On the equivalence between statements with ϵ-δ and K-functions

James B. Rawlings* and Michael J. Risbeck†
Department of Chemical and Biological Engineering
University of Wisconsin-Madison
May 9, 2017

1 Introduction and Motivating Examples

The purpose of this note is to establish some simple results enabling direct translation between classic ϵ-δ statements and K-function statements. The definition of K-function is standard

Definition 1 (K-function). A K-function is a function defined on a nonempty interval $[0,b]$ with $b > 0$, $\gamma : [0,b] \to \mathbb{R}_{\geq 0}$ that is continuous, strictly increasing, and zero at zero.

Note that we require $\gamma(\cdot)$ to be defined only on some nonzero interval, not $[0,\infty)$.

As a motivating example, consider the standard ϵ-δ definition of continuity of a function $f(\cdot)$ at a point x.

Definition 2 (Continuity: ϵ-δ). A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous at x if for every $\epsilon > 0$, there exists $\delta(\epsilon) > 0$ (note that $\delta(\epsilon)$ may depend on x) such that

$$|f(x + p) - f(x)| \leq \epsilon \quad \text{for all } |p| \leq \delta(\epsilon) \quad (1)$$

The equivalent definition of continuity in the language of K-functions is the following.

Definition 3 (Continuity: K-function). A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous at x if there exists a K-function $\gamma(\cdot)$ (note that the function $\gamma(\cdot)$ may depend on x) such that

$$|f(x + p) - f(x)| \leq \gamma(|p|) \quad \text{for all } |p| \in \text{Dom}(\gamma) \quad (2)$$

*james.rawlings@wisc.edu
†risbeck@wisc.edu
Figure 1: The right shift trick to construct a continuous, increasing underbounding function from samples of a possibly discontinuous, increasing function. A similar left shift trick in conjunction with the supremum is useful when creating a continuous, increasing overbounding function.

To establish the equivalence of these definitions, we require the following result establishing a connection between the (possibly discontinuous) function $\delta(\epsilon)^1$ and existence of a K-function underbound.

Proposition 4 (A K-function underbound of $\delta(\epsilon)$). Let $\delta : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ be an increasing, i.e., nondecreasing, function. Then there exists a K-function $\alpha(\cdot)$ such that for all $\epsilon > 0$

$$\alpha(\epsilon) \leq \delta(\epsilon)$$

Proof. In this proof, we construct the K-function $\alpha(\cdot)$ from the given function $\delta(\cdot)$. Figures 1–3 shows the techniques we employ. Start by taking an arbitrary $a_0 > 0$, and create a doubly infinite sequence, a_i with $i = 0, \pm 1, \pm 2, \ldots$, such that a_i is strictly increasing and tends to infinity and a_{-i} is strictly decreasing and tends to zero as i tends to infinity. We have that the a_i sequence is strictly increasing. Now define the sequence y_i by

$$y_i \;=\; \delta(a_{i-1}) \quad i = 0, \pm 1, \pm 2, \ldots$$

Note this right shift trick, depicted in Figure 1, is useful when creating an underbounding function. Since $\delta(\cdot)$ is a positive, increasing function, we have that $y_i = \delta(a_{i-1}) > 0$ and y_i is an increasing sequence. Next define the continuous function $f(\cdot)$ by connecting the

1Note that we can assume $\delta(\epsilon)$ is an increasing function. See Proposition 11.
Figure 2: Making an $f'(\epsilon)$ function (solid line) that is strictly increasing with $f'(0) = 0$ from an increasing function $f(\epsilon)$ (dashed line).

points (a_i, y_i) with linear functions

$$f(\epsilon) = \left(\frac{a_{i+1} - \epsilon}{a_{i+1} - a_i} \right) y_i + \left(\frac{\epsilon - a_i}{a_{i+1} - a_i} \right) y_{i+1}, \quad \epsilon \in [a_i, a_{i+1}], \quad i = 0, \pm 1, \pm 2, \ldots$$

So far we have a function $f(\cdot)$ defined on $[0, \infty)$ that is continuous (and piecewise linear), increasing, and satisfies $f(\cdot) < \delta(\cdot)$. But $f(\cdot)$ may not be a K-function because $f(0)$ may not be zero, and $f(\cdot)$ may not be strictly increasing. We next create a function with these properties. See also Figure 2.

