temperature is 550 K.
The desired conversion of A is 75%. The catalyst is a spherical pellet
with a radius of 0.45 cm. The pellet density is ρp = 0.68 g/cm3 and
the bed density is ρB = 0.60 g/cm3. The effective diffusivity of A is
0.008 cm2/s and may be assumed constant. You may assume the fluid
and pellet surface concentrations are equal.

Solution

We solve the fixed-bed design equation

dNA
dV

= RA = −(1− ϵB)ηkc2
A

NA(0) = NAf (7.78)

between the limits NAf and 0.25NAf . We again express the concentra-
tion of A in terms of the molar flows

cA =
P
RT

(
NA

NA +NB +NI

)
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As in the previous example, the total molar flow is constant and we
know its value at the entrance to the reactor

NT = NAf +NBf +NIf = 2NAf

Therefore,

cA =
P
RT

NA
2NAf

(7.79)

Next we use the definition of Φ for nth-order reactions given in
Equation 7.42

Φ = R
3

[
(n+ 1)kcn−1

A
2DA

]1/2

= R
3

(n+ 1)k
2DA

(
P
RT

NA
2NAf

)n−1
1/2

(7.80)

Substituting in the parameter values gives

Φ = 9.17

(
NA

2NAf

)1/2

(7.81)

For the second-order reaction, Equation 7.81 shows that Φ varies with
the molar flow, which means Φ and η vary along the length of the re-
actor as NA decreases. We are asked to estimate the catalyst mass
needed to achieve a conversion of A equal to 75%. So for this particular
example, Φ decreases from 6.49 to 3.24. As shown in Figure 7.9, we
can approximate the effectiveness factor for the second-order reaction
using the analytical result for the first-order reaction, Equation 7.38,

η = 1
Φ

[
1

tanh 3Φ
− 1

3Φ

]
(7.82)

Summarizing so far, to compute NA versus VR, we solve one differ-
ential equation, Equation 7.78, in which we use Equation 7.79 for cA,
and Equations 7.81 and 7.82 for Φ and η. We march in VR until NA =
0.25NAf . The solution to the differential equation is shown in Fig-
ure 7.26. The required reactor volume and mass of catalyst are:

VR = 361 L, Wc = ρBVR = 216 kg

As a final exercise, given that Φ ranges from 6.49 to 3.24, we can
make the large Φ approximation

η = 1
Φ

(7.83)
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Figure 7.26: Molar flow of A versus reactor volume for second-order,
isothermal reaction in a fixed-bed reactor.

to obtain a closed-form solution. If we substitute this approximation
for η, and Equation 7.80 into Equation 7.78 and rearrange we obtain

dNA
dV

= −(1− ϵB)
√

2kDA/3 (P/RT)3/2

(R/3)(2NAf )3/2 N3/2
A

Separating and integrating this differential equation gives

VR =
4
[
(1− xA)−1/2 − 1

]
NAf (R/3)

(1− ϵB)
√
kDA/3 (P/RT)3/2 (7.84)

Large Φ approximation

The results for the large Φ approximation also are shown in Figure 7.26.
Notice from Figure 7.9 that we are slightly overestimating the value of η
using Equation 7.83, so we underestimate the required reactor volume.
The reactor size and the percent change in reactor size are

VR = 333 L, ∆ = −7.7%

Given that we have a result valid for all Φ that requires solving only a
single differential equation, one might question the value of this closed-
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form solution. One advantage is purely practical. We may not have a
computer available. Instructors are usually thinking about in-class ex-
amination problems at this juncture. The other important advantage is
insight. It is not readily apparent from the differential equation what
would happen to the reactor size if we double the pellet size, or halve
the rate constant, for example. Equation 7.84, on the other hand, pro-
vides the solution’s dependence on all parameters. As shown in Fig-
ure 7.26 the approximation error is small. Remember to check that
the Thiele modulus is large for the entire tube length, however, before
using Equation 7.84. □

Example 7.6: Hougen-Watson kinetics in a fixed-bed reactor

The following reaction converting CO to CO2 takes place in a catalytic,
fixed-bed reactor operating isothermally at 838 K and 1.0 atm

CO+ 1
2

O2 -→ CO2

The following rate expression and parameters are adapted from a dif-
ferent model given by Oh et al. [16]. The rate expression is assumed to
be of the Hougen-Watson form

r = kcCOcO2

1+KcCO
mol/s cm3 pellet

The constants are provided below

k = 1.3828× 1019 exp(−13,500/T) cm3/mol s

K = 8.099× 106 exp(409/T) cm3/mol

DCO = 0.0487 cm2/s

in which T is in Kelvin. The spherical catalyst pellet radius is 0.1 cm,
and the densities are ρp = 0.68, ρB = 0.60 g/cm3. The feed to the
reactor consists of 16.7 mol% CO, 83.3 mol% O2, and zero CO2, with
volumetric flowrate Qf = 792 L/s. Find the reactor volume required to
achieve 95% conversion of the CO.

Solution

Given the reaction stoichiometry and the excess of O2, we can neglect
the change in cO2 and approximate the reaction as pseudo-first order
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in CO

r = k′cCO

1+KcCO
mol/s cm3 pellet

k′ = kcO2f

which is of the form analyzed in Section 7.4.4. We can write the mass
balance for the molar flow of CO,

dNCO

dV
= −(1− ϵB)ηr(cCO)

in which cCO is the fluid CO concentration. From the reaction stoichi-
ometry, we can express the remaining molar flows in terms of NCO

NO2 = NO2f + 1/2(NCO −NCOf )
NCO2 = NCOf −NCO

N = NO2f + 1/2(NCO +NCOf )

The concentrations follow from the molar flows assuming an ideal-gas
mixture

cj =
P
RT

Nj
N

To decide how to approximate the effectiveness factor shown in Fig-
ure 7.14, we evaluate φ = KCOcCO, at the entrance and exit of the fixed-
bed reactor. With φ evaluated, we compute the Thiele modulus given
in Equation 7.52 and obtain

φ = 32.0 Φ= 79.8, entrance

φ = 1.74 Φ = 326, exit

It is clear from these values and Figure 7.14 that η = 1/Φ is an excellent
approximation for this reactor. Substituting this equation for η into the
mass balance and solving the differential equation produces the results
shown in Figure 7.27. The concentration of O2 is nearly constant, which
justifies the pseudo-first-order rate expression. Reactor volume

VR = 233 cm3

is required to achieve 95% conversion of the CO. Recall that the volu-
metric flowrate varies in this reactor so conversion is based on molar
flow, not molar concentration. Figure 7.28 shows how Φ and φ vary
with position in the reactor. □
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Figure 7.27: Molar concentrations versus reactor volume.
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Parameter Value Units
Pf 2.02× 105 N/m2

Tf 550 K
Rt 5.0 cm
uf 75 cm/s
Ta 325 K
Uo 5.5× 10−3 cal/(cm2 Ks)
∆HR1 −67.63× 103 cal/(mol CO)
∆HR2 −460.4× 103 cal/(mol C3H6)
Ĉp 0.25 cal/(g K)
µf 0.028× 10−2 g/(cm s)
ρB 0.51 g/cm3

ρp 0.68 g/cm3

Table 7.6: Feed flowrate and heat-transfer parameters for the fixed-
bed catalytic converter.

In the previous examples, we have exploited the idea of an effec-
tiveness factor to reduce fixed-bed reactor models to the same form as
plug-flow reactor models. This approach is useful and solves several
important cases, but this approach is also limited and can take us only
so far. In the general case, we must contend with multiple reactions
that are not first order, nonconstant thermochemical properties, and
nonisothermal behavior in the pellet and the fluid. For these cases, we
have no alternative but to solve numerically for the temperature and
species concentrations profiles in both the pellet and the bed. As a final
example, we compute the numerical solution to a problem of this type.

We use the collocation method to solve the next example, which
involves five species, two reactions with Hougen-Watson kinetics, both
diffusion and external mass-transfer limitations, and nonconstant fluid
temperature, pressure and volumetric flowrate.

Example 7.7: Multiple-reaction, nonisothermal fixed-bed reactor

Evaluate the performance of the catalytic converter in converting CO
and propylene. Determine the amount of catalyst required to convert
99.6% of the CO and propylene. The reaction chemistry and pellet mass-
transfer parameters are given in Table 7.5. The feed conditions and
heat-transfer parameters are given in Table 7.6.
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Solution

The fluid balances govern the change in the fluid concentrations, tem-
perature and pressure. The pellet concentration profiles are solved
with the collocation approach. The pellet and fluid concentrations are
coupled through the mass-transfer boundary condition. The fluid con-
centrations are shown in Figure 7.29. A bed volume of 1098 cm3 is
required to convert the CO and C3H6. Figure 7.29 also shows that oxy-
gen is in slight excess.

The reactor temperature and pressure are shown in Figure 7.30. The
feed enters at 550 K, and the reactor experiences about a 130 K temper-
ature rise while the reaction essentially completes; the heat losses then
reduce the temperature to less than 500 K by the exit. The pressure
drops from the feed value of 2.0 atm to 1.55 atm at the exit. Notice the
catalytic converter exit pressure of 1.55 atm must be large enough to
account for the remaining pressure drops in the tail pipe and muffler.

In Figures 7.31 and 7.32, the pellet CO concentration profile at sev-
eral reactor positions is displayed. The feed profile, marked by ➀ in
Figure 7.32, is similar to the one shown in Figure 7.23 of Example 7.2
(the differences are caused by the different feed pressures). We see
that as the reactor heats up, the reaction rates become large and the
CO is rapidly converted inside the pellet. By 490 cm3 in the reactor, the
pellet exterior CO concentration has dropped by two orders of magni-
tude, and the profile inside the pellet has become very steep. As the
reactions go to completion and the heat losses cool the reactor, the
reaction rates drop. At 890 cm3, the CO begins to diffuse back into
the pellet. Finally, the profiles become much flatter near the exit of the
reactor.

It can be numerically challenging to calculate rapid changes and
steep profiles inside the pellet. The good news, however, is that accu-
rate pellet profiles are generally not required for an accurate calculation
of the overall pellet reaction rate. The reason is that when steep pro-
files are present, essentially all of the reaction occurs in a thin shell
near the pellet exterior. We can calculate accurately down to concen-
trations on the order of 10−15 as shown in Figure 7.32, and by that
point, essentially zero reaction is occurring, and we can calculate an
accurate overall pellet reaction rate. It is always a good idea to vary the
numerical approximation in the pellet profile, by changing the number
of collocation points, to ensure convergence in the fluid profiles. □
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Figure 7.29: Fluid molar concentrations versus reactor volume.
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7.7.2 Logarithmic Transformation

As seen in Figure 7.32, the concentration profiles inside the catalyst
pellet can change by many orders of magnitude during a fixed-bed sim-
ulation at realistic reactor conditions. Global polynomials are not well
suited for approximating functions with these steep profiles. Since
concentration is always non-negative, a logarithmic transformation is
a useful way to overcome this difficulty and obtain accurate solutions
with modest computation time.

The concentration inside the catalyst pellet is found by solving the
material balance, Equation 7.70, and the boundary conditions, Equa-
tions 7.72 and 7.73, repeated here

Dj
1
r 2

d
dr

(
r 2dc̃j
dr

)
= −R̃j (7.85)

dc̃j
dr

= 0 r = 0 (7.86)

Dj
dc̃j
dr

= kmj(cj − c̃j) r = R (7.87)

Consider the logarithmic transformation of concentration

wj = ln(c̃j) c̃j = ewj (7.88)

Differentiating the transformation twice and substituting into Equa-
tions 7.85–7.87 allows us to express the model in terms of the trans-
formed variable wj

d2wj
dr 2

+ dwj
dr

[
dwj
dr

+ 2
r

]
= − 1

Dj
R̃je−wj (7.89)

dwj
dr

= 0 r = 0 (7.90)

Dj
dwj
dr

= kmj(e−wjcj − 1) r = R (7.91)

As shown in the semi-log plot of Figure 7.32, polynomials provide an
excellent fit to wj in contrast to c̃j . In preparing Figure 7.32 with the
untransformed model, for example, 200 collocation points are required
to achieve an accurate solution of the fluid balances, and the pellet pro-
files are still not accurately computed below about c̃j = 10−15. Solving
the transformed model, on the other hand, only 40 collocation points
are required and the pellet profiles are computed accurately down to
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c̃j = 10−90. In addition, the transformed problem can be solved ap-
proximately 20 times faster than the original problem. For better ac-
curacy and faster computation, using Equations 7.89–7.91 for the pel-
let concentration balances is highly recommended in fixed-bed reactor
simulations with large reaction rates.

7.8 Summary

This chapter treated the fixed-bed reactor, a tubular reactor packed
with catalyst pellets. We started with a general overview of the trans-
port and reaction events that take place in the fixed-bed reactor: trans-
port by convection in the fluid; diffusion inside the catalyst pores;
and adsorption, reaction and desorption on the catalyst surface. We
summarized the transport properties of the catalyst particles, and de-
scribed bulk and Knudsen diffusion phenomena.

In order to simplify the model, we assumed an effective diffusivity
could be used to describe diffusion in the catalyst particles. We next
presented the general mass and energy balances for the catalyst parti-
cle. Next we solved a series of reaction-diffusion problems in a single
catalyst particle. These included:

• Single reaction in an isothermal pellet. This case was further di-
vided into a number of special cases.

∗ First-order, irreversible reaction in a spherical particle.

∗ Reaction in a semi-infinite slab and cylindrical particle.

∗ nth order, irreversible reaction.

∗ Hougen-Watson rate expressions.

∗ Particle with significant external mass-transfer resistance.

• Single reaction in a nonisothermal pellet.

• Multiple reactions.

For the single-reaction cases, we performed dimensional analysis and
found a dimensionless number, the Thiele modulus, which measures
the rate of production divided by the rate of diffusion of some compo-
nent. A complete analysis of the first-order reaction in a sphere sug-
gested a general approach to calculate the production rate in a pellet
in terms of the rate evaluated at the pellet exterior surface conditions.
This motivated the definition of the pellet effectiveness factor, which
is a function of the Thiele modulus.
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For the single-reaction, nonisothermal problem, we solved the so-
called Weisz-Hicks problem, and determined the temperature and con-
centration profiles within the pellet. We showed the effectiveness fac-
tor can be greater than unity for this case. Multiple steady-state solu-
tions also are possible for this problem, but for realistic values of the
catalyst thermal conductivity, the pellet often can be considered iso-
thermal and the energy balance can be neglected. Multiple steady-state
solutions in the particle may occur in practice, however, if there is a
large external heat-transfer resistance.

For complex reactions involving many species, we cannot use the
simple Thiele modulus and effectiveness factor approach, and must
solve numerically the complete reaction-diffusion problem. These prob-
lems are challenging because of the steep pellet profiles that are pos-
sible.

Finally, we showed several ways to couple the mass and energy bal-
ances over the fluid flowing through a fixed-bed reactor to the balances
within the pellet. For simple reaction mechanisms, we were still able
to use the effectiveness factor approach to solve the fixed-bed reac-
tor problem. For complex mechanisms, we solved numerically the full
problem given in Equations 7.67–7.77. We solved the reaction-diffusion
problem in the pellet coupled to the mass and energy balances for the
fluid, and we used the Ergun equation to calculate the pressure in the
fluid.

Notation

a characteristic pellet length, Vp/Sp
Ac reactor cross-sectional area

B Biot number for external mass transfer

c constant for the BET isotherm

cj concentration of species j
cjs concentration of species j at the catalyst surface

c dimensionless pellet concentration

cm total number of active surface sites

DAB binary diffusion coefficient

Dj effective diffusion coefficient for species j
DjK Knudsen diffusion coefficient for species j
Djm diffusion coefficient for species j in the mixture

Dp pellet diameter

Ediff activation energy for diffusion
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Eobs experimental activation energy

Erxn intrinsic activation energy for the reaction

∆HRi heat of reaction i
Ij rate of transport of species j into a pellet

I0 modified Bessel function of the first kind, zero order

I1 modified Bessel function of the first kind, first order

ke effective thermal conductivity of the pellet

kmj mass-transfer coefficient for species j
kn nth-order reaction rate constant

L pore length

Mj molecular weight of species j
nr number of reactions in the reaction network

N total molar flow,
∑
j Nj

Nj molar flow of species j
P pressure

Q volumetric flowrate

r radial coordinate in catalyst particle

ra average pore radius

ri rate of reaction i per unit reactor volume

robs observed (or experimental) rate of reaction in the pellet

rip total rate of reaction i per unit catalyst volume

r dimensionless radial coordinate

R spherical pellet radius

R gas constant

Rj production rate of species j
Rjf production rate of species j at bulk fluid conditions

Rjp total production rate of species j per unit catalyst volume

Rjs production rate of species j at the pellet surface conditions

Sg BET area per gram of catalyst

Sp external surface area of the catalyst pellet

T temperature

T dimensionless temperature

Tf bulk fluid temperature

Ts pellet surface temperature

uf feed gas velocity

Uo overall heat-transfer coefficient

v volume of gas adsorbed in the BET isotherm

vm volume of gas corresponding to an adsorbed monolayer

V reactor volume coordinate
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Vg pellet void volume per gram of catalyst

Vp volume of the catalyst pellet

VR reactor volume

Wc total mass of catalyst in the reactor

yj mole fraction of species j
z position coordinate in a slab

ϵ porosity of the catalyst pellet

ϵB fixed-bed porosity or void fraction

η effectiveness factor

λ mean free path

µf bulk fluid viscosity

νij stoichiometric number for the jth species in the ith reaction

ξ integral of a diffusing species over a bounding surface

ρ bulk fluid density

ρB reactor bed density

ρp overall catalyst pellet density

ρs catalyst solid-phase density

σ hard sphere collision radius

τ tortuosity factor

Φ Thiele modulus

ΩD,AB dimensionless function of temperature and the intermolecular po-
tential field for one molecule of A and one molecule of B

7.9 Exercises

Exercise 7.1: Isothermal slab with first-order kinetics

A first-order, irreversible reaction

A
k
-→ 2B

takes place in a catalyst pellet with the slab geometry depicted in Figure 7.33. Assume
that the pellet height, h, and length, l, are much greater than the width,w. The catalyst
exterior is assumed to be at constant species A concentration, cAs . Species A has an
effective diffusivity, DA, in the pellet and the catalyst is isothermal.

(a) The steady-state material balance for component A is

DA∇2cA + RA = 0 (7.92)

In rectangular coordinates, this becomes

DA

(
∂2cA
∂x2 +

∂2cA
∂y2 +

∂2cA
∂z2

)
+ RA = 0

What happens to the terms ∂2cA/∂y2 and ∂2cA/∂z2 if h and l are much greater
than w? Why? Make this simplification and substitute in the production rate
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for A for the final dimensional model. What are the boundary conditions for the
model?

(b) Now consider writing the model in dimensionless form. What is the appropriate
characteristic length, a? What is the characteristic concentration? Nondimen-
sionalize the model and boundary conditions, and show the final dimensionless
model is

d2cA
dx2 − Φ

2cA = 0

and the boundary conditions are

cA = 1 x = 1

cA = 1 x = −1

What is the definition of the Thiele modulus for this problem?

(c) What is the solution of this model?

(d) Perform the integration to compute the effectiveness factor and show

η = tanhΦ
Φ

(e) Plot cA(x),0 ≤ x ≤ 1, for Φ = 1/2,1,2,5,10. Plot cA(r) for the sphere for the
same Φ values. Comment on the differences and similarities.

(f) Plot η(Φ),0.1 ≤ Φ ≤ 10 on a log-log scale for the sphere and slab in the same
figure. Comment on the differences and similarities. What is the largest error
that you would commit by using the sphere in place of the slab geometry and
for what Φ value does it occur?

Exercise 7.2: Pellet profile of product and reactant

Consider the same reaction and slab geometry of Exercise 7.1,

A
k
-→ 2B

Now let’s compute the product concentration profile in the pellet, cB . The catalyst
exterior is assumed to be at constant species B concentration, cBs , and species B has
an effective diffusivity, DB , which may be different from DA.

x

y
z

h

lwcA

cAs

Figure 7.33: Catalyst pellet with slab geometry.
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(a) The steady-state material balance for component B is

DB∇2cB + RB = 0

For the given stoichiometry, RB = −2RA. Using Equation 7.92, show that

2
(
DA∇2cA

)
+
(
DB∇2cB

)
= 0

(b) Solve this equation by performing two integrals and show

cB = cBs + 2
DA
DB

(cAs − cA)

(c) Let’s compare the A and B concentrations. Assume the diffusivities are equal
and that cAs = 1 and cBs = 0. Plot cA(x) and cB(x) for Φ = 10. Comment on
the differences between cA and cB .

(d) Now assume DB = 10DA and replot cA and cB . Explain what happens to the
product B concentration with this larger value of DB .

Exercise 7.3: Slab with finite external mass transfer

Consider the same reaction and slab geometry of Exercise 7.1

A
k
-→ 2B

but include the mass-transfer resistance.

(a) Write the dimensionless material balance and define the Thiele modulus and
Biot number for this situation.

(b) Solve the model and find cA(x). Plot this result for the same values of Biot
number as in Figure 7.16 and compare the results.

(c) Compute the effectiveness factor versus Thiele modulus, plot this result and
compare to Figure 7.17. Comment on the effect of pellet geometry on the overall
reaction rate.

Exercise 7.4: Thiele modulus and a second-order reaction

The following second-order catalytic reaction is currently carried out in a fixed-bed
reactor operating isothermally at 650 K.

A
k
-→ B k = 4.54× 107 cm3

mol s
Pure A is fed to the reactor and a conversion of 93% is achieved at a pressure of 2.0 atm.
The catalyst vendor has changed fabrication procedures and has verified that the in-
trinsic rate constant listed above is unchanged. Using the following data, determine
if the mass of catalyst needs to be changed for the new catalyst to maintain the same
production rate of B. The pressure drop in the tube is negligible for both catalysts.

Property Old catalyst New catalyst

effective diffusivity 0.0095 cm2/s 0.0072 cm2/s

particle density 1.75 g/cm3 1.79 g/cm3

bed density 0.84 g/cm3 0.96 g/cm3

shape sphere (0.635 cm diam) cylinder (0.48 cm diam,

0.79 cm length)
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Exercise 7.5: Thiele modulus and Hougen-Watson kinetics

The following catalytic reaction is conducted in a 0.25-cm radius spherical pellet.

A+ B2 -→ C

The mechanism for this reaction is shown below. A, B2 and C are in adsorption-
desorption equilibrium with the surface. The bimolecular surface reaction is irre-
versible and rate limiting.

A+ S
k1-⇀↽-
k−1

Aads

B2 + 2S
k2-⇀↽-
k−2

2Bads

Aads + Bads
k3-→ Cads + S

C+ S
k4-⇀↽-
k−4

Cads

Additional data needed for this problem are provided in the following table.

Parameter Value Units

K1 90,100 cm3/mol

K2 6,500 cm3/mol

K4 64,400 cm3/mol

T 523 K

DeA 0.045 cm2/s

cA 5.83× 10−5 mol/cm3

cB2 1.40× 10−4 mol/cm3

cC 1.17× 10−5 mol/cm3

k3 7.41× 108 g cat2/mol·cm3·s
cm 1.8 × 10−5 mol/g cat

(a) Determine if the concentration of A changes appreciably within the pellet from
the value it has at the pellet surface.

(b) Estimate the concentration of A at the center of the pellet.

Exercise 7.6: Thiele modulus and first-order kinetics

A catalytic reaction that is first order in the concentration of A

A -→ B

is carried out in a spherical pellet with a 0.20-cm radius. The effective diffusivity of A
in the pellet is 0.015 cm2/s. The rate of reaction at 398 K is 2.63 × 10−5 mol/cm3·s
when the concentration of A is 3.25 × 10−5 mol/cm3. The intrinsic activation energy
is 20 kcal/mol.

AssumingDA is independent of temperature, what is the rate at 448 K for the same
concentration of A?
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Exercise 7.7: Thiele modulus and rate data

The second-order catalytic reaction

A -→ B

r = kc2
A mol/s·g

is carried out over a spherical catalyst pellet. The reactant and product are gases at the
reaction conditions. A series of experiments was performed using 0.70-cm diameter
catalyst beads. At 150◦C and 1.0–3.0 atm of pure A, a plot of log rate versus log cA
was a straight line of slope 3/2. The following table lists additional information.

T(◦C) RA (mol/s·g) PA (atm)

150 −6.17× 10−4 1.0

200 −2.37× 10−3 1.0

Estimate the value of Wc/NAf required to achieve 50% conversion of A at 200◦C in
a fixed-bed reactor using the same catalyst but with a bead diameter of 1.0 cm. Pure
A is fed to the reactor at a total pressure of 1.0 atm. Assume the diffusion process is
dominated by Knudsen diffusion, and the diffusion coefficient is constant.

Exercise 7.8: First-order reaction in a fixed-bed reactor

The following first-order catalytic reaction is conducted in a fixed-bed reactor. The
reactant and product are gases.

A -→ B

The intrinsic rate constant is 5.74× 1013 exp(−38,000/RT) s−1, in which the units of
R are cal/mol K, and the units of T are K. The feed consists of pure A at 1.0 atm, 630 K,
at molar flowrate 0.5 mol/s. The catalyst is a cylindrical-shaped pellet with a radius
of 0.35 cm and a length of 0.5 cm. The catalyst pellet density ρp = 0.84 g/cm3. The
reactor bed density ρB = 0.52 g/cm3. At 630 K the effective diffusivity in the pellet is
1.40×10−3 cm2/s. Determine the mass of catalyst required to achieve 90% conversion
of A if the reactor operates isothermally.

Exercise 7.9: A hollow-cylinder catalyst pellet in a fixed-bed reactor

Estimate the mass of catalyst required in an isothermal fixed-bed reactor for the second-
order reaction.

A
k1-→ B

r = k1c2
A k1 = 1.21× 105 cm3

mol · s
The feed is pure A at a molar flowrate of 15 mol/s, the total pressure is 3.0 atm and
the temperature is 550 K. The reactor achieves 90% conversion of A. The catalyst is a
hollow cylinder with an outer diameter of 1.3 cm, an inner diameter of 0.5 cm, and a
length of 0.7 cm. The pellet density ρp = 0.73 g/cm3 and the bed density ρB = 0.58
g/cm3. The effective diffusivity of A is 0.008 cm2/s and may be assumed constant.
You may assume the bulk and pellet surface concentrations are equal.
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Exercise 7.10: Catalyst size and production rate

The following second-order catalytic reaction is carried out in a fixed-bed reactor op-
erating isothermally at 650 K.

A
k
-→ B k = 5.15× 105 cm6

s·g·mol

Pure A is fed to the reactor with a nominal inlet pressure of 2.0 atm. The desired
production rate per tube is 18.84 kg/hr of B. If you choose to operate above the nominal
inlet pressure, an additional compressor has to be installed upstream of the reactor.
The existing tubes are 100-cm long and 20-cm2 cross-sectional area. The remaining A
in the product stream must be separated in a second unit for recycle. For the separation
unit to run efficiently, the conversion in the reactor must be at least 93% and the outlet
pressure must be at least 1.5 atm. If the reactor effluent pressure is below 1.5 atm, an
additional compressor must be installed downstream of the reactor.

The current catalyst has reached the end of its useful lifetime and needs to be
replaced. Your project is to make a design change with the new catalyst to improve
the reactor efficiency. In particular you are considering changing the catalyst size. The
catalyst vendor has told you that they easily can make spherical pellets with diameters
of 0.075 cm, 0.15 cm, and 0.30 cm. You also have been assured that the effective
diffusivity, bed density, and reaction rate constant do not vary among the catalysts in
this size range. One of your team members wants to use the smallest diameter catalyst
to minimize the total mass of catalyst required. Another team member wants to use
the largest diameter catalyst to minimize the pressure drop.

You have been assigned to model the reactor and decide which is the best choice.
Some of the design constraints that you must satisfy include the production rate, the
minimal final conversion, the maximal tube length (it is fine to use reactor length less
than 100 cm, one simply leaves the end of the tube empty of catalyst), the maximal
inlet pressure, and the minimal outlet pressure.

Can you meet these design constraints with all three of the catalysts? Once you
have met the constraints, you can optimize the reactor operation over the remaining
design decision variables. What is your final choice of catalyst size, and at what nominal
inlet pressure will you run the reactor? Include a plot of the pressure, conversion, and
Thiele modulus versus reactor length for your final design.

Please write a brief report discussing how the design variables (catalyst size, inlet
pressure, bed length) affect both the capital and operating costs of this process. What
additional information would you require to perform a better design?

Additional data for the catalyst and reaction are listed in the following table.

Parameter Value Units

effective diffusivity 0.00375 cm2/s

particle density 1.75 g/cm3

bed density 1.12 g/cm3

molecular weight of A 100 kg/kmol

viscosity of gas 10−4 g/cm·s

Exercise 7.11: Mass transfer with reaction

(a) Draw a sketch of the effectiveness factor versus the Thiele modulus for a spher-
ical pellet. Be sure to label clearly your axes and put as many numbers on the
plot as you can.
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(b) Choose a value of Φ = 1 and draw a sketch of cA(r) and cB(r) versus r for
an irreversible, first-order reaction, A -→ B, in an isothermal pellet. Make this

sketch as accurate as possible. If you are using dimensionless variables, be sure
to indicate what quantities you have used to make the variables dimensionless.

(c) Comment on the differences and similarities between the effectiveness factor
versus Thiele modulus plot for slabs and cylinders compared to the spherical
case. How do you nondimensionalize your length for these other two geometries.

(d) Provide a concise explanation of the reactor design and operation trade-off in-
volved in choosing between a catalyst pellet that gives a diffusion-controlled
reactor versus one that gives a kinetically controlled reactor.

Exercise 7.12: Mass transfer with reaction for reversible kinetics

Consider the reversible first-order elementary reaction in an isothermal solid catalyst
slab of thickness w surrounded by a fluid

A
k1-⇀↽-
k−1

B

The external mass-transfer rate to the outer surface of the catalyst is very large and
the fluid has A and B concentrations cAf and cBf , respectively.

(a) Write down the steady-state material balance for species A and B considering
the reaction and diffusion in the slab. Species A has effective diffusivity DA and
species B has effective diffusivity DB , which may not be the same. What are the
boundary conditions for these two material balances. Write down the reaction
rate expression.

(b) Add the two material balances together and find an expression for cB in terms
of cA, cAf , cBf , and D = DA/DB .

(c) At equilibrium, the rate of reaction is zero. Find an expression for the equilib-
rium A concentration, cAe, in terms of D, cAf , cBf , and K = k1/k−1.

(d) Define dimensionless concentration and distance via

c = cA − cAe
cAf

, x = x
w/2

and show the material balance for A in dimensionless variables is

d2c
dx2 − Φ

2c = 0

What is the Thiele modulus for this problem? How does it differ from the irre-
versible case? What are the dimensionless boundary conditions?

(e) Solve your model and show

c =
(

1− cAe/cAf
) coshΦx

coshΦ
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Exercise 7.13: Reaction-limited and diffusion-limited fixed-bed reactors

A second-order catalytic reaction

A -→ B

is carried out in an isothermal fixed-bed reactor containing spherical catalyst pellets.
The exit conversion is 85%. The reactant and product are gases. What happens to the
required bed length to achieve 85% conversion if the feed pressure is doubled and the
feed volumetric flowrate is held constant? You may assume that the flowrate is small
enough that the pressure drop across the bed is unimportant. Consider the following
two cases.

(a) What is the new required bed length if the overall pellet reaction rate is controlled
by the intrinsic reaction rate?

(b) What is the new required bed length if the overall pellet reaction rate is controlled
by the pellet diffusion rate?

You may assume the entire bed length is either in the intrinsic reaction rate or pellet
diffusion rate-limited regimes and that the external mass-transfer resistance between
the fluid and the solid catalyst is negligible.

Exercise 7.14: Second-order reaction in a fixed-bed reactor

The following second-order gas-phase catalytic reaction is conducted in an isothermal
fixed-bed reactor:

A -→ B

The intrinsic rate constant is 15.0 L/mol·s at 800 K. The feed is 15,000 L/hr of pure A
at 10.0 atm and 800 K. Spherical catalyst pellets of radius 1.2 cm are used to pack the
reactor. The catalyst has a pellet density of 0.90 g/cm3, and the reactor bed density
is 0.52 g/cm3. The effective diffusivity of A inside the catalyst pellet is 2.06 × 10−4

cm2/s.

Calculate the mass of catalyst necessary to achieve 85% conversion of A.

Exercise 7.15: Using experimental data from a fixed-bed reactor

The irreversible catalytic reaction

A -→ B

is first order in the concentration of A. Use the data in the following table to determine
the mass of catalyst required for 95% conversion of A in a fixed-bed reactor that can be
modeled as a PFR. The experimental rate was measured in a 0.25-cm diameter spherical
catalyst pellet at 1.0 atm of A and 510◦C. The fixed-bed reactor you are asked to size is
isothermal (510◦C), constant pressure (1.0 atm), and the feed enters atNAf = 1.5 mol/s.

Name Symbol Value Units

experimental rate — 1.04× 10−4 mol/(s·cm3)

catalyst radius Rp 0.125 cm

effective diffusivity of A DA 0.007 cm2/s

catalyst pellet density ρp 0.85 g/cm3

catalyst bed density ρB 0.55 g/cm3
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Figure 7.34: Effectiveness factor versus Thiele modulus for different
values of the Biot number; second-order reaction in a
cylindrical pellet.

Exercise 7.16: External mass-transfer effects on a second-order reaction

Consider the irreversible, second-order reaction

A -→ B, r = kc2
A

taking place in a semi-infinite cylindrical pellet. Compute the effectiveness factor ver-
sus Thiele modulus for the following values of the Biot number, B = ∞, 2, 0.5, 0.1.
Compare your calculation to Figure 7.34.

Exercise 7.17: Hougen-Watson kinetics

Consider the Hougen-Watson kinetics of Section 7.4.4. Using Equation 7.52, verify the
following limits

Φ = Φ̃, φ small (7.93)

Φ = Φ̃√
2φ

, φ large (7.94)

Verify the result in Equation 7.94 using Figures 7.13 and 7.14, and φ = 1000.
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Exercise 7.18: General kinetics

Consider the large Φ reaction-diffusion equation, Equation 7.48, with general kinetic
expression

d2c
dz2 − f(c) = 0 (7.95)

c = 1 z = 0

dc
dz
= 0 z = ∞

in which f(c) is the dimensionless reaction rate. Notice the Hougen-Watson and nth-
order reaction kinetics are special cases of this more general form.

(a) Apply the change of variables of Section 7.4.4 and show the solution is [4, p.
338][18]

z(c) =
∫ 1

c

dc′√
2
∫ c′
0 f(c′′)dc′′

(7.96)

(b) Verify Equation 7.95 is satisfied by z(c) by taking two derivatives with respect
to z of Equation 7.96.

Hint: recall the Leibniz rule for differentiating an integral in which the limits of
integration are variable.

d
dt

∫ b(t)
a(t)

f(x, t)dx = −da
dt
f(a, t)+ db

dt
f(b, t)+

∫ b
a

∂f
∂t
dx

Exercise 7.19: Multiple-reaction, nonisothermal fixed-bed reactor

Consider again the catalytic converter problem of Examples 7.2 and 7.7. Farrauto
and Bartholomew provide a table of exhaust gas velocities for various driving con-
ditions [11]. The exhaust pipe gas velocities range from 0.54–25.2 m/s as the engine
operation varies from idling to full load. We used 0.75 m/s in Example 7.7, which
corresponds to a low engine load.

In order to get reasonable pressure drops at these higher engine loads, let’s assume
the catalyst bed porosity is ϵB = 0.4, and the inlet pressure and temperature are Pf =
1.5 atm, Tf = 570 K. Assume the cross-section of the catalytic converter bed has an
area four times as large as the exhaust pipe’s. Therefore, the velocity in the entrance
to the converter is 1/4 the velocity in the exhaust pipe.

(a) Calculate the fluid and pellet profiles in the bed for uf = 5 m/s exhaust pipe
velocity at the entrance to the catalytic converter. How much catalyst is required
to reach 97.0% conversion of CO and C3H6 under the new engine operation?
What is the pressure drop for this case?

(b) Using the bed size from the previous part, resolve the problem with the idling
speed, uf = 0.75 m/s exhaust pipe velocity at the entrance to the catalytic
converter. What is the conversion CO and C3H6 at the end of the bed? What is
the pressure drop across the bed?
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Exercise 7.20: Logarithmic transformation

Derive the transformed pellet material balance and boundary conditions, Equations 7.89–
7.91, given the original model, Equations 7.85–7.87, and the transformation

wj = ln(c̃j) c̃j = ewj (7.97)

Exercise 7.21: Hougen-Watson kinetics with inerts in the feed

Let’s see the effect of adding inert N2 to the feed in Example 7.6. The following reaction
converting CO to CO2 takes place in a catalytic, fixed-bed reactor operating isothermally
at 838 K and 1.0 atm

CO+ 1
2

O2 -→ CO2

The following rate expression and parameters are adapted from a different model given
by Oh et al. [16]. The rate expression is assumed to be of the Hougen-Watson form

r =
kcCOcO2

1+KcCO
mol/s cm3 pellet

The constants are provided below

k = 1.3828× 1019 exp(−13,500/T) cm3/mol s

K = 8.099× 106 exp(409/T) cm3/mol

DCO = 0.0487 cm2/s

in which T is in Kelvin. The catalyst pellet radius is 0.1 cm.
In this case, the feed to the reactor consists of 2 mol% CO, 10 mol% O2, zero CO2

and 88 mol% inerts, with total volumetric flowrate Qf = 792 L/s. Find the reactor
volume required to achieve 95% conversion of the CO. Do you expect it to be larger or
smaller than the value of VR = 233 cm3 found in Example 7.6? Why?
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8
Mixing in Chemical Reactors

8.1 Introduction

The three main reactor types developed thus far — batch, continuous-
stirred-tank, and plug-flow reactors — are useful for modeling many
complex chemical reactors, and to this point we have neglected a care-
ful treatment of the fluid flow pattern within the reactor. In this chapter
we explore some of the limits of this approach and develop methods
to address and overcome some of the more obvious limitations.

