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The three main reactor types developed thus far—batch, continuous-stirred-tank,
and plug-flow reactors—are useful for modeling many complex chemical reactors.

Up to this point we have neglected a careful treatment of the fluid flow pattern
within the reactor.

In this chapter we explore some of the limits of this approach and develop methods
to address and overcome some of the more obvious limitations.
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Scope of problem

The general topic of mixing, even in the restricted context of chemical reactors, is
an impossibly wide one to treat comprehensively.

In this chapter, we will restrict ourselves to fluid-phase systems.

One natural approach to describing mixing is to solve the equations of motion of the
fluid.

In fluid systems, the type of fluid flow is obviously important, and we should
consider both laminar and turbulent flow, and various mechanisms of diffusion
(molecular diffusion, eddy diffusion).

Using fluid mechanics to describe all cases of interest is a difficult problem, both
from the modeling and computational perspectives. Rapid developments in
computational fluid dynamics (CFD), however, make this approach increasingly
attractive [1].
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Residence-time distribution

A second, classical approach to describing mixing is to use simple tests to
experimentally probe the system of interest.

These empirical testing approaches do not use any of the structure of the equations
of motion, but they can provide some rough features of the mixing taking place in
the system under study.

In this chapter we first develop this classical approach, and find out what kinds of
understanding it can provide.

We also identify some of the limitations of this approach. Nauman and Buffham
provide a more in-depth treatment of many of the classical topics covered in this
chapter, and provide many further citations to the research literature [15].
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Convection and diffusion

One might intuitively expect that to enhance mixing and reduce spatial variation in
concentration, one should seek conditions that maximize the rate of diffusion.

Although this notion is correct for mixing on the finest length scales, it is generally
much more important in macroscopic scale processes to decrease variations on the
larger length scales.

Mixing in this regime is enhanced primarily by improving the convection, and
diffusion plays only a small role.

In simple terms, one does not expect to appreciably decrease the time required to
mix the cream in one’s coffee by increasing the coffee temperature (enhanced
diffusion); one instead turns a spoon a few times (enhanced convection).

On the finest length scales, mixing is accomplished readily for small molecules by the
random process of molecular diffusion; in fact, the random molecular motions are
the only effective mixing processes taking place on the finest length scales.
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Residence-Time Distribution — Definition

Consider an arbitrary reactor with single feed and effluent streams depicted in the
following figure

Without solving for the entire flow field, which might be quite complex, we would
like to characterize the flow pattern established in the reactor at steady state.

The residence-time distribution of the reactor is one such characterization or
measure of the flow pattern.
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Gedanken Experiment

Imagine we could slip some inert tracer molecules into the feed stream and could
query these molecules on their exit from the reactor as to how much time they had
spent in the reactor.

We assume that we can add a small enough amount of tracer in the feed so that we
do not disturb the established flow pattern.

Some of the tracer molecules might happen to move in a very direct path to the
exit; some molecules might spend a long time in a poorly mixed zone before finally
finding their way to the exit.

Due to their random motions as well as convection with the established flow, which
itself might be turbulent, we would start recording a distribution of residence times
and we would create the residence-time probability density or residence-time
distribution.

If the reactor is at steady state, and after we had collected sufficient residence-time
statistics, we expect the residence-time distribution to also settle down to a steady
function.
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Probability density

Let p(θ) represent the probability density or residence-time distribution, and P(θ) the
integrated form so

p(θ)dθ, probability that a feed molecule spends time

θ to θ + dθ in the reactor

P(θ), probability that a feed molecule spends time

zero to θ in the reactor

The two versions of the probability function obviously contain the same information and
are related by

P(θ) =

∫ θ

0

p(θ′)dθ′, p(θ) =
dP(θ)

dθ
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Measuring the RTD

As a thought experiment to define the RTD, querying tracer molecules on their exit
from the reactor is a fine concept.

But we plan to actually measure the RTD, so we require an implementable
experiment with actual measurements.

We cannot measure the time spent by a particular tracer molecule in the reactor; to
us, all tracer molecules are identical. We can measure concentration of tracer
molecules in the effluent, however, and that will prove sufficient to measure the
RTD.

Imagine an experiment in which we measure the concentration of tracer in the feed
and effluent streams over some time period, while the reactor maintains a steady
flow condition.

From the definition of the RTD in the previous section, the effluent tracer
concentration at some time t is established by the combined exit of many tracer
molecules with many different residence times.
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Convolution integral

The concentration of molecules that enter the reactor at time t′ and spend time
t − t′ in the reactor before exiting is given by cf (t

′)p(t − t′)dt′.

These molecules are the ones leaving the reactor at time t that establish effluent
concentration ce(t), so we have

ce(t) =

∫ t

−∞
cf (t

′)p(t − t′)dt′ (8.1)

The inlet and outlet concentrations are connected through this convolution integral
with the residence-time distribution.

If we conduct the experiment so that the feed tracer concentration is zero before an
initial time t = 0, then the integral reduces to

ce(t) =

∫ t

0

cf (t
′)p(t − t′)dt′, cf (t) = 0, t ≤ 0 (8.2)
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Tracer concentrations to RTD

Notice we can change the variable of integration in Equation 8.2 to establish an
equivalent representation

ce(t) =

∫ t

0

cf (t − t′)p(t′)dt′ (8.3)

which is sometimes a convenient form.

This connection between the inlet and outlet concentrations, and the RTD, allows
us to determine the RTD by measuring only tracer concentrations.

We next describe some of the convenient experiments to determine the RTD.
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Step response

In the step-response experiment, at time zero we abruptly change the feed tracer
concentration from steady value c0 to steady value cf .

For convenience we assume c0 = 0. Because the feed concentration is constant at cf
after time zero, we can take it outside the integral in Equation 8.3 and obtain

ce(t) = cf

∫ t

0

p(t′)dt′ = cf P(t)

So for a step-response experiment, the effluent concentration versus time provides
immediately the integrated form of the residence-time distribution

P(θ) = ce(θ)/cf , step response (8.4)
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Pulse and impulse responses

An impulse response is an idealized experiment, but is a useful concept. As we will
see it provides the RTD directly rather than in the integrated form.
To motivate the impulse-response experiment, imagine we abruptly change the inlet
tracer concentration from zero to a large value and return it to zero after a short
time as sketched in the following figure.

t

cf (t)

aδ(t)

area=a

0

Such a test is called a pulse test. The pulse test is no more difficult to implement
than the step test; it is merely two step changes in feed concentration in rapid
succession. In some ways it is a superior test to the step response, because by
returning the tracer concentration to zero, we use less tracer in the experiment and
we cause less disruption of the normal operation of the reactor.
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From pulse to impulse

The impulse response is an idealized limit of the pulse response. Consider a family of
pulse tests of shorter and shorter duration ∆t, as sketched in the figure.

We maintain constant total tracer addition by spiking the feed with higher and
higher concentrations so that the product cf∆t = a is constant.

The impulse response is the limit of this experiment as ∆t −→ 0. We call this

limiting feed concentration versus time function the delta function, aδ(t). It is also
called the Dirac delta functionor an impulse, hence the name, impulse response.
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Impulse response

The constant a is the amplitude of the delta function.

The main property of the delta function is that, because it is so narrowly focused, it
extracts the value of an integrand at a point in the interval of integration,

∫ ∞

−∞
g(t)δ(t)dt = g(0), all g(t) (8.5)

∫ ∞

−∞
δ(t)dt = 1, normalized

So if we can approximate cf (t) = aδ(t), then we have from Equation 8.1

ce(t) = a

∫ t

−∞
δ(t′)p(t − t′)dt′ = ap(t)

So for an experiment approximating an impulse, the effluent concentration versus
time provides the residence-time distribution directly

p(θ) = ce(θ)/a, impulse response (8.7)
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Continuous-Stirred-Tank Reactor (CSTR)

We next examine again the well-stirred reactor.

Consider the following step-response experiment: a clear fluid with flowrate Qf

enters a well-stirred reactor of volume VR .

At time zero we start adding a small flow of a tracer to the feed stream and measure
the tracer concentration in the effluent stream.

We expect to see a continuous change in the concentration of the effluent stream
until, after a long time, it matches the concentration of the feed stream.
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Mass balance

Assuming constant density, the differential equation governing the concentration of
dye in the reactor follows from Equation 4.38

dc

dt
=

Qf

VR
(cf − c), c(0) = 0 (8.8)

in which c is the concentration of the dye in the reactor and effluent stream.

In Chapter 4, we named the parameter τ = VR/Qf the “mean residence time”. We
show subsequently that τ is indeed the mean of the RTD for a CSTR.
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Solution to mass balance is the RTD

We already derived the solution to Equation 8.8, where

c(t) = (1− e−t/τ )cf

so we have immediately
P(θ) = 1− e−θ/τ

which upon differentiation gives

p(θ) =
1

τ
e−θ/τ , CSTR residence-time distribution
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CSTR as a game of chance

Imagine we divide the reactor into a number of volume elements.

At each time instant, some group of volume elements is withdrawn from the reactor,
and new volume elements enter from the feed stream.

The well-mixed assumption is equivalent to the statement that all volume elements
are equally likely to be withdrawn from the reactor.

