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A brief history. . .

“Crystal Size Distribution Dynamics, Stability and Control (A Review
Paper),” Randolph, 1980.

Technologies do not exist for the on-line instrumental control of
CSD.

The literature is rife with theoretical studies of CSD stabilization
and/or control, but typically the suggested control variable
cannot presently be measured and in no case were any of the
control algorithms experimentally investigated.

The current industrial practice of CSD in industrial crystallizers
can be summed up in three words: Hold Everything Constant.

JBR (Wisconsin) Crystal Engineering 3 / 55

A brief history . . . 10 years later

“Model Identification and Control of Solution Crystallization Processes:
A Review,” Rawlings, Miller, Witkowski, 1993.

Considerable research effort has been devoted to CSD control,
and we are now seeing the advances in measurement and
computing technologies necessary for successful industrial
implementation.

It is reasonable to expect closed-loop CSD control to become
part of accepted industrial practice in the near future.
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Measurement technology review

Technique Description Reference

Video Microscopy • On-line images captured and digitized Patience and Rawlings (2001)

and Image Analysis • Limited to dilute slurries Plummer and Kausch (1995)

• Shape information present Bharati and MacGregor (1998)

Lasentec particle and • In-situ probe coupled with strobing Braatz and Hasebe (2001)

vision measurement (PVM) • Numerous images are captured lasentec.com

• Dense slurries possible

• Randomly oriented particles

Forward laser light scattering • Energy pattern of scattered light Heffels et al. (1994,1995)

• Ill-conditioned inversion of scattering Rawlings et al. (1993)

pattern to CSD www.malvern.co.uk

Transmittance • In-situ probe van de Hulst (1981)

• Second moment of CSD Matthews and Rawlings (1998)

• Limited to single scattering Patience et al. (2001)

Backward laser light scattering • In-situ probe Monnier et al.(1997)

Lasentec focused beam reflectance • Chord length of CSD lasentec.com

measurement (FBRM) • Dense slurries possible

Electro-zone Sensing • Electronically counts particles Allen (1997)

(Coulter counter) • Requires a conducting solution Rovang and Randolph (1980)

• Third moment of CSD
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A brief history . . . projecting 10 years in the future

“Tailoring Size, Shape and Composition of the Solid Phase,”
some future researcher, 2010.

A large investment in process technologies required to achieve
reliable manufacturing processes for new products in high
value-added industries, such as pharmaceuticals, took place in
the 1990s. This investment resulted in a revolution in methods
for measuring, monitoring, modeling and controlling the creation
of the solid phase from solution. All aspects of this formation are
now tailored to meet product quality specifications including the
size and shape of particles, as well as the multicomponent
composition in the solid mixture. It is not clear why the earlier
researchers were such pessimists. . .
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A systems engineering perspective

First we need a model. . .

mathematical abstractions of real processes
predict behavior over some operating range of interest

Systems theory can...

provide general tools for extracting information from complex models
and experimental data
examples

steady-state analysis
parameter estimation
optimization
on-line estimation and control
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Modeling of Populations

Dynamics of populations are determined by applying the equation of
continuity.

Conservation Equation

d

dt

∫
V

f (z , t)dτ =

∫
V

(B − D)dτ

z =

[
x
y

]
=

[
external characteristics
internal characteristics

]
Assumes that V is large enough to contain a statistically significant
portion of the population.

Microscopic Equation of Continuity

∂f (z , t)

∂t
+∇ · (f (z , t)vz) = B − D
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Application to Crystallization

Population Balance:

∂f (L, t)

∂t
= −G

∂f (L, t)

∂L

in which f (L, t) is the number of crystals of size
L at time t, and G is the crystal growth rate.

