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The power of abstraction

process

sensorsactuators

dx

dt
= f (x , u)

y = g(x , u)
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The model predictive control framework
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Measurement

MH Estimate

MPC control

Forecast

t time

Reconcile the past Forecast the future

sensors
y

actuators
u
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Predictive control
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Measurement

MH Estimate

MPC control

Forecast

t time

Reconcile the past Forecast the future

sensors
y

actuators
u

min
u(t)

∫ T

0
|ysp − g(x , u)|2Q + |usp − u|2R dt

ẋ = f (x , u)

x(0) = x0 (given)

y = g(x , u)
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State estimation
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Measurement

MH Estimate

MPC control

Forecast

t time

Reconcile the past Forecast the future

sensors
y

actuators
u

min
x0,w(t)

∫ 0

−T
|y − g(x , u)|2R + |ẋ − f (x , u)|2Q dt

ẋ = f (x , u) + w (process noise)

y = g(x , u) + v (measurement noise)
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Industrial impact of the research

Validation

Planning and Scheduling

Reconciliation

Model UpdateOptimization
Steady State

Plant

Controller

Two layer structure

Steady-state layer
I RTO optimizes steady-state

model
I Optimal setpoints passed to

dynamic layer

Dynamic layer
I Controller tracks the setpoints
I Linear MPC

(replaces multiloop PID)
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Large industrial success story!

Linear MPC and ethylene manufacturing

Number of MPC applications in ethylene: 800 to 1200

Credits 500 to 800 M$/yr (2007)

Achieved primarily by increased on-spec product, decreased energy use

Eastman Chemical experience with MPC

First MPC implemented in 1996

Currently 55-60 MPC applications of varying complexity

30-50 M$/year increased profit due to increased throughput (2008)

Praxair experience with MPC

Praxair currently has more than 150 MPC installations

16 M$/year increased profit (2008)
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Impact for 13 ethylene plants (Starks and Arrieta, 2007)

Hydrocarbons AC&O 17

Advanced ControlAdvanced Control
& Optimization& Optimization

We’re Doing it For the Money

$0

$10,000,000

$20,000,000

$30,000,000

$40,000,000

$50,000,000

$60,000,000

1Q
 2

000

3Q
 2

000

1Q
 2

001

3Q
 2

001

1Q
 2

002

3Q
 2

002

1Q
 2

003

3Q
 2

003

1Q
 2

004

3Q
 2

004

1Q
 2

005

3Q
 2

005

1Q
200

6

3Q
200

6

$0

$100,000,000

$200,000,000

$300,000,000

$400,000,000

$500,000,000

$600,000,000

Cumulative Quarterly

 

Rawlings Optimal dynamic operation of chemical processes 9 / 41



Are all the problems solved?

Some questions to consider

How do we best decompose large-scale systems into manageable
problems?

How do we optimize dynamic economic operation?
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Electrical power distribution
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Chemical plant integration

Material flow

Energy flow
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MPC at the large scale

Decentralized Control

Most large-scale systems consist of networks of
interconnected/interacting subsystems

I Chemical plants, electrical power grids, water distribution networks, . . .

Traditional approach: Decentralized control
I Wealth of literature from the early 1970’s on improved decentralized

control a

I Well known that poor performance may result if the interconnections
are not negligible

a(Sandell Jr. et al., 1978; Šiljak, 1991; Lunze, 1992)
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MPC at the large scale

Centralized Control

Steady increase in available computing power has provided the
opportunity for centralized control

Most practitioners view centralized control of large, networked
systems as impractical and unrealistic

A divide and conquer strategy is essential for control of large,
networked systems (Ho, 2005)

Centralized control: A benchmark for comparing and assessing
distributed controllers
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Nomenclature: consider two interacting units

Objective functions V1(u1, u2), V2(u1, u2)

and V (u1, u2) = w1V1(u1, u2) + w2V2(u1, u2)

decision variables for units u1 ∈ Ω1, u2 ∈ Ω2

Decentralized Control min
u1∈Ω1

Ṽ1(u1) min
u2∈Ω2

Ṽ2(u2)

Noncooperative Control min
u1∈Ω1

V1(u1, u2) min
u2∈Ω2

V2(u1, u2)

(Nash equilibrium)

Cooperative Control min
u1∈Ω1

V (u1, u2) min
u2∈Ω2

V (u1, u2)

(Pareto optimal)

Centralized Control min
u1,u2∈Ω1×Ω2

V (u1, u2)

(Pareto optimal)
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Noninteracting systems

-2

-1

0

1

2
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u1

u2

V2(u)

V1(u)

b

a

n, d , p
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Weakly interacting systems
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Moderately interacting systems
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Strongly interacting (conflicting) systems
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Strongly interacting (conflicting) systems
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Geometry of cooperative vs. noncooperative MPC
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Two reactors with separation and recycle

F0, xA0

Q

Fpurge

D, xAd, xBd

Hr Hm

B→ C
A→ BA→ B

B→ C

Hb

F1, xA1

Fm, xAm, xBm

Fb, xAb, xBb,T

Fr, xAr, xBr

MPC3

MPC1 MPC2
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Two reactors with separation and recycle
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Two reactors with separation and recycle

