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Abstract

The paper proposes a new form of nonlinear state estimator, for
which we can establish robust global asymptotic stability (RGAS) in
the case of bounded disturbances. In this estimator, a max term is
added to the usual sum of stage costs, and one additional assumption
is made relating the initial state stage cost to the system’s detectabil-
ity condition. Two simulation examples are presented to illustrate the
estimator’s performance. Two future problems are discussed: (i) the
proof of estimator convergence for convergent disturbances and (ii)
changing from full information estimation to moving horizon estima-
tion (MHE), which has a smaller and tractable online computational
complexity.
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1 Introduction

Moving horizon estimation (MHE) is an online optimization-based state estimation method
that can handle nonlinear systems and satisfy constraints on the estimated states and
disturbances. It has been established that MHE can provide a robustly stable estimator in
the case of convergent process and measurement disturbances [5, Theorem 12]. A remaining
issue is whether the same property can be established for bounded (rather than convergent)
disturbance [5, Conjecture 13]. There is some recent research on the issue, which assumes
an already-known deterministic estimator [4]. In this paper, we work on a more general
case. We show here that [5, Conjecture 13] is true if one adds to the usual full information
cost function a max stage cost term, and makes one additional assumption linking the
chosen estimator stage cost to the detectability condition of the nonlinear system.

The paper is organized as follows. For the paper to be reasonably self contained, we
provide a short summary ofK andKL functions, define notation and introduce the standard
and modified state estimation cost functions. Most of this is taken from [5]. We then
state the chosen definition for nonlinear detectability, and define robust global asymptotic
stability (RGAS) of a state estimator. Then we prove the main result of the paper: the full
information estimator with the modified cost function is RGAS for a detectable nonlinear
system subject to bounded disturbances. Two simulation examples are then presented to
compare the performances of the state estimators using the conventional and the modified
cost functions.

2 Notation and Properties of K and KL functions

The symbols I≥0 and R≥0 denote the sets of nonnegative integers and reals, respectively.
The symbol I0:N−1 denotes the set {0, 1, . . . , N − 1}. The symbol | · | denotes the Eu-
clidean norm. The bold symbol x, denote a sequence of a vector-valued variable x,
{x(0), x(1), . . .}. The notation ‖x‖ is the sup norm over a sequence, supi≥0 |x(i)|, and
‖x‖a:b denotes maxa≤i≤b |x(i)|. The definition of system detectability and statements and
proofs of estimator stability are significantly streamlined using the properties of K and KL
functions, so we provide a brief summary here. The interested reader may also want to
consult [3, pp. 144–147] and [6, Appendix B] for further discussion.

Definition 1 (K, K∞, and KL functions). A function σ : R≥0 → R≥0 belongs to class K if
it is continuous, zero at zero, and strictly increasing; σ : R≥0 → R≥0 belongs to class K∞
if it is a class K and unbounded (σ(s)→∞ as s→∞). A function β : R≥0 × I≥0 → R≥0

belongs to class KL if it is continuous and if, for each t ∈ I≥0, β(·, t) is a class K function
and for each r ≥ 0, β(r, ·) is nonincreasing and satisfies limt→∞ β(r, t) = 0.
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The following are useful properties of these functions. Most of these are established in [3,
Lemma 4.2]: if α1(·) and α2(·) are K functions (K∞ functions), then α−1

1 (·), (α1 + α2)(·),
and (α1 ◦ α2)(·)2 are K functions (K∞ functions). Moreover, if α1(·) and α2(·) are K
functions and β(·) is a KL function, then σ(r, t) = α1(β(α2(r), t)) is a KL function.

We require the following basic inequalities to streamline our presentation. Proofs of
these properties are given in [5].

1. For γ(·) ∈ K, the following holds for all ai ∈ R≥0, i ∈ I1:n

γ
(
a1 + a2 + · · ·+ an

)
≤ γ(na1) + γ(na2) + · · ·+ γ(nan) (1)

γ
(
a1 + a2 + · · ·+ an

)
≥ 1

n

(
γ(a1) + γ(a2) + · · ·+ γ(an)

)
2. Similarly, for β(·) ∈ KL the following holds for all ai ∈ R≥0, i ∈ I1:n, and all t ∈ R≥0

β
(
(a1 + a2 + · · ·+ an), t

)
≤ β(na1, t) + β(na2, t) + · · ·+ β(nan, t) (2)

