
TWCCC ? Texas – Wisconsin – California Control Consortium

Technical report number 2020-01

Nonlinear Detectability and Incremental

Input/output-to-state Stability

Douglas A. Allan, James B. Rawlings, Andrew R. Teel

July 4, 2020

Abstract

Incremental input/output-to-state stability (i-IOSS) is a popular
characterization of detectability for nonlinear systems. For instance,
it is known that any system that admits a robustly stable full-order
observer (i.e., a system evolving in the same state space as the original
system stabilized by output injection) must be i-IOSS. Nevertheless,
there are many types of state estimator (such as moving horizon es-
timation and extended Kalman filtering) that are not such observers.
Additionally, while other ISS-like properties have been characterized
by storage functions with associated converse theorems, no converse
theorem exists for i-IOSS. Here, we demonstrate that any system that
admits a robustly stable state estimator must be i-IOSS, and, build-
ing on techniques developed for incremental input-to-state stability,
provide an i-IOSS converse theorem. We also provide a result about
changing supply rates for a general storage function, and apply it to
an i-IOSS Lyapunov function as a corollary.

1 Introduction

One of the largest contributions Kalman and Bucy made in their seminal papers on linear
filtering [18, 19] is not the design of a statistically optimal filter (though they did accomplish
that), but the introductions of the concepts of controllability and observability from control
and systems theory to the filtering literature. Kailath [17, p 152], reflecting on linear
filtering, stated:

As Kalman has often stressed [68] the major contribution of his work is not
perhaps the actual filter algorithm, elegant and useful as it no doubt is, but
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the proof that under certain technical conditions called “controllability” and
“observability,” the optimum filter is “stable” or “robust” in the sense that the
effects of initial errors and round-off and other computational errors will die
out asymptotically. However, the known proofs of this result are somewhat
difficult, and it is significant that only a small fraction of the vast literature on
the Kalman filter deals with this problem.

However, it became clear that while controllability and observability are sufficient condi-
tions for filter stability, they are not necessary conditions. More general conditions called
detectability and stabilizability were quickly introduced for time invariant systems by Won-
ham [44], and were generalized to time varying systems by Anderson and Moore [5].

Shortly thereafter, observability was generalized to certain continuous-time bilinear sys-
tems by Brockett [9] and analytic systems by Sussmann [41]. Hermann and Krener [14]
proposed four notions of observability, depending on whether all states can be distinguished
from one another or just nearby states, and whether the system must make a large sojourn
to distinguish states or whether they can be distinguished locally. They called systems
for which local states can be distinguished by local measurements “locally weakly observ-
able”, and, for analytic systems, provided a sufficient condition for this property by a rank
condition for the matrix of Lie derivatives, analogous to the well-known condition on the
rank of the observability matrix for linear systems. They also provided a converse theorem,
showing that analytic locally weakly observable systems satisfy that rank condition almost
everywhere in their state spaces.

This program was extended to discrete-time polynomial systems by Sontag [35]. Re-
sults for time-sampled continuous-time systems were obtained by Aeyels [1] for smooth
systems and Sontag [36] for analytic systems. Aeyels showed that almost all combinations
of smooth state evolution equations with a finite number of fixed points, output equations,
and sampling programs result in observable systems if 2n + 1 samples are used, in which
n is the dimension of the state space. It is somewhat reassuring that an arbitrary system
is almost surely observable, but recall that almost all matrices are full rank and, if square,
diagonalizable. Rank deficient matrices and defective matrices occur frequently in appli-
cations nevertheless. Sontag [36] showed that, for sampled analytic systems, n samples
are sufficient. For discrete-time systems, Nijmeijer [27] proposed the concept of “strong
local observability” for states that could be distinguished from their neighbors using n
measurements and showed that this property is both implied by a matrix rank condition
and implies that such a rank condition holds almost everywhere. One feature that many
of these early notions of observability have in common is that, in order to distinguish two
states, a certain input may be required to be applied to the system. In this case, we cannot
expect to be able to design a controller and estimator independently of one another, as the
separation principle permits us to do for linear systems.

The introduction of the notion of input-to-state stability (ISS) by Sontag [37] created a
paradigm shift in how robust stability properties are considered. The notion of output-to-
state stability (OSS) was proposed as a dual notion by Sontag and Wang [40] (though, as
they note, inputs and outputs play different roles, and as a result proofs for OSS look very
different than those for ISS). For an input-free linear system, it turns out that OSS is the
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same as detectability. However, for nonlinear systems, it is not sufficient to consider inputs
and outputs independently, so they further propose input/output-to-state stability (IOSS).
This property is sufficient for a nonlinear system to be “zero detectable” in the sense that
if the inputs and outputs are bounded, then the state remains in a bounded neighborhood
of the origin. However, this notion is still insufficient to serve as a nonlinear detectability
assumption. Finally, Sontag and Wang [40] introduce incremental IOSS (i-IOSS), and
they demonstrate that any system that admits a robust full-order state observer, i.e., a
dynamical system evolving in the same state space as the system that converges to the
system state under output injection, must also be i-IOSS. This notion of detectability was
introduced to the optimization-based state estimation literature by Rawlings and Mayne
[29, Ch. 4], and is now the standard in the field.

The characterization of ISS-like by storage functions and associated converse theorems,
by which ISS-like systems are shown to admit such a storage function, has been a fruit-
ful area of research. ISS converse theorems have appeared in Sontag and Wang [39] for
continuous-time systems and Jiang and Wang [16] for discrete-time systems. A converse
theorem for OSS appeared in Sontag and Wang [40], and one for IOSS appeared in Krich-
man et al. [24], both in continuous-time. Discrete-time converse theorems for OSS and
IOSS both appeared in Cai and Teel [10]. All these results are formulated for continuous
functions defined over Rn and Rm, in which n is the dimension of the state space and m
the dimension of the input space. An ISS converse theorem for discontinuous functions
is given by Grüne and Kellett [13] and an IOSS converse theorem for closed, nonconvex
domains is given in Allan and Rawlings [2].

Lyapunov and storage functions for incremental stability and ISS were proposed by
Angeli [6, 7] in continuous time, however the converse theorem provided requires the inputs
be limited to a compact set. The forward result that an incremental ISS Lyapunov function
implies incremental ISS was extended to discrete time by Bayer et al. [8] and a converse
theorem was given by Tran et al. [42], again, requiring inputs be limited to a compact set.
Characterization of i-IOSS by an i-IOSS Lyapunov function was suggested by Müller [25]
while a formal definition for an i-IOSS Lyapunov function was given in Allan and Rawlings
[3]. The concepts of incremental passivity [28] and incremental dissipativity [33] are also
related to i-IOSS.

Here, we first show that any system that admits a robustly stable estimator, which
we define in terms of an input/output mapping, must be i-IOSS. We use the mapping
definition of an estimator so that we can include optimization-based estimation techniques
like full information estimation and moving horizon estimation. To apply this notion to
systems that are being controlled by some external algorithm, we require the i-IOSS to
be uniform (i-UIOSS) with respect to some time-varying parameter vector. Then, we
show that any i-UIOSS system defined on a subset of a finite-dimensional vector space
admits an i-IOSS Lyapunov function. It is possible, but cumbersome, to perform this
proof from the traditional “asymptotic-gain” definition of i-UIOSS. However, we use a
modified definition of i-UIOSS that reveals the stronger properties that are already inherent
in i-UIOSS systems (at least those defined in subsets of finite-dimensional normed vector
spaces). This “convolution-maximization” definition includes explicit discounting of past
disturbances by a KL function. We include a proof that this form of i-UIOSS is equivalent
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to the asymptotic-gain definition in the appendix. Neither proof requires system regularity
assumptions, but in the case that that the system evolution function and output function
are K continuous (a variant of uniform continuity, equivalent for functions defined on
convex subsets of normed vector spaces [11, p 232]), we show that the resulting i-UIOSS
Lyapunov function is continuous. Finally, we include a result on changing supply rates
for general storage functions, including i-UIOSS Lyapunov functions, that may be useful
when applying them to model predictive control and moving horizon estimation (see, for
example, Rawlings et al. [31, Sec. 2.4.4] for a similar application to an IOSS Lyapunov
function for MPC).

Notation We denote the nonnegative integers by I≥0 and the nonnegative reals by
R≥0. Integers ranging from a to b are denoted Ia:b. For x ∈ Rn, we denote its Euclidean
norm by |x|. For a matrix A ∈ Rn×n, we denote its induced two norm as |A|. For some
set A, we denote point to set distance |x|A := infy∈A |x− y|. We denote a sequence of
vectors {x(k)} by x. For a sequence x and singleton x,the operation x _ x inserts x into
the front of x. The supremum norm of this sequence supk∈I≥0

|x(k)| := ‖x‖. We define
‖x‖a:b := maxk∈Ia:b

|x(k)|, and the finite subsequence from a to b as xa:b.
Recall that a function α : R≥0 → R≥0 is of class K if it is continuous, strictly increasing,

and α(0) = 0. It is of class K∞ if, in addition, lims→∞ α(s) = ∞. A function β :
R≥0 × I≥0 → R≥0 is of class KL if β(·, k) is a K function for fixed k ∈ I≥0 and β(s, ·) is a
nonincreasing function that satisfies limk→∞ β(s, k) = 0 for fixed s ∈ R≥0.

Inspired by the max-plus algebra, for a, b ∈ R we define a⊕ b := max(a, b). In analogy
with summation we write

k−1⊕
j=0

a(j) := max
j∈I0:k−1

a(j).

Note that the operation ⊕ is associative, i.e., (a⊕ b)⊕ c = a⊕ (b⊕ c), commutative, i.e.,
a ⊕ b = b ⊕ a, and satisfies a distributive property with strictly increasing functions. In
particular, if σ ∈ K, we have that σ(a⊕ b) = σ(a)⊕ σ(b).

