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Abstract

In this report, we establish a selection of critical and underlying prop-
erties for stochastic model predictive control (SMPC) that are neces-
sary to ensure that stochastic properties of the closed-loop system are
indeed well-defined. We begin by introducing a stochastic, discrete-
time system and presenting a typical SMPC formulation with suitable
regularity assumptions. We then establish, under these assumptions,
that the stochastic optimization problem is well-defined and the min-
imum is attained. Next, we establish that the optimal control law de-
fined by the SMPC optimization problem is Borel measurable. Thus,
we guarantee the resulting closed-loop system is also Borel measur-
able and all stochastic properties of interest (e.g., expected value) for
the closed-loop system are well-defined. We acknowledge the work of
Bertsekas and Shreve (1978) for providing multiple technical results
on optimization and measurability that were essential in establishing
the main results of this report.

Notation and basic definitions

Let I and R denote the integers and reals, respectively. Let superscripts on these sets denote
dimension and subscripts on these sets denote restrictions (e.g., Rn

≥0 denotes nonnegative
reals of dimension n). We use | · | to denote Euclidean norm. For a closed set S ⊂ Rn

and x ∈ Rn, |x|S := miny∈S |x − y| denotes the Euclidean distance from the point x to
the set S. Let IS(x) denote the indicator function for a set S, i.e., IS(x) = 1 is x ∈ S
and zero otherwise. A function f : Rn → R is lower semicontinuous if and only if the set
{x ∈ Rn : f(x) ≤ y} is closed for all y ∈ R or, equivalently, if lim inft→x f(t) ≥ f(x) for all
x ∈ Rn.
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Let P(Ω) denote the power set of some set Ω, i.e., all the subsets of Ω. Let B(Ω) denote
the Borel field of some set Ω, i.e., the subsets of Ω generated through relative complements
and countable unions of all open subsets of Ω. A set F ⊆ Rn is Borel measurable if
F ∈ B(Rn). A function f : Rn → Rm is Borel measurable if for each open set O ⊆ Rm,
the set f−1(O) := {x ∈ Rn : f(x) ∈ O} is Borel measurable, i.e., f−1(O) ∈ B(Rn). For
two metric spaces X, Y , a set-valued mapping S : X ⇒ Y is Borel measurable if for every
open set O ⊆ Y , the set

S−1(O) := {x ∈ X : S(x) ∩O 6= ∅}

is Borel measurable, i.e., S−1(O) ∈ B(X) (Rockafellar and Wets, 1998).

1 Problem Formulation and Preliminaries

1.1 The stochastic system

We consider the discrete-time, stochastic system

x+ = f(x, u, w) f : X× U× Rp → X (1)

in which x ∈ X ⊆ Rn is the state, u ∈ U ⊆ Rm is the controlled input, w ∈ Rp is a
disturbance (random variable), and x+ is the successor state.

Let W ⊆ Rp be the (potentially unbounded) support for each disturbance, i.e., w ∈W.
Let (Ω,F , P ) be a probability space for the sequence w∞ : Ω→W∞ of random variables,
i.e., w∞ := {wi}∞i=0 for wi : Ω → W.1 In particular, we have the probability measure
Pr (wi ∈ F ) := P ({ω ∈ Ω : wi(ω) ∈ F}) for all F ∈ B(W), i.e., the probability that wi

is in the Borel measurable set F . We define the subsequence wi : Ω → Wi as wi :=
(w0, . . . , wi−1). We define the probability of the event g(wi) ∈ S as

Pr (g(wi) ∈ S) :=

∫
Ω
IS(g(wi))dP (ω)

for a Borel measurable function g : Wi → Rn and a Borel measurable set S ⊆ Rn. We also
define expected value of the Borel measurable function g : Wi → R as

E [g(wi)] :=

∫
Ω
g(wi(ω))dP (ω)

1.2 SMPC formulation

We make the following standard assumption for the disturbance model used in the opti-
mization problem. Note that we distinguish between the true probability distribution of
the disturbance given by the probability space (Ω,F , P ) and the stochastic model of the

1We may construct a probability space (Ω,F , P ) for an infinite sequence of independently distributed
random variables (Fristedt and Gray, 1997, Section 9.6, Theorem 16).
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disturbance used in the SMPC problem. We emphasize that the following results hold re-
gardless of whether the stochastic model is accurate, i.e., the true probability distribution
and the model are equivalent.2

Assumption 1 (Disturbance model). We have a stochastic model of the disturbance w for
the system that includes the probability measure µ : B(Ŵ) → [0, 1] and support Ŵ. The
support Ŵ is compact and contains the origin. Furthermore, the stochastic model assumes
that the underlying disturbance is independent and identically distributed (i.i.d.).

