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Abstract

In order to be useful in applications, model predictive control (MPC)
must be robust to small disturbances. Continuity of the regulator’s
optimal value function ensures a measure of robustness, but, in gen-
eral, there is no guarantee that this function is continuous. Here we
present an inherent robustness result for a broad class of systems that
have a (not necessarily robust) positive invariant set that is disjoint
from the set of discontinuities of the optimal value function. If this set
attracts every set in the domain of robustness in a single control move,
the system is robustly stable. We demonstrate this result with the no-
torious (u, u3) example, which has an optimal value function that is
discontinuous on every neighborhood of its target, and establish that
MPC is still robust.

1 Introduction

The robustness of model predictive control (MPC) is a subject that has received consid-
erable attention. The paper Grimm, Messina, Tuna, and Teel (2004) demonstrates that
there are nominally stabilizing examples of MPC that are destabilized by arbitrarily small
disturbances. Three major approaches have appeared: robust MPC, stochastic MPC, and
inherently robust MPC. The first two explicitly take disturbances into account, whereas the
third designs the nominal optimal control problem such that it has a measure of robustness
to sufficiently small disturbances.

∗Corresponding Author
aUniversity of Wisconsin–Madison. <dallan@wisc.edu>
bUniversity of California–Santa Barbara. <jbraw@ucsb.edu>

1



TWCCC Technical Report 2018-02 2

Here, we present a new result on inherently robust MPC that applies to systems with
discontinuous feedback. Some results on the inherent robustness of MPC, such as those
about suboptimal MPC in Pannocchia, Rawlings, and Wright (2011), rely on assumptions
strong enough to guarantee the continuity of the optimal value function. Continuity of
this function is, as noted in Grimm et al. (2004), strong enough to guarantee continuity of
optimal MPC. Later results, such as that in Yu, Reble, Chen, and Allgöwer (2014), weak-
ened these assumptions, but it was not clear that those assumptions were weak enough
to permit discontinuous value functions because no example of such a function was pro-
vided. In Allan, Bates, Risbeck, and Rawlings (2017), an improved version of a result
from Pannocchia et al. (2011) concerning the inherent robustness of suboptimal MPC is
provided, with an example that has a provably discontinuous optimal value function yet is
still robust. However, in that example, the discontinuity in the optimal value function is a
finite distance away from a robust positive invariant set.

In this paper, we provide a result that applies to systems that have discontinuity sets
that are disjoint from some (not necessarily robust) positive invariant set, but whose dis-
tance to that positive invariant set shrinks near the system’s control target. Because the
optimal value function is a Lyapunov function, it must be continuous at the target, and
thus the size of the discontinuity shrinks to zero as the state approaches the target. There-
fore, violations of the discontinuity set for states near the target are tolerable so long as
the state is not disturbed over the discontinuity set for states far from the target.

To motivate this result, we present the notorious (u, u3) system, taken from Meadows,
Henson, Eaton, and Rawlings (1995), that can be stabilized only by a discontinuous control
law. Although discontinuous control laws need not give rise to discontinuous optimal value
functions, the authors of Meadows et al. (1995) found that the optimal value function was
discontinuous when it was calculated numerically and plotted. Here, we show that the dis-
continuity arises from the continuity properties of the set of feasible controls. This system
is then proven to be inherently robust. The result in, for example, Picasso, Desiderio, and
Scattolini (2012) on the inherent robustness of potentially discontinuous systems cannot
be applied to this system, both because it requires fairly tight bounds on the Lyapunov
function, which we suspect cannot be derived for this system, and because the system’s
linearization about its steady state is not stabilizable, and as a result the usual method to
generate a terminal control law, applying the linear quadratic regulator to the linearized
system, fails.

Notation. The set of nonnegative integers is denoted I≥0. We denote the euclidean
norm of a vector x by |x|. Sequences are denoted w := (w(0), w(1), . . . ), and the symbol
‖w‖ := supk∈I≥0

|w(k)|. For a set D, the distance from a point x to the set D is denoted by
|x|D := infy∈D |x− y|. The operator ⊕ denotes the Minkowski sum of two sets. We denote
the unit ball centered at the origin by B, and, for some scalar λ, we define λX := {λx | x ∈
X}. A function α : R≥0 → R≥0 is said to be in class K if it is continuous, strictly increasing,
and α(0) = 0. It is said to be in class K∞ if it is in class K and lims→∞ α(s) = ∞. A
function β : R≥0 × I≥0 → R≥0 is said to be in class KL if β(·, k) ∈ K for all fixed k ∈ I≥0,
and β(s, ·) is nonincreasing and limt→∞ β(s, t) = 0 for all fixed s ∈ R≥0.