2 Robustly stable estimator

Consider a discrete-time system

x+ = f(x, u, d) y = h(x), (1)

in which x ∈ X ⊆ Rn is the system state, x+ ∈ X is the successor state, u ∈ U ⊆ Rm
is the system input, d ∈ D ⊆ Rd is some time-varying parameter (or disturbance) vector,
and y ∈ Y ⊆ Rp is the system output. Note that we do not assume that the origin
is a steady state, but merely assume that X, U, and D are nonempty. We denote the
trajectory starting from x evolving with input sequence u and parameter sequence d as
x(x,u,d) and kth element of this trajectory as φ(k;x,u,d). We denote the kth output
of this trajectory by y(k;x,u,d) and denote the entire output sequence by y(x,u,d).
Where it is unambiguous, we usually abbreviate φ(k;x,u,d) by x(k) and y(k;x,u,d) by
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y(k). Because we are working with incremental stability properties, it is useful to use the
abbreviated notation

∆x(j) := φ(j;x1,u1,d)− φ(j;x2,u2,d) ∆x := x(x1,u1,d)− x(x2,u2,d)

∆u(j) := u1(j)− u2(j) ∆u := u1 − u2

∆y(j) := y(j;x1,u1,d)− y(j;x2,u2,d) ∆y := y(x1,u1,d)− y(x2,u2,d)

in which the dependence of these increments on x1, x2, u1, u2, and d is suppressed for
brevity.

We are interested in i-UIOSS as a definition of nonlinear detectability. For a detectable
linear system

x+ = Ax+Bu y = Cx (2)

it is known that there exists some matrix L such that A− LC is Schur stable, i.e., has all
its eigenvalues strictly within the unit disk. We can thus use L to construct an observer
such that

x̂+ = Ax̂+ L(ym − Cx̂) +Buf ,

in which uf is a forecast of the input u which is off by some forecasting error w := u− uf
and ym is the measurement y after being corrupted by some output noise v := ym−y. The
estimate error e(k) := x(k)− x̂(k) then evolves as

e+ = (A− LC)e− Lv +Bw.

We can express the evolution of this linear system as a convolution sum

e(k) = (A− LC)ke(0)−
k−1∑
j=0

(A− LC)k−j−1Lv(j) +

k−1∑
j=0

(A− LC)k−j−1Bw(j)

that, after using the well-known fact that any Schur stable matrix admits an upper bound∣∣(A− LC)k
∣∣ ≤ Kηk for some K > 0 and η ∈ (0, 1), implies we have the upper bound

|e(k)| ≤ Kηk |e(0)|+
k−1∑
j=0

K |L| ηk−j−1 |v(j)|+
k−1∑
j=0

K |B| ηk−j−1 |w(j)| (3)

for all initial conditions and disturbance sequences.
Sontag and Wang [40] considered a direct nonlinear equivalent to such an observer.

They defined a (robustly stable) full-order state observer as a dynamical system

x̂+ = g(x̂, uf , ym) (4)

evolving in the same state-space X as the true system state, that admits an upper bound

|e(k)| ≤ β(|e(0), k|)⊕ γu(‖w‖0:k−1)⊕ γv(‖v‖0:k−1) (5)

for some β ∈ KL and γu, γy ∈ K. However, though designing such observers is an active
area of research, there are many methods of nonlinear state estimation that do not fit into
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such a framework. For example, the extended Kalman filter (EKF) has a state that consists
of not only an estimate of the system state, but also an estimate of the covariance of the
system state. As a result, it evolves in a state space of higher dimension than X. Other
optimization-based state estimators such as full information estimation (FIE) and moving
horizon estimation (MHE) have no convenient state-space representation. As a result, we
follow the suggestion of Sontag and Wang [40, Remark 25] by defining state estimators in
terms of input/output maps.

Definition 1 (State Estimator). A state estimator is a sequence of functions Ψk : X ×
Uk × Dk × Yk → X defined for all k ∈ I≥0. We define state estimates

x̂(k) = Ψk(x,u
f
0:k−1,d0:k−1,y

m
0:k−1)

in which uf ∈ U∞ is a forecast of inputs, ym is the measured output sequence, and d is
the true time-varying parameter sequence entering into the system. �

Equation (5) does not adequately characterize robust stability for such a general class
of estimators: there is no longer the implication that state estimates converge if the dis-
turbance sequences w and v converge to zero. When a full-order state estimator is used,
the bound eq. (5) can be repeatedly applied to move the effects of disturbances from the
asymptotic gains, which remain constant, to the state, which decays because of the KL
function. If a more general estimator in the class defined by theorem 1 is used, however,
the initial state has a unique role, because

Ψ2k(x,u
f
0:2k−1,d0:2k−1,y

m
0:2k−1) 6= Ψk

(
Ψk(x,u

f
0:k−1,d0:k−1,y

m
0:k−1),

ufk:2k−1,dk:2k−1,y
m
k:2k−1

)
in general (as is the case for FIE). We therefore modify eq. (5), making it more closely
resemble eq. (3).

Definition 2 (Robust stability). Suppose that w := u − uf and that v := ym − y, in
which u ∈ U∞ is the true input sequence entering into the system and y is the true
sequence of outputs without noise. A state estimator (Ψk) is robustly stable if there exist
ρx, ρw, ρv ∈ KL such that

|x(k)− x̂(k)| ≤ ρx(|x(0)− x| , k)⊕
k−1⊕
j=0

ρw(|w(j)| , k − j − 1)

⊕
k−1⊕
j=0

ρv(|v(j)| , k − j − 1)

for all k ∈ I≥0, u,uf ∈ U∞, d ∈ D∞, and y,ym. �

In contrast to the “asymptotic-gain” formulation used in eq. (5), we instead explicitly
discount past disturbances in this “convolution-maximization” formulation of robust sta-
bility. In comparison to eq. (3), we are using general KL functions instead of one of the
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specific form β(s, k) := Ksηk for K > 0 and η ∈ (0, 1), and maximizing over the interval
I0:k−1 rather than summing. We would expect the former difference when passing from the
linear to nonlinear cases, and the latter difference occurs because there is no guarantee an
arbitrary KL function sufficiently discounts a bounded sequence such that it is summable.
For an exponential function, we have that

k−1⊕
j=0

z(j)ηk−j−1 ≤
k−1∑
j=0

z(j)ηk−j−1 ≤ 1

1− η1/2

k−1⊕
j=0

z(j)η
k−j−1

2

so the two operations are in a sense equivalent (compare, for example, the definition of
exponential i-IOSS used by Knüfer and Müller [23] using convolution sums). We next
define i-UIOSS along similar lines.

Definition 3 (Incremental uniform input/output-to-state stability). A system eq. (1) is
i-UIOSS if there exist βx, βu, βy ∈ KL such that

|∆x(k)| ≤ βx(|∆x(0)| , k)⊕
k−1⊕
j=0

βu(|∆u(j)| , k − j − 1) (6)

⊕
k−1⊕
j=0

βy(|∆y(j)| , k − j − 1),

for all x1, x2 ∈ X, all u1,u2 ∈ U∞, and d ∈ D∞. �

Traditionally, i-UIOSS has been formulated in terms of a single KL function β(·) and
K function asymptotic gains γu(·), γy(·) such that

|∆x(k)| ≤ β(|∆x(0)| , k)⊕ γu(‖∆u‖0:k−1)⊕ γy(‖∆y‖0:k−1), (7)

but we have found it more insightful to formulate these properties in a form where there is
explicit discounting of input and output differences. It is straightforward to find a bound
like eq. (7) from one like eq. (6), but we know of no easy method to derive a bound like
eq. (6) from eq. (7). Nevertheless, they are equivalent.

Proposition 4. A system eq. (1) admits an upper bound of the form eq. (7) for all x1, x2 ∈
X, all u1,u2 ∈ U∞, and d ∈ D∞ if and only if it is i-UIOSS as characterized in theorem 3.

We defer proof of this proposition to the appendix, because it requires pushing the tech-
niques developed by Krichman et al. [24], Cai and Teel [10], and Allan and Rawlings [3]
to their limit. However, study of i-UIOSS as characterized in theorem 3 can be motivated
independently of its equivalence to i-UIOSS as previously defined in the literature. We
next show that any system that admits a robustly stable state estimator must satisfy theo-
rem 3. The key insight required is that for any combination of initial guess, input sequence,
parameter sequence, and output sequence that is feasible, i.e., obeys the state evolution
equation eq. (1), the robust estimator must return the corresponding state sequences.
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Proposition 5. A system eq. (1) admits a robustly stable estimator (Ψk) only if it is
i-UIOSS.

Proof. Let x1 and x2 be two arbitrary initial states, with corresponding input sequences
u1 and u2 and one single time-varying parameter sequence d used for both trajectories.
These sequences give rise to state sequences x1 and x2 and output sequences y1 and y2.
Suppose we use x = xi, uf = ui, and ym = yi to estimate xi(k) (and thus have w = 0 and
v = 0). Then we can apply theorem 2 to obtain:

|xi(k)− x̂(k)| ≤ ρx(|xi(0)− xi(0)| , k)⊕
k−1⊕
j=0

ρw(|0| , k − j − 1)

⊕
k−1⊕
j=0

ρv(|0| , k − j − 1)

for i = 1, 2. Thus, we have that

Ψk(x1(0),u1,d,y1) = x1(k) Ψk(x2(0),u2,d,y2) = x2(k) (8)

for all k ∈ I≥0. Next, consider what would happen if we used x = x2, uf = u2, and ym = y2

in order to estimate x1(k). In this case, we have that w = u1 − u2 and v = y2 − y1. We
can apply theorem 2 to obtain:

|x̂(k)− x1(k)| ≤ ρx(|∆x(0)| , k)⊕
k−1⊕
j=0

ρu(|∆u(j)| , k − j − 1)⊕
k−1⊕
j=0

ρy(|∆y(j)| , k − j − 1).

Equation (8) shows that x̂(k) = x2(k) in this case. Therefore, because x1, x2,u1,u2 and d
were arbitrary, the system eq. (1) is i-UIOSS.

Therefore i-UIOSS is a necessary condition for a system to admit a robustly stable
estimator. It is unknown whether it is also a sufficient condition, as detectability is for
linear systems.