Mass and Energy Balances:

dC

dt
= −3ρckvhG

Z ∞
0

fL2dL ρVCp
dT

dt
= −3∆HcρckvVG

Z ∞
0

fL2dL− UA(T − Tj (t))

Nucleation and Growth in the Bulk:

B = kb

„
C − Csat(T )

Csat(T )

«b

= kbS
b G = kg

„
C − Csat(T )

Csat(T )

«g

= kgSg
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A Stochastic Population Balance Alternative

Reaction Mechanism for Nucleation and Growth

2M
kn−→ N1 ∆Hn

rxn

Nn + M
kg−→ Nn+1 ∆Hg

rxn

Nn is the number of crystals of size (n + 1)∆ per volume.

Mass Balance Energy Balance

M tot = Msat + M dT
dt = UA

ρCpV
(Tj − T )

(between reaction events)

Solubility Relationship

Msat(T )
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Simulating reactions stochastically

Stochastic kinetic models
treat reactions as molecular
events
Consider the well-mixed
reaction:

A + B
k1


k−1

CAo

Bo

Co

 =

10
50
0

molecules

Scale probabilities by
reaction rates

r1 = k1AB
r2 = k−1C
rtot = r1 + r2

Randomly select [4, 5, 18]
1 When the next reaction occurs

p(τ) = rtote
−rtotτ

τ = − log(p1)

rtot

2 Which reaction occurs

10

p2

r2

rtot

r1

rtot
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Stochastic Simulation of A + B 
 C
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Implications for Crystal Populations

AVERAGE TABULATE

Stochastic AverageStochastic Trajectory

Distributions Scalars

Distribution of Stochastic Averages

N1

Nj

Nn

N1

Nj

Nn

...

...
...

...
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Connection to Deterministic Kinetics (Ω = System Size)
for A + B 
 C
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As Ω increases:
Stochastic → Deterministic

Computing burden increases!
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Stochastic Simulation of Surface Reactions

Reaction Events for CO oxidation

CO(g) + ∗i
α−→ CO∗,i

O2(g) + ∗i + ∗j
β−→ O∗,i + O∗,j

CO∗,i
γ−→ CO(g) + ∗i

CO∗,i + O∗,j
kr−→ CO2(g) + ∗i + ∗j

Diffusion Events

CO∗,i + ∗j
d1−→ ∗i + CO∗,j

O∗,i + ∗j
d2−→ ∗i + O∗,j

Repulsive CO-CO interactions increase rate constants
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Surface Reactions: Points of Interest

Adsorbate diffusion is fast compared to reaction rates, d
k ≈ O(105),

stops stochastic simulations
Fast diffusion does NOT mean random particle placement

Fast diffusion with interactions Random particle placement
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Order Reduction of the Stochastic Master Equation

The chemical master equation
dP(x)

dt
=

X
β

Wx,βP(β)−Wβ,xP(x)

For a small (100 sites) lattice the size of the state vector P is 3100 ≈ 1048.

Master equation order reduction: fast diffusion limit

Between reaction events, the lattice samples an equilibrium distribution
specified by only species number [6].

We can show that:

dP(n)

dt
=

X
j

kj [〈sj(n − νj)〉P(n − νj)− 〈sj(n)〉P(n)]

〈sj(n)〉 is the average number of reaction j that can occur given species
number n, and is calculated by short diffusion only simulations.

For a small (100 sites) lattice the size of the state vector P is 5050, solvable
linear system.
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Surface Reactions: The Ω→∞ limit

As the lattice size increases, we switch from a discrete extensive
variable n to a continuous intensive variable θ (coverage).
The reduced master equation can be approximated by an ODE for

each species:
dθ

dt
=
∑

j

kjνj〈sj(θ)〉

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10

β

θCO

Fast Diffusion KMC

Mean Field Model

JBR (Wisconsin) Crystal Engineering 18 / 55



Implications for Crystal Populations

∆→ 0Ω→∞

ScalarsDistributions

∂η(l , t)

∂t
= −k ′M

∂η(l , t)

∂ldNj

dt
= kM (Nj−1 − Nj)

Stochastic Deterministic

Deterministic

N1

Nj

Nn

N1

Nj

Nn

...