TWCCC Technical Report 2018-02 3

−1.0 −0.5 0.0 0.5 1.0
x1

−0.2

−0.1

0.0

0.1

0.2

x
2

X1

X2

R2 = X3

Figure 1: Feasibility sets X1, X2, and X3. Note that, besides the origin, the line x1 = 0 is
not included in X2

2 Motivating Example

Consider the nonlinear system defined by

x+1 = x1 + u

x+2 = x2 + u3

with stage cost `(·) given by
`(x, u) := |x|2 + u2 .

For a horizon length N , we define the objective function

VN (x,u) :=

N−1∑
k=0

`(x(k), u(k))

in which u := (u(0), . . . , u(N − 1)). There are no state and control constraints, but we do
include a terminal region Xf := {0}. Let ZN := {(x,u) | x(N) = 0}, UN (x) := {u | (x,u) ∈
ZN}, and XN := {x | ∃u ∈ UN (x)}. For simplicity, we denote xi(0) := xi and u(k) := uk.

2.1 Feasibility Sets

We consider the feasibility sets XN for N ≥ 1. For N = 1, the terminal constraint x(N) = 0
gives

x1(1) = x1 + u0 = 0 x2(1) = x2 + u30 = 0 .

These equations have a solution only for x2 = x31, which defines the feasibility set X1,
depicted in Figure 1. Next consider N = 2. We express the terminal constraint as

x1(2) = x1 + u0 + u1 = 0 x2(2) = x2 + u30 + u31 = 0 .
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Solving the first equation for u1 and substituting into the second equation gives

0 = 3x1u
2
0 + 3x21u0 + x31 − x2 . (1)

For u0 to be real, we require the discriminant of this quadratic equation to be nonnegative,
which reduces to

−3x41 + 12x1x2 ≥ 0 .

Note that if x1 = 0, the quadratic equation is degenerate. The equation then has a solution
only if x31 = x2 = 0. The feasibility region X2 is thus defined by the inequalities

X2 =

(x1, x2) :


x2 ≥ (1/4)x31, x1 > 0

x2 = 0, x1 = 0

x2 ≤ (1/4)x31, x1 < 0


which is also depicted as the shaded region in Figure 1.

Remark 1. Because X2 does not contain any points (x1, 0) for nonzero x1, the set X2 is
not closed. However, the magnitude of control necessary to steer the system to the origin
increases to infinity as x1 approaches zero for fixed nonzero x2. The set of points that can
be controlled to the origin for less than some fixed cost is compact.

We next show that X3 = R2. Solving the equation

x1(3) = x1 + u0 + u1 + u2= 0

x2(3) = x2 + u30 + u31 + u32= 0

for u1 and u2 in terms of u0 and (x1, x2) yields

u1 = −x1/2− u0/2±
√
b(u0;x) (2)

u2 = −x1/2− u0/2∓
√
b(u0;x) (3)

in which

b(u0;x) =
3u30 − 3u20x1 − 3u0x

2
1 − x31 + 4x2

12(u0 + x1)
(4)

so long as u0 6= −x1.
A real solution exists only if b(u0;x) is positive, i.e., if both the numerator and denom-

inator in the expression for b(·) have the same sign. Note that the leading order terms of
u0 are positive in both the numerator and denominator. As a result, for fixed x, b(u0;x)
is asymptotically positive. Once u0 is fixed, u1 and u2 are determined up to the sign of√
b(u0;x). Therefore, for all x ∈ R2, there exists a feasible sequence of controls that steers

the state to the origin in three moves, and thus X3 = R2.
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2.2 Continuity of optimal value function V 0
3 (x)

The optimal control problem is defined by

V 0
3 (x) = min

u
{V3(x,u) | x(3) = 0} (5)

Because the terminal equality constraint can be viewed as constraining u to reside on the
nonempty level set of a continuous nonlinear function, a radially unbounded function is
being optimized over a closed domain. Thus by the Weierstrass Theorem, this minimization
is well-defined for all x ∈ R2.