We seek to characterize i-UIOSS through a storage function and dissipation inequality.

Definition 6 (i-UIOSS Lyapunov function). A function V : X × X → R≥0 is called an
(exponential-decrease) i-IOSS Lyapunov function if there exist α1, α2 ∈ K∞, σu, σy ∈ K,
and η ∈ (0, 1) such that

α1(|x1 − x2|) ≤V (x1, x2) ≤ α2(|x1 − x2|) (9)

V (f(x1, u1, d), f(x2, u2, d)) ≤ηV (x1, x2) + σu(|u1 − u2|) (10)

+ σy(|h(x1)− h(x2)|)

for all x1, x2 ∈ X, u1, u2 ∈ U, and d ∈ D. �
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A dissipation inequality of the form

V (f(x1, u1, d), f(x2, u2, d)) ≤V (x1, x2)− α3(|x1 − x2|) + σu(|u1 − u2|)
+ σy(|h(x1)− h(x2)|)

for some K∞ function α3(·) also works to define an i-UIOSS Lyapunov function, and can
be easily derived from an exponential-decrease Lyapunov function.

A proof that an (non-uniform) i-IOSS Lyapunov function implies that a system is i-
IOSS has appeared previously in [3, Proposition 5, Remark 6], and the addition of the
time-varying parameter vector d to the problem does not impact the proof in a meaningful
way. The converse implication is the focus of this paper.

3 i-UIOSS Converse Theorem

The key tool for this converse theorem, as well as most other works of this type, is Sontag’s
KL function lemma.

Proposition 7 (Sontag [38, Proposition 7]). For every β ∈ KL there exist α1, α2 ∈ K∞
such that

α1(β(s, k)) ≤ α2(s)e−k

for all s ∈ R≥0 and k ∈ I≥0.

Previous works for (non-incremental) UIOSS, like Cai and Teel [10] and Allan and
Rawlings [2], proceed by defining an asymptotically stable difference inclusion, obtaining a
Lyapunov function for that system, then showing that it also serves as an UIOSS Lyapunov
for the original system. This procedure can be modified to work for the incremental
case (and is, in fact, how we demonstrate that asymptotic-gain i-UIOSS is equivalent to
convolution-maximization i-UIOSS in the appendix), but the resulting difference inclusion
is not necessarily compact-valued, even for most linear systems. That precludes application
of the powerful results regarding converse theorems for difference inclusions in Kellett and
Teel [20, 21, 22], which the results in Cai and Teel [10] and Allan and Rawlings [2] depended
upon.

The new approach we use finds its origins in Angeli [6, 7], as well as application of
Sontag’s lemma as in, for example, Kellett and Teel [21]. The major innovation in this
approach is leveraging the convolution-maximization form of i-UIOSS to deal with inputs
and outputs. We proceed in two stages. First we generate an i-UIOSS Lyapunov function
without any regularity assumptions for the system eq. (1) beyond i-UIOSS itself. Then,
upon assuming the system is K continuous, we show that the resulting i-UIOSS Lyapunov
function is continuous.

Theorem 8. A system eq. (1) is i-UIOSS if and only if it admits an (exponential-decrease)
i-UIOSS Lyapunov function.

Proof. The proof that an i-IOSS Lyapunov function implies i-IOSS provided in Allan and
Rawlings [3, Proposition 5, Remark 6] requires negligible modification to account for the
time-varying parameter vector d. The converse implication is much more involved.
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We start by applying theorem 7 to βx(·), βu(·), and βy(·) to find α1,x, α2,x, α1,u, α2,u,
α1,y, α2,y ∈ K∞ such that

α1,x(βx(s, k)) ≤ α2,x(s)e−k

α1,u(βu(s, k)) ≤ α2,u(s)e−k

α1,y(βy(s, k)) ≤ α2,y(s)e
−k.

Let λ := e−1 and α(s) := min(α1,x(s), α1,u(s), α1,y(s)). We then have that

α(βx(s, k)) ≤ αx(s)λk

α(βu(s, k)) ≤ αu(s)λk

α(βy(s, k)) ≤ αy(s)λk,

in which we have suppressed the subscript 2 on αx(·), αu(·), and αy(·) for brevity. We now
define the i-UIOSS Lyapunov function candidate

V (x1, x2) := sup
k∈I≥0,u1,u2,d

λ−k/2

[
α(|∆x(k)|)−

k−1∑
j=0

2αu(|∆u(j)|)λk−j−1

−
k−1∑
j=0

αy(|∆y(j)|)λk−j−1

]
, (11)

in which the extra factor of two in the input term is intended, and is used in the proof for
continuity. Note that we have

α(|∆x(k)|) ≤α
(
βx(|∆x(0)| , k)

)
⊕ α

(
k−1⊕
j=0

βu(|∆u(j)| , k − j − 1)

)

⊕ α

(
k−1⊕
j=0

βy(|∆y(j)| , k − j − 1)

)

≤αx(|∆x(0)|)λk ⊕
k−1⊕
j=0

αu(|∆u(j)|)λk−j−1 ⊕
k−1⊕
j=0

αy(|∆y(j)|)λk−j−1

≤αx(|∆x(0)|)λk +
k−1∑
j=0

αu(|∆u(j)|)λk−j−1 +
k−1∑
j=0

αy(|∆y(j)|)λk−j−1, (12)

and, as a result, we have that

V (x1, x2) ≤ sup
k∈I≥0,u1,u2,d

λ−k/2

(
αx(|∆x(0)|)λk −

k−1∑
j=0

αu(|∆u(j)|)λk−j−1

)
≤ sup

k∈I≥0,u1,u2,d
αx(|∆x(0)|)λk/2

= αx(|x1(0)− x2(0)|), (13)
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which provides the K∞ upper bound on V (x1, x2) indicated in eq. (9) with α2(·) := αx(·).
We can establish the corresponding K∞ lower bound with α1(·) := α(·) by noting

sup
k∈I≥0,u1,u2,d

λ−k/2

[
α(|∆x(k)|)−

k−1∑
j=0

2αu(|∆u(j)|)λk−j−1 −
k−1∑
j=0

αy(|∆y(j)|)λk−j−1

]

≥λ0

[
α(|∆x(0)|)−

−1∑
j=0

2αu(|∆u(j)|)λj −
−1∑
j=0

αy(|∆y(j)|)λj
]

=α(|x1(0)− x2(0)|). (14)

We now derive the dissipation inequality eq. (10). For fixed x1, x2 ∈ X, u1, u2 ∈ U, and
d ∈ D, let x+

1 := f(x1, u1, d) and x+
2 := f(x2, u2, d). For every ε > 0, there exist u∗1, u∗2,

d∗, and k∗ ∈ I≥0 such that

V (x+
1 , x

+
2 ) ≤ ε+ λ−k

∗/2

[
α
(∣∣φ(k∗;x+

1 ,u
∗
1,d
∗)− φ(k∗;x+

2 ,u
∗
2,d
∗)
∣∣)

−
k∗−1∑
j=0

2αu(|u∗1(j)− u∗2(j)|)λk∗−j−1

−
k∗−1∑
j=0

αy
(∣∣y(j;x+

1 ,u
∗
1,d
∗)− y(j;x+

2 ,u
∗
2,d
∗)
∣∣)λk∗−j−1

]
.

By considering trajectories beginning from x1 and x2, we have that

φ(k∗;x+
1 ,u

∗
1,d
∗) = φ(k∗ + 1;x1, u

_
1 u∗1, d

_d∗)

φ(k∗;x+
2 ,u

∗
2,d
∗) = φ(k∗ + 1;x2, u

_
2 u∗1, d

_d∗)

in which the operation s_s inserts s at the beginning of the sequence s. For brevity, let
d̃ := d_d∗ and

ũ1 := u_1 u∗1 x̃1(j):= φ(j;x1, ũ1, d̃) ỹ1(j) := y(j;x1, ũ1, d̃)

ũ2 := u_2 u∗2 x̃2(j):= φ(j;x2, ũ2, d̃) ỹ2(j) := y(j;x2, ũ2, d̃).
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We thus have that

V (x+
1 , x

+
2 ) ≤ε+ λ−k

∗/2

[
α(|∆x̃(k∗ + 1)|)

−
k∗∑
j=1

2αu(|∆ũ(j)|)λk∗−j −
k∗∑
j=1

αy(|∆ỹ(j)|)λk∗−j
]

=ε+
√
λ

(
λ−(k∗+1)/2

[
α(|∆x̃(k∗ + 1)|)−

k∗∑
j=1

2αu(|∆ũ(j)|)λk∗−j

− 2λk
∗
αu(|∆u(0)|) + 2λk

∗
αu(|∆u(0)|)

−
k∗∑
j=1

αy(|∆ỹ(j)|)λk∗−j − λk∗αy(|∆y(0)|) + λk
∗
αy(|∆y(0)|)

])

=ε+
√
λ

(
λ−(k∗+1)/2

[
α(|∆x̃(k∗ + 1)|)

−
k∗∑
j=0

2αu(|∆ũ(j)|)λk∗−j −
k∗∑
j=0

αy(|∆ỹ(j)|)λk∗−j
])

+ 2λk
∗/2αu(|∆u(0)|) + λk

∗/2αy(|∆y(0)|)

≤ε+
√
λV (x1, x2) + 2αu(|∆u(0)|) + αy(|∆y(0)|),

in which the last step follows because k∗ + 1, ũ1, ũ2, d̃ is feasible for the optimization that
produces V (x1, x2). Note that, because we have removed all terms that depend on u∗1, u∗2,
d∗, and k∗, ε is arbitrary. We can thus take the limit as ε→ 0 to obtain

V (x+
1 , x

+
2 ) ≤

√
λV (x1, x2) + 2αu(|u1 − u2|) + αy(|ỹ1(0)− ỹ2(0)|)

=
√
λV (x1, x2) + 2αu(|u1 − u2|) + αy(|h(x1)− h(x2)|).

This equation fulfills (10) with exponential decrease factor η =
√
λ and K function supply

rates σu(·) = 2αu(·), and σy(·) = αy(·). Thus V (·) is an (exponential-decrease) i-UIOSS
Lyapunov function.

