Cooperation-based optimization of industrial supply chains

James B. Rawlings, Brett T. Stewart, Kaushik Subramanian and Christos T. Maravelias

Department of Chemical and Biological Engineering

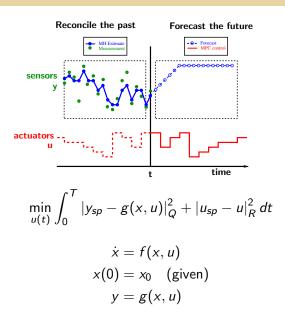
May 19-21, 2010

Workshop on Distributed Model Predictive Control and Supply Chains Lund Center for Control of Complex Engineering Systems Lund University

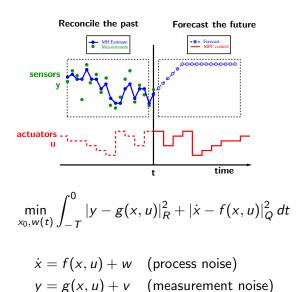
Outline

- Overview of Distributed Model Predictive Control
 - Control of large-scale systems
 - Stability theory for cooperative MPC
- Challenges for Cooperative MPC of Supply Chains
- Conclusions and Future Outlook

Predictive control

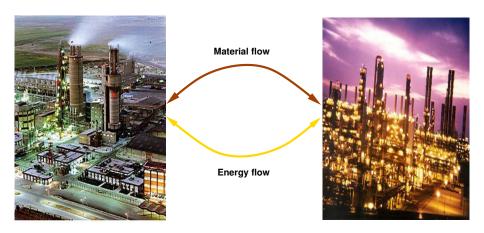


State estimation



Electrical power distribution

Chemical plant integration



MPC at the large scale

Decentralized Control

- Most large-scale systems consist of networks of interconnected/interacting subsystems
 - ▶ Chemical plants, electrical power grids, water distribution networks, ...
- Traditional approach: Decentralized control
 - Wealth of literature from the early 1970's on improved decentralized control ^a
 - Well known that poor performance may result if the interconnections are not negligible

^a(Sandell Jr. et al., 1978; Šiljak, 1991; Lunze, 1992)

MPC at the large scale

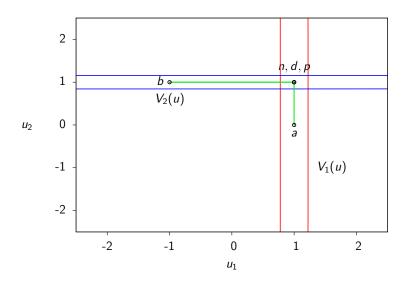
Centralized Control

- Steady increase in available computing power has provided the opportunity for centralized control
- Coordinated control: Distributed optimization to achieve fast solution of centralized control (Necoara et al., 2008; Cheng et al., 2007)
- Most practitioners view centralized control of large, networked systems as impractical and unrealistic
- A divide and conquer strategy is essential for control of large, networked systems (Ho, 2005)
- Centralized control: A benchmark for comparing and assessing distributed controllers

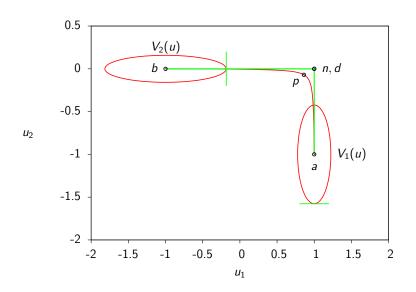
Nomenclature: consider two interacting units

Objective functions	$V_1(u_1, u_2), \ V_2(u_1, u_2)$
and	$V(u_1, u_2) = w_1 V_1(u_1, u_2) + w_2 V_2(u_1, u_2)$
decision variables for units	$u_1\in\Omega_1, u_2\in\Omega_2$
Decentralized Control	$\min_{u_1 \in \Omega_1} \widetilde{V}_1(u_1) \min_{u_2 \in \Omega_2} \widetilde{V}_2(u_2)$
Noncooperative Control	$\min_{u_1 \in \Omega_1} V_1(u_1, u_2) \min_{u_2 \in \Omega_2} V_2(u_1, u_2)$
(Nash equilibrium)	
Cooperative Control	$\min_{u_1\in\Omega_1}V(u_1,u_2) \min_{u_2\in\Omega_2}V(u_1,u_2)$
(Pareto optimal)	
Centralized Control	$\min_{u_1,u_2\in\Omega_1 imes\Omega_2}V(u_1,u_2)$
(Pareto optimal)	