Existence is one thing—continuity is another. The value function for a parametric
optimization problem is continuous at a point if its feasible set is a continuous compact
set-valued map of its parameters (Polak, 1997, pp. 684-685). Informally, a set-valued map
is continuous if its boundaries deform continuously as a function of its parameter. It can
neither suddenly gain new points far from its existing points nor suddenly lose a finite
volume with an infinitesimal change in parameter. Detailed treatment of the continuity
of set-valued maps and its characterization in terms of inner and outer semicontinuity are
given in (Rockafellar and Wets, 1998, p. 144) and (Polak, 1997, pp. 676-682), and an
application of them in the context of MPC is given in (Rawlings, Mayne, and Diehl, 2017,
Appendix C.3.1).

In order to apply this result to this problem, we need to examine the behavior of
U3(x). It is sufficient to study the behavior of u1(u0;x) and u2(u0;x), because once u0 is
determined, the only remaining degree of freedom is the choice of sign of

√
b(u0;x), and

this degree of freedom remains so long as b(·) takes on a real value. Because the leading-
order coefficients of the numerator and denominator of b(u0;x) are not functions of the
parameter x, its roots and poles are continuous functions in C of x (Marden, 1989, p. 3).
The only places where u0 can suddenly take on new values are when the number of roots
of the cubic numerator of b(·) changes from one to three or vice-versa. Points where there
is zero-pole cancellation should also be inspected.

First, we determine where the cubic numerator

p(u0;x) := 3u(0)3 − 3u(0)2x1 − 3u(0)x21 − x31 + 4x2 (6)

changes in number of roots.
From the theory of cubic equations, we know that changes in the number of real roots

to the equation au3 + bu2 + cu+ d = 0 are determined by the sign of the discriminant

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2

For ∆ > 0, the equation has three distinct real roots, and when ∆ < 0, one root is real
and the other two are complex conjugates. When ∆ = 0, there is a double root. Setting
a = 3, b = −3x1, c = −3x21, and d = −x31 + 4x2 gives

∆ = 432(−x61 + 10x31x2 − 9x22)

= −432(x31 − 9x2)(x
3
1 − x2)

Setting ∆ = 0 gives two (x1, x2) curves at which the number of real roots changes. We
analyze the behavior of V 0

3 (x) at each of these curves in turn.
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Figure 2: Plots of b(u0;x) at several different x on a radius 2 circle centered at the origin.
(Top) When passing over the curve x2 = (1/9)x31, an isolated feasible point, u0 = −x1/3,
emerges. (Bottom) When passing over x2 = x31, the set of feasible u0 continuously deforms
as a function of x.
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2.3 Minimum Energy Control (x2 = (1/9)x3
1)

We can calculate the two roots of p(u0;x) along x2 = (1/9)x31 to obtain

rd = (−1/3)x1 rs = (5/3)x1

in which rd and rs are the double and single roots, respectively. Note that choosing
u0 = (−1/3)x1 results in u1 = u2 = (−1/3)x1. Because we have −x1 = u0 + u1 + u2,
this choice of solution can be interpreted as minimum energy control. Note also that the
double root is located between the single root and the pole.

Assume without loss of generality that x1 > 0. For this value of x, then, we have
u0 < −x1, u0 = −(1/3)x1, or u0 ≥ (5/3)x1. By developing lower bounds for the cost
function V3(x,u) for choices of u0 below the pole or above the single root, we can prove
that the double root is strictly optimal.

Because the terms of V3(·) corresponding to x(0) are independent of u0, we can ignore
them. Let Ṽ3(x,u) := V3(x,u)− |x(0)|2. Evaluating Ṽ3(rd, x), we obtain

Ṽ3(rd, x) = 8(x1/3)2 + 5(x1/3)6

If we choose u0 ≥ 5/3x1, we have that

Ṽ3(u0, x) ≥ u20 + x2(1)2

= u20 + ((1/9)x31 + u30)
2

≥ 25(x1/3)2 + ((1/9)x31 + ((5/3)x1)
3)2

= 25(x1/3)2 + 16384(x1/3)6

As a result, u0 cannot be greater than 5/3x1.
The other case, requires more development. If u0 < −x1, then we have that x2(1) <

−(8/9)x31. As a result, we have that u31 + u32 > (8/9)x31. For any three numbers a, b, c such
that a3 + b3 = c and c ≥ 0, by considering the constrained minimization

min
a,b

a2 + b2 such that a3 + b3 ≥ c

it can be shown that a2 + b2 ≥ c2/3. As a result, we have that u21 + u22 ≥ (8/9)2/3x21. Thus,
by considering the x2(1)2 and uk terms of Ṽ3(·), we have that

