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Abstract

The following report consists of definitions and results from mul-
tiple sources, complied and modified for the specific problem of in-
terest. Articles published by Teel and coworkers (Teel, 2013; Teel,
Hespanha, and Subbaraman, 2014) are the primary source of results
and definitions for Sections 2-4. However, Teel and coworkers consid-
ered difference inclusions with random stopping times creating extra
complications in analysis. We are interested in difference equations
without random stopping times so the analysis can be streamlined. In
Section 5, original results are presented analogous to the results for
deterministic systems in Lin, Sontag, and Wang (1996) and Jiang and
Wang (2002). In Section 6, we establish a slightly weaker stability
property that is, nonetheless, frequently used. The main result of this
work is summarized as follows: If a time-varying, stochastic, system
admits a stochastic Lyapunov function then the origin is uniformly
asymptotically stable in probability under three different definitions
(A classical version, an equivalent KL version, and a slightly weaker
KL version).

Basic Notation: Let R≥0 denote the non-negative real numbers; I≥0 denote the non-
negative integers. For a closed set S ⊂ Rn and x ∈ Rn, |x|S := infy∈S |x−y| is the Euclidean
distance to S. The set B (resp., Bo) denotes the closed (resp., open) unit ball in Rn. Given
a closed set S ⊂ Rn and ε > 0, S+εB (resp., S+εBo) represents the set {x ∈ Rn : |x|S ≤ ε}
(resp., {x ∈ Rn : |x|S < ε}). Let IS(x) denote the indicator function for the set S, i.e.,
IS(x) = 1 for all x ∈ S and IS(x) = 0 otherwise. The function α : R≥0 → R≥0 is of class
PD if it is continuous, α(s) > 0 for all s > 0, and α(0) = 0. The function α : R≥0 → R≥0
is of class K if it is continuous, strictly increasing, and α(0) = 0. The function α(·) is of
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class K∞ if it is of class K and unbounded. A function β : R≥0× I≥0 → R≥0 is of class KL
if for every fixed k the function β(·, k) is of class K and for fixed s the function β(s, ·) is
nonincreasing and limk→∞ β(s, k) = 0.

Probability Notation: Let B(Rm) denote the Borel field, the subsets of Rm generate
from open subsets of Rm through complements and finite and countable unions. A set
F ⊂ Rm is measurable if F ∈ B(Rm). A function f : Rp → Rn is measurable if for each
open set O ⊂ Rn, the set f−1(O) := {v ∈ Rp : f(v) ∈ O} ⊂ Rm.

1 Stochastic System and Preliminary Definitions

Consider a function f : Rn ×Rm × I≥0 → Rn and a stochastic, time-varying, discrete-time
system

x+ = f(x, v, i) (1)

in which x ∈ Rn is the current state at time i ∈ I≥0, v ∈ V ⊂ Rm is the (random) input,
and x+ ∈ Rn is the successor state at time i + 1. We assume that the system starts at
some state x ∈ Rn at time t ∈ I≥0. Let (Ω,F ,P) be a probability space for the inputs in
(1). In particular, we have the probability measure P (vi ∈ F ) := P ({ω ∈ Ω : vi(ω) ∈ F}),
i.e., the probability that vi is in the measurable set F . For i ∈ I≥t, let vi : Ω → V
be a sequence of independent, identically distributed (i.i.d.) random variables. Thus,
v−1i (F ) := {ω ∈ Ω : vi(ω) ∈ F} ∈ F for each F ∈ B(V). Let (Ft,Ft+1, . . . ) denote the
natural filtration of the sequence (vt, vt+1, . . . ). That is, Fi ⊂ F is all sets of the form
{ω ∈ Ω : (vt(ω), . . . , vi(ω)) ∈ F}, F ∈ B((V)i+1). Each random variable has the same
probability measure µ : B(V)→ [0, 1] defined as µ(F ) := P{ω ∈ Ω : vi(ω) ∈ F} and, for all
ω ∈ Ω, we define conditional expected value as

E [g(vt, . . . , vi, vi+1) | Fi] (ω) =

∫
V
g(vt(ω), . . . , vi(ω), v)µ(dv)

for each i ∈ I≥t and measurable g : Vi+2 → R.
We define a random process x as the sequence of random variables xi : dom xi ⊂

Ω → Rn and dom xi+1 ⊂ dom xi for all i ∈ I≥t. A random process x is adapted to the
natural filtration of v if xi+1 is Fi-measurable for each i ∈ I≥t. That is, x−1i+1 ⊂ Fi for each
F ∈ B(Rn). A random process x starting at the initial condition xt that is adapted to
the natural filtration of v, is a random solution of (1) if xi+1(ω) = f(xi(ω), vi(ω), i) for all
ω ∈ dom xi+1 and i ∈ I≥t. We use Φ(x, t) = x to denote the random solution of (1) given
the initial condition x (i.e., xt(ω) = x for all ω ∈ Ω) and φ(i;x, t) to denote the element
of Φ(x, t) at time i. For x = Φ(x, t) we use the convention that Is(φ(i;x, t)(ω)) = 0 for
ω /∈ dom φ(i;x, t) and we define

graph(x(ω)) :=
⋃

i∈I≥t

{(i, xi(ω))} =
⋃

i∈I≥t

{(i, φ(i;x, t)(ω))}

We impose the following standing assumption for the rest of this paper to ensure that
probabilistic notions of stability are well-defined.
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Assumption 1. Either the function f(·) is continuous or V is a countable set.

If f(·) is continuous, then compositions of f(·) with itself are also continuous and
therefore measurable. Thus, Φ(x, t) is measurable with respect to v. Alternatively, if V is
a countable set, then any integral over all v ∈ V may be evaluated as a summation and
continuity of f(·) or any function is not required.

Remark 1. To extend these results to discontinuous f(·) with V an uncountable set, we
need to utilize methods detailed in Grammatico, Subbaraman, and Teel (2013). However,
to streamline the subsequent analysis, which is already sufficiently complex, we exclude
these potential complications with Assumption 1.

Finally, we define robust sequential positive invariance for a sequence of sets (X (i))i≥0
relative to the stochastic system.

Definition 1 (Robust sequential positive invariance). A sequence of closed sets (X (i))i≥0
is robustly sequentially positive invariant relative to (1) if x ∈ X (i) implies x+ = f(x, v, i) ∈
X (i+ 1) for all v ∈ V and i ∈ I≥0.

2 Definitions of Stochastic Stability

We begin with the definition a stochastic Lyapunov function for (1), from which we establish
all the following forms of stability.

Definition 2 (Stochastic Lyapunov function). A measurable function V : Rn×I≥0 → R≥0
is a stochastic Lyapunov function on the closed sets (X (i))i≥0 for (1) if (X (i))i≥0 is robustly
sequentially forward invariant for (1) and there exists α1, α2 ∈ K∞ and α3 ∈ PD such that

α1(|x|) ≤ V (x, i) ≤ α2(|x|) (2)

E [V (f(x, v, i), i+ 1)] :=

∫
V
V (f(x, v, i), i+ 1)µ(dv) ≤ V (x, i)− α3(|x|) (3)

for all x ∈ X (i), i ∈ I≥0, and the integral is well defined.

Remark 2. The stochastic Lyapunov function is the one element of stochastic stability
theory that remains the most consistent across literature. Despite small variations in the
exact nature of α3 (PD, K, or some other similar form), the use of expected value of
the Lypaunov function, i.e., E [V (f(x, v, i), i+ 1)], on the left-hand side of (3) is nearly
universal.

2.1 Asymptotic stability in probability (KL-version)

We begin by defining asymptotic stability in probability using the modern convention of
comparison functions (specifically KL functions). The primary goal of this work is to
demonstrate that systems admitting a stochastic Lyapunov function satisfy this definition.
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Definition 3 (Asymptotic stability in probability - KL). Suppose that the sequence
(X (i))i≥0 is robustly sequentially positive invariant for (1). The origin is asymptotically
stable in probability, KL version, (ASiP-KL) for (1) on the sets (X (i))i∈I≥0

if for each
% > 0, there exists β% ∈ KL such that

P ((graph(Φ(x, t)) ∩ (I≥t+k × Rn)) ⊂ (I≥t+k × β%(|x|, k)B)) ≥ 1− % (4)

for all k ∈ I≥0, x ∈ X (t), and t ∈ I≥0.