Scope of problem. The general topic of mixing, even in the restricted
context of chemical reactors, is an impossibly wide one to treat compre-
hensively. Obviously the phases of matter that are mixed play a large
role and a comprehensive treatment would consider: liquid/liquid, liq-
uid/solid, liquid/gas, and gas/solid mixing. Even in the contacting of
two liquid phases, the miscibility of the two phases plays a large role in
determining whether or not mixing occurs. We could also consider the
mixing of different solid particles, in which particle size plays a large
role. In this chapter, we will restrict ourselves to fluid-phase systems.

One natural approach to describing mixing is to solve the equations
of motion of the fluid. In fluid systems, the type of fluid flow is obvi-
ously important, and we should consider both laminar and turbulent
flow, and various mechanisms of diffusion (molecular diffusion, eddy
diffusion). Using fluid mechanics to describe all cases of interest is
a difficult problem, both from the modeling and computational per-
spectives. Rapid developments in computational fluid dynamics (CFD),
however, make this approach increasingly attractive [2].

A second, classical approach to describing mixing is to use simple
tests to experimentally probe the system of interest. These empirical
testing approaches do not use any of the structure of the equations of
motion, but they can provide some rough features of the mixing taking
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Figure 8.1: Arbitrary reactor with steady flow profile.

place in the system under study. In this chapter we first develop this
classical approach, and find out what kinds of understanding it can
provide. We also identify some of the limitations of this approach.
Nauman and Buffham provide a more in-depth treatment of many of
the classical topics covered in this chapter, and provide many further
citations to the research literature [24].

Convection and diffusion. We should also mention one point to bear
in mind when thinking about how convection and diffusion affect mix-
ing. One might intuitively expect that to enhance mixing and reduce
spatial variation in concentration, one should seek conditions that max-
imize the rate of diffusion. Although this notion is correct for mix-
ing on the finest length scales, it is generally much more important in
macroscopic scale processes to decrease variations on the larger length
scales. Mixing in this regime is enhanced primarily by improving the
convection, and diffusion plays only a small role. In simple terms, one
does not expect to appreciably decrease the time required to mix the
cream in one’s coffee by increasing the coffee temperature (enhanced
diffusion); one instead turns a spoon a few times (enhanced convec-
tion). On the finest length scales, mixing is accomplished readily for
small molecules by the random process of molecular diffusion; in fact,
the random molecular motions are the only effective mixing processes
taking place on the finest length scales.

8.2 Residence-Time Distribution

8.2.1 Definition

Consider an arbitrary reactor with single feed and effluent streams de-
picted in Figure 8.1. Without solving for the entire flow field, which
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might be quite complex, we would like to characterize the flow pattern
established in the reactor at steady state. The residence-time distribu-
tion (RTD) of the reactor is one such characterization or measure of the
flow pattern. Imagine we could slip some inert tracer molecules into
the feed stream and could query these molecules on their exit from
the reactor as to how much time they had spent in the reactor. We as-
sume that we can add a small enough amount of tracer in the feed so
that we do not disturb the established flow pattern. Some of the tracer
molecules might happen to move in a very direct path to the exit; some
molecules might spend a long time in a poorly mixed zone before fi-
nally finding their way to the exit. Due to their random motions as well
as convection with the established flow, which itself might be turbu-
lent, we would start recording a distribution of residence times and we
would create the residence-time probability density or residence-time
distribution. If the reactor is at steady state, and after we had collected
sufficient residence-time statistics, we expect the residence-time distri-
bution to also settle down to a steady function. Let p(θ) represent the
probability density or residence-time distribution, and P(θ) the cumu-
lative residence-time distribution so

p(θ)dθ, probability that a feed molecule spends time

θ to θ + dθ in the reactor

P(θ), probability that a feed molecule spends time

zero to θ in the reactor

The two versions of the probability function obviously contain the same
information and are related by

P(θ) =
∫ θ

0
p(θ′)dθ′, p(θ) = dP(θ)

dθ

Some prefer to use exclusively P(θ) because if P(θ) is not differen-
tiable, then even defining p(θ) is somewhat problematic. We sidestep
this issue by introducing the impulse or delta function to describe p(θ)
in the case where P(θ) has jump discontinuities.

8.2.2 Measuring the RTD

As a thought experiment to define the RTD, querying tracer molecules
on their exit from the reactor is a fine concept. But we plan to actually
measure the RTD, so we require an implementable experiment with ac-
tual measurements. We cannot measure the time spent by a particular
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tracer molecule in the reactor; to us, all tracer molecules are identi-
cal. We can measure concentration of tracer molecules in the effluent,
however, and that will prove sufficient to measure the RTD. Imagine
an experiment in which we measure the concentration of tracer in the
feed and effluent streams over some time period, while the reactor
maintains a steady flow condition. From the definition of the RTD in
the previous section, the effluent tracer concentration at some time t is
established by the combined exit of many tracer molecules with many
different residence times. The concentration of molecules that enter
the reactor at time t′ and spend time t− t′ in the reactor before exiting
is given by cf (t′)p(t−t′)dt′. These molecules are the ones leaving the
reactor at time t that establish effluent concentration ce(t), so we have

ce(t) =
∫ t
−∞
cf (t′)p(t − t′)dt′ (8.1)

The inlet and outlet concentrations are connected through this con-
volution integral with the residence-time distribution. If we conduct
the experiment so that the feed tracer concentration is zero before an
initial time t = 0, then the integral reduces to

ce(t) =
∫ t

0
cf (t′)p(t − t′)dt′, cf (t) = 0, t ≤ 0 (8.2)

Notice we can change the variable of integration in Equation 8.2 to es-
tablish an equivalent representation

ce(t) =
∫ t

0
cf (t − t′)p(t′)dt′ (8.3)

which is sometimes a convenient form. This connection between the
inlet and outlet concentrations, and the RTD, allows us to determine
the RTD by measuring only tracer concentrations. We next describe
some of the convenient experiments to determine the RTD.

Step response. Although we can in principle use any feed concentra-
tion time function to determine the RTD, some choices are convenient
for ease of data analysis. One of these is the step response. In the step-
response experiment, at time zero we abruptly change the feed tracer
concentration from steady value c0 to steady value cf . For convenience
we assume c0 = 0. Exercise 8.4 shows that we can easily remove this
assumption using deviation variables. Because the feed concentration
is constant at cf after time zero, we can take it outside the integral in
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Equation 8.3 and obtain

ce(t) = cf
∫ t

0
p(t′)dt′ = cfP(t)

So for a step-response experiment, the effluent concentration versus
time provides immediately the cumulative form of the residence-time
distribution

P(θ) = ce(θ)/cf , step response (8.4)

Pulse and impulse responses. An impulse response is an idealized
experiment, but is a useful concept. As we will see it provides the
RTD directly rather than the cumulative RTD. To motivate the impulse-
response experiment, imagine we abruptly change the inlet tracer con-
centration from zero to a large value and return it to zero after a short
time as sketched in Figure 8.2. Such a test is called a pulse test. The
pulse test is no more difficult to implement than the step test; it is
merely two step changes in feed concentration in rapid succession.

t

cf (t)

aδ(t)

area=a

0

Figure 8.2: Family of pulses and
the impulse or delta function.

In some ways it is a superior
test to the step response, because
by returning the tracer concentra-
tion to zero, we use less tracer in
the experiment and we cause less
disruption of the normal opera-
tion of the reactor.

The impulse response is an
idealized limit of the pulse re-
sponse. Consider a family of
pulse tests as sketched in Fig-
ure 8.2 of shorter and shorter du-
ration ∆t. We maintain constant
total tracer addition by spiking
the feed with higher and higher
concentrations so that the prod-
uct cf∆t = a is constant. The im-
pulse response is the limit of this
experiment as ∆t -→ 0. We call

this limiting feed concentration
versus time function the delta
function, aδ(t). It is also called
the Dirac delta function or an impulse, hence the name, impulse re-
sponse. The constant a is the amplitude of the delta function. The
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mathematical problem with this approach is that the limit is not a well-
defined function. The values at all points other than t = 0 go to zero
as we take narrow enough pulses, and the value at t = 0 is unbounded.
But mathematicians have taken a bold step and defined this new kind
of function by what it does rather than its numerical values. The main
property of the delta function is that, because it is so narrowly focused,
it extracts the value of an integrand at a point in the interval of inte-
gration, ∫∞

−∞
g(t)δ(t)dt = g(0), all g(t) (8.5)∫∞
−∞
δ(t)dt = 1, normalized (8.6)

So if we can approximate cf (t) = aδ(t), then we have from Equation 8.1

ce(t) = a
∫ t
−∞
δ(t′)p(t − t′)dt′ = ap(t)

So for an experiment approximating an impulse, the effluent concen-
tration versus time provides the residence-time distribution directly

p(θ) = ce(θ)/a, impulse response (8.7)

We do not require any sophisticated mathematics to use these gener-
alized functions such as the delta function. We introduce them here
because they make our work simpler, not more complicated. You will
also find these functions useful in the process control course when you
analyze the dynamics and feedback control of processes. Moreover,
empirical tests, such as the step- and impulse-response experiments,
provide a general method for modeling the dynamic behavior of many
processes. Using these methods to determine a reactor RTD is just one
small example of their uses in chemical process modeling.

Arbitrary feed concentration experiment. It may be inconvenient or
impossible to perform a step or impulse test on a reactor. In some
situations it is possible to measure a low-concentration impurity in the
feed and effluent streams, and construct the RTD from those measure-
ments. In these cases the feed concentration cf (t) is an arbitrary, but
measured and known, function of time. One must take care that the
noise in the measurements does not obscure the RTD, and replication
of experiment and assessment of uncertainty in the RTD is highly rec-
ommended. Shinnar [28] provides a detailed discussion for further
reading on the science and art of determining and using RTDs to solve
industrial reactor problems.
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8.2.3 Continuous-Stirred-Tank Reactor (CSTR)

Figure 8.3: CSTR and tracer
experiment.

We next examine again the well-
stirred reactor introduced in Chap-
ter 4. Consider the following step-
response experiment: a clear fluid
with flowrate Qf enters a well-stirred
reactor of volume VR as depicted in
Figure 8.3. At time zero we start
adding a small flow of a tracer to the
feed stream and measure the tracer
concentration in the effluent stream.
We assume we keep the flow of the
tracer small enough that we do not
disturb the existing flow pattern in
the reactor. We expect to see a continuous change in the concentration
of the effluent stream until, after a long time, it matches the concen-
tration of the feed stream. We are by now experts on solving this type
of problem, especially in this simple situation without chemical reac-
tion to complicate matters. Assuming constant density, the differential
equation governing the concentration of dye in the reactor follows from
Equation 4.37

dc
dt
=
Qf
VR
(cf − c), c(0) = 0 (8.8)

in which c is the concentration of the dye in the reactor and effluent
stream. In Chapter 4, we named the parameter τ = VR/Qf the “mean
residence time”. We show subsequently that τ is indeed the mean of
the RTD for a CSTR. We already derived the solution to Equation 8.8,
where

c(t) = (1− e−t/τ)cf

so we have immediately

P(θ) = 1− e−θ/τ

which upon differentiation gives

p(θ) = 1
τ
e−θ/τ , CSTR residence-time distribution
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Figure 8.4: CSTR and vol-
ume elements in a game of
chance.

It is often helpful to have two dif-
ferent views of the same result, so
we next consider the well-mixed reac-
tor as a game of chance and rederive
the RTD for the CSTR. Imagine we di-
vide the reactor into a number of vol-
ume elements, depicted in Figure 8.4.
At each time instant, some group of
volume elements is withdrawn from
the reactor, and new volume elements
enter from the feed stream. We as-
sign a probability law to model which
volume elements are withdrawn from
the reactor. The well-mixed assump-
tion is equivalent to the statement
that all volume elements are equally

likely to be withdrawn from the reactor. One can view the mixing as
quickly (instantaneously in the case of perfect mixing) randomizing the
locations of the volume elements so that each one is equally likely to be
nearest to the exit when the next element is withdrawn in the effluent
stream. We also see why perfect mixing is a physical idealization; it is
not possible to instantaneously randomize the locations of the volume
elements with finite power to the stirrer.

We have n volume elements, each with volume Vn = VR/n. In time
interval ∆t, a volume of Qf∆t leaves with the effluent stream. The
number of elements leaving in the time interval is therefore Qf∆t/Vn
out of n, and the fraction of elements withdrawn is

f =
Qf∆t
VR

= ∆t
τ

Now consider the probability that a particular volume element is still
in the reactor after i time intervals. The probability of removal is f , so
the probability of survival is 1−f . After i trials, each of which is inde-
pendent, the probability of survival is the product (1− f)i. Therefore
the probability that an element has residence (survival) time θ = i∆t is

p̃(θ) =
(

1− ∆t
τ

)θ/∆t
(8.9)

We now take the limit as ∆t → 0. Recall from calculus

lim
x→0

(1+ ax)1/x = ea
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Figure 8.5: CSTR residence-time distribution.

Taking the limit and using this result in Equation 8.9 gives

p̃(θ) = e−θ/τ

which, after normalization, is again the residence-time distribution of
the CSTR. The normalization constant is computed by integration∫∞

0
p̃(θ)dθ =

∫∞
0
e−θ/τ dθ = τ

so the residence-time distribution is

p(θ) = 1
τ
e−θ/τ (8.10)

which is plotted in Figure 8.5 for a variety of mean residence times. We
next compute the mean of this distribution. An integration by parts
produces

θ =
∫∞

0
θ p(θ)dθ = 1

τ

∫∞
0
θe−θ/τ dθ

= 1
τ

[
−τθ e−θ/τ − (τ)2e−θ/τ

]∣∣∣∞
0

= τ



438 Mixing in Chemical Reactors

and we have established that the mean of the RTD for the CSTR is
indeed τ = VR/Qf . We can therefore compactly write Equation 8.10 as

p(θ) = 1

θ
e−θ/θ (8.11)

Notice the exponential distribution tells us that it is unlikely for a vol-
ume element to remain in this reactor for long because at each instant
there is a constant probability that the element is withdrawn in the ef-
fluent. It is difficult to win for long in this kind of game of chance,
which explains the exponential decrease in p(θ). In fact, zero is the
most likely residence time, a classic and slightly counter-intuitive case:
the most likely value of θ, the maxθ p(θ) occurs at θ = 0, which is
different from the mean of the distribution, θ = VR/Qf . Again, if the
mixing is not perfect, this maximum does not occur at θ = 0 because
it requires finite time for a volume element entering with the feed to
be convected to the exit. Moreover, our derivation of the RTD of the
CSTR shows the following general principle: given an event with con-
stant probability of occurrence, the time until the next occurrence of
the event is distributed as a decreasing exponential function. This prin-
ciple is used, for example, to choose the time of the next reaction in
the stochastic simulation of chemical kinetics in Chapter 4.

8.2.4 Plug-Flow Reactor (PFR) and Batch Reactor

The simple flow pattern in the PFR produces a simple residence-time
distribution. Consider a step test in which the reactor is initially free
of tracer and we increase the feed tracer concentration from zero to cf
at time zero. As shown in Figure 8.6, the tracer travels in a front that
first reaches the reactor exit at time t = l/v , in which v is the velocity
of the axial flow and l is the reactor length. From these physical con-
siderations, we can write the reactor tracer concentration immediately

c(t, z) =
{

0, z − vt > 0
cf , z − vt < 0

(8.12)

For z − vt > 0, the tracer front has not reached location z at time t so
the tracer concentration is zero. For z − vt < 0, the front has passed
location z at time t and the tracer concentration is equal to the feed
value cf .

It is convenient to introduce the unit step or Heaviside function to
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l0 z

c

z

t1 t2

z2 = vt2z1 = vt1

Figure 8.6: Plug-flow reactor with moving front of tracer.

summarize this result. The Heaviside function is defined as follows

H(t) =
{

0, t < 0
1, t > 0

(8.13)

Because we are armed with the delta function, we can even consider
differentiating this discontinuous function to obtain the relationship

dH(t)
dt

= δ(t) (8.14)

Equation 8.12 can then be summarized compactly by

c(t, z) = cfH(t − z/v)

so the effluent tracer concentration is given by

ce(t) = cfH(t − l/v) = cfH(t − VR/Qf )

and the integrated form of the residence-time distribution is therefore

P(θ) = H(θ − VR/Qf )

We can differentiate this result using Equation 8.14 to obtain

p(θ) = δ(θ − VR/Qf )

In other words, all tracer molecules spend exactly the same time VR/Qf
in the reactor. The mean of this distribution is then also VR/Qf , which
is verified by using Equation 8.5

θ =
∫∞

0
θδ(θ − VR/Qf )dθ = VR/Qf
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1 2 3 n

Figure 8.7: Series of n equal-sized CSTRs with residence time τ/n.

which shows that VR/Qf is the mean residence time for the PFR as well
as the CSTR, even though the residence-time distributions of these two
reactors are quite different. We can compactly summarize the RTD for
the plug-flow reactor by

p(θ) = δ(θ − θ) PFR and

P(θ) = H(θ − θ) batch reactors
(8.15)

Likewise, the RTD for a batch reactor is immediate. All material is
charged to the reactor at time t = 0 and remains in the reactor until
the final batch time, which we may call θ. Then Equations 8.15 also
apply to the batch reactor.

8.2.5 CSTRs in Series

Consider dividing the volume of a single CSTR inton equal-sized CSTRs
in series as shown in Figure 8.7. If the single CSTR has volume VR and
residence time τ = VR/Qf , each of the CSTRs in series has volumeVR/n
and residence time τ/n. If we solve for the effluent concentration after
an impulse at time zero, we can show

p(θ) =
(
n
τ

)n θn−1

(n− 1)!
e−nθ/τ (8.16)

which is plotted in Figure 8.8 for τ = 2. Notice the residence-time
distribution becomes more narrowly focused at τ as n increases. In
fact Equation 8.16 for large n is another approximation for δ(θ − τ).
If we integrate Equation 8.16 we obtain

P(θ) = γ(n,nθ/τ)
Γ(n)

(8.17)

in which the gamma function is defined as

Γ(n) =
∫∞

0
t(n−1)e−tdt (8.18)
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Figure 8.8: Residence-time distribution p(θ) versus θ for n CSTRs in
series, τ = 2.

Notice the gamma function is a generalization of the familiar factorial
and for n an integer,

Γ(n) = (n− 1)!

The incomplete gamma function is defined by the same integrand on
the finite interval

γ(n,x) =
∫ x

0
t(n−1)e−tdt (8.19)

You can perform integration by parts on Equation 8.16 to obtain a series
representation

P(θ) = 1−
(

1+ nθ/τ
1!

+ (nθ/τ)
2

2!
+ · · · + (nθ/τ)

n−1

(n− 1)!

)
e−nθ/τ (8.20)

Evaluating the incomplete gamma function is numerically better than
summing this series when n is large. Figure 8.9 shows Equation 8.17
for a range of n values.
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Figure 8.9: P(θ) versus θ for n CSTRs in series, τ = 2.

8.2.6 Dispersed Plug Flow

Ideal plug flow may not be realized in many packed-bed reactors. We
develop next a model that allows for deviations from plug flow. As
shown in Figure 8.6, in the PFR a change in the feed concentration trav-
els as a perfect front. But measurements in actual packed-bed reac-
tors may show a fair amount of spreading or dispersion as this front
travels through the reactor. The dispersed plug-flow model given in
Equation 8.21 allows for this spreading phenomenon. A diffusion-like
term has been added to the mass balance. The coefficient, Dl, is called
the dispersion coefficient. Note that this term is not meant to rep-
resent true molecular diffusion caused by the random motion of the
molecules. Molecular diffusion in the direction of the convected flow
is always negligible in packed bed reactors operating at reasonable
flowrates. The spreading of concentration fronts is caused by other
phenomena, such as Taylor dispersion [5, p.643].

∂c
∂t︸︷︷︸

accumulation

= −v ∂c
∂z︸ ︷︷ ︸

convection

+Dl
∂2c
∂z2︸ ︷︷ ︸

diffusion

(8.21)



8.2 Residence-Time Distribution 443

Given diffusion in the tube, the inlet boundary condition is no longer
just the feed condition, c(0) = cf , that we used in the PFR. To derive the
boundary condition at the inlet, we write a material balance over a small
region containing the entry point, and consider diffusion and convec-
tion terms. The diffusion term introduces a second-order derivative in
Equation 8.21, so we now require two boundary conditions. We specify
a zero slope condition at the tube exit.

vc|0− = vc|0+ −Dl
∂c
∂z

∣∣∣∣
0+

z = 0

∂c
∂z
= 0 z = l (8.22)

These two boundary conditions have become known as Danckwerts
boundary conditions [11], but they were derived at least 45 years prior
to Danckwerts in a classic paper by Langmuir [22]. Further discussion
of the applicability and some alternatives to the Danckwerts bound-
ary conditions are given by Bischoff [6], Levenspiel [23, p.272], and
Parulekar and Ramkrishna [27].

It is now convenient to introduce a coordinate moving with a scaled
velocity

x = z − vt√
4Dlt

= z − t/τ√
4Dt/τ

in which

D = Dl
vl
= Dlτ

l2
, dimensionless dispersion number

Transforming variables from z and t in Equation 8.21 to x gives

d2c
dx2

+ 2x
dc
dx
= 0 (8.23)

Rather than use the Danckwerts boundary conditions, we can approxi-
mate the behavior with the following simplified boundary conditions

c = 1, x = −∞
c = 0, x = ∞ (8.24)

These boundary conditions correspond to stating that c = 0 for z, t
values corresponding to arbitrarily long times before the step change
arrives, and that c = 1, for z, t values corresponding to arbitrarily long
times after the step change has passed. See Exercise 8.10 for comparing
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the dispersed PFR RTD with Danckwerts boundary conditions to the one
we calculate here with the simplified boundary conditions.

The solution to Equation 8.23 with boundary conditions listed in
Equations 8.24 is

c(x) = 1/2
[

1− 2√
π

∫ x
0
e−t

2
dt
]

The integral can be expressed in terms of the error function, which is
defined as

erf(x) = 2√
π

∫ x
0
e−t

2
dt (8.25)

Substituting in the original variables and setting z = 1 to obtain the
response at the reactor outlet as a function of time gives

c(t, z = 1) = 1/2
[

1− erf

(
1− t/τ√
4Dt/τ

)]

and we have calculated the cumulative RTD for the dispersed PFR with
simplified boundary conditions

P(θ) = 1/2
[

1− erf

(
1− θ/τ√
4Dθ/τ

)]
(8.26)

Equation 8.26 is plotted in Figure 8.10 for τ = 2 and various dispersion
numbers D. We can differentiate Equation 8.26 to obtain the dispersed
plug-flow RTD

p(θ) = 1
4τ
√
πD

1+ τ/θ√
θ/τ

exp

−( 1− θ/τ√
4Dθ/τ

)2
 (8.27)

This RTD is plotted in Figure 8.11.
The dispersion number,D, is related to another dimensionless group,

the mass-transfer analog of the inverse of the Péclet number,

Pe = vl
DA

,
1
Pe
= DA
vl

which measures the rate of diffusion compared to the rate of convec-
tion. The key difference is the Péclet number contains the molecular
diffusivity, DA, and the dispersion number contains the effective ax-
ial dispersion coefficient, Dl. Levenspiel makes a compelling case that
these two quantities have different origins and motivations and de-
serve different names. To further complicate matters, the inverse of
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Figure 8.10: P(θ) versus θ for plug flow with dispersion number D,
τ = 2.
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Parameter Value Units
k 0.5 L/mol·min
cAf 1 mol/L
DAl 0.01 m2/min
v 0.5 m/min
l 1 m

Table 8.1: Mass-transfer and kinetic parameters for Example 8.1.

the Péclet number is often called the Bodenstein number in European
literature. Weller [32] provides an interesting discussion of the history
of the literature on the Bodenstein number, which does not appear to
have been defined or used by Bodenstein, but was defined and used by
Langmuir [22].

Dispersed plug flow with reaction. We modify Equation 8.21 for dis-
persed plug flow to account for chemical reaction,

∂cj
∂t
= −v ∂cj

∂z
+Djl

∂2cj
∂z2

+ Rj (8.28)

Danckwerts boundary conditions, as given in Equations 8.22, can be
applied without change.

Up to this point in the text, we have solved exclusively steady-state
profiles in tubular reactors. Obviously tubular reactors experience a
start-up transient like every other reactor, and this time-dependent
behavior is also important and interesting. Calculating the transient
tubular-reactor behavior involves solving the partial differential equa-
tion (PDE), Equation 8.28, rather than the usual ODE for the steady-state
profile. Appendix A describes the method we use for this purpose,
which is called orthogonal collocation.

Example 8.1: Transient start-up of a PFR

Compute the transient behavior of the dispersed plug-flow reactor for
the isothermal, liquid-phase, second-order reaction

2A -→ B, r = kc2
A

The reactor is initially filled with solvent. The kinetic and reactor pa-
rameters are given in Table 8.1.
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Figure 8.12: Start-up of the tubular reactor; cA(t, z) versus z for var-
ious times, 0 ≤ t ≤ 2.5 min, ∆t = 0.25 min.

Solution

The mass balance for component A is

∂cA
∂t
= −v ∂cA

∂z
+DAl

∂2cA
∂z2

− 2kc2
A

The boundary conditions are

vcAf = vcA|0+ −DAl
∂cA
∂z

∣∣∣∣
0+
, z = 0

∂cA
∂z

= 0, z = l

Finally, an initial condition is required

cA(t, z) = 0, t = 0

Figure 8.12 shows the transient profiles. We see the reactor initially
has zero A concentration. The feed enters the reactor and the A con-
centration at the inlet rises rapidly. Component A is transported by
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Figure 8.13: PFR followed by CSTR (A), and CSTR followed by PFR (B).

convection and diffusion down the reactor, and the reaction consumes
the A as it goes. After about t = 2.5 min, the concentration profile
has reached its steady value. Given the low value of dispersion in this
problem, the steady-state profile is close to the steady-state PFR profile
for this problem. □

Example 8.2: Order matters

Consider two arrangements of a PFR and CSTR of equal volume in series
as shown in Figure 8.13. What are the residence-time distributions for
the two reactor systems? What are the overall conversions for the two
systems for the reaction

A -→ B r = kc2
A

with second-order, irreversible kinetics?

Solution

Consider a unit step test for the CSTR–PFR arrangement. The outlet
concentration for the CSTR is given by

c1(t) = 1− exp(−t/τ)

That feed concentration to the PFR is then simply delayed by τ time
units to give for the CSTR–PFR arrangement.

P(θ) = (1− exp(−(θ − τ)/τ))H(θ − τ)
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Next consider a unit step test into the PFR–CSTR arrangement. For this
case the intermediate stream is given by a delayed step input

c1(t) = H(t − τ)

With this feed into the CSTR, the effluent is merely the CSTR response
to a unit step change after we shift the starting time of the step forward
τ time units,

c2(t) = (1− exp(−(t − τ)/τ))H(t − τ)

so again for this case

P(θ) = (1− exp(−(θ − τ)/τ))H(θ − τ)

and the two residence-time distributions are equal.
The steady-state conversions for both arrangements are also simply

calculated. For a single CSTR, the steady-state inlet and outlet concen-
trations are related by

co/ci =
−1+

√
1+ 4kτci

2kτci
≡ C(ci) (8.29)

For a single PFR, the inlet and outlet concentrations are related by

co/ci =
1

1+ kτci
≡ P(ci) (8.30)

So we wish to compare P(C(c0)) for the CSTR–PFR case and C(P(c0))
for PFR–CSTR case. Because we are not even told kτc0, we check over a
range of values. Figure 8.14 displays the result. We see that the conver-
sions are not the same and that the PFR–CSTR gives higher conversion
(lower outlet concentration) than the CSTR–PFR for all values of kτc0

for a second-order reaction. □

8.3 Limits of Reactor Mixing

We have seen in the previous section that complete knowledge of the
reactor residence-time distribution is insufficient to predict the reac-
tor performance. Although we have characterized completely the time
tracer molecules spend in the reactor, we have not characterized their
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Figure 8.14: Comparison of the effluent concentrations for the two
cases shown in Figure 8.13.

surrounding environment in the reactor during this time.1 In the liter-
ature these two effects are sometimes termed macromixing: the dis-
tribution of residence times of molecules moving with the flow; and
micromixing: the exchange of material between different volume ele-
ments during their residence times. Although we may find it instructive
to separate these two phenomena in the simple reactor mixing models
under discussion, in actual reactors this separation may be unrealistic.
Accurate prediction of reactor performance may require solution or ap-
proximate solution of the equations of motion for the fluid, including
material transport due to diffusion.

In defense of the simple mixing models, however, they do provide
another important insight. We can determine the limits of achievable
mixing consistent with a measured reactor residence-time distribution.
These mixing limits do provide some insight into the limits of achiev-

1If someone were to characterize your learning in this course by measuring your
hours spent in the classroom (RTD), they would hopefully obtain a positive correlation
between learning and residence time. But we would naturally want to evaluate the
environment inside the classroom during these hours if we were going to make more
accurate predictions of learning. We would want to know if the instructor was prepared
for lecture and saying reasonable things, if the students were attentive or asleep, and
so on.
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p(θ)

θ

Figure 8.15: Completely segregated flow as a plug-flow reactor with
side exits; outlet flows adjusted to achieve given RTD.

able reactor performance, although this connection remains an active
area of research as discussed in section 8.4.

8.3.1 Complete Segregation

Imagine we know a reactor RTD, p(θ), either through direct measure-
ment in a tracer experiment or solution of the equations of motion or
some other means. We know from Example 8.2 that this constraint does
not tell us the complete state of mixing in the reactor. We define next
the two extreme limits of mixing consistent with the given RTD. These
ideas were laid out in influential papers by Danckwerts and Zwietering.
The first limit is called complete segregation; it is the limit of no mix-
ing between volume elements. We can realize this limit by considering
the ideal reactor depicted in Figure 8.15. As we progress down the
plug-flow reactor, the residence time θ of the material reaching that
location increases. We can imagine withdrawing from the reactor at
each location or θ a fraction of the flow corresponding to the required
RTD value p(θ), although this might be difficult to achieve in practice.
A PFR with this removal rate then has the specified RTD. No material in
two volume elements with different residence times is ever exchanged
because the plug flow has zero backmixing. This last point is perhaps
more clear if we redraw the reactor configuration as an equivalent bank
of PFRs of different lengths without side exits, as in Figure 8.16.A [31].
Each tube has a single θ value according to its length. We feed the frac-
tion p(θ) of the total flow into each tube of residence time θ so as to
achieve the given RTD for the composite reactor system. This reactor
system is called completely segregated because there is no exchange of
material between the various tubes. Each tube acts as its own private
reactor that processes material for a given amount of time and then
discharges it to be mixed with the other reactors at the exit.

It is a simple matter to predict the behavior of this completely seg-
regated reactor. We assume a single reaction and constant density
throughout the following discussion. Each tube of specified length or
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Figure 8.16: Alternate representation of completely segregated flow
(A), maximum mixed flow (B), and an intermediate mix-
ing pattern (C).

volume V can be assigned a residence time according to θ = V/Q. Let
c(θ) represent the concentration of a reactant in a volume element that
has spent time θ in the reactor. Because the reactor is segregated, each
tube satisfies the constant density PFR equation, Equation 4.103,

dc
dθ
= R(c), c(0) = cf (8.31)

The concentration of the effluent stream is then simply computed by
multiplying the concentration of each tube by the fraction of the total
feed passing through that tube

cs =
∫∞

0
p(θ)c(θ)dθ (8.32)

in which c(θ) comes from the solution of Equations 8.31. It is often
convenient to remove the explicit integration required by Equation 8.32.
Let cs(θ) represent the effect of combining streams with residence
times less than or equal to θ, so

cs(θ) =
∫ θ

0
p(θ)c(θ)dθ
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From this definition it is clear that cs(θ) satisfies the following differ-
ential equation and initial condition

dcs
dθ

= p(θ)c(θ), cs(0) = 0

and the reactor effluent concentration is the limit of cs(θ) as θ -→ ∞.

We can combine the two differential equations for convenient numeri-
cal solution of the segregated case

dc
dθ
= R(c) c(0) = cf

dcs
dθ

= p(θ)c(θ) cs(0) = 0
(8.33)

Notice that this is an initial-value problem, but, in general, we require
the solution at θ = ∞ to determine the effluent concentration of the
reactor. Differential equations on semi-infinite domains are termed
singular, and require some care in their numerical treatment as we dis-
cuss next. On the other hand, if the residence-time distribution is zero
beyond some maximum residence time, θmax, then it is straightforward
to integrate the initial-value problem on 0 ≤ θ ≤ θmax.

Numerical solution. We can solve Equation 8.33 as an initial-value
problem as written with an ODE solver. Because of the semi-infinite
domain, we would need to check the solution for a sequence of in-
creasingly large θ values and terminate the ODE solver when the value
of cs(θ) stops changing. Alternatively, we can map the semi-infinite
domain onto a finite domain and let the ODE solver do the work for
us. Many transformations are possible, such as z = exp(−θ), but ex-
perience suggests a strongly decreasing function like the exponential
causes the right-hand side to go to infinity at z = 1, and we simply ex-
change one singularity for another. A more gentle transformation and
its inverse are

z = θ
1+ θ , θ = z

1− z

Using this change of variable, we rewrite the derivative as

dc
dθ
= dc
dz

dz
dθ
= (1− z)2dc

dz
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Figure 8.17: Maximum mixed flow as a plug-flow reactor with side
entrances; inlet flows adjusted to achieve a given RTD.

Using this result, we transform Equation 8.33 to

dc
dz
= R(c)
(1− z)2

c(0) = cf
dcs
dz

= p(z/(1− z)) c
(1− z)2

cs(0) = 0
(8.34)

Most modern ODE solvers allow the user to specify critical stopping
values. These are values of the variable of integration beyond which
the ODE solver will not step. We would specify z = 1 as a critical value
because the right-hand side is not defined past z = 1. At the value z =
1, we would specify the right-hand sides are zero because the reaction
will have equilibrated at z = 1, θ = ∞ so R(c) = 0, and p(θ) = 0 at θ =
∞. Again, some care must be taken because the denominators are also
going to zero. If the ODE solver terminates successfully, that usually
indicates the transformation was successful. It is useful to plot c(z) to
make sure the z = 1 end does not exhibit some unusual behavior.

8.3.2 Maximum Mixedness

We realize the opposite mixing limit, maximum mixedness, by reversing
the flow in the segregated reactor as shown in Figure 8.17 [34]. The feed
stream is distributed along the length of the PFR and injected at the
appropriate rate at various side entrances corresponding to different
θ “locations” to achieve the required RTD. Notice that because the flow
has been reversed compared to the segregated case, the θ locations
increase from zero at the exit of the tube to large values at the entrance
to the tube. We allow an infinitely long tube if we wish to allow RTDs
such as the CSTR defined on a semi-infinite domain. Reactors with
these specified sidestream addition policies are conceptually important
in understanding recent research on achievable reactor performance as
discussed in Section 8.4.

Consider the equivalent representation of maximum mixedness in
Figure 8.16.B. The shading means that the material at these locations is
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Figure 8.18: Volume element in the state of maximum mixedness.

completely mixed with the material from the other tubes at these same
locations [31]. Notice that we have aligned the exits of the tubes in Fig-
ure 8.16. Therefore when we mix material between tubes, we are mixing
material not with common time spent in the reactor but rather with a
common time-to-go λ. Indeed, the mixing process at a given location is
mixing material with different times spent in the reactor. It is not pos-
sible to mix material with different times-to-go without changing their
exit times for the following reason. If we mix two groups of molecules
with different times-to-go, λ1, λ2, the mixture must later be separated
again so that the molecules may exit the reactor at the specified times
λ1 and λ2. Such a separation is not possible because molecules are
not distinguishable based on their times-to-go in the reactor. We face
the equivalent problem if we mix two identical, pure-component gases
initially on opposite sides of a partition. After mixing, we have no pro-
cess to separate them again based on their initial locations because the
molecules are identical. Such a separation process would violate the
second law of thermodynamics.