Ṽ3(u0, x) ≥ u20 + u21 + u22 + ((1/9)x31 + u30)
2

> (1 + (8/9)2/3)x21 + (−(8/9)x31)
2

≈ 1.92x21 + 0.79x61

which is strictly greater than the cost from u0 = rd. Thus, so long as x2 = (1/9)x31, we have
that u00 = rd. Now, if x2 < (1/9)x31, the discriminant becomes negative and the double
root disappears. Furthermore, because it is located between the single root and the pole,
there are no feasible points near the double root’s location. Thus the objective function is
discontinuous along x2 = (1/9)x31, so long as x1 6= 0. We show that V 0

3 (x) is continuous at
(0, 0) by showing that it is a Lyapunov function.
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2.4 Deadbeat Control (x2 = x3
1)

If x2 = x31, the polynomial p(u0;x) can be solved to obtain

rd = x1 rs = −x1

Furthermore, note that b(u0;x) has a pole at u0 = −x1. Thus there is zero-pole cancella-
tion. The function b(u0;x) can be brought by polynomial long division into an alternate
form that provides more clarity in this case:

b(u0;x) =

(
u0 − x1

2

)2

− x31 − x2
3(u0 + x1)

This form of b(·) shows that x2 = x31 is the only place where there can exist zero-pole
cancellation.

The emergence or disappearance of the double root does not affect the continuity prop-
erties of V 0

3 (x) because it emerges at a place strictly greater than both the single root and
the pole. It begins to divide the feasible region into two regions, but there are feasible
point close to the the point of emergence for small perturbations in x.

The effects of the zero-pole cancellation are more difficult to analyze. The pole exists
only because we have projected the feasible region U3(x) into a single dimension, but the
behavior of that set is harder to visualize as a function of x. However, close inspection of
u00(x) allows us to conclude that V 0

3 (x) is continuous.
First, we can simplify the expressions for u2 and u3 in terms of u0 along the curve

x2 = x31. We have that

u1 = −u0 + x1
2

± u0 − x1
2

= −u0 or − x1

u1 = −u0 + x1
2

∓ u0 − x1
2

= −x1 or − u0

which indicates that one of these control moves must cancel out u0 and the other must
bring the system to the origin. Recall, however, that this expression was valid only if
u0 6= −x1. Symmetry shows that there is a third valid combination of uk:

u0 = −x1 u1 = −u2

Since at least one of these controls must be equal to −x1 and u0 = −x1 brings the system
to the origin in a single move, the optimal control moves are

u0 = −x1 u1 = u2 = 0

and deadbeat control is the result.
Because we have that V 0

3 (x) ≤ V 0
2 (x), and u0 = −x1 is feasible for the two step-

controller, the two step controller is also deadbeat along x2 = x31. Examination of the
continuity of V 0

2 (x) allows us to conclude that V 0
3 (x) is upper semicontinuous.
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For the two-step controller, it is required that (1)

0 = 3x1u
2
0 + 3x21u0 + x31 − x2

be satisfied. Recall that the region for which this system has a real solution is X2. The
cubic x2 = x31 is in the interior of X2 if x1 6= 0. As a result, if x1 6= 0, we can solve this
equation to obtain

u0 =
−(x1)±

√
x21 −

4(x31−x2)
x1

2

Note that so long as x1 6= 0, there is no pole-zero cancellation and for all x ∈ int(X )2, we
have that U2(x) is a continuous set-valued map of x. Thus V 0

2 (x) is continuous around the
curve x2 = x31. Because we have that V 0

3 (x) ≤ V 0
2 (x) everywhere in X2, and we have that

V 0
3 (x) = V 0

2 (x) along x2 = x31, we have that V 0
3 (x) is upper semicontinuous along x2 = x31

(possibly excluding the origin).
Now, we need only show that V 0

3 (x) is lower semicontinuous along x2 = x31 in order
to obtain full continuity. Fortunately, under mild conditions, optimal value functions of
parametric nonlinear programs are always lower semicontinuous functions. In Rockafellar
and Wets (1998, Example 5.8, p.154), it is shown that the set-valued map

T (w) := {x ∈ X | fi(x,w) ≤ 0 for i ∈ I1 and fi(x,w) = 0 for i ∈ I2}

is outer semicontinuous if X is closed and fi(x,w) are continuous. Furthermore, Polak
(1997, Theorem 5.4.1, p. 682) implies that the function

φ0(w) := min
x∈T (w)

φ(x,w)

is lower semicontinuous if T (·) is outer semicontinuous and φ(·) is both continuous and
bounded below. The optimal control problem (5) can be formulated in this framework,
and thus V 0

3 (·) is lower semicontinuous everywhere in R2.
As a result, V 0

3 (x) is both upper and lower semicontinuous along x2 = x31, and as such
is continuous along that curve (possibly excluding the origin). Because both x2 = x31 and
x2 = (1/9)x31 meet at the origin, the behavior of V 0

3 (·) at the origin is unclear. Fortunately,
all that is necessary to prove that V 0

3 (·) is continuous at the origin is to prove that it is a
Lyapunov function.

