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Process control

Process control: active regulation of
industrial systems (chemical plants,
power systems, building energy systems,
etc.).

Broad goal: profitably maintain
operating conditions while satisfying
safety, environmental, and quality
constraints.

To meet industry demands, it is
necessary to design process operations in
a way that is rigorous and data-driven.

Timescale Layer Space

days to years Planning and scheduling plant- to enterprise-wide

hours to days Steady-state optimization plant-wide

seconds to minutes Advanced process control per-unit to plant-wide

< 1 second Regulatory control per-valve to per-unit

< 1 second Measurement and actuation per-valve

instantaneous Process continuous

Process control hierarchy. Dashed box: model-based problems.
Adapted from Seborg, Edgar, Mellichamp, and Doyle (2017).

Kuntz Turnkey MPC 3 / 40



Process control

Process control: active regulation of
industrial systems (chemical plants,
power systems, building energy systems,
etc.).

Broad goal: profitably maintain
operating conditions while satisfying
safety, environmental, and quality
constraints.

To meet industry demands, it is
necessary to design process operations in
a way that is rigorous and data-driven.

Timescale Layer Space

days to years Planning and scheduling plant- to enterprise-wide

hours to days Steady-state optimization plant-wide

seconds to minutes Advanced process control per-unit to plant-wide

< 1 second Regulatory control per-valve to per-unit

< 1 second Measurement and actuation per-valve

instantaneous Process continuous

Process control hierarchy. Dashed box: model-based problems.
Adapted from Seborg et al. (2017).

Kuntz Turnkey MPC 3 / 40



Process control

Process control: active regulation of
industrial systems (chemical plants,
power systems, building energy systems,
etc.).

Broad goal: profitably maintain
operating conditions while satisfying
safety, environmental, and quality
constraints.

To meet industry demands, it is
necessary to design process operations in
a way that is rigorous and data-driven.

Timescale Layer Space

days to years Planning and scheduling plant- to enterprise-wide

hours to days Steady-state optimization plant-wide

seconds to minutes Advanced process control per-unit to plant-wide

< 1 second Regulatory control per-valve to per-unit

< 1 second Measurement and actuation per-valve

instantaneous Process continuous

Process control hierarchy. Dashed box: model-based problems.
Adapted from Seborg et al. (2017).

Kuntz Turnkey MPC 3 / 40



The basic reference tracking problem

disturbances
(environmental and
upstream changes)

actuators
(flowrates,

utility temperatures)

Plant1

measurements
(temperatures,

pressures,
levels, etc.)

Controller
reference signal
(setpoints)

Controller: based on measurements, choose the inputs that reconciles plant behavior with the reference signal,
AND attenuate or correct for the effect of disturbances.

1Fractionating columns, used in petroleum and petrochemical production
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The basic reference tracking problem

disturbances
(wind)

actuators
(motor voltages)

Plant2

measurements
(loco-positioning

system)

Controller
reference signal
(planned path)

Controller: based on measurements, choose the inputs that reconciles plant behavior with the reference signal,
AND attenuate or correct for the effect of disturbances.

2Crazyflie 2.0 quadcopter platform for research and education (Giernacki, Skwierczyński, Witwicki, Wroński, and Kozierski, 2017).
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The basic reference tracking problem

disturbances
(ambient temperature)

actuators
(heater voltages)

Plant3

measurements
(temperatures)

Controller
reference signal

(temperature setpoint)

Controller: based on measurements, choose the inputs that reconciles plant behavior with the reference signal,
AND attenuate or correct for the effect of disturbances.

3Temperature Control Laboratory (TCLab) Arduino platform for research and education (Park, Martin, Kelly, and Hedengren, 2020).
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The basic reference tracking problem

disturbances
(d(t) ∈ Rnd )

actuators or inputs
(u(t) ∈ Rnu )

Plant
ẋ(t) = f (x(t), u(t), d(t))

y(t) = h(x(t), d(t))

internal states
(x(t) ∈ Rn)

measurements or outputs
(y(t) ∈ Rny )

Controller
reference signal
(r(t) ∈ Rnr )

Controller: based on measurements, choose the inputs that reconciles plant behavior with the reference signal,
AND attenuate or correct for the effect of disturbances.