Obtaining an i-UIOSS Lyapunov function by itself may be useful for applications, but
continuity may be necessary for robustness results. First, we need a suitable continuity
assumption for the underlying system eq. (1).

Assumption 9 (K Continuity). Both f(·, ·, d) and h(·) are K-continuous, the former uni-
formly in d, i.e., there exist σf , σh ∈ K such that

|f(x1, u1, d)− f(x2, u2, d)| ≤ σf (|(x1, u1)− (x2, u2)|)
|h(x1)− h(x2)| ≤ σh(|x1 − x2|)

for all x1, x2 ∈ X, all u1, u2 ∈ U, and d ∈ D.
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As mentioned in the introduction, while K continuity and uniform continuity are, in
general, distinct properties, they are identical in many cases of interest. Freeman and
Kokotovic [11, p 232]) show that they coincide for functions defined on convex subsets
of normed vector spaces, and [4, Proposition 20] implies that they coincide for compact
subsets of Rn as well.

Remark 10. Because we define i-IOSS in predictor form (i.e., use outputs (y(0), y(1), . . . ,
y(k − 1)) but omit y(k)), we have the inequality∣∣x+

1 − x
+
2

∣∣ ≤ βx(|x1 − x2| , 1) + βu(|u1 − u2| , 0) + βy(|h(x1)− h(x2)| , 0).

If the function h(·) is K-continuous, as occurs in the common case where a subset of states
are measured, then theorem 9 is satisfied.

Theorem 9 can be used in order to show that V (·) as defined in theorem 8 is continuous.

Theorem 11. The function V (·), as defined in eq. (11), is continuous if theorem 9 holds.

The proof of this theorem, however, requires several minor results. The first is a tool
used by Angeli [7], but never explicitly stated or named.

Proposition 12 (Quadrille inequality). For vectors u1, u2, v1, v2 ∈ Rn, we have that∣∣ |u1 − u2| − |v1 − v2|
∣∣ ≤ |u1 − v1|+ |u2 − v2| .

Proof. We have that ∣∣ |u1 − u2| − |v1 − v2|
∣∣ ≤ |u1 − u2 + v2 − v1|

by the reverse triangle inequality and

|u1 − u2 + v2 − v1| ≤ |u1 − v1|+ |u2 − v2|

by the regular triangle inequality.

This next proposition generates upper bounds on ‖∆x‖0:k and ‖∆y‖0:k based on |∆x|
and ‖∆u‖0:k−1 . Notably, these bounds are uniform in x1, x2 and u1,u2 so long as |∆x|
and ‖∆u‖0:k−1 are uniformly bounded above.

Proposition 13. Let s0 > 0, su > 0, and k̄ ∈ I≥0. If theorem 9 holds, then there exist
some sx(s0, su, k̄) ≥ 0 and sy(s0, su, k̄) ≥ 0 such that

|∆x(k)| ≤ sx(s0, su, k̄)

|∆y(k)| ≤ sy(s0, su, k̄)

for all k ∈ I0:k̄ and any x1, x2 ∈ X such that |∆x| ≤ s0 and any u1,u2 ∈ U∞ such that
‖∆u‖ ≤ su.
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Proof. Let σf , σh ∈ K∞ come from theorem 9. We have that

|f(x1, u1, d)− f(x2, u2, d)| ≤ σf (|(∆x,∆u)|)
= σf (|(∆x, 0) + (0,∆u)|)
≤ σf (|∆x|+ |∆u|)
≤ σf (2 |∆x|)⊕ σf (2 |∆u|)
:= σ̃f (|∆x|)⊕ σ̃f (|∆u|)

for all x1, x2 ∈ X and u1, u2 ∈ U. By recursively applying this equation, we obtain

|∆x(k)| ≤ σ̃kf (|∆x(0)|)⊕
k−1⊕
j=0

σ̃k−j−1
f (|∆u(j)|).

Without loss of generality, assume that σ̃f (s) ≥ s for all s ∈ R≥0. We then have that

σ̃kf (s) ≤ σ̃k̄f (s) for all k ≤ k̄ By assumption, we have that |∆x(0)| ≤ s0 and |∆u(j)| ≤
‖∆u‖ ≤ su for all j ∈ I≥0. Thus we have that

|∆x(k)| ≤ σ̃k̄f (s0)⊕
k̄−1⊕
j=0

σ̃k̄−j−1
f (su) := sx.

Furthermore, we have that

|∆y(k)| ≤ σh(|∆x(k)|)
≤ σh(sx) := sy,

which completes this proof.

In order to apply this proposition towards the continuity of V (·), we need upper bounds
on |∆x|, ‖∆u∗‖0:k−1, and k∗. An upper bound on |∆x| depends only on where V (·) is
evaluated, and thus is straightforward. However, upper bounds on the other two terms
require significantly more work. Because we are optimizing over an unbounded domain,
there is no guarantee the infimum used in the construction V (·) is attained by any time, pair
of input sequences, and parameter sequence. However, any sequences that are ”sufficiently
close” to optimal admit upper bounds on ‖∆u∗‖0:k−1 and k∗.

Proposition 14. Let V : X × X → R≥0 be defined in eq. (11), let M ≥ 1, and let
B(M) := {(x1, x2) ∈ X× X : 1/M ≤ |x1 − x2| ≤ M}. There exist ε̄(M) > 0, k̄(M) ∈ I≥0,
and su(M) > 0 such that for all (x1, x2) ∈ B(M) and ε ≤ ε̄(M), if we have u∗1,u

∗
2 ∈ U∞,

d∗ ∈ D∞, and k∗ ∈ I≥0 such that

V (x1, x2) ≤ ε+ λ−k
∗/2

[
α(|∆x∗(k∗)|)−

k∗−1∑
j=0

2αu(|∆u∗(j)|)λk∗−j−1 (15)

−
k∗−1∑
j=0

αy(|∆y∗(j)|)λk
∗−j−1

]
,

then k∗ ≤ k̄(M) and ‖∆u∗‖0:k∗−1 ≤ su(M), in which we recall λ := e−1.
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Proof. We can substitute eq. (12) into eq. (15) in order to obtain

V (x1, x2) ≤ε+ λ−k
∗/2

[
αx(|∆x(0)|)λk∗ −

k∗−1∑
j=0

αu(|∆u∗(j)|)λk∗−j−1

]
≤ε+ αx(|∆x(0)|)λk∗/2.

Furthermore, from eq. (14), we have that

V (x1, x2) ≥ α(|∆x(0)|).

Inspired by [15, Lemma 6.b], define

µ(M) := max
s∈[1/M,M ]

αx(s)

α(s)

and note that the maximum exists because we are optimizing a continuous function over
a compact set. Because of the fashion by which αx(·) and α(·) are constructed using
theorem 7, we have that αx(s) ≥ α(s) for all s ∈ R≥0. Therefore, we have that µ(M) ≥ 1,
and thus for any (x1, x2) ∈ B(M), we have that

αx(|∆x(0)|) ≤ µ(M)α(|∆x(0)|).

We can chose ε̄(M) := (1/2)α(1/M). Fix (x1, x2) ∈ B(M). We have that

α(|∆x(0)|) ≤ V (x1, x2) ≤ ε+ αx(|∆x(0)|)λk∗/2

≤ ε̄(M) + αx(|∆x(0)|)λk∗/2

= (1/2)α(1/M) + αx(|∆x(0)|)λk∗/2

≤ (1/2)α(|∆x(0)|) + µ(M)α(|∆x(0)|)λk∗/2

because 1/M ≤ |∆x(0)| ≤M . We can rearrange to obtain

1/2α(|∆x(0)|) ≤ µ(M)α(|∆x(0)|)λk∗/2

1

2µ(M)
≤ λk∗/2

k̄(M) := d−2 logλ(2µ(M))e ≥ k∗

in which d·e denotes the ceiling function.
Now that we have found k̄(M), we can find su(M). We have that

α(|∆x(0)|) ≤ V (x1, x2) ≤ε+ λ−k
∗/2

[
αx(|∆x(0)|)λk∗ −

k∗−1∑
j=0

αu(|∆u∗(j)|)λk∗−j−1

]
.
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We can rearrange this expression to obtain

α(|∆x(0)|) + λ−k
∗/2

k∗−1∑
j=0

αu(|∆u∗(j)|)λk∗−j−1

 ≤ ε+ αx(|∆x(0)|)λk∗/2.

We can next take individual terms of the summation to obtain

α(|∆x(0)|) + αu(|∆u∗(j)|)λk∗/2−j−1 ≤ ε+ αx(|∆x(0)|)λk∗/2 ∀j ∈ I0:k∗−1.

If both (x1, x2) ∈ B(M) and ε ≤ ε̄(M), we have that

α(|∆x(0)|) + αu(|∆u∗(j)|)λk∗/2−j−1

≤ (1/2)α(1/M) + µ(M)α(|∆x(0)|)λk∗/2 ∀j ∈ I0:k∗−1.

Because 1/M ≤ |∆x(0)| ≤M , we can rearrange to obtain

αu(|∆u∗(j)|)λk∗/2−j−1 ≤ (µ(M)− 1/2)α(|∆x(0)|)λk∗/2 ∀j ∈ I0:k∗−1

|∆u∗(j)| ≤ α−1
u

(
(µ(M)− 1/2)α(|∆x(0)|)λ−j−1

)
∀j ∈ I0:k∗−1

≤ α−1
u

(
(µ(M)− 1/2)α(M)λ−k̄(M)−1

)
∀j ∈ I0:k∗−1

:= su(M) ∀j ∈ I0:k∗−1

which concludes the proof.

Finally, using these supporting propositions, we can show that V (·) is continuous. For
x1, x2 ∈ X not on the diagonal ((x1, x2) ∈ X2 | x1 = x2), we can choose M to apply these
supporting propositions for all (z1, z2) in a neighborhood of (x1, x2). It turns out that all
i-UIOSS Lyapunov functions are continuous on the diagonal, and thus V (·) is continuous
everywhere.