One can view the mixing as quickly (instantaneously in the case of perfect mixing)
randomizing the locations of the volume elements so that each one is equally likely
to be nearest to the exit when the next element is withdrawn in the effluent stream.
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The new TV show, Survivor

We have n volume elements, each with volume Vn = VR/n.

In time interval ∆t, a volume of Qf∆t leaves with the effluent stream.

The number of elements leaving in the time interval is therefore Qf∆t/Vn out of n,
and the fraction of elements withdrawn is

f =
Qf∆t

VR
=

∆t

τ

Now consider the probability that a particular volume element is still in the reactor
after i time intervals. The probability of removal is f , so the probability of survival is
1− f .

After i trials, each of which is independent, the probability of survival is the product
(1− f )i . Therefore the probability that an element has residence (survival) time
θ = i∆t is

p̃(θ) =

(
1− ∆t

τ

)θ/∆t

(8.9)
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The continuous time limit

We now take the limit as ∆t → 0. Recall from calculus

lim
x→0

(1 + ax)1/x = ea

Taking the limit and using this result in Equation 8.9 gives

p̃(θ) = e−θ/τ

which, after normalization, is again the residence-time distribution of the CSTR.

The normalization constant is computed by integration
∫ ∞

0

p̃(θ) dθ =

∫ ∞

0

e−θ/τ dθ = τ

so the residence-time distribution is

p(θ) =
1

τ
e−θ/τ (8.10)

which is plotted in the next figure for a variety of mean residence times.
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CSTR RTD
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Mean of the CSTR RTD

We next compute the mean of this distribution. An integration by parts produces

θ =

∫ ∞

0

θ p(θ) dθ =
1

τ

∫ ∞

0

θe−θ/τ dθ

=
1

τ

[
−τθ e−θ/τ − (τ)2e−θ/τ

]∣∣∣
∞

0

= τ

and we have established that the mean of the RTD for the CSTR is indeed
τ = VR/Qf .
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CSTR RTD — Summary

We can therefore compactly write Equation 8.10 as

p(θ) =
1

θ
e−θ/θ (8.11)

Notice the exponential distribution tells us that it is unlikely for a volume element to
remain in this reactor for long because at each instant there is a constant probability
that the element is withdrawn in the effluent.

23 / 130

Plug-Flow Reactor (PFR) and Batch Reactor

The simple flow pattern in the PFR produces a simple residence-time distribution.

l0 z

c

z

t1 t2

z2 = vt2z1 = vt1

Consider a step test in which the reactor is initially free of tracer and we increase the
feed tracer concentration from zero to cf at time zero.
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Birds of a feather

As shown in the figure, the tracer travels in a front that first reaches the reactor exit
at time t = l/v , in which v is the velocity of the axial flow and l is the reactor
length.

From these physical considerations, we can write the reactor tracer concentration
immediately

c(t, z) =

{
0, z − vt > 0
cf , z − vt < 0

(8.12)

For z − vt > 0, the tracer front has not reached location z at time t so the tracer
concentration is zero.

For z − vt < 0, the front has passed location z at time t and the tracer
concentration is equal to the feed value cf .
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The step function

It is convenient to introduce the unit step or Heaviside function to summarize this
result.

The Heaviside function is defined as follows

H(t) =

{
0, t < 0
1, t > 0

(8.13)

Because we are armed with the delta function, we can even consider differentiating
this discontinuous function to obtain the relationship

dH(t)

dt
= δ(t) (8.14)

26 / 130



Analysis of step test

Equation 8.12 can then be summarized compactly by

c(t, z) = cfH(t − z/v)

so the effluent tracer concentration is given by

ce(t) = cfH(t − l/v) = cfH(t − VR/Qf )

and the integrated from of the residence-time distribution is therefore

P(θ) = H(θ − VR/Qf )

We can differentiate this result using Equation 8.14 to obtain

p(θ) = δ(θ − VR/Qf )

In other words, all tracer molecules spend exactly the same time VR/Qf in the
reactor. The mean of this distribution is then also VR/Qf , which is verified by using
Equation 8.5

θ =

∫ ∞

0

θδ(θ − VR/Qf )dθ = VR/Qf

which shows that VR/Qf is the mean residence time for the PFR as well as the
CSTR, even though the residence-time distributions of these two reactors are quite
different.
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PFR RTD — Summary

We can compactly summarize the RTD for the plug-flow reactor by

p(θ) = δ(θ − θ) PFR and

P(θ) = H(θ − θ) batch reactors
(8.15)

Likewise, the RTD for a batch reactor is immediate. All material is charged to the
reactor at time t = 0 and remains in the reactor until the final batch time, which we
may call θ.

Then Equations 8.15 also apply to the batch reactor.
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CSTRs in series I

Consider dividing the volume of a single CSTR into n equal-sized CSTRs in series

1 2 3 n

If the single CSTR has volume VR and residence time τ = VR/Qf , each of the CSTRs in
series has volume VR/n and residence time τ/n.
If we solve for the effluent concentration after an impulse at time zero, we can show

p(θ) =
(n
τ

)n θn−1

(n − 1)!
e−nθ/τ (8.16)
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CSTRs in series
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Notice the residence-time distribution becomes more narrowly focused at τ as n
increases. In fact Equation 8.16 for large n is another approximation for δ(θ − τ).
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Integrated form of CSTRs in series

If we integrate Equation 8.16 we obtain

P(θ) =
γ(n, nθ/τ)

Γ(n)
(8.17)

You can perform integration by parts on Equation 8.16 to obtain a series representation

P(θ) = 1−
(
1 +

nθ/τ

1!
+

(nθ/τ)2

2!
+ · · ·+ (nθ/τ)n−1

(n − 1)!

)
e−nθ/τ (8.20)
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Integrated form of CSTRs in series
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Dispersed Plug Flow

Ideal plug flow may not be realized in many packed-bed reactors. We develop next a
model that allows for deviations from plug flow.

In the PFR a change in the feed concentration travels as a perfect front. But
measurements in actual packed-bed reactors may show a fair amount of spreading or
dispersion as this front travels through the reactor.

l0 z

c

z

t1 t2

z2 = vt2z1 = vt1
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Dispersed Plug Flow

The dispersed plug-flow model given in Equation 8.21 allows for this spreading
phenomenon.

A diffusion-like term has been added to the mass balance. The coefficient, Dl , is
called the dispersion coefficient.

∂c

∂t︸︷︷︸
accumulation

= −v
∂c

∂z︸ ︷︷ ︸
convection

+Dl
∂2c

∂z2︸ ︷︷ ︸
diffusion

(8.21)
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2nd derivative and boundary conditions

Given diffusion in the tube, the inlet boundary condition is no longer just the feed
condition, c(0) = cf , that we used in the PFR.

To derive the boundary condition at the inlet, we write a material balance over a
small region containing the entry point, and consider diffusion and convection terms.

diffusion
−Dl

∂c
∂z

∣∣∣
0+

c

0− 0+ z

convection vc|0−

convection

vc|0+
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Inlet boundary condition

diffusion
−Dl

∂c
∂z

∣∣∣
0+

c

0− 0+ z

convection vc|0−

convection

vc|0+

vc|0− = vc|0+ − Dl
∂c

∂z

∣∣∣∣
0+

z = 0
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Danckwerts boundary conditions

The diffusion term introduces a second-order derivative in Equation 8.21, so we now
require two boundary conditions.

We specify a zero slope condition at the tube exit.

vc|0− = vc|0+ − Dl
∂c

∂z

∣∣∣∣
0+

z = 0

∂c

∂z
= 0 z = l (8.22)

These two boundary conditions have become known as Danckwerts boundary
conditions [4], but they were derived at least 45 years prior to Danckwerts in a
classic paper by Langmuir [13].
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It is now convenient to introduce a coordinate moving with a scaled velocity

x =
z − vt√
4Dl t

=
z − t/τ√
4Dt/τ

in which

D =
Dl

vl
=

Dlτ

l2
, dimensionless dispersion number

Transforming variables from z and t in Equation 8.21 to x gives

d2c

dx2
+ 2x

dc

dx
= 0 (8.23)

Rather than use the Danckwerts boundary conditions, we can approximate the behavior
with the following simplified boundary conditions

c = 1, x = −∞
c = 0, x = ∞ (8.24)

These boundary conditions correspond to stating that c = 0 for z , t values corresponding
to arbitrarily long times before the step change arrives, and that c = 1, for z , t values
corresponding to arbitrarily long times after the step change has passed. See
Exercise 8.10 for comparing the dispersed PFR RTD with Danckwerts boundary
conditions to the one we calculate here with the simplified boundary conditions.
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The solution to Equation 8.23 with boundary conditions listed in Equations 8.24 is

c(x) = 1/2

[
1− 2√

π

∫ x

0

e−t2dt

]

The integral can be expressed in terms of the error function, which is defined as

erf(x) =
2√
π

∫ x

0

e−t2dt (8.25)

Substituting in the original variables and setting z = 1 to obtain the response at the
reactor outlet as a function of time gives

c(z = 1, t) = 1/2

[
1− erf

(
1− t/τ√
4Dt/τ

)]

and we have calculated the integrated form of the RTD for the dispersed PFR with
simplified boundary conditions

P(θ) = 1/2

[
1− erf

(
1− θ/τ√
4Dθ/τ

)]
(8.26)

Equation 8.26 is plotted in Figure 8.10 for τ = 2 and various dispersion numbers D.
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Figure 8.10: P(θ) versus θ for plug flow with dispersion number D, τ = 2.
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Figure 8.11: Residence-time distribution p(θ) versus θ for plug flow with dispersion number D,
τ = 2.
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We can differentiate Equation 8.26 to obtain the dispersed plug-flow RTD

p(θ) =
1

4τ
√
πD

1 + τ/θ√
θ/τ

exp

(
−
(

1− θ/τ√
4Dθ/τ

)2)
(8.27)

This RTD is plotted in Figure 8.11.
The dispersion number, D, is related to another dimensionless group, the mass-transfer
analog of the inverse of the Péclet number,

Pe =
vl

DA
,

1

Pe
=

DA

vl

which measures the rate of diffusion compared to the rate of convection. The key
difference is the Péclet number contains the molecular diffusivity, DA, and the dispersion
number contains the effective axial dispersion coefficient, Dl . Levenspiel makes a
compelling case that these two quantities have different origins and motivations and
deserve different names. To further complicate matters, the inverse of the Péclet number
is often called the Bodenstein number in European literature. Weller [20] provides an
interesting discussion of the history of the literature on the Bodenstein number, which
does not appear to have been defined or used by Bodenstein, but was defined and used
by Langmuir [13].
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Dispersed plug flow with reaction.