We can do this in both continuous (t ∈ R≥0) and discrete time (k ∈ N).
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The basic reference tracking problem

disturbances
(dk ∈ Rnd )

actuators or inputs
(uk ∈ Rnu )

Plant
xk+1 = f (xk , uk , dk)

yk = h(xk , dk)

internal states
(xk ∈ Rn)

measurements or outputs
(yk ∈ Rny )

Controller
reference signal

(rk ∈ Rnr )

Controller: based on measurements, choose the inputs that reconciles plant behavior with the reference signal,
AND attenuate or correct for the effect of disturbances.

We can do this in both continuous (t ∈ R≥0) and discrete time (k ∈ N).
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Model predictive control

k sample time

Reconcile the past Forecast the future

sensors

y

actuators
u

Measurement
MH Estimate

MPC control
Forecast

Observer problem: find a state sequence that
minimizes the magnitude of the noise sequences implied

by past measurements and inputs.

Regulator problem: find the future input sequence
that minimizes distance from the reference signal based

on the current state estimate.

To close the loop, implement the first input from the regulator solution, and move to the next sample time.
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Towards a turnkey model predictive controller

Steady-state
optimization

Plant and
disturbance
identification

Performance
monitoring

Model

Optimal
control

Optimal
state estimation

Data
Target calculation

Re-ID

Turnkey MPC: automated application of MPC to a process, from tuning of the components, to monitoring
the closed-loop system.

All of these are well-studied problems. Why isn’t there a turnkey solution to MPC in process industries?

Gaps in the literature remain wherever integrators are used in MPC.
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Integral control and disturbances

In classical control, the bane of proportional-only control is the steady-state error.

For example, the response of P vs PI control to an unmeasured disturbance:
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Integral control and plant-model mismatch

We have similar behavior for the response to a setpoint under plant-model mismatch:
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Offset-free model predictive control

Regulator

Observer

Target
selector

disturbances, d

inputs, u outputs, y

x̂

d̂

reference signal, r

xs
us
x̂

Figure: Adapted from Rawlings, Mayne, and Diehl (2020).

MPC has similar problems, only converging to the
setpoint in the absence of unmeasured
disturbances, and without plant-model mismatch.

Offset-free MPC rejects disturbances and
corrects for mismatch.

In offset-free MPC, we add integrators directly into
the model as “integrating disturbances”:

x+ = Ax+Bdd + Bu + w

d+= d + wd

y = Cx+Cdd + v

where (w ,wd , v) are noise terms.
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Offset-free model predictive control

Regulator

Observer

Target
selector

disturbances, d

inputs, u outputs, y

x̂

d̂

reference signal, r

xs
us
x̂

Figure: Adapted from Rawlings, Mayne, and Diehl (2020).

State-space summary of model predictive control:
▶ Observer: where are we?
▶ Target selector: where should we go?
▶ Regulator: how do we get there?

Standard MPC: persistent disturbances ⇒
persistent offset (from the reference)!

Offset-free MPC model the disturbances as
integrators. Same function as the “I” in PI control.
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Outline

1 Turnkey MPC

2 Identification of integrating disturbance models
Observer “tuning”
Augmenting standard models with integrating disturbances
Direct maximum likelihood identification

3 Combined identification and offset-free control

4 Stability of offset-free MPC
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Observer “tuning”

Linear augmented disturbance model[
x
d

]+

=

[
A Bd

0 I

] [
x
d

]
+

[
B
0

]
u +

[
w
wd

]
y =

[
C Cd

] [x
d

]
+ v

w
wd

v

 iid∼ N(0, Sd)
⇒

Steady-state Kalman filter[
x̂

d̂

]+

=

[
A Bd

0 I

] [
x̂

d̂

]
+

[
B
0

]
u

+

[
Kx

Kd

](
y −

[
C Cd

] [x̂
d̂

])

Kuntz Turnkey MPC 11 / 40



Observer “tuning” (cont.)

