
TWCCC ? Texas – Wisconsin – California Control Consortium

Technical report number 2023-01

On the unified theory of linear Gaussian

estimation: solution methods, applications, and

extensions∗

Steven J. Kuntz† James B. Rawlings†

December 12, 2023

∗The title is in reference to Rao’s 1971 paper “Unified Theory of Linear Estimation”.
†University of California Santa Barbara (skuntz@ucsb.edu, jbraw@ucsb.edu).

1

mailto:skuntz@ucsb.edu
mailto:jbraw@ucsb.edu


TWCCC Technical Report 2023-01 2

Abstract

Linear Gaussian estimation, i.e., estimation of β (or a linear function
of β) in the model y = Xβ + e where e ∼ N(0, V ), is a classic and
ubiquitous problem in statistics. Linear Gaussian estimation under
the most restrictive assumptions (X full column rank, V = σ2I) dates
back to the late 18th century. Estimates without assumptions on the
rank ofX or V were stated in closed-form in the early 1970s. Recently,
linear estimation has taken many new and non-Gaussian formulations
with the popularity of Bayesian regression priors (e.g., Tikhonov reg-
ularization, ridge and LASSO regression, sparse modeling). Given
its distinguished history and prominent role in the fields of statistics,
optimization, and optimal estimation and control, results on linear es-
timation (and least squares) are extensive and widely scattered in the
literature, often with strikingly different but nevertheless equivalent
closed-form solutions appearing in different fields.
This review is intended to serve as a self-contained and compact

resource for these many definitions and closed-form solutions of esti-
mators of the linear model. We survey a wide variety of estimator defi-
nitions, including ordinary/generalized least squares estimators, max-
imum likelihood estimators (MLEs), maximum a posteriori (MAP)
estimators, and best linear unbiased estimators (BLUEs), and derive
closed-form solutions to these estimation problems. While solutions to
the BLUE problem are available in the literature under our assump-
tions, we know of no other literature that has closed-form solutions of
the MLE and MAP problems under these assumptions. Despite the
breadth of estimator definitions available, we show that all of these
can be formulated as an equivalent equality constrained generalized
least squares (ECGLS) problem, i.e., minimization of a quadratic ob-
jective subject to linear equality constraints. Moreover, we show that
the estimator of a perturbed linear model with nonsingular variance
(y = Xβ + e where e ∼ N(0, V + ρI)) is a stable approximation of
the estimator with singular variance. In this review, we also discuss
many of the applications (semidefinite Kalman filtering and optimal
control, saddle point systems, linear inverse problems) and extensions
(nonlinear regression and inverse problems, Bayesian regression, sparse
modeling) of the classical and generalized linear estimation problem,
and show how they arise from specific solution methods in linear esti-
mation.
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1 Introduction

Consider the following linear regression model

y = Xβ + e, e ∼ N(0, V ) (LGM)

in which y ∈ Rn are the observations, β ∈ Rp are the model parameters, X ∈ Rn×p is
a (known) predictor matrix, e ∈ Rn are the model errors, and V ∈ Rn×n is a (known)
positive semidefinite error covariance matrix. We seek estimators of the parameters β of
the model (LGM), as a function of the observations y and known matrices X,V . While
these estimators are defined later in this section, let us first conceptually describe them as
they are useful in the following historical discussion.

• The ordinary least squares (OLS) estimator β̂ minimizes the squared 2-norm of the
errors ∥y −Xβ∥2.

• The generalized least squares (GLS) estimator β̂ minimizes the squaredH-(semi)norm
of the errors ∥y −Xβ∥2H .

• The Tikhonov generalized least squares (TGLS) estimator β̂ minimizes the regular-
ized objective ∥y−Xβ∥2H +∥β−β0∥2Γ, where β0 is an initial guess and Γ is a positive
semidefinite regularization weighting matrix.

• The equality constrained generalized least squares (ECGLS) estimator β̂ minimizes
the squared H-(semi)norm of the errors ∥y − Xβ∥2H subject to a linear equality
constraint w = Zβ.

• The maximum likelihood estimator (MLE) β̂ maximizes the probability density of
the observations f(y;β).

• The maximum a posteriori (MAP) estimator β̂ maximizes the conditional proba-
bility density of the parameters given the observations f(β|y), where β and e are
independent with prior distribution β ∼ N(β0,Σ).

• The minimum variance unbiased estimator (MVUE) β̂ has the minimum variance
among all unbiased estimators θ = f(y).

• The best linear unbiased estimator (BLUE) β̂ has minimum variance among all linear
unbiased estimators θ = Ay.

• The best affine unbiased estimator (BAUE) β̂ has minimum variance among all affine
unbiased estimators θ = Ay + c.

1.1 History

Estimates of the parameters β of the model (LGM) were first defined and derived by
Gauss [38].1 Gauss’ assumptions are stated, in modern matrix notation, as rank(X) = p

1Although Laplace [61] and Legendre [64] have each been debated as possibly responsible for inventing
what is commonly called the method of least squares, Gauss [38] is generally given credit. Some also credit
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and V = σ2I for some σ > 0. Under these assumptions, the unique BLUE of the parameters
β is

β̂Gauss := (X ′X)−1X ′y (1)

Aitken [1] considered more general assumptions: rank(X) = p and V is positive definite.
Under these assumptions, the unique BLUE of the parameters β is

β̂Aitken := (X ′V −1X)−1X ′V −1y (2)

Gauss’ and Aitken’s estimators (1) and (2) are often referred to as the OLS and GLS
estimators. However, we wish to consider X with dependent columns and semidefinite
weighting matrices, so we reserve the OLS and GLS labels for a more general class of
estimators. Nonetheless, if rank(X) = p, then (1) and (2) are equivalent to the OLS
estimator and the GLS estimator with weighting matrix H = V −1, respectively. Moreover,
our OLS and GLS objectives are equivalent (up to constant scaling and shifting) to the
negative log-likelihood function, making both MLEs under their respective assumptions.
According to Kagan and Salaevskii [55], both (1) and (2) are not only BLUE, but also
MVUE, as all the unbiased estimators of (LGM) are also linear estimators. Alternatively,
one can use the Lehmann-Scheffé theorem [65, 66] to show that (1) and (2) are MVUE. It
is also easily shown, by differentiating the log-likelihood function, that (1) and (2) achieve
the Cramér-Rao lower bound [16, 24, 87] and are therefore MVUE.

Many statistical treatments of the model (LGM) stop with Aitken’s estimator (2).
However, X with dependent columns and singular V may occur in practice. In systems with
more predictors than measurements (n < p), X always has dependent columns. Singularity
in V occurs commonly in economic data with budget constraints [107, Chapter 6.7] or in
physical data with conservation laws.

When X has dependent columns, it is no longer possible to find an unbiased estimator
of β. However, it is still possible to find an unbiased estimator of the parameteric function
Wβ, whenever R(W ′) ⊆ R(X ′). Goldman and Zelen [40] first considered the estimation of
Wβ given the model (LGM) with any X ∈ Rn×p and positive semidefinite V ∈ Rn×n. They
found the following closed-form expression for the BLUE of Wβ when R(X) ⊆ R(V ):

ŴβGZ := W (X ′V +X)+X ′V +y (3)

where (·)+ is the (Moore-Penrose) pseudoinverse [73, 81]. Zyskind and Martin [118] derived
normal equations for the purpose of computing the BLUE, but they did not state a closed-
form expression. Rao [88] derived the following closed-form expression for the unique BLUE
under no assumptions on X and V :

ŴβRao := W (X ′V +
0 X)+X ′V +

0 y (4)

where V0 := V + XEX ′ and E ∈ Rp×p is any positive semidefinite matrix that satisfies
R(X) ⊆ R(V0). The matrix E arises as a free parameter in the pseudoinversion of the

Markov [68] for pointing out that Gauss’ estimator is the BLUE even for non-Gaussian errors, which is why
(LGM) is sometimes called the Gauss-Markov model, but Gauss’ proof does not require a Gaussian error
assumption [82]. For more information on the early history of least squares, see [82, 104].
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block matrix, [
V X
X ′ 0

]
which is a key step in Rao’s derivation.2,3 An alternative expression for the BLUE comes
from Albert [3],

ŴβAlbert := WX+(I − V S(SV S)+S)y (5)

where S := I − XX+. Albert’s expression (5) shows how the BLUE deviates from the
OLS estimator, Wβ̂OLS := WX+y. Note that the BLUE is unique, so Rao’s and Albert’s
estimators are equal (i.e., ŴβRao = ŴβAlbert).

As with (1) and (2), the estimators (3)–(5) are closely related to other estimators.
Zyskind and Martin [118] showed that any MLE β̂MLE is equivalent to the BLUE up to

left-multiplication by W (i.e., ŴβRao = Wβ̂MLE). Seely [96] and Drygas [30] claim that
the Lehmann-Scheffé theorem applies to the estimators (3)–(5), and therefore they are not
only BLUEs, but also MVUEs. However, this does not rule out nonlinear MVUEs, so (3)–
(5) are not necessarily unique MVUEs.4 We refer the reader to Magnus and Neudecker [67,
Chapters 11, 13] for a modern treatment of Rao’s results that includes equivalences between
the BLUE and least squares-type estimators,5 and to [44] for a modern review of the results
leading to and following from (3)–(5).

It is also worth pointing out the estimators (1)–(5) are still the unique BLUE under
non-Gaussian error distributions (with zero mean and covariance V ). That is, if the errors
are not Gaussian, and the linear model is more generally stated

y = Xβ + e, E[e] = 0, var[e] = V (LM)

then the estimators (1)–(5) are still the unique BLUE under their relevant assumptions
about X and V . However, they are not necessarily MLE or MVUE. A general treatment
of non-Gaussian models is outside of the scope of this paper, so we refer to the model
(LGM) throughout. However, our derivation of Rao’s estimator (4) does not rely on the
probability density of the errors, so the results are valid for the model (LM). We refer the
reader to [39, 58, 86] for examples of nonlinear unbiased estimators with lower variance
than (1) and (2), and to [47, 84, 86] for recent results on finding MVUEs in the context of
(LM).

2Rao used a g-inverse rather than the pseudoinverse, but since the pseudoinverse is a g-inverse, all results
hold when restricted to the pseudoinverse. See [72, 89, 90, 91, 92] for a further discussion of Rao’s solution.

3While Pringle and Rayner [85] first derived an expression for the pseudoinverse of this block matrix,
they did not include the free parameter E.

4Other methods of showing the BLUE is an MVUE do not work in the general case. Kagan and
Salaevskii’s result [55] requires that X has independent columns, so it cannot be applied to (3)–(5). The
Cramér-Rao theorem requires regularity conditions on the probability density function [16, Proposition
3.4.4] that are not satisfied by degenerate normal distributions, but it may be possible to use a constrained
version of the Cramér-Rao theorem instead [42, 70].

5They show ŴβRao = Wβ̂GLS where β̂GLS is the GLS estimator with weighting matrix H = V +
0 [67,

Theorem 13.15]. They also mention an equivalence between β̂GLS and the ECGLS estimator with weighting
matrix H = V + and linear constraint (I − V V +)(y − Xβ) = 0, but this is left as an exercise and not
proven [67, p. 318].
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1.2 Summary of results

For the purposes of summarizing the main results on estimators of (LGM), we collect
acronyms of the relevant models, estimators, and optimization problems, and define their
solution sets in table 1.

Table 1: Summary of acronyms.
(a) Model acronyms and references.

Acronym Model Reference

LGM Linear Gaussian model (LGM)

p-LGM Perturbed linear Gaussian model (p-LGM)

B-LGM Bayesian linear Gaussian model (B-LGM)

(b) Estimator acronyms and solution sets.

Acronym Estimator Solution set

OLS Ordinary least squares estimator –

GLS Generalized least squares estimator B̂GLS(y,X,H)

TGLS Tikhonov generalized least squares estimator B̂TGLS(y,X,H, β0,Γ)

ECGLS Equality constrained generalized least squares estimator B̂ECGLS(y,X,H,w,Z)

MLE Maximum likelihood estimator B̂MLE(y,X, V )

MAP Maximum a posteriori estimator B̂MAP(y,X, V, β0,Σ)

MVUE Minimum variance unbiased estimator –

BLUE Best linear unbiased estimator –

BAUE Best affine unbiased estimator ŴBBAUE(y,X, V,W )

(c) Special problem acronyms and references.

Acronym Problem Reference

SPP Saddle point problem (SPP)

MTP Minimum trace problem (MTP)

The estimator definitions, problem reformulations, and closed-form solutions are dia-
grammed in figures 1 to 4. Figure 1 summarizes the equivalences relating to GLS, TGLS,
and ECGLS estimators. Figure 2 summarizes the equivalences relating to MLEs. Fig-
ure 3 summarizes the equivalences relating to MAP estimators. Figure 4 summarizes the
equivalences relating to BAUEs. Rao’s estimator (4) appears in figures 2 and 4, Albert’s
estimator (5) appears in figure 2, and the results of Magnus and Neudecker [67] appear in
figures 1a, 1c, 2, and 4.

Rao’s estimator (4) is derived, in the MLE context, by writing an equivalent saddle
point problem, [

V X
X ′ 0

] [
α̂

β̂

]
=

[
y
0

]
(SPP)

Albert’s estimator (5) is derived as a perturbation result, i.e., as the limit of the MLE of
the perturbed model,

y = Xβ + e, e ∼ N(0, V + ρI) (p-LGM)
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β̂ ∈ B̂GLS(y,X,H) β̂ solves min
β∈Rp

1

2
∥y −Xβ∥2H

β̂ ∈ (X ′HX)+X ′Hy +N (X ′HX) X ′HXβ̂ = X ′Hy

Defn. 24

Thm. 25,[67,Ch. 13] Lem. 10

Lem. 3

(a) GLS estimator equivalences and solutions.