Proof of theorem 11. Fix x1, x2 ∈ X and suppose x1 6= x2. For any ε > 0, there exist u∗1,
u∗2, d∗, and k∗ ∈ I1:∞ such that

V (x1, x2) ≤ ε+ λ−k
∗/2

[
α(|∆x∗(k∗)|)−

k∗−1∑
j=0

2αu(|∆u∗(j)|)λk∗−j−1

−
k∗−1∑
j=0

αy(|∆y∗(j)|)λk
∗−j−1

]
. (16)

In order to use theorems 13 and 14 for all points (z1, z2) in a neighborhood of (x1, x2), choose
M∗ = 2 max(|∆x| , 1/ |∆x|). Let ε̄(M∗), k̄(M∗), and su(M∗) come from theorem 14. Fix
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ε ≤ ε̄(M∗). For (z1, z2) ∈ B(M∗), we have that

V (z1, z2) ≥ λ−k∗/2
[
α(|φ(k∗; z1,u

∗
1,d
∗)− φ(k∗; z2,u

∗
2,d
∗)|)

−
k∗−1∑
j=0

2αu(|∆u∗(j)|)λk∗−j−1 (17)

−
k∗−1∑
j=0

αy(|y(j; z1,u
∗
1,d
∗)− y(j; z2,u

∗
1,d
∗)|)λk∗−j−1

]

because u∗1, u∗2, d∗, and k∗ are feasible in the optimization that produces V (z1, z2). We can
assume that (u∗1,u

∗
2) ∈ Ud(M∗) := {(u1,u2) ∈ U∞ × U∞ : ‖u1 − u2‖ ≤ su(M∗)} because

‖u∗1 − u∗2‖0:k∗−1 ≤ su(M∗) by theorem 14, and, by causality, the value function eq. (11)
does not depend on any elements of u∗1 and u∗2 with j ≥ k∗. For brevity, let k̄ := k̄(M∗)
and

z∗1(j) := φ(j; z1,u
∗
1,d
∗) η∗1(j) := h(z∗1(j))

z∗2(j) := φ(j; z2,u
∗
2,d
∗) η∗2(j):= h(z∗2(j)).

We can combine eq. (16) and eq. (17) to obtain

V (x1, x2)− V (z1, z2) ≤ε+ λ−k
∗/2

(
α(|∆x∗(k∗)|)− α(|∆z∗(k∗)|)

−

[
k∗−1∑
j=0

αy(|∆y∗(j)|)λk
∗−j−1 −

k∗−1∑
j=0

αy(|∆η∗(j)|)λk
∗−j−1

])
(18)

in which the u terms have been canceled. Let ∆V := V (x1, x2) − V (z1, z2). We can take
the absolute value of this bound to obtain

∆V ≤ε+ λ−k
∗/2

∣∣∣∣∣α(|∆x∗(k∗)|)− α(|∆z∗(k∗)|)

−

[
k∗−1∑
j=0

αy(|∆y∗(j)|)λk
∗−j−1 −

k∗−1∑
j=0

αy(|∆η∗(j)|)λk
∗−j−1

]∣∣∣∣∣
≤ε+ λ−k

∗/2

(∣∣∣α(|∆x∗(k)|)− α(|∆z∗(k)|)
∣∣∣

+
k∗−1∑
j=0

∣∣∣αy(|∆y∗(j)|)− αy(|∆η∗(j)|)∣∣∣λk∗−j−1

)

Because both (x1, x2), (z1, z2) ∈ B(M∗) and (u∗1,u
∗
2) ∈ Ud(M∗), by theorem 13 we have
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that

|∆x∗(k∗)| ≤ sx(M∗)

|∆z∗(k∗)| ≤ sx(M∗)

|∆y∗(j)| ≤ sy(M∗) for all j ≤ k∗

|∆η∗(j)| ≤ sy(M∗) for all j ≤ k∗,

in which we have abbreviated sx(M∗, su(M∗), k̄(M∗)) and sy(M
∗, su(M∗), k̄(M∗)) as sx(M∗)

and sy(M
∗), because k∗ ≤ k̄(M∗). By Proposition 20 in [4], there exist σ, σy ∈ K∞ such

that

|α(s1)− α(s2)| ≤ σ(|s1 − s2|) for all s1, s2 ∈ [0, sx(M∗)]

|αy(s1)− αy(s2)| ≤ σy(|s1 − s2|) for all s1, s2 ∈ [0, sy(M
∗)].

We thus have that

∆V ≤ε+ λ−k
∗/2

(
σ
(∣∣ |x∗1(k∗)− x∗2(k∗)| − |z∗1(k∗)− z∗2(k∗)|

∣∣)
+
k∗−1∑
j=0

σy
(∣∣ |y∗1(j)− y∗2(j)| − |η∗1(j)− η∗2(j)|

∣∣)λk∗−j−1

)

≤ε+ λ−k
∗/2

(
σ (|x∗1(k∗)− z∗1(k∗)|+ |x∗2(k∗)− z∗2(k∗)|)

+
k∗−1∑
j=0

σy (|y∗1(j)− η∗1(j)|+ |y∗2(j)− η∗2(j)|)λk∗−j−1

)

≤ε+ λ−k
∗/2

(
σ(2 |x∗1(k∗)− z∗1(k∗)|) + σ(2 |x∗2(k∗)− z∗2(k∗)|)

+
k∗−1∑
j=0

(
σy(2 |y∗1(j)− η∗1(j)|) + σy(2 |y∗2(j)− η∗2(j)|)

)
λk
∗−j−1

)
in which the states and outputs change partners by applying theorem 12. By theorem 9,
there exist σf , σh ∈ K such that |f(x1, u, d)− f(x2, u, d)| ≤ σf (|∆x|) and |h(x1)− h(x2)| ≤
σh(|∆x|) for all x1, x2 ∈ X, u ∈ U, and d ∈ D. We can apply these bounds recursively to
obtain

|∆x(j)| ≤ σjf (|∆x(0)|).

We thus have that

∆V ≤ε+ λ−k
∗/2

(
σ(2σk

∗
f (|x1 − z1|)) + σ(2σk

∗
f (|x2 − z2|)) (19)

+

k∗−1∑
j=0

(
σy(2σh(σjf (|x1 − z1|))) + σy(2σh(σjf (|x2 − z2|)))

)
λk
∗−j−1

)
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We can thus define

ν(s) := max
k∈I0:k̄

λ−k/2

(
σ(2σkf (s)) +

k−1∑
j=0

σy(2σh(σjf (s)))λk−j−1

)

and note that, because the set of K-functions is closed under addition, strictly positive
scalar multiplication, and maximization, ν ∈ K.

Thus we have that

∆V ≤ ε+ ν(|x1 − z1|) + ν(|x2 − z2|)

because k∗ ≤ k̄ for ε ≤ ε̄(M∗). Since this upper bound no longer depends on k∗, we can
take the limit as ε→ 0 in order to obtain

∆V ≤ ν(|x1 − z1|) + ν(|x2 − z2|)

for all (x1, x2), (z1, z2) ∈ B(M∗). Finally, this bound applies for V (z1, z2) − V (x1, x2) by
symmetry, and thus

|V (x1, x2)− V (z1, z2)| ≤ ν(|x1 − z1|) + ν(|x2 − z2|)

implying that V (·) is K-continuous on B(M∗). Because B(M∗) contains all (z1, z2) ∈ X×X
within a neighborhood of (x1, x2), we have that V (·) is continuous at (x1, x2).

Now suppose x1 = x2 = x. Then we have that V (x1, x2) = 0, and thus

|V (z1, z2)− V (x, x)| = V (z1, z2) ≤ αx(|z1 − z2|)
≤ αx(|z1 − x|+ |x− z2|)
≤ αx(2 |z1 − x|) + αx(2 |z2 − x|)

and, as a result, V (·) is continuous at (x, x). Thus V (·) is continuous on all of X× X.

4 Necessity of V (x1, x2) construction

Note, though we have not explicitly required it, we can assume that V (·) is symmetric as a
function of x1 and x2, i.e., V (x1, x2) = V (x2, x1). Indeed, if we have an asymmetric V (·),
then we can define Ṽ (x1, x2) := (1/2)(V (x1, x2) + V (x2, x1)) to be a symmetric i-UIOSS
Lyapunov function (Angeli [7] made the same observation for incremental ISS).

We have defined V (·) as a function from X2 → R≥0. We might wonder if every i-UIOSS
system admits a i-UIOSS of the form V (x1, x2) = Λ(x1 − x2) for Λ : X → R≥0. Angeli
[7] provides an example of a continuous-time system that is incrementally exponentially
stable which does not admit an incremental Lyapunov function of that form. Because
such a system can be interpreted as i-UIOSS that has no dependence on the input u or
time-varying parameter d when it is augmented with the trivial output function h(x) = 0,
that example shows that no such construction is possible in continuous time.
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Inspired by the continuous-time system proposed in [7], consider the piecewise-linear
system defined by

x+ = f(x) :=

{
A1x ξ1 ≥ 0

A2x ξ1 < 0
, in which A1 =

[
1/2 1
0 0

]
and A2 =

[
0 1
−1 0

]
,

and also in which we write x = [ξ1 ξ2]′ to avoid ambiguity in notation when referring to
individual elements of the vector x at the same time as two different states x1 and x2.

We have chosen A1 and A2 such that A1 = A2 + [1/2 1]′[1 0], and so, for ξ1 = 0, we
have that A1x = A2x and thus the system is Lipschitz continuous. Note also that A1 is
Schur stable, while A2 is the matrix that corresponds to a 90◦ rotation clockwise. Because
A1 has only nonnegative entries, the positive quadrant is forward invariant. In fact, if
ξ1 ≥ 0 and ξ1 ≥ −2ξ2, the state is mapped to the ray ξ1 ≥ 0 and ξ2 = 0. If we have that
ξ1 ≥ 0 but ξ1 ≤ −2ξ2, the state is mapped to the ray ξ1 ≤ 0 and ξ2 = 0. For any x such
that ξ1 ≤ 0, the state is rotated into the positive quadrant. Thus, every state is mapped
to the positive ray ξ1 ≥ 0 and ξ2 = 0 in three steps, where ξ1 exponentially decays.