Noise covariance matrix Sd ⇒ Observer gains

[
Kx

Kd

]

Tuneable disturbance model

Sd =


s1

s2
. . .

sn+nd+ny


We cannot do optimal state estimation because
our model is not general,

but, since Sd is diagonal, we only have to tune
n + nd + ny variance parameters.

General disturbance model

Sd =


s1,1 s1,2 . . . s1,n+nd+ny

s2,1 s2,2 . . . s2,n+nd+ny

. . . . . .
. . . . . .

sn+nd+ny ,1 sn+nd+ny ,2 . . . sn+nd+ny ,n+nd+ny


General model ⇒ we can get optimal state
estimation!

Two options: (1) tune (n + nd + ny )
2 variance

parameters and check positive definiteness, or (2)
fit Sd from data.1

1Kuntz and Rawlings (2022a,b); Kuntz, Downs, Miller, and Rawlings (2023a,b,c); Kuntz and Rawlings (2024)
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Maximum likelihood estimation of disturbance models

First solution: augment standard (closed-form) ID methods with an integrating disturbance model.

(u, y) data

Approximate states1

Identify disturbance-free model2

Design disturbance model3

Estimate disturbance sequence4

Estimate noise covariances2

x+ = Ax + Bdd + Bu + w

d+ = d + wd

y = Cx + Cdd + vw
wd

v

 iid∼ N(0,Sd)

1Larimore (1990); Verhaegen (1994)
2Theorem 8.2.1 in Anderson (2003)
3Muske and Badgwell (2002); Pannocchia and Rawlings (2003)
4Kuntz and Rawlings (2022a,b); Kuntz et al. (2023a,b)
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Maximum likelihood estimation of disturbance models

First solution: augment standard (closed-form) ID methods with an integrating disturbance model.

(u, y) data

1234 Approximate states1
Use any subspace
ID method that

gives x̂(k)

Identify disturbance-free model2

Design disturbance model3

Estimate disturbance sequence4

Estimate noise covariances2

x+ = Ax + Bdd + Bu + w
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TCLab: a benchmark temperature control laboratory

Two heaters, two temperature sensors.

Fully observed states, output disturbance model:

x+ = Ax + Bu + w , d+ = d + wd , y = x + d + v

ID: use ARX methods to find (A,B) matrices, then augment with a noise model.

Offset-free control: test with setpoint changes.
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Data and Augmented ARX model fit

First, we identify the plant and disturbance models.
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Setpoint tracking with Augmented ARX model

Next, the identified ARX model is used to design an offset-free MPC and track setpoints.

50

55

60

y1

Setpoints Augmented ARX

0

50

100

u1

0 1000 2000 3000 4000 5000

time (s)

45

50
y2

0 1000 2000 3000 4000 5000

time (s)

0

50

100

u2

Kuntz Turnkey MPC 16 / 40



Maximum likelihood identification with integrating disturbance models

Subsume disturbance into state x̃k ←
[
xk
dk

]
and re-write in Kalman innovation form:

Linear augmented disturbance model[
x
d

]+

=

[
A Bd

0 I

] [
x
d

]
+

[
B
0

]
u +

[
w
wd

]
y =

[
C Cd

] [x
d

]
+ v

w
wd

v

 iid∼ N(0, Sd)
⇒

Parameterized Kalman filter

x̃+ = A(θ)x̃ + B(θ)u + K(θ)e

e := y − C(θ)x̃
iid∼ N(0,Re(θ))

where Re is the innovation error and K is the steady-state Kalman gain matrix.

Maximum likelihood: maximize, over the parameters, the probability of observing the data we have collected.

min
θ

(− ln p(yN−1|uN−1, θ)) ∝
N

2
ln detRe(θ) +

1

2

N−1∑
k=0

|yk − ŷk(θ)|2[Re (θ)]−1

Looks great! What could go wrong?
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Standard ML identification: what could go wrong?