Note that the condition in (4) is equivalent to |φ(t + i;x, t)(ω)| ≤ β%(|x|, k) for all
i ∈ I≥k. In contrast, consider the following weaker definition.

Definition 4 (Weak asymptotic stability in probability - KL). Suppose that the sequence
(X (i))i≥0 is robustly sequentially positive invariant for (1). The origin is weakly asymp-
totically stable in probability, KL version, (weakly ASiP-KL) for (1) on the sets (X (i))i≥0
if for each % > 0, there exists β% ∈ KL such that

P (|φ(t+ k;x, t)| ≤ β%(|x|, k)) ≥ 1− % (5)

for all k ∈ I≥0, x ∈ X (t), and t ∈ I≥0.

We illustrate the differences between these two definitions in Figure 1. We consider a
random process that produces two equally likely trajectories (ω = 1, 2). We choose % = 0.5
and select a function β%(·) such that the random process satisfies (5). Note that at any
given k ∈ I≥0 at least one of the two trajectories satisfies this bound and therefore this
random process satisfies (5). However, both of these trajectories violate the bound β%(·)
at some value of k ∈ I≥0. Thus, they do not satisfy (4) with this function β%(·), for any
value of % ∈ (0, 1).

The first (stronger) definition is often more desirable, but this property may be unre-
alistic for many systems of interest. Nonetheless, we establish that a stochastic Lyapunov
function for a system is sufficient to guarantee the stronger version of ASiP-KL. Further-
more, we establish that the first definition is, in fact, stronger than the second definition.

Remark 3. The distinction between the stronger and weaker definitions of ASiP-KL are
important. The desirable and achievable properties of a system must be carefully considered
before endeavoring to prove a specific type of stability. Consider a chemical process in which
the variable we are attempting to stabilize is a measure of product quality. Manufacturing
of a specific product is performed in one month long campaigns.

1. If any deviation of product quality beyond specified bound (i.e., β%) ruins the entire
production campaign, then the stronger definition of ASiP is desired. This definition
ensures that a campaign is successful at least 1−% of the time. If the weaker definition
is used, we allow for the possibility that all potential trajectories for the campaign
eventually violate this bound and all the campaigns fail.

2. If instead, we are able to blend the products or remove bad product at some cost
without ruining the entire campaign, then the stronger definition of ASiP is not
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Figure 1: For β% as shown, the random process φ(k;x), which produces two equally likely
trajectories (ω = 1, 2), satisfies (5) for % = 0.5. However, for this function β%, the random
process does not satisfy (4) for any % > 0.

required. The weaker definition of ASiP ensures that we respect the bound at least
1 − % of the time and over multiple campaigns we expect that 1 − % of product
manufactured meets specifications.

We must also consider what is an achievable form of ASiP for the system and distur-
bance of interest. For zero mean disturbances with small variability that vanish for x = 0,
we expect that the stronger definition is achievable. If the disturbances become large, the
stronger result may be impossible to guarantee; eventually, a sequence of large disturbances
occurs and violates any quality bound with probability one.

Remark 4. In the literature, the weaker definition is often used even if the system of
interest may admit the stronger result. We trace this tendency back to Krstic and Deng’s
initial work that focused on the weaker definition (Krstic and Deng, 1998).

2.2 Uniform asymptotic stability in probability

For the deterministic analog, we are able to directly construct the KL bound from the
Lyapunov function. In the stochastic setting, this approach does not appear tractable.
Therefore, we first establish uniform asymptotic stability in probability (UASiP) from
the stochastic Lyapunov function and use this result to establish ASiP-KL. We stress
that uniformity is essential to construct a valid KL bound. Here we provide definitions for
uniform stability in probability, uniform attractivity in probability, and uniform asymptotic
stability in probability. We define these properties exclusively in graph notation.

Definition 5 (Uniform stability in probability). Suppose that the sequence (X (i))i≥0 is
robustly sequentially positive invariant for (1). The origin is said to be uniformly stable
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in probability (USiP) on the sets (X (i))i≥0 for (1) if for each % > 0 there exists γ% ∈ K∞
such that

P (graph(Φ(x, t)) ⊂ (I≥t × γ%(|x|)B)) ≥ 1− % (6)

for all x ∈ X (t) and t ∈ I≥0.

Remark 5. The condition in (6) is equivalent to |φ(i;x, t)(ω)| ≤ γ%(|x|) for all i ∈ I≥t,
x ∈ X (t), and t ∈ I≥0.

Definition 6 (Uniformly attractive in probability). Suppose that the sequence (X (i))i≥0
is robustly sequentially positive invariant for (1). The origin is uniformly attractive in
probability (UAiP) on the sets (X (i))i≥0 for (1) if for each % > 0, ε > 0, and ∆ > 0 there
exists J ∈ I≥0 such that

P ((graph(Φ(x, t)) ∩ (I≥J+t × Rn)) ⊂ (I≥J+t × εBo)) ≥ 1− % (7)

for all x ∈ ∆B ∩ X (t) and t ∈ I≥0.

Remark 6. The condition in (6) is equivalent to |φ(i;x, t)(ω)| < ε for all i ∈ I≥J+t.

Definition 7 (Uniformly asymptotically stable in probability). The origin is uniformly
asymptotically stable (UASiP) for (1) if it is USiP and UAiP for (1).

A Weaker Form of ASiP

In some cases, a weaker (non-uniform) definition of attraction and asymptotic stability is
used.

Definition 8 (Attraction in probability). Suppose that the sequence (X (i))i≥0 is robustly
sequentially positive invariant for (1). The origin is attractive in probability (AiP) on the
sets (X (i))i≥0 for (1) if

P
(

lim
i→∞
|φ(i;x, t)| = 0

)
= 1 (8)

for all x ∈ X (t) and t ∈ I≥0.

Definition 9 (Asymptotic stability in probability). The origin is asymptotically stable
(ASiP) on the sets (X (i))≥0 for (1) if it is USiP and AiP for (1).

Establishing that a stochastic Lyapunov function guarantees (non-uniform) attraction
in probability is easier than UAiP (Kushner, 1965). We also note that for continuous,
time-invariant f(·), AiP (combined with USiP) may be sufficient to establish UASiP. In
the deterministic analogs of these definitions, this result holds (Jiang and Wang, 2002).
In the stochastic setting, however, we are unaware of any proofs that rigorously establish
this fact. Theorem 2.3 in Krstic and Deng (1998) states that AiP combined with USiP
is sufficient to establish the existence of a KL upper bound (i.e., weak ASiP-KL) for
continuous, time-invariant f(·), but the proof appears incomplete.

In Appendix A, we provide a more extensive discussion of the subtleties concerning
uniform and non-uniform asymptotic stability results in the deterministic setting.
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2.3 Uniform recurrence

We also define uniform recurrence for some open set O and note its similarity to UAiP.
The recurrence condition requires that the solution reaches the set O at least once within
J steps.

Definition 10 (Uniformly recurrent). Suppose that the sequence (X (i))i≥0 is robustly
sequentially positive invariant for (1). The open set O is uniformly recurrent on the sets
(X (i))i≥0 for (1) if for each % > 0 and ∆ > 0 there exists J ∈ I≥0 such that

P ((graph(Φ(x, t)) ∩ (I≤J+t ×O)) 6= ∅) ≥ 1− % (9)

for all x ∈ ∆B ∩ X (t) and t ∈ I≥0.1

3 Reachability and viability probabilities

3.1 Uniform reachability

Reachability probabilities for a closed set S ⊂ Rn are defined as

m∩S(0, x, t) := 0

m∩S(j + 1, x, t) :=

∫
V

max{IS(f(x, v, t)),m∩S(j, f(x, v, t), t+ 1)}µ(dv)

for all j ∈ I≥0, x ∈ X (t), and t ∈ I≥0.
The reachability probabilities m∩S(j, x, t) define the probability that the random solu-

tion starting from x /∈ S reaches the set S, at least once, within j time steps.