β̂ ∈ B̂TGLS(y,X,H, β0,Γ) β̂ solves min
β∈Rp

1

2
∥y −Xβ∥2H +

1

2
∥β − β0∥2Γ

β̂ ∈ Γ0Γ
+
0 β0 + Γ+

0 X
′H(y −Xβ0) +N (Γ0) β̂ ∈ B̂GLS

([
y
β0

]
,

[
X
I

]
,

[
H 0
0 Γ

])

Defn. 27

Thm. 28 Thm. 28

Thm. 25

(b) TGLS estimator equivalences and solutions, where Γ0 := X ′HX + Γ.

β̂ ∈ B̂ECGLS(y,X,H,w,Z) β̂ solves
min
β∈Rp

1

2
∥y −Xβ∥2H

s.t. w = Zβ

β̂ ∈ β0 +G+Z′F+(w − Zβ0)
+N (G), w ∈ R(Z)

∃λ̂ s.t.

[
X ′HX Z′

Z 0

] [
β̂

λ̂

]
=

[
X ′Hy
w

]

β̂ ∈ Z+w +B(BX ′HXB)+BX ′Hz
+BN (BX ′HXB), w ∈ R(Z)

β̂ ∈ Z+w +BB̂GLS(z,XB,H),
w ∈ R(Z)

Defn. 30

Thm. 31,[67,Ch. 13]

Thm. 31

Lem. 10

Thm. 31

Lem. 3

Thm. 25

(c) ECGLS estimator equivalences and solutions, where G := X ′HX + Z′Z, F := ZG+Z′, β0 :=
G+X ′Hy, B := I − Z+Z, and z := y − Z+w.

Figure 1: Problem equivalences and solutions for least-squares-type estimators.
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β̂ ∈ B̂MLE(y,X, V ) β̂ solves max
β∈Rp

f(y;β) s.t. f(y;β) > 0

β̂ ∈ Z+w +BD+BX ′V +Cy
+N (X), w ∈ R(Z)

β̂ solves
minβ∈Rp

1
2
∥y −Xβ∥2V +

s.t. w = Zβ

β̂ ∈ β0 +G+Z′F+(w − Zβ0)
+N (X), w ∈ R(Z)

β̂ ∈ B̂ECGLS(y,X, V +, w, Z)

β̂ ∈ (X ′V +
0 X)+X ′V +

0 y
+N (X), y ∈ R(V0)

∃α̂ s.t.

[
V X
X ′ 0

] [
α̂

β̂

]
=

[
y
0

]

β̂ ∈ X+(I −X+V S(SV S)+S)y
+N (X), w ∈ R(Z)

β̂ ∈ lim
ρ→0+

argmin
β∈Rp

1

2
∥y −Xβ∥2

V −1
ρ

,

w ∈ R(Z)

β̂ ∈ lim
ρ→0+

(X ′V −1
ρ X)+X ′V −1

ρ y

+N (X), w ∈ R(Z)

β̂ ∈ lim
ρ→0+

B̂MLE(y,X, Vρ),

w ∈ R(Z)

Defn. 32

Thm. 36,[67,Ch. 13]

Thm. 37,[88]

Thm. 38,[3]

Thm. 36 Lem. 33

Thm. 31

Lem. 34

Lem. 35

Defn. 30

Thm. 31

Lem. 3

Lem. 20 Defn. 32

Thm. 25

Figure 2: MLE equivalences and solutions, where T := I − V V +, w := Ty, Z := TX,
B := I − Z+Z, C := I − XZ+, D := BX ′V +XB, G := X ′V +X + Z ′Z, F := ZG+Z ′,
β0 := G+X ′V +y, V0 := V +XEX ′ for any positive definite E such that R(X) ⊆ R(V0),
S := I −XX+, and Vρ := V + ρI for each ρ > 0.
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β̂ ∈ B̂MAP(y,X, V, β0,Σ) β̂ solves max
β∈Rp

f(β|y) s.t. f(β|y) > 0

β̂ = E[β|y] = β0 + L(y −Xβ0),
y −Xβ0 ∈ R(V +XΣX ′)

β̂ ∈ B̂MLE(E[β|y], I, var[β|y]),
y −Xβ0 ∈ R(V +XΣX ′)

β̂ = β0 + limρ→0+ Lρ(y −Xβ0),
y −Xβ0 ∈ R(V +XΣX ′)

β̂ ∈ B̂MLE

([
y
β0

]
,

[
X
I

]
,

[
V 0
0 Σ

])

β̂ ∈ lim
ρ→0+

B̂MAP(y,X, Vρ, β0,Σρ),

y −Xβ0 ∈ R(V +XΣX ′)

β̂ ∈ lim
ρ→0+

B̂MLE

([
y
β0

]
,

[
X
I

]
,

[
Vρ 0
0 Σρ

])
,

y −Xβ0 ∈ R(V +XΣX ′)

Defn. 39

Thm. 41

Thm. 42

Lem. 10

Thm. 40

Lem. 9

Thm. 41 Thm. 38

Thm. 40

Figure 3: MAP estimator equivalences and solutions, where Vρ := V + ρI, Σρ := Σ + ρI,
L := ΣX ′(V +XΣX ′)+, and Lρ := ΣρX

′(Vρ +XΣρX
′)−1 for each ρ > 0.

Ŵβ ∈ ŴBBAUE(X,V,W )
var[Ŵβ(y)|β] ⪯ var[θ(y)|β] where (LGM),

for all θ ∈ ŴBAUE(X,V,W ) and β ∈ Rp.

Ŵβ(·) = W (X ′V +
0 X)+X ′V +

0 (·)
∈ ŴBAUE(W,X, V ),R(W ′) ⊆ R(X ′)

Ŵβ(·) = Â(·) ∈ ŴBAUE(W,X, V ),

where Â solves
minA∈Rm×n tr(AV A′) s.t. AX = W

Ŵβ(·) = Â(·) ∈ ŴBAUE(W,X, V ),

where (Â, Λ̂) solves[
V X
X ′ 0

] [
Â′

Λ̂′

]
=

[
0
W ′

]

Defn. 43

Thm. 25,

[67,Ch. 13],[88]
Lem. 44,

[67,Ch. 13]

Lem. 3,

[67,Ch. 2]

Lem. 44,

[67,Ch. 13]

Lem. 10

Figure 4: BAUE equivalences and solutions, where V0 := V + XEX ′ for
any positive semidefinite E such that R(X) ⊆ R(V0), and ŴBAUE(X,V,W ) :=
{ θ(·) = A(·) + c : R(V0) → Rm | E[θ(y)|β] = Wβ where (LGM), ∀β ∈ Rp }.
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which we justify using methods in variational analysis. Using the method of Magnus and
Neudecker [67, pp. 286–287], we derive Rao’s estimator through the following minimum
trace problem

min
A∈Rm×p

1

2
tr(AV A′) subject to AX = W (MTP)

1.3 Applications and modern extensions

Linear Gaussian estimation is related to a wide variety of problems in control, optimization,
and estimation. We discuss some of these applications and extensions in this section, going
into more detail in sections 5 and 6.

1.3.1 Kalman filtering

The Kalman filter (KF) and extended Kalman filter (EKF) equations can be derived as
(generalized) least squares estimates [13, 53, 56, 100]. More specifically, we show in sec-
tion 5.2 that the full information estimation (FIE) and one-step ahead KF estimates are
MAP estimates using the method outlined in [2, Chapter IX]. These formulations admit
singular noise covariance matrices, which are used when the states have linear equality con-
straints [5, 83, 99, 112]. Stability of the KF has been discussed in both time-invariant [98]
and time-varying [93] contexts.

1.3.2 Linear quadratic regulation

The linear quadratic regulator (LQR) has a Lagrangian dual relationship with the KF.
Stability results are often established first for the LQR before being translated to the KF
via duality [93, 98]. In the singular case (singular input penalties or singular measurement
noise covariance), this duality is subtle and leads to the following situation. While the
singular KF solution is always unique, it may not exist (due to an implied restriction on the
measurements). Conversely, while the singular LQR always exists, it may not be unique
(due to a free parameter corresponding to semidefinite directions of the objective). In
section 5.1 we derive closed-form expressions that cover the complete set of LQR solutions.

1.3.3 Gradient descent

Gradient descent, gradient flow, and their variants are fundamental numerical algorithms
in a wide variety of applied fields. When gradient descent is used on the OLS problem with
rank(X) = p, both the gradient descent and gradient flow algorithms produce iterates that
solve certain TGLS problems [4]. When gradient descent is used on the OLS problem with
rank(X) < p, the iterates converge to the OLS solution that is closest in 2-norm distance
to the initial guess. These facts are further discussed in section 4.3. This analysis also
gives insight to the behavior of gradient descent for nonlinear regression algorithms, which
is further explored in section 6.



TWCCC Technical Report 2023-01 13

1.3.4 Bayesian regression

The MAP estimator is closely related to the topic of regularized regression [21, 22]. With
nonsingular V , the MAP estimator corresponds to Tikhonov regularization [109, 110], and
with V = σ2I and Σ = λI corresponds to ridge regression (∥ · ∥2 regularization) [51, 52].
With other prior distributions on β we can produce other regularized regression models. For
example, if we assume the elements of β are independent and identically distributed with a
Laplace distribution, the MAP estimation problem corresponds to LASSO regression (i.e.,
∥ · ∥1 regularization) [49, 108, 117]. These regularization techniques are commonly used in
machine learning to reduce the variance of estimates [45, 78], as well as in algorithms for
solving ill-conditioned problems [77, 111] and inverse problems [21, 22].

1.3.5 Sparse modeling

Sparse modeling, or finding estimates of β with the fewest nonzero elements, is an important
problem in signal and image processing [19]. While formulations of this problem with and
without noise are NP-hard [79], small to moderately sized problems can be solved using
mixed integer programming [15, 17].

LASSO regression is particularly useful for sparse modeling problems, as it is equivalent
to the ∥·∥0-regularized problem for a wide class of X matrices [19, 23, 29].6 This is because
∥ · ∥1 is the best convex approximation of ∥ · ∥0. Nonconvex approximations of ∥ · ∥0 also
make useful priors for sparse modeling, with some even producing exact solutions to the
∥ · ∥0-regularized problem [37, 63, 101, 102]. For example, Fung and Mangasarian [37]
demonstrate that the solution to the ∥ · ∥0-regularized regression problem is the limit of
the solution to the ∥ · ∥q-regularized regression problem as q → 0+.7 We show this fact in
section 6 in a similar manner to our derivation of Albert’s estimator (5).

1.4 Notation

Table 2 lists the notation and definitions that are used in the subsequent sections. It is
worth pointing out some facts relating to table 2. First, note that ∥ · ∥W with W positive
semidefinite is a seminorm because it does not have the positive definiteness property.
When 0 ≤ q < 1, we refer to ∥ · ∥q as a pseudonorm because, for 0 < q < 1, the triangle
inequality does not hold, and for q = 0 absolute homogeneity does not hold. Moreover,
we have the limit ∥x∥0 = limq→0+ ∥x∥qq, pointwise in x ∈ Rn. Throughout, we may use
A ≻ 0 (A ⪰ 0) as a shorthand to denote that A is positive definite (semidefinite). We
use the Painlevé–Kuratowski notion of set convergence [59], as it is suitable for analysis of
optimization problems [95, pp. 108–110].

6Define the 0-pseudonorm ∥ · ∥0 as an operator that returns the number of nonzero elements of its
argument.

7Fung and Mangasarian [37] showed a stronger result, that there is a positive constant q ∈ R>0 such
that the ∥ · ∥q-regularized regression problem produces the same solution for all q ∈ [0, q]. We demonstrate
only the weaker limit result.
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Table 2: Summary of notation.
Notation Definition

I, I≥0, I>0 Set of integers, nonnegative integers, and positive integers.
R,R≥0,R>0,Rn,
Rm×n

Set of real numbers, nonnegative reals, positive reals, real n-vectors, and real
n×m matrices.

I Identity matrix, dimensions implied by context.
A−1 Inverse of A ∈ Rn×n (when it exists).
A′, A+ Transpose and pseudoinverse of A ∈ Rm×n.
R(A),N (A) Range and null space of A ∈ Rm×n.
rank(A) Rank of A ∈ Rm×n.
σ(A), σ(A) Largest and smallest singular values, respectively, of a matrix A ∈ Rm×n.
A is positive defi-
nite

if A = A′ and x′Ax > 0 for all x ̸= 0 ∈ Rn.

A is positive
semidefinite

if A = A′ and x′Ax ≥ 0 for all x ∈ Rn.

Sn
++ (Sn

+) Set of positive definite (semidefinite) n× n matrices.
≻ (⪰) Loewner partial order on Sn

++ (Sn
+), defined as A ≻ B (A ⪰ B) if A − B is

positive definite (semidefinite).
Dn,Dn

>0,Dn
≥0 Set of diagonal, positive definite diagonal, and positive semidefinite diagonal

n× n matrices.

diag(A1, . . . , An) :=

A1

. . .

An

, the diagonalization of matrices Ai ∈ Rni×mi .

∥x∥ :=
√
x′x, the 2-norm of x ∈ Rn.

∥x∥W :=
√
x′Wx, the W -norm (W -seminorm) of x ∈ Rn for W ∈ Sn

++ (W ∈ Sn
+).

∥x∥q := (
∑n

i=1 |xi|q)1/q, the q-norm (q-pseudonorm) of x ∈ Rn, where q ≥ 1 (0 <
q < 1).

∥x∥0 := # {xi ̸= 0 } = limq→0+ ∥x∥qq, the 0-pseudonorm of x ∈ Rn.
∥A∥ := max∥x∥=1 ∥Ax∥, the induced 2-norm of A ∈ Rm×n.
A+ B := {A+B | B ∈ B }, the matrix-set sum of A ∈ Rm×n and B ⊆ Rm×n.
AB := {AB | B ∈ B }, the matrix-set product of A ∈ Rm×n and B ⊆ Rn×m.
AB := {AB | A ∈ A }, the matrix-set product of A ⊆ Rn×m and B ∈ Rm×n.
d(A,B) := infB∈B ∥A − B∥, the point-to-set distance between A ∈ Rm×n and B ⊆

Rm×n.
lim

α→α0

A(α) := {A ∈ Rm×n | limα→α0 d(A,A(α)) = 0 }, the limit of the set-valued function
A(α) as α → α0.

lim
α→0+

A(α) := {A ∈ Rm×n | limα→0+ d(A,A(α)) = 0 }, the limit of the set-valued function
A(α) as α → 0+.