We modify Equation 8.21 for dispersed plug flow to account for chemical reaction,

∂cj
∂t

= −v
∂cj
∂z

+ Djl
∂2cj
∂z2

+ Rj (8.28)

Danckwerts boundary conditions, as given in Equations 8.22, can be applied without
change.
Up to this point in the text, we have solved exclusively steady-state profiles in tubular
reactors. Obviously tubular reactors experience a start-up transient like every other
reactor, and this time-dependent behavior is also important and interesting. Calculating
the transient tubular-reactor behavior involves solving the partial differential
equation(PDE), Equation 8.28, rather than the usual ODE for the steady-state profile.
Appendix A describes the method we use for this purpose, which is called orthogonal
collocation.
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Transient start-up of a PFR

Example 8.1: Transient start-up of a PFR

Compute the transient behavior of the dispersed plug-flow reactor for the isothermal,
liquid-phase, second-order reaction

2A −→ B, r = kc2A

The reactor is initially filled with solvent. The kinetic and reactor parameters are given in
Table 8.1.

Parameter Value Units
k 0.5 L/mol·min
cAf 1 mol/L
DAl 0.01 m2/min
v 0.5 m/min
l 1 m

Table 8.1: Mass-transfer and kinetic parameters for Example 8.1.

2
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Solution I

The mass balance for component A is

∂cA
∂t

= −v
∂cA
∂z

+ DAl
∂2cA
∂z2

− 2kc2A

The boundary conditions are

vcAf = vcA|0+ − DAl
∂cA
∂z

∣∣∣∣
0+

, z = 0

∂cA
∂z

= 0, z = l

Finally, an initial condition is required

cA(z , t) = 0, t = 0
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Solution II
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Figure 8.12: Start-up of the tubular reactor; cA(z, t) versus z for various times, 0 ≤ t ≤ 2.5,
∆t = 0.25.
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Solution III

Figure 8.12 shows the transient profiles. We see the reactor initially has zero A
concentration. The feed enters the reactor and the A concentration at the inlet rises
rapidly. Component A is transported by convection and diffusion down the reactor, and
the reaction consumes the A as it goes. After about t = 2.5, the concentration profile
has reached its steady value. Given the low value of dispersion in this problem, the
steady-state profile is close to the steady-state PFR profile for this problem.

47 / 130

Example—order matters

Example 8.2: Order matters

Consider two arrangements of a PFR and CSTR of equal volume in series as shown
below

(A)

(B)

c0 c2

c0 c2

c1

c1

What are the residence-time distributions for the two reactor systems? What are the
overall conversions for the two systems?

2
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Solution

Consider a unit step test for the CSTR–PFR arrangement. The outlet concentration
for the CSTR is given by

c1(t) = 1− exp(−t/τ)

That feed concentration to the PFR is then simply delayed by τ time units to give
for the CSTR–PFR arrangement.

p(θ) = (1− exp(−(t − τ)/τ))H(t − τ)
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Reverse order

Next consider a unit step test into the PFR–CSTR arrangement. For this case the
intermediate stream is given by a delayed step input

c1(t) = H(t − τ)

With this feed into the CSTR, the effluent is merely the CSTR response to a unit
step change after we shift the starting time of the step forward τ time units,

c2(t) = (1− exp(−(t − τ)/τ))H(t − τ)

so again for this case

p(θ) = (1− exp(−(t − τ)/τ))H(t − τ)

and the two residence-time distributions are equal.

50 / 130



Conversion for the two arrangements

The steady-state conversions for both arrangements are also simply calculated. For a
single CSTR, the steady-state inlet and outlet concentrations are related by

co/ci =
−1 +

√
1 + 4kτci

2kτci
= C(ci )

For a single PFR, the inlet and outlet concentrations are related by

co/ci =
1

1 + kτci
= P(ci )

So we wish to compare P(C(c0)) for the CSTR–PFR case and C(P(c0)) for
PFR–CSTR case.

Because we are not even told kτc0, we check over a range of values.
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Outcome of the calculation

The figure displays the result. We see that the conversions are not the same and
that the PFR–CSTR gives higher conversion (lower outlet concentration) than the
CSTR–PFR for all values of kτc0 for a second-order reaction.
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Limits of Reactor Mixing I

We have seen in the previous section that complete knowledge of the reactor
residence-time distribution is insufficient to predict the reactor performance. Although we
have characterized completely the time tracer molecules spend in the reactor, we have
not characterized their surrounding environment in the reactor during this time.1 In the
literature these two effects are sometimes termed macromixing: the distribution of
residence times of molecules moving with the flow; and micromixing: the exchange of
material between different volume elements during their residence times. Although we
may find it instructive to separate these two phenomena in the simple reactor mixing
models under discussion, in actual reactors this separation may be unrealistic. Accurate
prediction of reactor performance may require solution or approximate solution of the
equations of motion for the fluid, including material transport due to diffusion.
In defense of the simple mixing models, however, they do provide another important
insight. We can determine the limits of achievable mixing consistent with a measured
reactor residence-time distribution. These mixing limits do provide some insight into the
limits of achievable reactor performance, although this connection remains an active area
of research as discussed in section 8.4.

1If someone were to characterize your learning in this course by measuring your hours spent in the
classroom (RTD), they would hopefully obtain a positive correlation between learning and residence time. But
we would naturally want to evaluate the environment inside the classroom during these hours if we were going
to make more accurate predictions of learning. We would want to know if the instructor was prepared for
lecture and saying reasonable things, if the students were attentive or asleep, and so on.
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Complete Segregation I

Imagine we know a reactor RTD, p(θ), either through direct measurement in a tracer
experiment or solution of the equations of motion or some other means. We know from
Example 8.2 that this constraint does not tell us the complete state of mixing in the
reactor. We define next the two extreme limits of mixing consistent with the given RTD.
These ideas were laid out in influential papers by Danckwerts and Zwietering. The first
limit is called complete segregation; it is the limit of no mixing between volume elements.
We can realize this limit by considering the ideal reactor depicted in Figure 8.15.

p(θ)

θ

Figure 8.15: Completely segregated flow as a plug-flow reactor with side exits; outlet flows
adjusted to achieve given RTD.
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Complete Segregation II

As we progress down the plug-flow reactor, the residence time θ of the material reaching
that location increases. We can imagine withdrawing from the reactor at each location or
θ a fraction of the flow corresponding to the required RTD value p(θ), although this
might be difficult to achieve in practice. A PFR with this removal rate then has the
specified RTD. No material in two volume elements with different residence times is ever
exchanged because the plug flow has zero backmixing. This last point is perhaps more
clear if we redraw the reactor configuration as an equivalent bank of PFRs of different
lengths without side exits, as in Figure 8.16.A [19].
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Complete Segregation III

A

B

C
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Complete Segregation IV

Figure 8.16: Alternate representation of completely segregated flow (A), maximum mixed flow
(B), and an intermediate mixing pattern (C).