Lemma 1. If S ⊂ Rn is closed then m∩S(j, x, t) ∈ [0, 1] is well defined and m∩S(j +
1, x, t) ≥ m∩S(j, x, t) for all j ∈ I≥0, x ∈ X (t), and t ∈ I≥0.

Proposition 2. Let S ⊂ Rn be closed. For each j ∈ I≥0, x ∈ X (t), and t ∈ I≥0, we have
that

m∩S(j, x, t) = E
[

max
i∈{1,...,j}

Is(φ(t+ i;x, t))

]
3.2 Uniform viability

The viability probabilities for a closed set S ⊂ Rn are defined as

m⊂S(0, x, t) := 1

m⊂S(j + 1, x, t) :=

∫
V
IS(f(x, v, t))m⊂S(j, f(x, v, t), t+ 1)µ(dv)

for all j ∈ I≥0, x ∈ X (t), and t ∈ I≥0.
The viability probabilities m⊂S(j, x, t) define the probability that the random solution

starting at x ∈ S remains in S for j time steps.

1If x ∈ O, we satisfy (9) with J = 0 so we need establish this property only for x ∈ ∆B∩X (t)∩ (Rn \O).
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Lemma 3. If S ⊂ Rn is closed, then x→ m⊂S(k, x, t) ∈ [0, 1] is well-defined and m⊂S(k+
1, x, t) ≤ m⊂S(k, x, t) for all k ∈ I≥t, x ∈ X (t), and t ∈ I≥0.

Proposition 4. Let S ⊂ Rn be closed. For each j ∈ I≥0, x ∈ X (t), and t ∈ I≥0 we have
that

m⊂S(j, x, t) = E

[
j∏

i=1

IS(φ(t+ i;x, t))

]

4 Main Results

4.1 USiP

In this subsection, we establish that the existence of a stochastic Lyapunov function is
sufficient for uniform stability in probability for (1). The proof uses reachability proba-
bilities to define the probability that the system reaches some set S at least once. This
set S is taken to be the complement of the stability region εBo. We proceed by defining ε
sufficiently large that the probability of reaching this set S is less than % for all k ∈ I≥t.
Thus, the probability that we stay in the complement of S for all k ∈ I≥t is greater than
1− %.

Theorem 5. If there exists a stochastic Lyapunov function on the sets (X (i))i≥0 for (1),
then the origin is USiP on the sets (X (i))i≥0 for (1).

Proof. Let ε > 0, x = Φ(x, t) for some x ∈ X (t), t ∈ I≥0, and define S := Rn \ εBo. We
claim that α1(ε)m∩S(j, x, t) ≤ V (x, t) for all (j, x) ∈ I≥0 × Rn. The bound holds for j = 0
since m∩S(0, x, t) = 0 ≤ V (x, t) for all x ∈ X (t), t ∈ I≥0. Suppose the bound holds for
some j ∈ I≥0. Then using the definitions of IS and m∩S and α1(|x|) ≤ V (x, t) for all
x ∈ X (t) and t ∈ I≥0, we have

α1(ε)m∩S(j + 1, x, t) ≤
∫
V

max{α1(ε)IS(f(x, v, t)), α1(ε)m∩S(j, f(x, v, t), t+ 1)}µ(dv)

≤
∫
V

max{V (f(x, v, t), t+ 1), V (f(x, v, t), t+ 1)}µ(dv)

≤
∫
V
V (f(x, v, t), t+ 1)µ(dv) ≤ V (x)

The final inequality is due to the expected cost decrease of the stochastic Lyapunov func-
tion. Then, by induction, the desired bound holds for all j ∈ I≥0.

Using V (x, t) ≤ α2(|x|), it follows that m∩S(j, x, t) ≤ α2(|x|)/α1(ε) for all (j, x) ∈
I≥0 ×X (t), t ∈ I≥0. Choose % > 0 and define γ%(|x|) := α−11 (α2(|x|)/%). Note that γ%(·) is
a composition of K∞ functions and, thus, γ% ∈ K∞.

For any x ∈ X (t)\{0}, t ∈ I≥0 define S := Rn\γ%(|x|)Bo and we have that m∩S(j, x, t) ≤
% for all j ∈ I≥0. From Proposition 2 we have

P
(
graph(x) ∩ (I[t,t+j] × S) 6= ∅

)
= E

[
max

i∈{1,...,j}
IS(φ(t+ i;x, t))

]
= m∩S(j, x, t) ≤ %
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Letting j →∞ and noting that the above probability statement is the complement of (6),
we have that

P (graph(x) ⊂ (I≥t × γ%(|x|)Bo)) ≥ 1− % (10)

This statement holds for any x ∈ X (t) \ {0} and t ∈ I≥0. Note that we can replace Bo with
B since Bo ⊂ B.

Finally, if x = 0, we know that V (x, t) = 0 and

E [V (φ(t+ 1;x, t), t+ 1)] :=

∫
V
V (f(x, v, t), t+ 1)µ(dv) ≤ V (x, t) = 0

Thus, V (φ(t+ 1;x, t)) = 0 with probability one. Furthermore,

E [V (φ(k + 1;x, t), k + 1) | Fk] (ω) :=

∫
V
V (f(φ(k;x, t)(ω), v, k), k + 1)µ(dv)

≤ V (φ(k;x, t)(ω), k)

and by induction V (φ(k;x, t), t) = 0 with probability one for all k ∈ I≥t, t ∈ I≥0. Using
the K∞ bounds on V (·), we also have that φ(k;x, t) = 0 with probability one, i.e.,

P (graph(x) ⊂ (I≥t × {0}) = 1 ≥ 1− %

for x = 0 and all k ∈ I≥t, t ∈ I≥0. Combine this equation with (10) to give

P (graph(x) ⊂ (I≥t × γ%(|x|)B)) ≥ 1− %

and the proof is complete.

4.2 Uniform Recurrence

In this subsection, we establish that a stochastic Lyapunov function is sufficient to guar-
antee that for any r > 0 the set O := rBo is uniformly recurrent on the sets (X (i))i≥0 for
(1). We achieve this through two propositions.

We begin by demonstrating that for each r > 0 and any R > r uniform recurrence
of O := rBo ∪ (Rn \ RB), combined with uniform stability in probability implies uniform
recurrence of rBo. We establish this by using uniform stability in probability to bound the
probability of entering O by means of |x| exceeding R. Therefore, the remaining probability
of recurrence for O must be a consequence of the uniform recurrence of the bounded set
rBo.

Proposition 6. Let r > 0. The set rBo is uniformly recurrent on the sets (X (i))i≥0 for
(1) if the origin is uniformly stable in probability on the sets (X (i))i≥0 for (1) and, for
each R > r, the open set O := rBo∪ (Rn \RB) is uniformly recurrent on the sets (X (i))i≥0
for (1).

Proof. Choose some x ∈ X (t), t ∈ I≥0. Let p∩O(x, t, J) represent the probability in (9),
and p⊂εB0(x, t) represent the probability in (6). Given a closed set C ⊂ Rn, let

p∩C(x, t) := P (graph(Φ(x, t)) ∩ (I≥t × C) 6= ∅)
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Define open sets Or := rBo and OR := Rn \RB and the closed set CR := Rn \RBo. Then

p∩(Or∪OR)(x, t, J) ≤ p∩Or(x, t, J) + p∩CR(x, t)

p∩CR(x, t) + p⊂RBo(x, t) = 1 (11)

Let ∆ > 0 and % > 0. Using uniform stability in probability, choose R > 0 large so
that p⊂RBo(x, t) ≥ 1− %/2 for all x ∈ ∆B ∩ X (t), t ∈ I≥0. Then, using uniform recurrence
of Or ∪OR, pick J ∈ I≥t such that p∩(Or∪OR)(x, t, J) ≤ 1− %/2 for all x ∈ ∆B ∩ X (t) and
t ∈ I≥0. Using (11) we have

2− % ≤ p∩(Or∪OR)(x, t, J) + p⊂RBo(x, t)

≤ p∩Or(x, t, J) + p∩CR(x, t) + p⊂RBo(x, t)

= p∩Or(x, t, J) + 1

for all x ∈ ∆B ∩ X (t) and t ∈ I≥0. Subtracting 1 from both sides of this inequality
establishes uniform recurrence of Or.