2.5 V 0
3 (·) is a Lyapunov function on R2

Because, in general, the optimal control law may be set-valued we provide the definition
of a Lyapunov function for difference inclusions.

Definition 2 (Lyapunov Function). A function V : X → R≥0 for a difference inclusion
x+ ∈ H(x) is called a Lyapunov function if there exist functions αi ∈ K∞ such that

α1(|x|) ≤ V (x) ≤ α2(|x|)
V (x+) ≤ V (x)− α3(|x|)

for all x+ ∈ H(x) and x ∈ X.
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If a system admits a Lyapunov function on some positive invariant set X, then it is
asymptotically stable (Allan et al., 2017, Proposition 13).

Definition 3 (Asymptotic Stability). The origin of the difference inclusion x+ ∈ H(x) is
asymptotically stable in a positive invariant set X if there exists a function β(·) ∈ KL such
that for any x ∈ X and for all k ∈ I≥0, all solutions x(k) satisfy

|x(k)| ≤ β(|x| , k)

Proposition 4. If the set X contains the origin, is positive invariant under the difference
inclusion x+ ∈ H(x), H(0) = {0}, and it admits a Lyapunov function V (·) in X, then the
origin is asymptotically stable in X.

It is simple enough to find α1(·) and α3(·) for this system. We have that V 0
3 (x) ≥

`(x, u) ≥ |x|2, and because x(3) = 0, it follows that

V 0
3 (x+) ≤ V 0

3 (x)− `(x, u) ≤ V 0
3 (x)− |x|2

so α1(s) := α3(s) := s2. The cost upper bound is more difficult. In Meadows et al. (1995),
it is stated that u0 = |x|+ 2 3

√
|x| ensures that b(·) is nonnegative for all x ∈ R2. However,

this choice of does in fact lead to negative b(·) and thus infeasibility along the line x2 = 0
for large values of x1. We instead take the approach of choosing u0 such that b(u0;x) is
zero, which leads to simple expressions for u1 and u2.

The magnitude of the roots of a polynomial anz
n + · · ·+ a1z + a0 can be bounded by

(Marden, 1989, p. 137)

|z| ≤ 2 max

(∣∣∣∣an−1an

∣∣∣∣ , ∣∣∣∣an−2an

∣∣∣∣ 12 , . . . , ∣∣∣∣a1an
∣∣∣∣ 1
n−1

,

∣∣∣∣ a02an

∣∣∣∣ 1n
)

By applying this bound to the polynomial p(u0;x), applying the triangle inequality, and
noting that |xi| ≤ |x| we obtain

|u0| ≤ 2 max

(
|x1| , |x1| ,

∣∣∣∣4x2 − x316

∣∣∣∣
1
3

)
≤ 2 max

(
|x1| , (4 |x2|+ |x1|3)

1
3

)
≤ 2(4 |x|+ |x|3) 1

3 := αu0(|x|)

As a result, we have that

|u1| ≤ |x| /2 + αu0(|x|)/2 := αu(|x|)
|u2| ≤ αu(|x|)

Note that this strategy may break down as the result of zero-pole cancellation. However,
in that case, we have that u0 = −x1 and u1 = u2 = 0 is optimal, and those control actions
obey these bounds.
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Figure 3: The set D, points of discontinuity in cost V 0
3 (·), and invariant set X2. Note that

the two sets do not intersect (the origin is not an element of D).

From these estimates, then, both |x(1)| and |x(2)| can be bounded above by some K∞
function of |x|, and thus there exists α2 ∈ K∞ such that

V 0
3 (x) ≤ α2(|x|)

Thus V 0
3 (x) is a Lyapunov function and MPC stabilizes this system with a horizon length

of three. Furthermore, because V 0
3 (0) = 0 and V 0

3 (·) is nonnegative, by Proposition 4 in
Rawlings and Risbeck (2015) we have that V 0

3 (·) is continuous at the origin.