β
(
(a1 + a2 + · · ·+ an), t

)
≥ 1

n

(
β(a1, t) + β(a2, t) + · · ·+ β(an, t)

)
3 Basic definitions and assumptions

We assume that the system generating the measurements is given by the standard
discrete time, nonlinear system

x+ = f(x,w)

y = h(x) + v (3)

The state of the systems is x ∈ Rn, the measurement is y ∈ Rp, and the notation
x+ means x at the next sample time. A control input u may be included in the
model, but it is considered a known variable, and its inclusion is irrelevant to state
estimation, so we suppress it in the model under consideration here. We receive a
measurement y from the sensor, but the process disturbance, w ∈ Rg, measurement
disturbance, v ∈ Rp, and system initial state, x(0), are considered unknown variables.
These are often modeled as independent, random variables with stationary probabil-
ity densities in stochastic estimation theory, but we will avoid random variables in
this discussion and consider completely deterministic systems. We therefore model
w, v, x(0) as unknown, but bounded disturbance variables. After this choice, we
cannot speak about the statistical properties of the estimator, but we can discuss
estimator stability, rate of convergence, and the sensitivity of the estimate error to
the disturbances. We assume throughout that functions f : Rn × Rg → Rn and
h : Rn → Rp are continuous.

2(α1 ◦α2)(·) is the composition of the two functions α1(·) and α2(·), defined by (α1 ◦α2)(s) := α1(α2(s)).



TWCCC Technical Report 2013-01 4

Full information estimation

The most accessible theory that we can present is the theory of full information
estimation. Full information estimation also has the best theoretical properties in
terms of stability and optimality. Unfortunately, it is also computationally intractable
except for the simplest cases, such as a linear system model. Its value therefore lies
in clearly defining what is desirable in a state estimator. One method for practical
estimator design therefore is to come as close as possible to the properties of full
information estimation while maintaining a tractable online computation. This design
philosophy leads directly to moving horizon estimation (MHE).

First we define some notation necessary to distinguish the system variables from the
estimator variables. We have already introduced the system variables (x,w, y, v).
In the estimator optimization problem, these have corresponding decision variables,
which we denote (χ, ω, η, ν). The optimal decision variables are denoted (x̂, ŵ, ŷ, v̂)
and these optimal decisions are the estimates provided by the state estimator. The
relationships between these variables are

x+ = f(x,w) y = h(x) + v

χ+ = f(χ, ω) y = h(χ) + ν

x̂+ = f(x̂, ŵ) y = h(x̂) + v̂

Notice that it is always the system measurement y that appears in the second column
of equations.

Definition 2 (Bounded sequences; set B). A sequence w(k), k ≥ 0 is bounded if ‖w‖
is finite. The set of bounded sequences is denoted by B.

We begin with a reasonably general definition of the full information estimator that
produces an estimator that is stable. The full information objective function is tra-
ditionally defined for T ≥ 1 as

V sum
T (χ(0),ω) = `x(χ(0)− x0) +

T−1∑
i=0

`i(ω(i), ν(i)) (4)

subject to
χ+ = f(χ, ω) y = h(χ) + ν

in which T is the current time, y(i) is the measurement at time i, and x0 is a user-
defined prior value of the initial state. Because ν = y − h(χ) is the error in fitting
the measurement y, `i(ω, ν) costs the model disturbance and the fitting error. These
are the two error sources that we reconcile in all state estimation problems.

Next we define a modified objective function, such that we can establish stability
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properties under bounded disturbances rather than convergent disturbances

VT (χ(0),ω) =
1

T
(1 + δ)`x(χ(0)− x0) +

1

T

T−1∑
i=0

`i(ω(i), ν(i))

+ δ max
i∈0:T−1

`i(ω(i), ν(i)) (5)

subject to
χ+ = f(χ, ω) y = h(χ) + ν

in which δ is a scalar weighting parameter chosen by the user. This modified objective
could be viewed as the conventional objective plus a weighted maximum of `i; note
that when δ = 0, the estimator is equivalent to the standard estimation given in (4),
because for a specific T , it does not change the optimization result of (4) if we divide
V sum
T by T . On the other hand, we could suppress the sum of `i term by letting
δ →∞

V max
T (χ(0),ω) =

1

T
`x(χ(0)− x0) + max

i∈0:T−1
`i(ω(i), ν(i))

subject to
χ+ = f(χ, ω) y = h(χ) + ν

The full information estimator is defined as the solution to

min
χ(0),ω

VT (χ(0),ω) (6)

or using V sum
T or V max

T instead of VT . For simplicity, we call them the MIX, SUM or
MAX estimator according to the objectives (5), (4) or (3). Using the minimization re-
sults plus the model we can solve for all x̂(i|T ), i = 0, · · · , T , which is the (smoothed)
estimated trajectory for a given T . For each T we take the last result x̂(T |T ) as the
current state estimate, which is usually the estimate passed to a controller.