Next, we demonstrate that the existence of a stochastic Lyapunov function guarantees
that for each r > 0 and any R > r, the set O := rBo∪(Rn \RB) is uniformly recurrent. We
establish this result by using viability probabilities for the set S defined as the complement
of O. Using this construction, we demonstrate that there exists a value J for which the
probability of remaining in S is less than %. Therefore, the probability of entering O at
least once before k = J is greater than 1−%. We then invoke Theorem 5 to establish USiP
from the stochastic Lyapunov function and Proposition 6 to complete the proof.

Proposition 7. If there exists a stochastic Lyapunov function on the sets (X (i))i≥0 for
(1), then for each r > 0 the set rBo is uniformly recurrent on the sets (X (i))i≥0 for (1).

Proof. We first choose R > r > 0 and define O := rBo ∪ (Rn \ RB) and S := Rn \ O. Let
x = Φ(x, t) for some x ∈ X (t), t ∈ I≥0. We define the event in (9) and its complement for
some J ∈ I≥0, respectively, as

R := graph(x) ∩ (I≤J+t ×O) 6= ∅
Rc := (graph(x) ∩ (I≤J+t × Rn)) ⊂ (I≤J × S)

Note that Rc requires that the trajectory never leaves S (which is the complement of O in
Rn). Using Proposition 4 we can write the probability of Rc, given x ∈ S, as follows.

P(Rc) = E

[
t+J∏

i=t+1

IS(φ(i;x, t))

]
= m⊂S(J, x, t) (12)

For all x ∈ S we know that α3(|x|) ≥ miny∈S α3(|y|) := ν. Note that the minimum is
well defined because S is compact and α3(·) is continuous.2 Furthermore, ν > 0 because
α3 ∈ PD and S does not contain the origin. Then for all x ∈ S ∩ X (t) and t ∈ I≥0,∫

V
V (f(x, v, t), t+ 1)µ(dv) ≤ V (x, t)− ν

2This part of the proof requires α3(·) to be continuous, i.e., the reason that PD is restricted to continuous
functions.
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We claim that (νi)m⊂S(i, x, t) ≤ V (x, t) for all i ∈ I≥0, x ∈ S ∩ X (t), and t ∈ I≥0. This
bound holds for i = 0 since 0 ≤ V (x, t) for all x ∈ X (t). Suppose the bound holds for some
i ∈ I≥0 and let x ∈ S ∩ X (t) and t ∈ I≥0. Then

ν(i+ 1)m⊂S(i+ 1, x, t) = (ν + iν)

∫
V
IS(f(x, v, t))m⊂S(i, f(x, v, t), t+ 1)µ(dv)

≤ ν +

∫
V
V (f(x, v, t), t+ 1)µ(dv) ≤ V (x)

Thus, by induction, this bound holds for all i ∈ I≥0. Let % > 0 and ∆ > 0. Pick J ∈ I≥0
large enough so that α2(∆) ≤ νJ%. Thus, we have

m⊂S(J, x, t) ≤ V (x, t)/(νJ) ≤ α2(∆)/(νJ) ≤ %

for all x ∈ ∆B ∩ S ∩ X (t) and t ∈ I≥0. Using (12) and recalling that R is the complement
of Rc, we have that for any % > 0, ∆ > 0, there exists J ∈ I≥0 such that

P(R) = 1− P(Rc) = 1−m⊂S(J, x, t) ≥ 1− % (13)

for all x ∈ ∆B ∩ S ∩ X (t) and t ∈ I≥0. Furthermore, if x /∈ S, we immediately have that
the P(R) = 1 for all J ≥ 0. Therefore, for all R > r > 0 the set O is uniformly recurrent
on the sets (X (i))i≥0 for (1).

From the stochastic Lyapunov function and Theorem 5, we also know that the origin
is uniformly stable in probability on the sets (X (i))i≥0 for (1). Therefore, by Proposition
6, for each r > 0 the set rBo is uniformly recurrent on the sets (X (i))i≥0 for (1) and the
proof is complete.

4.3 UASiP

Here we establish that uniform recurrence combined with USiP implies UASiP. For this
results, we need to prove only that the system is also UAiP. Uniform recurrence ensures
that we reach the set rBo in no more than J steps with probability of at least 1−%/2. Then
USiP ensures that after reaching this set, we stay within the larger set εBo with probability
of at least 1−%/2. Finally, we establish that the probability of both these events occurring
is at least 1− % and therefore the system is UAiP.

Proposition 8. If the origin is USiP on the sets (X (i))i≥0 for (1) and for each r > 0,
rBo is uniformly recurrent on the sets (X (i))i≥0 for (1), then the origin is UASiP on the
sets (X (t))t≥0 for (1).

Proof. We need demonstrate only that the origin is uniformly attractive in probability.
Let ε > 0, %̃, and ∆ > 0 be given. For % = %s := %̃/2 and γ%(·) defined such that (6)
holds, let r = γ−1% (ε). For % = %r := %̃/2, ∆ = ∆, and O = Or := rBo, let J ∈ I≥0 be
such that (9) holds. We must establish that (7) holds with % = %̃. Let x ∈ ∆B ∩ X (t),
t ∈ I≥0, and x = Φ(x, t). With the following definition of the event Ωa we must show that
P (Ωa) ≥ 1− %̃.

Ωa := {ω ∈ Ω : (graph(x(ω)) ∩ (I≥t+J × Rn)) ⊂ (I≥t+J × (εBo))}



TWCCC Technical Report 2020-02 12

First we define

Ωr := {ω ∈ Ω : graph(x(ω)) ∩ (I≤t+J ×Or) 6= ∅}

and note that P(Ωr) ≥ 1−%r from the definition of uniformly recurrent. Moreover, P(Ωa) ≥
P(Ωa ∩ Ωr).

Next, we establish that

P(Ωa ∩ Ωr) ≥ (1− %s)P(Ωr) (14)

Let Ĵ(ω) := inf{j ∈ I≥t : xj(ω) ∈ Or} and p(ω) = xĴ(ω)(ω) for all ω ∈ dom Ĵ , i.e., the

time j and the state xj for which x(ω) first enters the set Or. These functions are Fi-
measurable because xi is Fi-measurable. We further define Ei := {ω ∈ Ω : Ĵ(ω) = i} for al
i ∈ {t, . . . , t + J}, i.e., the event that x(ω) first enters the set Or at time i. Observe that
Ωr =

⋃t+J
i=t Ei and the sets Ei are disjoint (the trajectory can enter the set Or for the first

time only once). Since Ei are disjoint, we need only to show that

P (Ωa ∩ Ei) ≥ (1− %s)P(Ei) ∀ i ∈ {t, . . . , t+ J} (15)

Let i ∈ {t, . . . , t + J} be given. Then we have that pi(ω) ∈ rB for all ω ∈ Ei. We fix
(vt(ω), . . . , vi−1(ω)) so that i = Ĵ(ω) and we define z as the random solution starting from
pi(ω), i.e., z = Φ(pi(ω), i). From the definitions of pi(ω), Ωa, Ei, and (6), it follows that
for all ω ∈ Ei,

P (Ωa | Fi) (ω) = P (graph(z) ⊂ (I≥i × εBo)) ≥ 1− %s

I.e., given we enter Or (ω ∈ Ei), the probability that we remain in εBo is greater than
or equal to the probability of stability (1 − %s). Therefore, according to Proposition 2 in
Fristedt and Gray (1997, s. 21.1),

P(Ωa ∩ Ei) = E [P(Ωa | Fi)IEi ]

≥ (1− %s)P(Ei)

which is (15). Since Ei are disjoint, we also establish (14).
Finally, we use (14) to conclude

P (Ωa) ≥ P (Ωa ∩ Ωr)

≥ (1− %s)P (Ωr)

≥ (1− %s)(1− %r)
≥ 1− %s − %r = 1− %̃

and the proof is complete.

Theorem 9. If there exists a stochastic Lyapunov function on the sets (X (i))i≥0 for (1),
then the set origin is UASiP on the sets (X (i))i≥0 for (1).