E[x], var[x] Expectation and variance of a random variable x.
Ex[f ], varx[f ] Expectation and variance of a function f(x) with respect to the random vari-

able x.
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1.5 Summary

The rest of this paper is outlined as follows. In section 2, we present a basic toolset of
linear algebra, probability, and convex optimization with which one can derive all of the
relevant estimators. Section 3 contains all the estimator definitions, statements on problem
reformulations and closed-form solutions, and any corollaries that are useful for computa-
tions, applications, and extensions. Problem formulation is analyzed from a computational
perspective in section section 4, including relating the output of gradient methods with
early termination to the TGLS problem. Applications in optimal control and estimation
are discussed in section 5. Finally, in section 6, we show how the tools of linear estimation
can be applied to modern extensions of the linear estimation problem.

Proofs of many of the results in the body are delayed until the appendix. Appendices A
to D contain proofs of the results stated in section 3. Appendices F and I contain proofs
of some preliminary results in section 2 that are required in the proofs of the results stated
in section 3.

2 Background, definitions, and preliminary results

In this section we present definitions and results that are helpful to derive the results in
figures 1 to 4. We defer to appendix E the basics of matrix analysis, probability, and
convex optimization that are necessary to follow the proofs in the subsequent sections.
Proofs of the results in this section are deferred to the appendices. Proofs of the results in
this section are deferred to the appendices or left to external references.

2.1 Background and definitions

First, we present background and definitions that can be found in textbooks on linear
algebra [41], probability theory [90], and convex optimization [18].

2.1.1 Pseudoinverse

Thus far, we have avoided defining two important concepts. First, the pseudoinverse A+ ∈
Rm×n solves the system of equations (6). Existence and uniqueness of the pseudoinverse
were established by Moore [73] and later rediscovered by Penrose [81], which is restated
(for real matrices) in the following theorem.

Theorem 1 ([73, 81]). For any matrix A ∈ Rn×m, the system of equations

AXA = A, XAX = X, (XA)′ = XA, (AX)′ = AX (6)

has a unique solution, called the pseudoinverse of A, denoted X = A+.

Some basic corollaries to theorem 1 are stated below for completeness. They are used
throughout, without reference.

(A+)+ = A, A+ = (A′A)+A′ = A′(AA′)+, R(A+) = R(A′) = R(A′A),

(A′)+ = (A+)′, A = A′ ⇒ AA+ = A+A, N (A+) = N (A′) = N (AA′)
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It was first shown by Albert [2, pp. 19–23] that the pseudoinverse of any A ∈ Rm×n

could be defined as the limit of the approximation (A′A + αI)−1A′ as α → 0+. Later,
Golub and Van Loan [41, pp. 296–297] proposed an exact form for the norm of the residual
R(α) := A+ − (A′A + αI)−1A′ in terms of α and σ(A). These results are summarized in
the following lemma.

Lemma 2 ([41]). For any A ∈ Rm×n and α > 0 let R(α) := (A′A+αI)−1A′ −A+. Then

R(α) = −αV1(αI +Σ2
1)

−1Σ−1
1 U ′

1 (7a)

∥R(α)∥ =
α

σ(A)(σ2(A)) + α
(7b)

A+ = lim
α→0+

(A′A+ αI)−1A′ (7c)

given the SVD (8).

2.1.2 Linear equations

lemma 3 provides necessary and sufficient conditions for the existence of solutions to linear
vector equations, as well as closed-form solutions to those problems. This lemma is useful
in solving least squares problems. corollary 4 extends the lemma 3 to linear matrix equa-
tions, which is used to solve constrained minimum trace problems (MTP). The proofs of
lemma 3 and corollary 4 can be found in appendix E.3. Lemma 3 was adapted from [67,
Theorems 2.11–12]. Corollary 4 was adapted from [67, Theorems 2.13], which characterizes
the solutions to the more general linear matrix equation AXB = C.

Lemma 3 ([67]). Let A ∈ Rm×n and b ∈ Rm. The following statements are equivalent.

1. S := {x ∈ Rp | Ax = b } is nonempty.

2. b ∈ R(A).

3. AA+b = b.

If the above statements hold, then S = A+b+N (A).

Corollary 4 ([67]). Let A ∈ Rm×n and B ∈ Rm×p. The following statements are equiva-
lent.

1. S := {X ∈ Rn×p | AX = B } is nonempty.

2. R(B) ⊆ R(A).

3. AA+B = B.

If the above statements hold, then S = A+B + { (I −A+A)Q | Q ∈ Rn×p }.
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2.1.3 Projectors

We say a matrix P ∈ Rn×n is a projector if P 2 = P . We say it is an orthogonal projector
if additionally P = P ′. It follows from theorem 1 that the following functions of the
pseudoinverse are orthogonal projectors,

A+A, AA+, I −A+A, I −AA+

Moreover, we can write equivalent expressions for R(A) and N (A) in terms of these pro-
jectors,

R(A) = {AA+q | q ∈ Rn } = R(AA+),

N (A) = { (I −A+A)q | q ∈ Rm } = R(I −A+A)

and likewise for R(A′) and N (A′). Finally, we have the following results about projectors,
the proofs of which can be found in appendix E.2. Finally, we have the following result
about projectors, which is easily demonstrated using theorem 1.

Lemma 5. If P ∈ Rn×n is an orthogonal projector, then P+ = P and (PA)+ = (PA)+P
for all A ∈ Rn×m.

2.1.4 Singular value decomposition

We say a matrix Q ∈ Rn×r is orthogonal if Q′Q = I. Notice that if Q is orthogonal,
then QQ′ is an orthogonal projector. The following lemma states some properties of the
pseudoinverse of orthogonal matrices.

Lemma 6. If Q ∈ Rn×m is orthogonal, then Q+ = Q′ and (QA)+ = A+Q′ for all A ∈
Rm×n.

We say a matrix U ∈ Rn×n is unitary if U ′U = UU ′ = I. If a matrix U =
[
U1 U2

]
∈

Rn×n is unitary, then U ′
1U1 = I, U ′

2U2 = I, and U1U
′
1 + U2U

′
2 = I, where r is the number

of columns of U1. Clearly, U1 and U2 are orthogonal matrices, and U1U
′
1 and U2U

′
2 are

orthogonal projectors.
These definitions allow us to state the existence of the singular value decomposition

(SVD) [41, Theorem 2.4.1].

Theorem 7. For any A ∈ Rn×m, there exist unitary matrices U =
[
U1 U2

]
∈ Rn×n and

V =
[
V1 V2

]
∈ Rm×m and constants σ1 ≥ . . . ≥ σr > 0 such that

A =
[
U1 U2

] [Σ1 0
0 0

] [
V ′
1

V ′
2

]
= U1Σ1V

′
1 (8)

where r := rank(A) and Σ1 := diag(σ1, . . . , σr) ∈ Rr×r.

The columns of U and V are called the left and right singular vectors, and the diag-
onal entries of Σ1 are called the singular values. The singular vectors contain important
information about the range and null spaces of A and A′,

R(A) = R(U1), N (A) = R(V2), R(A′) = R(V1), N (A′) = R(U2)
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given the SVD (8). Moreover, it can easily be shown that

A+ = V1Σ
−1
1 U ′

1

by checking the conditions of theorem 1, given the SVD (8).
A special case of the SVD arises when A ∈ Sn+, in which case the left and right singular

values are equal [41], i.e.

A =
[
U1 U2

] [Σ1 0
0 0

] [
U ′
1

U ′
2

]
= U1Σ1U

′
1 ∈ Sn+ (9)

is a SVD. A consequence of this special case is that, given the SVD (9), we can define a

matrix square root for each A ∈ Sn+ as A1/2 := U1Σ
1/2
1 U ′

1 for which

A1/2A1/2 = U1Σ
1/2
1 U ′

1U1Σ
1/2
1 U ′

1 = U1Σ1U
′
1 = A

and
R(A1/2) = R(U1) = R(A), N (A1/2) = R(U2) = N (A)

Notice also that for every A ∈ Rn×m, AA′ ∈ Sn+ because

AA′ = U1Σ
2
1U

′
1

has the form of the SVD (9). Likewise, for any A ∈ Sn+ and B ∈ Rn×m, with the SVD (9)

B′AB = (B′U1Σ
1/2
1 )(B′U1Σ

1/2
1 )′ and therefore B′AB ∈ Sm+ . Another consequence of (9)

is that every A ∈ Sn++ is nonsingular since the inverse can be defined as A−1 = UΣ−1U ′,
given the SVD A = UΣU ′.

2.1.5 Degenerate Gaussian

Second, we define the multivariate Gaussian distribution for positive semidefinite covariance
matrices. A derivation of this likelihood function (10) can be found in [90, pp. 527–528].
Below, we state a more parsimonious definition of the positive semidefinite covariance
multivariate Gaussian, sometimes called the degenerate or singular multivariate Gaussian
or normal.

Definition 8 ([90]). A random variable x ∈ Rn has a Gaussian distribution with mean
µ ∈ Rn and (possibly singular) covariance matrix Σ ∈ Sn+, denoted x ∼ N(µ,Σ), if the
probability density function is

f(x) :=
1

(2π)n/2|Σ|1/2+

exp

(
−1

2
∥x− µ∥2Σ+

)
(10)

on the support x ∈ µ +R(Σ), and is zero elsewhere, where | · |+ : Rn×n → R is called the
pseudodeterminant and is defined for all A ∈ Rn×n as the product of the nonzero singular
values of A.8,9

8When Σ ∈ Sn
++, the singular values of Σ are strictly positive and the inverse exists, so we have |Σ|+ = |Σ|

and Σ+ = Σ−1. Moreover, R(Σ) = Rn so the support is nondegenerate.
9To integrate over this density, one must define, using the disintegration theorem, a Lebesgue measure

over the rank(Σ)-dimensional subspace µ+R(Σ) [90].
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The definition of the singular values is presented later in this section. We refer the
reader to theorem 7 for the definition of the singular values. To ensure the likelihood
functions in (MLE) and (MAP) produce estimates consistent with the models (LGM) and
(B-LGM), we set the likelihood function to zero for impossible values of β. In a typical MLE
or MAP problem, the likelihood function is equal to the probability density function for all
parameter values, but since we are performing optimization over a degenerate distribution,
we require constraints on the feasible values of β.

Some properties of non-degenerate Gaussians carry over to the degenerate case with
minor modifications. For example, if x ∼ N(µ,Σ), then E[Ax] = Aµ and var[Ax] = AΣA′.
Moreover, we have the following lemma due to Marsaglia [69].

Lemma 9 ([69]). Let x ∈ Rn and y ∈ Rm be random variables such that[
x
y

]
∼ N

([
µx

µy

]
,

[
Σx Σ′

xy

Σ′
xy Σy

])
Then x|y ∼ N(µx +ΣxyΣ

+
y (y − µy),Σx − ΣxyΣ

+
y Σ

′
xy) for all y ∈ µy +R(Σy).

A proof of lemma 9 can be found in appendix E.7. It is worth pointing out that lemma 9
leaves x|y (and its density function) undefined when y leaves the support of f(·;µy,Σy).
This is desirable because it does not make sense to condition x on an impossible realization
of y.

2.1.6 Convex optimization

We say a set S ⊆ Rn is convex if tx+ (1− t)y ∈ S for all x, y ∈ S and 0 ≤ t ≤ 1. We say
a function f : Rn → R is convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x, y ∈ Rn and 0 < t < 1. If a function f : Rn → R is differentiable, then it is convex
if and only if

f(y) ≥ f(x) + (y − x)′
df

dx
(x)

for all x, y ∈ Rn [18, p. 69]. An immediate consequence of this fact is that, if f is differ-
entiable and convex and S is convex, then x0 solves minx∈S f(x) if and only if x0 ∈ S and
(x−x0)′(df/dx)(x0) ≥ 0 for all x ∈ S. A further corollary is that, if f is differentiable and
convex, then x0 ∈ Rn solves minx∈Rn f(x) if and only if (df/dx)(x0) = 0. Lemma 10 pro-
vides necessary and sufficient conditions for the solutions to convex optimization problems

min
x∈Rn

f(x) subject to Ax = b (11)

using the method of Lagrange multipliers. A proof of lemma 10 can be found in [18, pp. 141–
142]. The proof (adapted from [18, pp. 141–142]) can be found in appendix E.8. We use
the necessary and sufficient conditions (13) to solve the convex optimization problems that
we encounter.
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Lemma 10 ([18]). Let f : Rn → R be convex and differentiable, A ∈ Rm×n, and b ∈ R(A).
Define the Lagrangian

L(x, λ) = f(x) + λ′(Ax− b) (12)

Then x0 ∈ Rn solves (11) if and only if there exists λ0 ∈ Rm such that

∂L
∂x

(x0, λ0) = 0,
∂L
∂λ

(x0, λ0) = 0 (13)

2.1.7 Miscellaneous facts

We present Woodbury’s matrix identity below [97, 114].

Theorem 11 ([97, 114]). For any A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×m, and D ∈ Rm×n,

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1

subject to existence of the inverses.

All positive definite matrices A ∈ Sn++ are invertible, i.e., A−1 ∈ Sn++ exists. For any
positive semidefinite matrix A ∈ Sn+, there exists a positive semidefinite matrix A1/2 ∈ Sn+
such that A = A1/2A1/2. Moreover, A ∈ Sn+ if and only if there exists a matrix B ∈ Rn×r

such that A = BB′ where r = rank(A).