Assumption 3 (Positive definite stage cost). The stage costs are continuous func-
tions and satisfy the following inequalities for all w ∈ Rg, and v ∈ Rp

γ
x
(|x|) ≤ `x(x) ≤ γx(|x|) i ≥ 0 (7)

γ
w

(|w|) + γ
v
(|v|) ≤ `i(w, v) ≤ γw(|w|) + γv(|v|) i ≥ 0 (8)

in which γ
x
, γx, γw, γw, γv, γv ∈ K∞.

Remark 4. From Assumption 3 the following holds for all w,v ∈ B

max
i∈0:∞

`i(w(i), v(i)) ≤ γw(‖w‖) + γv(‖v‖)

Remark 5. Because the stage cost satisfies

1

T

T−1∑
i=0

`i(ω(i), ν(i)) ≤ max
i∈0:T−1

`i(ω(i), ν(i)) ≤
T−1∑
i=0

`i(ω(i), ν(i))
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it is straightforward to show that the two objectives satisfy for all T ≥ 1,

1

T
(1 + δ)V sum

T ≤ VT ≤ (1 + δ)V sum
T

Remark 6. The MIX, SUM, and MAX estimators are well defined because the op-
timal solution to each of these estimators exists. The solution to the SUM estimator
exists for all T ≥ 1 because (i) the cost VT (·) is continuous due to the continuity of
f(·) and h(·), and (ii) VT (·) is radially unbounded in the decision variables due to
the lower bounds in (7), (8) of Assumption 3. Continuity plus radial unboundedness
implies existence of the optimal solution by the Weierstrass theorem. Note that the
same existence argument can be made for the MIX and MAX estimators after we
transform their objectives into their smoothed versions, as shown in Section 5.2.

We take incremental input/output-to-state stability (i-IOSS) as the definition of de-
tectability for nonlinear systems [8].

Definition 7 (i-IOSS). The system x+ = f(x,w), y = h(x) is incrementally input/output-
to-state stable (i-IOSS) if there exist functions α(·) ∈ KL and γ1(·), γ2(·) ∈ K such
that for every two initial states z1 and z2, and any two disturbance sequences w1 and
w2 generating state sequences x1(z1,w1) and x2(z2,w2), the following holds for all
k ≥ 1

|x(k; z1,w1)− x(k; z2,w2)| ≤ α(|z1 − z2| , k)+

γ1

(
‖w1 −w2‖0:k−1

)
+ γ2

(
‖h(x1)− h(x2)‖0:k−1

)
(9)

The notation x(k; z,w) denotes the solution to x+ = f(x,w) satisfying initial condi-
tion x(0) = x0 with disturbance sequence w = {w(0), w(1), . . .}. The notation h(x)
is then defined as {h(x(0;x0,w)), h(x(1;x0,w)), . . .}.

Definition 8 (Robust global asymptotic stability (RGAS)). The estimate is based
on the noisy measurement y = h(x(x0,w)) + v. The estimate is RGAS if for all x0

and x0, and bounded (w,v), there exists functions α(·) ∈ KL and δw(·), δv(·) ∈ K
such that the following holds for all k ≥ 1

|x(k;x0,w)− x(k; x̂(0|k), ŵ)| ≤ φ(|x0 − x0| , k)+

πw(‖w‖0:k−1) + πv(‖v‖0:k−1) (10)

Remark 9. The main characteristic of the RGAS definition is that the dynamic
system generating the estimate error is input-to-state stable (ISS) [7] considering the
disturbances (w, v) as the input.