Proof. From Theorem 5, the origin is USiP on the sets (X (i))i≥0 for (1). From Proposition
7, for each r > 0, rBo is uniformly recurrent on the sets (X (i))i≥0 for (1). Finally, from
Proposition 8, we have that the origin is UASiP on the sets (X (i))i≥0 for (1).
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5 ASiP-KL
Lemma 10. The origin is uniformly attractive in probability on the set (X (i))i≥0 if and
only if for each % > 0, there exists a family of mapping (Jr)r>0 satisfying:

1. for each fixed r > 0, Jr : R>0 → R>0 is continuous and is strictly decreasing;

2. for each ε > 0, Jr(ε) is (strictly) increasing as r increases and limr→∞ Jr(ε) =∞.

such that the random solution x = Φ(x, t) satisfies

P ((graph(x) ∩ (I≥t+J × Rn)) ⊂ (I≥t+J × (εBo))) ≥ 1− % (16)

for all x ∈ rB ∩ X (t), t ∈ I≥0, and J ≥ Jr(ε).

Proof. Sufficiency is clear as the requirements for (Jr)r>0 imply UGAiP. Now we show
necessity. Let % > 0. For any r, ε > 0, let

Ar,ε := {J ∈ I≥0 :

P ((graph(Φ(x, t)) ∩ (I≥t+J × Rn)) ⊂ (I≥t+J × (εBo))) ≥ 1− %,
∀ x ∈ rB ∩ X (t), t ∈ I≥0}

From UAiP, we know that Ar,ε 6= ∅ for any r, ε > 0. Moreover, Ar,ε1 ⊂ Ar,ε2 if ε1 ≤ ε2 and
Ar1,ε ⊃ Ar2,ε if r1 ≤ r2.

Now define J̄r(ε) := inf Ar,ε. Then J̄r(ε) < ∞, for any r, ε > 0, and it satisfies
J̄r(ε1) ≥ J̄r(ε2) if ε1 ≤ ε2 and J̄r1(ε) ≤ J̄r2(ε) if r1 ≤ r2. So we can define for any r, ε > 0,

J̃r(ε) :=
2

ε

∫ ε

ε/2
J̄r(s)ds

Since J̄r(·) is decreasing, J̃r(·) is well defined and is locally absolutely continuous. Also

J̃r(ε) ≥
ε

2
J̄r(ε)

∫ ε

ε/2
ds = J̄r(ε)

Furthermore,

dJ̃r(ε)

dε
= − 2

ε2

∫ ε

ε/2
J̄r(s)ds+

2

ε

(
J̄r(ε)−

1

2
J̄r(ε/2)

)
=

1

ε

(
J̄r(ε)−

2

ε

∫ ε

ε/2
J̄r(s)ds

)
+

1

ε

(
J̄r(ε)− J̄r(ε/2)

)
=

1

ε

(
J̄r(ε)− J̃r(ε)

)
+

1

ε

(
J̄r(ε)− J̄r(ε/2)

)
≤ 0

hence, J̃r(·) decreases. Since J̄(·)(ε) increases, from the definition, J̃(·)(ε) also increases.
Finally, define

Jr(ε) := J̃r(ε) +
r

ε
(17)

Then it follows that for any % we have defined Jr(ε) such that
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• for any fixed r > 0, Jr(·) is continuous, maps R>0 → R>0, and is strictly decreasing.

• for any fixed ε > 0, Jr(ε) is increasing as r increases, and limr→∞ Jr(ε) =∞

Finally, we show that Jr(ε) defined in (17) satisfies (16). Choose any x ∈ Rn and J
such that |x| ≤ r and J ≥ Jr(ε). Then

J ≥ Jr(ε) > J̃r(ε) ≥ J̄r(ε)

By the definition of J̄r(ε), (16) holds as claimed.

Proposition 11. The origin is ASiP-KL on the sets (X (i))i≥0 for (1) if and only if the
origin is UASiP on the sets (X (i))i≥0 for (1).

Proof. [ =⇒ ] Assume that the origin is ASiP-KL on the sets (X (i))i≥0 for (1). Choose
% > 0. Let k = t and γ%(s) := β%(s, 0). Thus, γ% ∈ K and satisfies (6) for all x ∈ X (t),
t ∈ I≥0. UAiP follows from the fact that for any ∆ > 0, limk→∞ β%(∆, k) = 0. So for any
∆ > 0, ε > 0, we can always find a J ∈ I≥0 such that (7) holds.

[ ⇐= ] Assume that the origin is UASiP on the sets (X (i))i≥0 for (1). Choose % > 0.
In the subsequent steps, we reference the following probabilistic statement for some ε > 0.

P ((graph(Φ(x, t)) ∩ (I≥t+k × Rn)) ⊂ (I≥t+k × εB)) ≥ 1− % (18)

To establish this part of the proof, we must demonstrate that there exists β% ∈ KL such
that (18) holds for all k ∈ I≥0, x ∈ X (t), and t ∈ I≥0, in which ε := β%(|x|, k).

Let γ%(·) be defined according to the definition of USiP. It follows that (18) holds for
ε ≥ γ%(|x|) and all k ∈ I≥0, x ∈ X (t), and t ∈ I≥0.

Let (Jr)r>0 be as defined in Lemma 10. For each r > 0 denote ψr := J−1r . Then, for
each r > 0, ψr : R>0 → R>0 is again continuous and strictly decreasing. We also write
that ψr(0) =∞.

We claim that for any r > 0, (18) holds for all k ∈ I≥0, x ∈ rB ∩ X (t), and t ∈ I≥0
with ε ≥ ψr(k). It follows from the definition of the maps Jr that, for any r, ε > 0,
if x ∈ rB ∩ X (t), k ≥ Jr(ε) then (18) is satisfied with this ε for all t ∈ I≥0. Since
k = Jr(ψr(k)) if k > 0, we have for any x ∈ rB∩X (t) that (18) is satisfied with ε ≥ ψr(k)
for all k > 0 and t ∈ I≥0. Since ψr(0) =∞, this condition is satisfies for k = 0 as well and
the claim is true.

For any s ∈ R≥0 and k ∈ I≥0, let

ψ̄(s, k) := min

{
γ%(s), inf

r∈(s,∞)
ψr(k)

}
By definitions of γ% and ψr, we have that for all x ∈ X (t), t ∈ I≥0 and k ∈ I≥0, (18) is
satisfied for ε ≥ ψ̄(|x|, k). Moreover, for any fixed k, ψ̄(·, k) is increasing. For any fixed
r, ψr(k) decreases to 0 as k → ∞. Therefore, for any fixed s, ψ̄(s, k) decreases to 0 as
k →∞.
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Note that ψ̄ satisfies almost all of the conditions to be a KL function. Unfortunately,
we do not know that it is continuous in s so we upper bound ψ̄ by such a function. Define

ψ̂(s, k) :=

∫ s+1

s
ψ̄(s′, k)ds′ (19)

Then ψ̂(·, k) is a continuous function and it satisfies

ψ̂(s, k) ≥ ψ̄(s, k)

∫ s+1

s
ds′ = ψ̄(s, k)

It follows that
∂ψ̂(s, k)

∂s
= ψ̄(s+ 1, k)− ψ̄(s, k) ≥ 0

and hence ψ̂ is increasing. Since for any fixed s, ψ̄(s, ·) decreases, so does ψ̂(s, ·). Note
that

ψ̄(s, t) ≤ ψ̄(s, 0) ≤ γ%(s)

so by the Lebesgue-dominated convergence theorem, for any fixed s ≥ 0,

lim
k→∞

ψ̂(s, k) =

∫ s+1

s
lim
k→∞

ψ̄(s′, k)ds′ = 0

Next, we define

ψ̃(s, k) = ψ̂(s, k) +
s

(s+ 1)(k + 1)

and note that

• for any fixed k, ψ̃(·, k) is continuous and strictly increasing

• for any fixed s ≥ 0, limk→∞ ψ̃(s, k) = 0

We can not guarantee, however, that ψ̃(0, k) = 0 for all k ∈ I≥0. Thus, we define

β%(s, k) :=
√
γ%(s)

√
ψ̃(s, k)

By definition, ψ̄(s, k) ≤ γ%(s) and we have

β%(s, k) ≥
√
γ%(s)

√
ψ̄(s, k) ≥ ψ̄(s, k)

for all s ∈ R≥0 and k ∈ I≥0. Therefore, (18) holds for all k ∈ I≥0, x ∈ X (t), and t ∈ I≥0 in
which ε := β%(|x|, k).