If the function $f(\cdot)$ is a constant function with value $y_0 > 0$, define $\alpha(\epsilon)$ as any strictly increasing function starting at zero that underbounds y_0. For example

$$\alpha(\epsilon) = y_0(1 - e^{-\epsilon})$$

If $f(\cdot)$ is not constant, take any index i_0 such that $y_{i_0} < y_{i_0+1}$. For simplicity, relabel the a_i, y_i sequences such that $i_0 = 0$. Starting at $i = 1$, find the first set of indices (if any) $i \in [i_1, i_2]$ where y_i is constant and $y_{i_2} < y_{i_2+1}$. On such intervals define $f'(\epsilon)$ to be the linear function

$$f'(\epsilon) = \left(\frac{a_{i_2} - \epsilon}{a_{i_2} - a_{i_1}} \right) y_{i_1} + \left(\frac{\epsilon - a_{i_1}}{a_{i_2} - a_{i_1}} \right) y_{i_2}, \quad \epsilon \in [a_{i_1}, a_{i_2}]$$

Note that $f'(\cdot)$ is continuous, strictly increasing, and underbounds $f(\cdot)$ on the interval $[a_{i_1}, a_{i_2}]$. Continue to the next interval of indices over which y_i is constant and repeat.

2We define $f(0)$ as $\lim_{\epsilon \searrow 0} f(\epsilon)$, which exists because $f(\cdot)$ is monotone.
While increasing i, if y_i becomes constant on an interval $[i_3, \infty)$ with $y_{i_3} < y_{i_3-1}$, then create the underbound

$$f'(\epsilon) = (y_{i_3} - y_{i_3-1})(1 - e^{-\epsilon_{i_3-1}}), \quad \epsilon \geq a_{i_3-1}$$

In this fashion we have constructed an $f'(\cdot)$ that is strictly increasing on $[a_0, \infty)$ and is an underbound of $\delta(\cdot)$ on this interval.

Next we turn attention to the interval $[0, a_0]$. If $f(\epsilon)$ converges to some $b > 0$ as $\epsilon \to 0$, then define $f'(\epsilon)$ on $[0, a_1]$ as the linear function connecting the point $(0, 0)$ to (a_0, b) and then join the function $f'(\epsilon)$ for $\epsilon \geq a_1$ as shown in Figure 2.\(^3\) Setting $\alpha(\cdot) = f'(\cdot)$, we then have a K-function underbound on $[0, \infty)$ for this case.

Finally, if $f(\epsilon)$ converges to zero as $\epsilon \to 0$ (the usual case), proceed as in the previous part and replace intervals of constant values by their linear underbounds as shown in Figure 3.\(^4\) In this case also, setting $\alpha(\cdot) = f'(\cdot)$, we have constructed a K-function underbound on $[0, \infty)$ and the proof is complete.

Note that the K-function $\alpha(\cdot)$ is defined on $[0, \infty)$ and the K-function $\alpha^{-1}(\cdot)$ is defined on $[0, \hat{\delta}]$ in which $\hat{\delta} > 0$ is any value satisfying $\hat{\delta} < \sup_{\epsilon > 0} \delta(\epsilon)$.

Proposition 5 (Equivalence of two continuity definitions). The classic ϵ-δ definition and K-function definition of continuity are equivalent.

Proof.

\(^3\)Note that we have now redefined $f'(\epsilon)$ on the interval $[a_0, a_1]$.

\(^4\)Note that in this last case, unlike when treating the increasing a_i values, there is no interval $[0, a_{i_4}]$ on which $f(\epsilon)$ can be constant because $f(0) = 0$ but $f(a_{i_4}) > 0$ for all i_4.

Figure 3: Treating the (usual) case when $f(\epsilon)$ converges to zero as ϵ converges to zero.
K definition implies \(\epsilon\)-\(\delta\) definition. Given the \(K\)-function \(\gamma(\cdot)\) satisfying (2) choose \(\delta(\epsilon) := \gamma^{-1}(\epsilon)\). We then have \(|p| \leq \delta(\epsilon) = \gamma^{-1}(\epsilon)\) implies that \(|f(x + p) - f(x)| \leq \gamma(|p|) \leq \gamma(\gamma^{-1}(\epsilon)) = \epsilon\) and the \(\epsilon\)-\(\delta\) definition of continuity is established.

\(\epsilon\)-\(\delta\) definition implies \(K\) definition. Since \(\alpha(\cdot)\) defined in Proposition 4 is defined on \([0, \infty)\), for any \(\epsilon > 0\) choose \(p\) so that \(|p| = \alpha(\epsilon)|\). Since \(|p| = \alpha(\epsilon) \leq \delta(\epsilon)|\), by \(\epsilon\)-\(\delta\) continuity, we have that \(|f(x + p) - f(x)| \leq \epsilon = \alpha^{-1}(|p|)|\). Note that \(\alpha^{-1}(\cdot)\) is a \(K\)-function defined on \([0, \delta]\) and the \(K\)-function definition of continuity is established.