Finally we make an additional assumption that enables us to establish the later
properties
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Assumption 10 (Separability of i-IOSS KL and K functions). The KL function
α(r, k) in Definition 7 satisfies the following separability condition. There exist posi-
tive scalars cα, p, a > 0 such that the following holds for all r ≥ 0, k ≥ 1

α(r, k) ≤ cαrpk−a

Assumption 11 (Choices of stage costs). The initial state stage cost `x(·) is chosen
so that its lower and upper bounds satisfy

γ
x
(r) = cxr

q

for some cx > 0 and q > p/a.

These assumptions strengthen the detectability condition and link the initial state
stage cost to the detectability condition through the condition q > p/a. We next
show that this requirement is sufficient to establish RGAS of the MIX estimator.

4 Main result

We can now state and prove the main result of the paper.

Theorem 12 (RGAS of full information estimate for bounded disturbances). Consider an
i-IOSS (detectable) system satisfying Assumption 10 and 11 with measurement sequence
generated by (3), bounded disturbances satisfying Definition 2, and stage cost satisfying
Assumptions 3. Then the full information (MIX) estimator is RGAS.

Proof. First from the definition of i-IOSS (9), we have the upper bound of the estimation
error

|x(k;x0,w)− x(k; x̂(0|k), ŵ)| ≤ α(|x0 − x̂(0|k)| , k)+

γ1

(
‖w − ŵ‖0:k−1

)
+ γ2

(
‖v − v̂‖0:k−1

)
(11)

For each k ≥ 1, the optimal MIX objective function can be expressed as

V 0
k := Vk(x̂(0|k)), ŵk) =

1

k
(1 + δ)`x(x̂(0|k)− x0)

+
1

k

k−1∑
i=0

`i(ŵ(i|k), v̂(i|k)) + δ max
i∈0:k−1

`i(ŵ(i|k), v̂(i|k)) (12)

From optimality we know that

V 0
k ≤ Vk(x0,w) =

1

k
(1 + δ)`x(x0 − x0) +

1

k

k−1∑
i=0

`i(w(i), v(i))

+ δ max
i∈0:k−1

`i(w(i), v(i))
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Then from Remark 5, Assumption 3 and Remark 4 we have the following upper bound V k

of V 0
k valid for k ≥ 1

V 0
k ≤ V k := (1 + δ)(

1

k
γx
(
|x0 − x0|

)
+ γw(‖w‖) + γv(‖v‖)) (13)

Also from Assumption 3 we have the following lower bound of V 0
k

V 0
k ≥

1

k
(1 + δ)γ

x

(
|x̂(0|k)− x0|

)
+ δγ

w
(|ŵ(i|k)|) + δγ

v
(|v̂(i|k)|) (14)

for any time i ≤ k − 1. Next we proceed to establish an upper bound for ‖w − ŵk‖0:k−1.
From the triangle inequality and definition of the sup norm we have that

‖w − ŵk‖0:k−1 ≤ ‖w‖0:k−1 + ‖ŵk‖0:k−1 (15)

Next we require a bound for ‖ŵk‖0:k−1. We have from (14) and (13) that γ
w

(|ŵ(i|k)|) ≤
1
δV k for all i ≤ k − 1. This implies ‖ŵk‖0:k−1 ≤ γ−1

w
(1
δV k), and substituting (13) into this

result and using (1) gives

‖ŵk‖0:k−1 ≤ γ
−1
w

(
1 + δ

δ

3

k
γx(|x0 − x0|))

+ γ−1
w

(
1 + δ

δ
3γw(‖w‖)) + γ−1

w
(
1 + δ

δ
3γv(‖v‖)) (16)

Applying γ1(·) to (15) and using (16) gives

γ1(‖w − ŵk‖0:k−1) ≤ γ1

(
‖w‖+ ‖ŵk‖

)
≤ γ1

(
‖w‖+ γ−1

w
(
1 + δ

δ

3

k
γx(|x0 − x0|))

+ γ−1
w

(
1 + δ

δ
3γw(‖w‖)) + γ−1

w
(
1 + δ

δ
3γv(‖v‖))

)
≤ γ1

(
3γ−1

w
(
1 + δ

δ

3

k
γx(|x0 − x0|))

)
+ γ1

(
3 ‖w‖+ 3γ−1

w
(
1 + δ

δ
3γw(‖w‖))

)
+ γ1

(
3γ−1

w
(
1 + δ

δ
3γv(‖v‖))

)
Noting that β(r, k) := (1/k)γx(r) is KL, and using the properties of K and KL functions,
this equation can be expressed as