For the i.i.d. random variables (wi, wi+1, . . . , wi+N−1) and N ∈ I≥1, their joint distri-
bution measure µN : B(ŴN ) → [0, 1] is defined µN (F ) = µ(Fi)µ(Fi+1) . . . µ(Fi+N−1) for
all F = (Fi, Fi+1, . . . , Fi+N−1) ∈ B(ŴN ).

Instead of selecting a trajectory of specific inputs u, in SMPC we solve for a trajectory of
control policies. To formulate a computationally tractable optimization problem, however,
these control policies are typically parameterized a-priori. We define the policy π : X×V→
U in which x ∈ X is the current state of the system and v ∈ V ⊆ Rp are the parameters in
the control policy. The system of interest is then redefined as

x+ = f(x, π(x, v), w) (2)

We denote the solution to (2) at time k, given the initial condition x, the trajectory of
parameters v = (v(0), v(1), . . . , v(N − 1)), and the disturbances w ∈ ŴN , as φ̂(k;x,v,w).

We consider hard input and state constraints, i.e., (x, u) ∈ Zh ⊆ X × U. In addition,
we allow probabilistic constraints on the state defined as

Pr
(
f(x, u, w) ∈ X̃

)
=

∫
Ŵ
IX̃(f(x, u, w))dµ(w) ≥ 1− ε (3)

for a set X̃ ⊆ Rn and constant ε ∈ [0, 1]. We observe, however, that this method to represent
probabilistic constraints appears to be inconsistent with other constraints typically treated
in MPC. Thus, we reformulate the probabilistic constraint using the function

G(x, u) := 1−
∫
Ŵ
IX̃(f(x, u, w))dµ(w) (4)

and the constraint set Z̃ := {(x, u) : G(x, u) ≤ ε}. Note that (x, u) satisfy (3) if and only
if (x, u) ∈ Z̃. Then, we combined hard and probabilistic constraints as

(x, u) ∈ Z := Zh ∩ Z̃

We note that calculating or approximating Z̃ is a difficult and important research problem
that we obscure with this formulation. We find, however, that this reformulation is very
useful in subsequent analysis of the SMPC problem. Additional stochastic properties, such
as expected value of the state, can also be reformulated in this manner, but we omit this
discussion in the interest of brevity.

2Although, we note that inaccuracies in the disturbance support W may create complications with
Assumption 4. Robust recursive feasibility, however, is not the topic of this report and this complication is
therefore ignored.
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Remark 1. If we wish to consider multiple probabilistic constraints (e.g., multiple sets
X̃j with varying values of εj), we simply define a set Z̃j for each of these constraints and

define Z as the intersection of all of these sets, i.e., Z := Zh ∩
(⋂

j Z̃j

)
. All subsequent

results extend to multiple probabilistic constraints as well.

For SMPC with a horizon of N ∈ I≥1, the constraint Z, and an additional terminal
constraint Xf ⊆ X, we have the set of admissible (x,v) pairs defined as

ZN := {(x,v) ∈ X× VN :

(x(k), π(x(k), v(k))) ∈ Z ∀w ∈ ŴN , k ∈ I[0,N−1]

x(N) ∈ Xf ∀w ∈ ŴN}

in which x(k) = φ̂(k;x,v,w). From this set, we define the set of admissible parameter
trajectories given x ∈ X and the set of admissible initial states, respectively, as follows.

VN (x) := {v ∈ VN : (x,v) ∈ ZN}
XN := {x ∈ X : ∃v ∈ VN (x)}

We define a stage costs ` : X × U → R and terminal cost Vf : X → R for the SMPC
problem. With these costs, we define the function

JN (x,v,w) =
N−1∑
k=0

`(x(k), π(x(k), v(k))) + Vf (x(N))

in which x(k) := φ̂(k;x,v,w), (x,v) ∈ ZN , and w ∈ ŴN .
With the function JN (·), we may define the cost function in several ways, differentiated

by their treatment of the random variable w. In nominal MPC, we choose w = 0 and
define VN (x,v) = JN (x,v,0). In robust MPC, we assume the disturbance always takes
the worst value possible and define VN (x,v) = maxw∈ŴN JN (x,v,w). In SMPC, we use
a stochastic model of the disturbance and define our cost function based on the expected
value of JN (·), i.e.,