As a second example, consider the definition of Lyapunov stability.

Definition 6 (Lyapunov stability: \(\epsilon\)-\(\delta\)). Consider the dynamic system \(x^+ = f(x)\) with \(f(0) = 0\). The origin is Lyapunov stable if for every \(\epsilon > 0\) the exists \(\delta(\epsilon) > 0\) such that for \(|x| \leq \delta\), the solution satisfies for all \(k \geq 0\)

\[
|\phi(k; x)| \leq \epsilon
\]

The equivalent definition with a \(K\)-function is the following.

Definition 7 (Lyapunov stability: \(K\)-function). Consider the dynamic system \(x^+ = f(x)\) satisfying \(f(0) = 0\). The origin is Lyapunov stable if there exists a scalar \(\rho > 0\) and a \(K\)-function \(\gamma(\cdot)\) such that for all \(|x| \leq \rho\) and \(k \geq 0\)

\[
|\phi(k; x)| \leq \gamma(|x|)
\]

As a third example, consider the definition of robust global asymptotic stability in \(\epsilon\)-\(\delta\) language.

Definition 8 (Robust global asymptotic stability: \(\epsilon\)-\(\delta\)). Consider a nominal system \(x^+ = f(x)\) with \(f(0) = 0\) in which the origin is globally asymptotically stable. The origin of the perturbed system \(x^+ = f(x) + w\) is robustly globally asymptotically stable if there exists a \(KL\)-function \(\beta(\cdot)\) and for every \(\epsilon > 0\) there exists \(\delta(\epsilon) > 0\) such that for all \(|w| \leq \delta, x \in \mathbb{R}^n\) and \(k \geq 0\)

\[
|x(k; x, w)| \leq \beta(|x|, k) + \epsilon
\]

The equivalent \(K\)-function definition is the following.

Definition 9 (Robust global asymptotic stability: \(K\)-function). Consider a nominal system \(x^+ = f(x)\) with \(f(0) = 0\) in which the origin is globally asymptotically stable. The origin of the perturbed system \(x^+ = f(x) + w\) is robustly globally asymptotically stable if there exists a scalar \(\rho > 0\), \(K\)-function \(\gamma(\cdot)\), and \(KL\)-function \(\beta(\cdot)\) such that for all \(x \in \mathbb{R}^n, \|w\| \leq \rho\) and \(k \geq 0\)

\[
|x(k; x, w)| \leq \beta(|x|, k) + \gamma(\|w\|)
\]

Note that we could write the final inequality equivalently as

\[
|x(k; x, w)| \leq \beta(|x|, k) + \gamma(\|w\|_{0:k-1})
\]

because \(x(k; x, w)\) depends on \(w\) only up to time \(k - 1\). The last statement is equivalent to the statement that the origin of the system \(x^+ = f(x) + w\) is input-to-state stable (ISS) for small disturbances (\(\|w\| \leq \rho\)) considering the disturbance \(w\) as the input.
2 Generalization

The following definitions and theorem generalize the previous examples. Let X be any normed space.

Definition 10 (Property P). A system with testable condition $C : X \rightarrow \mathbb{R}_{\geq 0}$ satisfying $C(0) = 0$ has property P if for every $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that

$$C(x) \leq \epsilon \quad \text{for every } x \in X \text{ satisfying } |x| \leq \delta(\epsilon) \quad (3)$$

We note that the function $\delta(\epsilon)$ in Definition 10 can be made increasing, as shown in the following proposition.

Proposition 11 ($\delta(\epsilon)$ can be made increasing). Suppose a system has property P as in Definition 10. Then, without loss of generality, the function $\delta(\epsilon)$ can be assumed to be a nondecreasing function.

Proof. Suppose (3) holds for $\hat{\delta}(\epsilon)$ which is possibly not nondecreasing. Next, define $\delta(\epsilon) := \min(\hat{\delta}(\epsilon), 1)$. We note that (3) holds also for $\delta(\epsilon)$ because $(0, \delta(\epsilon)) \subseteq (0, \hat{\delta}(\epsilon))$, and thus (3) holding for $\delta(\epsilon)$ is weaker than for $\hat{\delta}(\epsilon)$. Then, define

$$\delta(\epsilon) := \frac{1}{2} \sup_{s \in (0, \epsilon]} \overline{\delta}(s)$$

which is well-defined because $\overline{\delta}(s) \in (0, 1]$ for all $s > 0$, and all bounded sets of real numbers have suprema. Furthermore, $\delta(\epsilon)$ is clearly nondecreasing. To show that (3) holds for $\delta(\epsilon)$, let $\epsilon_1 > 0$ be arbitrary. By definition, there exists positive $\epsilon_0 < \epsilon_1$ such that $\overline{\delta}(\epsilon_0) \geq \delta(\epsilon_1)$.\(^5\)