We next derive the differential equation that governs the maximum
mixedness reactor [34]. Consider an expanded view of the reactor in
a state of maximum mixedness shown in Figure 8.16.B. As depicted in
Figure 8.18, feed with flowrate Qp(θ)dθ is added to each tube having
residence time θ to achieve the desired RTD. So if we consider a volume
element to be a mixed section of the composite reactor between times-
to-go λ and λ + ∆λ, the material balance for this element consists of
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the following terms:

entering at λ+∆λ: Q
(∫∞

λ+∆λ
p(λ′)dλ′

)
c(λ+∆λ)

leaving at λ: Q
(∫∞

λ
p(λ′)dλ′

)
c(λ)

feed addition: Q
(
p(λ)∆λ

)
cf

production: Q
(∫∞

λ
p(λ′)dλ′

)
∆λ︸ ︷︷ ︸

volume of reactor element

R(c(λ))︸ ︷︷ ︸
rate per volume

Considering the reactor is at steady state, we set the accumulation to
zero and obtain

c(λ+∆λ)
∫∞
λ+∆λ

p(λ′)dλ′ − c(λ)
∫∞
λ
p(λ′)dλ′ + cfp(λ)∆λ+

R(c)∆λ
∫∞
λ
p(λ′)dλ′ = 0

We can combine the first two integral terms and divide by ∆λ to obtain

c(λ+∆λ)− c(λ)
∆λ

∫∞
λ+∆λ

p(λ′)dλ′ − c(λ)p(λ)+ cfp(λ)+

R(c)
∫∞
λ
p(λ′)dλ′ = 0

Taking the limit as ∆λ→ 0 and rearranging gives

dc
dλ
= p(λ)∫∞

λ p(λ′)dλ′
(
c(λ)− cf

)
− R(c)

Equivalently we can express the integral in terms of the integrated form
of the RTD and write

dc
dλ
= p(λ)

1− P(λ)
(
c(λ)− cf

)
− R(c) (8.35)

We wish to calculate the reactor effluent concentration, which is given
by c(λ) at λ = 0. As in the segregated reactor case, this first-order
differential equation is singular; we wish to integrate from λ = ∞, the
entrance to the longest tube, to the combined tube exits at λ = 0. A
boundary condition is required at λ = ∞. For c to remain bounded as
λ -→ ∞, we stipulate the boundary condition

dc
dλ
= 0, λ = ∞
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Provided we know the limit p(λ)/(1 − P(λ)) as λ -→ ∞, we can solve

Equation 8.35 directly for the boundary condition on c at λ = ∞; we
call this value c∞. Note that c∞ ≠ cf .

Numerical solution. We wish to transform the λ ∈ (∞,0) interval into
z ∈ (0,1). The analogous transformation to the segregated reactor is

z = 1
1+ λ, λ = 1− z

z
The derivative becomes

dc
dλ
= dc
dz

dz
dλ
= −z2dc

dz
in which the minus sign arises because we are changing the direction
when integrating in the transformed z variable. Equation 8.35 then
becomes

dc
dz
= − 1

z2

[
p((1− z)/z)

1− P((1− z)/z)
(
c − cf

)
− R(c)

]
c(0) = c∞ (8.36)

and we integrate from z = 0 to z = 1. Again, a critical stopping value
should be set at z = 1 to avoid an undefined right-hand side. We set
the right-hand side to zero at z = 0 because we determined the value of
c∞ such that the bracketed term in Equation 8.36 was zero. Again, care
should be exercised at z = 0 because the denominator goes to zero at
z = 0(λ = ∞). Plotting c(z) and examining the z = 0 end for unusual
behavior is recommended.

Example 8.3: Two CSTRs in series

We illustrate the results of these sections with an example taken from
Zwietering [34].

Given the RTD of two equal-sized CSTRs in series for a single, second-
order, irreversible reaction, compute the reactor effluent concentration
for the following cases: segregated flow, maximum mixedness and two
ideal CSTRs.

Solution

The residence-time distribution for two CSTRs in series is given by
Equations 8.16 and 8.20 for n = 2,

p(θ) = 4θ
τ2
e−2θ/τ

1− P(θ) = (1+ 2θ/τ)e−2θ/τ
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in which τ = VR/Qf and VR is the total volume of the CSTRs. The
balance for the maximum mixedness case becomes

dc
dλ
= 4λ
τ(τ + 2λ)

(c − cf )+ kc2

Defining dimensionless variables, c = c/c0 and λ = λ/τ , the equation
becomes

dc
dλ
= 4λ

2λ+ 1
(c − 1)+Kc2

in which K = kc0τ . Notice that all the physical constants of the reactor
combine into the single dimensionless constant K. If we apply the zero
slope condition at λ = ∞, we obtain the quadratic equation

2(c∞ − 1)+Kc2
∞ = 0

which can be solved for c∞. Again we have an equation on a semi-
infinite interval, which we can transform via

z = 1

1+ λ
λ = 1− z

z

in which λ ∈ (∞,0) is transformed to z ∈ (0,1). The transformed
derivative satisfies

dc
dλ
= dc
dz

dz
dλ
= −z2dc

dz
so the final differential equation is

dc
dz
= − 1

z2

[
4(1− z)/z

2(1− z)/z + 1
(c − 1)+Kc2

]
c(0) = c∞

The effluent of the maximum mixed reactor is given by the solution
c(z) at z = 1. Figure 8.19 displays the solution to this differential
equation for a range of K values. □

Intermediate conditions of mixing. Weinstein and Adler [31] also
proposed an interesting general conceptual mixing model by allowing
a general mixing pattern between the various tubes as depicted in Fig-
ure 8.16.C.

The segregated reactor depicted in Figure 8.15 and Figure 8.16.A is
sometimes referred to as late mixing or mixing as late as possible. The
material remains segregated until it reaches the common exit where
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Figure 8.19: Dimensionless effluent concentration c = c/c0 versus
dimensionless rate constant K = kc0τ for second-order
reaction; the RTD for all cases is given by 2 CSTRs in
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the segregated streams are finally mixed in the reactor effluent. The
situation depicted by the maximum mixedness reactor of Figure 8.17
and Figure 8.16.B is sometimes called early mixing. The material is
mixed at the earliest possible times as it travels down the tubes; no
segregated streams remain to be combined at the reactor exit.

Consider again the two reactors in Example 8.2. The conceptual
mixing pattern is sketched in Figure 8.20. The reactors have identical
RTDs. Comparing these two reactor configurations, the reactor with
the CSTR preceding the PFR is in the condition of maximum mixedness
because the CSTR is the condition of maximum mixedness and the feed
to the PFR is therefore well mixed, so the different portions of the RTD
in the PFR section have identical compositions, and could be consid-
ered well mixed or segregated. The PFR preceding the CSTR is not in
the condition of maximum mixedness, nor is it segregated. As shown
in Figure 8.20, it displays an intermediate state of mixing, similar to
case C in Figure 8.16. We show in Section 8.4 that because the reac-
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A

B

Figure 8.20: CSTR followed by PFR (A) and PFR followed by CSTR (B)
as examples of complete and partial mixing; RTDs for
the two configurations are equal.

tion rate is second order, complete mixing gives the lowest conversion
possible consistent with the given RTD. This conclusion is consistent
with the calculation performed in Example 8.2 in which the CSTR–PFR
arrangement had lower conversion than the PFR–CSTR.

8.3.3 Mass Transfer and Limits of Reactor Mixing

Consider the following physical picture to help in our understanding
of segregated flow and maximum mixedness. Figure 8.21 shows the
classic situation in which we mix two liquid-phase feed streams in a
stirred tank for the second-order reaction

A+ B -→ C

We model the action of the stirrer as shearing the fluid A stream into
small, uniformly sized “particles” of component A dispersed in the con-
tinuous phase containing component B dissolved in a solvent. The size
of the A “particles” is one measure of how well the stirrer is working.
This physical picture, although idealized, is motivated by several types
of real reactors, such as suspension and emulsion polymerization re-
actors. Ottino provides a well-illustrated discussion of the detailed
results of fluid shear [26, pp.1–17]. We assume these “particles” of
component A move rapidly about the reactor with the fluid flow. We
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Figure 8.21: Adding two liquid-phase feed streams to a stirred tank;
the stirrer is modeled as shearing the liquid A feed
stream into small, uniformly sized particles of A and
randomly distributing them in the continuous phase
containing B.

Parameter Value Units
k 1 L/mol·min

kmA 1.67× 10−4 cm/min
kmB 1.67× 10−4 cm/min
α = Q1/Q2 1

cAf 1 mol/L
cBf 1 mol/L
τ = VR/(Q1 +Q2) 10 min

Table 8.2: Mass-transfer and kinetic parameters for micromixing
problem.

therefore have an ideal CSTR residence-time distribution; if we inject
tracer with the A stream or the B stream, we would see the classic
step response for the CSTR. In other words, the macromixing is excel-
lent, and determining the residence-time distribution would not indi-
cate anything except an ideally mixed reactor.
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Now we model the micromixing. Let the mass transfer between the
particles and the continuous phase be described by a mass-transfer
coefficient, so the mass balance for components A and B inside the
particles is given by

V
dcA
dθ

= kmA(cA − cA)S − kcAcBV cA(0) = cAf

V
dcB
dθ

= kmB(cB − cB)S − kcAcBV cB(0) = 0 (8.37)

in which θ is the time the particle has been in the reactor, V and S
are the particle volume and area, respectively, and kmA and kmB are
the A and B mass-transfer coefficients. The variables cA and cB are
the continuous-phase concentrations of A and B. The initial conditions
follow from the fact that the particles are initially formed from the pure
A feed stream. Only as θ increases do they have time to communicate
with the continuous phase. To determine the A and B concentrations in
the continuous phase, we write the overall, steady-state mass balances
for both components

0 = Q1cAf −Q1

∫∞
0
cA(θ)p(θ)dθ −Q2cA −

VR
1+α

[
α
∫∞

0
kcAcBp(θ)dθ + kcAcB

]
0 = Q2cBf −Q1

∫∞
0
cB(θ)p(θ)dθ −Q2cB −

VR
1+α

[
α
∫∞

0
kcAcBp(θ)dθ + kcAcB

]
(8.38)

We use orthogonal collocation on z = θ/(1+θ) to solve Equations 8.37
simultaneously with Equations 8.38 [30]. Orthogonal collocation is de-
scribed briefly in Appendix A. The kinetic and mass-transfer parame-
ters are given in Table 8.2 We compute the total A and B concentration
in the effluent by summing over both particle and continuous phases

cAt =
α

1+α

∫∞
0
cA(θ)p(θ)dθ +

1
1+αcA

cBt =
α

1+α

∫∞
0
cB(θ)p(θ)dθ +

1
1+αcB

We next study the effect of particle size. Figure 8.22 shows cAt for
particle sizes ranging from 0.1 µm to 1.0 cm. We see that if the stirrer
is able to produce A particles of 1.0 µm or less, then the reactor is es-
sentially in the state of maximum mixedness, or, equivalently, operates
as an ideally mixed CSTR. At the other extreme, if the A particles are
larger than about 1.0 mm, then the reactor operates essentially as a
segregated-flow reactor. Segregated flow essentially reduces the reac-
tion rate to zero because the A and B species cannot come into contact.
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Figure 8.22: Total concentration of A in the reactor effluent versus
particle size.
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Figure 8.23: Particle concentrations of A and B versus particle age
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Figure 8.24: Differentiable convex and concave functions.

Figure 8.23 provides a detailed look inside the particles for r = 1, 10
and 100 µm. For r = 1 µm, the A and B concentrations in the particles
rapidly change from the feed values to the continuous phase values as
they spend time in the reactor. This equilibration with the continuous
phase is rapid because the particles are small, the total surface area and
rate of mass transfer are therefore large. This case is close to maximum
mixedness. For r = 100 µm, the particles are 100 times larger, and the
total surface area and rate of mass transfer are small. Therefore, these
particles remain at the inlet feed conditions for a large time. They are
washed out of the reactor before they can produce hardly any reaction
rate. This case corresponds to essentially complete segregation.

Summarizing, this example is instructive for two reasons. First
the residence-time distribution corresponds to a perfect CSTR regard-
less of particle size. Residence-time distribution measures the reac-
tor macromixing, which is excellent. The particle size governs the mi-
cromixing. Small particles have large mass-transfer rates and equili-
brate with the continuous phase and the particles in the reactor with
different ages leading to the case of maximum mixedness. Large parti-
cles have small mass-transfer rates and do not exchange much material
with the continuous phase nor therefore with particles of other ages.
This case corresponds to segregated flow, which leads to essentially
zero rate of reaction. Particles of intermediate size then describe the
reactors in intermediate states of mixing.
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Figure 8.25: Two volume elements before and after mixing.

8.4 Limits of Reactor Performance

8.4.1 A Single Convex (Concave) Reaction Rate

To generalize the results of Examples 8.2 and 8.3, we define convex and
concave functions. As presented in the introductory calculus course,
the simplest version pertains to functions having at least two deriva-
tives. In that case, a function is convex (concave upward) if its second
derivative is everywhere greater than or equal to zero. A function is
concave (concave downward) if its second derivative is everywhere less
than or equal to zero, as shown in Figure 8.24

d2f(x)
dx

≥ 0, f convex

d2f(x)
dx

≤ 0, f concave

For example, the nth-order reaction-rate expression r = cn, is convex
if n ≥ 1 and concave if n ≤ 1. Note that first-order rate functions are
both convex and concave.

The general result for the single reaction is

Given a single reaction with convex (concave) reaction rate ex-
pression, the highest (lowest) conversion for a given RTD is
achieved by the segregated reactor and the lowest (highest) con-
version is achieved by the maximally mixed reactor.

This nonobvious result is a significant generalization of the numer-
ical Examples 8.2 and 8.3, and Exercise 8.6, and requires justification.
The argument presented next first appeared in Chauhan et al. [10]; Nau-
man and Buffham [24] also provide a detailed discussion.
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Step 1. To start, consider the two volume elements shown in Fig-
ure 8.25. Note that in this discussion cA and cB represent concentration
of the same reactant species in volume elements or tubes A and B. When
the volume elements are segregated the total reaction rate rs is simply

rs = r(cA)VA + r(cB)VB

so that the segregated rate per volume is

rs = αr(cA)+ (1−α)r(cB), 0 ≤ α ≤ 1

in which α is the volume fraction of element A

α = VA
VA + VB

On the other hand, if we mix the contents, the concentration is

cm =
cAVA + cBVB
VA + VB

= αcA + (1−α)cB

The total reaction rate per volume after mixing is therefore

rm = r(cm)

As shown in Figure 8.26, for all cA, cB andα, if we mix the two volume
elements, we lower the overall reaction rate. The opposite conclusion
applies if we have a concave rate expression. The rate of the mean rm
is less than the mean of the rate rs for convex reactions, or

r(αcA + (1−α)cB) ≤ αr(cA)+ (1−α)r(cB), all cA, cB ,0 ≤ α ≤ 1

This result is the key to understanding what happens in the general re-
actor. In fact, this statement can be taken as the definition of convexity
(Exercise 8.13).

Step 2. Now consider two tubes as shown in Figure 8.27, which we may
choose to mix or maintain segregated as material proceeds down their
lengths. Again assume a single reaction takes place and the reaction-
rate expression is a convex function of a single reactant species. With-
out loss of generality assume the stoichiometric coefficient for the lim-
iting species is negative one. For constant density, the material bal-
ances for the segregated tubes are

dcA
dθ

= −r(cA), cA(0) = cA0

dcB
dθ

= −r(cB), cB(0) = cB0
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Figure 8.26: Convex rate expression and the effect of mixing; rate
of the mean (rm) is less than the mean of the rate (rs ).
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Figure 8.27: Two tubes before and after mixing the entering feed;
averaging the two segregated tubes produces cs ; the
mixed feed tube produces cm.
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in which θ = V/Qf . We can track the mean concentration for the
segregated case cs by simply summing the molar flows for tubes A and
B divided by the total flow

cs = αcA + (1−α)cB (8.39)

in which α is now the flowrate fraction in tube A

α = QA
QA +QB

We also can write a differential equation for cs by simply differentiating
Equation 8.39

dcs
dθ

= − [αr(cA)+ (1−α)r(cB)] , cs(0) = αcA0 + (1−α)cB0

(8.40)
Consider now the mixed case. If the tubes are mixed at some point,

which we may call θ = 0, then the material balance for the concentra-
tion after that point is

dcm
dθ

= −r(cm), cm(0) = αcA0 + (1−α)cB0 (8.41)

Our goal now is to show cm ≥ cs for all reactor positions, θ, and all
feed concentrations and flowrates, cA0, cB0 and α. We know at θ = 0

dcm
dθ

= − [r(αcA0 + (1−α)cB0)] ≥ − [αr(cA)+ (1−α)r(cB)] =
dcs
dθ

If the initial derivatives have this relationship we know, for at least
some small distance down the tube, cm ≥ cs as shown in Figure 8.28.
How do we know, however, that the curves do not cross each other
at some later time? Assume this crossing can happen as shown in
Figure 8.28, and we establish a contradiction. Let θ1 be the first such
crossing time. At θ1, cA and cB have some well-defined values and
cs = αcA + (1 − α)cB . We have assumed that cm = cs at θ1 so the
differential equation for cm, Equation 8.41, gives

dcm
dθ

= − [r(αcA + (1−α)cB)] , θ = θ1

The differential equation for cs still applies and Equation 8.40 gives

dcs
dθ

= − [αr(cA)+ (1−α)r(cB)] , θ = θ1
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Figure 8.28: Mean segregated and mixed concentrations versus θ;
curves crossing at θ1 is a contradiction.

Comparing the right-hand sides of these two differential equations and
using the convexity of r(c), we conclude

dcm
dθ

≥ dcs
dθ

, θ = θ1

But this relationship contradicts the assumption that the cs and cm
curves cross each other. Therefore there can be no time θ1 at which
the curves cross and we conclude

cm(θ) ≥ cs(θ), all θ

This argument and result apply equally well for all cA0, cB0 and α.

Step 3. Finally, consider a segregated reactor with arbitrary residence-
time distribution as depicted in Figure 8.16.C. We select any pair of
tubes, mix them, make the same argument that we made in Step 2, and
replace the segregated tubes with mixed tubes that achieve lower con-
version than the original system. We continue in this fashion, and after
we pairwise mix all the segregated tubes with mixed tubes, we achieve
the reactor of maximum mixedness in Figure 8.16.B. and the lowest
possible conversion. Note that this pairing and mixing procedure does
not affect the RTD.

8.4.2 The General Case

One might expect that the limits of reactor mixing determine directly
the limits of reactor performance for more general kinetic schemes as
well as the single convex or concave rate expression of the last section.
Unfortunately nature is more subtle. We present next an example that
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Figure 8.29: Reaction rate versus concentration of limiting reactant;
rate expression is neither convex nor concave.

dispels this notion, and then discuss what is known about the limits
of reactor performance. This example is based on one presented by
Glasser, Hildebrandt and Godorr [16]. Levenspiel [23] shows how to
find the optimal reactor configuration for this type of example.

Example 8.4: Optimal is neither segregated nor maximally mixed

Consider the rate expression

r(c) = c
1+ 5c2

+ 0.05c (8.42)

which is plotted in Figure 8.29. For a feed concentration of 5, find
the combination of CSTRs and PFRs that achieve 95% conversion with
the smallest total reactor volume. Determine the RTD for this reactor
configuration. What conversion is achieved in a segregated reactor with
this RTD? What conversion is achieved in a maximally mixed reactor
with this RTD?

Solution

As we mentioned in Chapter 4, the smallest volume can be achieved
with a series combination of CSTRs and PFRs. First we plot the inverse
of the rate as shown in Figure 8.30. Then we find any minima in the
inverse rate function and construct CSTRs from those values until we
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Figure 8.30: Inverse of reaction rate versus concentration; optimal
sequence to achieve 95% conversion is PFR–CSTR–PFR.

intersect the inverse rate curve. In the remaining sections of the curve
where the inverse rate is a decreasing function of concentration, we use
PFRs. Examining the plotted 1/r function in Figure 8.30, we see the op-
timal configuration is a PFR–CSTR–PFR; this configuration is sketched
in Figure 8.30. We can calculate the sizes of the reactors as follows. We
know from the problem statement that c0 = 5, c3 = 0.25. We next find
the point where dr(c)/dc = 0. Notice these are also the places where
d(1/r(c))/dc = 0. Setting the derivative of Equation 8.42 to zero gives
a quadratic equation with two roots: 0.501 and 1.83. We choose the
one corresponding to the minimum in 1/r , which gives

c2 = 0.501, 1/r(c2) = 4.045

Next we find the concentration c1 such that 1/r(c1) = 1/r(c2). This
results in a cubic equation, which we solve numerically. Then the resi-
dence time is given by τ2 = 1/r(c2)(c1 − c2) which gives

c1 = 3.94, τ2 = 13.9
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Figure 8.31: Residence-time distribution for the optimal reactor con-
figuration.

To size the PFRs we simply use the PFR design equation and obtain

τ1 = −
∫ c1

c0

1
r(c)

dc = 3.95, τ3 = −
∫ c3

c2

1
r(c)

dc = 1.07

These results are displayed in Figure 8.30. Because we have a series of
CSTRs and PFRs, we can write the RTD immediately

p(θ) = 1
τ2

exp
[
−θ − (τ1 + τ3)

τ2

]
H(θ − (τ1 + τ3))

which is plotted in Figure 8.31. With the RTD in hand, we can com-
pute both the maximally mixed, Equation 8.36, and segregated, Equa-
tion 8.34, reactor cases. The results of those two calculations are sum-
marized in the following table.

Reactor Conversion
optimal 0.95
segregated 0.68
maximally mixed 0.75

We see that these two mixing limits do not bound the performance of
the actual reactor sequence with the given RTD. In fact, they are off
by more than 20%. Even with a single reaction, if the rate expression
is neither convex nor concave, we cannot bound the performance of
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an actual reactor between the segregated and maximally mixed mixing
limits. □

The attainable region. The primary use of the classical mixing mod-
els, such as the segregated reactor and the maximally mixed reactor,
is to build insight into the effects of mixing on reactor behavior un-
der the constraint of a fixed, and presumably measurable, RTD. As we
have seen in Example 8.4, however, if we are mainly interested in deter-
mining bounds on achievable reactor states (conversions, yields, etc.),
these simple mixing models are insufficient. In this section we would
like to provide a brief overview of what is known about finding sharp
bounds on reactor performance. The general problem can be defined
in this way.

Given a feed stream of known composition and a set of
chemical reactions with known rate expressions, determine
the set of all possible steady-state species concentrations
that can be achieved by any combination of chemical reac-
tors.

This set was proposed by Horn almost 40 years ago and named the
attainable region [18]. Because the set is defined for all possible reac-
tor combinations, it seems conceptually difficult to formulate a proce-
dure by which we can calculate this set. We should also note that by
considering all reactor combinations, we are also considering all pos-
sible residence-time distributions, which is a considerable generaliza-
tion from the single RTD that was considered in the mixing discussion
in previous sections. In spite of the seeming difficulty in finding the
attainable region, excellent, recent research progress has been made.
Feinberg provides a nice summary overview of the history and many
recent developments [12].

Glasser and Hildebrandt revived recent interest in this problem [17,
16]. Feinberg and Hildebrandt [14] characterized the boundary of the
attainable region, which is of importance because it bounds the pos-
sible steady-state concentrations. They showed, for example, that the
extreme points of the attainable region boundary are made up entirely
of plug-flow reactor trajectories. They also showed that combinations
of PFRs, CSTRs, and what are called differential side-stream reactors
(PFRs with addition of feed along the side of the tube), provide the
means to find all of the attainable region extreme points.

In addition to properties and conceptual characterization of the at-
tainable region, researchers have proposed computational procedures
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to approximate the attainable region and solve reactor synthesis prob-
lems. Some of these are based on proposing a superstructure of reactor
types and numbers, and optimizing an objective function among the
possible reactors [20]. Because the superstructure does not enumer-
ate all possibilities, the solution may not be close to the true attainable
region. A person skilled in reactor design may be able to choose re-
actor numbers and types well and overcome this general difficulty on
specific reaction networks of interest.

Some computational methods are based on finding the boundary
of the attainable region using the reactor types that characterize the
attainable region extreme points. Hybrid methods involving super-
structures and geometric considerations have also been proposed [21].
Biegler, Grossmann and Westerberg provide an overview in Chapter 13
of their text [4].

Burri, Wilson and Manousiouthakis recently proposed an infinite di-
mensional state-space approach (IDEAS) that requires only PFRs, CSTRS
and mixing [8]. The advantage of this approach is that one solves only
convex, linear optimization problems. The disadvantage is the prob-
lems are infinite dimensional and require a finite dimensional approx-
imation for calculation. A full analysis of the convergence properties
of the finite dimensional approximation is not yet available, but the
approach shows promise on numerical examples. Kauchali et al. have
proposed another linear programming approach [19]. Finally, Abra-
ham and Feinberg recently proposed bounding the attainable region
from the outside using hyperplanes [1].

If we wish to allow separation as well as chemical reaction, and
almost all industrial designs would fall into this category, then the
problem switches from a pure reactor synthesis problem to a reactor-
separator synthesis problem. The CSTR equivalence principle of Chap-
ter 4 is an example of the strikingly simple and general results that
recently have been achieved for the reactor-separator synthesis prob-
lem [13].

Forecasting is always risky business, but given the rapid pace of re-
cent progress, it seems likely that new and highly useful results on pure
reactor and reactor-separator synthesis problems will be forthcoming.
These ideas and results may have immediate industrial impact, and cer-
tainly fall within the scope of the course in reactor analysis and design.
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Figure 8.32: Imperfect mixing (top reactor) leads to formation of an
A-rich zone, which is modeled as a small CSTR feeding
a second CSTR (bottom two reactors).

8.5 Examples in Which Mixing is Critical

Returning to the topic of mixing, we would like to close the chapter by
presenting a few more chemical mechanisms for which reactor mixing
can play a critical role.

Example 8.5: Mixing two liquid-phase streams in a stirred tank

A classic mixing problem arises when we must bring two liquid-phase
feed streams together to perform the second-order reaction

A+ B
k1-→ C r1 = k1cAcB (8.43)

in the presence of the undesirable side reaction

A
k2-→ D r2 = k2cnA (8.44)

If the rate of the second degradation reaction is fast compared to the
rate of mixing of the two feed streams, we can anticipate problems. To
understand what happens in this situation, consider the mixing model
depicted in Figure 8.32. Component A is assumed to be the limiting
reactant. It is added at a low flowrate to a CSTR that contains an ex-
cess of reactant B. In the top figure we depict the ideal-mixing case in
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Parameter Value Units
cAf 1 mol/L
cBf 1 mol/L
k1 1 L/mol·min
k2 2 L/mol·min
n 2
τ1 = VR1/Q2 1 min
τ2 = VR2/Q2 2 min
τ = VR/Q2

= τ1 + τ2 3 min
α = Q1/Q2 0.1
ρ = Qr/Q2 varies

Table 8.3: Reactor and kinetic parameters for feed-mixing example.

which the rate of mixing is arbitrarily fast compared to the rate of ei-
ther reaction. But this ideal mixing may be impossible to achieve if the
reaction rates are reasonably large. So in the bottom figure, we model
the formation of an A-rich zone near the feed entry point. This small
CSTR exchanges mass with a larger reactor that contains the excess of
reactant B. We can vary the recycle flowrate between the two CSTRs,
Qr , and the sizes of the two reactors, VR1 and VR2, to vary the degree
of mixing. For large Qr , we expect the two-reactor mixing model to
approach the single, ideally mixed CSTR.

As discussed in Chapter 4, the conversion and yield are the usual
quantities of interest in competing parallel reactions of the type given
in Reactions 8.43 and 8.44. We assume the density of this liquid-phase
system is constant, and define the overall conversion of reactant A and
yield of desired product C as follows:

xA =
Q1cAf − (Q1 +Q2)cA

Q1cAf
yC =

(Q1 +Q2)cC
Q1cAf − (Q1 +Q2)cA

Given the parameters and rate constants in Table 8.3, calculate xA and
yC versus Qr for the two-reactor mixing model shown in Figure 8.32,
and compare the result to the single, well-mixed reactor. Then calcu-
late the residence-time distribution P(θ) for tracer injected with the A
feed stream for the two models. Discuss whether or not the residence-
time distribution is a reliable indicator for problems with yield in the
imperfectly mixed reactor.
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Solution

The steady-state mass balance for the single, well-mixed CSTR is

0 = Q1cAf − (Q1 +Q2)cA − (k1cAcB + k2cnA)VR
0 = Q2cBf − (Q1 +Q2)cB − k1cAcBVR

Defining the following parameters

α = Q1

Q2
τ = VR

Q2
ρ = Qr

Q2

allows us to write these as

0 = αcAf − (1+α)cA − (k1cAcB + k2cnA)τ
0 = cBf − (1+α)cB − k1cAcBτ

We can solve numerically the two equations for the two unknowns
cA, cB . The concentration of C in the outflow is determined from the
change in the concentration of B,

(Q1 +Q2)cC = Q2cBf − (Q1 +Q2)cB

Using this relationship and the defined parameters gives for conversion
and yield,

xA =
αcAf − (1+α)cA

αcAf
yC =

cBf − (1+α)cB
αcAf − (1+α)cA

For the two-reactor system, we write mass balances for each reactor.
Let cA1, cA2, cB1, cB2 be the unknown A and B concentrations in the two-
reactors, respectively. The mass balances are

Reactor 1:

0 = Q1cAf − (Q1 +Qr )cA1 +QrcA2 − (k1cA1cB1 + k2c2
A1)VR1

0 = −(Q1 +Qr )cB1 +QrcB2 − k1cA1cB1VR1

Reactor 2:

0 = (Q1 +Qr )cA1 −QrcA2 − (Q1 +Q2)cA2 − (k1cA2cB2 + k2c2
A2)VR2

0 = Q2cBf + (Q1 +Qr )cB1 −QrcB2 − (Q1 +Q2)cB2 − k1cA2cB2VR2
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We can summarize this case using the previously defined variables as
four equations in four unknowns

0 = αcAf − (α+ ρ)cA1 + ρcA2 − (k1cA1cB1 + k2c2
A1)τ1

0 = −(α+ ρ)cB1 + ρcB2 − k1cA1cB1τ1

0 = (α+ ρ)cA1 − ρcA2 − (1+α)cA2 − (k1cA2cB2 + k2c2
A2)τ2

0 = cBf + (α+ ρ)cB1 − ρcB2 − (1+α)cB2 − k1cA2cB2τ2

Figures 8.33 and 8.34 show the yield and conversion for the two cases
as a function of Qr . The conversion is not adversely affected by the
poor mixing. In fact, the conversion in the two-reactor system is higher
than the single, well-mixed reactor. Notice, however, that at low values
ofQr , which corresponds to poor mixing at the feed location, the yield
changes from more than 90% to less than 15%. Low yield is a qualita-
tively different problem than low conversion. If the conversion is low,
we can design a separation system to remove the unreacted A and recy-
cle it, or use it as feed in a second reactor. With low yield, however, the
A has been irreversibly converted to an undesired product D. The raw
material is lost and cannot be recovered. It is important to diagnose
the low yield as a reactor mixing problem, and fix the problem at the
reactor. A yield loss cannot be recovered by downstream processing.

Next we compute the outcome of injecting a unit step change in a
tracer in the A feed stream. We solve the transient CSTR balances and
calculate the tracer concentration at the outlet. Because the tracer does
not take part in any reactions, this can be done analytically or numer-
ically. The result is shown in Figure 8.35. We see the familiar single
CSTR step response. For the two-reactor mixing model, when ρ = 0,
which corresponds to the poorest mixing and lowest yield, the step test
does reliably indicate the poor mixing. At the end of this chapter and
also in Chapter 9 we show how to use this step response to determine
the best value of ρ to model the mixing. When ρ is reasonably large,
Qr = Q2, and the single CSTR and two-reactor cases have similar yields
and step responses.

Notice in all three step responses, the tracer concentration reaches
only cIs = 0.091 = α/(1 + α) because we inject tracer in only one of
the two feed streams. □

This example is one of the classic sets of reactions in which mixing
has a significant impact on the reactor performance and the product
yield. It deserves careful study because it builds intuition and leads
us to ask good questions when confronted with more complex cases.
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Figure 8.33: Conversion of reactant A for single, ideal CSTR, and as
a function of internal flowrate, ρ = Qr/Q2, in a 2-CSTR
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Figure 8.34: Yield of desired product C for single, ideal CSTR, and as
a function of internal flowrate, ρ = Qr/Q2, in a 2-CSTR
mixing model.
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Figure 8.35: Step response for single, ideal CSTR, and 2-CSTR mixing
model with ρ = 0,1.

For example, Villa et al. [29] discuss similar issues that arise in more
complex polymerization reaction engineering problems.

Example 8.6: Maximizing yield in dispersed plug flow

Consider the following two liquid-phase reactions in which B is the
desired product

A
k1-→ B, r1 = k1cA

2B
k2-→ C, r2 = k2c2

B

The second reaction can represent the first step in a polymerization
process of species B, which is undesirable in this case.

Because the second reaction is second order in B, it is desirable to
keep the average B concentration in the reactor low, to avoid yield
losses, but achieve high B concentration near the reactor exit to maxi-
mize the production rate. Intuitively the CSTR is a bad choice, because
it maintains the same B concentration everywhere in the reactor. A PFR
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Parameter Value Units
k1 1 min−1

k2 1 L/mol·min
cAf 1 mol/L
cBf 0
v 1 m/min
l 0.5 m
Dl varies m2/min

Table 8.4: Parameters for the dispersed PFR example.

should offer higher yield. The B concentration is low near the tube en-
trance, and increases to its maximum value at the tube exit if we choose
the right length or residence time. If we make the tube too long, how-
ever, the B is largely converted to C and the yield is again low. In this
case, yield is adversely affected by mixing.

Calculate the steady-state conversion of A and yield of B versus PFR
length for the kinetic and reactor parameters in Table 8.4. What is an
appropriate reactor length to maximize yield of B? Study the effect of
dispersion. Approximately how large can the dispersion number be
before the advantages of the PFR over the CSTR are lost?

Solution

The steady-state mass balances for components A and B are

v
dcA
dz

−Dl
d2cA
dz2

= RA v
dcB
dz

−Dl
d2cB
dz2

= RB

in which

RA = −k1cA RB = k1cA − 2k2c2
B

and we have assumed the dispersion numbers of both species are the
same, DAl = DBl = Dl. Because the fluid is a liquid, we assume the
velocity is constant. We use Danckwerts boundary conditions for both
species

vcjf = vcj(0)−Dl
dcA
dz

(0), z = 0

dcj
dz

= 0, z = l
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j = (A, B). Given the concentrations, and because the flowrate is con-
stant, the conversion and yield are

xA =
cAf − cA
cAf

yB =
cB

cAf − cA
Figures 8.36 and 8.37 show the conversion of A and yield of B versus

tube length for a tube designed to maximize the yield of B. A tube length
of about 0.5 m is appropriate. As the length increases above this value,
the conversion of A increases, but the yield of B drops rapidly, defeating
the main purpose of using a PFR. For the kinetic parameters chosen,
the CSTR yield can be improved by about 8% with a PFR. As shown in
Figure 8.36, the high-dispersion PFR is essentially a CSTR, and achieves
yB = 0.79. The PFR with D = 0.001 achieves yB = 0.87. We see that
the dispersion number must be kept less than about 0.1 to maintain
this advantage in yield. □

8.6 Summary

In this chapter we generalized the two flow assumptions of the ideal-
ized reactor models: the perfect mixing assumption of the batch re-
actor and CSTR, and the plug-flow assumption of the PFR. We defined
the residence-time distribution (RTD) of a reactor, and showed how to
measure the RTD with simple tracer experiments such as the step test,
pulse test and (idealized) impulse test. The RTD gives a rough measure
of the flow pattern in the reactor, but it does not determine completely
the reactor performance. Indeed, reactors with different flow patterns,
and therefore different performances, may have identical RTDs. We
showed the CSTR has an exponential RTD. The derivation of the RTD
of the CSTR also illustrated the following general principle: given an
event with constant probability of occurrence, the time until the next
occurrence of the event is distributed as a decreasing exponential func-
tion. This principle was used, for example, to choose the time of the
next reaction in the stochastic simulations of Chapter 4.

The residence-time distribution of the PFR was shown to be arbi-
trarily sharp because all molecules spend identical times in the PFR.
We introduced the delta function to describe this arbitrarily narrow
RTD. We added a dispersion term to the PFR equations to model the
spread of the RTD observed in actual tubular reactors. We computed
the full, transient behavior of the dispersed plug-flow model, and dis-
played the evolution of the concentration profile after a step change in
the feed concentration.
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We then examined the limits of reactor mixing consistent with a
given RTD. The two limits are segregated flow and maximum mixed-
ness. We showed how a physical process such as mass transfer between
a continuous phase and a particle phase can approach segregated flow
for large particles (small mass-transfer rates) and can approach maxi-
mum mixedness for small particles (high mass-transfer rates).

We also showed that the mixing limits bound the possible reac-
tor behavior for the case of a single, convex reaction-rate expression.
For more general reaction networks, however, the mixing limits do not
bound the reactor performance. For the general reaction network, re-
cent research on the attainable region has started to shed light on the
possible reactor performance. If we consider separation as well as re-
action, rather general results such as the CSTR equivalence principle of
Chapter 4 have recently been discovered. These topics seem ripe for
further research progress.

Next we discussed two contrasting cases in which mixing plays a
critical role. In the mixing of two liquid reactants, we showed that
formation of a poorly mixed zone can lead to significant yield losses. By
contrast, for the kinetics of the second example, good mixing leads to
yield losses; in this example the reactor should be designed to approach
segregated flow.