Finally, we establish that β% ∈ KL. For fixed k, ψ̃(·, k) is continuous and strictly
increasing, γ%(·) is continuous and strictly increasing, and therefore the product of these
two functions is also continuous and strictly increasing. Furthermore, we have that

β%(0, k) ≤
√
γ%(0)

√
ψ̃(0, 0) = 0

√
ψ̃(0, 0) = 0
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Thus, for fixed k ∈ I≥0, β%(·, k) ∈ K. For fixed s ∈ R≥0,

lim
k→∞

β%(s, k) =
√
γ%(s)

√
lim
k→∞

ψ̃(s, k) =
√
γ%(s) · 0 = 0 (20)

Therefore, β% ∈ KL and the proof is complete.

Theorem 12. If there exists a stochastic Lyapunov function relative to the origin on the
sets (X (i))i≥0 for (1), then the origin is ASiP-KL on the sets (X (i))i≥0 for (1).

Proof. We use Theorem 9 and then Proposition 11 to complete the proof.

6 A weaker version of ASiP

Proposition 13. If the origin is ASiP-KL on the sets (X (i))i≥0 for (1), then the origin
is weakly ASiP-KL on the sets (X (t))t≥0 for (1).

Proof. Choose % > 0 and set x := Φ(x, t) for some x ∈ X (t) and t ∈ I≥0. Using the
definition of ASiP-KL what have that there exists β% ∈ KL such that

P ((graph(x) ∩ (I≥t+k × Rn)) ⊂ (I≥t+k × β%(|x|, k)B)) ≥ 1− %

for all k ∈ I≥0, x ∈ X (t), and t ∈ I≥0. We note that

{(t+ k, φ(t+ k;x, t)(ω))}
= graph(x(ω)) ∩ ({t+ k} × Rn) ⊂ graph(x(ω)) ∩ (I≥t+k × Rn)

Therefore,

(graph(x(ω)) ∩ (I≥t+k × Rn)) ⊂ (I≥t+k × β%(|x|, k)B)

=⇒ {(t+ k, φ(t+ k;x, t)(ω))} ⊂ (I≥t+k × β%(|x|, k)B)

=⇒ |φ(t+ k;x, t)(ω)| ≤ β%(|x|, k)

for all ω ∈ dom φ(t+ k;x, t). Finally, we have

P (|φ(t+ k;x, t)| ≤ β%(|x|, k))

≥ P ((graph(x) ∩ (I≥t+k × Rn)) ⊂ (I≥t+k × β%(|x|, k)B))

≥ 1− %

for all k ∈ I≥0, x ∈ X (t), and t ∈ I≥0 which completes the proof.

Corollary 14. If there exists a stochastic Lyapunov function relative to the origin on the
sets (X (i))i≥0 for (1), then the origin is weakly ASiP-KL the sets (X (i))i≥0 for (1).

Proof. We use Theorem 12 and then Proposition 13 to complete the proof.
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A Deterministic Stability Parallels

In this section of the appendix, we provide deterministic parallels for some of the definitions
and results in the body of the report. We consider a function f : Rn → Rn and a discrete-
time system with state x ∈ Rn written as

x+ = f(x) (21)

in which x+ is the subsequent state of the system. We define the solution to (21) at time
step k starting at the initial state x as φ(k;x). We assume for the rest of this section that
f(0) = 0.
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A.1 Stability

We begin by defining a few versions of stability for a deterministic system.

Definition 11 (Local Stability). The origin is said to be stable for (21) if for each ε > 0
there exists a δ > 0 such that |φ(k;x)| ≤ ε for all k ∈ I≥0 and |x| ≤ δ.

Lemma 15. Local stability of the origin for (21) is equivalent to the existence of α ∈ K
such that for any ε ≥ 0, |φ(k;x)| ≤ ε for all |x| ≤ α(ε) and k ∈ I≥0.

Proof. Define δ̄ : R>0 → R>0 such that for any ε > 0 and corresponding δ > 0, δ̄(ε) = δ.
Note that δ̄(·) is nondecreasing. Then from Proposition 4 in Rawlings and Risbeck (2015),
there exists α ∈ K such that α(ε) ≤ δ̄(ε). For the opposite direction, simply choose
δ = α(ε).

Lemma 16. Local stability of the origin for (21) is equivalent to the existence of ρ > 0
and γ ∈ K such that |φ(k;x)| ≤ γ(|x|) for all k ∈ I≥0 and |x| ≤ ρ.

Proof. Start from Lemma 15 and define ρ > 0 such that ρ < limε→∞ α(ε). Then, we define
γ : R≥0 → R≥0 such that γ(s) = α−1(s) for all s ∈ [0, ρ] and note that γ ∈ K. Thus, for
any x ∈ Rn such that |x| ≤ ρ, choose ε = α−1(|x|) and we have

|φ(k;x)| ≤ ε = α−1(|x|) = γ(|x|)

for all k ∈ I≥0.
For the opposite direction, define ᾱ(s) := min{γ−1(s), ρ} for all s ∈ R≥0 and note that

ᾱ is nondecreasing. By Proposition 4 in Rawlings and Risbeck (2015), there exists α ∈ K
such that α(s) ≤ ᾱ(s). Thus, for ε > 0, choose |x| ≤ α(ε) < ρ and we have

|φ(k;x)| ≤ γ(|x|) ≤ γ(α(ε)) = ε

for all k ∈ I≥0.

Definition 12 (Uniform Global Stability). The origin is said to be uniformly globally
stable for (21) if there exists γ ∈ K such that |φ(k;x)| ≤ γ(|x|) for all k ∈ I≥0 and x ∈ Rn.

Remark 7. From Lemma 16, we immediately conclude that uniform global stability im-
plies local stability.

Lemma 17. Uniform global stability of the origin is equivalent to the existence of α ∈ K∞
such that for any ε ≥ 0, |φ(k;x)| ≤ ε for all |x| ≤ α(ε) and k ∈ I≥0.

Proof. We define γ̂(s) = γ(s) + s and α := γ̂−1. Note that α ∈ K∞. Thus, for any ε > 0,
choose |x| ≤ α(ε) and we have

|φ(k;x)| ≤ γ(|x|) ≤ γ̂(|x|) ≤ γ̂(α(ε)) = ε

for all k ∈ I≥0. For the opposite direction, let γ := α−1 and note that γ ∈ K. Thus, for
any ε > 0, choose |x| = α(ε) and we have

|φ(k;x)| ≤ ε = γ(α(ε)) = γ(|x|)
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The main difference between local stability in Lemma 15 and uniform global stability in
Lemma 17 is that α must be a K∞ function instead of just a K function. This strengthened
requirement allows α to be inverted to construct the more familiar definition of uniform
global stability.

A.2 Attraction

In this subsection, we define general and uniform attraction for a system.

Definition 13 (Global Attraction). The origin is globally attractive for (21) if limk→∞ |φ(k;x)| =
0 for all x ∈ Rn. Or, equivalently, for each ε > 0 and x ∈ Rn, there exists J ∈ I≥0 such
that |φ(k;x)| < ε for all k ∈ I≥J .

Definition 14 (Uniform Global Attraction). The origin is uniformly globally attractive
for (21) if for each ε > 0 and ∆ > 0, there exists J ∈ I≥0 such that |φ(k;x)| < ε for all
k ∈ I≥J and |x| ≤ ∆.

The distinction from general and uniform attraction is more nuanced than local and
uniform global stability. The main difference is that for global attraction, we may select a
different J ∈ I≥0 for each specific x ∈ Rn. For uniform global attraction, we must find a
single value of J ∈ I≥0 that works for all |x| ≤ ∆.

A.3 Global asymptotic stability

Here we present three different forms of global asymptotic stability and note their similar-
ities and differences.

Definition 15 (Global asymptotic stability). The origin is globally asymptotically stable
(GAS) for (21) if it is both locally stable and globally attractive.

Definition 16 (Uniform global asymptotic stability). The origin is uniformly globally
asymptotically stable (UGAS) for (21) if it is both uniformly globally stable and uniformly
globally attractive.