2.2 Preliminary results

Next, we present some preliminary results, most of which are from the linear algebra
literature and the others are corollaries unique to this work.

2.2.1 Block matrix pseudoinversion

As alluded to in section 1, the pseudoinverse of the block matrix

M =

[
V X
X ′ 0

]
(14)

is essential in deriving results about the estimators of (LGM). First, it is useful to state
some consequences of corollary 4 that are not only used in deriving M+, but are also useful
in the estimator derivations of appendices A, B, and D.

Lemma 12 ([67]). For any V ∈ Sn+, X ∈ Rn×p, and E ∈ Sp+, let V0 := V + XEX ′ and
W0 := X ′V +

0 X. If R(X) ⊆ R(V0), then

1. R(V ) ⊆ R(V0),

2. V0V
+
0 X = X, V0V

+
0 V = V ,

3. R(X ′) = R(W0), and W0W
+
0 X ′ = X ′.

The formula for M , MM+, and M+M are given in the following lemma.
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Lemma 13 ([67, 85]). For any V ∈ Sn+, X ∈ Rn×p, and E ∈ Sp+, consider (14) and let
V0 := V +XEX ′ and W0 := X ′V +

0 X. If R(X) ⊆ R(V0), then

M+ =

[
V +
0 − V +

0 XW+
0 X ′V +

0 V +
0 XW+

0

W+
0 X ′V +

0 W0W
+
0 EW0W

+
0 −W+

0

]
MM+ = M+M =

[
V0V

+
0 0

0 W0W
+
0

]
Lemmas 12 and 13 were adapted from [67, Theorems 3.20–21]. In appendix F we prove

the generalized versions of these lemmas. as well as an immediate corollary to lemma 13
which is stated below.

Corollary 14. For any V ∈ Sn+, X ∈ Rn×p, and E ∈ Sp+, let V0 := V + XEX ′ and
V1 := V +XX ′. If R(X) ⊆ R(V0), then

(X ′V +
0 X)+X ′V +

0 = (X ′V +
1 X)+X ′V +

1

2.2.2 Pseudoinverse of sum of positive semidefinite matrices

Another important result is a formula, proposed by Minamide [71], for the pseudoinverse
of V1 = V + XX ′. Minamide’s lemma is restated below and proven10 in appendix G for
completeness.

Lemma 15 (Minamide [71]). For any V ∈ Sn+ and X ∈ Rn×p, let Z = (I − V V +)X,
B = I − Z+Z, C = I −XZ+, and D = I +BX ′V +XB. Then,

(V +XX ′)+ = C ′V +C + Z ′+Z+ − C ′V +XBD−1BX ′V +C

Notice that we have lost dependence on E, but can regain it using corollary 14. A
direct consequence of Minamide’s lemma is stated in the following lemma, which can be
used to show (31c).

Lemma 16. For any V ∈ Sn+ and X ∈ Rn×p, let V1 = V + XX ′, Z = (I − V V +)X,
B = I − Z+Z, and C = I −XZ+. Then,

(X ′V +
1 X)+X ′V +

1 = Z+ + (BX ′V +XB)+BX ′V +C

The proof of the above lemma can be found in appendix G.

2.2.3 Bounds on oblique projectors and weighted pseudoinverses

In order to take the limit of the perturbed solution, we require some bounds on the norms
of so-called oblique pseudoinverses and projectors. Stewart [103] first proposed an upper
bound on these matrices and Vavasis [111] later proved that the upper bound is exact.
These results are summarized in theorem 17.11

10Minamide proved lemma 15 using a combination of nullspace and projector arguments, but in ap-
pendix G we show the formula directly using the definition of the pseudoinverse (theorem 1).

11We take a slight liberty in the statements of theorem 17 and lemma 19 in that we do not require A to
be full column rank. However, the proofs in [80, 103] can easily be extended to A of arbitrary rank using
the thin SVD.
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Theorem 17 ([103, 111]). For any nonzero matrix A ∈ Rm×n,

sup
D∈Dm

>0

∥(A′DA)+A′D∥ ≤ 1

σ(A)χ(A)
(15a)

sup
D∈Dm

>0

∥A(A′DA)+A′D∥ =
1

χ(A)
(15b)

where

χ(A) := inf
x∈X(A),y∈Y(A)

∥x− y∥ (16a)

X(A) := {x ∈ R(A) | ∥x∥ = 1 } (16b)

Y(A) := { y | ∃D ∈ Dn
>0 s.t. A

′Dy = 0 } (16c)

The above theorem implies a more general upper bound on approximations to the linear
estimation problem.

Corollary 18. For any X ∈ Rn×p and V ∈ Sn++,

sup
D∈Dm

>0

∥(X ′V −1
D X)+X ′V −1

D ∥ ≤ 1

σ(X)χ(Q′U1)
(17a)

sup
D∈Dm

>0

∥X(X ′V −1
D X)+X ′V −1

D ∥ ≤ 1

χ(Q′U1)
(17b)

where VD := V +QDQ′, V = QSQ′ is the SVD of V , X = U1Σ1V
′
1 is the economic SVD

of X, and χ(·) is defined in (16a).

Finally, we state an equivalent form of the infimum (16a) that can be directly computed
from the SVD of A. Note that the computational cost of this problem is exponential in m,
so it may not be desirable to actually compute this bound.

Lemma 19 (Generalized from [80, 103]). For any nonzero matrix A ∈ Rm×n,

χ(A) = min
U∈U(A)

σ(U) (18)

where χ(·) is defined in (16a) and U(A) is the set of all submatrices formed by the rows of
U1, where A = U1Σ1V

′
1 is the economic SVD of A.

2.2.4 Limit of the perturbed problem

One approach to solving (MLE) is to add a perturbation ρI to the positive semidefinite
covariance V so that it is positive definite, find the MLE with the perturbed covariance
V + ρI, and take the limit of that MLE as the perturbation goes to zero. This approach
is inspired by Bellman’s application to extending the symmetric matrix eigenvalue decom-
position from matrices with distinct roots to any symmetric matrix [9, p. 40], and Albert’s
solution to the ECGLS problem (ECGLS) with H ∈ Sn++ [2, pp. 119–121]. The following
lemma characterizes the error of this approximation and establishes that the limit of the
perturbed solution coincides with the exact solution.
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Lemma 20. For any V ∈ Sn+ and X ∈ Rn×p, there exist constants αi, βi > 0 for i = 1, 2, 3
such that

∥(X ′V −1
ρ X)+X ′V −1

ρ −X+ +X+V S(SV S)+S∥ ≤
3∑

i=1

αiρ

βi + ρ
∀ρ > 0 (19)

and moreover,
lim

ρ→0+
(X ′V −1

ρ X)+X ′V −1
ρ = X+ −X+V S(SV S)+S (20)

where S := I −XX+ and Vρ := V + ρI for all ρ > 0.

While proving lemma 20 in appendix I, we derive expressions for the constants αi and
βi in terms of the singular values of X, V , and SV 1/2, and the constant χ(Q′U1) defined
in theorem 17.

2.2.5 Miscellaneous results

A miscellaneous result concerns the connection between the limiting result of lemma 20
and Rao’s estimator (4), which we show in appendix J.

Lemma 21. For any V ∈ Sn+, X ∈ Rn×p, and E ∈ Sp+, if R(X) ⊆ R(V0), then

(X ′V +
0 X)+X ′V +

0 = X+ −X+V (SV S)+

where V0 = V +XEX ′ and S = I −XX+.

As a corollary to the above lemma, we can show Rao’s estimator (4) is independent of
the choice of E (subject to the relevant range constraint). This corollary may be seen as
an alternative, yet equivalent statement of corollary 14.

Corollary 22. For any X ∈ Rn×p, V ∈ Sn+, E0 ∈ Sp+, and E1 ∈ Sp+, let V0 = V +XE0X
′

and V1 = V +XE1X
′. If R(X) ⊆ R(V +XE0X

′) and R(X) ⊆ R(V +XE1X
′), then

(X ′V +
0 X)+X ′V +

0 = (X ′V +
1 X)+X ′V +

1

Finally, we state necessary and sufficient conditions for which (LGM) is a consistent
model. This lemma is significant because it indicates the set of values where the observa-
tions y can be found.

Lemma 23. Let y ∈ Rn, X ∈ Rn×p, V ∈ Sn+, E ∈ Sp+, and V0 = V +XEX ′, and assume
R(X) ⊆ R(V0). There exists β ∈ Rp such that (LGM) has nonzero probability if and only
if y ∈ R(

[
V X

]
) = R(V0), almost surely.

Proofs of the above three results can be found in appendix J.

3 Estimators and their solutions

In this section we define and state results pertaining to estimators for the model (LGM).
Proofs of the results stated in this section can be found in appendices A to D.
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3.1 Generalized least squares

Below, we define the GLS estimator of the model (LGM).

Definition 24. Define B̂GLS(y,X,H) as the set of solutions to

min
β∈Rp

1

2
∥y −Xβ∥2H (GLS)

where H ∈ Sn+ is a positive semidefinite weighting matrix. We say β̂ is a GLS estimator

(of the model (LGM), with weighting matrix H) if β̂ ∈ B̂GLS(y,X,H).

It is straightforward to solve (GLS) using the fact that unconstrained minimization
of a convex objective is equivalent to finding a stationary point of the objective function
[14, 18]. Solutions to (GLS) are stated in the following theorem.

Theorem 25. For any y ∈ Rn, X ∈ Rn×p, and H ∈ Sn+,

B̂GLS(y,X,H) = (X ′HX)+X ′Hy +N (X ′HX) (21)

A corollary to theorem 25 is stated below. corollary 26 extends the standard completion
of squares results for positive definite weighting matrices to the semidefinite case and is
used in section 5 to derive the LQR solution set.

Corollary 26. For any y ∈ Rn, X ∈ Rn×p, and H ∈ Sn+, if β̂ ∈ B̂GLS(y,X,H), then

V (β) :=
1

2
∥y −Xβ∥2H =

1

2
∥β − β̂∥2X′HX +

1

2
∥y∥2H0

(22)

for all β ∈ Rp where H0 := H −HX(X ′HX)+X ′H.

Proofs of theorem 25 and corollary 26 can be found in appendix A. Clearly, if rank(X) =
p and H = σ2I, the unique solution is Gauss’ estimator (1), and if rank(X) = p and
H ∈ Sn++, the unique solution is Aitken’s estimator (2).

3.2 Tikhonov generalized least squares

We can add the regularization term 1
2∥β − β0∥2Γ to the objective of (GLS) to give the

following TGLS problem.

Definition 27. Define B̂TGLS(y,X,H, β0,Γ) as the set of solutions to

min
β∈Rp

1

2
∥y −Xβ∥2H +

1

2
∥β − β0∥2Γ (TGLS)

where H ∈ Sn+ and Γ ∈ Sp+ are positive semidefinite weighting matrices and β0 ∈ Rp is

a bias parameter. We say β̂ is a TGLS estimator (of the model (LGM), with weighting
matrices H,Γ and bias β0) if β̂ ∈ B̂GLS(y,X,H, β0,Γ).
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It is straightforward to solve (TGLS) by rewriting the objective in the form of (GLS).
Solutions to (TGLS) are stated in the following theorem.

Theorem 28. For any y ∈ Rn, X ∈ Rn×p, H ∈ Sn+, Γ ∈ Sp+, and β0 ∈ Rp,

B̂TGLS(y,X,H, β0,Γ) = B̂GLS

([
y
β0

]
,

[
X
I

]
,

[
H 0
0 Γ

])
(23a)

= Γ+
0 Γ0β0 + L(y −Xβ0) +N (Γ0) (23b)

where Γ0 := X ′HX + Γ and L := Γ+
0 X

′H.

A corollary to theorem 28 is stated below. corollary 29 extends the completion-of-
squares result in corollary 26 to include regularization terms and is also used in section 5
to derive the LQR solution set.

Corollary 29. For any y ∈ Rn, X ∈ Rn×p, H ∈ Sn+, β0 ∈ Rp, and Γ ∈ Sp+, if β̂ ∈
B̂TGLS(y,X,H, β0,Γ), then

V (β) :=
1

2
∥y −Xβ∥2H +

1

2
∥β − β0∥2Γ =

1

2
∥β − β̂∥2Γ0

+
1

2
∥y −Xβ0∥2Γ1

(24)

for all β ∈ Rp, where Γ0 := X ′HX + Γ and Γ1 := H −HXΓ+
0 X

′H.

Proofs of theorem 28 and corollary 29 can be found in appendix A. Clearly, if rank(X) =
p, H = σ2I, Γ ∈ Sp++, and β0 = 0, then the TGLS estimator is Tikhonov’s estimator, and
if additionally Γ = λI for some λ > 0, the TGLS estimator is a ridge estimator.

3.3 Equality constrained generalized least squares

Some problems require the imposition of a linear constraint Zβ = w with constraint pa-
rameters Z ∈ Rc×n and w ∈ Rc, where c is the dimension of the constraint. Given this
constraint, the ECGLS estimator is defined as follows.

Definition 30. Define B̂ECGLS(y,X,H,w,Z) as the set of solutions to

min
β∈Rp

1

2
∥y −Xβ∥2H subject to w = Zβ (ECGLS)

where H ∈ Sn+ is a positive semidefinite weighting matrix and Z ∈ Rc×n and w ∈ Rc

are the constraint parameters. We say β̂ is a ECGLS estimator (of the model (LGM),
with weighting matrix H and constraint parameters Z ∈ Rc×n and w ∈ Rc) if β̂ ∈
B̂ECGLS(y,X,H,w,Z).

