Figure 6.5:
Steady-state conversion versus residence time for different values of the heat of reaction.
Code for Figure 6.5
Text of the GNU GPL.
main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87 | % Copyright (C) 2001, James B. Rawlings and John G. Ekerdt
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License as
% published by the Free Software Foundation; either version 2, or (at
% your option) any later version.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; see the file COPYING. If not, write to
% the Free Software Foundation, 59 Temple Place - Suite 330, Boston,
% MA 02111-1307, USA.
%
% Revised 8/13/2018
%
% multiplicity parameters
%
% units are kmol, min, kJ, K, m^3
%
%
p = struct();
p.k_m = 0.001;
p.T_m = 298;
p.E = 8000;
p.c_Af = 2;
p.C_p = 4;
p.rho = 1000;
p.C_ps = p.rho*p.C_p;
p.T_f = 298;
p.T_a = p.T_f;
p.U = 0;
nc_As = 500;
c_Avect = linspace(0.995*p.c_Af, .002*p.c_Af, nc_As);
DelHvec = [-3e5, -2e5, -1e5, -0.5e5, 0, 5e4];
nH = length(DelHvec);
table(1:nH) = {zeros(nc_As,4)};
for j = 1: nH;
DeltaH_R = DelHvec(j);
tmp_table = zeros(nc_As,4);
x0 = [1; p.T_f];
for i = 1: nc_As
c_A = c_Avect(i);
opts = optimset ('MaxFunEvals', 2000*numel(x0), ...
'MaxIter', 500*numel(x0));
[x, fval, info] = fsolve( @(x) st_st_cA(x, c_A, DeltaH_R, p), x0, opts);
theta = x(1);
T = x(2);
conv = (p.c_Af - c_A)/p.c_Af;
tmp_table(i,:) = [theta, T, conv, info];
x0 = x;
end
table(j) = {tmp_table};
end
save st_st.dat table;
if (~ strcmp (getenv ('OMIT_PLOTS'), 'true')) % PLOTTING
hold on
for i = 1:nH
semilogx(table{i}(:,1),table{i}(:,3))
end
hold off
axis([1,1e5,0,1]);
figure()
hold on
for i = 1:nH
semilogx(table{i}(:,1),table{i}(:,2))
end
hold off
axis([1,1e5,260,460]);
% TITLE st_st_T
end % PLOTTING
|
st_st_cA.m
| function retval = st_st_cA(x, c_A, DeltaH_R, p)
theta = x(1);
T = x(2);
k = p.k_m*exp(-p.E*(1/T - 1/p.T_m));
retval(1) = p.c_Af - (1 + k*theta)*c_A;
retval(2) = p.U*theta*(p.T_a - T) + p.C_ps*(p.T_f - T) - ...
k*theta*c_A*DeltaH_R;
|