Same as before: identify the plant and disturbance models. This time, ARX vs ML.
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Standard ML identification: what could go wrong? (cont.)

Use each model to design an offset-free MPC and track setpoints.
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0

50

100

u1

0 1000 2000 3000 4000 5000

time (s)

45

50
y2

0 1000 2000 3000 4000 5000

time (s)

0

50

100

u2

This time, ML model goes unstable! (Turns off.) What went wrong?
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Constrained/regularized maximum likelihood identification

What went wrong? ML identification (asymptotically) minimizes the distance (in relative entropy) between
the data and model:

θ̂N ≈ argmin
θ

N−1E[ln p(yN−1|uN−1, θ)]

Without plant-model mismatch, estimates inherit plant properties!

With integrating disturbances, ML identification may estimate an unstable Kalman filter!

Regularized maximum likelihood:

min
θ

N

2
ln detRe(θ) +

1

2

N−1∑
k=0

|yk − ŷk(θ)|2[Re (θ)]−1 +ρ|θ − θ0|2

Constrained maximum likelihood:

min
θ

N

2
ln detRe(θ) +

1

2

N−1∑
k=0

|yk − ŷk(θ)|2[Re (θ)]−1 subject to A(θ)− K(θ)C(θ) stable

Eigenvalue constraints are nondifferentiable, so we: (1) convert to differentiable semidefinite matrix
inequalities (nonlinear SDP) and (2) get rid of semidefinite arguments/constraints with Cholesky
factorization algorithm (Kuntz and Rawlings, 2024).
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Outline

1 Turnkey MPC

2 Identification of integrating disturbance models

3 Combined identification and offset-free control
Temperature control laboratory
Eastman case study

4 Stability of offset-free MPC
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TCLab experiment

Plant and
disturbance

Model Closed-loop test
Data: (u(k), y(k))

LQG design:
(Klqr ,Kx ,Kd)

Same data as before.

Same model as before (except Augmented PCA, which is taken from Kuntz and Rawlings (2022a)):

x+ = Ax + Bu + w , d+ = d + wd , y = x + d + v
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Data and model fits

Fitting a wider range of ML models:

−5

0

5

y1

Data Augmented PCA

Augmented ARX

Unregularized ML

Regularized ML 1

Regularized ML 2

Constrained ML 1

Constrained ML 2

Reg. & Cons. ML

−10

0

10

u1

0 1000 2000 3000 4000 5000

time (s)

−5

0

5

y2

0 1000 2000 3000 4000 5000

time (s)

−10

0

10

u2

Kuntz Turnkey MPC 22 / 40



Setpoint tracking tests

Closed-loop comparison of all models’ offset-free MPC designs:
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Setpoint tracking tests (performance)

Comparing time-averaged tracking performance ℓ := |y − ysp|2 and estimation performance e⊤e:
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Constrained maximum likelihood models are as good or better than the previous models.
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Eastman application

F2

TH

F1

F1,sp
Tsp

F2,sp

MeOH flow rate, F1

Reactor temp, T

Slurry flow rate, F2

Hot oil TC.op, TH

Quality param 1, r1

Quality param 2, r2

MPC

Hot oil return

Hot oil supply

Recycle

Sludge

Xylene

Crude DMT, H2O, MeOH

Slurry

MeOH

Figure: Schematic of the DMT reactor and MPC control strategy.

Reactor produces DMT via TPA
methylation:1

TPA+ 2MeOH −⇀↽− DMT+ 2H2O

Goal: replace the >20 year old,
hand-tuned MPC implementation by
re-identifying (in the closed-loop) the
plant and disturbance model in > 1 day.

1DMT = dimethyl terephthalate, TPA = terephthalic acid.
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Eastman application: closed-loop re-identification
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System excited with setpoint changes while previous MPC is running; some setpoints not reached!