Finally, the recent progress in the area of computational fluid dy-
namics (CFD) gives us reason to believe that direct solution of the equa-
tions of motion for the fluid will be a tractable approach for designing
reactors and evaluating their performance [2]. It seems reasonable to
expect the classical RTD methods and simple flow models to comple-
ment the computationally intensive CFD methods. CFD methods may
be used to validate simpler mixing models. These validated, simple
mixing models may continue to play important roles in reactor anal-
ysis, design and optimization. Hybrid models that combine aspects
of mixing models with CFD calculations are also finding application,
particularly in bioreactor modeling in which fluid shear has important
effects on both cell damage and mass transfer rates [3].
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Notation

ce effluent concentration in RTD measurement

cf feed concentration

cj concentration of species j
cm concentration in a maximally mixed flow model

cs concentration in a segregated flow model

c∞ concentration boundary condition in maximum mixedness model

C outflow of CSTR, Equation 8.29

D dimensionless dispersion number, D = Dlτ/l2
DA molecular diffusivity

Djl dispersion coefficient for species j
Dl dispersion coefficient

erf(x) error function, Equation 8.25

H(x) Heaviside or unit step function, Equation 8.13

kmj mass-transfer coefficient

l tubular reactor length

n number of CSTRs in a mixing model

p(θ) RTD, probability that molecule spends time θ to θ+dθ in reactor

P(θ) cumulative RTD, probability that molecule spends time zero to θ
in the reactor

P outflow of the PFR, Equation 8.30

Pe Péclet number, Pe = vl/DA
Q volumetric flowrate

Qf feed volumetric flowrate

r particle radius in mixing model

r reaction rate of (single) reaction

Rj production rate of species j
v fluid axial velocity

VR reactor volume

xj molar conversion of component j
yj yield of species j
z reactor axial coordinate

γ(n,x) incomplete gamma function of order n, Equation 8.19

Γ(n) gamma function of n, Equation 8.18

δ(x) delta or impulse function, Equations 8.5 and 8.14, and Figure 8.2

θ residence time of tracer molecule in reactor

θ mean residence time, θ =
∫ θ
0 θ′p(θ′)dθ′

λ time-to-go before molecule exits reactor

τ VR/Qf
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Figure 8.38: Reactor configurations subjected to a step test in tracer
concentration.

8.7 Exercises

Exercise 8.1: Configuration to RTD

Make a qualitative sketch of the integrated form of the residence-time distribution P(θ)
by considering a step change in tracer concentration in each of the reactor configura-
tions shown in Figure 8.38. Be sure to mark the mean of the RTD on your sketches.
The total flow into each configuration is the same and each individual reactor has the
same volume. Is each of the answers in A–F unique?

Exercise 8.2: RTD to configuration

Consider the feed and effluent tracer concentrations from a pulse test shown in Fig-
ure 8.39. Draw the simplest reactor configuration consisting of PFRs and CSTRs similar
to those shown in Figure 8.38 that you would use to model the reactor based on these
test data. Determine τ = VR/Qf for each reactor in your configuration.

Is this configuration unique? Why or why not?

Exercise 8.3: More equivalent RTDs with different conversions

Prepare a plot like that in Figure 8.14 for the following reaction rates

r = kc, r = kc1/2, r = k Kc
1+Kc

Which configuration achieves higher conversion for these cases, CSTR–PFR or PFR–
CSTR?
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Figure 8.39: Tracer concentrations in the feed and effluent streams
versus time.

Exercise 8.4: Deviation variables

Consider again the RTD relationship, Equation 8.1

ce(t) =
∫ t
−∞

cf (t′)p(t − t′)dt′

Assume the feed tracer concentration is not initially zero but some steady concentra-
tion c0. As in the step-response experiment, at time zero the feed is abruptly changed
to a new steady value cf ≠ c0. Consider a dimensionless deviation variable for effluent
tracer concentration.

ce(t) =
ce(t)− c0

cf − c0

(a) Show that the results of Section 8.2.2 still apply in this situation. Namely, the
RTD is easily determined from the effluent concentration via

P(θ) = ce(θ)

(b) For a constant-density CSTR, what differential equation and initial condition
does the deviation variable ce(t) satisfy?

Exercise 8.5: Predicting performance

The residence-time distribution is tabulated below for a flow reactor that has a feed
rate of 16.2 ft3/min. Under the feed conditions (cAf = 0.02 lbmol/ft3 and cBf = 2.34
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lbmol/ft3) the reaction

A+ B
k1-→ C r = k1cA

is essentially first order in the concentration of A and the rate constant is 0.23 min−1

at the temperature of the reactor. Determine the effluent concentration of reactant A
when the total feed to the reactor is 16.2 ft3/min.

θ (min) p(θ) (min−1) θ (min) p(θ) (min−1) θ (min) p(θ) (min−1)

0 0 18.5 0.0604 37.0 0.0026

3.7 0.0005 22.2 0.0437 40.7 0.0010

7.4 0.0120 25.9 0.0259 44.4 0.0004

11.1 0.0415 29.6 0.0133 48.1 0.0001

14.8 0.0627 33.3 0.0061 51.8 0.0000

Exercise 8.6: Three CSTRs and maximum mixedness

(a) Given feed flowrate Q and total reactor volume V , let τ = V/Q and express the
residence-time distribution for three equal-sized CSTRs in series.

(b) Consider second-order kinetics, r = kc2, with feed concentration c0. Define
dimensionless variables

c = c/c0, x = λ/τ, K = kc0τ

and show the maximum mixedness case for the three-CSTR RTD is described by

dc
dx

= Kc2 + 27x2

9x2 + 6x + 2
(c − 1), dc/dx = 0 for x = ∞ (8.45)

What “initial” value c(∞) replaces the derivative boundary condition in Equa-
tion 8.45? Solve Equation 8.45 for a range of K values and plot c(0) versus
K.

(c) Compare your results above with Zwietering’s results for this problem, Tables 1
and 2 in Zwietering [34]. Why do you suppose Zwietering does not report values
for the maximum mixedness case for K = 3 and K = 50? Did you experience
any difficulties computing these cases? What typographical error do you find in
the published tables? See also the results in Example 8.3.

Exercise 8.7: RTD for laminar-flow reactor

Calculate the residence-time distribution (RTD) for a tubular reactor undergoing steady,
laminar flow (Hagen-Poiseuille flow). The velocity profile for Hagen-Poiseuille flow is [5,
p. 51]

v(r) =
2Qf
πR2

[
1−

(
r
R

)2
]

in which v is the axial velocity and R is the tube radius. Plot this RTD and compare to
the RTD for the plug-flow reactor.
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before: r1 r2

r2 ≥ r1

after:

Figure 8.40: Reactor before and after stirrer is started; overall reac-
tion rates before and just after mixing are r1 and r2,
respectively.

Exercise 8.8: Other forms of the rate expression

(a) Establish that rm ≤ rs if the rate expression has the form

r(c) =
∑
i
αicγi αi ≥ 0 γi ≥ 1

(b) Establish that rm ≥ rs if the rate expression has the form

r(c) =
∑
i
βicδi βi ≥ 0 0 ≤ δi ≤ 1

Exercise 8.9: Mixing it up

Another perplexed student shows up at your office hours and complains, “Look, this
mixing stuff doesn’t make any sense.” You and he discuss the simple case of a single,
irreversible reaction with a concave rate expression,

A -→ B, r = kcnA
with n ≤ 1. Displaying impeccable logic, he continues, “Assume we have a PFR operat-
ing at steady state at some overall conversion. If we turn on a stirrer and suddenly mix
the contents of the PFR (shown in Figure 8.40), you claimed in class that the reactor’s
overall reaction rate will suddenly increase as well. But you also told us in Chapter 4
that for these same kinetics, the PFR has a higher steady-state conversion than a CSTR
of the same volume. Both of these statements cannot be true!”

(a) Resolve this seeming contradiction by drawing a sketch of the overall reaction
rate and the effluent concentration of the reactor versus time from the time just
before the stirrer is started until the reactor comes to its new steady state with
the stirrer running.

(b) Draw the same sketch if the reaction rate is convex.

(c) Calculate the exact results for the cases k = 1; τ = 1; c0 = 1; n = 1/2,1,2 (in
appropriate units); and compare the numerical results to your sketches. Make
the sketches before you perform the computation if you want to check your
understanding of the issues.
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Exercise 8.10: RTD for dispersed PFR with Danckwerts BCs

(a) Calculate the RTD for the dispersed PFR using the Danckwerts boundary condi-
tions by solving numerically Equation 8.21 subject to Equations 8.22. You may
wish to try the same approach used in solving Example 8.1.

(b) Compare your calculated values to Figures 8.10 and 8.11 for the same values of
the dispersion number and mean residence time. These figures were calculated
for the dispersed PFR with the simplified boundary conditions given in Equa-
tions 8.24. For what values of the dispersion number are the RTDs similar, and
for what values of dispersion number are the RTDs different?

(c) Because the model is linear, the RTD of the dispersed PFR can also be solved an-
alytically. Solve Equation 8.21 subject to Equations 8.22 for a unit step change in
the feed using either Laplace transforms or an eigenfunction expansion. Com-
pare your result with that given by Otake and Kunigita [25] (see also the discus-
sion by Westerterp, Van Swaaij and Beenackers [33, p.187], Brenner [7, p. 231]
and Carslaw and Jaeger [9, pp.114-119]). Compare your analytical solution to
your previous calculation. Which approach do you prefer?

Exercise 8.11: Fitting a reactor model to a step response

Consider the 2-CSTR reactor model of Example 8.5.

(a) Write the mass balances for an inert component that is added to the Q1 feed
stream depicted in the bottom of Figure 8.32 and show

dc1

dt
= 1
τ1

[
αc1f − (α+ ρ)c1 + ρc2

]
dc2

dt
= 1
τ2
[(α+ ρ)c1 − (1+α+ ρ)c2] (8.46)

in which c1 and c2 are the inert component concentrations in the first and second
reactors, respectively.

A unit-step change in inert concentration in the feed is made to the first reactor,
and the outlet concentration is shown in Figure 8.41.

(b) Adjust ρ by hand, solve Equations 8.46, and compare to the data. The other
parameters are given in Table 8.3. Iterate until you have a pretty good fit to the
data. What is the best value of ρ?

(c) Predict the conversion of A and yield of C for this reactor.

Exercise 8.12: Ordering PFRs and CSTRs

Consider a series of CSTRs and PFRs with a single nth-order reaction taking place in
which

r(c) = kcn

We showed in Example 8.2 that for a convex reaction-rate expression, the PFR should
precede the CSTR to maximize conversion. The reason is shown in Figure 8.20. The
CSTR–PFR configuration is a maximally mixed reactor, which has the lowest conversion
for a convex rate expression.
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Figure 8.41: Effluent concentration versus time after unit step
change in the first reactor.

t (min) 0 3 6 9 12 15 18 21 24 27 30

c2/c1f 0.00 0.042 0.073 0.085 0.085 0.087 0.085 0.092 0.086 0.093 0.088

(a) Consider now a series of four reactors: two CSTRs and two PFRs, which has six
possible configurations: PPCC, PCPC, PCCP, CPPC, CPCP, and CCPP. For n = 2,
we should be able to safely reason that the lowest conversion is achieved with
series: CCPP, because that is also a maximally mixed reactor. Rank order all other
configurations from lowest to highest conversion. Be careful with the ordering
of PCCP and CPPC. Which of these achieves higher conversion?

(b) Repeat for n = 1/2. We know in this case the series CCPP should achieve the
highest conversion because the rate expression is concave. Is your order in the
two parts completely reversed or not? If not, can you explain why not?

(c) Can you guess the solution for a series of six reactors: three CSTRs and three
PFRs? Note there are 20 possible reactor configurations in this case. Can you
suggest a general result for ordering PFRs and CSTRs given a single, convex or
concave rate expression? The authors are not aware of a result of this type in
the research literature.

Exercise 8.13: Convex and concave functions

Convexity is a fundamental notion in the theory of optimization. Convexity can be
defined to apply to functions that are not differentiable such as cases B and C in Fig-
ure 8.42. We say f(x) is a convex function if

f(αx + (1−α)y) ≤ αf(x)+ (1−α)f(y), all x,y,0 ≤ α ≤ 1

In chemical reactor problems, the results stated for convex rate expressions apply
to functions like r = cn in which n ≥ 1, but also apply to rate expressions like that
shown in Figure 8.42, which may be only piecewise differentiable and not monotone.
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Figure 8.42: Some convex functions; differentiability is not required.

(a) Establish the following fact about convex functions, which will prove useful.
Given f is convex and some value of x, then there exists a constantm such that

f(y)− f(x) ≥m(y − x), for every y (8.47)

Hint: without loss of generality assume x < y and consider an arbitrary z such
that x < z ≤ y . Use the definition of convexity of f to show

f(y)− f(x) ≥
(
f(z)− f(x)

z − x

)
(y − x)

We now choose m to minimize the function (f (z) − f(x))/(z − x) over z to
establish the result.

(b) Find m graphically for each of the functions sketched in Figure 8.42. Notice m
depends on the value of x.

Exercise 8.14: Jensen’s inequality

Jensen’s inequality [15] states that given a convex function R, arbitrary function c and
probability density p(θ),∫∞

0
R (c(θ))p(θ)dθ ≥ R

(∫∞
0
c(θ)p(θ)dθ

)
(8.48)

In terms of the chemical reactor, given a convex production rate expression, the mean
production rate is greater than or equal to the production rate evaluated at the mean
concentration, i.e., mixing the reactor contents lowers or does not change the overall
production rate.

(a) Derive Jensen’s inequality. Hint: Let

α =
∫∞

0
c(θ)p(θ)dθ

and use Equation 8.47 to show

R(c(θ))− R(α) ≥m(c(θ)−α), for every c(θ)

Multiply by p(θ) and integrate to obtain Jensen’s inequality.

(b) What analogous inequality holds when R is concave?
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Figure 8.43: Value of
∫∞
0 f(θ)p(θ)dθ as the function p(θ) varies.

Exercise 8.15: Optimization of a residence-time distribution function

Let f be a concave function and p(θ) a residence-time distribution with mean

θ =
∫∞

0
θp(θ)dθ (8.49)

Consider maximizing f over all possible RTDs having the specified mean θ

max
p(θ)

∫∞
0
f(θ)p(θ)dθ (8.50)

(a) Show the maximum is achieved for

p(θ) = δ(θ − θ)

i.e., the maximum is achieved when the residence-time distribution is arbitrarily
narrow at the specified mean value.

Hint: Use Jensen’s inequality and choose c(θ) = θ to show

f(θ) ≥
∫∞

0
f(θ)p(θ)dθ, for all p(θ) (8.51)

which provides an upper bound for the maximum that is independent of p(θ)
as sketched in Figure 8.43.2 By examining Equation 8.51, for what p(θ) is this
upper bound achieved? For what f is this maximum unique? See also Nauman
and Buffham [24, p.162].

(b) What analogous optimization problem can you solve when f is a convex func-
tion?

2Notice Figure 8.43 is merely a representation of the true situation because the ab-
scissa is meant to depict a set of functions, not a set of scalar values as in an ordinary
graph.



Bibliography

[1] T. K. Abraham and M. Feinberg. Kinetic bounds on attainability in the
reactor synthesis problem. Ind. Eng. Chem. Res., 43(2):449–457, 2004.

[2] A. Bakker, A. H. Haidari, and E. M. Marshall. Design reactors via CFD.
Chem. Eng. Prog., pages 30–39, December 2001.

[3] F. Bezzo, S. Macchietto, and C. C. Pantelides. General hybrid multi-
zonal/CFD approach for bioreactor modeling. AIChE J., 49(8):2133–2148,
August 2003.

[4] L. T. Biegler, I. E. Grossmann, and A. W. Westerberg. Systematic Methods
of Chemical Process Design. Prentice Hall PTR, Upper Saddle River, New
Jersey, 1997.

[5] R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. John
Wiley & Sons, New York, second edition, 2002.

[6] K. B. Bischoff. A note on boundary conditions for flow reactors. Chem.
Eng. Sci., 16(1–2):131–133, 1961.

[7] H. Brenner. The diffusion model of longitudinal mixing in beds of finite
length. Numerical values. Chem. Eng. Sci., 17:229–243, 1962.

[8] J. F. Burri, S. D. Wilson, and V. I. Manousiouthakis. Infinite dimensional
state-space approach to reactor network synthesis: Application to attain-
able region construction. Comput. Chem. Eng., 26(6):849–862, 2002.

[9] H. S. Carslaw and J. C. Jaeger. Conduction of Heat in Solids. Oxford Uni-
versity Press, Oxford, second edition, 1959.

[10] S. P. Chauhan, J. P. Bell, and R. J. Adler. On optimum mixing in continuous
homogeneous reactors. Chem. Eng. Sci., 27:585–591, 1972.

[11] P. V. Danckwerts. Continuous flow systems: Distribution of residence
times. Chem. Eng. Sci., 2:1–13, 1953.

[12] M. Feinberg. Toward a theory of process synthesis. Ind. Eng. Chem. Res.,
41(16):3751–3761, 2002.

[13] M. Feinberg and P. Ellison. General kinetic bounds on productivity and
selectivity in reactor-separator systems of arbitrary design: I. Principles.
Ind. Eng. Chem. Res., 40(14):3181–3194, 2001.

494



Bibliography 495

[14] M. Feinberg and D. Hildebrandt. Optimal reactor design from a geometric
viewpoint — I. Universal properties of the attainable region. Chem. Eng.
Sci., 52(10):1637–1665, 1997.

[15] W. Feller, editor. An Introduction to Probability Theory and Its Applica-
tions: Volume II. John Wiley & Sons, New York, second edition, 1971.

[16] D. Glasser, D. Hildebrandt, and S. Godorr. The attainable region for seg-
regated, maximum mixed and other reactor models. Ind. Eng. Chem. Res.,
33:1136–1144, 1994.

[17] D. Hildebrandt and D. Glasser. The attainable region and optimal reactor
structures. Chem. Eng. Sci., 45:2161–2168, 1990.

[18] F. J. M. Horn. Attainable and non-attainable regions in chemical reaction
technique. In Proceedings of the third European Symposium on Chemical
Reaction Engineering, pages 293–302, London, UK, 1964. Pergamon Press.

[19] S. Kauchali, W. C. Rooney, L. T. Biegler, D. Glasser, and D. Hildebrandt.
Linear programming formulations for attainable region analysis. Chem.
Eng. Sci., 57(11):2015–2028, 2002.

[20] A. C. Kokossis and C. A. Floudas. Synthesis of isothermal reactor-
separator-recycle systems. Chem. Eng. Sci., 46(5/6):1361–1383, 1991.

[21] A. Lakshmanan and L. T. Biegler. Synthesis of optimal chemical reactor
networks. Ind. Eng. Chem. Res., 35:1344–1353, 1996.

[22] I. Langmuir. The velocity of reactions in gases moving through heated
vessels and the effect of convection and diffusion. J. Am. Chem. Soc., 30
(11):1742–1754, 1908.

[23] O. Levenspiel. Chemical Reaction Engineering. John Wiley & Sons, New
York, third edition, 1999.

[24] E. B. Nauman and B. A. Buffham. Mixing in Continuous Flow Systems. John
Wiley & Sons, New York, 1983.

[25] T. Otake and E. Kunigita. Kagaku Kogaku, 22:144, 1958.

[26] J. M. Ottino. The kinematics of mixing: stretching, chaos and transport.
Cambridge University Press, Cambridge, 1989.

[27] S. J. Parulekar and D. Ramkrishna. Analysis of axially dispersed systems
with general boundary conditons —I. Formulation. Chem. Eng. Sci., 39
(11):1571–1579, 1984.



496 Bibliography

[28] R. Shinnar. Use of residence- and contact-time distributions. In J. J. Car-
berry and A. Varma, editors, Reactor Design in Chemical Reaction and
Reactor Engineering, pages 63–150. Marcel Dekker, Inc., New York, 1986.

[29] C. M. Villa, J. O. Dihora, and W. H. Ray. Effects of imperfect mixing on
low-density polyethylene reactor dynamics. AIChE J., 44(7):1646–1656,
1998.

[30] J. V. Villadsen and W. E. Stewart. Solution of boundary-value problems by
orthogonal collocation. Chem. Eng. Sci., 22:1483–1501, 1967.

[31] H. Weinstein and R. J. Adler. Micromixing effects in continuous chemical
reactors. Chem. Eng. Sci., 22:65–75, 1967.

[32] S. W. Weller. Langmuir as chemical engineer. . . or, from Danckwerts to
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9
Parameter Estimation for Reactor

Models

Much of this book is devoted to constructing and explaining the fun-
damental principles governing chemical reactor behavior. As we have
seen, these principles are efficiently expressed as mathematical mod-
els. Drawing quantitative conclusions from these principles requires
not only the models, however, but the values of the parameters in the
models as well. In most practical applications, many of the parame-
ters in these models are not known or available beforehand. Evaluating
the model parameters therefore usually requires something outside the
scope of the theory: experimental data. In this chapter we consider the
issues involved in gathering data and estimating parameters from data
with the expressed purpose of identifying a chemical reactor model.
In the process, we develop convenient and reliable tools that aid us
in extracting as much information as possible from the expensive and
time-consuming process of building experimental facilities, designing
experiments, and making careful measurements.

9.1 Experimental Methods

9.1.1 Analytical Probes for Concentration

Experimental design includes specifying what variables to measure and
how best to measure them. Included in the list of variables are reac-
tor volume, inlet flowrates, temperature, inlet (initial) concentrations
of one or more components, and effluent (final) concentrations of one
or more components. Concentration or molar flowrate are the depen-
dent composition variables in the design equations, and reaction rates
are generally specified in terms of component concentrations. Whether
the reaction is homogeneous or heterogeneous, solution of the mate-
rial balance requires knowledge of the fluid-phase concentrations, so
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we focus here on the important methods for measuring component
concentrations in liquid-phase and gas-phase mixtures. You are likely
to encounter these methods in research and analytical services labora-
tories.

To determine concentration, a unique chemical or physical attribute
of the molecule under study is measured. For example, the vibrational
frequency can be probed by infrared spectroscopy, the thermal conduc-
tivity can be probed by gas chromatography, or the mass/charge ratio
for an ionized molecule can be probed by mass spectroscopy. The first
example can be applied to the mixture while the second example re-
quires the components to be separated before measuring the thermal
conductivity. The final example samples the mixture and performs the
mass discrimination as part of the analytical technique.

Analytical methods require calibration and proper selection of con-
ditions to ensure the components of interest can be detected and their
amounts quantified. Often only a few components out of an entire
mixture can be monitored, and it is necessary to select the ones that
provide the most information about the progress of the reactions. In
most situations, the composition is measured only at discrete sample
times, ti. The general problem is to collect enough of the proper infor-
mation so that the experimental data can be tested against appropriate
kinetic and process models.

Infrared spectroscopy exploits the absorption of electromagnetic
radiation associated with molecular motion of chemical bonds, in par-
ticular stretching, bending and rocking motions. The energies of these
vibrational motions are in the infrared region of the electromagnetic
spectrum (2.5–20 µm; 500–4000 cm−1) [19, 3, 23]. Examples include
the C H asymmetric stretching mode of a methyl group (CH3) at 2962
cm−1, the C C stretching mode of ethylene at 1623 cm−1, the O H
stretching mode of methanol at 3682 cm−1, the R branch of the C O
stretching mode of carbon monoxide at 2170 cm−1, the C O asym-
metric stretching mode of carbon dioxide at 2350 cm−1, and the C O
stretching mode of acetone at 1718 cm−1. Infrared spectroscopy can
be applied to gas, liquid and solid samples, and it is both a qualita-
tive technique to identify the presence of molecules and a quantitative
technique that can establish the concentration of the molecules.

The quantitative aspects are based on Beer’s law,

A = ϵbc

in which A is the measured absorbance, ϵ is the molar absorptivity, b
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is the path length and c is the concentration of the absorbing species.
The liquid-phase or gas-phase sample is placed in a fixed-path-length
cell. For gases, this cell may be simply a tube with infrared transparent
windows affixed to each end. The intensity of a particular wavelength
of light passing through the sample is recorded and compared to the
intensity recorded when the cell is empty or filled with an inert sub-
stance. The infrared spectrometer reports the intensity difference as
an absorbance. With proper calibration using standard mixtures, the
absorbance intensity can be converted into a concentration using Beer’s
law because the path length and molar absorptivity are fixed variables.
Infrared spectroscopy can be used as a continuous monitoring tech-
nique by passing the gas or liquid through the cell as it exits a flow
reactor.

Infrared spectrometers vary by the means used to discriminate wave-
lengths. Dispersive instruments use a monochrometer and a grating to
select the particular wavelength of interest or range of wavelengths
that are scanned. Fourier transform spectrometers use an interferom-
eter with a movable mirror to modulate the light source before it is
incident on the sample, and all wavelengths are sampled simultane-
ously. The signal is recorded as a function of the mirror displacement,
and after averaging multiple measurements and transforming the in-
terferograms, the spectrometer reports absorbance versus wavelength.

Because infrared spectroscopy is an optical technique, the sample
must be transparent in the spectral region of interest. Infrared spec-
troscopy can be used for heterogeneous samples and adsorbates on
catalyst surfaces [11, 17]. If the sample cannot be made thin enough
to be transparent, special probing techniques such as attenuated total
internal reflectance can be used to monitor the concentration.

Gas chromatography is the workhorse of routine analysis [14, 18,
21, 16] because it can be used for simple gases, such as separating the
constituents in air, as well as complex hydrocarbon mixtures, such as
the components in gasoline. Gas chromatography can resolve concen-
trations in the range of parts per billion to tens of percent. Figure 9.1
presents a simplified schematic of a gas chromatograph. It consists of
an injector, column and detector; each section has a separate tempera-
ture zone. The gas/liquid sample to be analyzed is injected as a pulse
input in the injector and it flows along with the carrier gas through the
column, where it is separated into components, and then flows to the
detector. Most gases, and liquids that vaporize at temperatures less
than about 350◦C, can be analyzed by gas chromatography. More spe-
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Figure 9.1: Gas chromatograph schematic.

cialized chromatography techniques, such as high-pressure liquid chro-
matography, extend the basic chromatographic technique to very high
molecular weight compounds or to thermally unstable compounds.

The detector is typically a thermal conductivity detector or a flame
ionization detector. The thermal conductivity detector is just a heated
wire that has a constant current passed through it. The wire cools as a
carrier gas flows over it and a steady wire temperature is established as
a base-line response. If the gas flowing past the wire changes composi-
tion and therefore thermal conductivity, the wire temperature changes.
The voltage drop across the wire and the current through the wire are
related via Ohm’s law, V = IR, to the wire resistance, which is temper-
ature dependent. The thermal conductivity detector then operates by
converting the voltage drop change to a temperature change as the gas
mixture flowing past the wire changes from carrier gas only to carrier
gas plus sample. A carrier gas is selected, typically He or N2, that has
a thermal conductivity significantly different from any component in
the mixture. The detector identifies the thermal conductivity of the gas
mixture, not the composition of the gas mixture. The thermal conduc-
tivity can be related to the composition by calibrating with carrier gas
and samples of known composition.

The flame ionization detector operates by blending the column ef-
fluent with H2 and burning it with air in an ionizing flame. The ions are
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counted with an electrometer. A flame ionization detector works best
with hydrocarbons. The electrometer merely records the presence of
ions. The greater the concentration of a particular component in the
flame, the greater the signal. The flame ionization detector does not
identify the composition of the gas in the flame. Separation of the in-
jected sample is accomplished by column selection. The column is a
long, narrow tube that is either filled with a packing such as a porous
adsorbent, or contains a thin coating of a high-molecular-weight liquid
on the inner tube surface that acts as the adsorbent. As the injected
pulse travels along the column length, the components interact with the
adsorbent to differing degrees and are eventually separated into pulses
of almost pure components. The science of gas chromatography lies
in designing and selecting a column that separates the constituents,
perhaps sorting them by boiling point or polarity. Standard mixtures
are used to establish the elution order and time of elution for gases in
a particular column.

Mass spectroscopy can be used to determine the partial pressure of
gases in a mixture. Figure 9.2 presents a simple schematic of a mass
spectrometer for gas monitoring. The mass spectrometer is maintained
in a high-vacuum chamber at pressures less than 10−6 Torr. The gas to
be analyzed flows past a special valve, called a leak valve, that permits a
small fraction of the flowing gas stream to enter the vacuum chamber.
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A steady state is established in which the amount of gas leaked into the
chamber is pumped away. Pumping speeds of different molecules may
vary; a predictable relationship between the relative mole fractions in
the flowing gas stream and the relative mole fractions in the vacuum
chamber can be established [20]. The mass spectrometer measures
the partial pressures of the molecules inside the vacuum chamber. As
configured in Figure 9.2, the mass spectrometer generates a continuous
measure of the gas-phase composition.

The spectrometer has four major components: ionizer, focusing
lens system, quadrupole section and detector. The spectrometer op-
erates on the principal that ions can be steered into the detector or
diverted away from the detector. The ionizer and lens system pro-
duce, collimate and impart a constant kinetic energy to the ions. The
quadrupole rods have a varying direct current (dc) potential and oscil-
lating radio frequency (rf) field applied across pairs of rods that causes
all ions except those with a particular mass/charge (m/z) ratio to follow
an unstable path and collide with the rods. Depending on the instan-
taneous dc voltage, only ions with a single m/z follow a stable path to
the detector, which is at a large negative potential (−2 to −4 kiloelec-
tronvolt (keV)). The ions received at the detector induce a current to
flow in the detector.

Various ionization techniques can be used [14, 13, 9]; the most com-
mon is electron impact ionization. Electrons (typically 70 eV) emitted
from a very hot filament collide with molecules in the ionizer region.
The electron impact ionization process ionizes the molecule or atom

M+ e− -→ M+ + 2e−

and ionizes and fragments the molecule into a number of ions, M+j , of
mass less than M.

M+ e− -→ M+j + 2e− + neutral fragments

The relative ratios of the M+j fragments can be used to identify the
structure of M. The current generated by M+ and all M+j fragments at
the detector is used to establish the partial pressure of each component
in the vacuum chamber.

9.1.2 Experimental Reactors for Kinetics Studies

Time and position are the independent variables, and concentration,
volumetric flowrate and temperature are the dependent variables. Ulti-
mately, the experimental data are fit against a model for the reactor in
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which the data were collected. This process becomes more challenging
when the reactor is nonisothermal. Therefore, one often tries to de-
sign experimental reactors and select reaction conditions that permit
isothermal operation. The effect of temperature is most easily explored
by operating the isothermal reactor at different temperatures.

The reactor models presented in Chapters 4–7 were based on spe-
cific flow assumptions, such as the well-mixed reactor and plug flow
reactors. Experimental reactors must retain these flow attributes if we
wish to use the simple material balances for estimating model param-
eters.

Starting and quenching the reaction can present formidable chal-
lenges. The experiment should be designed to ensure that the reaction
takes place only in the reactor and under the conditions assumed in
the reactor model. For example, if a reaction has a large activation en-
ergy, it is necessary to operate the reaction at elevated temperatures to
achieve a measurable rate. If using a flow reactor, the reactants must be
preheated and injected into the reactor without any reaction occurring
prior to the reactor inlet. In an isothermal batch reactor, the reactor
contents must be heated rapidly to the desired temperature and held at
constant temperature. Unless steps are taken, the reactions may con-
tinue in the samples withdrawn from the reactor. If the reaction has a
low activation energy, lowering the temperature does not quench the
reaction. It may prove necessary to dilute the sample or add compo-
nents to cause side reactions to quench a reaction.

Most experimental reactors are small to ensure large surface-to-
volume ratio for good temperature regulation, and to minimize the
chemical inventory needed to conduct the experiments. As illustrated
in Figures 1.6 and 1.8, flow and batch reactors with volumes of several
hundred nanoliters have been fabricated out of silicon wafers and used
for organic synthesis screening studies.

Liquid-phase reactions. A batch reactor, CSTR or PFR could be used
for liquid-phase studies. Many times, the choice of a batch reactor is
made by pumping considerations. Continuous, steady and nonpulsat-
ing flow may be difficult to realize for liquids in a laboratory setting. Ac-
curate and large-volume positive displacement pumps are costly, and
small centrifugal pumps many not be available to handle the reactants.
In the simplest case, a batch reactor may be nothing more than a beaker
with a magnet stir bar for agitation. The situation becomes more com-
plex if temperature regulation, efficient mixing, and isolation of the
contents from ambient gases are important factors. Samples are typ-
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ically withdrawn as aliquots at preset time intervals via syringe and
saved for subsequent analysis. Figure 1.2 illustrates the batch reactor
internals required to control the temperature and withdraw samples.

Gas-phase reactions. The reactor of choice for gas-phase reactions is
the plug-flow reactor. The batch reactor and CSTR are rarely used for
gas-phase studies because it is difficult to achieve ideal mixing of gases.
The isothermal PFR is usually nothing more complicated than an open
tube maintained at a constant temperature. Different tube diameters
and lengths are used to change the reactor volume as an experimental
variable. Gas flows are routinely and reproducibly regulated with mass
flow controllers or manually with metering valves and flow meters; this
enables a wide range of volumetric flowrates to be examined as an ex-
perimental variable. Sampling is best accomplished by directing the
gas effluent through a gas sampling valve so that precise samples can
be injected automatically into a gas chromatograph.

It is quite common in experimental studies to operate a PFR as a so-
called differential reactor. A differential reactor is a PFR in which the
reactants experience only a small (differential) change in the extents
of the reactions. The differential reactor is modeled using a limiting
form of the PFR material balance design equation and generates data
of the form rate versus concentration. Rate versus concentration data
may prove useful in certain kinetic parameter studies. The PFR design
equation is

d
dV

Nj = Rj =
∑
i
νijri (9.1)

If we assume the molar flows change by only a small amount, we can
approximate the derivative with a finite difference formula

Nj −Njf
VR

≈ Rjf =
∑
i
νijrif (9.2)

Nj ≈ Njf + RjfVR (9.3)

in which Rjf and rif are the production rates and reaction rates eval-
uated at the feed conditions. Now we account for the change in vol-
umetric flowrate. (Exercise 9.7 explores what happens if we neglect
the volumetric flowrate change.) If we assume an ideal gas, we have
Q = NRT/P , in which N is the total molar flow, and summing Equa-
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tion 9.3 produces

N = Nf +
∑
i
rif ν̄iVR

Q = Qf +
RT
P

∑
i
ν̄irifVR

Substituting theQ relation into Equation 9.3 and rearranging produces

∑
i
(νij −yjν̄i)rif =

Qf
VR
(cj − cjf ) (9.4)

in which yj is the mole fraction of component j in the effluent. Exper-
imentally, one measures cj in the effluent stream, which determines
the right-hand side of Equation 9.4. One then solves a least-squares
problem to determine all of the rif . By varying cjf , it is possible to
measure efficiently the reaction rates over a range of concentrations.

For example, if we have the single reaction A -→ 2B, and we measure

both cA and cB , using Equation 9.4, we obtain two estimates of the single
reaction rate

r =
Qf
VR

(cAf − cA)
−(1+yA)

r =
Qf
VR

(cBf − cB)
(2−yB)

(9.5)

and the least-squares solution is equivalent to taking the average.

Heterogeneously catalyzed reactions. Macroscopic fluid models are
combined with microscopic transport models in the catalyst particles
to describe how concentration changes with time and position in a cat-
alytic reactor. Special considerations must be given to the selection of
experimental temperature and catalyst particle size to minimize (and
hopefully eliminate) internal transport limitations on the catalytic re-
action rate. The next requirement is that the flow pattern in the reactor
is accurately represented by the well-mixed or plug-flow assumption.
The subsequent discussion applies to gas-phase reactants.

Commercial experimental reactors that achieve ideal mixing are avail-
able. These reactors either hold the catalyst in a basket arrangement
and circulate the reacting gases through the bed or they spin the bed
at a high revolution rate. The design achieves a sufficiently high linear
velocity across the catalyst bed and volumetric flowrate in the reactor
vessel so that the contents of the fluid phase can be assumed to be well
mixed. The high internal circulation rate and linear velocities ensure
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uniform temperatures in the reactor, and special seals permit opera-
tion at pressures exceeding 100 atm. These well-mixed reactors can be
treated as batch or CSTR, depending on how they are operated.

A second type of reactor is the plug-flow, fixed-bed reactor. The
reacting gas must move through the reactor as a plug, with a flat ve-
locity profile. Previous studies of transport in porous media have led
to characteristic groups that gauge how well the fluid flow can be char-
acterized as plug-like [8]. These groups and their values include the
particle Reynolds number

Re = Dpm
SµϵB

≥ 30

the axial aspect ratio
L
Dp
≥ 30

and the radial aspect ratio
Dt
Dp
≥ 10

The Reynolds number ensures turbulent flow and with it effective radial
mixing. The axial aspect ratio ensures that axial dispersion is minimal.
The radial aspect ratio ensures that channeling does not occur. Chan-
neling refers to the situation in which the fluid close to the reactor walls
travels faster than the fluid at the center of the tube. When these three
dimensionless conditions are satisfied, one can usually model the re-
actor as a PFR. The velocity profiles are complex, however, and broad
generalizations should be used with caution [28].

9.1.3 Characterizing Catalysts and Surfaces

A wide variety of analytical probes are used to study, characterize
and monitor catalysts and catalyst surfaces. Our intent here is to dis-
cuss some of the more common and routine techniques. Much more
detail and many more techniques can be found in specialized books
[33, 32, 27, 12]. A catalyst functions through the highly specific inter-
actions the active sites have with the reactants. The catalyst might be
a metal dispersed on an inert carrier, a polycrystalline or amorphous
mixture of metal oxides, or a zeolite (a crystalline and highly porous
oxide). The experimentalist is typically interested in the catalyst com-
position, structure of the catalyst, distribution of active sites, presence
of poisons/impurities after the catalyst has been used, and number of
active sites — parameters that influence the catalytic activity.
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Figure 9.3: Volumetric chemisorption apparatus.