VN (x,v) :=

∫
ŴN

JN (x,v,w)dµN (w)

With this cost function, the SMPC problem for any x ∈ XN is defined as

PN (x) : V 0
N (x) = min

v∈VN (x)
VN (x,v)

and the optimal solution(s) for a given initial state are defined by the set-valued mapping
v0 : XN ⇒ VN such that

v0(x) := arg min
v∈VN (x)

VN (x,v)

Note that v0(x) is a set-valued mapping because there may be multiple solutions to PN (x)
for a single x ∈ XN .

We require the following regularity assumptions for the SMPC problem.
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Assumption 2 (Continuity of system and cost). The function f : X × U × Rp → X,
π : X × V → U, ` : X × U → R, and Vf : Xf → R are continuous. The functions `(x, u)
and Vf (x) are lower bounded for all (x, u) ∈ Zh and x ∈ Xf , respectively. Furthermore, we
have that f(0, 0, 0) = 0, `(0, 0) = 0, and Vf (0) = 0 (without loss of generality).

Assumption 3 (Properties of constraint sets). The sets Zh and X̃ are closed and contain
the origin. The sets U, V, and Xf ⊆ X are compact and contain the origin.

Note that we require V in addition to U to be compact. Since we intend to optimize over
v ∈ VN for a nonlinear (potentially non-coercive) function, compactness of V is required
to ensure the PN (x) is well-defined.

Remark 2. We can relax the requirement that V is compact if the function VN (x,v) is
coercive, i.e., VN (x,v) → ∞ as |v| → ∞ for all x ∈ X. But, to streamline the subsequent
presentation, we omit this discussion.

1.3 Preliminaries on Integration and Measurability

We begin with a few important results for Borel measurable functions. First, we note that
continuous and upper/lower semicontinuous functions are Borel measurable. Furthermore,
if f : X → Y and g : Y → Z are Borel measurable functions, then their composition
f◦g : X → Z is also Borel measurable. Note that this property of closure under composition
is the reason we consider Borel measurable functions instead of the more general class of
Lebesgue measurable functions; Compositions of Lebesgue measurable functions are not
necessarily Lebesgue measurable.3

Throughout this report, we find the following result useful.

Lemma 1. Let f : X×S → R be a Borel measurable function defined for X ⊆ Rn and the
probability space (S,Σ, µ). Then the function F : X → R defined by the Lebesgue integral

F (x) :=

∫
S
f(x, s)dµ(s)

satisfies the following:

1. If f(x, s) is lower bounded and lower semicontinuous w.r.t. x ∈ X, then F (x) is
lower semicontinuous.

2. If f(x, s) is continuous w.r.t. x ∈ X and uniformly bounded for all (x, s) ∈ X × S,
then F (x) is finite and continuous.

3We can, if needed, expand the class of functions to universally measurable functions (a slightly more
general class than Borel measurable functions, but less general than Lebesgue measurable functions) that
also preserve universal measurability under composition (Bertsekas and Shreve, 1978, Proposition 7.44).
This extension is, however, unnecessary for the SMPC problem as all functions of interest are indeed Borel
measurable under mild regularity assumptions.
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Proof. Fix x ∈ X and let (xn)∞n=1 be any sequence of real numbers that converges to x,
i.e., limn→∞ xn = x. We define the corresponding sequence of functions (fn)∞n=1 such that
fn(s) := f(xn, s) for all s ∈ S. If f(x, s) is lower semicontinuous w.r.t. x, we have that
lim infn→∞ fn(s) ≥ f(x, s).

If f(·) is nonnegative, we apply Fatou’s Lemma to give

lim inf
n→∞

F (xn) = lim inf
n→∞

∫
S
fn(s)dµ(s)

≥
∫
S

lim inf
n→∞

fn(s)dµ(s)

≥
∫
S
f(x, s)dµ(s) = F (x)

Since the choice of x ∈ X and the sequence (xn)∞n=1 was arbitrary, we have that

lim inf
t→x

F (t) ≥ F (x)

and therefore F (x) is lower semicontinuous.
If f(·) is lower bounded, we define c ∈ R, such that f(x, s) ≥ c for all (x, s) ∈ X ×

S. Next, we define h(x, s) := f(x, s) − c and note that h(·) is nonnegative and lower
semicontinuous because f(·) is lower semicontinuous. Thus,