2.6 Summary of Continuity Properties of V 0
3 (x)

So we have that the function V 0
3 (x) is continuous everywhere except the curve

x2 = (1/9)x31

where it has a discontinuity for all x1 6= 0. It is not discontinuous at the origin because
V 0
3 (x) on both sides of the curve of discontinuity go to zero as x approaches 0. Let the set

of points of discontinuity be denoted by

D := {(x1, x2) | x2 = (1/9)x31, x1 6= 0}

The set D is shown along with the invariant set X2 in Figure 3. Note that these two sets
do not intersect, which is the key reason why the closed-loop system is robustly stable.
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3 Inherent Robustness

3.1 K∞ function bound for the minimum distance to the discontinuity
set

In order to demonstrate that MPC control of this system is inherently robust, we rely on
the fact that X2 is disjoint from D. Furthermore, the distance between points in X2 and D
grows with increasing size of the state |x|. In order to demonstrate this feature and create
a K∞ function αd(·) such that |x|D ≥ αd(|x|) for all x ∈ X2.

Let X 2 and D denote the closures of X2 and D, respectively. Consider the optimization

min
y∈X 2,z∈D

|y − z| subject to |y| ≥ r (7)

in which r > 0 is a parameter.
Without loss of generality, we can assume y1, y2 ≥ 0 by the symmetry of X 2 and D.
In order to satisfy the optimality conditions for this problem, the line connecting y0

and z0 must exist in the normal cone of both {x ∈ X 2 : |x| ≥ r} and D. As a result,
this line must be normal to the graph of D, and either must be normal to an edge of
{x ∈ X 2 : |x| ≥ r} or y0 must be a corner of {x ∈ X 2 : |x| ≥ r}. As a result, y0 cannot
be along the edge given by the line x1 = 0, because no line points outward from that edge
to D. The corner (0, r) is connected to (0, 0) ∈ D by a line orthogonal to both the arc
A := {x ∈ X 2 | x1, x2 ≥ 0 and |x| = r} and D, but any point along A has an equivalent
distance, and none of those points connect to D orthogonally. As a result, we have that y0

exists along the curve B := {x | x2 = (1/4)x31}.
We expect y0 to be the corner generated by the intersection of B and the arc |x|, but

solving the optimality conditions explicitly is intractible. We can, however, find a lower
bound for the distance from a point on B to D that is monotone in |x|. This bound,
evaluated at the corner, gives a lower bound for

∣∣y0∣∣D.

Let a := (x1, (1/4)x31). Let b := (x1, (1/9)x31) denote the point on D directly beneath
a. Similarly, let c := ((9/4)1/3x1, (1/4)x31) denote the point on D directly to the right of a.
Let m := (x̃1, (1/9)x̃31) denote the point on D that is closest to a. Suppose x̃1 < x1. Then
m would be a greater distance away from a than b. Likewise, if x̃1 > (9/4)1/3x1, then m
would be further away from a than c. Therefore, we have that x̃1 ∈ [x1, (9/4)1/3x1]. In
the first quadrant, the function x2 = (1/9)x31 is strictly convex. Therefore, any segment
am must pass through bc. Therefore, the minimum length from a to D is bounded below
by the minimum length ` from a to bc. This length can be found through geometry. Note
that 4abc is a right triangle. The altitude to the hypotenuse of a right triangle forms
two smaller right triangles similar to the larger one. Let the length of ab be denoted as
∆x2, the length of ac be denoted as ∆x1, and the length of bc be denoted as h. Then, by
similarity, we have that `/∆x1 = ∆x2/h. We also have that h =

√
∆x21 + ∆x22. Therefore,

` =
∆x1∆x2√
∆x21 + ∆x22

=
(((9/4)1/3 − 1)x1)((5/36)x31)√

(((9/4)1/3 − 1)x1)2 + ((5/36)x31)
2
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∆x1

∆x2

`
r

a

b

c

B D
A

Figure 4: A sketch of the argument which produces αd(·). Note that neither B nor D are
precisely plotted and that some features are exaggerated for clarity. The hatched region
indicates the set of y feasible for the optimization problem (7).
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because ∆x1 = (9/4)1/3x1 − x1 and ∆x2 = (1/4)x31 − (1/9)x31. Letting C1 := (9/4)1/3 − 1,
C2 = 5/36, and rearranging, we have that

` =
C1C2x

3
1√

C2
1 + C2

2x
4
1

It can be shown that `(·) is a strictly increasing function of x1. Therefore, because `(x1)
is increasing, zero at zero, continuous, and unbounded, `(s) := α̃d(s) ∈ K∞.

