Figure A.7:

Molar flow of A versus reactor volume for second-order, isothermal reaction in a fixed-bed reactor; two approximations and exact solution.

Code for Figure A.7

Text of the GNU GPL.

main.m


  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
% Copyright (C) 2001, James B. Rawlings and John G. Ekerdt
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License as
% published by the Free Software Foundation; either version 2, or (at
% your option) any later version.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; see the file COPYING.  If not, write to
% the Free Software Foundation, 59 Temple Place - Suite 330, Boston,
% MA 02111-1307, USA.


xa  = 0.75;
Rg  = 8.314;  % J/K mol
P   = 4*1.013e5;  % N/m^2
T   = 550; % K
ctf = P/(Rg*T)*1e-6; % mol/cm^3
Rp  = 0.45; % cm radius of catalyst particle
a   = Rp/3;
Nafin = 10; % mol/sec
NIf   = 10;
Ntf   = Nafin+NIf;
caf = ctf*0.5;
Qf  = Nafin/caf;
k1  = 2.25e5;  %cm^3/mol s
Da   = 0.008; % cm^2/s
rhob = 0.60; % g/cm^3 bed density
rhop = 0.68; % g/cm^3 particle density
epsb = 1 - rhob/rhop; % bed porosity, dimensionless

p.epsb = epsb;
p.a = a;
p.Nafin = Nafin;
p.Qf = Qf;
p.k1 = k1;
p.Da = Da;
p.caf = caf;
p.xa = xa;

% collocation
npts = 25;
[R A B Q] = colloc(npts-2, 'left', 'right');
R = R*Rp;
A = A/Rp;
B = B/(Rp*Rp);
Q = Q*Rp;

p.R = R;
p.A = A;
p.B = B;


% find the pellet profile at bed inlet
ca0 = logspace(log10(caf)-2,log10(caf),npts)';
tol = 1e-12;
opts = optimset ('TolFun', tol);
[ca,fval,info] = fsolve(@(x) pellet(x,p), ca0, opts);

info;



% march down the bed
nvs    = 100;
vfinal = 4e5;
vsteps = linspace (0,vfinal,nvs)';
vout   = vsteps;
y0     = [Nafin; ca];
ydot0    = zeros(length(y0),1);
res      = bed(0, y0, ydot0, p);
ydot0(1) = -res(1);

ymin = min(y0);
opts = odeset ('AbsTol', sqrt (eps), 'RelTol', 1e-10, ...
	       'Events', @(t, y, ydot) stop(t, y, ydot, p) );
[vout,y] = ode15i (@(t,y,ydot) bed(t,y,ydot,p), vsteps, y0, ydot0, opts);
nout = length(vout);
if ( nout == nvs )
  fprintf ('hey, did not reach final conversion, increase vfinal\n');
end
xa = (Nafin-y(end,1))/Nafin;
Naf = y(:,1);
vplot = vout/1000.; %lit
VR = vplot(end);
tableex = [vplot, Naf];

% pick out some good length locations for pellet profiles
rowsc = [1,nout];
colsc = [2:npts+1];
ca   = y(rowsc,colsc)';
table2 = [R, ca];
Naout = (1-xa)*Nafin;
Natop = (1-xa+0.10)*Nafin;
% dashedlines = [0,      Naout, VR, 0,     300,  Naout, VR, 2  ;
%                1.1*VR, Naout, VR, Natop, 400,  Naout, VR, 3  ];

% Compare to the two approximations given in ch7,
% Example 7.5, Figure 7.26

par.k       = k1;
par.Nafin   = Nafin;
par.T     = T;
par.rhop  = rhop;
par.rhob  = rhob;
par.Da    = Da;
par.Rp    = Rp;
par.Rg    = 82.06;
par.P     = 4;
par.n     = 2;
par.xa    = xa;
par.nvs  = nvs;
par.vfinal= vfinal;