H(x) :=

∫
S
h(x, s)dµ(s)

is lower semicontinuous and F (x) = c+H(x) is also lower semicontinuous.4

If instead f(x, s) is continuous w.r.t. x, we know that limn→∞ fn(s) = f(x, s). Since
f(x, s) is uniformly bounded, we have from the dominated convergence theorem that F (x)
is finite and

lim
n→∞

F (xn) = lim
n→∞

∫
S
fn(s)dµ(s)

=

∫
S

lim
n→∞

fn(s)dµ(s)

=

∫
S
f(x, s)dµ(s) = F (x)

Since the choice of x ∈ X and the sequence (xn)∞n=1 was arbitrary, we have that F (x) is
continuous.

Presenting expected value and other stochastic properties in terms of Lebesgue integrals
allows us to establish many useful properties for SMPC through the use of Lemma 1 that
may remain unclear with other SMPC notation.

4We can define F (x) = c+H(x), because (S,Σ, µ) is a probability space, i.e.,
∫
S
cdµ(s) = c.
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2 Existence of Optimal Solutions

In this section we establish that the minimization problem PN (x) for SMPC is well-defined
for all x ∈ XN . We begin with the following results for the sets Z and ZN .

Lemma 2. Let Assumptions 1, 2, and 3 hold. Then the set Z is closed.

Proof. We begin by establishing that G : X×U→ R≥0 is a lower semicontinuous function.
Since X̃ is closed, we know that IX̃ : X → {0, 1} is upper-semicontinuous. Therefore, the
function h : X→ {0, 1} defined as h(x) := 1− IX̃(x) is lower semicontinuous.5 Since f(·) is
continuous, the composition g(x, u, w) = h(f(x, u, w)) is lower semicontinuous as well. We
have that

G(x, u) =

∫
Ŵ
g(x, u, w)dµ(w)

and since g(·) is lower semicontinuous (and measurable w.r.t. w) we have from Lemma 1
that G(x, u) is lower semicontinuous.

Since G(·) is lower semicontinuous, the set Z̃ = {(x, u) : G(x, u) ≤ ε} is closed for all
ε ∈ [0, 1] by definition of a lower semicontinuous function. Therefore, Z := Zh ∩ Z̃ is the
intersection of two closed sets and is also closed.

Lemma 3. Let Assumptions 1, 2, and 3 hold. Then the set ZN is closed.

Proof. From Lemma 2 we know that Z is closed. From Assumption 3, we also know that
X and V are closed sets. We define the set-valued mapping ZN : ŴN ⇒ X×VN such that

ZN (w) := {(x,v) ∈ X× VN : ηk(x,v,w) ≤ 0 ∀k ∈ I[0,N ]}

in which
ηk(x,v,w) :=

∣∣∣(φ̂(k;x,v,w), π(φ̂(k;x,v,w), v(k))
∣∣∣
Z

for all k ∈ I[0,N−1] and ηN (x,v,w) := |φ̂(N ;x,v,w)|Xf
. Since f(·) and π(·) are contin-

uous functions, so is their composition. For each k, φ̂(k;x,v,w) is the composition of a
finite number of continuous functions and is therefore continuous (Rawlings et al., 2020,
Proposition 2.1). Since φ̂(k;x,v,w) and point-to-set distance for the closed sets Z and
Xf are continuous functions, ηk(·) is also continuous for each k ∈ I[0,N ]. The inequality

ηk(x,v,w) ≤ 0 therefore defines a closed set for each k ∈ I[0,N ]. Thus, for each w ∈ ŴN ,
the set ZN (w) is the intersection of a finite number of closed sets and is therefore closed.
By the definition of ZN , we have that

ZN =
⋂

w∈ŴN

ZN (w)

Since the intersection of an arbitrary collection of closed sets is a closed set, ZN is a closed
set and the proof is complete.

5Equivalently, we may define h(x) = IRn\X̃(x), i.e., the indicator function of an open set and therefore
lower semicontinuous.
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With these results, we can establish that the SMPC optimization problem is well-
defined.

