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Introduction to stochastic kinetics

Stochastic kinetics

Small species populations

Species numbers are integers, reactions cause integer jumps

Large fluctuations in species numbers and reaction rates

Biological networks and catalyst particles

Model reduction

Develop reduced models from stochastic chemical reactions. These models
must meet the following requirements:

Simpler than the full model (fewer reactions, fewer parameters, or
faster simulation times)

Converge to the full model as a specified parameter goes to zero
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Stochastic simulation method — kinetic Monte Carlo
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KMC Algorithm

1 Choose which reaction

2 Choose time step

3 Repeat

Which reaction:

Random number0 1
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Time step: Sample from an exponential distribution where the
distribution mean is the sum of reaction rates.
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KMC simulations and probability
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KMC simulations are samples of a probability distribution that evolves
in time.

We can write the evolution equation for the probability density
(master equation).
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Chemical master equation

dP(x)

dt
=

Nrxn∑
j=1

rj (x − νj )P(x − νj )︸ ︷︷ ︸
rate into state x

− rj (x)P(x)︸ ︷︷ ︸
rate out of state x

dP

dt
= AP

Master equation example
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Master equation — Important points

Chemical master equation

dP(x)

dt
=

Nrxn∑
j=1

rj (x − νj )P(x − νj )︸ ︷︷ ︸
rate into state x

− rj (x)P(x)︸ ︷︷ ︸
rate out of state x

dP

dt
= AP

Often the dimensionality of the master equation makes direct solution
infeasible

The master equation shows what probability distribution is sampled in
a KMC simulation

A reduced master equation can lead to a new/faster simulation
schemes
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Kinetics of multiple time scales
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Deterministic model reductions

x non-QSSA species, y QSSA species

dx

dt
= f (x , y) ε

dy

dt
= g(x , y)

Classical QSSA

dx

dt
= f (x , y)

0 = g(x , y)

DAE reduced model

Singular Perturbation QSSA

x = X0 + εX1 + ε2X2 +O(ε3)

y = Y0 + εY1 + ε2Y2 +O(ε3)

Collect like powers of ε

Equations for dX0
dt is the

reduced model

Separate models for fast and
slow time scale
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SPA on the master equation

Our objective

Apply singular perturbation analysis to develop a reduced master equation.

A
k1−⇀↽−

k−1

B
k2−→ C

dP(a, b, c)

dt
= k1(a + 1)P(a + 1, b − 1, c) + k−1(b + 1)P(a− 1, b + 1, c)

+ k2(b + 1)P(a, b + 1, c − 1)− (k1a + k−1b + k2b)P(a, b, c)

P(a, b, c) = W0(a, b, c) + εW1(a, b, c) + · · ·

ε0 terms:

W0(a, b, c) = 0 if b > 0

In this limit b is always zero
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SPA on the master equation

ε1 terms: Reduced master equation

dW0(a, 0, c)

dt
= k̃(a + 1)W0(a + 1, 0, c − 1)− k̃aW0(a, 0, c)

Reduced mechanism

A −→ C r = k1k2
k−1+k2

a

Stochastic same as deterministic SPA mechanism

Same mechanisms due to linearity

First-order correction, 〈b〉
〈b〉 = f (W0(a, 0, c)) +O(ε2)
〈b〉 = k1

k−1+k2
〈a〉
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Comparison of mechanisms
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Catalyst Example
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Stoch SPA mechanism

A −→ C

D + A −→ E + C

2D + A −→ 2E + C
· · ·

nD + A −→ nE + C

r0 =
k1a

1 + K3d
K3 =

k3
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r1 = r0
K3d
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rn = rn−1
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1 + K3(d − n)

Deterministic SPA mechanism

A −→ C

D + A −→ E + A

r0 = k1a

r1 =
k3k1

k2
ad
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Conclusions — Stochastic quasi-steady-state
approximation

QSSA species are removed from stochastic models with SPA

Stochastic QSSA mechanisms different than deterministic QSSA
mechanisms

Application of stochastic QSSA:
I Reduces the number of kinetic parameters
I Speeds up KMC simulations (fewer events)
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Conclusions — Stochastic quasi-steady-state
approximation
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Catalytic surface reaction modeling

Assumptions for this talk

Two dimensional surface with
a lattice for adsorption,
diffusion, reaction, and
desorption.