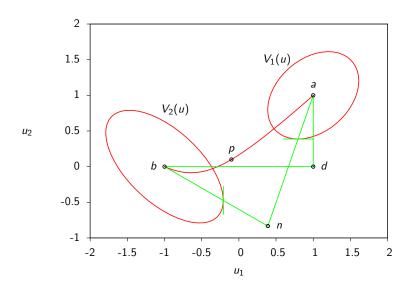
Noninteracting systems



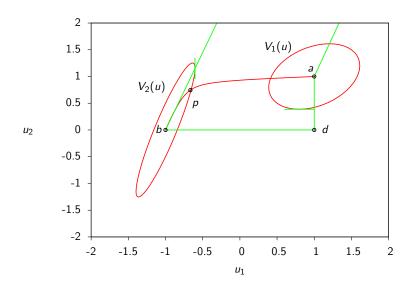
Weakly interacting systems



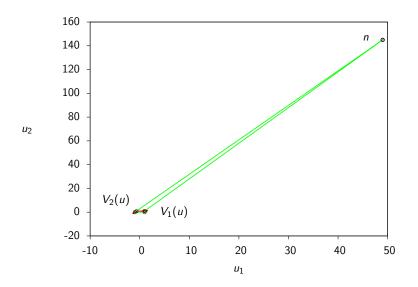
Moderately interacting systems



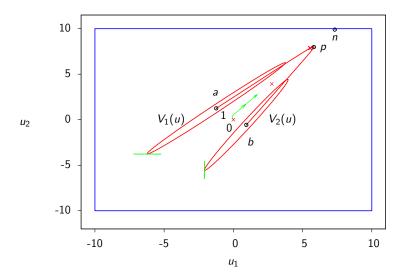
Strongly interacting (conflicting) systems



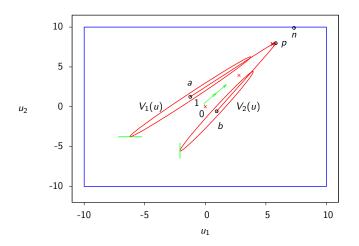
Strongly interacting (conflicting) systems



Geometry of cooperative vs. noncooperative MPC



Plantwide suboptimal MPC



- Early termination of optimization gives suboptimal plantwide feedback
- Use suboptimal MPC theory to prove stability

Plantwide suboptimal MPC

Consider closed-loop system augmented with input trajectory

$$\begin{pmatrix} x^+ \\ \mathbf{u}^+ \end{pmatrix} = \begin{pmatrix} Ax + Bu \\ g(x, \mathbf{u}) \end{pmatrix}$$

- Function $g(\cdot)$ returns suboptimal choice
- Stability of augmented system is established by Lyapunov function

$$a |(x, \mathbf{u})|^2 \le V(x, \mathbf{u}) \le b |(x, \mathbf{u})|^2$$

 $V(x^+, \mathbf{u}^+) - V(x, \mathbf{u}) \le -c |(x, u)|^2$

 \bullet Adding constraint establishes closed-loop stability of the origin for all \mathbf{u}^1

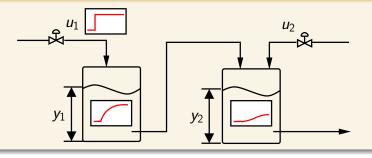
$$|\mathbf{u}| \le d |x| \quad x \in \mathbb{B}_r, r > 0$$

• Cooperative optimization satisfies these properties for plantwide objective function $V(x, \mathbf{u})$

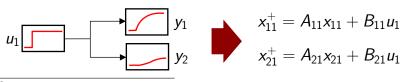
¹(Rawlings and Mayne, 2009, pp.418-420)

Modeling

Plantwide step response



Interaction models found by decentralized identification²



²Gudi and Rawlings (2006)

