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Introduction to stochastic kinetics

Stochastic kinetics
@ Small species populations
@ Species numbers are integers, reactions cause integer jumps
@ Large fluctuations in species numbers and reaction rates

o Biological networks and catalyst particles

Model reduction

Develop reduced models from stochastic chemical reactions. These models
must meet the following requirements:

@ Simpler than the full model (fewer reactions, fewer parameters, or
faster simulation times)

@ Converge to the full model as a specified parameter goes to zero




Stochastic simulation method — kinetic Monte Carlo
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@ Time step: Sample from an exponential distribution where the
distribution mean is the sum of reaction rates.



KMC simulations and probability
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o KMC simulations are samples of a probability distribution that evolves

in time.

@ We can write the evolution equation for the probability density
(master equation).
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Chemical master equation
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Master equation — Important points

Chemical master equation

dP(x) iy
= > rx—y)Px—v)— r(x)P(x)
dt : = ~—
= rate into state x rate out of state x
dP
= = AP
dt

@ Often the dimensionality of the master equation makes direct solution
infeasible

@ The master equation shows what probability distribution is sampled in
a KMC simulation

@ A reduced master equation can lead to a new/faster simulation
schemes




Kinetics of multiple time scales
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Reaction equilibrium
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Deterministic model reductions

x non-QSSA species, y QSSA species

dx dy
Ezf(xay) Ea_g(xvy)
Classical QSSA Singular Perturbation QSSA
dx 2 3
I — f(X,y) X = X0+€X1+€ X2+O(€ )
0 — g(x y) = Yo+€Y1+62Y2+O(63)
o DAE reduced model o Collect like powers of ¢

@ Equations for 4 is the
reduced modeI

@ Separate models for fast and
slow time scale




SPA on the master equation

Our objective J

Apply singular perturbation analysis to develop a reduced master equation.

k1 k:
—B-3 C
k_1

=k(a+1)P(a+1,b—1,¢c)+k_1(b+1)P(a—1,b+1,¢)
+ kz(b—‘r 1)P(a, b+1,¢c— 1) - (kla + k_1b+ kzb)P(a, b, C)
P(a, b, c) = Wy(a, b, c) + eWy(a, b,c) + - -

dP(a, b,c)
dt

€9 terms:
e Wo(a,b,c)=0if b>0

@ In this limit b is always zero




SPA on the master equation

¢! terms: Reduced master equation

" ) )
% = k(a+1)Wo(a+1,0,c — 1) — kaWp(a, 0, )

Reduced mechanism

ki ko
A— C r=ra5a

@ Stochastic same as deterministic SPA mechanism

@ Same mechanisms due to linearity

First-order correction, (b)

(b) = f(Wo(a 0,c)) + (9(62)
(b) = e 1+k2 (a)




Comparison of mechanisms
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Catalyst Example
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Conclusions — Stochastic quasi-steady-state
approximation

@ QSSA species are removed from stochastic models with SPA

@ Stochastic QSSA mechanisms different than deterministic QSSA
mechanisms

@ Application of stochastic QSSA:

» Reduces the number of kinetic parameters
» Speeds up KMC simulations (fewer events)



Conclusions — Stochastic quasi-steady-state
approximation
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Catalytic surface reaction modeling

Assumptions for this talk

@ Two dimensional surface with
a lattice for adsorption,
diffusion, reaction, and
desorption.

@ Square lattice, Z=4

o All sites have identical
properties

o Constant temperature

@ Adsorbed CO molecules

exhibit nearest neighbor
repulsions

CO-black, O-gray, Empty-white.