Each tube has a single θ value according to its length. We feed the fraction p(θ) of the
total flow into each tube of residence time θ so as to achieve the given RTD for the
composite reactor system. This reactor system is called completely segregated because
there is no exchange of material between the various tubes. Each tube acts as its own
private reactor that processes material for a given amount of time and then discharges it
to be mixed with the other reactors at the exit.
It is a simple matter to predict the behavior of this completely segregated reactor. We
assume a single reaction and constant density throughout the following discussion. Each
tube of specified length or volume V can be assigned a residence time according to
θ = V /Q. Let c(θ) represent the concentration of a reactant in a volume element that
has spent time θ in the reactor. Because the reactor is segregated, each tube satisfies the
constant density PFR equation, Equation 4.112,

dc

dθ
= R(c), c(0) = cf (8.31)
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Complete Segregation V

The concentration of the effluent stream is then simply computed by multiplying the
concentration of each tube by the fraction of the total feed passing through that tube

cs =

∫ ∞

0

p(θ)c(θ)dθ (8.32)

in which c(θ) comes from the solution of Equations 8.31. It is often convenient to
remove the explicit integration required by Equation 8.32. Let cs(θ) represent the effect
of combining streams with residence times less than or equal to θ, so

cs(θ) =

∫ θ

0

p(θ)c(θ)dθ

From this definition it is clear that cs(θ) satisfies the following differential equation and
initial condition

dcs
dθ

= p(θ)c(θ), cs(0) = 0

and the reactor effluent concentration is the limit of cs(θ) as θ −→ ∞. We can combine

the two differential equations for convenient numerical solution of the segregated case

dc

dθ
= R(c) c(0) = cf

dcs
dθ

= p(θ)c(θ) cs(0) = 0

(8.33)
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Complete Segregation VI

Notice that this is an initial-value problem, but, in general, we require the solution at
θ = ∞ to determine the effluent concentration of the reactor. Differential equations on
semi-infinite domains are termed singular, and require some care in their numerical
treatment as we discuss next. On the other hand, if the residence-time distribution is
zero beyond some maximum residence time, θmax , then it is straightforward to integrate
the initial-value problem on 0 ≤ θ ≤ θmax.
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Numerical solution. I

We can solve Equation 8.33 as an initial-value problem as written with an ODE solver.
Because of the semi-infinite domain, we would need to check the solution for a sequence
of increasingly large θ values and terminate the ODE solver when the value of cs(θ) stops
changing. Alternatively, we can map the semi-infinite domain onto a finite domain and
let the ODE solver do the work for us. Many transformations are possible, such as
z = exp(−θ), but experience suggests a strongly decreasing function like the exponential
causes the right-hand side to go to infinity at z = 1, and we simply exchange one
singularity for another. A more gentle transformation and its inverse are

z =
θ

1 + θ
, θ =

z

1− z

Using this change of variable, we rewrite the derivative as

dc

dθ
=

dc

dz

dz

dθ
= (1− z)2

dc

dz

Using this result, we transform Equation 8.33 to

dc

dz
=

R(c)

(1− z)2
c(0) = cf

dcs
dz

=
p(z/(1− z)) c

(1− z)2
cs(0) = 0

(8.34)
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Numerical solution. II

Most modern ODE solvers allow the user to specify critical stopping values. These are
values of the variable of integration beyond which the ODE solver will not step. We would
specify z = 1 as a critical value because the right-hand side is not defined past z = 1. At
the value z = 1, we would specify the right-hand sides are zero because the reaction will
have equilibrated at z = 1, θ = ∞ so R(c) = 0, and p(θ) = 0 at θ = ∞. Again, some
care with must be taken because the denominators are also going to zero. If the ODE
solver terminates successfully, that usually indicates the transformation was successful. It
is useful to plot c(z) to make sure the z = 1 end does not exhibit some unusual behavior.

p(θ)

θ

Figure 8.17: Maximum mixed flow as a plug-flow reactor with side entrances; inlet flows adjusted
to achieve a given RTD.
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Maximum Mixedness

We realize the opposite mixing limit, maximum mixedness, by reversing the flow in the
segregated reactor as shown in Figure 8.17 [21]. The feed stream is distributed along the
length of the PFR and injected at the appropriate rate at various side entrances
corresponding to different θ “locations” to achieve the required RTD. Notice that
because the flow has been reversed compared to the segregated case, the θ locations
increase from zero at the exit of the tube to large values at the entrance to the tube. We
allow an infinitely long tube if we wish to allow RTDs such as the CSTR defined on a
semi-infinite domain. Reactors with these specified sidestream addition policies are
conceptually important in understanding recent research on achievable reactor
performance as discussed in Section 8.4.

λ+∆λ
c(λ+∆λ)

λ
c(λ)

∞

cf

R

0

Figure 8.18: Volume element in the state of maximum mixedness.

Consider the equivalent representation of maximum mixedness in Figure 8.16.B. The
shading means that the material at these locations is completely mixed with the material
from the other tubes at these same locations [19]. Notice that we have aligned the exits
of the tubes in Figure 8.16. Therefore when we mix material between tubes, we are
mixing material not with common time spent in the reactor but rather with a common
time-to-go λ. Indeed, the mixing process at a given location is mixing material with
different times spent in the reactor. It is not possible to mix material with different
times-to-go without changing their exit times for the following reason. If we mix two
groups of molecules with different times-to-go, λ1, λ2, the mixture must later be
separated again so that the molecules may exit the reactor at the specified times λ1 and
λ2. Such a separation is not possible because molecules are not distinguishable based on
their times-to-go in the reactor. We face the equivalent problem if we mix two identical,
pure-component gases initially on opposite sides of a partition. After mixing, we have no
process to separate them again based on their initial locations because the molecules are
identical. Such a separation process would violate the second law of thermodynamics.
We next derive the differential equation that governs the maximum mixedness
reactor [21]. Consider an expanded view of the reactor in a state of maximum mixedness
shown in Figure 8.16.B. As depicted in Figure 8.18, feed with flowrate Qp(θ)dθ is added
to each tube having residence time θ to achieve the desired RTD. So if we consider a
volume element to be a mixed section of the composite reactor between times-to-go λ
and λ+∆λ, the material balance for this element consists of the following terms:

entering at λ+∆λ: Q

(∫ ∞

λ+∆λ

p(λ′)dλ′
)
c(λ+∆λ)

leaving at λ: Q

(∫ ∞

λ

p(λ′)dλ′
)
c(λ)

feed addition: Q (p(λ)∆λ) cf

production: Q

(∫ ∞

λ

p(λ′)dλ′
)
∆λ

︸ ︷︷ ︸
volume of reactor element

R(c(λ))︸ ︷︷ ︸
rate per volume

Considering the reactor is at steady state, we set the accumulation to zero and obtain

c(λ+∆λ)

∫ ∞

λ+∆λ

p(λ′)dλ′ − c(λ)

∫ ∞

λ

p(λ′)dλ′ + cf p(λ)∆λ+

R(c)∆λ

∫ ∞

λ

p(λ′)dλ′ = 0

We can combine the first two integral terms and divide by ∆λ to obtain

c(λ+∆λ)− c(λ)

∆λ

∫ ∞

λ+∆λ

p(λ′)dλ′ − c(λ)p(λ) + cf p(λ)+

R(c)

∫ ∞

λ

p(λ′)dλ′ = 0

Taking the limit as ∆λ → 0 and rearranging gives

dc

dλ
=

p(λ)∫∞
λ

p(λ′)dλ′ (c(λ)− cf )− R(c)

Equivalently we can express the integral in terms of the integrated form of the RTD and
write

dc

dλ
=

p(λ)

1− P(λ)
(c(λ)− cf )− R(c) (8.35)

We wish to calculate the reactor effluent concentration, which is given by c(λ) at λ = 0.
As in the segregated reactor case, this first-order differential equation is singular; we wish
to integrate from λ = ∞, the entrance to the longest tube, to the combined tube exits at
λ = 0. A boundary condition is required at λ = ∞. For c to remain bounded as
λ −→ ∞, we stipulate the boundary condition

dc

dλ
= 0, λ = ∞

Provided we know the limit p(λ)/(1− P(λ)) as λ −→ ∞, we can solve Equation 8.35

directly for the boundary condition on c at λ = ∞; we call this value c∞. Note that
c∞ ̸= cf .
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Numerical solution. I

We wish to transform the λ ∈ (∞, 0) interval into z ∈ (0, 1). The analogous
transformation to the segregated reactor is

z =
1

1 + λ
, λ =

1− z

z

The derivative becomes
dc

dλ
=

dc

dz

dz

dλ
= −z2

dc

dz

in which the minus sign arises because we are changing the direction when integrating in
the transformed z variable. Equation 8.35 then becomes

dc

dz
= − 1

z2

[
p((1− z)/z)

1− P((1− z)/z)
(c − cf )− R(c)

]
c(0) = c∞ (8.36)

and we integrate from z = 0 to z = 1. Again, a critical stopping value should be set at
z = 1 to avoid an undefined right-hand side. We set the right-hand side to zero at z = 0
because we determined the value of c∞ such that the bracketed term in Equation 8.36
was zero. Again, care should be exercised at z = 0 because the denominator goes to zero
at z = 0(λ = ∞). Plotting c(z) and examining the z = 0 end for unusual behavior is
recommended.
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Numerical solution. II

Example 8.3: Two CSTRs in series

We illustrate the results of these sections with an example taken from Zwietering [21].
Given the RTD of two equal-sized CSTRs in series for a single, second-order, irreversible
reaction, compute the reactor effluent concentration for the following cases: segregated
flow, maximum mixedness and two ideal CSTRs.