Definition 17 (Global asymptotic stability-KL). The origin is globally asymptotically
stable - KL (GAS-KL) if there exists β ∈ KL such that

|φ(k;x)| ≤ β(|x|, k)

for all k ∈ I≥0 and x ∈ Rn.

To compare UGAS and GAS-KL we use the following lemma.

Lemma 18. The origin is uniformly globally attractive for (21) if and only if there exists
a family of mappings (Jr)r>0 such that

• for each fixed r > 0, Jr : R>0 → R>0 is continuous and strictly decreasing

• for each fixed ε > 0, Jr(ε) is strictly increasing as r increases and limr→∞ Jr(ε) =∞.
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such that |φ(k;x)| < ε for all |x| ≤ r and k ≥ Jr(ε).

Proof. Sufficiency is clear and we establish necessity here. For any r, ε > 0, let

Ar,ε := {J ∈ I≥0 : ∀|x| ≤ r, ∀k ≥ J, |φ(k;x)| < ε}

Then from uniform global attraction, Ar,ε 6= ∅ for any r, ε > 0. Moreover,

Ar,ε1 ⊂ Ar,ε2 if ε1 ≤ ε2, and Ar1,ε ⊃ Ar2,ε if r1 ≤ r2

Now define J̄r(ε) := inf Ar,ε. Then J̄r(ε) <∞ for any r, ε > 0, and it satisfies

J̄r(ε1) ≥ J̄r(ε2) if ε1 ≤ ε2, and J̄r1(ε) ≤ J̄r2(ε) if r1 ≤ r2

So we can define for any r, ε > 0,

J̃r(ε) :=
2

ε

∫ ε

ε/2
J̄r(s)ds

Since J̄r(·) is decreasing, J̃r(·) is well defined and continuous. Also

J̃r(ε) ≥
2

ε
J̄r(ε)

∫ ε

ε/2
ds = J̄r(ε)

Furthermore,

dJ̃r(ε)

dε
= − 2

ε2

∫ ε

ε/2
J̄r(s)ds+

2

ε

(
J̄r(ε)−

1

2
J̄r(ε/2)

)
=

1

ε

(
J̄r(ε)−

2

ε

∫ ε

ε/2
J̄r(s)ds

)
+

1

ε

(
J̄r(ε)− J̄r(ε/2)

)
=

1

ε

(
J̄r(ε)− J̃r(ε)

)
+

1

ε

(
J̄r(ε)− J̄r(ε/2)

)
≤ 0

hence J̃r(·) decreases (not necessarily strictly). Since J̄·(ε) increases, from the definition,
J̄·(ε) also increases. Finally, define

Jr(ε) := J̃r(ε) +
r

ε

Then it follows that

• for any fixed r, Jr(·) is continuous, maps R>0 → R>0, and is strictly decreasing

• for any fixed ε, Tr(ε) is strictly increasing and limr→∞ Tr(ε) =∞

Finally, choose any x ∈ Rn and k ∈ I≥0 with |x| ≤ r and k ≥ Jr(ε). Then

k ≥ Jr(ε) > J̃r(ε) ≥ J̄r(ε)

and by the definition of J̄r(ε), we have |φ(k;x)| < ε as claimed.
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Proposition 19. The origin is UGAS for (21) if and only if the origin is GAS-KL.

Proof. [⇐= ] From GAS-KL, we have β ∈ KL such that |φ(k;x)| ≤ β(|x|, k) for all k ∈ I≥0
and x ∈ Rn. Let γ(s) := β(s, 0) and note that γ ∈ K and |φ(k;x)| ≤ β(|x|, 0) = γ(|x|) for
all k ∈ I≥0 and x ∈ Rn. Thus, the origin is uniform globally stable. For every fixed ∆ > 0,
limk→∞ β(∆, k) = 0 and therefore the origin is also uniformly globally attractive.

[ =⇒ ] To establish this part of the proof, we must demonstrate that there exists β ∈ KL
such that |φ(k;x)| ≤ β(|x|, k) for all k ∈ I≥0 and x ∈ Rn. Let γ(·) be defined according to
the definition of uniform global stability. Let (Jr)r>0 be defined as in Lemma 18. For each
r > 0 denote ψr := J−1r . Then for each r > 0, ψr : R>0 → R>0 is again continuous and
strictly decreasing. We also write that ψr(0) =∞.

We claim that for any r > 0, |φ(k;x)| ≤ ψr(k) for all k ∈ I≥0 and |x| ≤ r. It follows
from the definition of Jr that, for any r, ε > 0 if |x| ≤ r, k ≥ Jr(ε) then |φ(k;x)| < ε
for all k ∈ I≥0 and |x| ≤ r. Since k = Jr(ψr(k)) if k > 0, we have, for any x ∈ Rn,
|φ(k;x)| < ψr(k) for all k > 0. Using the fact that ψr(0) =∞ the claim is established.

Now for any s ≥ 0 and k ∈ I≥0, define

ψ̄(s, k) := min

{
γ(s), inf

r∈(s,∞)
ψr(k)

}
and note that |x| ≤ ψ̄(|x|, k) for all x ∈ Rn and k ∈ I≥0. Next we construct a KL function
using ψ̄.

By definition, for any fixed k, ψ̄(·, k) is an increasing function (not necessarily strictly
increasing). Also, for any fixed r ∈ (0,∞), ψr(k) decreases to 0. Thus, for any fixed s ≥ 0,
ψ̄(s, k) decreases to 0 as k →∞.

Note that ψ̄ satisfies almost all the conditions of a KL function. However, we do not
know that ψ̄(·, k) is continuous so we upper bound ψ̄ by such a function. Define

ψ̂(s, k) :=

∫ s+1

s
ψ̄(s′, k)ds′

Then ψ̂(·, k) is continuous and it satisfies

ψ̂(s, k) ≥ ψ̄(s, k)

∫ s+1

s
ds′ = ψ̄(s, k)

Furthermore,
∂ψ̂(s, k)

∂s
= ψ̄(s+ 1, k)− ψ̄(s, k) ≥ 0

and, thus, ψ̂(·, k) is increasing. For any fixed s, ψ̄(s, k·) decreases. Therefore, ψ̂(s, ·)
decreases as well. Note that

ψ̄(s, k) ≤ ψ̄(s, 0) = min

{
γ(s), inf

r∈(s,∞)
ψr(0)

}
= γ(s)

So by the Lebesgue-dominated convergence theorem, for any fixed s ≥ 0,

lim
k→∞

ψ̂(s, k) =

∫ s+1

s
lim
k→∞

ψ̄(s′, k)ds′ = 0
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Next, define

ψ̃(s, k) := ψ̂(s, k) +
s

(s+ 1)(k + 1)
≥ [̄ψ](s, k)

and note that

• for any fixed k ∈ I≥0, ψ̃(·, k) is continuous and strictly increasing

• for any fixed s ∈ R≥0, ψ̃(s, ·) is decreasing and limk→∞ ψ̃(s, k) = 0

Note that ψ̃ satisfies almost all the properties of a KL function. However, ψ̃(0, k) > 0
and therefore, for fixed k ∈ I≥0 ψ̃(·, k) is not a K function. Thus, we define

β(s, k) :=
√
γ(s)

√
ψ̃(s, k)

By definition, ψ̄(s, k) ≤ γ(s) and we have

β(s, k) ≥
√
γ(s)

√
ψ̄(s, k) ≥ ψ̄(s, k) (22)

for all s ∈ R≥0 and k ∈ I≥0. Therefore, |φ(k;x)| ≤ β(|x|, k) for all k ∈ I≥0 and x ∈ Rn.
Finally, we establish that β ∈ KL. For fixed k, ψ̃(·, k) is continuous, nonnegative, and

strictly increasing, γ(·) is continuous, nonnegative, and strictly increasing, and therefore
the product of these two functions is also continuous, nonnegative, and strictly increasing.
Furthermore, we have that

β(0, k) ≤
√
γ(0)

√
ψ̃(0, 0) = 0

Thus, for fixed k ∈ I≥0, β(·, k) ∈ K. For fixed s ∈ R≥0,

lim
k→∞

β(s, k) =
√
γ(s)

√
lim
k→∞

ψ̃(s, k) = 0

A.4 Examples

We illustrate the distinctions between these definitions with three separate scalar systems
(x+ = f(x)). The dynamics of these three systems are described by the following discon-
tinuous functions.

f1(x) :=

{
0.9x2 ; |x| ∈ [0, 1)

0 ; |x| ∈ [1,∞)

f2(x) :=

{
x2 ; |x| ∈ [0, 1)

0 ; |x| ∈ [1,∞)

f3(x) :=


0.9|x| ; |x| ∈ [0, 0.5]
|x|

1−|x| ; |x| ∈ (0.5, 1)

0 ; |x| ∈ [1,∞)

We note that all three of the systems generated by these functions are GAS. However,
only one of these systems is also UGAS/GAS-KL.
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Figure 2: Three scalar functions f(x), that define three scalar discrete-time systems defined
by the evolution equation as x+ = f(x).