There are two ways to solve (ECGLS), both of which are captured in the following
theorem. First, the constraint equation Zβ = w is solved up to a free parameter α,
eliminating the constraints and reparameterizing the problem to the new parameters α,
which can then be solved using theorem 25. Second, the method of Lagrange multipliers
are applied to generate an augmented saddle point system [14, 18]. Each method produces
a different closed-form solution to the ECGLS problem.
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Theorem 31. For any y ∈ Rn, X ∈ Rn×p, H ∈ Sn+, w ∈ Rc, and Z ∈ Rc×n, B̂ECGLS(y,X,H,w,Z)
is nonempty if and only if w ∈ R(Z). Moreover, if w ∈ R(Z) then

B̂ECGLS(y,X,H,w,Z) = Z+w +BB̂GLS(y,XB,H) (25a)

= Z+w +B(BX ′HXB)+BX ′Hz +BN (BX ′HXB) (25b)

where B := I − Z+Z and z := y − Z+w, and

B̂ECGLS(y,X,H,w,Z) = β0 +G+Z ′F+(w − Zβ0) +N (G) (26)

where G := X ′HX + Z ′Z, F := ZG+Z ′, and β0 := G+X ′Hy.

The proof of theorem 31 can be found in appendix A. The reparameterization method
produces the solution set (25). The method of Lagrange multipliers produces the solution
set (26). We refer the reader to [67, Chapter 11] for a modern treatment of the GLS and
ECGLS problems. Two expressions (21) and (26) can be found in [67, Chapter 11], whereas
the remaining expression (25) is unique to this work.

3.4 Maximum likelihood estimator

The MLE is applicable to a wide variety of estimation problems. As the namesake suggests,
the MLE maximizes the likelihood of y. For certain likelihood functions (e.g., convex and
log-convex) the MLE is easily solved numerically using a wide variety of optimization
software.

The MLE of the model (LGM) is defined in definition 32 below. We define the Gaussian
distribution in the case where the covariance matrix is possibly singular in section 2.

Definition 32. Define B̂MLE(y,X, V ) as the set of solutions to

max
β∈Rp

f(y;β) subject to f(y;β) > 0 (MLE)

where f(·;β) is the probability density of y in the model (LGM), given the parameters
β ∈ Rp.12 We say that β̂ is a MLE of the model (LGM) if β̂ ∈ B̂MLE(y,X, V ).

We present three methods for deriving solutions to (MLE). The first method is based
on rewriting (MLE) in the form of (ECGLS) and invoking theorem 31 to obtain two
expressions for the solution. The second method equates (MLE) to the saddle point system
(SPP). The third method is based on finding a sequence of MLEs β̂ρ of the perturbed model
(p-LGM), and taking the limit as ρ → 0+. The problem reformulations in these methods
are state in lemmas 33 to 35 below.

Lemma 33. For any y ∈ Rn, X ∈ Rn×p, and V ∈ Sn+,

B̂MLE(y,X, V ) = B̂ECGLS(y,X, V +, w, Z) (27)

and B̂MLE(y,X, V ) is nonempty if and only if w ∈ R(Z), where T := I − V V +, w := Ty,
and Z := TX.

12Using properties of the Gaussian distribution, y ∼ N(Xβ, V ). See definition 8 for a restatement of the
probability density function of a Gaussian random variable given in [90, pp. 527–528]. Note the probability
measure takes on a degenerate character.
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Lemma 34. For any y ∈ Rn, X ∈ Rn×p, and V ∈ Sn+, β̂ ∈ B̂MLE(y,X, V ) if and only if
there exists α̂ ∈ Rn such that (SPP).

Lemma 35. For any y ∈ Rn, X ∈ Rn×p, and V ∈ Sn+, if w ∈ R(Z), then

lim
ρ→0+

{
argmin
β∈Rp

1

2
∥y −Xβ∥2

V −1
ρ

}
= argmin

β∈Rp

{
lim

ρ→0+

1

2
∥y −Xβ∥2

V −1
ρ

}
(28)

where T := I − V V +, Z := TX, w := Ty, and Vρ := V + ρI for all ρ > 0.

The closed-form solutions that follow from the problem reformulations in lemmas 33
and 34 are stated in theorems 36 to 38 below.

Theorem 36. For any y ∈ Rn, X ∈ Rn×p, and V ∈ Sn+, if B̂MLE(y,X, V ) is nonempty,
then

B̂MLE(y,X, V ) = Z+y +B(BX ′V +XB)+BX ′V +Cy +N (X) (29a)

= β0 +G+Z ′F+(w − Zβ0) +N (X) (29b)

where T := I − V V +, w := Ty, Z := TX, B := I − Z+Z, C := I − XZ+, G :=
X ′V +X + Z ′Z, F := ZG+Z ′, and β0 := G+X ′V +y.

Theorem 37. For any y ∈ Rn, X ∈ Rn×p, V ∈ Sn+, let V0 := V +XEX ′ for some E ∈ Sp+
such that R(X) ⊆ R(V0). Then B̂MLE(y,X, V ) is nonempty if and only if y ∈ R(V0).
Moreover, if y ∈ R(V0), then

B̂MLE(y,X, V ) = B̂GLS(y,X, V +
0 ) (30a)

= (X ′V +
0 X)+X ′V +

0 y +N (X) (30b)

Theorem 38. For any y ∈ Rn, X ∈ Rn×p, and V ∈ Sn+, if B̂MLE(y,X, V ) is nonempty,
then

B̂MLE(y,X, V ) = lim
ρ→0+

B̂MLE(y,X, Vρ) (31a)

= lim
ρ→0+

(X ′V −1
ρ X)+X ′V −1

ρ y +N (X) (31b)

= X+(I − V S(SV S)+S)y +N (X) (31c)

where S := I −XX+ and Vρ := V + ρI for all ρ > 0.

Proofs of theorems 36 to 38 and lemmas 33 and 34 can be found in appendix B. To our
knowledge, no one has solved, let alone rigorously defined (MLE) for the model (LGM)
in the case where V ∈ Sn+. However, there are connections to other literature that are
present in the proofs of theorems 36 and 38. theorem 36 follows straightforwardly from
the definition of the degenerate normal [90, pp. 527–528] and the ECGLS problem [67,
Theorems 11.36], and theorem 38 is similar to a barrier function method originally stated
by Albert [2, Chapter VII]. It appears that theorem 37 uses a novel method to write
(MLE) as the saddle point system (SPP). Solutions to the saddle point system (SPP)
follow straightforwardly from [67, Theorems 3.20–21].

We also provide indirect proofs of theorems 36 and 37 based on equating the expressions
(29a), (30b), and (31c).
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3.5 Maximum a posteriori estimator

Suppose that β ∼ N(β0,Σ) independently of the errors e, i.e., we have the Bayesian linear
Gaussian model,

y = Xβ + e, e ∼ N(0, V ), β ∼ N(β0,Σ), e, β independent (B-LGM)

The distribution of β is called the prior distribution. We can form the posterior likelihood
(i.e., the likelihood of β|y) by using Bayes’ theorem. The MAP estimator maximizes the
posterior distribution, which is defined as follows.

Definition 39. Define B̂MAP(y,X, V, β0,Σ) as the set of solutions to

max
β∈Rp

f(β|y) subject to f(β|y) > 0 (MAP)

where f(·|y) is the conditional probability density of β given y.13 We say that β̂ is a MAP
of the model (B-LGM) if β̂ ∈ B̂MAP(y,X, V, β0,Σ).

We present three methods for deriving solutions to (MAP). The first is based on rewrit-
ing the model (B-LGM) in the form of (LGM). The second is an application of the con-
ditioning of joint (degenerate) Gaussian random variables, proven by Marsaglia [69] and
restated in lemma 9. The third method is based on finding a sequence of MAP estimators
β̂ρ of the following perturbed models,

y = Xβ + e, e ∼ N(0, V + ρI), β ∼ N(β0,Σ+ ρI), e, β independent

where ρ > 0, and taking the limit as ρ → 0+. The results from these methods are stated
in theorems 40 to 42 below.

Theorem 40. For any y ∈ Rn, X ∈ Rn×p, V ∈ Sn+, β0 ∈ Rp, and Σ ∈ Sp+,

B̂MAP(y,X, V, β0,Σ) = B̂MLE

([
y
β0

]
,

[
X
I

]
,

[
V 0
0 Σ

])
(32)

Moreover, B̂MAP(y,X, V, β0,Σ) is nonempty if and only if y −Xβ0 ∈ R(V +XΣX ′).

Theorem 41. For any y ∈ Rn, X ∈ Rn×p, V ∈ Sn+, β0 ∈ Rp, and Σ ∈ Sp+, if B̂MAP(y,X, V, β0,Σ)
is nonempty, then

B̂MAP(y,X, V, β0,Σ) = B̂MLE(E[β|y], I, var[β|y]) (33a)

= {E[β | y] } (33b)

= {β0 + L(y −Xβ0) } (33c)

where L := ΣX ′(V +XΣX ′)+.

13See definition 8 for a restatement of the probability density function of a Gaussian random variable
given in [90, pp. 527–528].
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Theorem 42. Let y ∈ Rn, X ∈ Rn×p, V ∈ Sn+, β0 ∈ Rp, and Σ ∈ Sp+. If B̂MAP(y,X, V, β0,Σ)
is nonempty, then

B̂MAP(y,X, V, β0,Σ) = {β0 + L(y −Xβ0) } (34a)

= lim
ρ→0+

{β0 + Lρ(y −Xβ0) } (34b)

= lim
ρ→0+

B̂MAP(y,X, Vρ, β0,Σρ) (34c)

where L := ΣX ′(V +XΣX ′)+, Vρ = V +ρI, Σρ = Σ+ρI, and Lρ := ΣρX
′(Vρ+XΣρX

′)−1

for each ρ > 0.

Proofs of theorems 40 to 42 can be found in appendix C. Theorem 40 is a consequence of
Bayes’ theorem. Theorem 41 follows straightforwardly by generalizing common techniques
in the Bayesian and regularized regression literature. Then theorem 42 is a corollary to
theorems 38 and 41, and is therefore inspired by Albert [2, Chapter VII]. Those familiar
with state estimation of discrete linear dynamical systems may notice the formulae (34a)
and (34b) are similar to the Kalman filter formula. Indeed, the L and Lρ matrices defined
above are analogs to the Kalman gain of problems with semidefinite and positive definite
measurement noise covariance. Moreover, theorem 41 shows that the Kalman filtered state
estimates are MAP estimates of the state, as we show in section 5.

It is worth pointing out that the equations (32) do not hold when y −Xβ0 ̸∈ R(V +
XΣX ′), because B̂MLE(y,X, V ) = {β0 + L(y −Xβ0) } is nonempty despite the fact that
B̂MAP(y,X, V, β0,Σ) is empty. Care should be taken to use the formula (32) only when
the solution actually exists. Theorem 42 does not imply that limρ→0+ Lρ = L. Instead,
we have the weaker result limρ→0+ Lρe0 = Le0 for all e0 := y−Xβ0 ∈ R(V +XΣX ′). For
example, consider the model parameters

V = Σ =

[
0 0
0 1

]
, X = I

For the above parameters, L is computed as

L = ΣX ′(V +XΣX ′)+ =

[
0 0
0 1/2

]
and Lρ is computed as

Lρ = (Σ + ρI)X ′(V + ρI +X(Σ + ρI)X ′)−1 =

[
1/2 0
0 1/2

]
for all ρ > 0. While limρ→0+ Lρ does exist, it is not equal to L,

lim
ρ→0+

Lρ =

[
1/2 0
0 1/2

]
̸= L =

[
0 0
0 1/2

]
However, we can take any

e0 =

[
0
α0

]
∈ R(V +XΣX ′) = R

([
0 0
0 2

])
=

{[
0
α

] ∣∣∣∣ α ∈ R
}

to give Lρe0 = α0/2, Le0 = α0/2, and therefore limρ→0+ Lρe0 = Le0.
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3.6 Best affine unbiased estimator

To find the MVUE, one must find a function of the observations y that is unbiased and has
minimum variance among the set of unbiased functions of y. Optimizing over the space
of functions is a complex problem compared to optimizing over a parameterized space of
functions, so much of the study on the model (LGM) has been concerned with finding
an estimator with minimum variance among linear unbiased estimators (i.e., a BLUE).
It turns out the BAUE can capture a wider class of constrained estimators [67, Chapter
13], so we address the BAUE problem. Below, we define (uniformly) unbiased estimators,
affine estimators, and the BAUE.

Definition 43. Let X ∈ Rn×p, V ∈ Sn+, and W ∈ Rm×n, and consider the model (LGM).
Denote the set of (uniformly) unbiased estimators of the parametric function Wβ (given
the model (LGM)) as14

ŴBUE(X,V,W ) :=

{
θ : R(

[
V X

]
) → Rm

∣∣∣∣ E[θ(y)|β] = Wβ where (LGM),
∀β ∈ Rp

}
Denote the set of affine estimators as

ŴBAE := { θ(·) = A(·) + c : R(
[
V X

]
) → Rm | A ∈ Rm×p, c ∈ Rm }

Denote the set of (uniformly) unbiased affine estimators of the parametric function Wβ
(given the model (LGM)) as

ŴBAUE(X,V,W ) := ŴBAE ∩ ŴBUE(X,V,W )

Define the estimators that minimize variance over the set of (uniformly) unbiased affine
estimators as15

ŴBBAUE(X,V,W ) :=

θ ∈ ŴBAUE(X,V,W )

∣∣∣∣∣∣∣∣
var[θ(y)|β] ⪯ var[θ̃(y)|β]

where (LGM),

∀θ̃ ∈ ŴBAUE(X,V,W ),
∀β ∈ Rp

 (BAUE)

We say Ŵβ is a BAUE (of the parametric function Wβ given the model (LGM)) if Ŵβ ∈
ŴBBAUE(X,V,W ).

In solving (BAUE) we solve, as an intermediate step, the linear equality constrained
minimum trace problem (MTP), which, by the connection between the BAUE and the
MLE, is closely related to the least squares problem. This technique is used extensively
by Magnus and Neudecker [67, Chapter 13]. We use it to derive Rao’s result [88] under an
optimization framework via the following lemma.