Solution

The residence-time distribution for two CSTRs in series is given by Equations 8.16
and 8.20 for n = 2,

p(θ) =
4θ

τ 2
e−2θ/τ

1− P(θ) = (1 + 2θ/τ)e−2θ/τ

in which τ = VR/Qf and VR is the total volume of the CSTRs. The balance for the
maximum mixedness case becomes

dc

dλ
=

4λ

τ(τ + 2λ)
(c − cf ) + kc2
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Numerical solution. III

Defining dimensionless variables, c = c/c0 and λ = λ/τ , the equation becomes

dc

dλ
=

4λ

2λ+ 1
(c − 1) + Kc2

in which K = kc0τ . Notice that all the physical constants of the reactor combine into the
single dimensionless constant K . If we apply the zero slope condition at λ = ∞, we
obtain the quadratic equation

2(c∞ − 1) + Kc2∞ = 0

which can be solved for c∞. Again we have an equation on a semi-infinite interval, which
we can transform via

z =
1

1 + λ
, λ =

1− z

z

in which λ ∈ (∞, 0) is transformed to z ∈ (0, 1). The transformed derivative satisfies

dc

dλ
=

dc

dz

dz

dλ
= −z2

dc

dz

65 / 130

Numerical solution. IV

so the final differential equation is

dc

dz
= − 1

z2

[
4(1− z)/z

2(1− z)/z + 1
(c − 1) + Kc2

]

c(0) = c∞

The effluent of the maximum mixed reactor is given by the solution c(z) at z = 1.
Figure 8.19 displays the solution to this differential equation for a range of K values.
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Numerical solution. V
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Figure 8.19: Dimensionless effluent concentration c = c/c0 versus dimensionless rate constant
K = kτc0 for second-order reaction; the RTD for all cases is given by 2 CSTRs in series.
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Numerical solution. VI

2
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Intermediate conditions of mixing. I

Weinstein and Adler [19] also proposed an interesting general conceptual mixing model by
allowing a general mixing pattern between the various tubes as depicted in Figure 8.16.C.
The segregated reactor depicted in Figure 8.15 and Figure 8.16.A is sometimes referred
to as late mixing or mixing as late as possible. The material remains segregated until it
reaches the common exit where the segregated streams are finally mixed in the reactor
effluent. The situation depicted by the maximum mixedness reactor of Figure 8.17 and
Figure 8.16.B is sometimes called early mixing. The material is mixed at the earliest
possible times as it travels down the tubes; no segregated streams remain to be combined
at the reactor exit.
Consider again the two reactors in Example 8.2. The conceptual mixing pattern is
sketched in Figure 8.20.
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Intermediate conditions of mixing. II

A

B

Figure 8.20: CSTR followed by PFR (A) and PFR followed by CSTR (B) as examples of
complete and partial mixing; RTDs for the two configurations are equal.
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Intermediate conditions of mixing. III

The reactors have identical RTDs. Comparing these two reactor configurations, the
reactor with the CSTR preceding the PFR is in the condition of maximum mixedness
because the CSTR is the condition of maximum mixedness and the feed to the PFR is
therefore well mixed, so the different portions of the RTD in the PFR section have
identical compositions, and could be considered well mixed or segregated. The PFR
preceding the CSTR is not in the condition of maximum mixedness, nor is it segregated.
As shown in Figure 8.20, it displays an intermediate state of mixing, similar to case C in
Figure 8.16. We show in Section 8.4 that because the reaction rate is second order,
complete mixing gives the lowest conversion possible consistent with the given RTD. This
conclusion is consistent with the calculation performed in Example 8.2 in which the
CSTR–PFR arrangement had lower conversion than the PFR–CSTR.
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Mass Transfer and Limits of Reactor Mixing

VR

Q1 cAf

cBf

Q2

cA
cB

Q1 + Q2

A fluid A particles

Figure 8.21: Adding two liquid-phase feed streams to a stirred tank; the stirrer is modeled as
shearing the liquid A feed stream into small, uniformly sized particles of A and randomly
distributing them in the continuous phase containing B.

Consider the following physical picture to help in our understanding of segregated flow
and maximum mixedness. Figure 8.21 shows the classic situation in which we mix two
liquid-phase feed streams in a stirred tank for the second-order reaction

A+ B −→ C

We model the action of the stirrer as shearing the fluid A stream into small, uniformly
sized “particles” of component A dispersed in the continuous phase containing
component B dissolved in a solvent. The size of the A “particles” is one measure of how
well the stirrer is working. This physical picture, although idealized, is motivated by
several types of real reactors, such as suspension and emulsion polymerization reactors.
Ottino provides a well-illustrated discussion of the detailed results of fluid shear [16,
pp.1–17]. We assume these “particles” of component A move rapidly about the reactor
with the fluid flow. We therefore have an ideal CSTR residence-time distribution; if we
inject tracer with the A stream or the B stream, we would see the classic step response
for the CSTR. In other words, the macromixing is excellent, and determining the
residence-time distribution would not indicate anything except an ideally mixed reactor.

Parameter Value Units
k 1 L/mol·min

kmA 1.67× 10−4 cm/min
kmB 1.67× 10−4 cm/min
α = Q1/Q2 1

cAf 1 mol/L
cBf 1 mol/L

θ = VR/(Q1 + Q2) 10 min

Table 8.2: Mass-transfer and kinetic parameters for micromixing problem.

Now we model the micromixing. Let the mass transfer between the particles and the
continuous phase be described by a mass-transfer coefficient, so the mass balance for
components A and B inside the particles is given by

V
dcA
dθ

= kmA(cA − cA)S − kcAcBV cA(0) = cAf

V
dcB
dθ

= kmB(cB − cB)S − kcAcBV cB(0) = 0 (8.37)

in which θ is the time the particle has been in the reactor, V and S are the particle
volume and area, respectively, and kmA and kmB are the A and B mass-transfer
coefficients. The variables cA and cB are the continuous-phase concentrations of A and
B. The initial conditions follow from the fact that the particles are initially formed from
the pure A feed stream. Only as θ increases do they have time to communicate with the
continuous phase. To determine the A and B concentrations in the continuous phase, we
write the overall, steady-state mass balances for both components

0 = Q1cAf − Q1

∫ ∞

0
cA(θ)p(θ)dθ − Q2cA − VR

1 + α

[
α

∫ ∞

0
kcAcBp(θ)dθ + kcAcB

]

0 = Q2cBf − Q1

∫ ∞

0
cB(θ)p(θ)dθ − Q2cB − VR

1 + α

[
α

∫ ∞

0
kcAcBp(θ)dθ + kcAcB

]

(8.38)

We use orthogonal collocation on z = θ/(1 + θ) to solve Equations 8.37 simultaneously
with Equations 8.38 [18]. Orthogonal collocation is described briefly in Appendix A. The
kinetic and mass-transfer parameters are given in Table 8.2 We compute the total A and
B concentration in the effluent by summing over both particle and continuous phases

cAt =
α

1 + α

∫ ∞

0

cA(θ)p(θ)dθ +
1

1 + α
cA

cBt =
α

1 + α

∫ ∞

0

cB(θ)p(θ)dθ +
1

1 + α
cB

We next study the effect of particle size. Figure 8.22 shows cA(θ) for particle sizes
ranging from 0.1 µm to 1.0 cm. We see that if the stirrer is able to produce A particles
of 1.0 µm or less, then the reactor is essentially in the state of maximum mixedness, or,
equivalently, operates as an ideally mixed CSTR. At the other extreme, if the A particles
are larger than about 1.0 mm, then the reactor operates essentially as a segregated-flow
reactor. Segregated flow essentially reduces the reaction rate to zero because the A and
B species cannot come into contact.
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Figure 8.22: Total concentration of A in the reactor effluent versus particle size.
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Figure 8.23: Particle concentrations of A and B versus particle age for three different-sized
particles.

Figure 8.23 provides a detailed look inside the particles for r = 1, 10 and 100 µm. For
r = 1 µm, the A and B concentrations in the particles rapidly change from the feed
values to the continuous phase values as they spend time in the reactor. This
equilibration with the continuous phase is rapid because the particles are small, the total
surface area and rate of mass transfer are therefore large. This case is close to maximum
mixedness. For r = 100 µm, the particles are 100 times larger, and the total surface area
and rate of mass transfer are small. Therefore, these particles remain at the inlet feed
conditions for a large time. They are washed out of the reactor before they can produce
hardly any reaction rate. This case corresponds to essentially complete segregation.
Summarizing, this example is instructive for two reasons. First the residence-time
distribution corresponds to a perfect CSTR regardless of particle size. Residence-time
distribution measures the reactor macromixing, which is excellent. The particle size
governs the micromixing. Small particles have large mass-transfer rates and equilibrate
with the continuous phase and the particles in the reactor with different ages leading to
the case of maximum mixedness. Large particles have small mass-transfer rates and do
not exchange much material with the continuous phase nor therefore with particles of
other ages. This case corresponds to segregated flow, which leads to essentially zero rate
of reaction. Particles of intermediate size then describe the reactors in intermediate
states of mixing.
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Limits of Reactor Performance
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A Single Convex (Concave) Reaction Rate I

f (x) concave

xx

convex
f (x)

Figure 8.24: Differentiable convex and concave functions.
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A Single Convex (Concave) Reaction Rate II

To generalize the results of Examples 8.2 and 8.3, we define convex and concave
functions. As presented in the introductory calculus course, the simplest version pertains
to functions having at least two derivatives. In that case, a function is convex (concave
upward) if its second derivative is everywhere greater than or equal to zero. A function is
concave (concave downward) if its second derivative is everywhere less than or equal to
zero, as shown in Figure 8.24

d2f (x)

dx
≥ 0, f convex

d2f (x)

dx
≤ 0, f concave

For example, the nth-order reaction-rate expression r = cn, is convex if n ≥ 1 and
concave if n ≤ 1. Note that first-order rate functions are both convex and concave.
The general result for the single reaction is

Given a single reaction with convex (concave) reaction rate expression, the highest
(lowest) conversion for a given RTD is achieved by the segregated reactor and
the lowest (highest) conversion is achieved by the maximally mixed reactor.
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A Single Convex (Concave) Reaction Rate III

VA VB

cA cB

mix

αcA + (1− α)cB

VA + VB

Figure 8.25: Two volume elements before and after mixing.