Modeling

Consider the linearized physical model

$$x^+ = Ax + B_1u_1 + B_2u_2$$
 $y_1 = C_1x$, $y_2 = C_2x$

• Kalman canonical form of the triple (A, B_i, C_i)

$$\begin{bmatrix} \mathbf{z}_{ij}^{oc} \\ \mathbf{z}_{ij}^{oc} \\ \mathbf{z}_{ij}^{oc} \\ \mathbf{z}_{ij}^{oc} \end{bmatrix}^{+} = \begin{bmatrix} \mathbf{A}_{j}^{oc} & 0 & \mathbf{A}_{ij}^{oc\bar{c}} & 0 \\ \mathbf{A}_{j}^{oc} & \mathbf{A}_{ij}^{\bar{c}c} & \mathbf{A}_{ij}^{\bar{c}c\bar{c}} & \mathbf{A}_{\bar{c}c\bar{c}}^{\bar{c}c\bar{c}} \\ \mathbf{A}_{ij}^{\bar{c}c} & \mathbf{A}_{ij}^{\bar{c}c} & \mathbf{A}_{ij}^{\bar{c}c\bar{c}} & \mathbf{A}_{ij}^{\bar{c}c\bar{c}} \\ \mathbf{A}_{ij}^{\bar{c}c} & \mathbf{A}_{ij}^{\bar{c}c\bar{c}} & \mathbf{A}_{ij}^{\bar{c}c\bar{c}} \\ \mathbf{A}_{ij}^{\bar{c}\bar{c}c} & \mathbf{A}_{ij}^{\bar{c}\bar{c}c} & \mathbf{A}_{ij}^{\bar{c}\bar{c}c} \\ \mathbf{A}_{ij}^{\bar{c}\bar{c}c} & \mathbf{A}_{ij}^{\bar{c}\bar{c}c} \end{bmatrix} + \begin{bmatrix} \mathbf{B}_{ij}^{oc} \\ \mathbf{B}_{ij}^{\bar{c}\bar{c}} \\ \mathbf{B}_{ij}^{\bar{c}\bar{c}\bar{c}} \\ \mathbf{B}_{ij}^{\bar{c}\bar{c}\bar{c}\bar{c}} \\ \mathbf{B}_{ij}^{\bar{c}\bar{c}\bar{c}\bar{c}} \\ \mathbf{B}_{ij}^{\bar{c}\bar{c}\bar{c}\bar{c}} \\ \mathbf{B}_{ij}^{\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}} \\ \mathbf{B}_{ij}^{\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c} \\ \mathbf{B}_{ij}^{\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c} \\ \mathbf{B}_{ij}^{\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c} \\ \mathbf{B}_{ij}^{\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c} \\ \mathbf{B}_{ij}^{\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c}\bar{c} \\ \mathbf{B}_{ij}^{\bar{c}\bar{c}\bar{c$$

Interaction models

$$A_{ij} \leftarrow A_{ij}^{oc} \quad B_{ij} \leftarrow B_{ij}^{oc} \quad C_{ij} \leftarrow C_{ij}^{oc} \quad x_{ij} \leftarrow z_{ij}^{oc}$$

Unstable modes

For unstable systems, we zero the unstable modes with terminal constraints.

• For subsystem 1

$$S_{11}^{u'}x_{11}(N) = 0$$
 $S_{21}^{u'}x_{21}(N) = 0$

• To ensure terminal constraint feasibility for all x, we require $(\underline{A}_1, \underline{B}_1)$ stabilizable

$$\underline{A}_1 = \begin{bmatrix} A_{11} & \\ & A_{21} \end{bmatrix} \qquad \underline{B}_1 = \begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix}$$

• For output feedback, we require (A_1, C_1) detectable

$$A_1 = \begin{bmatrix} A_{11} & \\ & A_{12} \end{bmatrix} \quad C_1 = \begin{bmatrix} C_{11} & C_{12} \end{bmatrix}$$

• Similar requirements for other subsystem

Output feedback

Consider augmented system perturbed by stable estimator

$$\begin{pmatrix} \hat{x}^+ \\ \mathbf{u}^+ \\ e^+ \end{pmatrix} = \begin{pmatrix} A\hat{x} + B\mathbf{u} + Le \\ g(\hat{x}, \mathbf{u}, e) \\ A_L e \end{pmatrix}$$