New model predicts long-term behavior better than previous model. Possibly explains previous failure
to reach setpoints.
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Eastman application: closed-loop re-identification
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System excited with setpoint changes while previous
MPC is running; some setpoints not reached!

Newly fitted model correctly predicts more
long-term behavior than previous model.
Possibly explains failure to reach setpoints.
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Eastman application: before and after experiment
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The performance indicators (ℓ := |Hy − rsp|2Qy
, Qy := diag(10−4, 1, 10−3), H :=

[
I3 0

]
) substantially favor

the new model.

Time-averaged tracking error is substantially lower (38%) with the new model.

The entire distribution of stage costs is shifted to smaller values.
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Outline

1 Turnkey MPC

2 Identification of integrating disturbance models

3 Combined identification and offset-free control

4 Stability of offset-free MPC
Robust vs offset-free performance
Simple pendulum
Continuous stirred-tank reactor
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Robust vs offset-free performance

Robust performance: we exceed nominal costs
continuously with disturbance magnitude.

Offset-free performance: we regain nominal
stability if the setpoints/disturbances are
asymptotically constant; otherwise, the setpoint
tracking is robust to the setpoint/disturbance
increments.
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Robust performance
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Offset-free performance

While the robust stability properties of MPC are well-known, there are no stability results on the offset-free
property for nonlinear MPC with integrating disturbances.
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Offset-free performance

Offset-free MPC theorems typically assume a steady state is reached and then prove that the steady state
must achieve the setpoints.

Tracking MPC theorems can prove convergence to setpoints, but they must assume a priori knowledge of
the plant dynamics because an integrating disturbance is not used.

Problem statement:

x+
P = fP(xP, u,wP), y = hP(xP, u,wP), r = g(u, y) (plant)

x+ = f (x , u, d), y = h(x , u, d), r = g(u, y) (model)

f (x , u, 0) = fP(x , u, 0), h(x , u, 0) = hP(x , u, 0) (nominal consistency)

Want to show offset-free MPC is a controller for which

(wP(k), rsp(k))→ (w∞, r∞) implies r(k)− rsp(k)→ 0
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Simple pendulum

Plant:

ẋ =

[
x2

sin x1 − (wP)
2
1x2 + (5 + (wP)2)u + (wP)3

]
. Model: x+ = x + 0.1

[
x2

sin x1 + 5u

]
.

θ = 0

ℓ

m

θ

FT

Fg
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Simple pendulum

Plant: ẋ =

[
x2

sin x1 − x2 + 7u + 3H(t − 14)

]
. Model: x+ = x + 0.1

[
x2

sin x1 + 5u

]
.

θ = 0

ℓ

m

θ

FT

Fg
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Simple pendulum: swing upright

Plant: ẋ =

[
x2

sin x1 − x2 + 7u + 3H(t − 14)

]
. Model: x+ = x + 0.1

[
x2

sin x1 + 5u

]
.

MPC with no disturbance model:

successful swing up,

unsuccessful half-way
balance, and

unsuccessful disturbance
rejection.
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Strong stability of MPC despite plant-model mismatch

The nominal MPC problem is:

min
x∈(Rn)N+1,u∈UN

|x(N)|2Pf
+

N−1∑
k=0

|x(k)|2Q + |u(k)|2R subject to
x(0) = x ,

x(k + 1) = f (x(k), u(k), 0),
|x(N)|2Pf

≤ cf .

Denote the solutions by u0(k; x) and x0(k; x) and let κN(x) := u0(0; x).

Theorem (Stability of MPC despite plant-model mismatch)

If

1 the standard inherent robustness assumptions1 hold,

2 the stage and terminal costs are positive definite quadratics,

3 the dynamics are differentiable,

4 and the origin is a steady state uniformly in the disturbance wP,

then there exists δ > 0 such that the closed-loop system x+ = fP(x , κN(x),wP), |wP| ≤ δ is exponentially
stable.2

1Assumptions 1–4 from Allan, Bates, Risbeck, and Rawlings (2017) were used.
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Simple pendulum: offset-free control

Plant: ẋ =

[
x2

sin x1 − x2 + 7u + 3H(t − 14)

]
. Model: x+ = x + 0.1

[
x2

sin x1 + 5u + d

]
.