System 1 (f1(x))

The origin is uniformly globally stable (choose γ(s) := s).
The origin is also uniformly globally attractive: If |x| < 1, we know that |φ(k;x)| ≤

0.9k|x| so for ε > 0 we can choose J ∈ I≥0 such that J > log(ε)/ log(0.9). If |x| ≥ 1, then
f(x) = 0 and for any value of ε > 0 we can choose J = 1. So for any ε,∆ > 0 we can find
J ∈ I≥0 such that |φ(k;x)| < ε. Thus, the system is UGAS.

System 2 (f2(x))

The origin is uniformly globally stable (choose γ(s) := s).
The origin, however, is not uniformly globally attractive. Assume we choose ε = 0.1

and ∆ ∈ (0, 1). Then we can choose J ∈ I≥0 such that J > log(0.1)/ log(∆). However,
as ∆ → 1 from ∆ < 1, J → ∞. Thus, the origin is not uniformly globally attractive or
UGAS. Nonetheless, for any specific x ∈ Rn, we know that limk→∞ |φ(k;x)| = 0 and, thus,
the system is still globally attractive.

System 3 (f3(x))

The origin is not uniformly globally stable. As x ↗ 1, f(x) → ∞. Thus, there does not
exist a global K function upper bound for all k ∈ I≥0 and x ∈ R. Nonetheless, the origin is
locally stable: for each ε > 0, choose δ = min{ε, 0.5}. As a result, the origin is not UGAS.

The origin is, however, uniformly globally attractive. For ∆ ∈ (0, 0.5] and ε > 0, we can
choose J ∈ I≥0 such that J > log(ε/∆)/ log(0.9). For ∆ > 0.5, if |x| > 0.5, then f3(x) > 1
and f3(f3(x)) = 0. Thus J = 2 guarantees that |φ(k;x)| < ε for any ε > 0 and |x| > 0.5.
Thus, for any ε,∆ > 0 we can choose J ∈ I≥0 such that J > min{log(ε/∆)/ log(0.9), 2}.
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B Proofs for Section 3

Proof of Lemma 1. Under Assumption 1, if V is countable, integrals may be evaluated as
summations and m∩S(j, x, t) is necessarily well-defined. If instead f(·) is continuous we
proceed identically to Lemma 1 in Teel (2013) to show that m∩S(j, x, t) is well defined for
all x ∈ X (t), j ∈ I≥0, and t ∈ I≥0.

The inequality holds for j = 0 and all x ∈ X (t), t ∈ I≥0. Suppose that it holds for some
j ∈ I≥0. Then

m∩S(j + 2, x, t) =

∫
V

max{IS(f(x, v, t)),m∩S(j + 1, f(x, v, t), t+ 1)}µ(dv)

≥
∫
V

max{IS(f(x, v, t)),m∩S(j, f(x, v, t), t+ 1)}µ(dv)

= m∩S(j + 1, x, t)

and by induction this inequality holds for all j ∈ I≥0.

Proof of Proposition 2. Assume without loss of generality that t = 0 and let j ∈ I≥1,
x ∈ X (0) and x = Φ(x, 0). We claim that

E
[
max

{
max

i∈{1,...,`}
IS(xi),m∩S(j − `, x`, `)

}]
= m∩S(j, x, 0) (23)

for each ` ∈ {1, . . . , j}. For ` = 1, using the definition of m∩S(j, x, 0),

E [max{IS(x1),m∩S(j − 1, x1, 1)}]

=

∫
V

max{IS(f(x, v, 0)),m∩S(j − 1, f(x, v, 0), 1)}µ(dv)

= m∩S(j, x, 0)

Let (23) hold for some ` ∈ {1, . . . , j − 1}. Let j̄ := j − `. By definition of m∩S and
properties of x,

m∩S(j̄, x`, `) =

∫
V

max{IS(f(x`, v, `)),m∩S(j̄ − 1, f(x`, v, `), `+ 1)}µ(dv)

= E [max{IS(x`+1),m∩S(j̄ − 1, x`+1, `+ 1)} | F`] (24)

Using (23) and (24) we have

E
[
max

{
max

i∈{1,...,`+1}
IS(xi),m∩S(j̄ − 1, x`+1, `+ 1)

}]
= E

[
max

{
max

i∈{1,...,`}
IS(xi),E [max{IS(x`+1),m∩S(j̄ − 1, x`+1, `+ 1)} | F`]

}]
= E

[
max

{
max

i∈{1,...,`}
IS(xi),m∩S(j̄, x`, `)

}]
= m∩S(j, x, 0)

By induction (23) holds for all ` ∈ {1, . . . , j}. The case ` = j gives m∩S(j, x, 0) =
E
[
maxi∈{1,...,j} Is(xi)

]
.
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Proof of Lemma 3. Under Assumption 1, if V is countable, integrals may be evaluated as
summations and m⊂S(j, x, t) is necessarily well-defined. If instead f(·) is continuous we
proceed identically to Lemma 2 in Teel (2013) to show that m⊂S(j, x, t) is well defined for
all x ∈ X (t), j ∈ I≥0, and t ∈ I≥0.

The inequality holds for j = 0 and all x ∈ X (t), t ∈ I≥0. Suppose that it holds for some
j ∈ I≥0. Then

m⊂S(j + 2, x, t) =

∫
V
IS(f(x, v, t))m⊂S(j + 1, f(x, v, t), t+ 1)µ(dv)

≤
∫
V
IS(f(x, v, t))m⊂S(j, f(x, v, t), t+ 1)µ(dv)

= m⊂S(j + 1, x, t)

and by induction this inequality holds for all j ∈ I≥0.

Proof of Proposition 4. Assume without loss of generality that t = 0 and let j ∈ I≥1,
x ∈ X (0) and x = Φ(x, 0). We claim that

E

[(∏̀
i=1

IS(xi)

)
m⊂S(j − `, x`, `)

]
≤ m⊂S(j, x, 0) (25)

for each ` ∈ {1, . . . , j}. For ` = 1, using the definition of m⊂S(j, x, 0),

E [IS(x1)m⊂S(j − 1, x1, 1)] =

∫
Rm

IS(f(x, v, 0))m⊂S(j − 1, f(x, v, 0), 1)µ(dv)

= m⊂S(j, x, 0)

Let (25) hold for some ` ∈ {1, . . . , j − 1}. Let j̄ = j − ` and by definition of m⊂S and
properties of x, we have

m⊂S(j̄, x`, `) =

∫
Rm

IS(f(x`, v, `))m⊂S(j̄ − 1, f(x`, v, `), `+ 1)µ(dv))

= E [IS(x`+1)m⊂S(j̄ − 1, x`+1, `+ 1) | F`]

Combining this equation with (25), we have

E

[(
`+1∏
i=1

IS(xi)

)
m⊂S(k̄ − 1, x`+1, `+ 1)

]

= E

[(∏̀
i=1

IS(xi)

)
E [IS(x`+1)m⊂S(j̄ − 1, x`+1, `+ 1) | F`]

]

= E

[(∏̀
i=1

IS(xi)

)
m⊂S(j̄, x`, `)

]
= m⊂S(j, x, 0)
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Thus, by induction (25) holds for all ` ∈ {1, . . . , j}. The case ` = j in (25) gives

E

[
j∏

i=1

IS(xi)

]
= m⊂S(j, x, 0) (26)