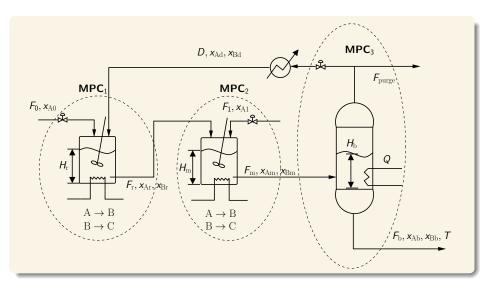
• Stable estimator error implies Lyapunov function

$$ar{a} |e| \le J(e) \le ar{b} |e|$$
 $J(e^+) - J(e) \le -ar{c} |e|$

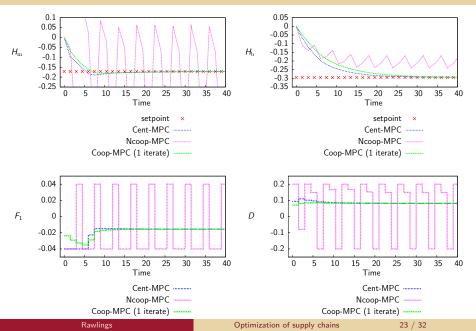
• Stability of perturbed system established by Lyapunov function

$$W(\hat{x}, \mathbf{u}, e) = V(\hat{x}, \mathbf{u}) + J(e)$$

Two reactors with separation and recycle



Two reactors with separation and recycle



Two reactors with separation and recycle

Performance comparison

	Cost $(\times 10^{-2})$	Performance loss
Centralized MPC	1.75	0
Decentralized MPC	∞	∞
Noncooperative MPC	∞	∞
Cooperative MPC (1 iterate)	2.2	25.7%
Cooperative MPC (10 iterates)	1.84	5%

Cooperative MPC of supply chains

- Previous work on supply chain modeling and optimization³
- Inventories and backorders are subsystem states
- Downstream product shipments and upstream orders are subsystem inputs
- Inventories and backorders modeled as integrators (tanks)
- Stabilizability and detectability assumptions not satisfied

$$\underline{A}_{i} = \begin{bmatrix} I \\ I \end{bmatrix} \qquad \qquad \underline{B}_{i} = \begin{bmatrix} B_{1i} \\ B_{2i} \end{bmatrix}$$

$$A_{i} = \begin{bmatrix} I \\ I \end{bmatrix} \qquad \qquad C_{i} = \begin{bmatrix} C_{i1} & C_{i2} \end{bmatrix}$$

 Implementation of cooperative MPC for supply chains remains a challenge

 $^{^3}$ Perea López et al. (2003); Mestan et al. (2006); Braun et al. (2002); Seferlis and Giannelos (2004)

Cooperative MPC of supply chains

Possible solution I: Coupled constraints

- Work with minimal (A, B, C) supply chain model
- Terminal constraint $S^{u'}x(N) = 0$ coupled in subsystem inputs

Challenge

- Cooperative optimization does not converge to Pareto optimum with coupled constraints
- Share coupled inputs among subsystems to achieve Pareto optimal performance
- In the limit of full supply chain coupling, each subsystem solves the centralized optimization

Alternative

 To avoid centralized optimization, share inputs with only nearest neighbors for near optimal performance

Cooperative MPC of supply chains

Possible solution II: Centralized estimation

ullet $(\underline{\mathsf{A}}_i,\underline{\mathsf{B}}_i)$ not stabilizable, but there is a stabilizable subspace $\underline{\mathbb{X}}_i$

$$\underline{\mathbb{X}}_i = \left\{ \underline{\mathbf{x}}_i \mid \exists \ \mathbf{u}_i : \left[\underline{\mathbf{A}}_i^{n-1} \underline{\mathbf{B}}_i \quad \cdots \quad \underline{\mathbf{B}}_i \right] \mathbf{u}_i = -\underline{\mathbf{A}}_i^n \underline{\mathbf{x}}_i \right\}$$

• Any $\underline{x}_i \in \underline{\mathbb{X}}_i$ can be brought to the origin