14We restrict the domain of all estimators to R(
[
V X

]
). This is because e ∈ R(V ) (almost surely)

implies y ∈ R(
[
V X

]
) (almost surely).

15While (BAUE) is not defined in the language of optimization, one can view (BAUE) as equivalent to
minimizing a positive semidefinite matrix-valued function over the Loewner partial order ⪯.
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Lemma 44. Let X ∈ Rn×p, V ∈ Sn+, W ∈ Rm×n, and Â(X,V,W ) be the set of solutions

to (MTP). If ŴBBAUE(X,V,W ) is nonempty and

Â1y = Â2y ∀Â1, Â2 ∈ Â(X,V,W ), y ∈ R(
[
V X

]
) (35)

then, for any Â ∈ Â(X,V,W ),

ŴBBAUE(X,V,W ) = { Â(·) : R(
[
V X

]
) → Rm } (36)

Using lemma 44, we can solve (MTP) to show that (BAUE) is a singleton, where the
unique solution is that proposed by Rao [88]. This result is stated in the following theorem.

Theorem 45. Let X ∈ Rn×p, V ∈ Sn+, W ∈ Rm×n, and V0 := V + XEX ′ for any

E ∈ Sp+ such that R(X) ⊆ R(V0). Then ŴBBAUE(X,V,W ) is nonempty if and only if

R(W ′) ⊆ R(X ′). Moreover, if ŴBBAUE(X,V,W ) is nonempty, then

ŴBBAUE(X,V,W ) = {W (X ′V +
0 X)+X ′V +

0 (·) : R(V0) → Rm } (37)

It is also clear that if a BAUE exists, it is unique and linear, so it is also the unique best
linear unbiased estimator (BLUE). Moreover, there is a clear connection between (30b) and
(37), which is stated in the following corollary.

Corollary 46. For any X ∈ Rn×p, V ∈ Sn+, and W ∈ Rm×n, if Ŵβ ∈ ŴBBAUE(X,V,W ),
then

{ Ŵβ(y) } = W B̂MLE(y,X, V ) ∀y ∈ R(
[
V X

]
)

Proofs of lemma 44, theorem 45, , and corollary 46 can be found in appendix D.
As previously stated, the results also apply to non-Gaussian error distributions with

E[e] = 0 and var[e] = V because the derivation of the BAUE depends only on the first
and second order statistics of the underlying distribution. In appendix D, we prove the
following theorem and thus derive the unique BAUE solution proposed by Rao [88].

4 Computing the estimators

Computing closed-form solution of the estimators defined in section 3 is intractable for large
and ill-conditioned systems, as computing the relevant pseudoinverses requires taking sin-
gular value decompositions or solving many linear system subproblems, which compounds
errors and amplifies conditioning issues. However, as illustrated in figures 1 to 4 and
stated in the lemmas and theorems of section 3, all of our problems can be reformulated
as either a convex optimization problem (specifically, minimizing a convex quadratic ob-
jective subject to linear equality constraints), or a linear system, each without requiring
the computation of any pseudoinverses to pose the problem. Convex optimization prob-
lems and linear systems are well-studied problems that can be solved by a wide variety of
high-quality, publicly available numerical algorithms. Moreover, gradient descent forms the
basis for many of these numerical algorithms, and it has been shown that early-stopping
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of these algorithms implicitly regularizes the solution [4]. In this section, we discuss the
most numerically attractive reformulations of the estimation problems defined in section 3
and show how gradient methods with early stopping can be related to (TGLS), where the
initial guess becomes the bias parameter.

4.1 Convex optimization formulations

Each estimation problem can be written as a convex optimization problem. The estimation
problems (GLS), (TGLS), and (ECGLS) are convex by definition. While lemmas 33 and 35
reformulate (MLE) as a convex optimization problem, they do not do so without requiring
the computation of a (pseudo)inverse to pose the problem.16 Instead, one can solve the
following problem,

min
α∈Rn,β∈Rp

1

2
∥α∥2V subject to y = Xβ + V α (38)

which is shown to be equivalent to (MLE) in the proof of lemma 34. Equation (38) has
an increased number of optimization variables compared to (MLE) but avoids the need
for pseudoinverse or projector matrix computations. A similar strategy can be taken for
(MAP),

min
(α1,α2)∈Rn+p,β∈Rp

1

2
∥α1∥2V +

1

2
∥α2∥2Σ subject to

y = Xβ + V α1,
β0 = β + V α2

(39)

using theorem 40. The other reformulations in theorems 41 and 42 still require pseudoin-
verse calculations, making them poor candidates for optimization. Finally, as shown in
lemma 44 and theorem 45, the problem (BAUE) can be solved by setting Ŵβ = Ây where
Â solves (MTP).

While each of these convex optimization problems can be solved as a linear system
using lemma 10, it is worth stating the original optimization problem because it allows us
to put convex constraints on the argument and retain numerical tractability.

4.2 Linear system formations

Because the convex optimization problems discussed in section 4.1 have quadratic objec-
tives and only linear equality constraints, we can use lemma 10 to rewrite them as linear
systems. In the statistics literature, these linear systems are often called the normal equa-
tions for the problem. From the proofs of theorems 25, 28, and 31, the normal equations
for the problems (GLS), (TGLS), and (ECGLS) are

X ′HXβ = X ′Hy (40a)

(X ′HX + Γ)β = X ′Hy + Γβ0 (40b)[
X ′HX Z ′

Z 0

] [
β
λ

]
=

[
X ′Hy
w

]
(40c)

16The inverse computation in lemma 35 also becomes ill-conditioned as ρ → 0+, so to get an accurate
solution, one must necessarily make the problem ill-conditioned.
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where λ ∈ Rc is a Lagrange multiplier corresponding to the constraint w = Zβ. It is clear
that, in (40), the structure of the coefficient matrix can be exploited. For (40a) and (40b),
the coefficient matrices are positive semidefinite. Solution methods for solving positive
semidefinite linear systems are well studied [36, 57, 75, 76]. For (40c), the coefficient
matrix corresponds to that of a saddle point system, which is well-studied [11, 12, 28, 31,
32, 43, 62, 111, 116]. We already showed in lemma 34 that (38) is equivalent to (SPP).
Likewise, it can be shown that (39) is equivalent to V 0 X

0 Σ I
X ′ I 0

α1

α2

β

 =

 y
β0
0

 (41)

and (MTP) is equivalent to, [
V X
X ′ 0

] [
A′

Λ′

]
=

[
0
W ′

]
(42)

As with (40c), the fact that (41) and (42) are saddle point systems may be exploited.

4.3 Gradient methods and early stopping

Gradient descent is the bedrock on which many modern optimization algorithms and linear
system solvers are built. All of the optimization problems described herein can be posed
as solving a linear system. In this section, we consider applying gradient descent and
gradient flow to the OLS problem (i.e., computing elements of B̂GLS(y,X, I)). Specifically,
we consider the following two algorithms,

β(k) = β(k−1) + εX ′(y −Xβ(k−1)), β(0) = β0 (43)

β̇(t) = εX ′(y −Xβ(t)), β(0) = β0 (44)

where, for each algorithm, β0 ∈ Rp is the initial guess and ε > 0 is a tunable rate parameter.
It is worth pointing out that the algorithms (43) and (44) can be extended to handle the
GLS problem by using the equivalence B̂GLS(y,X, V ) = B̂GLS(H

1/2y,H1/2X, I). Moreover,
they can solve (feasible) linear systems by noting that, for any y ∈ Rn, X ∈ Rn×p, and
H ∈ Sp+, y ∈ R(X) implies {β | y = Xβ } = B̂GLS(y,X, I). Therefore, we can solve
(ECGLS), (MLE), (MAP), and (BAUE) using any of the normal equation formulations in
figures 1c and 2 to 4.

Ali et al. [4] showed that the algorithms (43) and (44), with early stopping and a zero
initial guess β0 = 0, implicitly regularize the solution. Theorems 47 and 48 generalize these
results to the early stopping and convergence behavior of the general gradient algorithms
(43) and (44). The early stopping algorithm implicitly regularizes the solution based on
an equivalent TGLS problem with a positive definite regularization parameter and bias
parameter equal to the initial guess β0. Moreover, the part of the regularization penalty
with columns in the range space of X drops out as the algorithms converge, while the
remaining part of the regularization penalty is always a projector into the nullspace of X.
As a result, both algorithms converge to the element of B̂GLS(y,X, I) that is closest in
2-norm to the initial guess β0.
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Theorem 47 (Generalized from [4]). For any y ∈ Rn, X ∈ Rn×p, β0 ∈ Rp, and ε ∈
(0, 1/∥X∥2), let

X =
[
U1 U2

] [S1

0

] [
V ′
1

V ′
2

]
= U1S1V

′
1 (45)

denote the SVD of X. Then the gradient descent iterates β(k) ∈ Rp, given by (43), satisfy

B̂TGLS(y,X, I, β0,Γ
(k)) = {β(k) } , ∀k > 0 (46)

where Γ(k) := V1[(I − εS2
1)

−k − I]−1S2
1V

′
1 + V2V

′
2. Moreover,

lim
k→∞

β(k) = X+y + V2V
′
2β0 (47)

Theorem 48 (Generalized from [4]). For any y ∈ Rn, X ∈ Rn×p, and β0 ∈ Rp, let (45)
denote the SVD of X. Then the gradient flow trajectory β(·) : R≥0 → Rp, given by (44),
satisfies

B̂TGLS(y,X, I, β0,Γ(t)) = {β(t) } , ∀t > 0 (48)

where Γ(t) := V1[exp(εS
2
1t)− I]−1S2

1V
′
1 + V2V

′
2. Moreover,

lim
t→∞

β(t) = X+y + V2V
′
2β0 (49)

Theorem 47 is proven below. The proof of theorem 48 is nearly identical, but with
matrix powers and power series replaced by matrix exponentials and integrals, so the proof
is omitted.

Proof of theorem 47. Let k > 0. We can rewrite the gradient descent iterate β(k) in terms
of the initial guess β0 using a common linear systems formula,

β(k) = (I − εX ′X)kβ0 + ε
k−1∑
j=0

(I − εX ′X)jX ′y (50)

Next, we rewrite the formula (50) in terms of the SVD (45),

β(k) = [V1(I − εS2
1)

kV ′
1 + V2V

′
2 ]β0 + εV1

k−1∑
j=0

(I − εS2
1)

j

S1U
′
1y

= [V1(I − εS2
1)

kV ′
1 + V2V

′
2 ]β0 + V1[I − (I − εS2

1)
k]S−1

1 U ′
1y

β(k) = β0 + V1[I − (I − εS2
1)

k]S−1
1 U ′

1(y −Xβ0) (51)

where the second equality follows from the partial geometric series formula
∑k−1

j=0 r
j = 1−rk

1−r

for all scalars r ̸= 1.17 Using theorem 28, we have

B̂TGLS(y,X, I, β0,Γ
(k)) = {β0 + (X ′X + Γ(k))−1X ′(y −Xβ0) }

= {β0 + V1{I + [(I − εS2
1)

−k − I]−1}−1S−1
1 U ′

1(y −Xβ0) }
= {β0 + V1[I − (I − εS2

1)
k]S−1

1 U ′
1(y −Xβ0) } = {β(k) }

17We can use the scalar formula here because the matrices in the geometric series are diagonal.
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where the third and fourth equalities follows from theorem 60 and (51), respectively. Since
∥εX ′X∥ = ε∥X∥2 < 1, all the diagonal entries of I − εS2

1 are positive and less than 1.
Therefore limk→∞(I − εS2

1)
k = 0 and

lim
k→∞

β(k) = β0 + V1S
−1
1 U ′

1(y −Xβ0) = X+y + V2V
′
2β0

where the first equality follows by taking the limit of (51) and the second equality follows
by the SVD (45).

Proof of theorem 48. Let t > 0. First, we can rewrite the gradient flow at time t in terms
of the initial guess β0 using a common linear systems formula,

β(t) = exp(−εX ′Xt)β0 +

∫ t

0
exp(−εX ′X(t− τ))X ′ydτ (52)

Next, we rewrite the formula (52) in terms of the SVD (45),

β(t) = V1 exp(−εS2
1t)V

′
1β0 + V1

[∫ t

0
exp(−εS2

1(t− τ))dτ

]
S1U

′
1y

= V1 exp(−εS2
1t)V

′
1β0 + V1[I − exp(−εS2

1t)]S
−1
1 U ′

1y

= β0 + V1[I − exp(−εS2
1t)]S

−1
1 U ′

1(y −Xβ0) (53)

where the second equality follows from the integral formula
∫ t
0 exp(−a(t−τ))dτ = 1−exp(−at)

a
for all scalars a > 0.18 Using theorem 28, we have

B̂TGLS(y,X, I, β0,Γ(t)) = {β0 + (X ′X + Γ(t))−1X ′(y −Xβ0) }
= {β0 + V1{I + [exp(εS2

1t)− I]−1}−1S−1
1 U ′

1(y −Xβ0) }
= {β0 + V1[I − exp(−εS2

1t)]S
−1
1 U ′

1(y −Xβ0) } = {β(t) }

where the third and fourth equalities follows from theorem 60 and (53), respectively. Since
S1 has positive diagonal entries, we have limt→∞ exp(−εS2

1t) = 0 and

lim
t→∞

β(t) = β0 + V1S
−1
1 U ′

1(y −Xβ0) = X+y + V2V
′
2β0

where the first equality follows by taking the limit of (53) and the second equality follows
by the SVD (45).

5 Applications in control and estimation

Consider the following linear time-varying system,

xk+1 = Akxk +Bkuk (54a)

yk = Ckxk +Dkuk (54b)

18We can use the scalar formula here because the matrices in the geometric series are diagonal.
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where k ∈ I≥0 is the time index, xk ∈ Rnx is the state, yk ∈ Rny is the measurement, and
uk ∈ Rnu is the exogenous input. We assume that rank

[
B′

k D′
k

]
= nu for each k ∈ I≥0.

