1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296 | %
% We have the reduced ODE model
% dot(VR) = Qf
% dot(eps2) = Qf*cBf/(1 + k (nA0-nBadded+eps2)/(nBadded-2*eps2))
%
%
% with:
% States: x = [VR, eps2] volume and extent of 2nd reaction
% Qf: Volumetric flowrate of base
% cBf: Feed concentration of B
%
% Initial conditions: x(0) = [VR0, 0]
% Unknown parameters: k (= k1/k2), n_A0
% Output function: y = nC/(nC + 2*nD) = 1/(1+2*nD/nC)
%
% jbr, Joel Andersson, 4/18/2018
%
% Model
% This m-file loads data file 'lc.dat'.
% This m-file loads data file 'flow.dat'.
% This m-file loads data file 'lcsim.dat'.
model = struct;
model.transcription = 'shooting';
%model.nlp_solver_options.ipopt.linear_solver = 'ma27';
model.nlp_solver_options.ipopt.mumps_scaling = 0;
% set eps to zero for algebraic model
model.nlp_solver_options.sens_linsol_options.eps = 0;
model.x = {'VR', 'eps2'};
model.p = {'nA0', 'k', 'cBf', 'VR0'};
% Dependent variables with definitions
model.y = {'lc'};
model.h = @lcmeas;
% Data and measurements
model.d = {'Qf', 'lc_m'};
% ODE right-hand-side
model.ode = @reduced_model;
% Relative least squares objective function
model.lsq = @(t, y, p) {y.lc_m/y.lc - 1};
% Load data
teaf = 0.00721;
teaden = 0.728;
flow = load('flow.dat');
lc = load('lc.dat');
tQf = [0. ; flow(:,1)];
Qf = [0. ; flow(:,2)./teaden];
tlc = lc(:,1);
lc = lc(:,2);
% Get all time points occuring in either tlc or tflow
% Grid used in Book
% ntimes = 200;
% tlin = linspace (0, tQf(end), ntimes)';
% [tout,~,ic] = unique([tQf; tlc; tlin]);
% Qf_ind = ic(1:numel(tQf));
% lc_ind = ic(numel(tQf)+1:numel(tQf)+numel(tlc));
% faster grid; lose a little resolution in n_B(t) plot
[tout,~,ic] = unique([tQf; tlc]);
Qf_ind = ic(1:numel(tQf));
lc_ind = ic(numel(tQf)+1:end);
% Interpolate lcmeas and Qf to this new grid
Qf = interp1(tQf, Qf, tout, 'previous');
lc_m = interp1(tlc, lc, tout, 'previous');
N = size(Qf,1);
% Replace NaNs with zeros
Qf(isnan(Qf)) = 0.;
lc_m(isnan(lc_m)) = 0.;
% Initial volume
VR0 = 2370;
% "optimal" values
vrdiclo = 2.3497;
k1k2ratio = 2;
% Options
model.tout = tout';
model.lsq_ind = lc_ind'; % only include lc_ind in objective
% Create a paresto instance
pe = paresto(model);
% Initial guess for parameters
theta0 = struct;
theta0.nA0 = vrdiclo;
theta0.k = k1k2ratio;
theta0.cBf = teaf;
theta0.VR0 = VR0;
% Initial guess for initial conditions
theta0.VR = VR0;
theta0.eps2 = 0;
% Lower bounds for parameters
% We aren't estimating cBf and VR0
lb = theta0;
lb.nA0 = 0.5*theta0.nA0;
lb.k = 0.5*theta0.k;
lb.VR0 = theta0.VR0;
lb.cBf = theta0.cBf;
lb.VR = theta0.VR;
lb.eps2 = theta0.eps2;
% Upper bounds for parameters
ub = theta0;
ub.nA0 = 1.5*theta0.nA0;
ub.k = 1.5*theta0.k;
ub.VR0 = theta0.VR0;
ub.cBf = theta0.cBf;
ub.VR = theta0.VR;
ub.eps2 = theta0.eps2;
% Estimate parameters
[est, v, p] = pe.optimize([Qf'; lc_m'], theta0, lb, ub);
% Also calculate confidence intervals with 95 % confidence
conf = pe.confidence(est, 0.95);
disp('Estimated parameters')
disp(est.theta)
disp('Bounding box intervals')
disp(conf.bbox)
np = numel(est.conf_ind);
ndata = length(tlc);
alpha = 0.95;
Fstat = np*finv(alpha,np,ndata-np);
a = 2*est.f/(ndata-np)*Fstat;
[xx, yy, major, minor, bbox] = ellipse (conf.H, a, 100, [est.theta.nA0; est.theta.k]);
tmp = [xx, yy];
table1 = [model.tout', v.lc'];
table2 = [tlc, lc];
% Estimate parameters again with the early time LC data
%
% Simulated the lc measurement from the beginning of the experiment.