γ1

(
‖w − ŵk‖0:k−1

)
≤ φwx (|x0 − x0| , k) + πww(‖w‖) + πwv (‖v‖) (17)

with φwx ∈ KL and πww , π
w
v ∈ K. Furthermore, notice that the same reasoning applies to

‖v − v̂k‖0:k−1 yielding

γ2

(
‖v − v̂k‖0:k−1

)
≤ φvx(|x0 − x0| , k) + πvw(‖w‖) + πvv(‖v‖) (18)

for φvx ∈ KL and πvw, π
v
v ∈ K.
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From (14) and (13) we also have that

γ
x

(
|x̂(0|k)− x0|

)
≤ k

1 + δ
V 0
k ≤

k

1 + δ
V k

≤ γx
(
|x0 − x0|

)
+ kγw(‖w‖) + kγv(‖v‖)

Then taking the inverse of the K function and using (1) generates

|x̂(0|k)− x0|
≤ γ−1

x

(
γx
(
|x0 − x0|

)
+ kγw(‖w‖) + kγv(‖v‖)

)
≤ γ−1

x

(
3γx
(
|x0 − x0|

))
+ γ−1

x

(
3kγw(‖w‖)

)
+ γ−1

x

(
3kγv(‖v‖)

)
Again from the triangle inequality we have that

|x̂(0|k)− x0| = |(x̂(0|k)− x0)− (x0 − x0)| ≤ |x̂(0|k)− x0|+ |x0 − x0|
≤ |x0 − x0|+ γ−1

x

(
3γx
(
|x0 − x0|

))
+ γ−1

x

(
3kγw(‖w‖)

)
+ γ−1

x

(
3kγv(‖v‖)

)
Then we have the upper bound of the first part of (11) as

α(|x̂(0|k)− x0| , k)

≤ α
(
|x0 − x0|+ γ−1

x

(
3γx
(
|x0 − x0|

))
+ γ−1

x

(
3kγw(‖w‖)

)
+ γ−1

x

(
3kγv(‖v‖)

)
, k
)

≤ α
(
3 |x0 − x0|+ 3γ−1

x

(
3γx
(
|x0 − x0|

))
, k
)

+ α
(
3γ−1

x

(
3kγw(‖w‖)

)
, k
)

+ α
(
3γ−1

x

(
3kγv(‖v‖)

)
, k
)

The first term on the right-hand side of the inequality is a KL function. Using Assumption
10, the second term satisfies

α
(
3γ−1

x

(
3kγw(‖w‖)

)
, k
)
≤
(
cα3(p+p/q)

c
p/q
x

)
kp/q−aγw(‖w‖)p/q := φxw(‖w‖ , k)

Note that due to Assumption 10, p/q − a < 0 and φxw is therefore a KL function. Similar
analysis applies to the third term giving

α(|x̂(0|k)− x0| , k) ≤ φxx(|x0 − x0| , k) + φxw(‖w‖ , k) + φxv(‖v‖ , k)

for φxx, φ
x
w, φ

x
v ∈ KL. Note that φxw(‖w‖ , k) ≤ φxw(‖w‖ , 1) and φxv(‖v‖ , k) ≤ φxv(‖v‖ , 1)

giving
α(|x̂(0|k)− x0| , k) ≤ φxx(|x0 − x0| , k) + πxw(‖w‖) + πxv (‖v‖) (19)

for πxw, π
x
v ∈ K. We substitute (19), (18), and (17) into (11) to obtain for all k ≥ 1,

|x(k;x0,w)− x(k; x̂(0|k), ŵk)| ≤ φ(|x0 − x0| , k) + πw(‖w‖) + πv(‖v‖)

in which φ := φxx+φwx +φvx ∈ KL, and πw := πxw+πww+πvw ∈ K, and πv := πxv +πwx +πvv ∈ K.
Since w(j), v(j) for j ≥ k affect neither x(k) nor x̂(k|k), this result also implies that

|x(k;x0,w)− x(k; x̂(0|k), ŵk)| ≤ φ(|x0 − x0| , k) + πw(‖w‖0:k−1) + πv(‖v‖0:k−1)

The estimate error therefore satisfies (10) and RGAS has been established.