If this were not the case (i.e., rank
[
B′

k D′
k

]
< nu for some k ∈ I≥0), then there would be

inputs that affect neither the state evolution nor the stage cost.
In the LQR problem, we seek an input sequence uN−1 := (u0, u1, . . . , uN−1) that min-

imizes the quadratic objective

VN (x;uN−1) =

N−1∑
j=0

∥yj∥2 + ∥xN∥2PN

subject to (54) and x0 = x, for some user-defined terminal penalty PN ∈ Snx
+ . We solve

this problem via a dynamic programming approach, with the current optimal input being
a linear function of the current state. Each stage in the dynamic program is solved by
completing the squares via corollary 26 or corollary 29. An alternative derivation can be
found in [33, 34], which also involves completing the squares, but relies on index shifting to
rewrite VN (x;uN−1) in a form where squares can be completed for every j = 0, 1, . . . , N−1
simultaneously.

In the KF problem, we seek the probability densities of the random variables xk|yk and
xk|yk−1 under the assumption that

x0 ∼ N(x̂−0 , P̂
−
0 ), uk ∼ N(0, I), independently (55)

where yk := (y0, y1, . . . , yk), for each k ∈ I≥0. With a slight abuse of notation, we let y−1

denote an empty vector. Conditioning a random variable on y−1 returns the same random
variable. This notation lets us include the initial distribution (55) in our KF definition and
use the notation x0 = x0|y−1. Since xk|yk has a Gaussian distribution, it suffices to find a
recursion for the mean and covariance. To do this, we use Albert’s method [2, Chapter IX],
which is a natural extension of Marsaglia’s lemma (lemma 9) [69].

Stability of the LQR and KF for the system (54) is an important property for successful
applications. Stability results, under the assumption of positive definiteness in either D′

kDk

(for the LQR) or DkD
′
k (for the KF), have appeared in many textbooks [6, 7, 50, 60]. In

the general (semidefinite) case, Silverman [98] provides necessary and sufficient conditions
for which the time-invariant LQR and KF are stable, and Rappaport and Silverman [93]
provide sufficient conditions for the time-varying LQR and KF.19 Further discussion of
stability is outside of the scope of this work. For a modern treatment of the semidefinite
case, including solution methods, algorithms, and stability theory, we refer the reader to
the work of Ferrante and Ntogramatzidis [33, 34, 35].

5.1 Linear quadratic regulator

For the regulation problem, it is convenient to also define the block matrix[
Qk Sk

S′
k Rk

]
=

[
C ′
k

D′
k

] [
Ck Dk

]
∈ Snx+ny

+

19These works require stability to hold independently of the choice of PN ∈ Snx
+ (for the LQR) or

P̂−
0 ∈ Snx

+ (for the KF). For stability conditions that depend on PN ∈ Snx
+ or P̂−

0 ∈ Snx
+ , see [20, 25, 26].



TWCCC Technical Report 2023-01 37

With this definition, it is easy to see that ∥yk∥2 = ∥xk∥2Qk
+ ∥uk∥2Rk

+ 2x′kSkuk for each
k ∈ I≥0, which is the traditional form of the stage cost.

Theorem 49. Consider the system (54) and suppose Sk = 0 for each k = 0, 1, . . . , N − 1.
For each initial state x ∈ Rnx and terminal weight PN ∈ Snx

+ , the input sequence u0
N−1 =

(u00, u
0
1, . . . , u

0
N−1) solves the following LQR problem,

V 0
N (x) := min

uN−1∈RnuN

N−1∑
j=0

∥yj∥2 + ∥xN∥2PN
(56a)

subject to (54) and x0 = x (56b)

if and only if

u0k ∈ −(B′
kPk+1Bk +Rk)

+B′
kPk+1Akxk +N (B′

kPk+1Bk +Rk) (57a)

Pk := A′
kPk+1Ak +Qk −A′

kPk+1Bk(B
′
kPk+1Bk +Rk)

+B′
kPk+1Ak (57b)

for each k = 0, 1, . . . , N − 1. Moreover, V 0
N (x) = ∥x∥2P0

.

Proof. To shorten the notation, let

ûk := −R+
k B

′
kPk+1Akxk, Rk := B′

kPk+1Bk +Rk

for each k = 0, 1, . . . , N − 1, and let

Vk(x;uk−1) :=
k−1∑
j=0

∥yj∥2 + ∥xk∥2Pk

for each k = 0, 1, . . . , N . Since VN (x;uN−1) is the objective function for (56), it suffices to
minimize it subject to (54) and x0 = x.

Using corollary 29, we have

∥xk∥2Qk
+ ∥uk∥2Rk

+ ∥Akxk +Bkuk∥2Pk+1
= ∥xk∥2Pk

+ ∥uk − ûk∥2Rk

and
Vk+1(x;uk) = Vk(x;uk−1) + ∥uk − ûk∥2Rk

(58)

for each k = 0, 1, . . . , N − 1. Applying (58) recursively gives

VN (x;uN−1) = ∥x∥2P0
+

N−1∑
j=1

∥uj − ûj∥2Rj

where we use the terminal identity V0(x) = ∥x∥2P0
. In this form, it is clear from theorem 25

that u0
N−1 minimizes VN (x;uN−1) if and only if

u0k ∈ ûk +N (Rk) = −R+
k B

′
kPk+1Akxk +N (Rk)

for each k = 0, 1, . . . , N − 1. Moreover, V 0
N (x) = VN (x;u0

N−1) = ∥x∥2P0
.
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Theorem 50. Consider the system (54). For each initial state x ∈ Rnx and terminal
weight PN ∈ Snx

+ , the input sequence u0
N−1 := (u00, u

0
1, . . . , u

0
N−1) solves the following LQR

problem,

V 0
N (x) = min

uN−1∈RnxN

N−1∑
j=0

∥yj∥2 + ∥xN∥2PN
(59a)

subject to (54) and x0 = x (59b)

if and only if

u0k ∈ −(B′
kPk+1Bk +Rk)

+(B′
kPk+1Ak + S′

k)xk +N (Rk) (60a)

Pk := A′
kPk+1Ak +Qk

− (A′
kPk+1Bk + Sk)(B

′
kPk+1Bk +Rk)

+(B′
kPk+1Ak + S′

k) (60b)

for each k = 0, 1, . . . , N − 1. Moreover, V 0
N (x) = ∥x∥2P0

.

Proof. For this proof, we use theorem 49 as an intermediate step to solve the more general
case. To shorten the notation, let

Rk := B′
kPk+1Bk +Rk, Sk := A′

kPk+1Bk + Sk,

û−k := −R+
k B

′
kPk+1Akxk, ûk := û−k −R+

k S
′
kxk = −R+

k S
′
kxk,

P−
k := A′

kPk+1Ak +Qk −A′
kPk+1BkR+

k B
′
kPk+1Ak

for each k = 0, 1, . . . , N − 1, and let

Vk(x;uk−1) :=
k−1∑
j=0

∥yj∥2 + ∥xk∥2Pk

for each k = 0, 1, . . . , N . Since VN (x;uN−1) is the objective function for (59), it suffices to
minimize it subject to (54) and x0 = x.

In a similar manner to the proof of theorem 49, we use corollary 29 to give

∥xk∥2Qk
+ ∥uk∥2Rk

+ ∥Akxk +Bkuk∥2Pk+1
= ∥xk∥2P−

k

+ ∥uk − û−k ∥
2
Rk

(61)

Next, since Sk = C ′
kDk, Rk = D′

kDk, and Rk = B′
kPk+1Bk +Rk, we have

R(S′
k) ⊆ R(D′

k) = R(Rk) ⊆ R(Rk) (62)

using basic properties of R(·). Expanding the square ∥uk − ûk∥2Rk
= ∥(uk − û−k ) +

R+
k S

′
kxk∥2Rk

gives

∥uk − ûk∥2Rk
= ∥uk − û−k ∥

2
Rk

+ ∥R+
k S

′
kxk∥2Rk

+ 2x′kSkR+
k Rk(uk − û−k )

= ∥uk − û−k ∥
2
Rk

+ ∥xk∥2SkR+
k S′

k

+ 2x′kSkuk

+ 2x′kSkR+
k A

′
kPk+1Bkxk

∥uk − ûk∥2Rk
= ∥uk − û−k ∥

2
Rk

+ 2x′kSkuk + ∥xk∥2P−
k

− ∥xk∥2Pk
(63)
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where the second equality follows from lemma 12 and (62). Combining (61) and (63) gives

∥xk∥2Qk
+ ∥uk∥2Rk

+ 2x′kSkuk + ∥Akxk +Bkuk∥2Pk+1
= ∥xk∥2Pk

+ ∥uk − ûk∥2Rk

and therefore
Vk+1(x;uk) = Vk(x;uk−1) + ∥uk − ûk∥2Rk

(64)

for each k = 0, 1, . . . , N−1. Given the recursion (64), the result follows (almost) identically
to the proof of theorem 49, starting from (58).

5.2 Kalman filter

Similarly to the regulation problem, we define the following block matrix (with a slight
abuse of notation), [

Qk Sk

S′
k Rk

]
:=

[
Bk

Dk

] [
B′

k D′
k

]
∈ Sn+p

+

With this definition, it is clear that[
Bk

Dk

]
uk ∼ N

(
0,

[
Qk Sk

S′
k Rk

])
independently, for each k ∈ I≥0. We can obtain a recursion on E[xk|yk−1] and var[xk|yk−1]
through Marsaglia’s lemma [69], in a similar manner to Albert [2, Chapter IX].

Theorem 51 ([2, Chapter IX]). Consider the system (54) and assume (55). Then,

xk|yk−1 ∼ N(x̂−k , P̂
−
k ) (65)

where

x̂−k+1 := Akx̂
−
k + (AkP̂

−
k C ′

k + Sk)(CkP
−
k C ′

k +Rk)
+(yk − Ckx̂

−
k )

P̂−
k+1 := AkP̂

−
k Ak +Qk − (AkP̂

−
k C ′

k + Sk)(CkP
−
k C ′

k +Rk)
+(CkP̂

−
k A′

k + S′
k)

for each k ∈ I≥0. Moreover,
xk|yk ∼ N(x̂k, P̂k) (66)

where

x̂k := x̂−k + P̂−
k C ′

k(CkP̂
−
k C ′

k +Rk)
+(yk − Ckx̂

−
k )

P̂k := P̂−
k − P̂−

k C ′
k(CkP

−
k C ′

k +Rk)
+CkP̂

−
k

for each k ∈ I≥0.

Proof. We prove (65) by induction, and (66) is established as an intermediate step towards
proving (65). The base case x0|y−1 ∼ N(x̂−0 , P̂

−
0 ) is satisfied by assumption (recall that

x0 = x0|y−1). Therefore we only need to show xk|yk−1 ∼ N(x̂−k , P̂
−
k ) implies xk|yk ∼

N(x̂k, P̂k) and xk+1|yk ∼ N(x̂−k+1, P̂
−
k+1).



TWCCC Technical Report 2023-01 40

Suppose xk|yk−1 ∼ N(x̂−k , P̂
−
k ). To simplify the notation we let

ek := yk − Ckx̂
−
k , Lf

k := P̂−
k C ′

k(CkP̂
−
k C ′

k +Rk)
+, Q̂k := Qk − Lp

kS
′
k,

ŵk := Lp
kek, Lp

k := Sk(CkP̂
−
k C ′

k +Rk)
+

for each k ∈ I≥0. By independence of uk and (x0, u0, . . . , uk−1),[
xk|yk−1

uk

]
∼ N

([
x̂−k
0

]
,

[
P̂−
k 0
0 I

])
Using the linearity property of Gaussian random variables, xk

Bkuk
yk

|yk−1 =

 I 0
0 Bk

Ck Dk

[xk|yk−1

uk

]

∼ N

 x̂−k
0

Ckx̂
−
k

 ,

 P̂−
k 0 P̂−

k C ′
k

0 Qk Sk

CkP̂
−
k S′

k CkP̂
−
k C ′

k +Rk


Using to condition on yk,[

xk
Bkuk

]
|(yk−1, yk) =

[
xk

Bkuk

]
|yk ∼ N

([
x̂k
ŵk

]
,

[
P̂k −Lf

kS
′
k

−Sk(L
f
k)

′ Q̂k

])
Taking the marginal distribution in xk|yk gives (66). Using the linearity property again
gives

xk+1|yk = (Akxk +Bkuk)|yk ∼ N(x̂−k+1, P̂
−
k+1)

5.3 Sparse control and estimation reformulations

While the closed-form expressions (60) and (65) can be readily used on small-scale control
and estimation problems, large-scale problems may not be amenable to these expressions.
When the system dimensions are large (n for the LQR and p for the KF), the frequent pseu-
doinverse computations may cause numerical issues that compromise closed-loop stability.
In the following discussion, we pose the LQR and KF problems as estimation problems.
These problems can be solved using optimization or linear systems algorithms, as discussed
in section 4. For both problems, when N is large, it is beneficial to consider sparse formu-
lations of the optimization problems and linear systems. We first illustrate this fact with
the LQR.

5.3.1 Linear quadratic regulator

The näıve way to solve (59) (without recursion) is to rewrite the objective in terms of only
the initial state x and control actions uN−1,

VN (x;uN−1) =

∥∥∥∥[ON

AN

]
x+

[
GN

CN

]
uN−1

∥∥∥∥2[
I 0
0 PN

]
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where

GN :=


D0

C1B0 D1
...

. . .
. . .

CN−2A1:N−3B0 . . . CN−2BN−3 DN−2

CN−1A1:N−2B0 . . . CN−1AN−2BN−3 CN−1BN−2 DN−1

 ,

ON :=


C0

C1A0
...