% solve reactor with: eta = 1./Phi*( 1./tanh(3*Phi) - 1/(3*Phi) );
par.eta = (@(x) 1./x*( 1./tanh(3*x) - 1/(3*x) ));
[vap1, xap1] = pbrsolve(par);

% solve reactor with:  eta = 1./Phi;
par.eta = (@(x) 1./x);
[vap2, xap2] = pbrsolve(par);

vap1 = vap1/1000.;
VRap1 = vap1(end);

vap2 = vap2/1000.;
VRap2 = vap2(end);
tableap1 = [vap1 xap1];
tableap2 =  [vap2 xap2];
dashedlines = ...
[0,      Naout, VR, 0,     VRap1, 0,     VRap2, 0; ...
 1.1*VR, Naout, VR, Natop, VRap1, Natop, VRap2, Natop];

save fb2colloc.dat tableex tableap1 tableap2 dashedlines

if (~ strcmp (getenv ('OMIT_PLOTS'), 'true')) % PLOTTING
%plot the molar flow versus reactor volume and 75% conversion line
  plot(vplot, Naf, ...
       vap1, xap1, ...
       vap2, xap2, ...
       dashedlines(:,1), dashedlines(:,2), ...
       dashedlines(:,3), dashedlines(:,4), ...
       dashedlines(:,5), dashedlines(:,6), ...
       dashedlines(:,7), dashedlines(:,8))

axis ([0, 400, 2, 10])
% TITLE
end % PLOTTING

pbrsolve.m


 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
function [vout, x] = pbrsolve (par)
    vtotal = par.vfinal*linspace(0,1,par.nvs)';
    vsteps = vtotal;
    x0=par.Nafin;

    opts = odeset ('Events', @(t,x) stop (t,x,par), 'AbsTol', sqrt (eps), 'RelTol', sqrt (eps));
    [vout, x] = ode15s (@(t,x) pbr (t,x,par), vsteps, x0, opts);

    if ( numel(vout) == par.nvs )
        fprintf ('hey, did not reach final conversion, increase stopping time\n');
    end%if
end%function

function xdot = pbr (t, x, par)
    Na = x(1);
    ca = par.P/(par.Rg*par.T) * Na/(2*par.Nafin);
    Phi = par.Rp/3*sqrt((par.n+1)/2*par.k*ca/par.Da);
    xdot = -par.rhob/par.rhop*par.eta(Phi)*par.k*ca^par.n;
end%function

function [retval, isterminal, direction] = stop(t, x, par)
    Na = x(1);
    retval = Na - (1-par.xa)*par.Nafin;
    isterminal = 1;
    direction = 0;
end%function

pellet.m


1
2
3
4
5
6
7
8
9
function retval = pellet(x, p)
  % component A
  ca = x;
  r1      = p.k1.*ca.*ca;
  Ra      = - r1;
  retval = p.B*ca + 2*p.A*ca./p.R + Ra/p.Da;
  % write over first and last residuals with BCs
  retval(1)  = p.A(1,:)*ca;
  retval(end,1) = p.caf - ca(end);

bed.m


 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
function res = bed(t, y, ydot, p)
  Naf = y(1);
  cpellet = y(2:end);
  Q  = p.Qf;
  p.caf = Naf/Q;
  % calculate pellet residual and update
  % total pellet reaction rate through dcadr
  pelletres = pellet(cpellet, p);
  dcadr = p.A(end,:)*cpellet;
  r1p   = p.Da/p.a*dcadr;
  RA    = -(1-p.epsb)*r1p;
  res(1) = ydot(1) - RA;
  res(2:length(y)) = pelletres;
  % matlab wants column vector
  res = res(:);

stop.m


1
2
3
4
5
6
function [retval, isterminal, direction] = stop(t, y, ydot, p)
  Naf = y(1);
  convtest = p.xa - (1-Naf/p.Nafin);
  retval = convtest;
  isterminal = 1;
  direction = 0;