Active site densities can be determined using adsorption isotherms
as discussed in Chapter 5. The equipment is straightforward. Fig-
ure 9.3 presents a schematic view of the essential components of a
chemisorption apparatus. The apparatus includes a pressure trans-
ducer for accurately measuring the pressure, a gas-mixing manifold
for introducing the adsorbate gas, a vacuum pump for establishing a
low base pressure and removing all adsorbates from the catalyst, and
two vessels of known volumes (V1 and V2) separated by a valve. The
catalyst is placed in Vessel 2 and this section of the apparatus is main-
tained at constant temperature. An experiment proceeds by adding
the catalyst and evacuating the entire apparatus until nothing is ad-
sorbed on the catalyst and the pressure is below the detection level
of the pressure transducer. Valve 1 is closed, Valve 2 is opened, and
gas is admitted to Vessel 1. Valve 2 is closed, and the pressure and
temperature of Vessel 1 are recorded. Valve 1 is then opened and gas
both expands into Vessel 2 and adsorbs on the catalyst. The pressure
is noted after reaching a steady value. Using an equation of state, such
as the ideal gas law, the temperatures and volumes of Vessels 1 and 2,
and the pressure before and after admitting gas to Vessel 2, one can
determine the moles of adsorbed gas. The experiment continues by
closing Valve 1, opening Valve 2 and refilling Vessel 1, and then closing
Valve 2. The pressure in Vessel 1 is noted before and after opening
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Valve 1. This sequence of filling and expanding is repeated until there
is no change in the pressure upon expanding the gas into Vessel 2.
This procedure generates the number of moles adsorbed as a function
of pressure, which can be used to determine the number of active sites
and the adsorption equilibrium constant.

Crystallinity and particle size can be determined by X-ray diffrac-
tion. Supported metals and metal oxides generally adopt their native
packing when they form crystallites sufficiently large to define a struc-
ture. A diffraction pattern identifies the atomic packing structure, pro-
vided the material is crystalline, and is in sufficiently large particles (≥
10 nm) and has a diffraction pattern that is not obscured by the sup-
port. X-ray diffraction is used to assess the presence of amorphous
versus crystalline phases and changes in the relative amounts of dif-
ferent crystalline phases with thermal treatment. A given crystal has a
unique diffraction pattern. As particle size decreases, the diffraction
pattern becomes diffuse and the peaks broaden. This phenomenon is
termed line broadening and it can be used to determine particle size
[33].

Particle size also can be established using transmission electron mi-
croscopy. In this technique, a mono-energetic beam of high-energy
electrons is directed through a thin, solid specimen (≤ 200 nm). As
the electrons travel through the sample, they interact with the atomic
constituents of the sample and scatter. This scattering process leads
to contrast images being projected on a detector. Generally, it is easy
to discern a heavy element from lighter elements, such as Pt dispersed
on Al2O3. The heavier element produces a different intensity image.
It is routine to resolve less than 0.2 nm and image individual atoms.
The particle size is determined by measuring the size of the image
and working back from the magnification used in the experiment. A
sufficient number of particles must be measured to give a statistically
meaningful average particle size. This technique can be applied be-
fore and after reaction to determine if the particles have changed size
during the reaction.

Composition can be determined by dissolving the catalyst in a suit-
able liquid, injecting the liquid solution into an inductively coupled
plasma, and analyzing the ions generated in the plasma with a mass
spectrometer. The inductively coupled plasma source is highly effi-
cient at ionizing the injected sample, and this measurement has very
high elemental sensitivity and is quantitative. The digestion technique
is destructive.
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Composition also can be determined in a nondestructive manner
using electrons or soft X-ray sources to excite the core levels of the
atoms. Secondary or primary electrons are ejected from the sample at
energies that are characteristic of the elements. These ejected electrons
have a mean free path that is energy dependent and can only exit the
sample if they are formed in the top 0.5–10 nm of the sample surface.
The ejected electron techniques identify what is present; it is difficult
to make these techniques quantitative.

Auger electron spectroscopy uses a focused electron beam (3–5 keV)
to eject an inner atomic level electron and create a singly ionized excited
atom. Electrons from other energy states in the atom rapidly fill the
vacancy. The energy released in this de-excitation electronic transition
can be transferred to a third electron. If the binding energy of this
third electron is less than the energy transferred to it, it is ejected as
an Auger electron. The energy of this ejected electron is monitored
with an Auger electron spectrometer. Elements have discrete electron
energy levels with distinguishable binding energies, so the energy of
the ejected Auger electrons provide a means of identifying the elements
that are present [10].

X-ray photoelectron spectroscopy uses soft X-rays (Mg Kα at 1253.6
eV and Al Kα at 1486.6 eV) to eject core-level electrons from the un-
known sample. The kinetic energy of the ejected electrons is monitored
and related back to the binding energy. The binding energy is used to
identify the elements present [22]. Since the binding energy of inner-
shell electrons typically changes with the valence of the element, X-ray
photoelectron spectroscopy can be used to follow oxidation or reduc-
tion of the catalyst as well as identify the presence of elements.

9.2 Data Modeling and Analysis

Having provided the context in which we perform experiments and
make measurements, we now turn to the issue of how we extract the
information contained in the data. The two large questions we must ad-
dress are: what model structure is appropriate to describe the reacting
system of interest, and, having selected a structure, what model param-
eters best represent the data we have collected, and how certain are we
about these parameter values. The first question has occupied us up
to this point; it has been the central focus of Chapters 1–8. Indeed,
understanding the fundamental principles and models that explain the
many kinds of chemical reaction and reactor behaviors is one of the
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essential goals of the chemical engineering education.
In this section, we focus finally on the second question, how to esti-

mate model parameters from data. This problem is also important, and
has a distinguished place in the history of science and engineering. Ac-
curate prediction of the motions of the planets based on astronomical
measurements was one of the early motivating problems of parameter
estimation. Solving this problem led Gauss to invent the least-squares
method in the late 1700s. Gauss’s summary of this effort more than
175 years ago remains valid today:

One of the most important problems in the application of
mathematics to the natural sciences is to choose the best of
these many combinations, i.e., the combination that yields
values of the unknowns that are least subject to errors.

Theory of the Combination of Observations Least Subject to
Errors. C. F. Gauss, 1821 [15, p.31].

9.2.1 Review of the Normal Distribution

Probability and statistics provide one useful set of tools to model the
uncertainty in experimental data. It is appropriate to start with a brief
review of the normal distribution, which plays a central role in analyz-
ing data. The normal or Gaussian distribution is ubiquitous in applica-
tions. It is characterized by its mean, m, and variance, σ 2, and is given
by

p(x) = 1√
2πσ 2

exp

(
−1

2
(x −m)2

σ 2

)
(9.6)

Figure 9.4 shows the univariate normal with mean zero and unit vari-
ance. We adopt the following notation to write Equation 9.6 more com-
pactly

x ∼ N(m,σ 2)

which is read “the random variable x is distributed as a normal with
mean m and variance σ 2.” Equivalently, the probability density p(x)
for random variable x is given by Equation 9.6.

For distributions in more than one variable, we let x be annp-vector
and the generalization of the normal is

p(x) = 1

(2π)np/2 |P|1/2
exp

[
−1

2
(x −m)TP−1(x −m)

]
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Figure 9.4: Univariate normal with zero mean and unit variance.

in which thenp-vectorm is the mean and thenp×np-matrix P is called
the covariance matrix. The notation |P| denotes determinant of P. We
also can write for the random variable x vector

x ∼ N(m,P)

The matrix P is a real, symmetric matrix. Figure 9.5 displays a multi-
variate normal for

P−1 =
[

3.5 2.5
2.5 4.0

]
As displayed in Figure 9.5, lines of constant probability in the multi-

variate normal are lines of constant

(x −m)TP−1(x −m)

To understand the geometry of lines of constant probability (ellipses in
two dimensions, ellipsoids or hyperellipsoids in three or more dimen-
sions) we examine the eigenvalues and eigenvectors of the P matrix.

9.2.2 Eigenvalues and Eigenvectors

An eigenvector of a matrix A is a nonzero vector v such that when
multiplied by A, the resulting vector points in the same direction as v,
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Figure 9.5: Multivariate normal for np = 2.

and only its magnitude is rescaled. The rescaling factor is known as
the corresponding eigenvalue λ of A. Therefore the eigenvalues and
eigenvectors satisfy the relation

Av = λv, v ≠ 0

We normalize the eigenvectors so

vTv =
∑
i
v2
i = 1

The eigenvectors show us the orientation of the ellipse given by the
normal distribution. Consider the ellipse in the two-dimensional x co-
ordinates given by the quadratic

xTAx = b

If we march along a vector x pointing in the eigenvector v direction,
we calculate how far we can go in this direction until we hit the ellipse
xTAx = b. Substituting αv for x in this expression yields

(αvT )A(αv) = b
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Figure 9.6: The geometry of quadratic form xTAx = b.

Using the fact that Av = λv for the eigenvector gives

α2λvTv = b

because the eigenvectors are of unit length, we solve for α and obtain

α =
√
b
λ

which is shown in Figure 9.6. Each eigenvector of A points along one
of the axes of the ellipse. The eigenvalues show us how stretched the
ellipse is in each eigenvector direction.

If we want to put simple bounds on the ellipse, then we draw a box
around it as shown in Figure 9.6. Notice the box contains much more
area than the corresponding ellipse and we have lost the correlation
between the elements of x. This loss of information means we can put
different tangent ellipses of quite different shapes inside the same box.
The size of the bounding box is given by

length of ith side =
√
bÃii

in which
Ãii = (i, i) element of A−1

Figure 9.6 displays these results: the eigenvectors are aligned with the
ellipse axes and the eigenvalues scale the lengths. The lengths of the
sides of the box that is tangent to the ellipse are proportional to the
square root of the diagonal elements of A−1.
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9.2.3 Least-Squares Estimation

Consider again the problem of fitting a straight line to data

yi =mxi + b

in which yi is the measurement at xi, i = 1, . . . nd andnd is the number
of data points. Using matrix vector notation, we can write the equation
for all the data as

y = Xθ
in which the parameters to be estimated are placed in the θ vector

θ =
[
m
b

]
and the y vector and X matrix are given by

y =


y1

y2
...
ynd

 X =


x1 1
x2 1
...

...
xnd 1


We do not expect the best fit line to pass through all the data points,
so we modify the model to account for measurement error1

y = Xθ+ e (9.7)

in which e is a random variable. We model the measurement error as
a normal distribution with mean 0 and variance σ 2.

e ∼ N(0, σ 2I) (9.8)

The best estimate of θ in a least-squares sense is given by

θ̂ = (XTX)−1XTy (9.9)

a formula that you have used often. However, we also can examine
the distribution of parameter estimates given the observed measure-
ments corrupted by the measurement errors. Imagine we create repli-
cate datasets by drawing measurement errors e from the distribution

1Notice the model structure is usually in error also, e.g., the true relationship between
y and x may be nonlinear, variables other than x may be required to predict y , and so
on. The procedure outlined here lumps structural error into e as well, but structural
error is not accounted for correctly in this way. If the structure is in serious doubt, one
may pose instead model discrimination tests to choose between competing models
with different structures [30, 31].
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given in Equation 9.8. For each dataset we apply Equation 9.9 and pro-
duce a parameter estimate. The distribution of measurement errors
creates a distribution of parameter estimates. In fact, for models lin-
ear in the parameters, we can show the parameter estimates also are
normally distributed (see also Exercise 9.14)

θ̂ ∼ N(θ,P)

in which the mean is the true value of the parameters and the covariance
is

P = σ 2(XTX)−1

We also can calculate the parameter “confidence intervals.” We merely
compute the size of the ellipse containing a given probability of the
multivariate normal. That can be shown to be the chi-squared proba-
bility function [4, p. 116]. Given the number of estimated parameters,
np, and the confidence level, α, then

(θ− θ̂)TXTX(θ− θ̂)
σ 2

≤ χ2(np, α) (9.10)

The χ2 distribution is tabulated in many statistics handbooks [5] and
is available in many computing environments.

To illustrate the ideas we examine a classic problem: how to esti-
mate the preexponential factor and activation energy of a rate constant.

Example 9.1: Estimating the rate constant and activation energy

Assume a reaction rate has been measured at several different temper-
atures in the range 300 K ≤ T ≤ 500 K. Estimate the preexponential
factor and activation energy of the rate constant, and quantify your
uncertainty in the estimated parameters.

Solution

We first model the rate (rate constant) as

k = k0 exp(−E/T) (9.11)

in which k0 is the preexponential factor and E is the activation energy,
scaled by the gas constant.

Figure 9.7 shows a typical experiment. Notice that the measure-
ment of the rate constant is somewhat noisy, a likely outcome if we
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Figure 9.7: Measured rate constant at several temperatures.

differentiate the concentration data to obtain the rate. To make the es-
timation problem linear, we transform the data by taking the logarithm
of Equation 9.11

lnk = lnk0 − E/T
The transformed data are shown in Figure 9.8. To generate these data
we assume the model is correct and suppress the units of the parameter
values

lnk0 = 1, E = 100

The measurements of lnk are corrupted with normally distributed er-
rors having variance 0.001,

e ∼ N(0,0.001)

We apply Equation 9.9 to estimate the parameter using the transformed
model, so xi = 1/Ti and yi = lnki. To quantify the uncertainty, imag-
ine we replicate the experiment. Figure 9.9 shows several more ex-
periments. Each experiment that we perform allows us to estimate
the slope and intercept. Then we can plot the distribution of param-
eters. Figure 9.10 shows the parameter estimates for 500 replicated
experiments. Notice the points are clustering in an elliptical shape.
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Figure 9.8: Transformed data set, lnk versus 1/T .
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Figure 9.10: Distribution of estimated parameters.

We construct the 95% confidence interval from Equation 9.10. In this
problem np = 2 and α = 0.95, and we obtain from a statistics table
χ2(2,0.95) = 5.99, so we plot

(θ− θ̂)TXTX(θ− θ̂)
0.001

≤ 5.99 (9.12)

This ellipse is also shown in Figure 9.10. In fact, 24 out of the 500
points, or 4.8% of the estimated parameters, lie outside this ellipse,
which indicates Equation 9.12 is fairly accurate with this many ran-
dom experimental trials. Note one often sees parameters reported with
plus/minus limits. For this problem, one might report[

lnk0

E

]
=
[

1
100

]
±
[

0.15
60

]

But notice these limits are misleading. The rectangle in Figure 9.10
does not indicate the strong correlation between the parameters. The
ellipse is much more informative in this case.

Next we show how a simple reparameterization of the rate constant
can reduce the parameter correlation. Consider the mean of the tem-
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Figure 9.11: Reducing parameter correlation by centering the data.

peratures at which data were collected, and reparameterize the rate
constant as in Chapter 6,

k = km exp(−E(1/T − 1/Tm)) (9.13)

We may wish to consider the mean of temperature or inverse temper-
ature for Tm. Here we let Tm be the mean temperature

Tm =
300+ 500

2
= 400 K

Both Equations 9.11 and 9.13 are two parameter models and we can
convert between them using k0 = km exp(E/Tm). But in Equation 9.13
we estimate the rate constant at the mean temperature in contrast to
infinite temperature (1/T = 0) in Equation 9.11.

If we estimate E and km in place of k0 we obtain the results shown
in Figure 9.11. Notice that the correlation between km and E is much
reduced compared to k0 and E. In fact, reporting confidence limits[

lnkm
E

]
=
[

0.75
100

]
±
[

0.025
60

]
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is an accurate representation of the true 95% confidence interval ellipse.
□

9.2.4 Least Squares with Unknown Variance

In the previous problem, we assumed the variance in the error was
known to us. It is often the case that we do not know the measurement
error variance, but must estimate it also from the data. In this case, it
can be shown that the distribution of parameter estimates is a multi-
variate t-distribution (instead of a normal distribution) using the same
least-squares estimate as before

θ̂ = (XTX)−1XTy (9.14)

For the confidence intervals, we compute the size of the ellipse con-
taining a given probability of the multivariate t-distribution. That can
be shown to be an F probability function [4, p. 117]. Given the number
of estimated parameters, np, the confidence level, α, and the number
of data points, nd,

(θ− θ̂)TXTX(θ− θ̂)
s2

≤ npF(np, nd −np, α) (9.15)

defines the confidence interval ellipse. The F distribution is also tab-
ulated in statistics handbooks [5] and available in computing environ-
ments. The sample variance

s2 = 1
nd −np

(y −Xθ̂)T (y −Xθ̂) (9.16)

is the estimate of the unknown error variance. Notice the number of
data points,nd, shows up in the confidence interval when the error vari-
ance is unknown. In the limit of large nd, the F distribution converges
to the χ2

lim
nd→∞

npF(np, nd −np, α) = χ2(np, α)

and the confidence intervals given in Equations 9.10 and 9.15 are the
same. The sample variance also converges to the error variance in the
limit of large number of data points.

On the other hand, in engineering problems we often must contend
with few data points, because they are difficult or expensive to obtain.
Figure 9.12 shows the values of χ2 andnpF as a function of the number
of data points for 95% confidence limits, and the cases of two and five
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Figure 9.12: Values of χ2 and F versus the number of data points
when estimating 2 and 5 parameters; the larger val-
ues of F show information loss (larger parameter un-
certainty) when estimating the measurement variance
from the data.

estimated parameters. Notice that npF is much larger than χ2 at small
nd. With a small number of data points, estimating the variance as well
as the parameters from the data inflates significantly the confidence
intervals. Figure 9.12 quantifies this effect; we can see that if we have
about 10 times as many data points as parameters, nd > 10np, this
effect is rather small.

Although we should expect larger confidence intervals when nd is
small, that may not be what happens with a particular dataset as we
show with the next example.

Example 9.2: Unknown measurement variance and few data points

Consider the data shown in Figure 9.13 with two unknown parameters
and only 10 data points. The measurement errors are drawn from a
normal distributed with zero mean and variance σ 2 = 10−3. Compute
the best estimates of activation energy and mean rate constant and the
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Figure 9.13: Parameter estimates with only 10 data points.

95% confidence intervals for the cases of known and unknown mea-
surement variance.

Solution

We calculate θ̂ from Equation 9.14 and the sample variance from Equa-
tion 9.16 and obtain

θ̂ =
[

0.747
153

]
, s2 = 0.000454

We construct the 95% confidence interval from Equations 9.10 and 9.15.
We obtain from a statistics table F(2,8,0.95) = 4.46 so the two confi-
dence intervals are given by

(θ− θ̂)TXTX(θ− θ̂) ≤ (0.001)(5.99), known variance

(θ− θ̂)TXTX(θ− θ̂) ≤ (0.000454)(2)(4.46), unknown variance

The two 95% confidence ellipses are shown in Figure 9.14. Notice that
although npF is 50% larger than χ2, our 95% confidence interval for
the unknown measurement variance case is smaller than the known
measurement variance case.



9.2 Data Modeling and Analysis 523

80

100

120

140

160

180

200

220

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

E

lnkm

Figure 9.14: Confidence intervals with known (solid line) and un-
known (dashed line) error variance.

Can you resolve this apparent contradiction? What experiment can
you propose in which we would find the confidence interval with esti-
mated measurement variance to be about 50% larger than known mea-
surement variance in agreement with the statistics in Figure 9.12? □

9.2.5 Nonlinear Least Squares

In the previous two examples we transformed the model by taking log-
arithms to obtain a linear estimation problem. In many situations we
do not want to make such a transformation, or such transformations
simply do not exist. For example, the measurement error may be dis-
tributed normally in the original variables and the transformation may
distort this distribution and subsequent parameter estimates and con-
fidence intervals.

If we decide to treat the estimation problem using the nonlinear
model, the problem becomes more challenging. The parameter estima-
tion becomes a nonlinear optimization that must be solved numerically
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instead of a linear matrix inversion that can be solved analytically as in
Equation 9.9. Moreover, the confidence intervals become more difficult
to compute, and they lose their strict probabilistic interpretation as α-
level confidence regions. As we will see, however, the “approximate”
confidence intervals remain very useful in nonlinear problems. The
numerical challenges for nonlinear models can be addressed success-
fully in many reaction engineering problems if we employ high-quality
numerical software.

Consider the nonlinear model

yi = h(xi,θ), i = 1, . . . nd (9.17)

and the least-squares objective

Φ(θ) =
nd∑
i=1

(
ỹi − h(xi,θ)

)2

We obtain the parameter estimates by solving the optimization problem

min
θ
Φ(θ)

subject to Equation 9.17. Call the solution to this problem θ̂. We now
consider the function Φ(θ) near the optimum. Expanding in a second-
order multivariable Taylor series gives

Φ(θ) ≈ Φ(θ̂)+ (∇Φ)T
∣∣∣
θ=θ̂ (θ− θ̂)+

1
2
(θ− θ̂)TH

∣∣∣
θ=θ̂ (θ− θ̂) (9.18)

in which the gradient of the objective function is the vector of first
derivatives of Φ with respect to the model parameters

(∇Φ)j =
∂Φ
∂θj

and the Hessian of the objective function is the matrix of second deriva-
tives

Hkj =
∂2Φ

∂θk∂θj

The gradient is zero at the optimum (see also Figure 3.5 of Chapter 3),
which allows us to rearrange Equation 9.18 to give

Φ(θ)− Φ(θ̂) ≈ 1
2
(θ− θ̂)TH

∣∣∣
θ=θ̂ (θ− θ̂)
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Therefore, lines of constant objective function are approximately quad-
ratic functions as shown in Figure 9.6 and we use H as the A matrix.
This quadratic approximation using the Hessian matrix evaluated at
the optimum is accurate if we are in the neighborhood of the optimal
parameter values. We also can obtain order-of-magnitude confidence
intervals using the relation

(θ− θ̂)TH
∣∣∣
θ=θ̂ (θ− θ̂) ≤ 2s2npF(np, nd −np, α) (9.19)

in which s2 is again the sample variance

s2 = 1
nd −np

nd∑
i=1

(
ỹi − h(xi, θ̂)

)2
= Φ(θ̂)
nd −np

These confidence intervals are exact only if the model is linear, in which
case H = 2XTX. The intervals should be checked occasionally with
Monte Carlo simulations when the model is nonlinear. We illustrate
this check in Example 9.4.

Example 9.3: Fitting single and multiple adsorption experiments

To illustrate the use of nonlinear models, we study an adsorption ex-
periment. The system studied was the adsorption of H2 on a Pd cata-
lyst with SiO2 support [25, 24]. The adsorption is assumed dissociative.
Both the catalyst and the support adsorb H2 so the adsorption isotherm
model is

H2 + 2XP -⇀↽- 2H · XP

H2 + 2XS -⇀↽- 2H · XS

in which XP represents a Pd vacant site and XS represents a SiO2 vacant
site. We can apply the methods of Section 5.6 to derive the surface
coverage of H atoms

cH =
cmP

√
KP
√cH2

1+
√
KP
√cH2

+ cmS
√
KS
√cH2

1+
√
KS
√cH2

It is known that the adsorption constant on the Pd is large, so we may
reduce the model to

cH = cmP +
cmS

√
KS
√cH2

1+
√
KS
√cH2

(9.20)
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Figure 9.15: Model fit to a single adsorption experiment.

and we have three parameters to estimate from data,

θT =
[ √

KS cmS cmP
]

As the measure of fit to the data we choose a least-squares objective,

Φ =
∑
i

(
c̃Hi − cHi

)2

and propose the optimization problem

min
θ
Φ(θ)

subject to Equation 9.20 to determine the parameter estimates.

Solution

Figure 9.15 shows the best fit to a single adsorption experiment. The
parameters and the 95% confidence intervals are given by

θ̂ =


√
KS
cmS
cmP

 =
 0.127

26.1
32.4

±
 0.048

1.5
2.5


We can see that the model fit to the data is excellent, and the parameters
are determined with fairly tight confidence intervals.
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Figure 9.16: Model fit to all adsorption experiments.

For this catalyst sample, additional adsorption experiments are avail-
able. After the first adsorption experiment, reaction studies were per-
formed with the catalyst sample. Then the catalyst was regenerated
with heat treatment, and a second adsorption experiment was per-
formed, followed by an additional reaction study, and so on. The ad-
ditional adsorption data are shown in Figure 9.16. Notice these are
not replicate experiments, because the adsorption experiments are per-
formed after different reaction studies have been performed, and the
catalyst regeneration step does not necessarily return the catalyst to
exactly the same condition. Estimating the parameters by fitting all of
these data simultaneously produces the solid line in Figure 9.16 and
the following parameter values and confidence intervals

θ̂ =


√
KS
cmS
cmP

 =
 0.0895

30.4
30.1

±
 0.096

4.9
6.2


The total coverage estimated here, 60.5 µmol/g, compares favorably
to the apparent saturation limit or total uptake value of 55 µmol/g
reported by Natal-Santiago et al. [24, p.157].

Notice because the reaction studies have introduced significant vari-
ability in the data, the confidence intervals for the parameter values are
significantly larger than those for the single adsorption experiment.
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Both sets of estimated parameters are valid, but they have different
meanings. If the model is intended to represent the catalyst in its na-
tive state, one might use the estimated values from a single adsorption
experiment on a freshly prepared sample. If the model is intended to
represent the “average behavior” of the catalyst during the period it
is used and regenerated, one would naturally use the estimated values
from the many adsorption experiments. □

9.2.6 Design of Experiments

Experimental design is a large topic and we can only mention several
of the important issues here. To keep this discussion focused on pa-
rameter estimation for reactor models, we must assume the reader has
had exposure to a course in basic statistics [5]. We assume the reader
understands the source of experimental error or noise, and knows the
difference between correlation and causation. The process of estimat-
ing parameters in reactor models is part of the classic, iterative sci-
entific method: hypothesize, collect experimental data, compare data
and model predictions, modify hypothesis, and repeat. The goal of
experimental design is to make this iterative learning process efficient .

Our goal at this point can be quite specific because we have already
built the causal models of interest to us in Chapters 2–8, and require
only the remaining small task of finding best parameter values and
quantifying the parameter uncertainty. We are not concerned at this
point with embedding this step in the larger task described previously:
deciding if our model structure is well chosen and the model assump-
tions are appropriate given the data.

The main goal of our experimental design then is to choose experi-
ments that make the uncertainty in the parameter estimates small. We
also must decide what small means when it comes to parameter uncer-
tainty.

Optimal experimental design. Optimal experimental design is an ex-
perimental design with the express purpose of making the parameter
uncertainty as small as possible. Before developing precise, quantita-
tive methods of experimental design, let’s build up some physical in-
tuition about the problem we are addressing. Imagine we wish to use a
straightedge to draw a line on a piece of paper — a task most of us face
early in childhood. We mark two points on the paper, lay the straight-
edge next to the two points, and draw the line. To make the problem
more interesting and realistic, consider that no matter how carefully
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A B

Figure 9.17: Drawing a line through two points under measurement
error: points far apart (A); points close together (B).

we measure, our placement of the points is subject to small errors. As
shown in Figure 9.17, the small circle represents the regions in which
we might actually mark a point, with the center of the circle represent-
ing the ideal location where we are supposed to mark the point. The
size of these circles tells us how much uncontrolled error exists in our
experiment. An experienced draftsman or carpenter with steady hands
may be able to measure carefully and place points within fairly small
circles; a young child may require rather large circles to bound the ex-
pected errors. In all cases we face error in point placement and that
error produces error in the final line. If we wish to minimize the error
in the constructed line, one option is to make the measurement error
circles small. Improvements in measurement technology are always an
attractive option. A reasonably high-resolution printer, such as the one
used to print this page, for example, may be able to locate a point to
within 1/1200 inch. But regardless of the current state of technology,
the measurement noise persists at some nonzero level.

Experimental design provides another option. Now we ask the ques-
tion: where on the line should we locate the two points to give us the
smallest error in the line placement? Our experience and intuition
probably lead us to guess rather quickly that we want to spread the
two points apart as far as possible. As shown in Figure 9.17, if the
points are far apart, the spread in the slopes of the lines is small. If
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Figure 9.18: Effect of next measurement temperature on parameter
confidence intervals.

the points are close together, the spread in slopes is large. If the points
are close enough that the circles overlap, then a line with any slope is
possible.

Optimal experimental design generalizes this intuitive notion of
how to construct the experiment to minimize the effect of the experi-
mental errors on the estimated parameters. It also can provide exper-
imental designs in situations in which our intuition does not provide
ready answers. We explore one such nonobvious design issue in an
industrial case study in Section 9.3. But for illustrative purposes, con-
sider again the least-squares estimation of the mean rate constant and
activation energy from measuring the rate constant at several temper-
atures. Assume we have temperature constraints in our experimental
system, and can only operate the experiment and collect rate data in
the temperature range

300 K ≤ T ≤ 500 K

We cannot estimate two parameters unless we have at least two mea-
surements, so, motivated by Figure 9.17, we choose the first two mea-
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surements at the extreme limits of the temperatures, T = 300 K, T =
500 K. We next explore what happens to our confidence intervals as we
make different choices for the next experiment. Figure 9.18 shows the
confidence intervals for three different choices of the next experiment.
The choices of 300 K and 500 K produce two 95% confidence regions of
the same size, but with different orientations. This result is consistent
with our physical intuition of drawing straight lines. If we add points
at the right end of the line shown in Figure 9.13 (T = 300 K), then that
anchors somewhat the right end of the line, and to increase the value of
lnkm we must also increase the slope. So the 300 K ellipse is stretched
in the direction with positive correlation between lnkm and E. Alterna-
tively, if we add points at 500 K, then we have anchored somewhat the
left end of the line in Figure 9.13, and to increase the value of lnkm,
we must decrease the slope. The 500 K ellipse is therefore stretched in
the direction with negative correlation between lnkm and E. If we were
able to violate our temperature limits and perform the next experiment
at 1000 K, we see that we can achieve more certainty in the activation
energy, at the cost of slightly more uncertainty in the intercept. This
result is exactly what we observed in Figure 9.17 — to obtain less un-
certainty in the slope, spread the points as far apart as is practical.

With this background, we now ask very specific questions and de-
sign experiments with precise goals. If experiments are either time
consuming or expensive, we ask the natural question: where should we
place the next experiment to obtain as much information about the pa-
rameters as possible? To answer this question we have to decide what
information we seek. For example, we may want to know only the ac-
tivation energy, we may want to know only the intercept, we may want
to know both of them, but one is somewhat more important than the
other. Figure 9.19 displays the size of the sides of the box tangent to
the 95% confidence ellipse as we vary the temperature of the next ex-
periment. If we are interested in the activation energy, we see that the
next experiment should be placed at either T = 300 K or T = 500 K.
Both values are equally good. In this problem we chose Tm = 375 K,
i.e., the mean of inverse temperature,

Tm =
2

1/300+ 1/500
= 375 K

If we are interested in the value of the rate constant at the mean tem-
perature, Figure 9.19 shows we should place the next experiment at the
mean temperature T = Tm.
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Figure 9.19: Uncertainty in activation energy E and rate constant
lnkm versus next measurement temperature.

The results in this case are not too surprising; but that is the main
reason we studied this problem, to build some intuition about what to
ask and expect of optimal experimental design. One big advantage of
the approach is that it is quantitative. In this problem, we can guess
immediately to put the next experiment at the upper or lower tempera-
ture limit if we want to know the activation energy, but would we know
that the uncertainty would change from 82 to 72 when we did so? If
that improvement is not large enough for our purposes, we would know
further experiments are required. We can answer the question of how
many further experiments are required to meet a given bound on uncer-
tainty. The second big advantage of this approach is that it is general
and can be applied routinely in even complex experimental situations
in which our intuition is not highly developed. As we mentioned pre-
viously, experimental design is a large topic, and the interested reader
can find a wealth of literature discussing its many aspects [1].

Replicate experiments. Finally, we examine the impact of replicat-
ing experiments. The main reason one replicates an experiment is to
obtain a direct measure of the experimental reproducibility. By replica-
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tion we are confronted with the simple experimental fact that no matter
how much care we take and how much effort we exert, the results of
two experiments are never exactly the same. The differences among
replicated experiments give us a direct quantitative measure of the ex-
perimental error or noise. These errors are partly due to our inability
to measure accurately the outputs of interest, but they are also due to
our inability to control completely the experimental environment. The
irreproducibility of the experiment is one of the key motivations for
the random variable description of e in Equation 9.7.

But replicating an experiment has another interesting and expected
benefit. It increases our confidence in our conclusions. To see this ben-
efit, we examine again the least-squares problem for estimating km, E.
Assume now the experiments are inexpensive and we are not concerned
about performing optimal experiments. We simply make measure-
ments at 10 evenly spaced temperatures as shown in Figure 9.13. If we
perform one set of 10 measurements we achieve the confidence inter-
vals we have shown previously in Figure 9.14. What happens if we sim-
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ply repeat the experiment and perform two sets of 10 measurements?
The confidence region becomes smaller, as shown in Figure 9.20. We
also show the result of using 5 and 100 replicates of the experiment.
The confidence intervals continue to shrink as we replicate the exper-
iments. So replicating experiments provides another general avenue
for increasing the confidence in the parameter estimates. Be aware,
however, as discussed further in Exercise 9.10, that this “brute force”
approach may be time consuming and expensive.

9.2.7 Parameter Estimation with Differential-Equation Models

Now we turn to the single most important parameter estimation prob-
lem in chemical reactor modeling: determining reaction-rate constants
given dynamic concentration measurements. We devote the rest of the
chapter to developing methods for this problem.

To get started, we consider a simple reactor model consisting of
a single differential equation with a single experimentally measured
quantity

dx
dt
= f(x;θ) (9.21)

x(0) = g(x0;θ) (9.22)

y = h(x) (9.23)

in which x is the single material balance of interest, θ are the unknown
model parameters, x0 is the initial condition, and y is the experimen-
tally measurable quantity. For simplicity let us assume here that x
itself is measured, in which case h(x) = x. As we see in several of the
examples, it may be necessary to include some of the initial conditions
also as unknown parameters. Often t is time, but in steady-state tubu-
lar PFRs, reactor volume or length can take the place of time without
changing the structure of the parameter-estimation problem.

As before, we define a least-squares objective to measure our fit to
the data

Φ(θ) =
∑
i
(x̃i − xi)2 (9.24)

in which x̃i is the experimental measurement at time ti, and xi is the
solution to the model at time ti, xi = x(ti;θ). Note xi is the only part
of the objective function that depends on the model parameters. Again,
we minimize this objective function to obtain our parameter estimates

min
θ
Φ(θ) (9.25)
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subject to Equations 9.21–9.23.
The major change is that the model constraint consists of nonlinear

differential equations rather than linear or nonlinear algebraic equa-
tions as in the previous sections. The differential equations make it
much more expensive to evaluate the constraints while solving the op-
timization problem. We can increase the efficiency of the optimizer if
we provide an accurate gradient of the objective function. Recall the
gradient of the objective function is the vector of first derivatives of
Φ with respect to the model parameters. Differentiating Equation 9.24
gives

∂Φ
∂θj

= −2
∑
i
(x̃i − xi)

∂xi
∂θj

(9.26)

Differentiating a second time gives the Hessian of the objective func-
tion, which we again use to construct approximate confidence intervals

∂2Φ
∂θk∂θj

= 2
∑
i

[
∂xi
∂θk

∂xi
∂θj

− (x̃i − xi)
∂2xi
∂θkθj

]
(9.27)

Gauss-Newton approximation and sensitivities. In the Gauss-
Newton approximation of the Hessian, we neglect the second term in
Equation 9.27 to yield,

∂2Φ
∂θk∂θj

≈ 2
∑
i

∂xi
∂θk

∂xi
∂θj

(9.28)

Two arguments support the Gauss-Newton approximation. If the model
fits the data well at the optimal value of parameters, the residuals are
small in magnitude and of different signs. The sum in the second term
is then small. Alternatively, the second derivative of the model may be
small compared to the first derivative. If the model is linear in the pa-
rameters, for example, the second derivatives are identically zero and
the Gauss-Newton approximation is exact. The Gauss-Newton approxi-
mation is not valid if the model solution is a highly nonlinear function
of the parameters, or if the residuals are large and not randomly dis-
tributed about zero at the optimal value of parameters. Of course, in
the latter case one should question the model structure because the
model does not well represent the data. For the highly nonlinear case,
one may try numerical finite difference formulas to compute the Hes-
sian. Computing a reliable finite difference approximation for a sec-
ond derivative is not a trivial matter either, however, and the step size



536 Parameter Estimation for Reactor Models

should be carefully chosen to avoid amplifying the errors introduced
by the finite numerical precision.

The first derivatives of the model solution with respect to the model
parameters are known as the model sensitivities,

Sij =
∂xi
∂θj

The sensitivities also can be described as the solution to a set of dif-
ferential equations; these equations are derived in Appendix A. This
fact allows us to solve the model and sensitivity equations simulta-
neously with an ODE solver, rather than use finite difference formu-
las to obtain the sensitivities. Bard provides a readable account for
further study on these issues [2]. Caracotsios, Stewart and Sørensen
developed this approach and produced an influential software code
(GREG) for parameter-estimation problems in chemical reaction engi-
neering [6, 29, 7].

From the sensitivities and model solution, we can then calculate the
gradient of the objective function and the Gauss-Newton approxima-
tion of the Hessian matrix. Reliable and robust numerical optimization
programs are available to find the optimal values of the parameters.
These programs are generally more efficient if we provide the gradient
in addition to the objective function. The Hessian is normally needed
only to calculate the confidence intervals after the optimal parameters
are determined. If we define e to be the residual vector

ei = x̃i − xi
We can express Equation 9.26 in matrix notation as

∇Φ = −2STe (9.29)

In terms of the sensitivities, we can express Equation 9.28 as

Hkj = 2
∑
i
SikSij = 2

∑
i
STkiSij (9.30)

If we write the last sum as a matrix multiplication, we can summarize
this relationship in matrix notation

H = 2STS

Given these expressions for the gradient and Hessian, we can construct
a fairly efficient parameter-estimation method for differential equation
models using standard software for solving nonlinear optimization and
solving differential equations with sensitivities.
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Parameter estimation algorithm:

➀ Guess initial parameter values.