...
...

...
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Isothermal, Size-Independent Nucleation and Growth

Stochastic Solution Deterministic Solution
Average of 100 Simulations Via Orthogonal Collocation

Discrete particle sizes Continuous particle sizes
Integer-valued particle accounting Real-valued particle accounting
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Nonisothermal, Size-Independent Nucleation and Growth

Stochastic Solution Deterministic Solution
Average of 500 Simulations Via Orthogonal Collocation
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Isothermal, Size-Independent Nucleation, Growth, and
Agglomeration

Stochastic Solution Deterministic Solution

Add one reaction: Np + Nq
ka−→ Np+q Via Adaptive Mesh Methods?

Average of 500 Simulations Large time investment!
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Particle shape

High value-added products in the chemical industry are becoming
increasingly complicated in structure.

Pharmaceutical compounds are very complex: multiple crystal habits and
multiple crystal structures.
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Particle shape—industrial characteristics and challenges

Particle shape is affected by unmeasured disturbance variables that cannot
be modeled nor controlled.

Online sensing is available in the form of video images. The images are
replete with bad data.

Particles are fused or broken; particle boundaries overlap.
It is difficult to obtain representative samples.
It is difficult to sample enough images to remove the effects of noise
through averaging.

Standard image analysis software provides simple shape measures such as
particle boxed area and aspect ratio. These simple measures are inadequate
signals for feedback control.
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Macroscopic sodium chlorate (NaClO3) habit

100

111

1̄1̄1̄

11
0

1̄1̄
0

010

001

The 110, 111 and 1̄1̄1̄ faces grow fast under relatively high
supersaturation and “grow out” leaving only the 100 faces visible
under microscopy.
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Macroscopic sodium chlorate (NaClO3) habit

100
010

001

111̄

1̄1111̄1

1̄1̄1̄

In the presence of sodium dithionate (Na2S2O6) the 1̄1̄1̄ faces are
blocked by the impurity and the 100, 110 and 111 faces grow
relatively faster, leaving only the 1̄1̄1̄ faces visible, seen as a
tetrahedron under microscopy.

See Sherwood, Ristic, and coworkers for further discussion [16, 15]
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Experimental apparatus
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Image Analysis
System

Photo-microscopy

Hot Stream

Controller

Impurity-Free chlorate solution

Contaminated chlorate solution

Impurity dithionate

Cold StreamTT

TT

Cascaded MPC-PI
temperature controller.

Automated image
analysis system provides
on-line information
about particle size and
shape by binarizing
images of samples of the
crystal slurry.
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Sodium chlorate shape manipulation

Figure i 15 min Figure ii 49 min
no habit modifier 225ppm Na2S2O6

200µm 200µm

Figure iii 70 min Figure iv 135 min
225ppm Na2S2O6 no habit modifier

200µm 200µm
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Perturbations to squares and equilateral triangles

square triangle

aspect ratio Lmax
Lmin

√
2 3

√
3

4

roundness per2
4πarea

4
π

9
π
√

3

boxed area object area
bounding box area 1.0 0.5

Saw tooth waves of increasing amplitude are added to the boundaries of a
square and triangle and sized to assess the reliability of the sensor.
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Classification of shape

The size of the elliptical regions is chosen to classify the shapes.

Only data within the elliptical regions are used.

Classification regions Classification regions and data
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Processed image data

Sensor detects clearly shape change using square and triangle regions
alone.
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Feedback control of particle shape to steady state
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By maintaining the habit modifier at a level near the critical impurity
concentration, simple PI control algorithms are able to keep a desired
habit in the presence of a disturbance. The controller finds the critical
dosage (140-160 ppm) required to achieve 40% cubes in a slurry
without any knowledge of a model. This value agrees with literature
values of 50-210 ppm (Sherwood 1993).
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Limitations of current vision-based measurements

Commercial, vision-based particle characterization instruments require
sampling.