Proposition 4 (Existence of minima). Let Assumptions 1, 2, and 3 hold. Then for each
x ∈ XN ,

1. The function VN (x, ·) : VN → R is continuous.

2. The function VN (x) is compact.

3. A solution to PN (x) exists.

Proof. From the previous proof, we know that for each k, φ̂(k;x,v,w) is continuous. Thus,
JN (x,v,w) is a continuous function since it is the composition of a finite number of con-
tinuous functions. For each x ∈ XN , we have that JN (x, ·) : VN × ŴN → R is continuous
and uniformly bounded because V and Ŵ are compact. Thus, from Lemma 1, we know
that for each x ∈ XN the function VN (x, ·) : VN → R is continuous.

From Lemma 3, we know that ZN is closed and the function |(x,v)|ZN
is continuous.

Therefore, the set VN (x) = {v ∈ VN : |(x,v)|ZN
≤ 0} is closed for any x ∈ XN ⊆ X. Since

VN (x) ⊆ VN and V is bounded, we know that VN (x) is also bounded. Thus, VN (x) is
compact.

For each x ∈ XN , the function VN (x, ·) is continuous and VN (x) is compact. By
Weierstrass’s theorem, a solution to PN (x) exists for all x ∈ XN (Rawlings et al., 2020,
Prop. A.7).

If ZN is unbounded, however, we cannot establish that VN : ZN → R is continuous.
Fortunately, lower semicontinuity is sufficient for subsequent results.

Lemma 5. Let Assumptions 1, 2, and 3 hold. Then VN : ZN → R is lower semicontinuous
and lower bounded.

Proof. From the previous proof, we know that JN (x,v,w) is continuous and lower-bounded
(because the stage and terminal costs are lower-bounded). Since continuity implies lower
semicontinuity, by Lemma 1 we know that the function VN : ZN → R is lower semicontin-
uous and lower-bounded.

3 Measurability of the Closed-Loop Trajectory

For SMPC, we define the control law mapping as KN (x) := π(x, v0(0;x)) in which v0(0;x)
is the first control action in v0(x). Since there may be multiple solutions to PN (x) for
each x ∈ XN , KN (x) may be a set-valued mapping. We typically assume there exists some
selection rule that defines a single-valued control law κN : XN → U such that κN (x) ∈
KN (x) for all x ∈ XN . With this control law, the closed-loop stochastic system is defined
as

x+ = fcl(x,w) := f(x, κN (x), w) (5)
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We denote the solution to (5) at time k ∈ I≥0, given the initial condition x and disturbance
sequence wk = (w0, . . . , wk−1) as φ(k;x,wk).

If we assume (or establish through properties of the SMPC formulation) that XN is
robustly positive invariant for the closed-loop system subject to the true set of potential
disturbances (W), we can establish that φ(k;x,wk) well-defined.

Assumption 4. The set XN is robustly positive invariant for the closed-loop system
x+ = fcl(x,w), w ∈W, i.e., if x ∈ XN then x+ ∈ XN as well.

Lemma 6. Let Assumption 4 hold. Then the function φ(k;x,wk) is well-defined for all
x ∈ XN , wk ∈Wk, and k ∈ I≥0.

Proof. We establish this result by induction. If x(k) = φ(k;x,wk) ∈ XN , then u(k) =
κN (x(k)) is well-defined and x(k+1) = fcl(x(k), wk) = f(x(k), u(k), wk) is also well-defined,
i.e., φ(k + 1;x,wk+1) is well-defined for all wk+1 ∈ Wk+1. Since XN is robustly positive
invariant, we also know that φ(k+ 1;x,wk+1) ∈ XN . Since we start at x(0) = x ∈ XN , the
proof is complete.

We note that for SMPC, and indeed nominal MPC, the optimal control law κN (x),
and therefore the closed-loop system fcl(·), may be discontinuous w.r.t. x ∈ XN .6 For
analysis of a deterministic closed-loop system, discontinuities in the optimal control law
can be addressed with a few adjustments (Allan et al., 2017). The concern for discontinuous
stochastic systems, however, is far more fundamental; A discontinuous closed-loop system
may produce a non-measurable closed-loop trajectory, i.e., the function φ(k;x,wk) may
not be measurable w.r.t. wk ∈ Wk. If φ(k;x,wk) is not measurable w.r.t. wk and Ω is
uncountable, Lebesgue integrals are not well-defined and all stochastic properties of the
system based on these integrals (e.g., expected value) are undefined for the closed-loop
stochastic system.

Fortunately, the regularity conditions required by Assumptions 2 and 3 are sufficient
to guarantee that the control law mapping KN (x) is in fact Borel measurable. We use the
following result adapted from Bertsekas and Shreve (1978, Proposition 7.33).