Performance comparison

Cost (×10−2) Performance loss

Centralized MPC 1.75 0
Decentralized MPC ∞ ∞
Noncooperative MPC ∞ ∞
Cooperative MPC (1 iterate) 2.2 25.7%
Cooperative MPC (10 iterates) 1.84 5%

Rawlings Optimal dynamic operation of chemical processes 24 / 41



Traditional hierarchical MPC

Coordinator

MPCMPC MPC

1s 1s5s 3s 0.5s

Setpoints

2min1min

1hr

Data

Plantwide coordinator

Coordinator

MPC MPC

Multiple dynamical time scales in plant

Data and setpoints are exchanged on slower time scale

Optimization performed at each layer
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Cooperative MPC data exchange

MPCMPC MPC

1s 1s5s 3s 0.5s

Data storageData storage

Read

Write

5s

MPC MPC

All data exchanged plantwide

Slowest MPC defines rate of data exchange
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Cooperative hierarchical MPC

MPCMPC MPC

1s 1s5s 3s 0.5s

Data storage

1min

Read

Write
2min

1hr

Plantwide data storage

Data storage

MPC MPC

Optimization at MPC layer only

Only subset of data exchanged plantwide

Data exchanged at slower time scale
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The big(ger) picture — What is the goal?

The goal of optimal process operations is to maximize profit.
— Helbig, Abel, and Marquardt (1998) . . . (−10 years)

Thus with more powerful capabilities, the determination of
steady-state setpoints may simply become an unnecessary
intermediate calculation. Instead nonlinear, dynamic reference
models could be used directly to optimize a profit objective.
— Biegler and Rawlings (1991) . . . (−20 years)

In attempting to synthesize a feedback optimizing control
structure, our main objective is to translate the economic
objective into process control objectives.
— Morari, Arkun, and Stephanopoulos (1980) . . . (−30 years)
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Optimizing economics: Current industrial practice

Validation

Planning and Scheduling

Reconciliation

Model UpdateOptimization
Steady State

Plant

Controller

Two layer structure

Drawbacks
I Inconsistent models
I Re-identify linear model as

setpoint changes
I Time scale separation may not

hold
I Economics unavailable in

dynamic layer
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Motivating the idea
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Economics controller

min
u(t)

∫ T

0
L(x , u)dt subject to:

ẋ = f (x , u)
y = g(x , u)

Target tracking (standard)

L(x , u) = |ysp − g(x , u)|2Q + |usp − u|2R

Economic optimization (new)
L is the negative of economic profit function

L(x , u) = −P(x , u)
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Strong duality and asymptotic stability

Strong Duality

If there exists a λ such that the the following problems have the same
solution

min
x ,u

L(x , u) min
x ,u

L(x , u)− λ(f (x , u))

f (x , u) = 0 h(x , u) ≤ 0

h(x , u) ≤ 0

Asymptotic stability of the closed-loop economics controller with a
strictly convex cost and linear dynamics (Rawlings et al., 2008)

Asymptotic stability of the closed-loop economics controller with
strong duality in the steady-state problem (Diehl et al., 2010)
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Example

xk+1 =

[
0.857 0.884
−0.0147 −0.0151

]
xk +

[
8.565

0.88418

]
uk

Input constraint: −1 ≤ u ≤ 1

Economics

Leco = α′x + β′u

α =
[
−3 −2

]′
β = −2

Tracking

Ltarg = |x − x∗|2Q+|u − u∗|2R
Q = 2I2 R = 2

x∗ =
[
60 0

]′
u∗ = 1
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Conclusions

Optimal dynamic operation of chemical processes has undergone a
total transformation in the last 20 years. Both in theory and in
practice.

The currently available theory splits the problem into state estimation
and regulation. Both are posed and solved as online optimization
problems. Basic properties have been established. Lyapunov functions
are the dominant theoretical tool for analysis and design.

Industrial implementations and vendor software are basically keeping
pace with the best available theory and algorithms. That is a
surprising and noteworthy outcome!
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Critiquing the research enterprise

The abstraction level is high and barrier to entry is significant.

But the barrier is no higher than any other mathematically intensive
research field in chemical engineering. Fluid mechanics, statistical
mechanics, molecular dynamics, . . .

Researchers in this community have not done a good job
communicating the significant advances in this field to their
colleagues outside the field.
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Future directions — Current research in MPC

Distributed versions of MPC
I Controlling large-scale systems composed of many small-scale MPCs
I How to structure the small-scale MPCs so they cooperate on plantwide

objectives

Optimizing economics with MPC
I The optimal economic point is not necessarily a steady state
I Allows removal of the steady-state economic optimization layer
I Dynamic economic optimization subject to settling at the optimal

steady state
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New MPC graduate textbook

576 page text

214 exercises

335 page solution manual

3 appendices on web (133
pages)

www.nobhillpublishing.com
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