This nonobvious result is a significant generalization of the numerical Examples 8.2
and 8.3, and Exercise 8.6, and requires justification. The argument presented next first
appeared in Chauhan et al. [3]; Nauman and Buffham [15] also provide a detailed
discussion.
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Step 1. I

To start, consider the two volume elements shown in Figure 8.25. Note that in this
discussion cA and cB represent concentration of the same reactant species in volume
elements or tubes A and B. When the volume elements are segregated the total reaction
rate rs is simply

rs = r(cA)VA + r(cB)VB

so that the segregated rate per volume is

rs = αr(cA) + (1− α)r(cB), 0 ≤ α ≤ 1

in which α is the volume fraction of element A

α =
VA

VA + VB

On the other hand, if we mix the contents, the concentration is

cm =
cAVA + cBVB

VA + VB
= αcA + (1− α)cB

The total reaction rate per volume after mixing is therefore

rm = r(cm)
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Step 1. II

r(cA)

rm

rs

r(cB)

cA

1− α

cm

α

cB

Figure 8.26: Convex rate expression and the effect of mixing; rate of the mean (rm) is less than
the mean of the rate (rs).
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Step 1. III

As shown in Figure 8.26, for all cA, cB and α, if we mix the two volume elements, we
lower the overall reaction rate. The opposite conclusion applies if we have a concave rate
expression. The rate of the mean rm is less than the mean of the rate rs for convex
reactions, or

r(αcA + (1− α)cB) ≤ αr(cA) + (1− α)r(cB), all cA, cB , 0 ≤ α ≤ 1

This result is the key to understanding what happens in the general reactor. In fact, this
statement can be taken as the definition of convexity (Exercise 8.13).
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Step 2. I

Now consider two tubes as shown in Figure 8.27, which we may choose to mix or
maintain segregated as material proceeds down their lengths.

QA + QB

mix feed

αcA0 + (1− α)cB0

cB0

QB

QA

cA0

Figure 8.27: Two tubes before and after mixing the entering feed; averaging the two segregated
tubes produces cs ; the mixed feed tube produces cm.
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Step 2. II

Again assume a single reaction takes place and the reaction-rate expression is a convex
function of a single reactant species. Without loss of generality assume the
stoichiometric coefficient for the limiting species is negative one. For constant density,
the material balances for the segregated tubes are

dcA
dθ

= −r(cA), cA(0) = cA0

dcB
dθ

= −r(cB), cB(0) = cB0

in which θ = V /Qf . We can track the mean concentration for the segregated case cs by
simply summing the molar flows for tubes A and B divided by the total flow

cs = αcA + (1− α)cB (8.39)

in which α is now the flowrate fraction in tube A

α =
QA

QA + QB

We also can write a differential equation for cs by simply differentiating Equation 8.39

dcs
dθ

= − [αr(cA) + (1− α)r(cB)] , cs(0) = αcA0 + (1− α)cB0 (8.40)
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Step 2. III

Consider now the mixed case. If the tubes are mixed at some point, which we may call
θ = 0, then the material balance for the concentration after that point is

dcm
dθ

= −r(cm), cm(0) = αcA0 + (1− α)cB0 (8.41)

Our goal now is to show cm ≥ cs for all reactor positions, θ, and all feed concentrations
and flowrates, cA0, cB0 and α. We know at θ = 0

dcm
dθ

= − [r(αcA0 + (1− α)cB0)] ≥ − [αr(cA) + (1− α)r(cB)] =
dcs
dθ

If the initial derivatives have this relationship we know, for at least some small distance
down the tube, cm ≥ cs as shown in Figure 8.28.
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Step 2. IV

0 θθ1

c

cm

cs

Figure 8.28: Mean segregated and mixed concentrations versus θ; curves crossing at θ1 is a
contradiction.
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Step 2. V

How do we know, however, that the curves do not cross each other at some later time?
Assume this crossing can happen as shown in Figure 8.28, and we establish a
contradiction. Let θ1 be the first such crossing time. At θ1, cA and cB have some
well-defined values and cs = αcA + (1− α)cB . We have assumed that cm = cs at θ1 so
the differential equation for cm, Equation 8.41, gives

dcm
dθ

= − [r(αcA + (1− α)cB)] , θ = θ1

The differential equation for cs still applies and Equation 8.40 gives

dcs
dθ

= − [αr(cA) + (1− α)r(cB)] , θ = θ1

Comparing the right-hand sides of these two differential equations and using the
convexity of r(c), we conclude

dcm
dθ

≥ dcs
dθ

, θ = θ1

But this relationship contradicts the assumption that the cs and cm curves cross each
other. Therefore there can be no time θ1 at which the curves cross and we conclude

cm(θ) ≥ cs(θ), all θ

This argument and result apply equally well for all cA0, cB0 and α.
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Step 3.

Finally, consider a segregated reactor with arbitrary residence-time distribution as
depicted in Figure 8.16.C. We select any pair of tubes, mix them, make the same
argument that we made in Step 2, and replace the segregated tubes with mixed tubes
that achieve lower conversion than the original system. We continue in this fashion, and
after we pairwise mix all the segregated tubes with mixed tubes, we achieve the reactor
of maximum mixedness in Figure 8.16.B. and the lowest possible conversion. Note this
pairing and mixing procedure does not affect the RTD.
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The General Case I

One might expect that the limits of reactor mixing determine directly the limits of reactor
performance for more general kinetic schemes as well as the single convex or concave rate
expression of the last section. Unfortunately nature is more subtle. We present next an
example that dispels this notion, and then discuss what is known about the limits of
reactor performance. This example is based on one presented by Glasser, Hildebrandt and
Godorr [8]. Levenspiel [14] shows how to find the optimal reactor configuration for this
type of example.

Example 8.4: Optimal is neither segregated nor maximally mixed

Consider the rate expression

r(c) =
c

1 + 5c2
+ 0.05c (8.42)

which is plotted in Figure 8.29.
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The General Case II
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Figure 8.29: Reaction rate versus concentration of limiting reactant; rate expression is neither
convex nor concave.
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The General Case III

For a feed concentration of 5, find the combination of CSTRs and PFRs that achieve
95% conversion with the smallest total reactor volume. Determine the RTD for this
reactor configuration. What conversion is achieved in a segregated reactor with this
RTD? What conversion is achieved in a maximally mixed reactor with this RTD?

Solution

As we mentioned in Chapter 4, the smallest volume can be achieved with a series
combination of CSTRs and PFRs. First we plot the inverse of the rate as shown in
Figure 8.30.
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The General Case IV
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Figure 8.30: Inverse of reaction rate versus concentration; optimal sequence to achieve 95%
conversion is PFR–CSTR–PFR.
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The General Case V

Then we find any minima in the inverse rate function and construct CSTRs from those
values until we intersect the inverse rate curve. In the remaining sections of the curve
where the inverse rate is a decreasing function of concentration, we use PFRs. Examining
the plotted 1/r function in Figure 8.30, we see the optimal configuration is a
PFR–CSTR–PFR; this configuration is sketched in Figure 8.30. We can calculate the
sizes of the reactors as follows. We know from the problem statement that
c0 = 5, c3 = 0.25. We next find the point where dr(c)/dc = 0. Notice these are also the
places where d(1/r(c))/dc = 0. Setting the derivative of Equation 8.42 to zero gives a
quadratic equation with two roots: 0.501 and 1.83. We choose the one corresponding to
the minimum in 1/r , which gives

c2 = 0.501, 1/r(c2) = 4.045

Next we find the concentration c1 such that 1/r(c1) = 1/r(c2). This results in a cubic
equation, which we solve numerically. Then the residence time is given by
θ2 = 1/r(c2)(c1 − c2) which gives

c1 = 3.94, θ2 = 13.9

To size the PFRs we simply use the PFR design equation and obtain

θ1 = −
∫ c1

c0

1

r(c)
dc = 3.95, θ3 = −

∫ c3

c2

1

r(c)
dc = 1.07
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The General Case VI

These results are displayed in Figure 8.30. Because we have a series of CSTRs and PFRs,
we can write the RTD immediately

p(θ) =
1

θ2
exp

[
−θ − (θ1 + θ3)

θ2

]
H(θ − (θ1 + θ3))

which is plotted in Figure 8.31.
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The General Case VII
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Figure 8.31: Residence-time distribution for the optimal reactor configuration.
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The General Case VIII

With the RTD in hand, we can compute both the maximally mixed, Equation 8.36, and
segregated, Equation 8.34, reactor cases. The results of those two calculations are
summarized in the following table

Reactor Conversion
optimal 0.95
segregated 0.68
maximally mixed 0.75

We see that these two mixing limits do not bound the performance of the actual reactor
sequence with the given RTD. In fact, they are off by more than 20%. Even with a single
reaction, if the rate expression is neither convex nor concave, we cannot bound the
performance of an actual reactor between the segregated and maximally mixed mixing
limits. 2

93 / 130

The attainable region. I

The primary use of the classical mixing models, such as the segregated reactor and the
maximally mixed reactor, is to build insight into the effects of mixing on reactor behavior
under the constraint of a fixed, and presumably measurable, RTD. As we have seen in
Example 8.4, however, if we are mainly interested in determining bounds on achievable
reactor states (conversions, yields, etc.), these simple mixing models are insufficient. In
this section we would like to provide a brief overview of what is known about finding
sharp bounds on reactor performance. The general problem can be defined in this way.