Offset-free MPC vs MPC with no
disturbance model:

both successfully swing up,

only offset-free MPC
successfully does the
half-way balance, and

only offset-free MPC
successfully rejects the
disturbance.
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Nonisothermal CSTR

Plant:

ẋ =

[ 0.95−x1
20
− ke−5.05/x2x1

0.39−x2
20

+ ke−5.05/x2x1 − 0.12u(x2 − 0.38 + H(t−300)
20

)

]
Model:

x+ = x +

[
1−x1
20
− ke−5/x2x1

0.39−x2
20

+ ke−5/x2x1 − 0.12u(x2 − 0.38− d)

]
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(xs)1
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x(0)

xHopf

0.0 0.5 1.0

us

0.5
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Nonisothermal CSTR: no mismatch

Plant:

ẋ =
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Nonisothermal CSTR: with mismatch
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ẋ =

[ 0.95−x1
20
− ke−5.05/x2x1

0.39−x2
20

+ ke−5.05/x2x1 − 0.12u(x2 − 0.38 + H(t−300)
20

)

]
Model:

x+ = x +

[
1−x1
20
− ke−5/x2x1

0.39−x2
20

+ ke−5/x2x1 − 0.12u(x2 − 0.38− d)

]

0.0 0.5 1.0

us

0.0

0.5

1.0

(xs)1

stable

unstable

x(0)

xHopf

0.0 0.5 1.0

us

0.5

1.0(xs)2
stable

unstable
x(0)

xHopf

rsp

0

1
x1

OFMPC (est.)

OFMPC (plant)

TMPC (est.)

TMPC (plant)

Ref.

0.5

1.0x2

(rsp)

−0.1

0.0
d

0 200 400 600

Time (s)

0

2
u

Kuntz Turnkey MPC 36 / 40



Nonisothermal CSTR: torture test

Plant:

ẋ =
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]
Model:

x+ = x +
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Stability of offset-free MPC

Theorem (Stability of offset-free MPC)

If

1 the steady-state targets (xs , us) are Lipschitz continuous in (rsp, d),

2 the plant and model are observable at each steady state,

3 the standard inherent robustness assumptions1 hold uniformly in (rsp, d),

4 the stage and terminal costs are quadratics with weights Q,R,Pf (rsp, d),

5 the plant and model dynamics are differentiable,

6 the estimator is robustly globally exponentially stable (uniformly in u),

then there exist δ, δw > 0 such that

|(∆rsp(k),∆wP(k))| → 0 implies |r(k)− rsp(k)| → 0

so long as |(∆rsp,∆wP)| ≤ δ and |wP| ≤ δw at all times, where ∆rsp(k) := rsp(k)− rsp(k − 1) and
∆wP(k) := wP(k)− wP(k − 1).
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Summary

Identification: both rigorous and easy-to-implement algorithms for disturbance model identification.

Application: in three days, we produced and validated a controller with 38% lower setpoint tracking
error than a controller that was tuned and validated for >20 years!

Theory: First-of-their-kind stability results for nonlinear offset-free model predictive control.

Kuntz Turnkey MPC 38 / 40



Acknowledgments

This work was supported by the National Science Foundation (NSF) under
Grant 2138985.

Thanks to the controls team at Eastman for collaboration on the reactor
application, and Joel Andersson and Joris Gillis for developing CasADi.

Thanks to the Rawlings group: Dr. Douglas A. Allan, Dr. Travis J. Arnold,
Dr. Robert (Koty) McAllister, Dr. Pratyush Kumar, Chris Kuo-Leblanc, Davide
Mannini, Titus Quah, Prithvi Dake

Kuntz Turnkey MPC 39 / 40



Thank you!
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