1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107 | % Copyright (C) 2001, James B. Rawlings and John G. Ekerdt
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License as
% published by the Free Software Foundation; either version 2, or (at
% your option) any later version.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; see the file COPYING. If not, write to
% the Free Software Foundation, 59 Temple Place - Suite 330, Boston,
% MA 02111-1307, USA.
%
% Revised 8/13/2018
%
% limit cycle parameters
%
% units are kmol, min, kJ, K, m^3
%
p = struct();
p.k_m = 0.004;
p.T_m = 298;
p.E = 15000;
p.c_Af = 2;
p.C_p = 4;
p.rho = 1000;
p.C_ps = p.C_p*p.rho;
p.T_f = 298;
p.T_a = p.T_f;
p.DeltaH_R = -2.2e5;
p.U = 340;
%p.theta = 72.3308;
p.theta = 73.1;
p.T_set = 321.53;
p.c_set = 0.48995;
p.T_fs = p.T_f;
p.Kc = 0;
p.gamma = p.E/p.T_f;
p.B = -p.DeltaH_R*p.c_Af*p.gamma/(p.C_ps*p.T_f);
p.beta = p.U/p.C_ps*p.theta;
p.Da = p.k_m*exp(-p.E*(1/p.T_f-1/p.T_m))*p.theta;
p.x2c = (p.T_a-p.T_f)/p.T_f*p.gamma;
% find the stable limit cycle
x0 = [(1-0.8)*p.c_Af 310];
tfinal = 40*p.theta;
ntimes = 3;
tout = linspace(0, tfinal, ntimes);
opts = odeset('AbsTol', sqrt (eps), 'RelTol', sqrt (eps));
[tsolver, x] = ode15s(@(t, x) rhs(t, x, p), tout, x0, opts);
% now go around the limit cycle once with many time points
x0 = x(end,:);
ntimes = 200;
tfinal = 3*p.theta;
tout = linspace(0, tfinal, ntimes);
opts = odeset('AbsTol', sqrt (eps), 'RelTol', sqrt (eps));
[tsolver, x] = ode15s(@(t, x) rhs(t, x, p), tout, x0, opts);
u = (x(:,2) - p.T_set)*p.Kc + p.T_fs;
conv = (p.c_Af - x(:,1))/p.c_Af;
stablim = [tout' x conv u];
% reverse time and stabilize the unstable limit cycle starting in the
% interior
% find the unstable limit cycle
% 73.4957904330517 305.839679413557 0.516502467355002 -0.00139021373543844 0.0329582458327707 -0.00139021373543844 -0.0329582458327707 1
% stable steady state is about 0.5165, 305.83
x0=[(1-0.7)*p.c_Af; 305];
tfinal = 40*p.theta;
ntimes = 3;
tout = linspace(0, tfinal, ntimes);
opts = odeset('AbsTol', sqrt (eps), 'RelTol', sqrt (eps));
[tsolver, x] = ode15s(@(t, x) reverserhs(t, x, p), tout, x0, opts);
% now go around the unstable limit cycle once with many time points
x0=x(end,:);
tfinal = 3*p.theta;
ntimes = 200;
tout = linspace(0, tfinal, ntimes);
opts = odeset('AbsTol', sqrt (eps), 'RelTol', sqrt (eps));
[tsolver, x] = ode15s(@(t, x) rhs(t, x, p), tout, x0, opts);
u = (x(:,2) - p.T_set)*p.Kc + p.T_fs;
conv = (p.c_Af - x(:,1))/p.c_Af;
unstablim = [tout' x conv u];
table = [stablim unstablim];
save -ascii phase_portrait_2.dat table;
size(stablim)
size(unstablim)
disp(max(table(:,3)))
disp(max(table(:,4)))
disp(max(table(:,8)))
disp(max(table(:,9)))
if (~ strcmp (getenv ('OMIT_PLOTS'), 'true')) % PLOTTING
plot (table(:,3),table(:,4),table(:,8),table(:,9));
% TITLE
end % PLOTTING
|