Proposition 7. Consider the closed set X ⊆ Rn, compact set U ⊆ Rm, closed set Z ⊆
X × U , and lower semicontinuous function V : Z → R. Let U(x) := {u ∈ U : (x, u) ∈ Z}
and

V 0(x) := min
u∈U(x)

V (x, u)

u0(x) := arg min
u∈U(x)

V (x, u)

Then X := {x ∈ X : U 6= ∅} is closed, V 0 : X → R is lower semicontinuous, and
u0 : X ⇒ U is Borel measurable.

We can apply this general result for optimization problems to the SMPC problem
through the following proposition.

6Even though we require continuous π(·), the function v0(0;x) may be discontinuous and therefore κN (x)
is also discontinuous.
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Proposition 8. Let Assumptions 1, 2, and 3 hold. Then the function V 0
N : XN → R is

lower semicontinuous (Borel measurable) and the set-valued mapping v0 : XN ⇒ VN is
Borel measurable. Furthermore, the optimal control law mapping KN : XN ⇒ U, defined
as KN (x) := π(x, v0(0;x)) is Borel measurable.

Proof. From Assumption 3 we have that X is closed and VN is compact. From Lemma
3 we have that ZN is closed. From Lemma 5, we have that VN : ZN ⇒ R is lower
semicontinuous. From Proposition 7, we have that V 0

N : XN → R is lower semicontinuous
and the mapping v0 : XN ⇒ VN is Borel measurable. We define KN : XN ⇒ V such that
KN (x) = {h(x,v) : v ∈ v0(x)} in which h(x,v) := π(x, v(0)). Since h(·) is a continuous
function, KN : XN ⇒ U is also Borel measurable.

If v0(x) is a single-valued mapping, then κN (x) = KN (x) is a single-valued, Borel
measurable function. If instead, v0(x) is a set-valued mapping, then we require a selection
rule. By Lemma 7.18 in Bertsekas and Shreve (1978), there exists a Borel measurable
function σ : (P(U) \ ∅) → U such that σ(A) ∈ A for every A ∈ P(U \ ∅), i.e., σ(·)
maps any subset of U to a point in U. We therefore define the SMPC control law as
κN (x) := σ(KN (x)) for all x ∈ XN .

In theory, we can select an exotic selection rule that produces a non-measurable function
κN (x) from the Borel measurable set-valued mapping KN (x). We postulate, however, that
accidentally constructing such a control law or selection rule is almost certainly impossible.
We discuss this topic further and provide an example in Appendix A. Thus, we make the
following assumption for the rest of this report.

Assumption 5. We have chosen a Borel measurable function σ : (P(U) \ ∅) → U such
that σ(A) ∈ A for every A ∈ (P(U)\∅) and defined the control law as κN (x) := σ(KN (x)).

Remark 3. We emphasize that Assumption 5 does not supplant the need for Proposition 8.
If KN (·) is not a Borel measurable mapping, there is no guarantee that a Borel measurable
selection rule σ(·) generates a Borel measurable control law κN (·). Indeed, if KN (·) is not
Borel measurable there is no guarantee that there exists a Borel measurable control law
κN (x) such that κN (x) ∈ KN (x) for all x ∈ XN . For example, if KN (x) is a single-valued
mapping and not Borel measurable, κN (·) = KN (x) is also not Borel measurable.

Stochastic properties of interest for the closed-loop system are defined by the following
Lebesgue integrals

E [|φ(k;x,wk)|] :=

∫
Ω
|φ(k;x,wk(ω))|dP (ω)

E
[
V 0
N (φ(k;x,wk))

]
:=

∫
Ω
V 0
N (φ(k;x,wk(ω)))dP (ω)

E [`(φ(k;x,wk), κN (φ(k;x,wk)))] :=

∫
Ω
`(φ(k;x,wk(ω)), κN (φ(k;x,wk(ω))))dP (ω)

Pr (φ(k;x,wk) ∈ S) :=

∫
Ω
IS (φ(k;x,wk(ω))) dP (ω)
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in which S is a closed set. With the following result we guarantee that φ(k;x,wk) is a
Borel measurable function and all of these stochastic properties are well-defined.

Proposition 9. Let Assumption 1-5 hold. Then the function φ(k;x,wk(ω)) for all k ∈ I≥0

are measurable w.r.t. the measure space (Ω,F , P ). Furthermore, the integral∫
Ω
g(φ(k;x,wk(ω)))dP (ω)

is well-defined for all x ∈ XN , k ∈ I≥0, and any lower bounded, Borel measurable function
g : XN → R. Furthermore, the function V 0

N : XN → R and `(·, κN (·)) : XN → R are lower
bounded and Borel measurable.