Finally, to create a K∞ function in terms of r, note that

αx1(s) :=
√

(1/16)s6 + s2

is a K∞ function that maps x1 to r. As a result, it is invertible. Thus define αd(s) :=
α̃d(α

−1
x1 (s)) to obtain a K∞ function in terms of r.

3.2 Main results

Robustness can now be demonstrated. This robustness result applies not only to this
particular system, but also any system in which there is a growing separation between a
(not necessarily robust) positive invariant set and the set of discontinuities of a Lyapunov
function. In the case of this particular system, we have that x+ ∈ X2 for any x, because
application of u1 and u2 must bring the system to the origin.

For simplicity, we consider only additive state disturbances here. This result can be
straightforwardly extended to non-additive state disturbances if they enter the system
model continuously, and it can be extended to measurement disturbances by shifting anal-
ysis from the system’s true state to the measured state, as in Roset, Heemels, Lazar, and
Nijmeijer (2008) and Allan et al. (2017).

First, we define robustness as input-to-state stability (ISS) on a robust positive invari-
ant set, then define an ISS Lyapunov function, whose existence guarantees input-to-state
stability.

Definition 5. Robust asymptotic stability A system x+ ∈ H(x,w) is said to be robustly
asymptotically stable on a robust positive invariant set X if there exist γ ∈ K, β ∈ KL,
and δ > 0 such that if ‖w‖ ≤ δ, then

|x(k)| ≤ β(|x(0)| , k) + γ(‖w‖)

for all k ∈ I≥0.

Definition 6. ISS Lyapunov function A function V : X → R≥0 is said to be an ISS
Lyapunov function in the robust positive invariant set X if there exist αi ∈ K∞, σ ∈ K,
and δ > 0 such that if ‖w‖ ≤ δ, then

α1(|x|) ≤ V (x) ≤ α2(|x|)
V (x+) ≤ V (x)− α3(|x|) + σ(|w|)

for all x ∈ X and x+ ∈ H(x,w).
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Now we present the main result.

Theorem 7. Suppose a system x+ = f(x, u) under a (not necessarily continuous) control
law u ∈ κ(x) admits, on a robust positive invariant set X, a lower semicontinuous Lyapunov
function V : X → R≥0 that is continuous everywhere besides some set D. Furthermore,
suppose there exists a closed (not necessarily robust) positive invariant set X containing
the origin and K function αd(·) such that, for all x ∈ X , we have that |x|D ≥ αd(|x|), and,
for all x ∈ X and u ∈ κ(x), we have that f(x, u) ∈ X , i.e., X attracts all states in a single
step.

Then for every ρ > 0, there exists some δ > 0 such that if ‖w‖ ≤ δ, then the compact
set levρ V is robust positive invariant and V (·) is an ISS Lyapunov function on this set for
the disturbed system x+ = f(x, u) + w. As a result, the origin is robustly asymptotically
stable.

Proof. We first seek to bound ‖w‖ such that V (x+) ≤ ρ for all x ∈ X̃ . If V (·) were
continuous on a robust positive invariant domain, we could divide levρ V into arbitrary
outer and inner sets and adjust the size of ‖w‖ to ensure a cost decrease in the outer set
and a sufficiently small cost increase in the inner set such that all states in the inner set
must at least end up in the outer set.

Because of the limited continuity properties of V (·), we cannot bound the size of
V (x+) − V (f(x, u)) in terms of w alone. However, because V (·) is a Lyapunov function,
we can guarantee that V (x+) ≤ α2(|f(x, u) + w|). As a result, we can change the size of
the inner set, levλρ V by choosing λ ∈ (0, 1) such that for all sufficiently small disturbances
and x ∈ levλρ V we have that V (x+) ≤ ρ. Because the outer set is a finite distance away
from the discontinuity set D, we can then bound ‖w‖ so that no disturbance can perturb
any states in that set across the discontinuity.