➁ Using an appropriate ODE solver, solve the model and sensitiv-
ity equations simultaneously given the current parameter values.
Compute xi and Sij .

➂ Evaluate Φ and ∇Φ using Equations 9.24 and 9.29.

➃ Update parameter values to minimize Φ. This step and the next
are usually controlled by an optimization package.

➄ Check convergence criteria. If not converged, go to ➁.

➅ On convergence, set θ̂ to current parameter values. Calculate H
using Equation 9.30. Calculate confidence intervals using Equa-
tion 9.19.

Example 9.4: Fitting reaction-rate constant and order

We illustrate these methods on a classic reactor modeling problem:
finding the rate constant and reaction order from isothermal concen-
tration measurements in a batch reactor.

Consider an irreversible, nth order reaction

A+ B -→ products, r = kcnA

taking place in a liquid-phase batch reactor containing a large excess of
reactant B. Given the measured concentration of component A shown
in Figure 9.21, determine the best values of the model parameters.

Solution

The material balance for species A is

dcA
dt

= −kcnA (9.31)

cA(0) = cA0 (9.32)

Given the data shown in Figure 9.21, it does not seem reasonable to as-
sume we know cA0 any more accurately than the other measurements,
so we include it as a parameter to be estimated. The model therefore
contains three unknown parameters

θT =
[
k cA0 n

]
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Figure 9.21: Experimental measurement and best parameter fit for
nth-order kinetic model, r = kcnA .

We can generate a reasonable initial parameter set by guessing values
and solving the model until the model simulation is at least on the same
scale as the measurements. We provide this as the starting point, and
then solve the nonlinear optimization problem in Equation 9.25 using
the least-squares objective as shown in Equation 9.24. We then com-
pute the approximate confidence intervals using Equation 9.19 with
Equation 9.30 forH. The solution to the optimization problem and the
approximate confidence intervals are given in Equation 9.33.

θ0 =

 k
cA0

n

 =
 0.5

2.0
2.5

 θ̂ =

 0.47
1.89
2.50

±
 0.052

0.18
0.42

 (9.33)

The parameters that we used to generate the data in Figure 9.21 also
are given in Equation 9.33. Notice the estimates are close to the correct
values, and we have fairly tight approximate confidence intervals.

Next we examine the quality of these approximate confidence inter-
vals for this problem. Figure 9.22 shows the results of a Monte Carlo



9.2 Data Modeling and Analysis 539

0

50

100

150

200

250

300

350

400

450

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

expected
actual

θ
0

in
si

d
e
α

-e
ll

ip
se

α

Figure 9.22: Monte Carlo evaluation of confidence intervals; the
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parameter falls within the α-level ellipse of the estimate
for 500 replicated datasets.

simulation study. In this study we generate 500 datasets by adding
zero-mean measurement noise with variance σ 2 = 0.01 to the model
solution with the correct parameters. For each of these 500 datasets, we
solve the optimization problem to obtain the parameter estimates. We
also produce a value for the Hessian, sample variance for each dataset,
and the α-level contour distance to the actual θ0. Finally we calculate
how frequently the true parameter falls within α-level ellipse of the
estimates for the 500 replicated datasets as we vary α. This result is
plotted as the points in Figure 9.22. Notice for all α values, the true
value of the parameter is within the corresponding α-level ellipse cen-
tered at the individual parameter estimates, approximately the correct
number of times, indicating that the approximate confidence intervals
given in Equation 9.19 are fairly reliable for this problem. Be aware
that this conclusion may not be true for other nonlinear problems, and
should be checked. This computational check is fairly expensive; note
that we had to solve 500 optimization problems to produce Figure 9.22,
for example. But given the dramatic increase in computational speed,
a few Monte Carlo simulations in the final stages of a modeling study
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are well justified. □

Differential-equation models with multiple measurements. Most
reactor models of interest contain balances for several species and
therefore consist of several differential equations. To determine the pa-
rameters in such models, usually the concentrations of several species
are measured as well. To treat this case, we consider the differential-
equation model

dx
dt
= f (x;θ) (9.34)

x(0) = g(x0;θ) (9.35)

y = h(x) (9.36)

in which x is the vector of states that defines the reactor model, θ are
the unknown model parameters, x0 are the initial conditions, and y
are the experimentally measurable quantities.

In this case, we again define a scalar objective function that mea-
sures our fit to the data. When we have different measured quantities,
however, it often does not make sense to sum the squares of the resid-
uals. The measured variables may differ in size from each other by or-
ders of magnitude. The influence a measurement has on the objective
also would be influenced by the arbitrary choice of the units of the mea-
surement, which is obviously undesirable. The simplest way to address
this issue is to employ weighted least squares. The reader should be
aware that more general procedures are available for the multiple mea-
surement case, including the maximum likelihood method [29, 30, 31].
For simplicity of presentation, we focus here on weighted least squares.

In weighted least squares, we combine the different measurements
by forming the weighted sum of the residuals. Let ei be the residual
vector at the ith sample time

ei = ỹi − h(x(ti;θ))

The objective function is then

Φ(θ) =
∑
i
eTi Wei (9.37)

in which W is a symmetric, positive-definite weighting matrix. Usually
W is chosen to be a diagonal matrix. The elements on the diagonal
are the weights assigned to each measurement type. To estimate the
parameters we now solve

min
θ
Φ(θ) (9.38)
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subject to Equations 9.34–9.36. The sensitivities are now a time-varying
matrix,

Sjk(ti) =
∂xj(ti;θ)
∂θk

We can compute the gradient as before

∇Φ = −2
∑
i
STi
∂hTi
∂xi

Wei

and the Gauss-Newton approximation of the Hessian is

H = 2
∑
i
STi
∂hTi
∂xi

W
∂hi
∂xTi

Si

in which Si = S(ti), xi = x(ti), and hi = h(x(ti)).

Example 9.5: Fitting rate constants in hepatitis B virus model

We illustrate using multiple measurements by revisiting the hepatitis
B model introduced in Chapter 1

nucleotides
cccDNA
−−−−−−−→ rcDNA (9.39)

nucleotides+ rcDNA −−−−−−−→ cccDNA (9.40)

amino acids
cccDNA
−−−−−−−→ envelope (9.41)

cccDNA −−−−−−−→ degraded (9.42)

envelope −−−−−−−→ secreted or degraded (9.43)

rcDNA+ envelope −−−−−−−→ secreted virus (9.44)

Find rate constants k1–k6 from the cccDNA, rcDNA and envelope pro-
tein measurements given in Figures 9.23–9.25. As before we assume the
nucleotides and amino acids are in large excess, and cccDNA catalyzes
Reactions 9.39 and 9.41.
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Figure 9.23: Species cccDNA versus time for hepatitis B virus model;
initial guess and estimated parameters fit to data.
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Figure 9.24: Species rcDNA versus time for hepatitis B virus model;
initial guess and estimated parameters fit to data.
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Figure 9.25: Envelope versus time for hepatitis B virus model; initial
guess and estimated parameters fit to data.
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Solution

The reaction rates and production rates for Reactions 9.39–9.44 are
given by

r1

r2

r3

r4

r5

r6


=



k1cA
k2cB
k3cA
k4cA
k5cC

k6cBcC


 RA
RB
RC

 =
 r2 − r4

r1 − r2 − r6

r3 − r5 − r6

 (9.45)

in which A is cccDNA, B is rcDNA, and C is envelope. We write mass
balances for these components to produce three differential equations.
The initial condition for the experiment is[

cA cB cC
]T
=
[

1 0 0
]T

and is assumed to be known precisely. The data are generated by as-
suming values for the rate constants and adding noise to the model
solution. The measurement noise is assumed proportional to the size
of the measured value. We choose

W = diag
[
1,10−2,10−4

]
to reflect the relative sizes of the cccDNA, rcDNA and envelope species.
This weight matrix gives each measurement roughly the same relative
weight in the objective function.

When estimating several rate constants that may range in values
by several orders of magnitude, it often is useful to define the model
parameters to be the logarithms of the rate constants.

θi = log10(ki) (9.46)

This transformation often makes it easier for optimization software
to find accurate solutions, and automatically enforces the natural con-
straints that the rate constants are positive. The data in Figures 9.23–
9.25 were generated using the following rate constants

k0 =



2.0
0.025
1000
0.25
2.0

7.5× 10−6


θ0 =



0.30
−1.60

3.00
−0.60

0.30
−5.12


(9.47)
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We generated a random initial guess for the parameters and pro-
duced the following optimal set of parameters and approximate confi-
dence interval

θinit =



0.80
−1.13

3.15
−0.77
−0.16
−5.46


θ̂ =



0.32
−1.43

2.52
−0.42
−0.20
−5.13


±



0.20
1.57
0.99
1.61
1.01
0.22


(9.48)

The dashed lines in Figures 9.23–9.25 show the solution of the model
with the initial parameter values. As you can see, we are not giving
the optimizer a very good initial guess. In spite of the poor initial
guess, the optimizer is able to find a good solution. The model solution
using the optimal parameter estimates is shown by the solid lines in
the figures. Notice we have an excellent fit to the data. But notice also
in Equation 9.48 that the confidence intervals are quite large, which
means we have little confidence in the estimated parameters in spite of
the good fit to the data. This outcome is not unusual when estimating
many rate constants.

We may be satisfied with fitting the data in this way, but we may
wish to reduce the model so that the estimated parameters have tighter
confidence intervals. We pursue model reduction next. The Hessian is
a 6 × 6 matrix for this problem because we have six parameters. We
cannot graphically represent the six-dimensional confidence hyperel-
lipsoid as we did in Figure 9.6 in two dimensions; but we can do the
next best thing, which is to examine the eigenvalues and eigenvectors.
The eigenvalues are given in Equation 9.49

λ =



1.26× 108

4.7× 106

1.5× 106

2.1× 105

3.7× 103

1.3× 103


v5 =



−0.02
−0.14

0.68
−0.14

0.70
0.01


v6 =



0.07

0.68
0.14

0.70
0.14
−0.09


(9.49)

The two smallest eigenvalues, λ5 and λ6, are two orders of magnitude
smaller than the largest four, which indicates we should remove about
two degrees of freedom from the parameter-estimation problem. The
eigenvectors associated with these two eigenvalues, v5 and v6, also are
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given in Equation 9.49. Notice that v6 is aligned almost entirely in the
(θ2, θ4) coordinate directions; the other elements of this eigenvector
are near zero. Similarly, v5 is aligned almost entirely in the (θ3, θ5)
coordinate directions. These eigenvectors tell us that we can move
the parameters a significant distance in the v5, v6 directions without
greatly changing the value of the least-squares objective.

To demonstrate this fact, consider the model solutions shown in
Figures 9.26–9.28. The solid lines correspond to the estimated param-
eters in Equation 9.48, and the dashed lines correspond to the following
parameters

θ =
[
0.28 −1.77 2.45 −0.77 −0.27 −5.08

]T
(9.50)

We added (1/2)v6 to θ̂ to obtain Equation 9.50. Notice that even though
we have changed the parameters by a large amount, we have not changed
the simulations much at all. In other words, because of the logarith-
mic transformation, if we multiply parameters k3 and k5 by the same
constant, we do not change the fit to the data. Similarly, if we multiply
parameters k2 and k4 by some other constant, we do not change the fit
to the data. We guess immediately that we should find the ratios of the
rate constants k3/k5 and k2/k4.

We also can gain insight by examining the steady-state solution to
the model. If we set the production rates given in Equation 9.45 to zero
and solve for the steady-state concentrations we obtain2

cAs =
k1 − k4

k6

(
k4
k2

)(
−k1+k4+k3

k5

)
cBs =

(
k4

k2

)
cAs cCs =

(−k1 + k4 + k3

k5

)
cAs

Notice in Equation 9.47 that k3 ≫ k1, k4, and, therefore, to an excellent
approximation

cAs =
k1 − k4

k6

(
k4
k2

)(
k3
k5

) cBs =
(
k4

k2

)
cAs cCs =

(
k3

k5

)
cAs (9.51)

We see again that the ratios of the rate constants k3/k5 and k2/k4 ap-
pear. Also the difference k1 − k4 is the important parameter, not the
individual values. We therefore choose the model parameters to be

φ = log10

[
k1 − k4 k2/k4 k3/k5 k6

]T
2Note that the zero solution also is a steady state.
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Figure 9.26: Species cccDNA versus time for hepatitis B virus model;
estimated (solid) and perturbed (dashed) parameter val-
ues.
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Figure 9.27: Species rcDNA versus time for hepatitis B virus model;
estimated (solid) and perturbed (dashed) parameter val-
ues.
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Figure 9.28: Envelope versus time for hepatitis B virus model; esti-
mated (solid) and perturbed (dashed) parameter values.
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and set k3 and k4 (or k3 and k1) to arbitrary values. Note they cannot be
completely arbitrary because we require k3 ≫ k1, k4 for this analysis
to be valid. If we then perform parameter estimation with the reduced
set of four parameters we obtain the tight confidence intervals shown
in Equation 9.52.

φ0 =


0.24
−1.00

2.70
−5.12

 φ̂ =


0.25
−1.00

2.71
−5.10

±


0.12
0.14
0.10
0.05

 (9.52)

We do not need to use the correct values of k3 and k4 to estimate φ;
even if we use values of k3 and k4 that are off by an order of magnitude
from the values used to generate the data, the estimate of φ is the
same as in Equation 9.52. In fact, we must design a new experiment
to determine the values k3 and k4 if they are of interest, because they
cannot be found using data shown in Figures 9.23–9.25. Please note
that these particular conclusions depend on the particular values of the
rate constants we used to generate the data. If very different parameter
values are chosen, the method of analysis can be used again but the
model reduction may change. □

The complexity of this model probably precludes us from guessing
quickly and intuitively that parameter pair k3 and k4 (or k3 and k1)
cannot be determined from the experimental data, and we should esti-
mate certain ratios and differences of rate constants instead of the rate
constants themselves. By estimating all parameters, and analyzing the
eigenvalues and eigenvectors of the Hessian, we have a systematic ap-
proach to develop such understanding fairly quickly when presented
with a new problem of interest.

9.3 An Industrial Case Study

Reactor modeling in the industrial environment is a challenging task.
When successful models are constructed, however, the payoff can be
large, resulting in more efficient reactor operation, more consistent and
higher quality product, and improved reactor designs. Given the dif-
ficulty of the modeling challenge in the best industrial circumstances,
the least we should expect is that the computational and numerical
procedures being employed are efficient and reliable, and are not com-
pounding the difficulty of extracting models from the available data. To
conclude this chapter we examine a small prototypical case study that
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illustrates some of the challenges we can expect when we model data
from industrial facilities. This study was conducted in collaboration
with colleagues at Kodak and more details are available [26].

End-point problems. In many chemical reactions, two main reactants
are combined to yield a primary desired product. A small quantity
of one of the reactants often remains at the end of the reaction due
to batch-to-batch variability in the purity and reactivity of the starting
materials, and variability in the rate of side reactions. In some cases, an
excess of one reactant at the final time does not present a problem and
the opportunity for improvement with better control is proportional to
the quantity remaining, which is usually small. In these cases, an excess
of one reactant is commonly added to ensure complete consumption
of the other reactant.

In some cases, however, a small amount of neither starting material
is tolerable. These materials may be difficult (impossible for practical
purposes) to separate from the products, and their presence even in
small quantities may prevent further processing steps from occurring.
The excess addition of one reactant could also result in undesired reac-
tions, usually after the limiting reagent is exhausted. In these cases, the
cost of having the unreacted materials present in some amount greater
than a small threshold is the cost of the entire batch of chemicals. This
general problem in which neither reagent can exist at the end of the
reaction is called the “end-point control” problem.

The reaction of interest is the dehalogenation of a dihalogenated
starting material to form the divinyl product, which is used in pho-
tographic film production. It is assumed that the halide groups are
removed from the starting material in two consecutive reactions:

A+ B
k1-→ C+ B·HX

C+ B
k2-→ D+ B·HX

A XH2CCH2RCH2CH2X

B Organic base

C H2C CHRCH2CH2X

D H2C CHRCH CH2

The dihalogenated starting material (A) loses HX to the base (B) to form
the mono-halogenated intermediate (C), which subsequently loses HX
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B

A

LC

Figure 9.29: Semi-batch reactor addition of component B to starting
material A.

to the base to produce the desired final product (D). Over-addition of
base causes polymerization and loss of the batch.

Modeling. The reaction is carried out in a well-stirred semi-batch re-
actor as shown in Figure 9.29. The reactor is initially charged with a
weighed amount of component A and component B is added. The ma-
terial balances for the semi-batch reactor are

dVR
dt

= Qf (t)

d(cAVR)
dt

= −k1cAcBVR

d(cBVR)
dt

= Qf cBf − (k1cAcB + k2cCcB)VR

d(cCVR)
dt

= (k1cAcB − k2cCcB)VR

d(cDVR)
dt

= k2cCcBVR

in which Qf is the volumetric flowrate of base and cBf is the feed con-
centration of B. The primary assumptions in this model are: isothermal
operation, negligible volume change upon reaction or liquid chromato-
graph (LC) sampling, perfect mixing, negligible side reactions such as
polymerization of the C and D, and reaction with impurities and in-
hibitors in the starting material. The initial conditions for the ODEs
are:

VR(0) = VR0

nA(0) = nA0

nB(0) = nC(0) = nD(0) = 0
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aD
aC

Figure 9.30: Depiction of an LC curve for determining the concentra-
tion of intermediate C and product D.

It is assumed that cBf and VR0 are known precisely, and therefore the
unknown model parameters are given by θ = [k1 k2 nA0]T . Although
the initial A charged to the reactor is weighed, the parameter nA0 is
chosen to be adjustable to account for the unknown level of impurities
and the neglected side reactions. Notice that making good decisions of
this type depend on experience and judgment, and reflect more the art
rather than the science of reactor modeling.

The feed flowrate of base is measured by a mass flow meter. For
composition analysis there is an on-line LC that draws a sample ev-
ery 8 to 10 minutes and, after a 7-minute delay, reports the relative
amounts of C and D. The unknown parameters, θ, are estimated with
the dynamic LC data. The LC-detector wavelength is set to detect the
R-vinyl bond. Therefore only the C and D species show peaks in the
LC output as depicted in Figure 9.30. The areas of the two peaks are
related to the molar concentrations by

aD = 2klccD

aC = klccC

in which klc is the proportionality constant for the LC. By calculating
normalized areas this constant can be removed,

y(t) = aC
aC + aD

= cC
cC + 2cD

This normalized C peak area, y , is used for the parameter estimation.
The parameter estimation is performed by minimizing the following
relative least-squares objective function,

Φ =
∑
i

(
ỹi −yi
yi

)2
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Figure 9.31: Base addition rate and LC measurement versus time.

in which ỹi is the measured normalized C peak and yi is the model
prediction at the ith sampling time.

Conventional manufacturing procedure. Normal operating proce-
dure is to charge the reactor with some (only approximately known)
amount of A, and add an initial amount of B that is sure not to over-
shoot the end point. An example of a typical B addition profile is given
in Figure 9.31. After the initial B is added, the LC is switched on and
the operator waits until the readings stabilize. The operator then sees
how much C is remaining, and — based on experience — adds more B.
The objective is to add enough B to consume all but 3% of the A. Ideally
the operator would like to consume all the A, but the target is set at 3%
to allow a margin for error. The penalty for overshoot is so high that
only conservative addition steps are generally ever taken. After mak-
ing the addition, the LC readings are again allowed to stabilize, and the
operator again checks to see how close he is to the target before mak-
ing another addition. This cycle repeats until the operator is satisfied
that he is close enough (between 2–4%) to the target. As can be seen in
Figure 9.31, the operator required 7 additions and about 500 minutes
after first turning on the LC before he had determined how much B was
required to reach end point.
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Figure 9.32: Comparison of data to model with optimal parameters.

Parameter estimation. If we perform parameter estimation with these
data we achieve the model fit shown in Figure 9.32 The model predic-
tions of all the concentrations are shown in Figures 9.33 and 9.34. Note
that the concentration of B provides the most information on the rate
constants. Unfortunately this concentration is not measured.

The optimal values of the parameters and their approximate 95%
confidence intervals are given by

nA0 = 2.35 ± 0.0073

k1 = 3628 ± 4590

k2 = 1687 ± 2044

Notice that the initial amount of A is determined to within 0.6%, but
the rate constants have 200% uncertainty. That uncertainty is a direct
result of the problem structure. The relative amounts of C and D pin
down accurately the amount of starting material. The rate constants
determine the speed at which we arrive at these values. After each base
addition, we have only rough information about the reaction rates by
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Figure 9.33: Total amount of species A, C and D versus time.
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observing the relative amounts of C and D. If we could measure the
B concentration, we could achieve narrow confidence intervals for the
rate constants as well. For the purposes of end-point control, however,
the rate constants are irrelevant. We seek to know how much total
base to add, not how quickly it will be consumed. In this application,
we regard k1 and k2 as nuisance parameters. We must estimate them to
determine the parameter we care about, but their values are not useful
to us.

Model reduction. The large parameter uncertainty tells us that the
experimental data do not contain sufficient information to determine
the rate constants. That diagnosis is essential because it motivates our
next step: model reduction.

Although it may not be immediately apparent, the difficulty we face
is caused by the presence of large rate constants. We wish to make
the equilibrium assumption as described in Chapter 5 to reduce the
model. This analysis is clearest if we first rewrite the material balances
in terms of extents of the two reactions as in Chapter 5

dVR
dt

= Qf
dε1

dt
= r1 = k1cAcBVR = k1nAnB/VR

dε2

dt
= r2 = k2cCcBVR = k2nCnB/VR (9.53)

The initial conditions for this model are

VR(0) = VR0

ε1(0) = 0

ε2(0) = 0

We can easily translate from the two reaction extents to total moles of
species via

nA = nA0 − ε1

nB = nBadd − (ε1 + ε2)
nC = ε1 − ε2

nD = ε2 (9.54)

in which

nBadd(t) =
∫ t

0
Qf (t′)cBfdt′
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From the two reaction-rate expressions in Equations 9.53, if we assume
equilibrium is established with these irreversible reactions, either the
concentration of B is zero or the concentrations of A and C are zero.
Due to the reactor-addition policy, we know B is the limiting reagent,
and conclude that under large k1, k2, the B concentration is zero. The
material balance for B in Equations 9.54 then provides one algebraic
equation for the two extents

ε1 + ε2 = nBadd (9.55)

The additional equation comes from examining the two extents’ differ-
ential equations and noticing

dε1

dt
=
(
k
nA
nC

)
dε2

dt
k = k1

k2
(9.56)

We see that the concentration of B disappears from this slow time-scale
model and the ratio k = k1/k2 appears instead of the individual rate
constants. If we wish to cast the reduced model in differential-equation
form, we can differentiate Equation 9.55 and substitute Equation 9.56
to eliminate ε1 to obtain

dε2

dt
=

Qf cBf
1+ knA/nC

Substituting Equations 9.54 for the moles of A and C, and using Equa-
tion 9.55 again to eliminate ε1 produces a differential equation for the
second extent

dε2

dt
= Qf cBf

(
1+ knA0 −nBadd + ε2

nBadd − 2ε2

)−1

Solving this reduced model for various values of k produces the results
shown in Figure 9.35. If we perform parameter estimation with this
model and these data we obtain the following results.

nA0 = 2.35 ± 0.0048

k = k1/k2 = 2.25 ± 0.43
(9.57)

We have improved the situation compared to the uncertainty in the
full model. But we still have more than 10% uncertainty in the ratio
of rate constants k. These results may be adequate, but if we wish to
further improve the confidence in k = k1/k2 and nA0, we proceed by
reexamining the experimental design.
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Figure 9.35: Predictions of LC measurement for reduced model.

Experimental design. We have removed the rate constants from the
estimation problem by assuming their values are arbitrarily large and
making the equilibrium assumption. But we still have a reasonably
large uncertainty in the ratio of rate constants. Given what we know
at this point, we can easily remedy this final, remaining problem. Con-
sider again the results shown in Figure 9.35. We see that the ratio of the
rate constants has its primary effect at early times. By the end of the
semi-batch addition, there is little information left. For this reason, we
have the relatively large uncertainty in k shown in Equation 9.57. But
at early times, when significant amounts of A and C remain in the reac-
tor, the data are much more informative. Although under the original
reactor-addition policy, the operator had no reason to turn on the LC
until later times, we see that these early measurements are actually the
informative ones. We do not have industrial operating data with early
LC measurements, but we can simulate the effect with our model. No-
tice the advantage of modeling. We have the ability to query the model
instead of performing expensive experiments to evaluate the impact of
a proposed change. Consider Figure 9.36 in which we have simulated
early LC measurements by solving the model with

k = k1/k2 = 2.0, nA0 = 2.35
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and adding measurement noise. Notice this noise is greater than the
measurement noise shown in the actual operating data. We next per-
form parameter estimation on the data shown in Figure 9.36 and obtain
the following parameters and approximate confidence intervals

nA0 = 2.35 ± 0.0025

k = k1/k2 = 2.05 ± 0.072

Figure 9.37 shows the confidence-interval ellipses and boxes when
using the original dataset and using the dataset augmented with early-
time data. As summarized in Figure 9.37 the primary benefit in adding
the early time data is a more precise estimate of k. The uncertainty in
k is reduced by more than a factor of six when adding the early time LC
measurements. The initial number of moles of A is relatively accurately
determined by both datasets.

Improved reactor operation. Given these modeling results, we can
shorten the batch time significantly. First we switch the LC on at time
t = 0. Then as the LC measurements become available, we estimate
the initial number of moles nA0 and monitor its confidence interval.
As soon as the uncertainty in nA0 reaches a sufficiently low threshold,
we are confident how much B is required and can add the remainder in
one shot. Testing this approach with many datasets at Kodak allowed
us to conclude that by the time the first large addition was completed,
we obtained sufficient confidence on nA0 that the rest of the B could
be added immediately. Such a procedure reduces the batch time from
about 900 minutes with the conventional approach to about half that
time with the model-based operation. The new operation essentially
doubles the production rate without constructing new reactor facilities,
which is significant for this capacity-limited chemical.

9.4 Summary

In this chapter we first summarized some of the analytical methods
and experimental reactors used to collect reactor data, focusing the
discussion on:

• infrared spectroscopy

• gas chromatography

• mass spectrometry
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Figure 9.36: Fit of LC measurement versus time for reduced model;
early time measurements have been added.
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We also discussed how to model differential reactors, which are con-
venient reactors for measuring reaction rates as a function of species
concentrations.

Next we covered analysis of data. We used probability and random
variables to model the irreproducible part of the experiment. For mod-
els that are linear in the parameters, we can perform parameter estima-
tion and construct exact confidence intervals analytically. For models
that are nonlinear in the parameters, we compute parameter estimates
and construct approximate confidence intervals using nonlinear opti-
mization methods.

We then covered the important topic of estimating parameters for
differential-equation models. We employed computational methods
for solving differential equations and sensitivities, and solving nonlin-
ear optimization problems in order to tackle this challenging problem.

The chapter concluded with an industrial case study. In this case
study we illustrated the following steps:

• Proposing an initial model given a rough idea of the reaction
chemistry.

• Estimating the parameters for the full model given composition
measurements.

• Reducing the model based on the parameter confidence intervals.

• Designing new experiments based on the reduced model’s confi-
dence intervals.

• Using the final model to find new operating policies to double the
production rate.

We hope the examples and methods in this chapter serve to inspire
students and practicing engineers to build models as part of under-
standing new processes and chemistries of interest. The modeling ex-
perience often leads to deeper process understanding and produces a
compact summary of current knowledge that is easily and efficiently
communicated to other colleagues and team members. Process under-
standing coupled with creativity often leads to process improvement
and new discovery.
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Notation

A absorbance

b path length for the absorbance measurement

c concentration of absorbing species

cj concentration of component j
ĉj(ti) measured concentration of component j at sampling time ti
Dp catalyst particle diameter

Dt fixed-bed reactor tube diameter

e residual vector

e measurement error vector

Hkj Hessian matrix, Hkj = ∂2Φ/∂θk∂θj
L fixed-bed reactor tube length

m mass velocity

nd number of data points

np number of model parameters

Nj molar flow of component j
p(x) probability density function of random variable x
Q volumetric flowrate

Qf feed volumetric flowrate

r reaction rate of (single) reaction

ri reaction rate for ith reaction

r reaction-rate vector

Rj production rate for jth species

R production-rate vector

S open tube area for flow

Sjk sensitivity of state xj with respect to parameter θk
ti sampling time

VR reactor volume

x state vector

y vector of measured responses

ϵ molar absorptivity

ϵB bed porosity

θ parameter vector

µ fluid viscosity

νij stoichiometric number for the jth species in the ith reaction

φ transformed parameter vector

Φ objective function
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9.5 Exercises

Exercise 9.1: Bringing it all back home

Given the new tools in this chapter, return to the data displayed in Chapter 2, Figures 2.2
and 2.3. Reaction rates and production rates are related by

R = νT r

If we measure production rates and wish to estimate reaction rates, we can model the
measurement process with

R = νT r + e
in which e is assumed to have a normal distribution.

(a) What is the formula for the 95% confidence interval on estimated reaction rates
r̂?

(b) Place your 95% confidence interval on the set of points displayed in Figure 2.3.
These points are available at www.engineering.ucsb.edu/~jbraw/chemreacfun.
Given the Octave code displayed in Chapter 2 that generated Rmeas, what is the
value of the measurement error variance. Of the 500 estimated reaction rates,
how many of the values fall outside your 95% confidence interval ellipse?

Notice that if you know (or have some means of estimating) the measurement
error variance beforehand, you do not need the experimental measurements to
know the confidence intervals. They are computable from the model before you
do any experiments.

(c) Now assume the measured production rates are only the first column in Rmeas
in Chapter 2. Compute the least-squares estimate and 95% confidence interval
in which you assume you do not know the variance in the measurement error
and must estimate it from these data also. How do your two ellipses compare?
Do you obtain a reasonable idea of the parameter uncertainty when you have
only one measurement of the six species production rates?

Exercise 9.2: Estimating activation energy and preexponential factor

(a) Calculate the parameter estimates (lnkm, E) for the data given in Figure 9.7.
Assume the measurement error variance is unknown and you must estimate it
from the data. The numerical values for the data points are available at the
website www.engineering.ucsb.edu/~jbraw/chemreacfun.

(b) What are the coordinates of the corners of the box corresponding to the 95%
confidence interval?

(c) What are the coordinates of the semi-major axes of the ellipse corresponding to
the 95% confidence interval?

(d) Sketch your result by plotting the parameter estimate, ellipse and box. Sketch
the ellipse by hand if it is difficult to make your favorite plotting package draw
what you want. Are the parameter estimates highly correlated? Why or why not?

(e) Finally, plot the fit of the model to the data with both (T , k) and (1/T , lnk) as
the (x,y) axes.
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Figure 9.38: Batch-reactor data for Exercise 9.3.

Exercise 9.3: Batch-reactor parameter estimation

A well-mixed, isothermal, constant-volume batch reactor is initially charged with reac-
tant A and the following reaction takes place

A -→ 2B

The reactor volume is 10 L and the initial charge of A is 8.3 mol. The concentration of
A versus time is measured and shown in Figure 9.38. You wish to fit these data using
the following kinetic rate-law expression,

r = kcnA
(a) What is the solution to the model, cA(t), for this rate law?

(b) Calculate from the data rough estimates of the parameters k and n. What are
their units?

Hint: consider approximating the time derivative dcA/dt by ∆cA/∆t and com-
pare those approximate values of the rate using the data to kcnA . A nonlinear
transformation of the rate expression can make the estimation problem linear.

(c) Estimate the parameters by solving a least-squares problem. Plot the fit of both
models to the data and compare. Are the model fits comparable?

Exercise 9.4: The perils of differentiating data

Consider the nth-order, irreversible reaction

A -→ products, r = kcnA
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Figure 9.39: Batch-reactor data for Exercise 9.4; 3 runs with different
measurement error variance.

taking place in an isothermal, liquid-phase batch reactor. Measurements of cA versus
time for different measurement accuracies are displayed in Figure 9.39. The following
method is sometimes recommended for finding the rate constant and order of this
reaction.

1. Compute an approximation to the reaction rate by “differentiating” the data

rl = −
cA,l+1 − cAl
tl+1 − tl

, l = 1, . . . , nd − 1

in which cAl is the measured concentration at sample time tl and rl is the “mea-
sured” rate at this sample time. Notice the rate is not actually measured; the
concentration is measured.

2. Take the logarithm of the rate expression to obtain a model linear in the param-
eters

ln(r) = ln(k)+n ln(cA)

3. Use linear least squares with this model and the “measured” rate rl versus cAl
to find k and n.

Let’s examine how well this method performs on the three datasets shown in Fig-
ure 9.39.
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(a) Estimate the rate constant and order for each of the three datasets. Delete any
data points that produce negative reaction rates before taking the logarithm in
step 2.

(b) Plot the model fit and data for cA(t) versus t for each dataset. Plot the model
fit (straight line) and “data” for ln(r) versus ln(cA) for each dataset.

What causes the lack of fit in cA versus t for the first two datasets? What causes
the lack of fit in cA versus t for the third dataset?

Exercise 9.5: Estimation without differentiation

Resolve Exercise 9.4 as a nonlinear optimization over the parameters (k, n, cA0) using
an ODE/sensitivity solver and an optimizer. Discuss the advantages and disadvantages
of the two approaches regarding accuracy of the estimates and sensitivity to noise in
the measurements.

Exercise 9.6: Fitting the RTD step response

Consider the RTD test data given in Exercise 8.11. Use an ODE/sensitivity solver and
optimizer to find the best value of parameter ρ, given in Equations 8.46, that fits these
data. Solve the model with this value of ρ and show the fit to the data. Resolve Exer-
cise 8.11 and predict the reactor yield and conversion.

Exercise 9.7: The differential reactor and volume change

Your colleague has an idea that, since not much conversion occurs in the differential
reactor, we should be able to assume the volumetric flowrate is constant to simplify
the model.

Consider the gas-phase reaction A -→ 2B using a pure A stream and compare

analyzing the data from a differential reactor in two ways. First, use Equation 9.5,
which accounts for the changing volumetric flowrate. Second, neglect the change in
volumetric flowrate, assume Q = Qf , and show that

r̃ =
Qf
VR

(cAf − cA)
−1

r̃ =
Qf
VR

(cBf − cB)
2

Calculate the relative error e = (r − r̃ )/r committed when neglecting the volumetric
flowrate change in a differential reactor assuming you are measuring the concentration
of component A. Is this a large or small error? If it is a large error, can you explain
what went wrong with your colleague’s logic?

Exercise 9.8: Estimating rate constant from catalyzed CSTR reaction data

The heterogeneously catalyzed reaction

A
k
-→ B r = kcA

was studied in a small, research-scale CSTR. The CSTR design eliminates external mass-
transfer limitations (i.e., you may assume the bulk fluid concentration equals the sur-
face concentration). The feed consisted of pure A. The reactor pressure was 1.0 atm
and the temperature was 573 K. The residence time for the CSTR is 2.0 s. The following
table presents steady-state effluent concentration data for different catalyst sizes. The
catalyst particles can be assumed spherical. The effective diffusivity of A in the pellet
is DA = 0.0008 cm2/s. The pellet density equals the bed density, ρp = ρB .
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Radius (cm) cA (mol/cm3)

0.016 2.13× 10−6

0.071 3.89× 10−6

0.121 5.84× 10−6

0.191 8.20× 10−6

0.246 9.07× 10−6

Estimate the value of the rate constant at 573 K. Plot the fit of the model with the best
estimate of the rate constant to the measurements provided in the table.

Exercise 9.9: Oxygen adsorption, revisited

Consider again the adsorption data in Exercise 5.12. The data are listed in Table 5.8
and plotted in Figure 5.25. The adsorption is dissociative

O2 + 2X
k1-⇀↽-
k−1

2O · X

(a) Write out again the expression for the Langmuir isotherm to model the concen-
tration of adsorbed oxygen in terms of the concentration of gas-phase oxygen.
How many unknown parameters does your model contain?

(b) Estimate these parameters using the nonlinear least-squares technique described
in this chapter.

(c) Consider again the transformation of the model into the linear form, i.e., con-
sider 1/cO as a function of 1/√cO2 . Estimate the parameters again using linear
least squares.

(d) Compare the parameter estimates obtained with these two approaches by plot-
ting the fit to the original data. Why are the fits so different? Which technique
do you recommend and why?

Exercise 9.10: Replication and confidence

Imagine you have performed an experiment and set up the least-squares problem

y = Xθ+ e

in which y contains the vector of measurements, X contains the matrix of independent
variables, θ is the parameter vector, and e is the measurement error, assumed to have
known variance σ2. We developed the following formula for the parameter estimates
and α-level confidence intervals

θ̂ = (XTX)−1XTy

(θ− θ̂)TXTX(θ− θ̂) ≤ σ2χ2(np , α) (9.58)

If you replicate this experiment ns times, the new data matrix is

Xs =


X
X
...
X




ns times
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Figure 9.40: Batch-reactor data for Exercise 9.11.
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Figure 9.41: A second experiment for Exercise 9.11.

(a) Calculate XTs Xs . From Equation 9.58, how much smaller is the confidence inter-
val ellipse after 2, 5 and 100 replicate experiments?

(b) Does the confidence ellipse change shape as well as size upon replication? Does
your result agree with Figure 9.20?

(c) If you want to reduce uncertainty by a factor of β, how many replicate experi-
ments are required? Explain why straight replication is a potentially expensive
way to reduce uncertainty.