Proof. Adapted from Proposition 4 in Grammatico et al. (2013). From Proposition 8 and
Assumption 5 we have that κN : XN → U is Borel measurable. Since f(·) is continuous,
fc(x,w) = f(x, κN (x), w) is Borel measurable. From Lemma 6, we know that φ(k;x,wk)
is well-defined for all x ∈ XN , wk ∈Wk, and k ∈ I≥0.

We proceed by induction. For some k ∈ I≥0 let φ(k;x,wk) be Borel measurable. Then

φ(k + 1;x,wk+1) = fc(φ(k;x,wk), wk)

is also Borel measurable. Since φ(1;x,w1) = fc(x,w0) is Borel measurable, we have that
for all k ∈ I≥0, φ(k;x,wk) is Borel measurable. By definition, wk(ω) is measurable w.r.t.
ω ∈ Ω and therefore φ(k;x,wk(ω)) is also Borel measurable w.r.t. ω ∈ Ω.

For nonnegative, real-valued, Borel-measurable functions, Lebesgue integrals are well-
defined (although not necessarily finite). Because g(·) is lower bounded, there exists finite
c ∈ R such that g(x) ≥ c ∀x ∈ XN . We define h : XN → R≥0 as h(x) := g(x)−c. Therefore,
h(·) is a nonnegative, real-valued, Borel-measurable function and∫

Ω
g(φ(k;x,w(ω)))dP (ω) =

∫
Ω

(c+ h(φ(k;x,w(ω))))dP (ω)

= c+

∫
Ω

(h(φ(k;x,w(ω)))dP (ω)

is well-defined.7

From Assumption 2 we have that ` : X × U → R and VN : X × VN → R are lower
bounded. Thus, there exists M ∈ R such that VN (z) ≥M for all z ∈ ZN and by properties
of constrained minimization V 0

N (x) ≥ M for all x ∈ XN as well. From Proposition 8 and
Standing Assumption 5, we know that V 0

N (·) and κN (·) are Borel measurable. Therefore,
`(x, κN (x)) and V 0

N (x) are lower bounded and Borel measurable functions for x ∈ XN .

Thus, Proposition 9 ensures that all stochastic properties of interest for the closed-
loop system are well-defined. In addition, we note that the control laws admitted by
Proposition 9 subsume the control law defined by nominal MPC since we can define Ŵ = 0
and µ({0}) = 1 in the SMPC problem to recover the nominal MPC problem. Therefore,
nominal MPC applied to a stochastic system also produces measurable closed-loop systems.
See Appendix B for a further discussion of nominal MPC and measurability.

7Since we are considering a probability space, we know that
∫

Ω
cdP (ω) = c.
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4 Discussion and Conclusions

In this report we established a collection of critical results that are required to properly
analyze the closed-loop stochastic properties of SMPC. First, we established under suitable
regularity assumptions that the stochastic optimization problem for SMPC is well-defined,
i.e., the minimum exists. We achieve this result by leveraging Lebesgue integration theory
(specifically, Fatou’s Lemma). Furthermore, we are able to guarantee that the stochastic
cost function VN (·) is lower semicontinuous and that the set of admissible initial conditions
and parameter trajectories ZN is in fact closed despite including probabilistic constraints.
We then establish that these same regularity conditions are sufficient to guarantee that
the optimal control law mapping is Borel measurable. We conclude with Proposition 9,
in which we establish that all stochastic properties of interest for the closed-loop system
are well-defined. These results constitute a critical foundation for any and all analysis of
closed-loop stochastic properties for SMPC.

Although many of these results are often tacitly and harmlessly assumed in SMPC
literature, there are a few important considerations raised by conducting the formal analysis
in this report. We note discuss a few specific insights here.

First, we note that Assumption 2 requires that π(·) is a continuous function. This
requirement is not always discussed explicitly in SMPC literature and sometimes this re-
quirement is relaxed to allow any Borel measurable function π(·). However, if we allow
π(·) to be a discontinuous (albeit measurable) function, the functions JN (·) and therefore
VN (·) are not necessarily continuous or even lower semicontinuous. Consequently, the op-
timization problem PN (x) is not necessarily well-defined and the minimum may not exist.