Note that RGAS of the MAX estimator can be established similarly.
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5 Discussion

5.1 Discussion of Assumption 10

The new restriction in this paper is Assumption 10, so we elaborate further on this as-
sumption. If we step back, remove some details, and look at the general issue that is being
addressed in Assumption 10, it is basically this. When can the linear growth in the first
term of a KL function be overcome by the decrease in its second argument, i.e., for what
α(·) ∈ KL, does there exist γ(·) ∈ K such that for some β(·) in KL

α(γ(rk), k) ≤ β(r, k)

for all r ≥ 0, and k ≥ 1? This general question appears to be rather new and unexplored,
especially here because it arises in the context of the system’s detectability, which is already
a complex issue for nonlinear systems.

There are, however, some important cases in which Assumption 10 clearly is satisfied,
and Assumption 11 is not required. The first case is nonlinear observability. Nonlinear
observability rather than detectability corresponds to the case of α(·) = 0 in Definition 7.

Remark 13. Assumption 10 is satisfied for a nonlinear observable system, in which α(·) =
0. Any `x(·) satisfying (7) may be used in this case.

The next case of interest is (constrained) linear systems

x+ = Ax+Gw

y = Cx+ v (20)

with quadratic penalties

`x(x) = (1/2) |x|2P0
`i(w, v) = (1/2)(|w|2Q + |v|2R)

for penalty matrices P0, Q,R > 0. We have the following result.

Proposition 14 (Constrained linear systems with quadratic costs). Assumption 10 is
satisfied for LQ estimation of a detectable system. In this case there exists c > 0 and λ < 1
such that for all k ≥ 1

α
(
3γ−1

x

(
3kγw(‖w‖)

)
, k
)
≤ c ‖w‖λk

and the right-hand side is an exponential KL function.

Proof. For a detectable linear system it can be shown that the KL function α(·) satisfies
an exponential decay rate

α(r, k) ≤ cαrλ
k
, 0 < λ < 1 (21)

The stage cost bounds satisfy

γ
x
(|x|) = ax |x|

2 γx(|x|) = ax |x|2

γ
w

(|w|) = aw |w|
2 γw(|w|) = aw |w|2

γ
v
(|v|) = av |v|

2 γv(|v|) = av |v|2
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in which ax, aw, and av (ax, aw, and av) denote (1/2) times the smallest (largest) singular
values of P0, Q, and R, respectively. Using these results, γ−1

x (·) =
√

(1/ax)(·) and we have
that

3γ−1
x

(
3kγw(‖w‖)

)
≤ cγ
√
k ‖w‖

with cγ = 3
√

3kaw/ax. Applying α(·) gives

α
(
3γ−1

x

(
3kγw(‖w‖)

)
, k
)
≤ cαcγ ‖w‖

√
k λ

k

We can then increase λ slightly and obtain an exponential bound, i.e., there exits λ such
that

cαcγ ‖w‖
√
k λ

k ≤ c ‖w‖λk, λ < λ < 1

and the result is established.

Note that for the LQ case, both Assumption 10 and 11 are satisfied. Assumption 10
holds for any a > 0 since λk decays faster than k−a. The LQ values of p = 1 and q = 2
satisfies q > p/a in Assumption 11 for a > 1/2.

5.2 Computation of the MIX and MAX estimator

In order to computationally solve the MIX estimator (5), we can redefine it as

min
χ(0),ω,`max

VT (χ(0),ω) = (1 + δ)
1

T
`x(χ(0)− x0) +

1

T

T−1∑
j=0

`i(ω(i), ν(i)) + δ`max (22)

subject to

χ+ = f(χ, ω) y = h(χ) + ν `max − `i(ω(i), ν(i)) ≥ 0, i ∈ 0 : T − 1

Then it has been transformed into a smooth optimization problem that can be solved
by standard nonlinear optimization tools. A similar transformation can be applied on the
MAX estimator. From this form of the definition, we can see the MIX and MAX estimators
increase the dimension of the constraints by T , so they are usually slower and more difficult
to solve than the SUM estimator, especially when T is large. An MHE version of these
estimators would significantly reduce the computational requirements.

5.3 Uniqueness and convergence of the solution

Besides RGAS, there are important properties that should be studied. One is the unique-
ness of the optimal solution. For nonlinear systems, it is difficult to ensure convexity of the
SUM estimator since ν(i) is a nonlinear function of χ(0) and ω(0), · · · , ω(i− 1). However,
it is easy to show the objective function is convex when the system is linear, which is
the main reason that we anticipate uniqueness of the SUM estimator in mildly nonlinear
applications. When considering the MIX estimator, based on (22), the objective function
contains an additional linear term of `max, which should not affect the objective convexity



TWCCC Technical Report 2013-01 12

(or the constraints). So the same argument can be applied to the MIX estimator for linear
systems; and we have the same reason to anticipate that the MIX estimator also may have
a unique solution for mildly nonlinear applications.