Model mechanism and time scales

Adsorption CO(g)+ =*i % COy
O2(g)+ =i+ # BN O; + O
Desorption COi—% CO(g) + =
Oi + 05 -5 0a(g) + *i +
Reaction CO; + O LN CO2(g)+ *i + *;
Diffusion CO; + %5 BN ¥ +CO;
d

O + ¥ — *i —|—Oj
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Singular perturbation on the master equation

Surface reaction master equation

X - microscopic configuration n - number of each species
dP (n, x) S
Zkaj —vj,x — vy j)P(n—vj, x — vy j) — kjaj(n, x)P(n, x)

Xchff
+ Z diaj(n,x — vy j)P(n, x — vy ;) — d;jaj(n, x)P(n, x)

Singular perturbation

P(n,x) = Woy(n,x)+eWi(n,x)+ eWs(n,x)+---
e = 1/d

€® terms: Diffusion equilibration equations for Wy(x|n)




Slow time-scale evolution equation

e*terms : Reduced master equation

dvﬁ')t(n) =D ki(si(n— vi)) Wo(n — v;) — ki{si(n)) Wo(n)

i=1

What have we gained?
@ Removed micro-states from the master equation

Lattice Size | Species | Micro-states | Coverage states
Ns =4 1 16 5
Ns = 25 2 102 325
Ns = 100 2 10% 5050

@ Tractable number of states, master equation can be solved




Slow time-scale evolution equation

dWo(n) <=

dt

ki(si(n — vi))Wo(n — vi) — ki(si(n)) Wo(n)

(]

1

Reaction propensities

@ s;i(x) number of reaction i on configuration x: nco=45 black, no==8 gray

|
|
sco-0=26 sco—0=22 sco-0=26 sco-0=23

(sco-o0) = 24.9
@ (si(n)) = >, si(x)Wo(x|n) — Calculate with diffusion only KMC




Reduced master equation solution (5x5 lattice)

Steady-state probability distribution (5x5)
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Verification of perturbation method
> P(n,x) = Wo(n)+ eWi(n) + O(e?)

e = 1/d

As the diffusion rate increases P(n) approaches Wy(n)

Steady-state probability distribution (5 x 5)
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Conclusions — Surface reactions in the infinite diffusion
limit

@ SPA can be used to eliminate spatial configuration states in a reduced
master equation.

@ The reduced master equation has sufficiently few states to be
simulated on small lattices.

@ Reduced master equations of surface reactions can be used to
motivate reduced KMC and reduced ODE models.



Model for Vesicular Stomatitis Virus (VSV) infection
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Onset of fast fluctuations in the N protein
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Features of simulation

@ Presence of fast
fluctuating and rapidly
rising species

o Fast fluctuations slow
the full KMC simulation

@ Motivates the
formulation of a simpler
example to understand
this phenomenon
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Fast fluctuation and rapid rise in VSV biology

(-)RNA +L; %  (=)RNA + L,
(-)RNA +L, —%  2(—)RNA +L,
2(—)RNA 8 (—)RNA

@ The viral genome is amplified by first two reactions
@ The free viral proteins and messages are not amplified

@ Values of parameters ki, k> and k3 may cause fast fluctuation in
polymerases along with rapid amplification of viral genome



Fast fluctuation and rapid rise — ldealized problem

1
ArG M cqa n=ghkag
1
C+G % 26+A r = ghcg
ks 1 glg—1)
2 =—k
G — G r3 Q 3 5
Species Initial number | Rate constant (m°/mol.s)
A 3 ki =9 x 10°
C 0 k2 =5x 105
G 1 ks =5 x 1072
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The full SSA on the system
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The hybrid SSA - € technique

At large population of G we want to switch to a continuous description for
it:
g = Qpc +Q%¢

@ ¢ is the deterministic evolution term and £ is the continuous noise
in the evolution of G

@ We can obtain approximation for the evolution of system using hybrid
SSA - Q technique

Approximation of pdf of C Deterministic evolution of G

No Initial number of polymerases

qg=1 Ratio of rate constants
1




Comparison of full SSA with hybrid SSA - Q
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Comparison of full SSA with hybrid SSA - Q

Probability densities of C from SSA and from hybrid SSA - Q
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Conclusions — QSSA and fast fluctuations

@ Hybrid SSA — Q expansion matches closely the full SSA
@ Computation speed increases by factor of 450

@ Application to kinetic virus infection models
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