Literature methods are inadequate for typical industrial, in situ
images1

1Calderon De Anda et. al., Chemical Engineering Science, 2005.
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Model-based object recognition for shape measurement

Advantages

1 Parallel, distributed algorithms.

2 Robust to noise or missing data.

3 Generalizable to many shapes.

Basic approach2

1 Find linear features in the image.

2 Find linear feature clusters that appear significant on the basis of
viewpoint-independent relationships (collinearity, parallelism, and
end-point proximity).

3 Fit a two or three-dimensional model to each line cluster.

2Lowe, D.G., Artificial Intelligence, 1987.
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2-D model-based image analysis for needles

Original image Linear feature detection Collinearity identification

Parallelism identification Cluster properties
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Results for pharmaceutical crystallization

Time = 85 min. after seeding, Temp. = 44 deg. C
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Results for pharmaceutical crystallization

Time = 85 min. after seeding, Temp. = 44 deg. C

JBR (Wisconsin) Crystal Engineering 37 / 55

Results for pharmaceutical crystallization

Time = 265 min. after seeding, Temp. = 20 deg. C
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Results for pharmaceutical crystallization

Time = 265 min. after seeding, Temp. = 20 deg. C

JBR (Wisconsin) Crystal Engineering 39 / 55

Comparison of automatic and manual measurement

Time Temp. Mean Size, (µm) Percent
(min.) (deg C) Manual Automatic Difference

85 44 284 300 5.5
125 41 291 292 0.4
210 30 288 286 0.7
265 20 356 303 14.8

85 min., 44 deg C 210 min., 30 deg C 265 min., 20 deg C
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3-D models for more complex shapes

Parameterized, wireframe model.

Viewpoint-invariant groups used as cues for location and size of
crystals in image.

t

t

h

y

x

z

w

w

Junction Parallel pair

Symmetric pair Arrow
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Application to in situ image

Algorithm steps:

Identify linear features in image.

Identify significant, viewpoint-invariant groups.

Use the location, orientation, and lengths of the lines in the group to
estimate the crystal’s size and orientation.
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Example 1: α-glycine crystal

(a) Original image (b) Linear features (c) Salient line group

(d) Model initialization (e) Further matches (f) Optimized Fit
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Example 2: γ-glycine crystal

(a) Original image (b) Linear features (c) Salient line group

(d) Model initialization (e) Further matches (f) Optimized Fit

JBR (Wisconsin) Crystal Engineering 44 / 55



Application to full image: α-glycine
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Application to full image: α-glycine
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Application to full image: γ-glycine
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Application to full image: γ-glycine

JBR (Wisconsin) Crystal Engineering 48 / 55



Conclusions

If you want to understand data . . . you have to model them

Good models enable good engineering: design, monitor, forecast,
control

Crystal engineering poses challenging modeling problems, but progress
is steady and breakthroughs are possible

off-the-shelf data/model combinations are often incompatible
these applications require state-of-the-art modeling tools for numerical
solution, parameter estimation, optimization and control

We are capable of modeling, monitoring and controlling many
systems with current technology
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Measurement Technology

Model-based vision is a promising method for automating the
measurement of crystal size and shape distributions in noisy, in situ
images.

Both needle and template-based algorithms have been developed and
applied for specific shapes. The needle algorithm achieves results
roughly as good as those obtained from manual sizing of crystals.
Further validation is needed for the template algorithm.

The algorithms are fast and likely suitable for real-time measurement
of crystal size and shape distributions and polymorphic composition.
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Looking to the future: multiscale modeling

More and better sensors

in-situ video imaging for on-line particle analysis appears feasible
commercial instrument vendors are very active
complex product specifications require better sensors

More and better models

couple ab initio molecular, chemical models to process models
move from simple scaling heuristics to mixing models based on
computational fluid dynamics
real-time compression of large sets of video data into useful information
stochastic simulation of complex population behavior
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