Another important property is the convergence of the state estimate when the distur-
bances are not only bounded but also converge to zero.

Remark 15. Notice if the disturbances satisfy |w(k)| , |v(k)| → 0 as k → ∞, Defini-
tion 8 does not imply |x(k;x0,w)− x(k; x̂(0|k), ŵ)| → 0, because ‖w‖0:k−1, ‖v‖0:k−1 (and
‖ŵ‖0:k−1, ‖v̂‖0:k−1) can remain large for large k and corresponding small |w(k)| and |v(k)|.

Nevertheless, in [5, Proposition 11] the convergence of the SUM estimator has been
established, but the argument used in that case does not extend to the MIX and MAX
estimators. Therefore a proof of the convergence of MIX and MAX estimators is a valuable
topic for future research. When δ is taken small, the MIX estimator can be viewed as the
SUM estimator with a small perturbation. Therefore, it is reasonable to conjecture that
the MIX estimator is convergent for δ small enough. This conjecture will be shown to
be the case with the two simulation examples in Section 6. Obviously when δ is large
this assumption does not hold and the convergence is not expected to hold. The linear
example in 6.1 is a counterexample of the MAX estimator’s convergence (with δ → ∞).
On the other hand, if δ is chosen too small, according to (17) and (18), a large RGAS
upper bound could result. Therefore there is a trade off in the value of δ in order to ensure
both properties and good performance.

6 Example

Here we design two examples to illustrate the behaviors of the presented estimators. The
first is a trial linear example with an occasional bad measurement outlier, and the second
is a physical nonlinear example with random bounded noises for process and measurement
disturbances. All simulations were performed with the free software package GNU Octave
[1], and the software is available upon request.

6.1 Linear example with measurement noise outlier

This example aims to illustrate why we do not expect the MAX estimator to be useful
in practice even though it ensures RGAS. A simple detectable (and therefore also i-IOSS)
linear system is defined as

x+ = x+ w

y = x+ v (23)

where x, y ∈ R1. We set `x(x) = x2 and `i(w, v) = w2 + v2. Assume we already have
a precise initial guess x̄0 = x(0) = 0. The disturbances w(k), v(k) are generally all zero
except for the nonzero v(2) = 1. In other words, all disturbances are both bounded and
convergent, all states x and outputs y are zero except for one erroneous measurement
y(2) = 1. The system is easy to estimate, and it is reasonable to expect a good estimator
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Figure 1: Data and estimates of Example 6.1

should reject the single poor measurement and obtain a converged result given that the
disturbances converge. Here we conduct the simulation with maximum time T = 7. The
MIX estimators are implemented for different δ values, as well as the MAX and SUM
estimator. Estimate results are shown in Figure 1. From Figure 1, the state estimate of the
SUM estimator converges to zero, which is consistent with its stated properties. The MIX
estimators also converge for all values of parameter δ. Finally, the MAX estimator fails to
converge to zero and its estimate error remains large regardless of how many measurements
become available. Yet the MAX estimator is RGAS since ‖v‖ = |v(2)| = 1 and the RGAS
upper bound in (10) is a fixed constant.

6.2 Nonlinear example

Here we use the gas-phase irreversible reaction example proposed in [2]

2A −→ B

with the reaction rate r = kc2
A, k = 0.16. We define the two states x1, x2 as the partial

pressures of species A and B, and the measurement as the total pressure. Assuming the
ideal gas law holds and the batch reactor is well-mixed and isothermal, the model of system
is

f(x) =

[
−2kx2

1

kx2
1

]
, x+ =

∫ ∆

0
f(x)dt+ w, y =

[
1 1

]
x+ v

with the sample time ∆ = 0.1, and the initial state x(0) = [3 1]T . In the simulation
we assume the plant suffers random noises w ∼ N (0, Qw) and v ∼ N (0, Rv) where Qw =
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Figure 2: Mean and variation of x̃(t | T ) at T = 1.