Given a feed stream of known composition and a set of chemical reactions with
known rate expressions, determine the set of all possible steady-state species
concentrations that can be achieved by any combination of chemical reactors.

This set was proposed by Horn almost 40 years ago and named the attainable
region [10]. Because the set is defined for all possible reactor combinations, it seems
conceptually difficult to formulate a procedure by which we can calculate this set. We
should also note that by considering all reactor combinations, we are also considering all
possible residence-time distributions, which is a considerable generalization from the
single RTD that was considered in the mixing discussion in previous sections. In spite of
the seeming difficulty in finding the attainable region, excellent, recent research progress
has been made. Feinberg provides a nice summary overview of the history and many
recent developments [5].
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The attainable region. II

Glasser and Hildebrandt revived recent interest in this problem [9, 8]. Feinberg and
Hildebrandt [7] characterized the boundary of the attainable region, which is of
importance because it bounds the possible steady-state concentrations. They showed, for
example, that the extreme points of the attainable region boundary are made up entirely
of plug-flow reactor trajectories. They also showed that combinations of PFRs, CSTRs,
and what are called differential side-stream reactors (PFRs with addition of feed along the
side of the tube), provide the means to find all of the attainable region extreme points.
In addition to properties and conceptual characterization of the attainable region,
researchers have proposed computational procedures to approximate the attainable region
and solve reactor synthesis problems. Some of these are based on proposing a
superstructure of reactor types and numbers, and optimizing an objective function among
the possible reactors [11]. Because the superstructure does not enumerate all
possibilities, the solution may not be close to the true attainable region. A person skilled
in reactor design may be able to choose reactor numbers and types well and overcome
this general difficulty on specific reaction networks of interest.
Some computational methods are based on finding the boundary of the attainable region
using the reactor types that characterize the attainable region extreme points. Hybrid
methods involving superstructures and geometric considerations have also been
proposed [12].
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The attainable region. III

Manousiouthakis has recently proposed an infinite dimensional state-space approach
(IDEAS) that requires only PFRs, CSTRS and mixing. The advantage of this approach is
that one solves only convex, linear optimization problems. The disadvantage is the
problems are infinite dimensional and require a finite dimensional approximation for
calculation. A full analysis of the convergence properties of the finite dimensional
approximation is not yet available, but the approach shows promise on numerical
examples [2].
If we wish to allow separation as well as chemical reaction, and almost all industrial
designs would fall into this category, then the problem switches from a pure reactor
synthesis problem to a reactor-separator synthesis problem. The CSTR equivalence
principle of Chapter 4 is an example of the strikingly simple and general results that
recently have been achieved for the reactor-separator synthesis problem [6].
Forecasting is always risky business, but given the rapid pace of recent progress, it seems
likely that new and highly useful results on pure reactor and reactor-separator synthesis
problems will be forthcoming. These ideas and results may have immediate industrial
impact, and certainly fall within the scope of the course in reactor analysis and design.
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Examples in Which Mixing is Critical

Returning to the topic of mixing, we would like to close the chapter by presenting a few
more chemical mechanisms for which reactor mixing can play a critical role.
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Mixing two liquid-phase streams in a stirred tank

Example 8.5: Mixing two liquid-phase streams in a stirred tank

A classic mixing problem arises when we must bring two liquid-phase feed streams
together to perform the second-order reaction

A+ B
k1−→ C

in the presence of the undesirable side reaction

A
k2−→ D

If the rate of the second degradation reaction is fast compared to the rate of mixing
of the two feed streams, we can anticipate problems. To understand what happens
in this situation, consider the mixing model depicted in Figure 8.32.

2
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A simple mixing model

Q1

cAf

Q2

cBf

cBf

Q2
VR

VR1

VR2

cA
cB

Q1 + Q2

Q1 + Q2

cA
cB

Qr

cAf

Q1

Figure 8.32: Imperfect mixing (top reactor) leads to formation of an A-rich zone, which is
modeled as a small CSTR feeding a second CSTR (bottom two reactors).
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Modeling the imperfect mixing

Component A is assumed to be the limiting reactant. It is added at a low flowrate
to a CSTR that contains an excess of reactant B.

In the top figure we depict the ideal-mixing case in which the rate of mixing is
arbitrarily fast compared to the rate of either reaction. But this ideal mixing may be
impossible to achieve if the reaction rates are reasonably large.

So in the bottom figure, we model the formation of an A-rich zone near the feed
entry point. This small CSTR exchanges mass with a larger reactor that contains
the excess of reactant B.

We can vary the recycle flowrate between the two CSTRs, Qr , to vary the degree of
mixing. For large Qr , we expect the two-reactor mixing model to approach the
single, ideally mixed CSTR.
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Conversion and yield

As discussed in Chapter 4, the conversion and yield are the usual quantities of
interest in competing parallel reactions of the type given in Reactions 8.43 and 8.44.

We assume the density of this liquid-phase system is constant, and define the overall
conversion of reactant A and yield of desired product C as follows:

xA =
Q1cAf − (Q1 + Q2)cA

Q1cAf
yC =

(Q1 + Q2)cC
Q1cAf − (Q1 + Q2)cA
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Compare conversions and yields and check the RTD

Given the parameters and rate constants in Table 8.3, calculate xA and yC versus Qr

for the two-reactor mixing model shown in Figure 8.32, and compare the result to
the single, well-mixed reactor.

Then calculate the residence-time distribution P(θ) for tracer injected with the A
feed stream for the two models. Discuss whether or not the residence-time
distribution is a reliable indicator for problems with yield in the imperfectly mixed
reactor.
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Problem parameters

Parameter Value Units

k1 1 min−1

k2 2 L/mol·min
n 2
τ1 = VR1/Q2 1 min
τ2 = VR2/Q2 2 min
τ = VR/Q2

= τ1 + τ2 3 min
α = Q1/Q2 0.1
ρ = Qr/Q2 varies

Table 8.3: Reactor and kinetic parameters for feed-mixing example.
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Solution — single-reactor model

The steady-state mass balance for the single, well-mixed CSTR is

0 = Q1cAf − (Q1 + Q2)cA − (k1cAcB + k2c
n
A)VR

0 = Q2cBf − (Q1 + Q2)cB − k1cAcBVR

Defining the following parameters

α =
Q1

Q2
τ =

VR

Q2
ρ =

Qr

Q2

allows us to write these as

0 = αcAf − (1 + α)cA − (k1cAcB + k2c
n
A)τ

0 = cBf − (1 + α)cB − k1cAcBτ
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Single-reactor model

We can solve numerically the two equations for the two unknowns cA, cB .
The concentration of C in the outflow is determined from the change in the
concentration of B,

(Q1 + Q2)cC = Q2cBf − (Q1 + Q2)cB

Using this relationship and the defined parameters gives for conversion and yield,

xA =
αcAf − (1 + α)cA

αcAf
yC =

cBf − (1 + α)cB
αcAf − (1 + α)cA

105 / 130

Solution — two-reactor model

For the two-reactor system, we write mass balances for each reactor. Let cA1, cA2, cB1, cB2

be the unknown A and B concentrations in the two-reactors, respectively.
The mass balances are

Reactor 1:

0 = Q1cAf − (Q1 + Qr )cA1 + QrcA2 − (k1cA1cB1 + k2c
2
A1)VR1

0 = −(Q1 + Qr )cB1 + QrcB2 − k1cA1cB1VR1

Reactor 2:

0 = (Q1 + Qr )cA1 − QrcA2 − (Q1 + Q2)cA2 − (k1cA2cB2 + k2c
2
A2)VR2

0 = Q2cBf + (Q1 + Qr )cB1 − QrcB2 − (Q1 + Q2)cB2 − k1cA2cB2VR2
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Two-reactor model

We can summarize this case using the previously defined variables as four equations in
four unknowns

0 = αcAf − (α+ ρ)cA1 + ρcA2 − (k1cA1cB1 + k2c
2
A1)τ1

0 = −(α+ ρ)cB1 + ρcB2 − k1cA1cB1τ1

0 = (α+ ρ)cA1 − ρcA2 − (1 + α)cA2 − (k1cA2cB2 + k2c
2
A2)τ2

0 = cBf + (α+ ρ)cB1 − ρcB2 − (1 + α)cB2 − k1cA2cB2τ2
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Conversion — OK

The conversion is not adversely affected by the poor mixing. In fact, the conversion
in the two-reactor system is higher than the single, well-mixed reactor.
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Figure 8.33: Conversion of reactant A for single, ideal CSTR, and as a function of internal
flowrate, ρ = Qr/Q2, in a 2-CSTR mixing model.
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Yield — Definitely not OK I

Notice, however, that at low values of Qr , which corresponds to poor mixing at the
feed location, the yield changes from more than 90% to less than 15%.