Let x̃+ := f(x, u), i.e., the nominal successor state. Suppose V (x̃+) ≤ λρ for some
λ ∈ (0, 1). Then we have that

V (x+) ≤ α2(
∣∣x̃+ + w

∣∣) ≤ α2(α
−1
1 (λρ) + |w|)

We wish to choose δ1 and λ such that

V (x+) ≤ α2(α
−1
1 (λρ) + δ1) ≤ ρ

and as a result we choose

δ1 = α−12 (ρ)/2

λ = α1(α
−1
2 (ρ)/2)/ρ

which ensures that V (x+) ≤ ρ.
Next, suppose that λρ < V (x̃+) ≤ ρ. Then we have that∣∣x̃+∣∣D ≥ αd(∣∣x̃+∣∣) > αd(α

−1
2 (λρ))

Therefore, choose
δ2 = αd(α

−1
2 (λρ))/2
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and the state x+ remains within the domain of continuity of V (·). In particular, x+ is in
the compact set {x ∈ X | λρ ≤ V (x) ≤ ρ} ⊕ δ2B. By Proposition 20 of Allan et al. (2017),
there exists a K∞ function σV (·) such that∣∣V (x+)− V (x̃+)

∣∣ ≤ σV (
∣∣x+ − x̃+∣∣) = σV (|w|)

Furthermore, because V (·) is a Lyapunov function for the nominal system, we have that

V (x̃+) ≤ V (x)− α3(
∣∣x̃+∣∣) ≤ V (x)− α3(α

−1
2 (λρ))

Combining these two bounds, we have that

V (x+) ≤ V (x)− α3(α
−1
2 (λρ)) + σV (|w|)

In order to obtain a cost decrease, we require that

|w| ≤ σ−1V (α3(α
−1
2 (λρ))) := δ3

As a result, we have that V (x+) ≤ ρ and that the set levρ V is robust positive invariant if
‖w‖ ≤ min(δ1, δ2, δ3) := δ.

If V (x̃+) > λρ, then

V (x+) ≤ V (x)− α3(|x|) + σV (|w|)
All that remains to prove that V (·) is an ISS Lyapunov function is to derive a similar result
for V (x̃+) ≤ λρ.

Suppose αd(|x̃+|) ≤ 2 |w|. Because |w| ≤ δ2, we can invert αd(·) to obtain

V (x+) ≤ α2(
∣∣x̃+∣∣+ |w|)

≤ α2(|w|+ α−1d (2 |w|))
≤ V (x)− α3(|x|) + α2(|w|+ α−1d (2 |w|))

in which the last step follows because V (x)− α3(|x|) is nonnegative. Define

σ̃w := α2(|w|+ α−1d (2 |w|))
and note that σ̃w ∈ K on the interval [0, δ].

Now suppose αd(|x̃+|) > 2 |w|. Consider the set X̃ := {x | ∃y ∈ X such that |x− y| ≤
(1/2)αd(|y|) and V (y) ≤ ρ}. It contains x̃, is disjoint from D, and is compact. As a
result, we can apply Proposition 20 of Allan et al. (2017) to obtain σ̃V ∈ K∞ such that
|V (x+)− V (x̃)| ≤ σ̃V (|w|). Thus we have that

V (x+) ≤ V (x)− α3(|x|) + σ̃V (|w|)
Now define

σw(s) := max(σV (s), σ̃w(s), σ̃V (s))

and note that σw ∈ K on the interval [0, δ]. Then, if we have that x ∈ levρ V , we have that

V (x+) ≤ V (x)− α3(|x|) + σw(|w|)
and thus is an ISS Lyapunov function on that robust positive invariant set. As a result,
the origin is robustly asymptotically stable.
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Remark 8. Note that for the (u, u3) system, X2 is positive invariant and attracts all states
in a single step, but is not closed. We can substitute its closure, X 2, for the role of X in
this theorem.

4 Conclusion

A broad class of systems controlled by MPC that have discontinuous optimal cost functions,
containing the (in)famous (u, u3) example, has been demonstrated to be robustly stable.
For any time-invariant MPC implementation, XN−1 is a candidate set for application of
Theorem 7 because it is both positive invariant and attracts all feasible states in a single
move. However, verifying that V 0

N (·) is continuous on it is difficult. Nevertheless, we hope
that better understanding of the underlying structure of robustness results like this one can
assist in deriving even simpler conditions for the inherent robustness of MPC. In particular,
the result in Allan et al. (2017) implies that V 0

N (x̃) ≤ V 0
N−1(x) + ε if |x− x̃| ≤ δ(ε) for all

ε > 0. It is possible that the satisfaction of this property, rather than continuity, is sufficient
for Theorem 7 to hold, and the results of Allan et al. (2017) can be reduced to a special
case of the result in this paper.
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