Thus, from (3) and these two inequalities, we know that for arbitrary $x \in X$,

$$|x| \leq \delta(\epsilon_1) \implies |x| \leq \overline{\delta}(\epsilon_0) \implies C(x) \leq \epsilon_0 \implies C(x) \leq \epsilon_1$$

which means (3) holds for $\delta(\epsilon)$ and the statement is proved. \(\blacksquare\)

In the language of K-functions, we have the following definition of property P_K.

Definition 12 (Property P_K). A system with testable condition $C : X \rightarrow \mathbb{R}_{\geq 0}$ satisfying $C(0) = 0$ has property P_K if there exists $b > 0$ and K-function $\gamma(\cdot)$ defined on $[0, b]$, such that for all $x \in X$ satisfying $|x| \leq b$

$$C(x) \leq \gamma(|x|)$$

Proposition 13 (Equivalence of P and P_K). A system has property P if and only if it has property P_K. The constant b defined in Property P_K can be chosen as any positive value satisfying $b < \sup_{\epsilon > 0} \delta(\epsilon)$ with $\delta(\epsilon)$ defined in Property P.

\(^5\)Suppose not. Then, for all $s \in (0, \epsilon_1]$, we have $\overline{\delta}(s) < \delta(s) < \sup_{s \in (0, \epsilon_1]} \overline{\delta}(s)$, which is a contradiction because we have found an upper bound strictly less than the supremum.
3 Extensions

Here we show how a global K-function can be found for a locally bounded function.

Proposition 14 (Global K-function overbound.). Let $X \subseteq \mathbb{R}^n$ be closed and suppose that a function $V : X \to \mathbb{R}_{\geq 0}$ is continuous at $x_0 \in X$ and locally bounded on X (i.e., bounded on every compact subset of X). Then, there exists a K-function α such that

$$|V(x) - V(x_0)| \leq \alpha(|x - x_0|) \text{ for all } x \in X$$

Proof. First, by Proposition 5, we know that there exists a local overbounding function, i.e., there exists a K-function γ and a constant $a > 0$ such that

$$|V(x) - V(x_0)| \leq \gamma(|x - x_0|) \text{ whenever } |x - x_0| \leq b_0$$

Note that any $b_0 \in \text{Dom}(\gamma)$ will suffice.

From here, we proceed similarly to Proposition 11 in Rawlings and Mayne (2011). Starting from b_0, choose any strictly increasing and unbounded sequence $(b_i)_{i=0}^\infty$. For each $i \in \mathbb{I}_{\geq 1}$, let $B_i = \{x \in X : |x - x_0| \leq b_i\}$. We note that each B_i is a compact subset of X and further that $X = \bigcup_{i=0}^\infty B_i$. Next, define a sequence $(\beta_i)_{i=0}^\infty$ as

$$\beta_i := \sup_{x \in B_i} |V(x) - V(x_0)| + i$$

which is well-defined by compactness of the B_i. We note also that the β_i are strictly increasing. Finally, define

$$\alpha(s) := \begin{cases} \frac{\beta_1}{\gamma(b_0)} \gamma(s) & s \in [0, b_0) \\ \beta_{i+1} + (\beta_{i+2} - \beta_{i+1}) \frac{s - b_i}{b_{i+1} - b_i} & s \in [b_i, b_{i+1}) \text{ for all } i \in \mathbb{I}_{\geq 0} \end{cases}$$

We illustrate this construction in Figure 4. Clearly, $\alpha(0) = 0$ and α is continuous and increasing. Furthermore, because we have shifted the β_i as before, we see that $|V(x) - V(x_0)| \leq \alpha(|x - x_0|)$. \hfill \qed

We note that for the case of $V(x) \geq 0$ and $x_0 = 0$, we have

$$V(x) \leq \alpha(|x|) \text{ for all } x \in X$$

and thus, α gives a global overbound.

Acknowledgment

The authors would like to thank Professors D.Q. Mayne, G. Pannocchia, and A.R. Teel for helpful discussion of the ideas in this report.

That is, positive integers greater than or equal to 1
Figure 4: Construction of α. The function $\alpha(s)$ is constructed by rescaling $\gamma(s)$ on $[0, b_0]$ (green) and then linearly interpolating (red) the points (b_i, β_{i+1}) (blue).

References