Square lattice, Z=4

All sites have identical
properties

Constant temperature

Adsorbed CO molecules
exhibit nearest neighbor
repulsions

CO + 1
2 O2 −→ CO2

CO-black, O-gray, Empty-white.
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Model mechanism and time scales

Adsorption CO(g)+ ∗i
α−→ COi

O2(g)+ ∗i + ∗j
β−→ Oi + Oj

Desorption COi
γ−→ CO(g) + ∗i

Oi + Oj
ρ−→ O2(g) + ∗i + ∗j

Reaction COi + Oj
kr−→ CO2(g)+ ∗i + ∗j

Diffusion COi + ∗j
d1−→ ∗i +COj

Oi + ∗j
d2−→ ∗i + Oj

1/sec

α = 1.6

β = 0.8

γ = 0.8

ρ = 0.001

kr = 1

d1 ≈ 1010

d2 ≈ 108
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Singular perturbation on the master equation

Surface reaction master equation

x - microscopic configuration n - number of each species

dP(n, x)

dt
=

Xrxn∑
j=1

kjaj (n − νj , x − νx,j )P(n − νj , x − νx,j )− kjaj (n, x)P(n, x)

+

Xdiff∑
j=1

djaj (n, x − νx,j )P(n, x − νx,j )− djaj (n, x)P(n, x)

Singular perturbation

P(n, x) = W0(n, x) + εW1(n, x) + ε2W2(n, x) + · · ·
ε = 1/d

ε0 terms: Diffusion equilibration equations for W0(x |n)
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Slow time-scale evolution equation

ε1terms : Reduced master equation

dW0(n)

dt
=

Nrxn∑
i=1

ki 〈si (n − νi )〉W0(n − νi )− ki 〈si (n)〉W0(n)

What have we gained?

Removed micro-states from the master equation

Lattice Size Species Micro-states Coverage states

Ns = 4 1 16 5

Ns = 25 2 1012 325

Ns = 100 2 1048 5050

Tractable number of states, master equation can be solved
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Slow time-scale evolution equation

dW0(n)

dt
=

Nrxn∑
i=1

ki 〈si (n − νi )〉W0(n − νi )− ki 〈si (n)〉W0(n)

Reaction propensities

si (x) number of reaction i on configuration x : nCO=45 black, nO=8 gray

sCO−O=26 sCO−O=22 sCO−O=26 sCO−O=23
〈sCO−O〉 = 24.9

〈si (n)〉 =
∑

x si (x)W0(x |n) – Calculate with diffusion only KMC
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Reduced master equation solution (5x5 lattice)

Probability of nCO, 5x5 lattice
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Verification of perturbation method∑
x

P(n, x) = W0(n) + εW1(n) +O(ε2)

ε = 1/d

As the diffusion rate increases P(n) approaches W0(n)
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Conclusions — Surface reactions in the infinite diffusion
limit

SPA can be used to eliminate spatial configuration states in a reduced
master equation.

The reduced master equation has sufficiently few states to be
simulated on small lattices.

Reduced master equations of surface reactions can be used to
motivate reduced KMC and reduced ODE models.
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Model for Vesicular Stomatitis Virus (VSV) infection
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I is encapsidation of viral
genome

II is replication of encapsidated
genome

III is transcription of genome to
messenger RNA
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Onset of fast fluctuations in the N protein
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Features of simulation

Presence of fast
fluctuating and rapidly
rising species

Fast fluctuations slow
the full KMC simulation

Motivates the
formulation of a simpler
example to understand
this phenomenon
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Fast fluctuation and rapid rise in VSV biology

(−)RNA + L1
k1−→ (−)RNA + L2

(−)RNA + L2
k2−→ 2(−)RNA + L1

2(−)RNA
k3−→ (−)RNA

The viral genome is amplified by first two reactions

The free viral proteins and messages are not amplified

Values of parameters k1, k2 and k3 may cause fast fluctuation in
polymerases along with rapid amplification of viral genome

Rawlings Molecular reaction engineering 26 / 35



Fast fluctuation and rapid rise — Idealized problem

A + G
k1−→ C + G r1 =

1

Ω
k1ag

C + G
k2−→ 2G + A r2 =

1

Ω
k2cg

2G
k3−→ G r3 =

1

Ω
k3

g(g − 1)

2

Species Initial number Rate constant (m3/mol·s)

A 3 k1 = 9× 105

C 0 k2 = 5× 105

G 1 k3 = 5× 10−2
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The full SSA on the system
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The hybrid SSA - Ω technique

At large population of G we want to switch to a continuous description for
it:

g = ΩφG + Ω1/2ξ

φG is the deterministic evolution term and ξ is the continuous noise
in the evolution of G

We can obtain approximation for the evolution of system using hybrid
SSA - Ω technique

Approximation of pdf of C

W0(c) = (1 + q)−N0

(
N0

c

)
q(N0−c)

Deterministic evolution of G

dφG

dt
= γ−1〈c〉φG −

k3

2
φ2

G

N0 Initial number of polymerases

q = k2
k1

Ratio of rate constants
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Comparison of full SSA with hybrid SSA - Ω
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Comparison of full SSA with hybrid SSA - Ω

Probability densities of C from SSA and from hybrid SSA - Ω
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Conclusions — QSSA and fast fluctuations

Hybrid SSA – Ω expansion matches closely the full SSA

Computation speed increases by factor of 450

Application to kinetic virus infection models
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