Similarly, we require X̃ to be a closed set and the probabilistic constraint to be defined
by an inequality. Although this requirement is often enforced in formulating the SMPC
problem, the analysis conducted in this report indicates that such a formulation is impor-
tant to guarantee that Z is closed (and by extension ensure that PN (x) is well-defined). If
we modify this constraint (require a strict inequality or use an open set X̃), we may not be
able to guarantee that Z is closed.
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A Measurable Selection Rules

In this section, we elaborate on the nuances of measurable selection rules. We begin by
presenting an example to illustrate that, in theory, we can select a non-measurable single-
valued control law κN (x) from a measurable set-valued control law KN (x).

Consider the Borel measurable control law mapping KN : [0, 1] ⇒ [0, 1] defined as
KN (x) = [0, x], i.e., the closed set from zero to x. We note that the graph of KN (x), i.e.,
the set

{(x, u) ∈ [0, 1]2 : u ∈ KN (x)} = {(x, u) ∈ [0, 1]2 : x− u ≤ 0},

is closed and therefore KN (·) is outer semicontinuous and Borel measurable (Rockafellar
and Wets, 1998, Theorem 5.7(a), Exercise 14.9). Define the function

σ(U) :=

{
arg maxu∈U |u| ; arg maxu∈U |u| ∈ V
arg minu∈U |u| ; arg maxu∈U |u| /∈ V

in which V ⊆ [0, 1] is the Vitali set (or some other non-measurable set).8 Thus, the
resulting single-valued control law is

κN (x) := σ(KN (x)) = xIV (x)

because arg maxu∈KN (x) |u| = x and arg minu∈KN (x) |u| = 0 for all x ∈ [0, 1]. Also, note
that κN (x) ∈ KN (x) for all x ∈ [0, 1], i.e., we have taken a selection of KN (x) to generate
κN (x). However, κN (·) is not a (Borel) measurable function because

κ−1
N ((0, 1)) = {x ∈ [0, 1] : xIV (x) ∈ (0, 1)} = V /∈ B([0, 1])

8The function σ(·) is not technically a selection rule, since maxu∈U |u| is undefined for a open (not
closed) sets U . However, since KN (x) always produces a closed set, we can still apply this function as a
pseudo selection rule.
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in which V is the Vitali set (or some other non-measurable set). This example illustrates
how we can, at least in theory, construct a non-measurable single-valued control law κN (x)
as a selection from a measurable set-valued control law KN (x).

We argue, however, that accidentally constructing a non-measurable selection rule is
very unlikely. Robert Solovay established in 1970 that the axiom of choice is necessary
to construct a non-measurable set and by extension a non-measurable function (Solovay,
1970). Therefore, to construct a non-measurable selection rule, we must generate such a
function through uncountably many arbitrary choices (no algorithm), e.g., by defining a
set such as the Vitali set. Presumably, any selection rule (intentionally or unintentionally)
defined for the controller is still based on an underlying algorithm and therefore does not
require the axiom of choice. Hence, the assumption that σ(·) is a Borel measurable function
is very reasonable.

B Measurable Closed-Loop Trajectory for Nominal MPC

In this section, we consider the case of nominal MPC applied to the stochastic system in
(1). For nominal MPC, we assume that Ŵ := {0} and w = 0 in the optimization problem
and define π(x, v) := v and V = U. We note that Assumptions 1, 2, and 3 admit the
nominal MPC formulation and therefore Proposition 8 holds for the nominal MPC control
law mapping as well. Indeed, we can strengthen Lemma 5 to establish that VN : ZN → R is
continuous and lower bounded since VN (x,v) := JN (x,v,0). Furthermore, we can similarly
apply Assumption 5 to construct a Borel measurable, single-valued control law κN (x) (such
that κN (x) ∈ KN (x) for all x ∈ XN ) for the nominal MPC problem.

Although we assume Ŵ = {0} in the optimization problem, the underlying closed-loop
system is still stochastic with nonzero disturbances, i.e., we determine κN (·) based on the
nominal system, but the underlying closed-loop system is still x+ = f(x, κN (x), w) with
the disturbance w∞ defined on the probability space (Ω,F , P ) and support W 6= {0}.
If we are able to establish that Assumption 4 holds for the closed-loop system (despite
not addressing the disturbances in the optimization problem directly), we can still apply
Proposition 9 to the closed-loop trajectory. Therefore, all stochastic properties of interest
for the closed-loop system are still well-defined.