Because f(·) is Lipschitz continuous, for any x1, x2 ∈ R2, we have that∣∣x+
1 − x

+
2

∣∣ ≤ L |x1 − x2|

for a Lipschitz constant L ≈ 1.118 > 1. We thus have that

|x1(3)− x2(3)| ≤ L3 |x1(0)− x2(0)| (20)

at which point, irrespective of the initial condition, x1(3) and x2(3) are on the ξ1 = 0 axis
where f(·) is a contraction map. Thus we have that

|x1(k)− x2(k)| ≤ 23L3(1/2)k |x1(0)− x2(0)| (21)

and thus this system is incrementally exponentially stable.
Suppose the system admits an incremental Lyapunov function of the form Λ(x1 − x2).

Then Λ(x) serves as a Lyapunov function for the stable equilibrium x = 0. According to
the first paragraph of this section, we can assume Λ(x1 − x2) = Λ(x2 − x1), and therefore
Λ(x) = Λ(−x). Thus, because we have

Λ(A2x) ≤ ηΛ(x), (22)

in which η ∈ (0, 1), for x such that ξ1 ≤ 0, we also have

Λ(A2(−x)) ≤ ηΛ(−x) (23)

by symmetry of Λ(·), and obtain a descent condition for x such that ξ1 ≥ 0. Thus Λ(·)
would be a Lyapunov function for the system x+ = A2x, which is impossible because A2 is
not Schur stable. Therefore this system does not admit an incremental Lyapunov function
of the form Λ(x1 − x2).
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5 Changing supply rates

A useful result, first demonstrated in Sontag and Teel [34] in continuous time and in
Nesic and Teel [26] in discrete time, is that the the composition of a smooth convex K∞
function with an ISS Lyapunov function is itself an ISS Lyapunov function.1 An extension
to nonnegative storage functions is provided by Lemma 4 in Grimm et al. [12]. This
extension is general enough that we can apply it directly to i-IOSS Lypaunov functions.
However, an additional observation permits us to extend this result to all convex functions,
not just smooth ones.

Let ρ(·) be a differentiable convex K∞ function and let q(·) be its derivative. The key
observation that enables these results is that, by the mean value theorem, ρ(s0) − ρ(s) ≤
q(s0)(s0 − s) for all s, s0 ≥ 0. This inequality can be rearranged to obtain

ρ(s) ≥ ρ(s0) + q(s0)(s− s0) (24)

for all s, s0 ≥ 0. We next need the concept of a subgradient from convex analysis (see, e.g.,
[32, Ch. 23]).

Definition 15. For a convex function ρ : R≥0 → R≥0, u is a subgradient of ρ(·) at a point
s0 if

ρ(s) ≥ ρ(s0) + u(s− s0)

for all s ∈ R≥0. The set of all subgradients at a point s0 is called the subdifferential of ρ(·)
at s0, and is referred to by ∂ρ(s0). The subdifferential ∂ρ : R≥0 ⇒ R is a set-valued map.
�

As we would expect, the only subgradient of a differentiable function is its derivative
(for points in the interior of its domain). In order to apply eq. (24) for non-differentiable
functions, it is sufficient that q(s) ∈ ∂ρ(s) for all s ∈ R≥0. For convenience, we define
q(s) := max ∂ρ(s), i.e., q(·) is the right derivative of ρ(·). It can be shown that q(·) is a
nondecreasing function. Because the continuity of q(·) is never used in the proof of Grimm
et al. [12, Lemma 4], we can reproduce that lemma here.

Proposition 16 (Grimm et al. [12, Lemma 4]). Let W : X → R≥0, be some storage
function, σ : X→ R≥0 be some measure of state size, and ` : X×U→ R≥0 be some supply
rate such that

W (x) ≤ α2(σ(x))

W (f(x, u))−W (x) ≤ γ(`(x, u))− α3(σ(x))

for all x ∈ X and u ∈ U, in which α2, α3 ∈ K∞ and γ ∈ K. Furthermore, let ρ ∈ K∞ be
convex, and let q(·) be its right derivative. Then we have that

ρ ◦W (f(x, u))− ρ ◦W (x) ≤ 2q ◦ θ(`(x, u)) · γ(`(x, u))− 1

4
q

(
1

4
α3(σ(x))

)
α3(σ(x))

in which θ(s) := γ(s) + α2 ◦ α−1
3 ◦ 2γ(s) is a K function.

1Rather than using the language of “convexity”, these references invoked a smooth K∞ function whose
derivative is nondecreasing. Of course, such a function is convex.
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We would like to end up with a K∞ function dissipation rate α̃3(·) and a K function
supply gain γ̃(·). While the algebra of K functions is well known, the presence of q(·)
complicates matters. The composition of a nondecreasing function and a K function is
nondecreasing, and the product of a nondecreasing function and a K (K∞) function is
K (K∞) so long as that nondecreasing function is strictly positive for strictly positive s.
Because q(·) is monotone, it is integrable, and we have that

ρ(s) =

∫ s

0
q(t)dt

as a result of [32, Theorem 24.2]. Because K functions are nonnegative, 0 ∈ ∂ρ(0), and
thus q(0) ≥ 0. If q(s∗) = 0 for some s∗ > 0, we would have that q(s) = 0 on [0, s∗], and
thus ρ(s∗) = 0. But because ρ ∈ K∞, that produces a contradiction, and thus q(s) > 0 for
all s > 0.

If q(·) is continuous, then the supply gain and dissipation rate for ρ◦W (·) in theorem 16
are K and K∞ functions, respectively. If q(·) is not continuous, then we need to find upper
and lower bounds for it in terms of continuous monotone functions. Proposition 4 in
Rawlings and Risbeck [30] gives us a K function lower bound for q(·), and, by a similar
construction, it is possible to find a continuous upper bound q̃ : R≥0 → R≥0. As a result,
we can finally state a theorem.

Theorem 17. Let W : X→ R≥0, be some storage function, σ : X→ R≥0 be some measure
of state size, and ` : X× U→ R≥0 be some supply rate such that

W (x) ≤ α2(σ(x))

W (f(x, u))−W (x) ≤ γ(`(x, u))− α3(σ(x))

for all x ∈ X and u ∈ U, in which α2, α3 ∈ K∞ and γ ∈ K. Furthermore, let ρ ∈ K∞ be
convex. Then there exist α̃2, α̃3 ∈ K∞ and γ̃ ∈ K such that

ρ ◦W (x) ≤ α̃2(σ(x))

ρ ◦W (f(x, u))− ρ ◦W (x) ≤ γ̃(`(x, u))− α̃3(σ(x))

for all x ∈ X and u ∈ U, i.e., ρ ◦W (·) is also a storage function.

We can finally relate this result to i-IOSS Lyapunov functions.

Corollary 18. Let Λ : X × X → R≥0 be an i-IOSS Lyapunov function and ρ(·) a convex
K∞ function. Then ρ ◦ Λ(·) is also an i-IOSS Lyapunov function.

Proof. Let Λ̃(x1, x2) := ρ ◦ Λ(x1, x2). We observe that an i-IOSS Lyapunov function is a
storage function for the stacked system[

x+
1

x+
2

]
=

[
f(x1, u1, d)
f(x2, u2, d)

]
with σ(x) = |x1 − x2|, supply gain γ(s) = s, and supply rate

`(x, u) = σy(|h(x1)− h(x2)|) + σu(|u1 − u2|).
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Immediately, we have α̃1(·) := ρ◦α1(·) and α̃2(·) := ρ◦α2(·). For the dissipation condition,
we have

Λ̃(x+
1 , x

+
2 ) ≤ Λ̃(x1, x2)− α̃3(|x1 − x2|) + γ̃

(
σy(|h(x1)− h(x2)|) + σu(|u1 − u2|)

)
≤ Λ̃(x1, x2)− α̃3(|x1 − x2|) + γ̃ ◦ 2σy(|h(x1)− h(x2)|)

+ γ̃ ◦ 2σu(|u1 − u2|).

and thus Λ̃(·) is an i-IOSS Lyapunov function.

6 Conclusion

We have proposed a new characterization of i-UIOSS using “convolution-maximization”
that reveals the strong properties that systems with ISS-like properties already enjoy (at
least for discrete-time systems defined on subsets of Rn). Furthermore, we have shown that
any system that admits a robustly stable state estimator must be i-UIOSS, making it a
necessary condition for detectability. We have provided a converse theorem demonstrating
that any i-UIOSS system must admit an i-UIOSS Lyapunov function, and, if that system is
K continuous, that i-UIOSS Lyapunov function must also be (not necessarily K) continuous.
Finally, we have provided a result on changing supply rates for general storage functions,
including i-UIOSS Lyapunov functions.

It is somewhat unsatisfactory that we do not have a K continuous i-UIOSS Lyapunov
function, but consider again a linear system. For any detectable linear system, there exists
a positive-definite matrix P such that V (x1, x2) = (x1−x2)′P (x1−x2) constitutes an i-IOSS
Lyapunov function. Note that this simple quadratic function is not globally K continuous.
It is, however, Lipschitz continuous on all bands B(M) = {(x1, x2) ∈ X2 : |x1 − x2| ≤M}.
We considered a similar family of bands B(M), but these bands excluded a strip containing
the diagonal {(x1, x2) ∈ X2 | x1 = x2} in its interior. The function V (·) constructed is K
continuous on each of these bands. Determining how to extend these bounds to the bands
B(M) may be an object of future research. However, for an exponentially i-UIOSS system,
i.e., a system that satisfies theorem 3 with KL functions of the form β(s, k) = Csηk for
C > 0 and η ∈ (0, 1), one can construct an i-UIOSS Lyapunov function that is globally
Lipschitz using an argument similar to the one used in theorem 11.