Exercise 9.11: Estimating a rate expression involving two reactants

Consider the irreversible reaction

A+ B -→ products, r = kcnAcmB
taking place in an isothermal, liquid-phase batch reactor. Measurements of cA and cB
versus time are displayed in Figure 9.40. We wish to determine from the data the rate
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constant and the order of the reaction with respect to both A and B.

(a) Estimate rate parameters, k, n and m, and initial concentrations, cA0 and cB0,
from the data in Figure 9.40 without differentiating the concentration data. The
data are available at www.engineering.ucsb.edu/~jbraw/chemreacfun. No-
tice your confidence intervals for k, n andm are rather large. Why is this model
poorly identified from these data?

(b) Consider a second experiment shown in Figure 9.41. Estimate the parameters
using only the second experiment. Are your confidence intervals for k, n andm
any better using the second experiment?

(c) Estimate the parameters using both experiments simultaneously. Are your con-
fidence intervals any better using both experiments compared to using either
experiment alone? Explain why or why not.

(d) Based on these results, to design experiments to determine the order of the rate
expression with respect to two different species, how should you choose the
initial conditions of the two species?

Exercise 9.12: Living and dying with linear least squares

Consider differentiating the data of Exercise 9.11 as described in Exercise 9.4. Notice
differentiating the cA data and the cB data provide two independent estimates of the
same reaction rate. You may wish to average these to obtain a good single estimate of
the rate. Taking the logarithm of the rate expression again produces a model linear in
the parameters

ln(r) = ln(k)+n ln(cA)+m ln(cB)

(a) To ensure that your method is coded correctly, consider first the “error free”
data depicted in Figures 9.42 and 9.43. Estimate k, n and m using linear least
squares and three different datasets: only the data in Figure 9.42, only the data
in Figure 9.43, and the data in both figures. Do you get similar estimates with all
three datasets? Are the confidence intervals similar? Explain why or why not.

(b) Now apply the linear least-squares approach to the data in Figures 9.40 and 9.41.
Are your estimates and their uncertainties comparable to the result of Exer-
cise 9.11? Which method of estimating parameters do you recommend and why?

Exercise 9.13: Least-squares estimate formula

Consider the least-squares objective

Φ =
nd∑
i=1

yi − np∑
j=1

Xijθj

2

and the parameter estimation problem

min
θ
Φ(θ)

(a) Differentiate Φ with respect to θk, k = 1, . . . , np , set the result to zero, and derive
Equation 9.9

θ̂ = (XTX)−1XTy
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Figure 9.42: Batch-reactor data for Exercise 9.12.
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Figure 9.43: A second experiment for Exercise 9.12.

(b) Repeat for the weighted least-squares problem

Φ =
nd∑
i=1

Wi

yi − np∑
j=1

Xijθj

2

and show

θ̂ =
(
XTWX

)−1
XTWy

in which

W =


W1 0 · · · 0
0 W2 · · · 0
...

...
. . .

...
0 0 · · · Wnd


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Exercise 9.14: Linear transformation of a normal is normal

Let x be a normally distributed random variable with mean mx and covariance Px
x ∼ N(mx ,Px)

Let a new random variable z be defined as a linear (affine) transformation of x
z = Ax + b

in which A is a constant matrix and b is a constant vector. Then one can show that z
is also normally distributed with mean mz and covariance Pz given by

z ∼ N(mz,Pz) mz = Amx + b Pz = APxAT

Consider again the linear model and least-squares estimate

y = Xθ+ e θ̂ = (XTX)−1XTy
in which

e ∼ N(0, σ2I)
Use the above result on linear transformation of normals to show that the parameter
estimates are distributed as given in Section 9.2.3

θ̂ ∼ N(θ,P) P = σ2(XTX)−1

Exercise 9.15: Parameters of Michaelis-Menten kinetics

Consider the enzyme kinetics

E+ S
k1-⇀↽-
k−1

ES

ES
k2-→ P+ E

in which the free enzyme E binds with substrate S to form bound substrate ES in the first
reaction, and the bound substrate is converted to product P and releases free enzyme
in the second reaction.

If the rates of these two reactions are such that either the E or ES is present in
small concentration, the mechanism can be reduced by making the QSSA leading to an
irreversible decomposition of S to P

S -→ P r = kcS
1+KcS

This rate expression is known as Michaelis-Menten kinetics.
The following measurements of cS versus time were taken in your laboratory.

t (min) cS (cmol/L)

0.0 0.978
3.0 0.671
6.0 0.423
9.0 0.241

12.0 0.110
15.0 0.049
18.0 0.014

0

0.2

0.4

0.6

0.8

1

0 5 10 15

c S
(c

m
o

l/
L)

t (min)

Estimate the parameters k and K appearing in the Michaelis-Menten rate expression
(be sure to give the parameters’ units). Hint: consider the transformation 1/r and
formulate a linear least-squares problem that you can solve on a calculator.
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10
Particulate Reactors

10.1 Particle Size Distributions

In this chapter we would like to treat more complex situations in which
the reactor of interest contains one phase of matter dispersed in a sec-
ond phase. This dispersion is often a solid phase, sometimes called
a particle phase, dispersed in a liquid. The crystallization and purifi-
cation of solid crystalline products, such as pharmaceuticals, from a
solvent mixture is an important example of this kind of dispersion.
But the dispersion may also be one liquid phase in small domains that
are encapsulated by a separating membrane or stabilization layer and
dispersed in a second, continuous liquid phase. Biological cells and
emulsion polymers are examples of this type of dispersion. The mod-
els developed in previous chapters do not have the required structure
to describe this kind of system, and the goal of this chapter is to provide
this required extra structure.

When a collection of (solid or liquid) particles is dispersed in a sec-
ond continuous (usually liquid) phase, one of the characteristics of the
particle phase that is often of interest is the particle size distribution
(PSD). A suitably generalized particle “size” distribution is the main new
quantity of interest, and we would like to develop evolution equations
for this quantity so that we can predict and control its properties with
the same facility that we established in Chapter 4 to predict species
concentrations in single-phase reacting systems. This kind of new evo-
lution equation is called a population balance. A population balance
essentially describes how the population of particles changes with time
due to birth, growth, and death processes that are taking place in the
reactor of interest.

To make matters explicit let f(L, t) denote a particle size distribu-
tion in which L is some (single) characteristic length of the particles,
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t is time, and f(L, t)dL represents the number of particles in the size
range L to L+dL. Note that f is often normalized by the volume of the
reactor as well, so that f(L, t)dL is the number of particles per volume
of reactor. If we integrate over the particle size distribution we can
obtain total particle properties of interest such as the following:∫∞

0
f(L, t)dL total number of particles (per reactor volume)∫∞

0
f(L, t)apL2dL total area of particles∫∞

0
f(L, t)vpL3dL total volume of particles

Note that ap is an area “shape factor” such that apL2 is the surface area
of a particle of size L. Similarly, vp is the volume shape factor such that
vpL3 is the volume of a particle of size L. For example, if the particles
are well approximated as spherical, and L = r is the characteristic
size, the shape factors are ap = 4π and vp = (4/3)π . Total particle
area is often important when particles are adsorbing reactants from a
continuous phase, because the mass transfer rates are related to area.
Total particle volume is often important in calculating total rates of
reaction in the particle phase, or calculating total mass of particulate
phase produced.

10.2 Applications

Before launching into the modeling of the particle size distribution, it
may be helpful to provide some context and present a physical picture
of some important applications. The chosen examples are obviously
not intended to be exhaustive, but merely representative of the kinds
of important industrial processes for which this kind of modeling is
useful.

10.2.1 Crystallization

Crystallization is an ideal starting place because it often is the sim-
plest possible physical situation in which population balance modeling
is essential. In many crystallizations, the continuous phase is a sin-
gle solvent with a single dissolved solute, and the particulate phase is
(essentially) pure crystalline solute. Because the crystal lattices of the
solid phase are almost always of extremely high purity (or the lattice
cannot form), crystallization is an ideal separation method for pure
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Figure 10.1: Growing glycine crystals displaying a distribution of
sizes and shapes. Images taken in a laboratory reac-
tor vessel.

solid products. The phase equilibrium of the solid particle phase and
the solution phase is a classic case covered in all chemical engineering
thermodynamic textbooks. At equilibrium the chemical potential of
the solute in the pure particle phase is equal to the chemical potential
of the solute in solution. When this condition is met, the solution is
termed “saturated.” Of course we are mainly interested in describing
the nonequilibrium situation in which the solution is supersaturated,
and mass transfer from solution to solid phase, i.e., crystallization, is
taking place. In this situation the particle phase is growing. Some-
times we are interested in describing the rate of dissolution of solid
phase when the solution phase is undersaturated.

In the crystallization of solid products, spherical particles are rarely
observed. Faceted crystals of a wide variety of shapes are the norm. For
example, Figure 10.1 shows typical sizes and shapes obtained when
crystallizing glycine from solution. These images were obtained in the
laboratory reactor depicted in Figure 10.2. The light source strobe is
used to freeze the particle motion in the well-stirred, transparent, glass
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Figure 10.2: Laboratory crystallizer equipped with real-time imaging
of growing crystals.

vessel, and the images are captured by a video camera.

Other common particle shapes are high aspect ratio “plates” or “nee-
dles.” Many pharmaceutical products crystallize with this particle mor-
phology, which can lead to significant challenges in washing, filtering,
drying, and handling the solid product. Figure 10.3 shows the results
of a typical pharmaceutical crystallization in a laboratory crystallizer.
The particles are highly elongated with aspect ratios of 10:1 or more.
In this case, the particles are first settled on a microscope stage so
that they are all lying flat before analyzing the video image taken from
the microscope. If these high aspect ratio particles had been frozen in
place with a strobe light in random orientations caused by the stirring
in the well-stirred reactor, a large variety of aspect ratios would be pre-
sented in the image. Such an image would be misleading because, as
shown in Figure 10.3, all of the particles are in fact of similar shape
and only differ in size. Recent reviews of the research into modeling
and controlling crystal size and shape are provided in [10, 16]. Signifi-
cant recent research into modeling the growth rates of different crystal
faces, and hence crystal shape is presented in [8].
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Figure 10.3: Growing pharmaceutical drug crystals with a needle-like
particle shape. Images taken after particles have settled
on a microscope stage.

10.2.2 Emulsion Polymerization

Emulsion polymerization is used to manufacture a wide variety of in-
dustrial polymers including adhesives, rubbers, latex paints, ink pig-
ments, and wall and floor coverings. This process accounts for many
billion pounds of polymer per year. The physical picture for emul-
sion polymerization is depicted in Figure 10.4. Surfactant, which has
both a hydrophilic head group, and a hydrophobic long chain tail is
used to stabilize polymer particles and monomer droplets dispersed
in a continuous aqueous phase. When the surfactant concentration in
the aqueous phase exceeds a critical concentration, known as the crit-
ical micelle concentration (CMC), the surfactant forms a second phase,
known as the micellar phase or micelle. The micelle is thermodynam-
ically favorable because small collections of surfactant molecules are
able to arrange themselves such that their hydrophobic tails are aggre-
gated with each other and separated from the aqueous phase by the
outwardly pointing hydrophilic head groups. Monomer also swells the
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Figure 10.4: Well-stirred emulsion polymerization reactor. Surfac-
tant forms micelles, which serve as the nucleation sites
for the growing polymer particles.

interior of the micelles because of the attractive interactions between
the hydrophobic monomer and the surfactant tail groups.

The micelles play an important role in the polymerization process.
Normally a water-soluble free-radical initiator is fed to the reactor. The
initiator decomposes into free radicals as discussed in the free-radical
polymerization kinetics in Example 5.4 of Chapter 5. These free rad-
icals enter the monomer-swollen micelles and initiate polymerization.
As the initiated polymer particles grow and consume the monomer,
monomer is continually resupplied by mass transfer from the large
monomer droplets through the aqueous phase to establish the equal-
ity of chemical potential for monomer in the polymer particle, aqueous
phase, and monomer droplets. Radicals may of course also enter the
large monomer droplets and initiate polymerization, but the total sur-
face area of the micelle phase is usually orders of magnitude larger than
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Figure 10.5: Cell infection by a virus. The cells are uniformly dis-
tributed, and the virus is placed initially in the center
and diffuses outward. The cells fluoresce after they be-
come infected. The dark inner core shows dead cells.

the surface area of the large monomer droplets and the polymerization
in the droplets can be neglected.1

10.2.3 Biological Cells

Reactions involving living cells are ubiquitous in nature and, today,
also in the bioprocess industries. Improving our understanding of and
control over these reactions has large implications for human health.
Consider the interactions of cells and viruses, for example. Viral infec-
tion of cells is responsible for maladies such as the common cold, in-
fluenza, chickenpox, cold sores, Ebola hemorrhagic fever, AIDS, avian
influenza, and SARS. Figure 10.5 shows images of cell infection by a
virus. The cells are uniformly distributed, and the virus is placed ini-
tially in the center and diffuses outward. The cells fluoresce after they
become infected. The dark inner core shows the cells killed by the
virus. Modeling the distribution of cells as a function of time since in-
fection and interaction with the signaling molecules released into their

1Alternatively, in dispersion polymerization, the monomer droplets are made much
smaller, usually by exposing the monomer phase to high shear rates, and the small
monomer droplets serve as the locus of polymerization without the presence of any
micellar phase.
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Figure 10.6: Basic fermentation system.

environment enables quantitative predictions that can be tested and
verified with experimental measurement [5].

Living cells are also used to manufacture many important antibiotics
and other pharmaceuticals. Figure 10.6 displays a simple schematic of
a fermentation system used for antibiotic manufacture. The cells can
grow exponentially quickly so that although there are no cells in the
feed, they can establish a nonzero steady state in the CSTR, commonly
known as a chemostat in the bioprocess industries. The classic paper
[3] was one of the first to lay out the fundamentals for modeling the dy-
namic behavior of these kinds of cell populations. We further develop
the modeling of chemostats later in the chapter.

10.3 Population Balance

Given this brief overview of applications, we next develop the evolution
equation for the particle size distribution, known as the population bal-
ance. We first treat deterministic models with a single size coordinate
and single source of nucleation of new particles at a single (zero) size.
Next we extend the model to include multiple sources of nucleation
at multiple sizes. Then we extend the model to handle the case when
multiple internal coordinates are required to specify the state of the
particle. Size and shape, or mass and age are common examples of
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Figure 10.7: Particle size distribution showing particles entering and
leaving size class L to L + ∆L due to particle growth,
birth, and death.

required pairs of internal coordinates. Finally, we treat stochastic pop-
ulation models and develop the connections between the deterministic
population balance and the stochastic population models.

10.3.1 Single Size Coordinate

Consider a population of particles well described by a single size co-
ordinate. A collection of similarly-shaped particles, such as spheres,
cylinders, or platelets, which differ by only the characteristic length,
would be an example of when this description suffices. For illustrative
purposes, all of the reactors considered in this chapter are assumed to
be well stirred, so we do not need to consider the spatial location of
the particles in the list of coordinates.2

As depicted in Figure 10.7, we wish to write a balance for the number
of particles, f(L, t)dL, in size class L to L+∆L for small∆L. We consider
the change in the particle number in this size class from time t to time
t+∆t due to particle growth and any mechanisms that create or destroy
particles. In words, the balance for the particles is

change
in particle

number

 =


particles
that enter
by growth

−


particles
that leave
by growth


+
{

particles
that are born

}
−
{

particles
that die

}
(10.1)

2It is not difficult to add spatial location to the coordinate list when considering
spatially distributed (or nonideally mixed) particulate reactors.
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Substituting in the defined particle size distribution f(L, t) gives∫ L+∆L
L

f(L, t +∆t)dL−
∫ L+∆L
L

f(L, t)dL =∫ L
L−G(L,t)∆t

f(L, t)dL−
∫ L+∆L
L+∆−G(L+∆L,t)∆t

f(L, t)dL

+
∫ L+∆L
L

B(L, t)dL∆t −
∫ L+∆L
L

D(L, t)dL∆t (10.2)

in which G(L, t), B(L, t), and D(L, t) are the growth, creation, and de-
struction rates of particles of size L at time t. Since ∆L is small, we
may approximate the integrals with the trapezoid rule giving

[f (L, t +∆t)− f(L, t)]∆L =
f(L, t)G(L, t)∆L∆t − f(L+∆L, t)G(L+∆L, t)∆L∆t

+ [B(L, t)−D(L, t)]∆L∆t (10.3)

Dividing by ∆L and ∆t gives

f(L, t +∆t)− f(L, t)
∆t

=

−
[
f(L+∆L, t)G(L+∆L, t)− f(L, t)G(L, t)

∆L

]
+ B(L, t)−D(L, t) (10.4)

and taking the limit as ∆L,∆t → 0 gives finally

∂f
∂t
= −∂ (fG)

∂L
+ B −D (10.5)

which is our first example of a population balance. This equation is
analogous to the continuity equation of fluid mechanics. Exercise 10.1
makes this analogy precise. The population balance holds for all pos-
itive sizes and times, 0 ≤ L < ∞, 0 ≤ t < ∞. Next we consider the
necessary boundary conditions.

10.3.2 Boundary Conditions

We see that the population balance, Equation 10.5, is a first-order (hy-
perbolic) partial differential equation in t and L, so we require a bound-
ary condition (initial condition) at some time and a boundary condition
at some L. The initial condition specifies the entire PSD at t = 0

f(L, t) = f0(L) t = 0 0 < L <∞ (10.6)
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Figure 10.8: Particle size distribution near L = 0. Particles are nucle-
ated at L = 0 and grow out of the interval 0 to ∆L.

The initial condition simply describes the condition of the reactor when
it is started.

One nucleation term at zero size. For the boundary condition, we
consider first the case in which particles are nucleated at small size,
assumed to be L = 0, at some nucleation rate B(L, t) = B0(t)δ(L).
Consider the PSD in a region near L = 0 depicted in Figure 10.8. The
change in the number of particles in the interval 0 to ∆L during time t
to t +∆t is given by∫ ∆L

0
f(L, t +∆t)dL−

∫ ∆L
0
f(L, t)dL︸ ︷︷ ︸

change in particle number

= B0(t)∆t︸ ︷︷ ︸
enter

by nucleation

−
∫ ∆L
∆L−G∆t

f(L, t)dL︸ ︷︷ ︸
leave by growth

Because we are taking ∆L small, we can approximate the integrals to
obtain

∆L [f(∆L, t +∆t)− f(∆L, t)] = B0(t)∆t −G(∆L, t)∆tf (∆L, t)

Dividing both sides by ∆t and taking the limit as both ∆L and ∆t go to
zero gives

f(0, t) = B0(t)
G(0, t)

which is the L = 0 boundary condition for the population balance. This
boundary condition basically tells us that the number of particles at
zero size is a competition between the rate at which they are being
nucleated and the rate at which they are moving out into larger sizes
due to particle growth.



584 Particulate Reactors

nucleation
enter by

G∆t

f (L, t)

f (0+, t)
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Figure 10.9: Integrating over a small volume element near L = 0 to
obtain a boundary condition at L = 0.

Alternative derivation. When we consider reactors in which particles
are created at more than a single size, we find it convenient to use delta
functions to describe the particle source terms. We introduce the ideas
here in the simplest setting. Consider again particle nucleation at size
L = 0; we may also consider this event as part of the particle birth term
B as follows

B(L, t) = B0(t)δ(L)

This equation implies that particles are nucleated in a vanishingly small
size range at L = 0 at some rate given by B0(t). For this assumed
nucleation term, the population balance is then

∂f
∂t
= −∂ (fG)

∂L
+ B0(t)δ(L)−D

If we wish to derive the boundary condition at L = 0, we integrate this
equation across a narrow region containing L = 0.

As illustrated in Figure 10.9, we have∫ 0+

0−

∂f
∂t
dL = −

∫ 0+

0−

∂ (fG)
∂L

dL+
∫ 0+

0−
B0(t)δ(L)dL−

∫ 0+

0−
DdL

The first term and the last term go to zero because they are standard
functions integrated across a vanishingly small interval. But the second
term we integrate by parts and the third term picks up the action of
the delta function giving

0 = − fG
∣∣0+

0− + B0(t)

0 = f(0−, t)G(0−, t)− f(0+, t)G(0+, t)+ B0(t)
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As we see in Figure 10.9, f(0−, t) = 0 and we obtain

0 = −f(0+, t)G(0+, t)+ B0(t)

which we can solve for f(0, t) to obtain

f(0, t) = B0(t)
G(0, t)

Notice that this result for the boundary condition agrees with the result
obtained previously.

We summarize the population balance, initial condition, and bound-
ary condition for this one-dimensional case with a single nucleation
term at zero size

∂f
∂t
= −∂ (fG)

∂L
−D

f(L, t) = f0(L) L > 0 t = 0

f(L, t) = B0(t)
G(0, t)

L = 0 t > 0

(10.7)

Multiple source terms. The second derivation is ideal for treating
systems with several nucleation mechanisms that produce particles at
different sizes. The total nucleation rate is then the sum of these sev-
eral nucleation rates

B(L, t) =
∑
i
Bi(t)δ(L− Li)

Substituting this nucleation rate into the population balance and inte-
grating across a small region containing Li, the size at which particles
are nucleated by the ith mechanism gives∫ L+i

L−i

∂f
∂t
dL = −

∫ L+i
L−i

∂ (fG)
∂L

dL+
∫ L+i
L−i

∑
j
Bj(t)δ(L− Lj)dL−

∫ L+i
L−i
DdL

Evaluating the integrals as before gives

0 = − fG
∣∣L+i
L−i
+ Bi(t)

0 = f(L−i , t)G(L−i , t)− f(L+i , t)G(L+i , t)+ Bi(t)

0 = −
(
f(L+i , t)− f(L−i , t)

)
G(Li, t)+ Bi(t)
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The last equality follows because G(L, t) is continuous at L = Li; only
the particle size distribution f(L, t) jumps at L = Li because of the
particle nucleation term. Each nucleation mechanism then creates a
jump in the particle size distribution at size Li where the nucleation
takes place. We then have the following jump boundary conditions:

f(L+i , t)− f(L−i , t) =
Bi(t)
G(Li, t)

all i

10.3.3 Multiple Internal Coordinates

We now consider the case in which the particle is characterized by a
vector of coordinates, x. In the previous discussion we had assumed
that x was the scalar, L. Now we admit more complex particles that
may require further descriptors, such as size plus an aspect ratio, if
the particles exhibit a variety of shapes as well as sizes. In the case of
biological cells, we may require size or mass plus time since last cell
division (cell age) to model the rates of cell growth and division. The
many different application areas where population balances are useful
produce a wide variety of coordinates that characterize the particles
of interest. Our only requirement at this point is that the list of coor-
dinates is finite. The generalized particle size distribution is denoted
f(x, t). We continue to refer to f as the particle size distribution or
particle density, even though the x coordinates may not even contain
a particle size coordinate.

S(t)
vs

V(t)
n

Figure 10.10: Volume element.

Consider an arbitrary volume ele-
ment in the x coordinate space de-
picted in Figure 10.10. The ele-
ment has volume V that may change
with time, bounding surface S that
changes with velocity vs with respect
to some fixed coordinate system, and
outwardly pointing normal vector n.
We next write a macroscopic parti-
cle balance over this volume element.
Let vx be the rate of change of the particle’s coordinates in some fixed
coordinate system. The population balance for the particles is then

d
dt

∫
V(t)

f(x, t)dΩ = −
∫
S(t)

f(x, t)(vx − vs) · ndσ

+
∫
V(t)

(B −D)dΩ (10.8)
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in which the difference (vx −vs) ·n accounts for the net rate at which
particles enter the volume element due to both change in their coor-
dinates (the vx term) and motion of V (the vs term). We require two
fundamental results to move from the macroscopic particle balance to
the microscopic population balance. These are the Leibniz rule for dif-
ferentiating an integral, and the divergence theorem for converting a
surface integral into a volume integral. We state these results next and
then apply them.

The Leibniz rule for differentiating an integral is [2, p.824]

d
dt

∫
V(t)

f(x, t)dΩ =
∫
V(t)

∂f
∂t
dΩ +

∫
S(t)

f(vs · n)dσ (10.9)

in which, as depicted in Figure 10.10, V(t) is an arbitrary closed vol-
ume, which may be moving with arbitrary velocity, S(t) is V ’s bounding
surface, and f is an arbitrary function that is continuous in V . The ve-
locity of the bounding surface is vs and n is the outwardly pointing
unit normal to S. The divergence theorem is [2, p.824]∫

V
(∇ · v)dΩ =

∫
S
(v · n)dσ (10.10)

in which V is an arbitrary volume element with bounding surface S
and v is any vector field that has continuous partial derivatives (with
respect to x) in V . With these two results one can move easily between
microscopic and macroscopic balances.

Applying the Leibniz rule to the first term in Equation 10.8 and the
divergence theorem to the second term yields∫

V(t)

[
∂f(x, t)
∂t

+∇ · (f (x, t)vx)− (B −D)
]
dΩ = 0 (10.11)

In general, the vanishing of an integral does not allow one to conclude
that the integrand is zero. In this case, however, we have placed almost
no restrictions on the volume element V . If the integrand is continuous
in the x coordinates, and it is nonzero at some value of x, we can
choose V to be a very small element at this same x value and violate
Equation 10.11 unless the integrand vanishes everywhere. Therefore,
we conclude that the integrand is zero yielding

∂f(x, t)
∂t

+∇ · (f (x, t)vx)− (B −D) = 0

which is the population balance for the particles. As before, this pop-
ulation balance requires an initial condition and a boundary condition
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Figure 10.11: Reactor containing two well-mixed phases of matter.

for each component of the x coordinates. For those interested in read-
ing further on the development of population balances, the classic pa-
per [6] is still highly recommended reading.

10.4 Multiphase Mass and Energy Balances

Given the presence of the particle phase, the single-phase mass and
energy balances of the previous chapters must be generalized to handle
the multiple phases that are present.

Example 10.1: Mass and energy balances with multiple phases

Consider the process depicted in Figure 10.11 in which the reactor con-
tents and the streams entering and leaving the reactor consist of mul-
tiple, well-mixed phases. Without loss of generality, we shall consider
two phases: α and β. Consider the state of the reactor to be described
by the following set of 2(ns + 2) intensive variables and 2 extensive
variables

Tα, Pα,mα, cαj j = 1, . . . ns

Tβ, Pβ,mβ, cβj j = 1, . . . ns

in which mα,mβ are the masses of the α and β phases, respectively.
Let us assume the phases equilibrate with each other even though

the reactor is not assumed to be at complete chemical equilibrium.
As discussed in Chapter 3, the conditions of phase equilibrium, Equa-
tions 3.50, imply that both phases are at the same temperature, T , and
both phases are at the same pressure, P , which allows us to describe
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the state of the reactor with 2ns+2 intensive variables and 2 extensive
variables

T , P,mα,mβ, cαj , c
β
j j = 1, . . . ns

Since the process in Figure 10.11 is an open system, we also have the
two effluent flowrates and the rate of heat transfer to the system

Qα,Qβ, Q̇

that need to be determined, bringing the total number of unknown
variables to 2ns +7. We assume we have specified the feed conditions,
Qf , cjf , Tf . Let us also assume that the system pressure and volume
are known constants and the rate of heat transferred to the system is
specified. So we have specified two of our unknown variables

P, Q̇

which brings us back to 2ns+5 unknowns, and we have one constraint
on the total system volume.

(a) Write the mass and energy balances for this multiphase reactor.

(b) Is the process now fully specified? If so, write the 2ns + 5 equa-
tions that fully determine the system. If underdetermined, what
natural additional constraint(s) would you apply to fully specify
this system?

Solution

(a) Let us consider the balances that can be written. First we have ns
component balances of the following form

dnj
dt

= Qf cjf−Qαcαj −Qβc
β
j+
∑
i
νij

(
rαi V

α + rβi Vβ
)

j = 1, . . . , ns

(10.12)
in which rαi and rβi are the rates of the ith chemical reaction in
the α and β phases, respectively, and Vα and Vβ are the volumes
of the α and β phases, respectively. Note that some of these rates
may be zero in one phase but nonzero in the other phase. The
rates are functions of the temperature and concentrations. We
can evaluate the phase volumes from the other variables by

Vα = m
α

ρα
Vβ = m

β

ρβ



590 Particulate Reactors

We also state that the total system volume, which is known and
fixed, is the sum of the two phase volumes

VR = Vα + Vβ (10.13)

The concentrations and total moles are related by

nαj = cαj Vα nβj = c
β
j V

β j = 1, . . . ns

nj = nαj +n
β
j

so we have not introduced any new unknowns by using nj in the
material balances. The total mass of each phase is expressible as
the weighted sum of the moles of each species

mα =
∑
j
nαjMj mβ =

∑
j
nβjMj (10.14)

Because the phases are in equilibrium with each other, we have
the following ns conditions of phase equilibrium

µ̂αj = µ̂
β
j j = 1, . . . , ns (10.15)

We next write a total energy balance. Using the same assumptions
that lead to Equation 6.27, we have

dU
dt
= Qfρf Ĥf −QαραĤα −QβρβĤβ + Q̇ (10.16)

in which we set the boundary work term to zero because the sys-
tem has constant volume. The total internal energy is related to
the masses and specific volumes of the two phases by

U =mαÛα +mβÛβ

so we have not introduced a new unknown by using U in the
energy balance. Counting up the equations in Equations 10.12,
10.13, 10.14, 10.15 and 10.16, we have written 2ns + 4 equations
and the system is underspecified by one equation. We require one
additional constraint to specify the system.

(b) A natural additional constraint in many reactors is to fix the mass
of the condensed phase, phase β, say. If we are heating the re-
actor, for example, we may measure the height of the condensed
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liquid phase and use feedback control to determineQβ that main-
tains constant mβ, so we do not accidentally run the reactor dry.
Notice that we do not require the heat of reaction nor the heat of
phase change for the energy balance if we have the thermochem-
ical data to compute the enthalpies of the streams.

□

Example 10.2: Crystallization model

We start with the population balance and continuous phase solute bal-
ance required to model isothermal crystallization of a single solute in a
CSTR. Assume a simple power law empirical expression for the nucle-
ation and growth rates, and assume that the growth rate is independent
of particle size3

B0 = kb(c − csat)b G = kg(c − csat)g

Solution

Substituting the growth and nucleation rates into Equation 10.7 gives

∂f
∂t
= −kg(c − csat)g

(
∂f
∂L

)
− 1
τ
f

f(L, t) = f0(L) L > 0 t = 0

f(L, t) = kb
kg
(c − csat)b−g L = 0 t > 0

Given a particle of characteristic size Lwith volume vpL3, if the particle
experiences growth rate G, i.e., dL/dt = G, then the corresponding
volume rate of change is dV/dt = 3vpL2G. The rate of mass transfer
to the particle is then the crystal density ρc times this rate of particle
volume change, integrated over the population of particles. The solute
mass balance then becomes

dc
dt
= 1
τ
(cf − c)− 3ρcvpkg(c − csat)g

∫∞
0
f(L, t)L2dL

The coupling of the solute balance and the population balance can give
rise to interesting dynamic behavior such as long-period oscillations,
which sometimes plague operation of industrial crystallizers [9]. □

3The assumption that linear growth rate is independent of particle size is often re-
ferred to as McCabe’s ∆L law [11]. Many systems are known to violate this assumption,
but it remains popular mainly because it simplifies solving the population balance.
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Example 10.3: Emulsion polymerization model

Next we write down the population balance and continuous phase bal-
ances required to model emulsion polymerization in a CSTR.

Solution

We use the particle volume, V , for the size coordinate and the popula-
tion balance is

∂f
∂t
= −∂ (fGV )

∂V
− 1
τ
f

The polymerization rate inside the particles is given by rp = kpiφ in
which i is the number of free radicals in the particle and φ is the vol-
ume fraction of monomer. For simplicity of exposition, we assume both
i and φ are constant and independent of particle size. The polymer-
ization rate then determines the particle growth rate as monomer is
continually added to maintain φ constant. The rate of volume change
due to polymerization can be shown to be [15]

GV =
kpiφ

ρp(1−φ)

in which ρp is the density of the polymer. The nucleation rate is de-
termined by the number of micelles and the free radical concentration
in the aqueous phase. The total surfactant can be taken as a constant,
and the amount of free surfactant available to form micelles is taken
as the total surfactant in the reactor less what is required to saturate
the aqueous phase and stabilize the particles’ surface,

m′(t) = (s − swc)aem/am − ap/am
∫∞

0
f(L, t)L2dL

m(t) =m′H(m′)

The constant aem is the surface area occupied by a single surfactant
molecule, and am is the total surface area of a micelle. The integral
computes the amount of surfactant required to stabilize the particles.
The Heaviside function is used to set the number of micelles to zero
when the aqueous phase surfactant concentration drops below the criti-
cal micelle concentration, swc . For simplicity we assume the free radical
concentration, R, is constant giving

B0(t) = kmmRm(t)
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in which kmm is the mass transfer coefficient for the radical entry into
micelles. Finally, the monomer balance is given by

dM
dt
= 1
τ
(Mf −M)− vp

∫∞
0
kpiφf(L, t)L3dL

which accounts for the flow streams and the consumption of monomer
due to the polymerization taking place inside the particles.

Here we see already the fairly complicated set of equations required
to track the particle composition and size distribution, as well as the
continuous phase species. Again, the interactions between the micelle
balance and the population balance lead to complex dynamic behavior
such as sustained oscillations. See [15] for details on how to relax the
many simplifying assumptions made here. □

Example 10.4: Fermentation model

Write down a population balance for the cells and the continuous phase
balances for substrate and product to model fermentation in a CSTR.

Solution

In the bioprocess literature, a segregated model is one that explicitly
models the population of cells, i.e., includes a population balance. A
structured model is one that requires more than one chemical species
to describe the state of the cell. We choose cell mass to be the internal
coordinate describing the cell population.4 The rate of change of a
given cell’s mass, ṁ, due to the metabolic reactions is called the cell
growth rate, denoted µ. Cell growth rate is usually normalized by the
cell mass, so it has units of inverse time, and we have ṁ = µm. The
population balance is then

∂f(m, t)
∂t

= −∂(µmf(m, t))
∂m

+ B −D − 1
τ
f (10.17)

in which B accounts for production of new cells, usually by cell division,
which produces two new cells of roughly half the mass of the mother
cell. The death term D accounts for losses of cells of size m by, for
example, cell death and cell division. Note that, for convenience, the
outflow term is treated separately from the other death terms. The
continuous phase balances consist of the substrate(s), S, that the cells

4Cell mass alone may be inadequate to predict cell division; cell age may also be
used if that is a better predictor of cell division.
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consume for cell growth, and the product(s), P , secreted by the cells
as side products of their metabolic processes. The cell growth yield,
y , is the ratio of cell mass increase to substrate mass consumed. In
the segregated models, the cell growth rate and growth yield may be
functions of any of the continuous phase concentrations and the cell’s
mass. A typical balance would be [17]

dS
dt
= 1
τ
(Sf − S)−

∫∞
0
f(m, t)

µ(S,m)m
y(S,m)

dm

The formation rate of some products is often well correlated with the
cell growth rate. These are the so-called growth-associated products
such as enzymes and proteins. Many secondary metabolites, such as
antibiotics, are nongrowth-associated products, and they form at a rel-
atively constant rate, even if the cell growth rate is zero. A typical
product formation rate expression accounting for both forms is

qp(S,m) = αµ(S,m)+ β

and the product balance would be

dP
dt
= −1

τ
P +

∫∞
0
f(m, t)qp(S,m)m dm

□

10.5 Nonsegregated Fermentation Model

Given the complexity of determining B and D, and the metabolic func-
tions µ, y , and qp for cell lines and products of interest, fermentor
models are often simplified further to make them more tractable. The
first common simplification is to ignore the distribution of cells and
lump all cells together in a single species, biomass. Although this sim-
plification does violence to the known biology, we shall see that these
models still provide insight and useful predictions of aspects of fer-
mentor behavior. Given our previous starting point, we can define total
biomass as

X :=
∫∞

0
f(m, t)m dm

If we assume that µ is only a weak function of cell mass (otherwise this
model simplification is not accurate), we can integrate the population
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balance as follows. Multiply the population balance, Equation 10.17, by
m and integrate over all cell mass. The left-hand side becomes

∫∞
0

∂f(m, t)
∂t

m dm = d
dt

∫∞
0
f(m, t)m dm = dX

dt

Using integration by parts, the first term on the right-hand side of the
population balance becomes

−
∫∞

0

∂(µmf(m, t))
∂m

m dm = −m2µf
∣∣∣∞

0
+
∫∞

0
f(m, t)µm dm

The integrand vanishes at the two limits, and µ can be taken outside
the integral giving

−
∫∞

0

∂(µmf(m, t))
∂m

m dm = µX

The cell division terms cancel in the integration over B and D because
cell mass is conserved on cell division. If cell death is negligible, then
these terms disappear completely. The final result, neglecting cell death,
is that the population balance reduces to the following total biomass
balance

dX
dt
= µ(S)X − 1

τ
X

The substrate and product balances can be simplified if we assume that
the yield and product formation rate do not vary appreciably over the
cell population. Taking these terms outside the integrals gives

dS
dt
= 1
τ
(Sf − S)−

µ(S)
y(S)

X

dP
dt
= −1

τ
P + qp(S)X

We next discuss the functional form of the cell growth rate and its
dependence on the substrate.