Low yield is a qualitatively different problem than low conversion. If the conversion
is low, we can design a separation system to remove the unreacted A and recycle it,
or use it as feed in a second reactor.

With low yield, however, the A has been irreversibly converted to an undesired
product D. The raw material is lost and cannot be recovered.

It is important to diagnose the low yield as a reactor mixing problem, and fix the
problem at the reactor. A yield loss cannot be recovered by downstream processing.
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Yield — Definitely not OK II
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Figure 8.34: Yield of desired product C for single, ideal CSTR, and as a function of internal
flowrate, ρ = Qr/Q2, in a 2-CSTR mixing model.
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Solution — residence-time distribution I

Next we compute the outcome of injecting a unit step change in a tracer in the A
feed stream.

We solve the transient CSTR balances and calculate the tracer concentration at the
outlet.

Because the tracer does not take part in any reactions, this can be done analytically
or numerically. The result is shown in Figure 8.35.
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Solution — residence-time distribution II
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Figure 8.35: Step response for single, ideal CSTR, and 2-CSTR mixing model with ρ = 0, 1.
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RTD diagnoses the problem well

We see the familiar single-CSTR step response.

For the two-reactor mixing model, when ρ = 0, which corresponds to the poorest
mixing and lowest yield, the step test does reliably indicate the poor mixing.
At the end of this chapter and also in Chapter 9 we show how to use this step
response to determine the best value of ρ to model the mixing.

When ρ is reasonably large, Qr = Q2, and the single CSTR and two-reactor cases
have similar yields and step responses.

Notice in all three step responses, the tracer concentration reaches only
cIs = 0.091 = α/(1+α) because we inject tracer in only one of the two feed streams.
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Example summary

This example is one of the classic sets of reactions in which mixing has a significant
impact on the reactor performance and the product yield.

It deserves careful study because it builds intuition and leads us to ask good
questions when confronted with more complex cases.

For example, Villa et al. [17] discuss similar issues that arise in more complex
polymerization reaction engineering problems.
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Maximizing yield in dispersed plug flow

Example 8.6: Maximizing yield in dispersed plug flow

Consider the following two liquid-phase reactions in which B is the desired product

A
k1−→ B, r1 = k1cA

2B
k2−→ C, r2 = k2c

2
B

The second reaction can represent the first step in a polymerization process of species B,
which is undesirable in this case.
Because the second reaction is second order in B, it is desirable to keep the average B
concentration in the reactor low, to avoid yield losses, but achieve high B concentration
near the reactor exit to maximize the production rate. Intuitively the CSTR is a bad
choice, because it maintains the same B concentration everywhere in the reactor. A PFR
should offer higher yield. The B concentration is low near the tube entrance, and
increases to its maximum value at the tube exit if we choose the right length or residence
time. If we make the tube too long, however, the B is largely converted to C and the
yield is again low. In this case, yield is adversely affected by mixing.
Calculate the steady-state conversion of A and yield of B versus PFR length for the
kinetic and reactor parameters in Table 8.4. What is an appropriate reactor length to
maximize yield of B? Study the effect of dispersion. Approximately how large can the
dispersion number be before the advantages of the PFR over the CSTR are lost? 2
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Parameter values

Parameter Value Units

k1 1 min−1

k2 1 L/mol·min
cAf 1 mol/L
cBf 0
v 1 m/min
l 0.5 m
Dl varies m2/min

Table 8.4: Parameters for the dispersed PFR example.
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Solution I

The steady-state mass balances for components A and B are

v
dcA
dz

− Dl
d2cA
dz2

= RA

v
dcB
dz

− Dl
d2cB
dz2

= RB

in which
RA = −k1cA, RB = k1cA − 2k2c

2
B

and we have assumed the dispersion numbers of both species are the same,
DAl = DBl = Dl . Because the fluid is a liquid, we assume the velocity is constant. We
use Danckwerts boundary conditions for both species

vcjf = vcj(0)− Dl
dcA
dz

(0), z = 0

dcj
dz

= 0, z = l

j = (A,B). Given the concentrations, and because the flowrate is constant, the
conversion and yield are

xA =
cAf − cA

cAf
yB =

cB
cAf − cA
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Solution II
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Figure 8.36: Conversion of reactant A versus reactor length for different dispersion numbers.
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Figure 8.37: Yield of desired product B versus reactor length for different dispersion numbers.
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Figures 8.36 and 8.37 show the conversion of A and yield of B versus tube length for a
tube designed to maximize the yield of B. A tube length of about 0.5 m is appropriate.
As the length increases above this value, the conversion of A increases, but the yield of B
drops rapidly, defeating the main purpose of using a PFR. For the kinetic parameters
chosen, the CSTR yield can be improved by about 8% with a PFR. As shown in
Figure 8.36, the high-dispersion PFR is essentially a CSTR, and achieves yB = 0.79. The
PFR with D = 0.001 achieves yB = 0.87. We see that the dispersion number must be
kept less than about 0.1 to maintain this advantage in yield.
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Summary

In this chapter we generalized the two flow assumptions of the idealized reactor
models: the perfect mixing assumption of the batch reactor and CSTR, and the
plug-flow assumption of the PFR.

We defined the residence-time distribution (RTD) of a reactor, and showed how to
measure the RTD with simple tracer experiments such as the step test, pulse test
and (idealized) impulse test.

The RTD gives a rough measure of the flow pattern in the reactor, but it does not
determine completely the reactor performance. Indeed, reactors with different flow
patterns, and therefore different performances, may have identical RTDs.
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RTD for ideal reactors

We showed the CSTR has an exponential RTD. The derivation of the RTD of the
CSTR also illustrated the following general principle: given an event with constant
probability of occurrence, the time until the next occurrence of the event is
distributed as a decreasing exponential function. This principle was used, for
example, to choose the time of the next reaction in the stochastic simulations of
Chapter 4.

The residence-time distribution of the PFR was shown to be arbitrarily sharp
because all molecules spend identical times in the PFR. We introduced the delta
function to describe this arbitrarily narrow RTD.

We added a dispersion term to the PFR equations to model the spread of the RTD
observed in actual tubular reactors. Introducing the dispersion term’s second
derivative necessitates new boundary conditions different from the PFR’s. These are
called Danckwerts boundary conditions.

We computed the full, transient behavior of the dispersed plug-flow model, and
displayed the evolution of the concentration profile after a step change in the feed
concentration.
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Reactor mixing limits

We then examined the limits of reactor mixing consistent with a given RTD. The
two limits are segregated flow and maximum mixedness.

We showed how a physical process such as mass transfer between a continuous
phase and a particle phase can approach segregated flow for large particles (small
mass-transfer rates) and can approach maximum mixedness for small particles (high
mass-transfer rates).

We also showed that the mixing limits bound the possible reactor behavior for the
case of a single, convex reaction-rate expression.

For more general reaction networks, however, the mixing limits do not bound the
reactor performance. For the general reaction network, recent research on the
attainable region has started to shed light on the possible reactor performance.
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Some examples

Next we discussed two contrasting cases in which mixing plays a critical role. In the
mixing of two liquid reactants, we showed that formation of a poorly mixed zone can
lead to significant yield losses.

By contrast, for the kinetics of the second example, good mixing leads to yield
losses; in this example the reactor should be designed to approach segregated flow.

Finally, the recent progress in the area of computational fluid dynamics (CFD) gives
us reason to believe that direct solution of the equations of motion for the fluid will
be a tractable approach for designing reactors and evaluating their performance [1].

It seems reasonable to expect the classical RTD methods and simple flow models to
complement the computationally intensive CFD methods. CFD methods may be
used to validate simpler mixing models. These validated, simple mixing models may
continue to play important roles in reactor analysis, design and optimization.
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Notation I

ce effluent concentration in RTD measurement

cf feed concentration

cj concentration of species j

cm concentration in a maximally mixed flow model

cs concentration in a segregated flow model

c∞ concentration boundary condition in maximum mixedness model

D dimensionless dispersion number, D = Dlτ/l
2

DA molecular diffusivity

Djl dispersion coefficient for species j

Dl dispersion coefficient

erf(x) error function, Equation 8.25

H(x) Heaviside or unit step function, Equation 8.13

kmj mass-transfer coefficient

l tubular reactor length

n number of CSTRs in a mixing model

p(θ) probability that a molecule spends time θ to θ + dθ in reactor, RTD

P(θ) probability that a molecule spends time zero to θ in the reactor, integrated form of
the RTD

Pe Péclet number, Pe = vl/DA

Q volumetric flowrate

Qf feed volumetric flowrate
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Notation II

r particle radius in mixing model

r reaction rate of (single) reaction

Rj production rate of species j

v fluid axial velocity

VR reactor volume

xj molar conversion of component j

yj yield of species j

z reactor length variable

γ(n, x) incomplete gamma function of order n and argument x

Γ(n) gamma function of n

δ(x) delta or impulse function, Equations 8.5 and 8.14

θ residence time of tracer molecule in reactor

θ mean residence time, θ =
∫ θ
0 θ′p(θ′)dθ′

λ time-to-go before molecule exits reactor

τ VR/Qf
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