We hope that i-UIOSS Lyapunov functions will become useful tools for construction
and analysis of nonlinear state estimators. A local function similar to an i-UIOSS Lya-
punov function was used by Tsinias [43] in the course of the observer design problem, but
he requires the observer to be directly involved in the dissipation condition such that it
becomes a descent condition for the error dynamics. Whether an i-UIOSS Lyapunov func-
tion can be used to directly construct an observer for the system is a subject for future
research. In terms of optimization-based state estimation, an i-IOSS Lyapunov function is
used in Allan and Rawlings [3] to construct a Lyapunov-like function for FIE.
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7 Appendix

Here, we show that the traditional, asymptotic-gain definition of i-UIOSS given by eq. (7)
is equivalent to the one in theorem 3. For ease of reference, we define that property here
as well.

Definition 19 (Asymptotic-gain incremental uniform input/output-to-state stability). A
system eq. (1) satisfies the asymptotic-gain i-UIOSS property if there exist β ∈ KL and
γu, γy ∈ K such that

|∆x(k)| ≤βx(|∆x(0)| , k)⊕ γu(‖∆u‖0:k−1)⊕ γy(‖∆y‖0:k−1)

for all x1, x2 ∈ X, all u1,u2 ∈ U∞, and d ∈ D∞. �

To our knowledge, there is no simple method to show that theorem 19 implies theorem 3
directly. Because we know that a system that admits an i-UIOSS Lyapunov function must
also satisfy theorem 3, we can produce an i-UIOSS Lyapunov function using methods
similar to those used in Cai and Teel [10] suitably modified to take insights contained in
Grüne and Kellett [13] by Allan and Rawlings [3]. We do not use this method in the body
of the paper for two reasons. First, the resulting proof is significantly longer and requires
the introduction of the concept of SiUGASMIO. Second, although it produces an i-UIOSS
Lyapunov function, to our knowledge there is no way to guarantee this method produces
a continuous i-UIOSS Lyapunov function in case of unbounded X, U, and D. In the case
in which these sets are compact, then this method should be able to be suitably modified
to produce a smooth i-UIOSS function using results contained in, e.g., Kellett and Teel
[21, 22].

Definition 20 (SiUGASMIO). A system x+ = f(x, u, d) with output y = h(x) is strong
incremental uniform globally asymptotically stable modulo inputs and outputs (SiUGAS-
MIO) if there exists β ∈ KL and αu, αy, φu, φy ∈ K∞ such that the implications

|∆x(j)| ≥ αu(|∆u(j)|)⊕ αy(|∆y(j)|) ∀j ∈ I0:k−1

=⇒ |∆x(j)| ≤ β(|∆x(0)| , j) ∀j ∈ I0:k

and

|∆x(k)| < αu(|∆u(k)|)⊕ αy(|∆y(k)|)
=⇒ |∆x(k + 1)| ≤ φu(|∆u(k)|)⊕ φy(|∆y(k)|),

for all x1, x2 ∈ X, u1,u2 ∈ U∞, d ∈ D∞, and k ∈ I≥0. �

In order to demonstrate that a system satisfying theorem 19 is also SiUGASMIO, we
require an alternative characterization of SiUGASMIO.

Proposition 21 (Alternative characterization of SiUGASMIO). A system is SiUGASMIO
if and only if there exists αu, αy ∈ K∞ such that we have that:
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1. There exists ν ∈ K such that we have the implication

|∆x(j)| ≥αu(|∆u(j)|)⊕ αy(|∆y(j)|) ∀j ∈ I0:k−1

=⇒ |∆x(j)| ≤ ν(|∆x(0)|) ∀j ∈ I0:k

for all x1, x2 ∈ X, u1,u2 ∈ U∞, d ∈ D∞, and k ∈ I≥0.

2. For every ε > 0 and r > 0, there exists J(r, ε) ∈ I≥0 such that for all x1, x2 ∈ X
satisfying |∆x(0)| ≤ r, we have the implication

|∆x(j)| ≥αu(|∆u(j)|)⊕ αy(|∆y(j)|) ∀j ∈ I0:k−1

=⇒ |∆x(j)| ≤ ε ∀j ∈ IJ :k

for all u1,u2 ∈ U∞, d ∈ D∞, and k ∈ I≥0.

3. There exists φu, φy ∈ K such that we have the implication

|∆x(k)| <αu(|∆u(k)|)⊕ αy(|∆y(k)|)
=⇒ |∆x(k + 1)| ≤ φu(∆u(k))⊕ φy(∆y(k))

for all x1, x2 ∈ X, u1,u2 ∈ U∞, d ∈ D∞, and k ∈ I≥0.

Proof. This proof follows that of Proposition 2.3 in Cai and Teel [10] as modified to add
the third condition in Proposition 10 in Allan and Rawlings [2].

Now we can show that a system satisfying theorem 19 is SiUGASMIO.

Proposition 22. If a system eq. (1) satisfies theorem 19, it is SiUGASMIO.

Proof. We aim to show that an i-UIOSS system satisfies the three implications in theo-
rem 21. The first two conditions can be proven in a fashion similar to that used in Lemma
3.6 in Cai and Teel [10]. The main change necessary is that the base case in several in-
stances of proof by induction must be modified because the measurement at time k is
included in the IOSS bound in that paper, while it is excluded in the i-UIOSS bound in
this paper.

Let ν(s) := β(s, 0), and note that, by evaluation of eq. (7) for k = 0, we have that
ν(s) ≥ s for all s ≥ 0.

Claim 23. There exists some αu ∈ K∞ such that for all x1, x2 ∈ X, u1,u2 ∈ U∞, and
d ∈ D∞, we have the implication

|∆x(j)| ≥αu(|∆u(j)|) ∀j ∈ I0:k−1

=⇒ |∆x(j)| ≤ β(|∆x(0)| , j)⊕ γy(‖∆y‖0:j−1)⊕ |∆x(0)|
2

∀j ∈ I0:k.

Proof. Let αu(·) be such that γu ◦ α−1
u (s) ≤ ν−1(s)/2, which implies that

γu ◦ α−1
u (s) ≤ ν−1(s)

2
≤ s

2
≤ s (25)
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for all s ≥ 0. We prove this claim by induction. In the base case, the antecedent is true
irrespective of the states and inputs. We thus require that

|∆x(0)| ≤ β(|∆x(0)| , 0)⊕ |∆x(0)|
2

for all x1, x2 ∈ X. Because β(s, 0) ≥ s for all s ≥ 0, the statement holds.
For the inductive case, we have that

|∆x(j)| ≥ αu(|∆u(j)|) ∀j ∈ I0:k (26)

|∆x(j)| ≤ β(|∆x(0)| , j)⊕ γy(‖∆y‖0:j−1)⊕ |∆x(0)|
2

∀j ∈ I0:k. (27)

Equation (26) implies
γu(‖∆u0:k‖) ≤ γu ◦ α−1

u (‖∆x‖0:k).

From eq. (27) and by noting that ν(s) := β(s, 0), we have

‖∆x‖0:k ≤ ν(|∆x(0)|)⊕ γy(‖∆y‖0:k−1)⊕ |∆x(0)|
2

.

Combining these two expressions with eq. (7) evaluated at k + 1, we obtain

|∆x(k + 1)| ≤β(|∆x(0)| , k + 1)⊕ γy(‖∆y‖0:k)

⊕ γu ◦ α−1
u

(
ν(|∆x(0)|)⊕ γy(‖∆y‖0:k−1)⊕ |∆x(0)|

2

)
.

We can then simplify this inequality with eq. (25) to obtain

|∆x(k + 1)| ≤β(|∆x(0)| , k + 1)⊕ γy(‖∆y‖0:k)

⊕ |∆x(0)|
2

⊕ γy(‖∆y‖0:k−1)⊕ |∆x(0)|
2

=β(|∆x(0)| , k + 1)⊕ γy(‖∆y‖0:k)⊕
|∆x(0)|

2
,

which completes the inductive case.

Claim 24. There exists some αy ∈ K∞ such that for all x1, x2 ∈ X, u1,u2 ∈ U∞, and
d ∈ D∞, we have the implication

|∆x(j)| ≥αu(|∆u(j)|)⊕ αy(|∆y(j)|) ∀j ∈ I0:k−1

=⇒ γy(‖∆y‖0:k−1) ≤ ∆x(0)

2

and |∆x(j)| ≤ β(|∆x(0)| , j)⊕ |∆x(0)|
2

∀j ∈ I0:k.
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Proof. Let αy ∈ K∞ be such that

γy ◦ α−1
y (s) ≤ ν−1(s)

2
≤ s

2
≤ s (28)

for all s ≥ 0. We prove this claim by induction. The proof of the base case is identical to
that in theorem 23. For the inductive case, suppose we have that

|∆x(j)| ≥ αu(|∆u(j)|)⊕ αy(|∆y(j)|) ∀j ∈ I0:k

and that

γy(‖∆y‖0:k−1) ≤ ∆x(0)

2
. (29)

As a result, we have that

γy(|∆y(k)|) ≤ γy ◦ α−1
y (|∆x(k)|)

≤ γy ◦ α−1
y

(
β(|∆x(0)| , k)⊕ γy(‖∆y‖0:k−1)⊕ |∆x(0)|

2

)
≤ γy ◦ α−1

y

(
β(|∆x(0)| , k)⊕ |∆x(0)|

2
⊕ |∆x(0)|

2

)
by application of theorem 23 and eq. (29). By definition of ν(·) and eq. (28), we have that

γy(|∆y(k)|) ≤ γy ◦ α−1
y

(
ν(|∆x(0)|)⊕ |∆x(0)|

2

)
≤ |∆x(0)|

2
,

which completes the first half of the implication. Second, we can apply theorem 23 at time
k + 1 to obtain

|∆x(k + 1)| ≤ β(|∆x(0)| , k + 1)⊕ γy(‖∆y‖0:k)⊕
|∆x(0)|

2

≤ β(|∆x(0)| , k + 1)⊕ |∆x(0)|
2

,

which completes the proof.