Challenge

- Must ensure estimated states are in stabilizable subspace
- Estimation must be centralized

Trade-offs

- No coupled constraints, therefore cooperative optimization converges to Pareto optimum
- Easy to enforce $\underline{\mathbf{x}}_i \in \underline{\mathbb{X}}_i$
- Subsystems must share output measurements
- Supply chain subsystems cannot choose estimators independently

Conclusions

- Cooperative MPC theory maturing^a
 - satisfies hard input constraints
 - provides nominal stability for plants with even strongly interacting subsystems
 - retains closed-loop stability for early iteration termination
 - converges to Pareto optimal control in the limit of iteration
 - remains stable under perturbation from stable state estimator
 - avoids coordination layer
- Cooperative MPC for supply chains remains a challenge
 - stabilizability and detectability assumptions not satisfied
 - many alternative solution strategies exist
 - each strategy has drawbacks

^a?Maestre et al. (2010)

Future directions

Supply chains

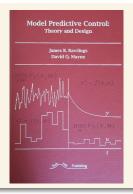
- Evaluate alternative supply chain cooperative control strategies
- Industrial application: gas supplier (Praxair), steel mill, power utility

Cooperative MPC

- Hierarchical implementation^a
 - time scale separation
 - delayed communication
 - reduced information sharing
 - optimization at MPC layer only
- Nonlinear models

^aStewart et al. (2010)

MPC Monograph — Chapter 6 on distributed MPC



- 576 page text
- 214 exercises
- 335 page solution manual
- 3 appendices on web (133 pages)
- www.nobhillpublishing.com

Further reading I

- M. W. Braun, D. E. Rivera, W. M. Carlyle, and K. G. Kempf. A model predictive control framework for robust management of multi-product, multi-echelon demand networks. In *IFAC*, 15th Triennial World Congress, 2002.
- R. Cheng, J. F. Forbes, and W. S. Yip. Price-driven coordination method for solving plant-wide MPC problems. *J. Proc. Cont.*, 17(5):429–438, 2007.
- R. D. Gudi and J. B. Rawlings. Identification for Decentralized Model Predictive Control. AIChE J., 52(6):2198–2210, 2006.
- Y.-C. Ho. On Centralized Optimal Control. IEEE Trans. Auto. Cont., 50(4):537–538, 2005.
- J. Lunze. Feedback Control of Large Scale Systems. Prentice-Hall, London, U.K., 1992.
- J. M. Maestre, D. Muñoz de la Peña, and E. F. Camacho. Distributed model predictive control based on a cooperative game. *Optimal Cont. Appl. Meth.*, In press, 2010.
- E. Mestan, M. Türkay, and Y. Arkun. Optimization of operations in supply chain systems using hybrid systems approach and model predictive control. *Ind. Eng. Chem. Res.*, 45:6493–6503, August 2006.

Further reading II

- Necoara, D. Doan, and J. Suykens. Application of the proximal center decomposition method to distributed model predictive control. In *Proceedings of the IEEE* Conference on Decision and Control, Cancun, Mexico, December 9-11 2008.
- E. Perea López, B. E. Ydstie, and I. E. Grossmann. A model predictive control strategy for supply chain optimization. *Comput. Chem. Eng.*, 27(8-9):1201–1218, February 2003.
- J. B. Rawlings and D. Q. Mayne. *Model Predictive Control: Theory and Design*. Nob Hill Publishing, Madison, WI, 2009. 576 pages, ISBN 978-0-9759377-0-9.
- N. R. Sandell Jr., P. Varaiya, M. Athans, and M. Safonov. Survey of decentralized control methods for large scale systems. *IEEE Trans. Auto. Cont.*, 23(2):108–128, 1978.
- P. Seferlis and N. F. Giannelos. A two-layered optimization-based control strategy for multi-echelon supply chain networks. *Comput. Chem. Eng.*, 28:1121–1129, 2004.
- D. D. Šiljak. Decentralized Control of Complex Systems. Academic Press, London, 1991. ISBN 0-12-643430-1.
- B. T. Stewart, J. B. Rawlings, and S. J. Wright. Hierarchical cooperative distributed model predictive control. In *Proceedings of the American Control Conference*, Baltimore, Maryland, June 2010.