Substrate limited growth. Many different cell growth expressions
have been found useful [1, 17]
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Monod equation: µ = µmS
Ks + S

Blackman equation: µ =

µ = µm S ≥ 2Ks
µ = µmS

2Ks S < 2Ks

Tessier equation: µ = µm(1− e−KsS)

Moser equation: µ = µmSn

Ks + Sn

Contois equation: µ = µmS
KsxX + S

We recognize the Monod equation [12] for cell growth rate as the sim-
plest form of the Langmuir adsorption isotherm and the resulting
Hougen-Watson kinetics for reaction rates on catalyst surfaces dis-
cussed in Chapter 5. When multiple substrates, S1, S2, . . ., affect cell
growth, a simple model for overall growth rate is to take the smallest
rate as the limiting growth rate

µ =min
j
µ(Sj)

Growth inhibitors. At high substrate or product concentrations, cell
growth is inhibited. Common functional forms for this inhibition are
the following:

substrate inhibition: µ = µmS
Ks + S +K1S2

product inhibition: µ = µmS
Ks
(

1+ P
Kp

)
+ S

Reactor behavior. Assuming Monod kinetics for cell growth, the com-
bined biomass and substrate mass balances are

dX
dt
=
(
−D + µmS

Ks + S

)
X

dS
dt
= D(Sf − S)−

1
y

(
µmS
Ks + S

)
X (10.18)

in which we have used dilution rate, D = 1/τ , instead of residence
time for the outflow terms.5 Since there is no product inhibition in

5There should be no confusion with the D in the population balance death term in
this section.
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this model, the product balance is not required to solve the biomass
and substrate balances. We first analyze the steady state of this model.
Setting the time derivatives to zero, we notice first from the biomass
balance that Xs = 0 is a steady state, and substituting this result into
the substrate balance gives Ss = Sf . We can find a second steady state
by setting the bracketed term to zero in the biomass equation and
solving for Ss , which gives Ss = DKs/(µm − D). Substituting this re-
sult into the substrate balance and solving yields Xs = y(Sf − Ss) =
y(Sf −DKs/(µm −D)). So we see that there are two steady states for
all values of parameters:

Xs1 = 0 Ss1 = Sf

Xs2 = y(Sf − Ss2) Ss2 =
DKs
µm −D

(10.19)

Consider the dilution rate to be the parameter of interest, and notice
that the second steady state makes physical sense only if D < Dc . Oth-
erwise Xs is negative and Ss > Sf . We can solve Ss2 = Sf to find this
critical value of dilution rate and obtain

Dc =
µmSf
Ks + Sf

For high dilution rate, D > Dc , we have only one physically meaningful
steady state in which Xs = 0 and Ss = Sf . In this parameter regime, the
dilution rate is too large for the system to support any biomass and
any initial biomass simply washes out of the reactor. This steady state
is known as the “washout” steady state. For low dilution rate D < Dc ,
there are two possible steady states, the washout steady state, and a
steady state with positive biomass production and substrate consump-
tion. Here we have another classic case of steady-state multiplicity as
studied in Chapter 6. Exercise 10.7 asks you to show that the washout
steady state is stable for D > Dc and unstable for D < Dc . The sec-
ond, nontrivial steady state has the opposite stability; it is unstable
for D > Dc and stable for D < Dc . These results are shown in Figure
10.12 for a range of dilution rates. The other parameter values used to
prepare the figure are

µm = 1 Ks = 1 Sf = 5 y = 1

Finally, increasing dilution rate further, we notice that there is a singu-
larity in Ss2 at D = µm, and the substrate steady state changes sign and
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Figure 10.12: The two steady-state biomass and substrate concen-
trations versus dilution rate; stable (solid), unstable
(dashed). Stability changes at D = Dc . Also shown
is total biomass production rate, DX, for the stable
steady state.

becomes negative and the biomass becomes positive. Although this
steady state is then also stable, it is not physically meaningful because
of the negative substrate concentration (see also Exercise 10.7).

Notice that the steady-state production rate of biomass is given by
the product DXs , which has units of mass per volume of reactor per
time. This quantity is also plotted in Figure 10.7. Notice that it has an
optimum, which can be found by differentiating DXs2 with respect to
D and setting to zero. The result is

D0 = µm
(

1−
√

Ks
Ks + Sf

)
(10.20)

A low dilution rate gives a high reactor biomass concentration but little
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biomass outflow from the reactor.6 Operating at a high dilution rate
leads to washout and zero biomass production. An optimum naturally
exists between these operational extremes.

10.6 Stochastic Models of Nucleation and Growth

Turning attention back to the general topic of modeling particulate
reactors, we can also consider the phenomena of particle nucleation
and growth entirely from a stochastic perspective. As we saw in the
discussion of stochastic kinetics in Chapter 4, the stochastic perspec-
tive provides valuable understanding of certain experimental observa-
tions, such as dispersion (spreading) in the particle size distribution
with time. We also can derive the population balance of the previous
sections starting with the stochastic equations and taking the limit of
large numbers and small sizes of the solute molecules compared to the
small numbers and large sizes of the growing crystals.

10.6.1 Modeling Particle Growth and Dissolution

We start with a simple experiment to make the discussion concrete.
Imagine we have a single, pure-solid particle of some initial size in a
well-stirred supersaturated solution of solute molecules with some ini-
tial supersaturation. This experiment is easy to conceptualize and also
easy to perform in the laboratory. We assume that the particle’s crystal
structure and geometric shape are not important variables needed to
describe the growth rate of the particle. This assumption is valid for
certain kinds of particles. Because we have a single particle experienc-
ing only growth, the particle size distribution is arbitrarily narrow at
this single size. The supersaturation in the solution phase is the driv-
ing force for particle growth. If the particle were to grow large enough
that it removes enough solute from the solution phase, then the so-
lution phase approaches saturation and the driving force for further
growth drops to zero. The equilibrium state for this simple system is
a single particle of a size larger than the initial size, coexisting with
a saturated solution phase. Similarly, if the solution phase is initially
undersaturated, then the particle dissolves, releasing solute back to
the solution phase until either the particle dissolves completely, or the
solution phase reaches saturation.

6Recall that one sells the mass leaving the reactor, not the reactor concentration.
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Figure 10.13: Typical growth rate and dissolution rate as a function
of solute concentration in the solution phase.

We now build a simple stochastic kinetic model corresponding to
this growth/dissolution picture. Let Pn denote a particle with integer
n denoting the particle size coordinate, and Ln denote the size of the
particle in the nth size class. The number of particles in size class n is
denoted fn. We letM denote the integer number of solute or monomer
molecules in the solution phase. We denote the saturation number of
solute molecules by Msat. Particle growth corresponds to the addition
of a solute molecule to the particle, which is modeled by the reaction

Pn +M
kg
-→ Pn+1

Similarly, particle dissolution is the transfer of a solute molecule from
the solid phase to the solution phase, which corresponds to the reac-
tion

Pn
kd-→ Pn−1 +M

We expect the rates of these events to look like the curves depicted in
Figure 10.13. The simplest model we can use that is consistent with
this picture is the following

rgn =

kgnfn(M −Msat) M > Msat

0 M ≤ Msat

rdn =

0 M ≥ Msat

kdnfn(Msat −M) M < Msat

in which rgn is the probability (rate) of growth of particle Pn and rdn is
the probability (rate) of dissolution of particle Pn. If we further assume
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Figure 10.14: Tracking 10 particles undergoing different growth-
rate dispersion mechanisms; intrinsic growth-rate
dispersion (left), and growth-dependent dispersion
(right).

that the rate constants do not depend on the size of the growing or
dissolving particle, we have

rg = kgfn(M −Msat)
rd = kdfn(Msat −M)

and we drop the reminder that the rate of growth (dissolution) of a
particle Pn is zero if the solution is undersaturated (supersaturated).

Models of Growth-Rate Dispersion. Growth rate dispersion refers
to the general experimental observation that different particles experi-
ence different growth rates. The dispersion in the growth rates is nor-
mally observed by watching the spread in the particle size distribution
increase with time. There are many possible mechanisms explaining
growth rate dispersion. For example, particles may be nucleated with
different intrinsic growth characteristics, which they maintain during
the entire growth period. Alternatively, all nucleated particles may be
identical, but the growth process is itself an inherently random process.
In Figure 10.14 we simulate the behavior of 10 particles undergoing
these two different growth mechanisms. Notice that the total spread
in particle sizes is about equal in the two mechanisms, even though the
mechanisms causing the spread in size are quite different. Under the
intrinsic growth-rate dispersion mechanism, the ten particles grow de-
terministically, but with different rates. Under the growth-dependent
dispersion mechanism, the 10 particles undergo independent random
walks, and the dispersion is caused by their random motions. It can
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even be a challenge to infer from experimental measurements of parti-
cle size which mechanism is the better model of the observed disper-
sion in particle size.

10.7 Stochastic Simulation and Deterministic Population
Balances

Because the population balance describes a particle size “distribution,”
there always seems to be some initial confusion about the probabil-
ity “distribution” of stochastic models when used to describe a system
with a population balance. Hopefully we can clear up this confusion,
especially since we start with a discrete set of size classes. Given a
stochastic model of particle growth, each particle size class has its own
inherent probability distribution, p(fn, t), the probability that we have
fn particles of size Ln at time t. Monte Carlo methods provide samples
from these distributions, and the samples can be averaged to yield the
mean value. Tabulating the mean values yields the mean of the stochas-
tic model.

That the deterministic population balance is equal to the mean of
the stochastic model seems to be widely believed, but it is rarely true.
There are only two general situations in which the mean of the stochas-
tic model is equal to the deterministic model:

1. When all rate processes are linear in the species numbers.

2. In the limit as the numbers of molecules/particles goes to infinity.

When the first condition holds, it does not matter if we have a large
or a small number of molecules/particles. When the second condition
holds, it does not matter what form the rate expressions take. But in
this second case, we can say more. It is not just that the mean of the
stochastic model converges to the deterministic model. In the limit of
large numbers of molecules, the randomness of the stochastic model
disappears entirely, and the probability density of the stochastic model
becomes arbitrarily sharp at the solution to the deterministic model.
This result was established in a classic paper by Kurtz [7]. This second
case therefore has a much stronger link between the stochastic and
deterministic models. This case is commonly referred to as the “ther-
modynamic limit,” because this convergence was first established be-
tween statistical (molecular) thermodynamics and classical (determin-
istic, macroscopic) thermodynamics. We have already illustrated the
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large species number thermodynamic limit when introducing stochas-
tic kinetics in Chapter 4. See Figures 4.29–4.31 and the accompanying
discussion. So here we would like to illustrate the first case. We shall
do this by considering a pure random growth process.

10.7.1 Linear rate processes.

We consider a large bath of monomer, whose concentration remains
constant, and a smaller number of particles exhibiting random growth
by the reactions

Pn +M
kg
-→ Pn+1 rn = kgcMfn n = 1,2, . . . , nT (10.21)

We consider the monomer concentration, cM to be constant, and let
fn denote the number of particles in size class n = 1,2, . . . , nT . We
consider the reaction (growth) rate constant kg to be independent of
particle size, but this assumption is merely for convenience and is not
important to the development. We denote the probability density

p(f1, f2, . . . , fnT , t)

as the probability that at time t, the system has f1 particles in size class
1, f2 particles in size class 2, and so on up to the largest size class nT .
The deterministic model for this growth process follows immediately
from the production rates of Reactions 10.21.
Deterministic.

d
dt
f1 = −λf1

d
dt
fn = λfn−1 − λfn n = 2, . . . nT − 1

d
dt
fnT = λfnT−1

in which we use λ to denote the constant λ = kgcM . For the random
model, the equation governing the probability density is

d
dt
p(f1, f2, . . . , fnT , t) =

− λ(f1 + f2 + · · ·fnT−1) p(f1, f2, . . . , fnT , t)
+ λ(f1 + 1)p(f1 + 1, f2 − 1, . . . , fnT , t)
+ λ(f2 + 1)p(f1, f2 + 1, f3 − 1, . . . , fnT , t)

+ · · · + λ(fnT−1 + 1)p(f1, f2, . . . , fnT−1 + 1, fnT − 1, t) (10.22)
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This balance accounts for loss of probability from state (f1, f2, ..., fnT )
due to the firing of any reaction. These are the nT − 1 negative terms
in the probability balance. The probability of the state increases due to
the firing of reaction n when in state (f1, . . . , fn + 1, fn+1 − 1, . . . , fnT ).
These are the nT − 1 positive terms in the probability balance. To
compute the evolution equations for the average particle numbers in
each size class n, we multiply the probability density by fn and sum

⟨fn⟩ =
∞∑

fnT =0

· · ·
∞∑
f2=0

∞∑
f1=0

fnp(f1, f2, . . . , fnT , t)

Performing this operation on the evolution equation of the probability
density gives the following result. See Exercise 10.10 for more details
and some hints for performing this step.
Mean Stochastic.

d
dt
⟨f1⟩ = −λ⟨f1⟩

d
dt
⟨fn⟩ = λ⟨fn−1⟩ − λ⟨fn⟩ n = 2, . . . nT − 1

d
dt
⟨fnT ⟩ = λ⟨fnT−1⟩ (10.23)

We can see by inspection that these are identical to the deterministic
case. Note that this last step hinges entirely on the rate expressions
being linear in the species numbers fn. If these expressions were non-
linear, the equivalence would not hold. As we see here, the equivalence
of mean stochastic and deterministic cases at low particle number re-
quires a very special situation to hold for the reaction rates. Exercise
10.11 presents two other representative processes, particle agglomer-
ation and particle breakage, and asks you to decide whether the equiv-
alence holds for these two processes. Exercise 10.12 explores the situ-
ation in which the supersaturation is low so that the monomer species
also must be treated as a random variable in the model. Exercise 10.16
shows that the equivalence does not hold also in this case.

Limit as monomer size goes to zero. The size classes in the discrete
model reflect the change in particle size when adding one monomer
unit by Reaction 10.21. Consider now the case of a single particle start-
ing in the first size class in a bath of monomer. For a single particle,
the evolution of the probability density that the particle is in class n is
given by

d
dt
p(n, t) = λp(n− 1, t)− λp(n, t) p(n,0) = δn1 (10.24)
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Figure 10.15: Probability density for single particle stochastic
growth model at different times. The stochastic model
converges to deterministic as λ→∞.
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which we see is the same equation as the deterministic model and also
the mean of the stochastic model for many particles. We can solve this
equation analytically to obtain

p(n, t) = e
−λt(λt)n−1

Γ(n)
n = 1,2, . . . , nT − 1

If this equation looks familiar, it may be because we have seen a close
relative before. This is also the residence-time distribution of a chain
of n CSTRs, given in Equation 8.16 with parameter λ playing the role of
n/τ and time t being residence time θ. If we wish to treat the monomer
as molecular size, we take the limit of this equation as λ→∞, and also
as the number of size classes nT → ∞. The results are displayed in
Figure 10.15. Some growth rate dispersion is apparent, and the prob-
ability density widens as time increases. But decreasing the monomer
size and increasing the number of size classes sharpens the probability
density. In the limit λ→∞, the density will be a delta function moving
at constant speed to larger sizes.

10.7.2 Thermodynamic limit.

We conclude the chapter by taking the limit as the number of solute
molecules and the number of particles both go to infinity. We show that
the discrete stochastic model approaches the continuous population
balance in this limit [4]. In this discussion it is convenient to use the
volume of the particle, V , as the characteristic size, and we derive the
population balance in that particle coordinate system. It is not difficult
to convert to the length coordinate system if desired (see Exercise 10.3
for the details).

The discrete stochastic kinetic system converges to the discrete de-
terministic system in the thermodynamic limit, and the kinetic equa-
tions are

d
dt
f1 = (1/2)knM2 − kg1Mf1 (10.25)

d
dt
fn = −kgnMfn + kgn−1Mfn−1 n = 2,3, . . . (10.26)

d
dt
M = −knM2 −

∞∑
n=1

kgnMfn (10.27)

We now show that the discrete deterministic equations converge to
the continuous population balance. First we equate the numbers of



10.7 Stochastic Simulation and Deterministic Population Balances 607

particles in the discrete size classes with the appropriate integrals of
the continuous distribution by

fn(t) =
∫ Vn+∆/2
Vn−∆/2

f(V, t)dV n = 2,3, . . .

fn(t)Gn(t) =
∫ Vn+∆/2
Vn−∆/2

f(V, t)G(V, t)dV n = 2,3, . . .

in which Vn = (n+ 1)∆ and Gn = kgnM . Differentiating this equation
with respect to time gives

d
dt
fn =

∫ Vn+∆/2
Vn−∆/2

∂f(V, t)
∂t

dV n = 2,3, . . .

Substituting Equation 10.26 gives∫ Vn+∆/2
Vn−∆/2

∂f(V, t)
∂t

dV = −Gnfn +Gn−1fn−1

= −
∫ Vn+∆/2
Vn−∆/2

(f (V, t)G(V, t)− f(V −∆, t)G(V −∆, t))dV

in which we again convert the discrete particle number to an integral
over the continuous distribution. Setting the integrand to zero gives

∂f(V, t)
∂t

= −f(V, t)G(V, t)+ f(V −∆, t)G(V −∆, t)

Next we use a Taylor series to approximate the change in argument on
the right-hand side

f(V −∆, t)G(V −∆, t) =

f(V, t)G(V, t)−∆∂(fG)
∂V

+ ∆
2

2
∂2(fG)
∂V2

+ · · · (10.28)

Since ∆ is small, truncating at the first-order term in the Taylor series
and substituting into the previous equation gives

∂f
∂t
= −∆∂(fG)

∂V

Finally, we define GV (V , t) := ∆G(V, t) = ∆kg(V , t)M(t) as the contin-
uous particle growth rate and obtain

∂f
∂t
= −∂(fGV )

∂V
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Note the correspondence with Equation 10.7. We also obtain a kinetic
relationship for the particle growth rate, although we are still free to
specify the size (and time) dependence of the rate constant kg(V , t), so
this is not completely specified.

The boundary condition at V = 0 can be derived by considering the
total particle number. Integrating the population balance over all sizes
gives

d
dt

∫∞
0
f(V, t)dV = f(0, t)GV (0, t)

Summing Equations 10.25 and 10.26 gives the rate of change of total
particle number to be (1/2)knM2 := B0, and we obtain a kinetic rela-
tionship for the nucleation rate as well. Equating these two expressions
for the change in total particle number and solving for f(0, t) gives the
boundary condition

f(0, t) = B0(t)
GV (0, t)

= knM(t)
2∆kg(0, t)

in agreement with Equation 10.7. Finally we obtain the solute balance
by converting Equation 10.27 to the continuous distribution

d
dt
M = −knM2 −

∫∞
0
G(V, t)f (V, t)dV

Normally the amount of monomer consumed in nucleation is negligible
compared to that consumed by growth of all the particles, and this
result simplifies to

d
dt
M = −

∫∞
0
G(V, t)f (V, t)dV

10.8 Summary

In this chapter, we introduced multiphase, particulate systems consist-
ing of a particulate phase distributed in a continuous solution phase.
Several examples were chosen to illustrate such systems including:
crystallization from solution, emulsion polymerization, and fermen-
tation using living cells. A suitably general particle “size” distribution
was introduced to aid in modeling the particulate phase.

An evolution equation for the particle size distribution, known as
the population balance, was derived next. The population balance is
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the major new modeling concept in the chapter. It is a first-order, hy-
perbolic partial differential equation. The associated boundary condi-
tions describing nucleation of new particles and initial condition were
presented. We then generalized the coordinates describing the state
of a particle from a single “size” coordinate, to any finite dimensional
vector of coordinates. Next the mass and energy balances were gen-
eralized to treat multiphase systems. With these new tools, models
describing crystallization, emulsion polymerization, and fermentation
were presented.

Because cell processes are so complex, scientists and engineers of-
ten wish to simplify the models and lump all the cells together into
a single biomass species, and ignore the segregated nature of the cell
population. The next section derived these simplified overall chemo-
stat balances. Several popular forms for the overall cell growth rate
were presented including the Monod, Blackman, Tessier, Moser, and
Contois equations. The simplified chemostat balances proved useful
in understanding the phenomena of multiple steady states, balanced
growth, and washout.

The chapter concluded with a discussion of stochastic models for
particle nucleation and growth. The two general situations in which the
mean of a stochastic model is equal to the deterministic model were
given: (i) when all rate processes are linear, and (ii) in the large number
limit. In the large number or thermodynamic limit, the randomness
disappears entirely, and the stochastic system becomes arbitrarily nar-
rowly distributed at the deterministic solution. Both of these cases
were illustrated and the chapter concluded with a derivation of the
continuous deterministic population balance starting from a discrete,
stochastic kinetic model of the nucleation and growth reactions.

Notation

ap area shape factor

b nucleation order

B birth rate of particles

B0 birth rate at zero particle size

Bi birth rate for ith nucleation mechanism

c mass density of solute in solution

cj molar concentration of species j
cM molar concentration of monomer

csat solute saturation concentration
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D death rate of particles

D dilution rate, D = 1/τ
Dc critical dilution rate above which washout occurs

f(L, t) particle size distribution

f(x, t) generalized particle size distribution

⟨f ⟩ mean or expectation of random variable f
f0 initial condition of particle size distribution

fn number of particles in size class n
g growth order

G growth rate in particle length coordinate

GV growth rate in particle volume coordinate

Ĥ enthalpy per mass

kb nucleation rate constant

kg growth kinetic rate constant

Ks cell growth constant

L characteristic length of particle

Ln characteristic length of particle in nth size class

m mass of phase

M monomer or solute species

nj molar number of species j
nT number of size classes

n outwardly pointing unit normal

p(n, t) probability of particle in size class n at time t
P pressure

P product concentration

Pn particle of size class n
Q volumetric flowrate

Q̇ rate of heat transfer

ri rate of ith reaction

rdn dissolution rate for particle of size class n
rgn growth rate for particle of size class n
S substrate concentration

S(t) bounding surface of time-varying volume element

t time

T temperature

U internal energy

vp volume shape factor

vs velocity of bounding surface

vx velocity of particles with x coordinates
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VR reactor volume

V(t) time-varying volume element

x vector of coordinates specifying state of a particle

X biomass concentration

Γ complete gamma function

δ Dirac delta function

∆ volume of solute molecule

λ growth rate parameter, λ = kgcM
µ overall cell growth rate

µj chemical potential of species j
µm cell growth constant

νij stoichiometric number for the jth species in the ith reaction

ρ mass density

ρc density of solid crystal

τ residence time
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10.9 Exercises

Exercise 10.1: From population balance to continuity equation

Starting with the population balance, Equation 10.5

∂f
∂t
= −∂ (fG)

∂L
+ B −D

consider an even simpler situation in which spatial location x rather than L is the only
required coordinate. Let the mass density ρ(x, t) take the place of f(L, t), the particle
density; let the fluid velocity v = dx/dt take the place of the particle growth rate
G = dL/dt; and set B = D = 0 because mass is not created nor destroyed. What does
the population balance reduce to in this simple situation?

Exercise 10.2: Solving population balance with method of characteristics

Consider a constant growth rate process in a well-mixed batch reactor, and a population
balance with no birth and death mechanisms

∂f
∂t
= −G∂f

∂L

The boundary conditions are

f(L, t) =

f0(L) L > 0 t = 0

B0(t) L = 0 t > 0

in which we have absorbed the constant G into the defined nucleation rate B0(t). In
the (L, t) plane in which we solve the population balance, lines of constant L−Gt are
known as characteristic lines for this hyperbolic partial differential equation. Note that
the characteristic lines are straight lines with slope equal to G in the (L, t) plane.

(a) Show that the solution to the population balance is given by

f(L, t) =

f0(L−Gt) L > Gt
B0(t − L/G) L < Gt

Notice that for L > Gt, the solution is determined by the initial condition, and
for L < Gt, the solution is determined by the nucleation rate. The characteristic
line L−Gt = 0 separates these two regimes.

(b) Next consider the CSTR with no particles in the feed so the population balance
becomes

∂f
∂t
= −G∂f

∂L
− 1
τ
f

Given the same boundary conditions as in the last part, what is the solution to
this population balance?

Exercise 10.3: Changing particle coordinates

Population balance models can appear quite different in different coordinate systems.
Consider changing the characteristic size coordinate from particle length, L, to particle
volume, V . The coordinates are related by

V = vpL3
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in which vp is again the particle shape factor for volume. The particle size distributions
in these two coordinate systems are related by

f(L, t) = f(L(V), t) ∂V
∂L
= f̃ (V , t) ∂V

∂L

The corresponding population balances for the well-stirred batch reactors in these two
coordinate systems are

∂f
∂t
= −∂(fG)

∂L
∂f̃
∂t
= −∂(f̃GV )

∂V

Say we wish to express the rate of change of the total particle volume, V̇p

V̇p := d
dt

∫∞
0
f(L, t)(vpL3)dL

V̇p := d
dt

∫∞
0
f̃ (V , t)VdV

(a) Show that the results for the two coordinate systems are

V̇p = 3vp
∫∞

0
GL2f(L, t)dL V̇p =

∫∞
0
GV f̃ (V , t)dV

Hint: differentiate the defining integrals for V̇p and substitute the corresponding
population balances.

Note that we used the first form to write the solute balance in Example 10.2.

(b) Although these two expressions look quite different, show that they are in fact
equivalent.
Hint: First differentiate the coordinate relationship to show that the two growth
rates are related by GV = 3vpL2G

Exercise 10.4: Moving volume elements around

The macroscopic statement of conservation of particles is provided in Equation 10.8,

d
dt

∫
V(t)

f(x, t)dΩ = −
∫
S(t)

f(x, t)(vx − vs) · ndσ +
∫
V(t)

(B −D)dΩ

in which vx is the rate of change of a given particle’s coordinate (size, mass, etc.)
and vs is the velocity of the outer boundary of the volume element V . There are two
popular choices for volume elements in transport discussions: (i) the stationary volume
element, in which case vs = 0, and (ii) the volume element moving with the particle, in
which case vs = vx .

(a) Show that both popular choices of volume element lead to the same Equation
10.11 and therefore the same population balance.

(b) What is not emphasized in most transport discussions is that the motion of the
volume element is completely irrelevant to the resulting microscopic equation.
One is not restricted to the two popular choices of volume element to derive the
microscopic continuity equation. Explain why vs does not appear in Equation
10.11 and hence the population balance regardless of how it is chosen.
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Exercise 10.5: Pedagogy and Newton’s law of universal gravitation

The following approach to the introduction of cell growth rate is commonplace [17, p.
155]. First the cell growth rate µ is defined to be the rate of change of total reactor
biomass, X

µ := 1
X
dX
dt

(10.29)

in which we use the symbol := to denote not just equality, but equal by definition.
Although equation 10.29 is meaningful in the case of a well-stirred bioreactor without
any flow streams, its use as a defining relation for cell growth rate is problematic.
This statement is rather a mass balance for biomass in a well-stirred, constant volume
reactor, i.e., reactor biomass changes with time because cells are growing.

The justification for defining a reaction rate (cell growth rate) as the time rate of
change of a species (biomass) concentration is usually pedagogical. Some argue that
new students find this approach more intuitive and easier to grasp. If Isaac Newton
were to have thought this way, he would have said,

Let’s see, people understand and can measure mass and position, x. If
we watch an apple falling, then we can approximately measure velocity,
dx/dt, by calculating differences in position; then we can approximately
measure acceleration, d2x/dt2, by calculating differences in velocity. So,
let’s use as the definition of gravitational force

Fg :=md2x
dt2

This is pedagogically advantageous because now the beginner can get up
and running based on tangible things that he knows are measurable, and
he will be off to a great start in understanding gravity and the new laws
of motion.

Of course, Newton did not do this. What Newton did instead was to say

Look, I think the Earth and the apple are pulling on each other with a force.
What is the nature of that force? My proposal is that the magnitude of
the gravitational attractive force between any two point masses is

Fg := km1m2

r2
12

(10.30)

and the vector points along the line joining the points. The next key step
is how to relate an applied force to a change in momentum. My proposal
for the conservation law for momentum is

d
dt
(mv) = F (10.31)

There, those two statements should get the beginner up and running and
able to solve all kinds of problems involving gravity and the laws of mo-
tion.

(a) From the conservation of momentum and the definition of the force of gravi-
tational attraction, find out how long it takes Newton’s apple to hit the ground
when released from rest at height h above the ground. What further assump-
tions did you make? Explain physically why the apple’s mass is irrelevant in this
time it takes to hit the ground.
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(b) Which statement do you think contains more hard thinking and is less obvious
to a beginner: Equation 10.30 or Equation 10.31? Give your reasons. Also, which
one of these statements is more clearly attributable to Newton himself and not
his contemporaries.

Exercise 10.6: Optimal dilution rate

Plot the steady-state biomass production rate, DXs , versusD over the range of dilution
rates given in Figure 10.12. Verify that the optimal dilution rateD0 is given by Equation
10.20.

Increase feed substrate concentration to Sf = 10. Describe the effect on the pro-
duction rate curve and the location of D0. What happens in the limit of large substrate
feed concentration? Do you foresee any difficulty in operating at this optimal steady-
state biomass production rate for large Sf ?

Exercise 10.7: Stability of the chemostat steady states

Compute the Jacobian matrix of the chemostat model, Equations 10.18, and verify that
it is

J =


µmS
Ks + S

−D X
(

µmKs
(Ks + S)2

)
1
y

µmS
Ks + S

−D − X
y

(
µmKs

(Ks + S)2
)


Plot the eigenvalues of the Jacobian evaluated at the two steady states given in
Equation 10.19 over the range of dilution rates given in Figure 10.12.

Discuss the stability of the two steady states in Figure 10.12 as a function of dilution
rate. Give the range of dilution rates for which the washout steady state is stable. Give
the range of dilution rates for which the positive biomass steady state is stable.

Exercise 10.8: Stability for larger dilution rate

Remake Figure 10.12 for the extended range of dilution rates 0 ≤ D ≤ 2µm. We saw in
Figure 10.12 that with Dc < D < µm, the second steady state has Xs2 < 0 and Ss2 > Sf ,
and noted that negative biomass concentration is not physically realistic. We also saw
in the previous exercise that this steady state is unstable.

Now consider what happens in the range µm < D < 2µm. Show that both the
washout steady state and the other steady state are stable for µm < D < 2µm. If the
second steady state is mathematically stable, why is it not observed in nature? Hint:
think about its region of attraction.

Exercise 10.9: Substrate inhibition

Consider the substrate inhibition growth rate model examined in [18]

µ(S) = µmS
Ks + S +K1S2

(a) Sketch the growth rate function µ(S) as a function of substrate concentration S.

(b) First find the steady-state solutions of the chemostat mass balances, Equations
10.18, using this form of the growth rate. Note that to obtain a nonwashout
steady state, the biomass balance must satisfy µ = D. Consider varying D from
high values to zero. In how many places can the straight line µ = D intersect
with your sketch of the growth rate curve µ(S) as you vary D?
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(c) In the range ofD values for which there are two nonwashout steady states, which
of these two steady states are stable? Compare your results to [18].

Hint: first show that the Jacobian of Equations 10.18 evaluated at the non-
washout steady state is

J =
 0 X dµ

dS
−Dy −D − X

y
dµ
dS



Exercise 10.10: Evolution of the stochastic mean for linear growth model

We wish to derive the mean stochastic model for constant monomer concentration,
given in Equations 10.23. We require a few preliminaries.

(a) By changing variables in the summations show that for all n = 1,2, . . . , nT − 1

∞∑
fn+1=0

∞∑
fn=0

fnp − (fn + 1)p(f1, f2, . . . , fn + 1, fn+1 − 1, . . . fnT , t) = 0

where we condense the notation using p = p(f1, f2, . . . , fn, . . . fnT , t).

(b) Next show that

∞∑
fn+1=0

∞∑
fn=0

f 2
np − fn(fn + 1)p(f1, f2, . . . , fn + 1, fn+1 − 1, . . . fnT , t) =

∞∑
fn+1=0

∞∑
fn=0

fnp

(c) Finally show that

∞∑
fn=0

∞∑
fn−1=0

fnfn−1p−fn(fn−1+1)p(f1, f2, . . . , fn−1+1, fn−1, . . . fnT , t) =

−
∞∑

fn=0

∞∑
fn−1=0

fn−1p

(d) Multiply Equation 10.22 by fn, sum over all particle numbers, and use the results
of the previous three parts to derive Equation 10.23.

Exercise 10.11: Particle agglomeration and breakage

Particle agglomeration between particles of sizes n and m is modeled by the event

Pn + Pm
knm−−−→ Pn+m rnm = knmfnfm

Particle breakage is modeled by the event

Pn
k′nm−−−→ Pm + Pn−m rnm = k′nmfn

in which a particle of size n breaks into two particles of sizes m and n−m. Here we
assume that size reflects a quantity, such as particle mass, that is conserved during the
agglomeration or breakage process.
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For which of these processes is the mean of the stochastic model at low particle
number equal to the deterministic population balance? Justify your answer. Compare
your answer to that in [13]; see the last paragraph before the conclusions. Compare
also to the later version [14, pp. 305,311].

Exercise 10.12: Monomer balance included in random growth model

To treat the case of low supersaturation, include the monomer number, M , in the
species list of random variables so the probability density is

p(M, f1, f2, . . . , fnT , t)

for the growth reactions

M+ Pn
kg
-→ Pn+1 n = 1,2, . . . , nT − 1

(a) Develop the analogous probability balance to Equation 10.22 for this case.

(b) Write the deterministic model for this case including the monomer material bal-
ance.

(c) At low particle number, is the mean of the stochastic model equal to the deter-
ministic model for this case?

Exercise 10.13: Dispersion in the deterministic population balance

Consider the case in which the monomer addition size, ∆, is not negligible compared
to the particle size, V . In this case, we should consider at least the next higher-order
term in the Taylor expansion given in Equation 10.28. Add this term to the derivation
and show that the population balance becomes

∂f
∂t
= −∂(fGV )

∂V
+ ∆

2
∂2(fGV )
∂V2

Notice the appearance of the diffusion term in the model. The “diffusivity” in this
model is proportional to ∆. See also [4] for some illustrative solutions of this model.

Exercise 10.14: Solving the deterministic growth model

Solve the set of differential equations leading to Equation 10.24 listed in the text. Since
these equations are linear, you may find the Laplace transform useful for this step.
Note that this result for p(n, t) holds up to only n = nT − 1. In the last size class, nT ,
there is no reaction to move the particle to a next larger size class. So this last size
class is a unique absorbing state and the probability of the particle being in this state
must go to unity as time goes to infinity.

(a) Show that for the last size class

p(nT , t) =
γ(nT − 1, λt)
Γ(nT − 1)

What is the limit of this equation as t →∞?

(b) Show that the sum over all size classes satisfies the axiom of probability that
the particle must be in some size class for all time

nT∑
n=1

p(n, t) = 1, t ≥ 0



618 Particulate Reactors

Note that in many applications, the number of size classes is quite large. Consider,
for example, how many molecular-sized solute molecules must be incorporated into a
macroscopic crystal before we can detect a noticeable size difference under an optical
microscope. Because nT is large, p(nT , t) given above remains close to zero until long
times. For this reason, we often neglect the last size class.

Exercise 10.15: Particle size instead of particle number

Instead of tracking the random variable Pn, the number of particles of size n, to model
particle growth, consider using the random variable Xi, which is defined to be the size
of the ith particle, for i = 1,2, . . . , X.7 To obtain the particle number in each size class
from the size of each particle, we use the following transformation

Pn =
X∑
i=1

δ(Xi, n)

in which

δ(Xi, n) :=

1, Xi = n
0, Xi ≠ n

(10.32)

for all n = 1,2, . . . ,NT .
It is perhaps not too surprising that if we track the sizes of all the particles, we

have enough information to evaluate the numbers of particles in all size classes. But
why is this alternate approach useful?

(a) It may be simpler to compute probabilities that particles change size. For ex-
ample, compute the probability that particle i is the one that grows from state
Xi = n to Xi = n + 1 when the next reaction fires. Note that this probability
is independent of the particle, i, the size of the particle, Xi, the size class of
interest, n, and the current solute concentration, M .

(b) To compute the expectation or mean of the particle size distribution, show that

E(Pn) =
X∑
i=1

Pr(Xi = n), n = 1,2, . . . ,NT

This result proves useful in the next exercise.

Exercise 10.16: The final nail in the coffin

Although we have shown that the expectation of the stochastic model is equal to the
deterministic model when the rate processes are linear in the species numbers, that
does not prove that equality does not hold in all cases of nonlinear rate laws. So
we would like to establish the lack of equality for the particle growth model given in
Reactions 10.21.

(a) Derive the deterministic model and show that

d
dt
m = −kXm, m(0) = M0

d
dt
p1 = −kmp1, p1(0) = X

d
dt
pn = kmpn−1 − kmpn, pn(0) = 0, n = 2,3, . . . , nT − 1

7The authors would like to thank D. F. Anderson of the UW Department of Mathe-
matics for suggesting this and the next exercise.
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Show that the following holds for the number of particles in the first size class
at steady state

p1 = Xe−M0/X

(b) Next we establish that the mean of P1 of the stochastic model at steady state
is not equal to this value. We do this in several steps and take advantage of
the Xi random variable description of the previous exercise. First show that
the probability that particle i remains in the first size class after all M0 solute
molecules are consumed is

Pr(Xi = 1) =
(

1− 1
X

)M0
, i = 1,2, . . . , X

Note that the stochastic system is at steady state after all solute molecules are
consumed because no further reactions are possible, i.e., all reaction rates are
zero.

(c) Next use the result of the previous exercise to show that at steady state

E(P1) = X
(

1− 1
X

)M0

Notice that this result does not agree with the steady state of the deterministic
model for any finite values of X and M0.

(d) Finally show that in the limit M0, X → ∞ the two results do agree. Equality in
this limit is a consequence of the thermodynamic limit discussed in the text.
Notice that in taking this limit we keep the ratio M0/X constant and nonzero to
avoid the uninteresting cases in which there are zero or an unbounded number
of particles in the first size class at steady state.
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