diag(0.0012, 0.0012) and Rv = 0.12. However, to ensure boundedness, hard constraints
are included such that |w1| , |w2| ≤ 0.01, |v| ≤ 1.0. As in [2], the extended Kalman filter
(EKF) given a poor initial guess x̄0 = [0.1 4.5]T , Π0 = diag(62, 62) and accurate Qw,
Rv covariance values is not stable. For comparison we also simulate the full information
estimators with the same x̄0 and stage costs defined by

`x(χ) := χTP0χ, P0 = Π−1
0

`i(ω, ν) := ωTQω + νTRν, Q = Q−1
w , R = R−1

v

The optimization is conducted over T = 11 steps. The MIX estimator uses δ = 1. To
provide sufficient statistical samples, a total of s = 300 simulations are performed for each
estimator.

Defining the state estimate error as x̃(i) := x(i) − x̂(i|i), Figure 2 shows the sample
averages (over all the runs) and variations of x̃1(T ) and x̃2(T ) of all four estimators.
The EKF’s estimate error does not converge to zero, and the estimator errors of MAX,
MIX and SUM do converge to zero. To better compare their performances, we define the
benchmark as

∣∣x̃j(T )
∣∣2 where j denotes the jth simulation run. The histogram at the

final time is shown in Figure 3, which clearly indicates the performance differences. To
make the comparison more straightforward, we can also look at the statistical expectation
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Figure 3: Histogram of |x̃(T )|2; EKF: 〈|x̃(T )|2〉 = 20.101, MAX: 〈|x̃(T )|2〉 = 0.029, MIX:
〈|x̃(T )|2〉 = 0.023, SUM: 〈|x̃(T )|2〉 = 0.015

E(|x̃(T )|2). In practice, the sample averages can be used to approximate the expectation

〈|x̃(T )|2〉 :=
1

s

s∑
j=1

∣∣x̃j(T )
∣∣2

These values are given in the caption of Figure 3.
To better understand how the full information estimators perform, we show the entire

trajectory of optimal stage costs (l̂i := `(ŵ(i|T ), ŵ(i|T ))) at the final time in one typical run
(Figure 4). The MAX and MIX estimators have smaller maximum l̂i than the SUM estima-
tor, and the result of the MIX estimator is close to the MAX estimator. Similarly, we can
use V 0

T , V 0,max
T and V 0,sum

T values as another performance benchmark. The histograms and
corresponding sample averages are shown in Figure 5, 6, and 7. Not too surprisingly, each
of the three estimators performs best on the benchmark corresponding to its own objective
function. To provide a better indication that how the optimization works, the ‘Actual’
plots in these figures show the values of the benchmarks using the actual disturbances(w,
v) in the plant (`(w(i), v(i)), VT (x(0),w), V sum

T (x(0),w) and V max
T (x(0),w)).

7 Conclusion

Establishing robust global asymptotic stability (RGAS) ensures that the estimate error of
a nonlinear estimator has an upper-bound depending on the sizes of the initial estimate
error and the process and measurement disturbances. In previous work, RGAS of the full



TWCCC Technical Report 2013-01 16

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

l̂(t | T )

t

Actual
MAX
MIX
SUM

Figure 4: Open-loop estimated stage costs at T = 1.
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information estimator has been established for i-IOSS (detectable) nonlinear systems for
convergent disturbances, i.e., disturbances that converge to zero as time increases to infinity.
In applications, however, it is more reasonable to assume that the system disturbances
are only bounded and not convergent. In this paper we defined a new form of the full
information estimator that provides RGAS for detectable nonlinear systems for bounded
disturbances. The new objective function includes the maximum over all stage costs as
well as the standard sum of stage costs. The estimator is still optimization based and can
incorporate constraints. To establish RGAS, we made one additional assumption relating
the stage cost functions to the i-IOSS property. For observably nonlinear systems and
constrained linear quadratic estimation of detectable systems, this assumption is always
satisfied. An alternative form of this estimator is provided in order to implement the state
estimator with standard nonlinear programming solvers.

We should emphasize that this RGAS definition does not automatically imply that
the estimate error converges to zero for convergent disturbances due to the addition of
the maximal stage cost term. It remains an open problem to establish that a single full
information estimator has both RGAS and convergence properties. In future studies a
moving horizon version of this new full information estimator will be valuable since it
offers the same stability properties with a significantly smaller and tractable computational
complexity.
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