Claim 25. For every ε > 0 and r > 0, there exists J(r, ε) ∈ I≥0 such that for all x1, x2 ∈ X
satisfying |∆x(0)| ≤ r, we have the implication

|∆x(j)| ≥αu(|∆u(j)|)⊕ αy(|∆y(j)|) ∀j ∈ I0:k−1

=⇒ |∆x(j)| ≤ ε ∀j ∈ IJ :k

for all u1,u2 ∈ U∞, d ∈ D∞, and k ∈ I≥0.
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Proof. Fix ε, r > 0. There exists some T ∈ I≥0 such that

β(r ⊕ ε, T ) ≤ ε.

Suppose that |∆x(0)| ≤ r. We prove the implication

|∆x(iT + j)| ≥αu(|∆u(iT + j)|)⊕ αy(|∆y(iT + j)|) ∀iT + j ∈ I0:k−1

=⇒ |∆x(iT + j)| ≤ ε⊕ r/2i ∀iT + j ∈ I0:k

for j ∈ I≥0 and i ∈ I1:∞ by induction in i.
For the base case of i = 1, suppose we have that

|∆x(j)| ≥ αu(|∆u(j)|)⊕ αy(|∆y(j)|) ∀j ∈ I0:k−1.

for some k ≥ T . Then we can apply theorem 24 to obtain

|∆x(T + j)| ≤ β(|∆x(0)| , T + j)⊕ |∆x(0)|
2

≤ β(r, T )⊕ |r|
2

≤ ε⊕ |r|
2

for all T + j ∈ I0:k, which completes the case.
For the inductive case, suppose that, for some fixed i ∈ I≥0, we have that

|∆x(iT + j)| ≤ ε⊕ |r|
2i

∀iT + j ∈ I0:k

for all j ∈ I≥0 such that iT + j ∈ I0:k and that

|∆x(j)| ≥ αu(|∆u(j)|)⊕ αy(|∆y(j)|) ∀j ∈ I0:k−1.

for some k ≥ (i+ 1)T . Then we can apply theorem 24 to obtain

|∆x((i+ 1)T + j)| ≤ β(|∆x(iT + j)| , T )⊕ |∆x(iT + j)|
2

≤ β(ε⊕ |r|
2i
, T )⊕ ε

2
⊕ |r|

2i+1

≤ ε⊕ ε

2
⊕ |r|

2i+1

= ε⊕ |r|
2i+1

which completes the inductive case. Finally, let n := 1 ⊕ min{i ∈ I≥0 | r/2i ≤ ε} and
J := nT . We then have that

|∆x(j + J)| ≤ ε⊕ |r|
2n

= ε

for all j ∈ I0:k−J . Thus the claim is established.
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By application of theorem 24, we have the implication

|∆x(j)| ≥αu(|∆u(j)|)⊕ αy(|∆y(j)|) ∀j ∈ I0:k−1

=⇒ |∆x(j)| ≤ β(|∆x(0)| , k)⊕ |∆x(0)|
2

∀j ∈ I0:k.

Because we have that β(s, k) ≤ ν(s) for all s ≥ 0 and k ∈ I≥0, and furthermore that
ν(s) ≥ s/2 for all s ≥ 0, we immediately have the first condition of theorem 21. The
second condition is given by theorem 25.

Finally, if we have that

|∆x(k)| < αu(|∆u(k)|)⊕ αy(|∆y(k)|)

we can apply eq. (7) to obtain

|∆x(k + 1)| ≤ β(|∆x(k)| , 1)⊕ γu(|∆u(k)|)⊕ γy(|∆y(k)|)
≤ β(αu(|∆u(k)|)⊕ αy(|∆y(k)|), 1)⊕ γu(|∆u(k)|)⊕ γy(|∆y(k)|)
= β(αu(|∆u(k)|), 1)⊕ β(αy(|∆y(k)|), 1)⊕ γu(|∆u(k)|)⊕ γy(|∆y(k)|)

which is a bound of the form required for the third condition to hold. Thus i-UIOSS implies
SiUGASMIO.

In order to produce an i-UIOSS Lyapunov function, we first define an autonomous
difference inclusion related to the original system. We obtain a Lyapunov function for that
system, then show that it is an i-UIOSS Lyapunov function for the original system.

We first require a converse Lyapunov theorem for difference inclusions with no regularity
conditions. For an autonomous difference inclusion

x+ ∈ F (x)

let S(x) denote the set of trajectories originating from x.

Definition 26 (Lyapunov function). A function V : X → R≥0 is an exponential-decrease
Lyapunov function for a difference inclusion x+ ∈ F (x) and the (not necessarily closed)
set A if there exist α1, α2 ∈ K∞ and η ∈ (0, 1) such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) (30)

sup
x+∈F (x)

V (x+) ≤ ηV (x) (31)

for all x ∈ X. �

Proposition 27. The set A ⊆ X is globally asymptotically stable for the difference inclu-
sion x+ ∈ F (x), i.e., there exists β ∈ KL such that

|x(k)|A ≤ β(|x(0)|A , k) (32)

along all solutions to the inclusion, if and only if it admits an exponential-decrease Lya-
punov function V (·) for that set.
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Proof. The proof that such a Lyapunov function is sufficient for KL stability is completely
standard, and so we do not exclude it here. For the necessity of such a Lypaunov function,
we note that the argument used in Kellett and Teel [22, Sec. 6.1.1] does not depend on
any regularity conditions of the difference inclusion used there, and thus suffices for proof
of this proposition.

Theorem 28. Every i-UIOSS system x+ = f(x, u, d) with measurement y = h(x) admits
an i-UIOSS Lyapunov function.

Proof. Because the system is i-UIOSS, it is also SiUGASMIO. Let αu, αy, φu, φy ∈ K∞
and β ∈ KL come from the definition of SiUGASMIO. Define the difference inclusion for a
stacked system in which the second copy of the system pads the input u with a ball with
radius proportional to |x1 − x2|:

F (x1, x2, u, d) :=



[
f(x1, u, d)

f(x2, (u+ (α−1
u (|x1 − x2|)B) ∩ U, d))

]
if |x1 − x2| ≥
αy(|h(x1)− h(x2)|)[

x1

x1

]
otherwise

in which B is the closed unit ball. Then, define a map G(x1, x2) := F (x1, x2,U,D), in
which F (·) is evaluated at all possible values of inputs and outputs simultaneously.

Note that the system defined by [
x+

1

x+
2

]
∈ G(x1, x2)

is an autonomous difference inclusion. We next show that the set A := {(x1, x2) | x1 = x2}
is asymptotically stable for this system. As noted in Angeli [6, Lemma 2.3], the functions
|(x1, x2)|A and |x1 − x2| are equivalent in the sense that

|(x1, x2)|A =

√
2

2
|x1 − x2| .

First, we show that A is forward invariant. Suppose that x1 = x2. Then the system
evolves according to the first case. Furthermore, the input of the x2 component is not
padded because x1 = x2. Thus x+

1 = x+
2 = f(x1, u, d) for all u ∈ U and d ∈ D. Because

G(x1, x2) is the union of F (x1, x2, u, d) over all u ∈ U and d ∈ D, we have that (x+
1 , x

+
2 ) ∈ A

for all (x+
1 , x

+
2 ) ∈ G(x1, x2), and thus A is forward invariant.

Let z := (x1, x2), and let z ∈ S(z). Take some element z(k) from z. Suppose first that
|x1(j)− x2(j)| ≥ αy(|h(x1(j))− h(x2(j))|) for all j ∈ I0:k−1. Then the inclusion evolves
according to the first case for all those j. In particular, we have that x+

1 = f(x1, u, d) and
x+

2 = f(x2, u + ∆u, d), in which |∆u| ≤ α−1
u (|x1 − x2|). Because f(·) is SiUGASMIO, we

thus have that
|x1(j)− x2(j)| ≤ β(|x1(0)− x2(0)| , j)

for all j ∈ I0:k. We thus have a KL function upper bound for |z(k)|A. Now suppose that
|x1(j∗)− x2(j∗)| < αy(|h(x1(j∗))− h(x2(j∗))|) for some j∗ ∈ I0:k−1. We then have that
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x1(j∗ + 1) = x2(j∗ + 1) = x1(j∗), which gives a point z(j∗ + 1) ∈ A. Because A is forward
invariant, we have that

|z(j)|A = 0

for all j ∈ Ij∗+1:k. Thus the set A is globally asymptotically stable for the difference
inclusion z+ ∈ G(z), and thus that inclusion admits a Lyapunov function V : X×X→ R≥0.

There exist α1, α2 ∈ K∞ such that

α1(|x1 − x2|) ≤ V (x1, x2) ≤ α2(|x1 − x2|)

for all x1, x2 ∈ X by the equivalence of |(x1, x2)|A and |x1 − x2|. By construction of G(·),
there exists η ∈ (0, 1) such that whenever we have |∆x| ≥ αy(|∆y| ⊕ αu(|∆u|), we have
that

V (f(x1, u1, d), f(x2, u2, d)) ≤ ηV (x1, x2)

for all x1, x2 ∈ X, u1, u2 ∈ U, and d ∈ D. Now suppose that |∆x| < αy(|∆y| ⊕ αu(|∆u|).
Because f(·) is SiUGASMIO, we have that∣∣∆x+

∣∣ ≤ φu(|∆u|)⊕ φy(|∆y|).

We thus have that

V (x+
1 , x

+
2 ) ≤ α2(

∣∣∆x+
∣∣) ≤ α2 ◦ φu(|∆u|)⊕ α2 ◦ φy(|∆y|).

Let σu(s) := α2 ◦ φu(s) and σy(s) := α2 ◦ φy(s). Irrespective of whether or not |∆x| ≥
αy(|∆y| ⊕ αu(|∆u|), we have that

V (x+
1 , x

+
2 ) ≤ηV (x1, x2) + σu(|u1 − u2|) + σy(|y1 − y2|)

because ηV (x1, x2) is nonnegative. Thus V (·) is an (exponential-decrease) i-UIOSS Lya-
punov function for the original system x+ = f(x, u, d).

Having obtained an i-UIOSS Lyapunov function for a system satisfying theorem 19, we
can apply theorem 8 to note that it is i-UIOSS, which completes the proof.
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