% These data were saved by hand in lcsim.dat with
% k1k2ratio=2, vrdiclo=2.3497;
% 2nd column is without noise, 3rd column is with noise.
%
% prepend simulated data
%
flow = load('flow.dat');
lc = load('lc.dat');
lcsim = load('lcsim.dat');
tQf = [0. ; flow(:,1)];
Qf = [0. ; flow(:,2)./teaden];
tlc = [lcsim(:,1); lc(:,1)];
lc = [lcsim(:,3); lc(:,2)];
% Get all time points occuring in either tlc or tflow
% Grid used in Book
% ntimes = 200;
% tlin = linspace (0, tQf(end), ntimes)';
% [tout,~,ic] = unique([tQf; tlc; tlin]);
% Qf_ind = ic(1:numel(tQf));
% lc_ind = ic(numel(tQf)+1:numel(tQf)+numel(tlc));
% faster grid; lose a little resolution in n_B(t) plot
[tout,~,ic] = unique([tQf; tlc]);
Qf_ind = ic(1:numel(tQf));
lc_ind = ic(numel(tQf)+1:end);
% Interpolate lcmeas and Qf to this new grid
Qf = interp1(tQf, Qf, tout, 'previous');
lc_m = interp1(tlc, lc, tout, 'previous');
N = size(Qf,1);
% Replace NaNs with zeros
Qf(isnan(Qf)) = 0.;
lc_m(isnan(lc_m)) = 0.;
% Initial volume
VR0 = 2370;
% optimal values
vrdiclo = 2.3497;
k1k2ratio = 2;
% Options
model.tout = tout';
model.lsq_ind = lc_ind'; % only include lc_ind in objective
% Create a paresto instance
pesim = paresto(model);
% Lower bounds for parameters
lb = theta0;
lb.nA0 = 0.5*theta0.nA0;
lb.k = 0.5*theta0.k;
% We aren't estimating cBf and VR0
lb.VR = [theta0.VR, -inf(1,N-1)]; %zeros(1,N-1)];
lb.eps2 = [theta0.eps2, -inf(1,N-1)]; %zeros(1,N-1)];
% Upper bounds for parameters
ub = theta0;
ub.nA0 = 1.5*theta0.nA0;
ub.k = 1.5*theta0.k;
ub.VR = [theta0.VR, inf(1,N-1)];
ub.eps2 = [theta0.eps2, inf(1,N-1)];
% Estimate parameters
[estsim, v, p] = pesim.optimize([Qf'; lc_m'], theta0, lb, ub);
% Also calculate confidence intervals with 95 % confidence
confsim = pesim.confidence(estsim, 0.95);
disp('Estimated parameters')
disp(estsim.theta)
disp('Bounding box intervals')
disp(confsim.bbox)
% compute the rest of the states from the reduced model
Badded = (v.VR - p.VR0)*p.cBf;
nD = v.eps2;
nC = Badded - 2*nD;
nB = zeros(size(Badded));
eps1 = Badded-v.eps2;
nA = p.nA0 - Badded + v.eps2;
deps2dt = v.Qf*p.cBf / (1. + p.k*(p.nA0 - Badded + v.eps2)/(Badded - 2*v.eps2));
ndata = length(tlc);
Fstat = np*finv(alpha, np, ndata-np);
a = 2*estsim.f/(ndata-np)*Fstat;
[xxex, yyex, major, minor, bboxex] = ...
ellipse (confsim.H, a, 100, [estsim.theta.nA0; estsim.theta.k]);
tmpex = [xxex, yyex];
table1ex = [model.tout', v.lc'];
table2ex = [tlc, lc];
if (~ strcmp (getenv ('OMIT_PLOTS'), 'true')) % PLOTTING
subplot(2,2,1)
hold on
plot(model.tout, nA)
plot(model.tout, nC)
plot(model.tout, nD)
legend({'n_A', 'n_C', 'n_D'});
xlabel('time (min)')
ylabel('Amount of substance (kmol)')
title('Amount of substance of species A, C and D versus time')
subplot(2,2,2)
hold on
plot(model.tout, nB)
legend({'n_B'});
xlabel('time (min)')
ylabel('Amount of substance (kmol)')
title('Amount of substance of species B versus time')
subplot(2,2,3)
stairs(model.tout, v.Qf)
xlabel('time (min)')
ylabel('flowrate (kg/min)')
title('Base addition rate')
subplot(2,2,4)
hold on
plot(model.tout, v.lc, tlc, lc, 'o')
%ylim([0, 2*max(lc)])
legend({'model', 'measurement'});
xlabel('time (min)')
title('LC measurement')
figure()
plot(xx, yy, bbox(:,1), bbox(:,2), est.theta.nA0, est.theta.k, 'x', ...
xxex, yyex, bboxex(:,1), bboxex(:,2), estsim.theta.nA0, estsim.theta.k, 'o')
end % PLOTTING
save bvsm_red.dat table1 table2 bbox tmp table1ex table2ex bboxex tmpex;
|