CN−2A0:N−3

CN−1A0:N−2

 ,

CN :=
[
A1:N−1B0 A2:N−1B1 . . . AN−1BN−2 BN−1

]
,

Ai:i+j := Ai+j ×Ai+j−1 × . . .×Ai ∀i, j ∈ I≥0

This reformulation makes it clear that (59) is a GLS problem, i.e.,

B̂GLS

([
ON

AN

]
x,−

[
GN

CN

]
,

[
I 0
0 PN

])
= argmin

uN−1∈RnuN

VN (x;uN−1)

Taking the derivative of the objective, we can use lemma 10 to get that u0
N−1 minimizes

VN (x;uN−1) if and only if

(G′
NGN + C′

NPNCN )u0
N−1 = −(G′

NON + C′
NPNAN )x (67)

But (67) is a dense problem that scales cubically with N , making it numerically challenging
to compute solutions to this problem for large N .

When N is large, it is better to solve for both uN−1 and xN+1 := (x0, x1, . . . , xN )
simultaneously, enforcing the dynamics (54) through constraints,

min
xN∈Rnx(N+1),uN−1∈RnuN

VN (xN ,uN−1) subject to cN (xN ,uN−1) = 0 (68)

where

VN (xN ,uN−1) :=

N−1∑
j=0

∥yj∥2 + ∥xN∥2PN

cN (xN ,uN−1) :=


x0 − x

x1 −A0x0 −B0u0
x2 −A1x1 −B1u1

...
xN −AN−1xN−1 −BN−1uN−1
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We can rewrite this as a ECGLS problem,

min
xN∈Rnx(N+1),uN−1∈RnuN

∥∥∥∥[ xN

uN−1

]∥∥∥∥2
VN

subject to ZN

[
xN

uN−1

]
= wN (69)

where20

VN :=


⊕N−1

j=0 C ′
jCj 0

⊕N−1
j=0 C ′

jDj

0 PN 0⊕N−1
j=0 C ′

jDj 0
⊕N−1

j=0 D′
jDj


ZN :=

[
I −

[
0 0⊕N−1

j=0 Aj 0

]
0

−
⊕N−1

j=0 Bj

]
wN :=

[
x
0

]
which is clearly a sparse problem. Therefore (x0

N ,u0
N−1) solves (68) if and only if (x0

N ,u0
N−1) ∈

B̂ECGLS(0, I,VN ,wN ,ZN ). From the proof of theorem 31, we have that (x0
N ,u0

N−1) solves

(68) if and only if there exists λ0
N such that[

VN Z′
N

ZN 0

] x0
N

u0
N−1

λ0
N

 =

[
0

wN

]
(70)

While the sparse normal equations (70) has 2nxN more variables than their dense
counterpart (67), sparse solvers can be used on (70), which have a far lower computational
burden when N is large. It is also worth noting that the optimization problem (69) can be
augmented with additional (linear equality or convex inequality) state and input constraints
while preserving convexity of the problem, allowing the control actions of linear model
predictive controllers to be computed with sparse convex optimization solvers for large
N [54, 94, 113, 115].

5.3.2 Full information estimation

In some situations it is desirable to estimate the entire state sequence, xN |yN−1 where
xN := (x0, x1, . . . , xN ). In this case, we can write the initial state prior as x0 = x̂−0 + e0
where e0 ∼ N(0, P̂−

0 ) and the model (54) and (55) can be written as

ỹ = X̃xN + ẽ

using theorem 40, where

ỹ :=

 x̂−0
0

yN−1

 , X̃ :=

I −
[

0 0⊕N−1
j=0 Aj 0

]
⊕N−1

j=0 Cj 0

 , ẽ :=

I 0

0 −
⊕N−1

j=0 Bj

0
⊕N−1

j=0 Dj

[ e0
uN−1

]

20The direct sum
⊕

is defined as
⊕N

k=1 Mk :=

M1

. . .

MN

 for any Mi ∈ Rmi×ni .
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Therefore, by theorems 40 and 41, x̂N = E[xN |yN−1] if and only if x̂N ∈ B̂MLE(ỹ, X̃, Ṽ ),
where

Ṽ := var[ẽ] =

P̂
−
0 0 0

0
⊕N−1

j=0 BjB
′
j −

⊕N−1
j=0 BjD

′
j

0 −
⊕N−1

j=0 DjB
′
j

⊕N−1
j=0 DjD

′
j


From theorem 37, we have that x̂N = E[xN |yN−1] if and only if there exists α̂N ∈
Rn(N+1)+pN such that (x̂N , α̂N ) solve

min
xN∈Rn(N+1),αN∈Rn(N+1)+pN

∥αN∥2
Ṽ

subject to ỹ = X̃xN + ṼαN (71)

or equivalently, x̂N = E[xN |yN−1] if and only if there exists α̂N ∈ Rn(N+1)+pN such that[
Ṽ X̃

X̃ ′ 0

] [
α̂N

x̂N

]
=

[
ỹ

0

]
(72)

The formulations (71) and (72) are again amenable to sparse convex optimization solvers
and sparse linear solvers. If we wish to add (linear equality or convex inequality) constraints
to the estimates xN , we can add them to (71). However, in both problems, we do not
estimate the error covariance for this computation, so the computational tractability of the
large-scale problem comes at the cost of additional information about the error statistics.

6 Modern extensions

We conclude this paper with a summary of related areas of research that might benefit
from methods discussed herein.

6.1 A generalized perturbation method for degenerate distributions

A generalized proof of theorem 38 could utilize [95, Theorems 7.17, 7.33] to show that

argmin
β∈Rp

{
lim

ρ→0+
ϕρ(β)

}
⊇ lim

ρ→0+

{
argmin
β∈Rp

ϕρ(β)

}
(73)

holds for a more general class of objectives.21 This approach of exchanging the limit and
minimizer has applications in the estimation of parameters of other degenerate distributions
(e.g., singular elliptical distributions [8, 27]). If the inclusion (73) holds, one can solve the
(easier) non-degenerate problem and take the limit of the solution as ρ → 0+ to obtain a
solution to the (harder) degenerate problem. Moreover, the non-degenerate problem with
arbitrarily small ρ is arbitrarily close to a solution of the degenerate problem, so a limit
need not be taken if the problem can be solved with small enough ρ to meet the desired
tolerance.

21This result holds, for example, when the limit ϕ = limρ→0+ ϕρ exists (pointwise); ϕρ, ϕ are convex,
lower semicontinuous, and proper for all ρ > 0; and the right-hand side limit of (73) exists.
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6.2 Nonlinear regression

Consider the following nonlinear regression model,

y = f(β) + e, e ∼ N(0, V ) (74)

The problem of finding an estimate of β given the observations y and function f : Rp → Rn

is often called the nonlinear inverse problem [22, 46, 48, 74, 105, 106]. Development of
algorithms for solving the problem (74) is a current and ongoing research topic [10, 22, 46].
While deriving estimates of (74) is outside of the scope of this paper, concepts from linear
estimation can be generalized to the nonlinear setting. In particular, the gradient methods
discussed in section 4 can be extended to compute (locally) optimal estimators.

Consider the nonlinear least squares problem,

min
β∈Rp

ϕ(β) :=
1

2
∥y − f(β)∥2 (75)

The nonlinear map from parameters to observations complicates computation of the solu-
tions to (75), as we no longer have convexity. However, gradient methods can still be used
to compute locally optimal solutions to (75). The gradient flow algorithm for (75) is

β̇(t) = −
[
df

dβ
(β(t))

]′
[y − f(β(t))] (76)

It can be shown that, for any stationary point β0 ∈ Rp of (76), the function V (β) :=
ϕ(β)− ϕ(β0) is a local Lyapunov function and therefore the gradient flow is locally stable
about β0. If we also assume that (df/dβ)(β) is full column rank in a neighborhood of β0,
then we can also guarantee local asymptotic stability about β0. Existence of the asymptotic
Lyapunov function also implies local optimality of β0 because V (β) > 0 = V (β0) for all
β ̸= β0 in a neighborhood of β0. In other words, the gradient flow algorithm can converge
only to locally optimal points.

6.3 Bayesian regression

In section 3.5, we considered a model with a Gaussian prior on β. However, more general
priors can be used, which produce different properties of the estimator. Suppose the
parameters β have a prior distribution of the following form,

f(β) := c1 exp
(
−c2∥β − β0∥c3γ

)
(77)

where ∥ · ∥γ : Rp → R≥0 is a norm and c1, c2, c3 > 0 are chosen such that f is a probability
distribution.22 Then the MAP estimator for the model

y = Xβ + e, e ∼ N(0, V ), β ∼ f, β, e independent

22We could also choose any distribution such that f(β) is log-convex, but the form (77) makes it clear
how the estimation problem relates to commonly used regularization methods.
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is given by
max
β∈Rp

f(y|β)f(β) subject to f(y|β)f(β) > 0 (78)

Similarly to the proof of lemma 34, we can reformulate (78) as a convex optimization
problem,

min
α∈Rn,β∈Rp

1

2
∥α∥2V + c2∥β − β0∥c3γ subject to y = Xβ + V α

When ∥ · ∥c3γ = ∥ · ∥22, (77) and (78) corresponds to classic 2-norm regularization [51, 52],
which is widely used in machine learning [45, 78], algorithms for ill-conditioned linear
systems [77, 111], and algorithms for inverse problems [21, 22]. When ∥ · ∥c3γ = ∥ · ∥1, (77)
and (78) corresponds to 1-norm regularization, or LASSO regression, which is often used
to promote the sparsity of estimates [49, 108, 117].

6.4 Sparse estimators

A common situation in signal processing, image processing, nonlinear system identification,
and machine learning arises when there are many more parameters than observations. In
these situations we wish to find a sparse estimator, or more specifically, one which minimizes
the 0-pseudonorm ∥β∥0 := # {βi ̸= 0 }. We can define these estimators as an augmentation
of the estimators discussed herein by augmenting the estimator objective with an additive
penalty λ∥β∥0 or multiplicative penalty exp(−λ∥β∥0). The sparsity (hyper)parameter
λ > 0 requires tuning to achieve the desired level of sparsity in the estimate. For example,
we can define sparse versions of the ECGLS and MLE problems as follows.23

min
β∈Rp

∥y −Xβ∥2H + λ∥β∥0 subject to Zβ = w (79)

max
β∈Rp

f(y|β) exp(−λ∥β∥0) subject to f(y|β) > 0 (80)

The sparse MLE problem (86) can be reformulated as

min
α∈Rn,β∈Rp

1

2
∥α∥2V + λ∥β∥0 subject to y = Xβ + V α (81)

Due to the nonconvex and discontinuous objective functions of problems (85) and (86), esti-
mators cannot be computed exactly in polynomial time [79]. However, small to moderately
sized problems can be solved using mixed integer programming methods [15, 17].

Alternatively, we can approximate the sparse solution with a (possibly nonconvex)
shrinkage penalty or prior. Recall that the 0-pseudonorm is the limit of the q-(pseudo)norm
as q → 0+, i.e. ∥β∥0 = limq→0+ ∥β∥qq, pointwise in β ∈ Rp. For some q, λ > 0, consider the
following generalized normal prior on β,

β ∼ f(β; q, λ) :=
λ1/q

[2Γ(1 + q−1)]p
exp

(
−λ∥β∥qq

)
23Note that the sparse MLE problem is not a MAP problem because the multiplicative penalty

exp(−λ∥β∥0) cannot be used to formulate a probability density over β ∈ Rp. Instead, the sparse MLE
problem should be viewed as a modified MLE problem.
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and define the q-pseudonorm MAP (qMAP) with shrinkage penalty λ as follows,24

max
β∈Rp

f(y|β)f(β; q, λ) subject to f(y|β) > 0 (82)

Again, (87) can be reformulated as a convex optimization problem,

min
α∈Rn,β∈Rp

1

2
∥α∥2V + λ∥β∥qq subject to y = Xβ + V α (83)

Moreover, the objective of (81) converges uniformly to the objective (83). Therefore, taking
the limit of the set of solutions to (83) as q → 0+ gives a limit set that is a subset of the
set of solutions to (81) [95, Theorems 7.15, 7.33].25 In other words,

lim
q→0+

 argmin
α∈Rn,β∈Rp

1

2
∥α∥2V + λ∥β∥qq

subject to y = Xβ + V α

 ⊆

 argmin
α∈Rn,β∈Rp

1

2
∥α∥2V + λ∥β∥0

subject to y = Xβ + V α

 (84)

Fung and Mangasarian [37] showed that there exists constant q > 0 such that (86)
and (87) have the same solution sets for all q ∈ [0, q] [37]. Therefore, the limit may not
need to be taken completely, and early stopping of the limit may produce exact solutions.
In fact, for some cases of (y,X), solving (87) with q = 1 can give the exact solution
to (86) [19, 23, 29]. This convex relaxation of the problem (86) is equivalent to LASSO
regression and is similar to compressed sensing.

Definition 52. Let B̂sECGLS(y,X,H,w,Z, λ) be the set of solutions to the problem

min
β∈Rp

∥y −Xβ∥2H + λ∥β∥0 subject to Zβ = w (85)

where H ∈ Sn+ is a positive semidefinite weighting matrix, Z ∈ Rc×n and w ∈ Rc are

the constraint parameters, and λ > 0 is the sparsity parameter. We say β̂ is a sECGLS
estimator (of the model (LGM), with weighting matrix H, constraint parameters w,Z, and
sparsity parameter λ) if β̂ ∈ B̂sECGLS(y,X,H,w,Z, λ).

Definition 53. Let B̂sMLE(y,X, V, λ) be the set of solutions to the problem

max
β∈Rp

Ly(β; y,X, V ) exp(−λ∥β∥0) (86)

where Ly(·; y,X, V ) is the likelihood function of the observations.26 We say that β̂ is a

sMLE of the model (LGM) with sparsity λ if β̂ ∈ B̂sMLE(y,X, V, λ).
24Bayes’ rule justifies maximizing over f(y|β)f(β; q, λ) rather than f(β|y; q, λ), and using the constraint

f(y|β) > 0 rather than f(β|y; q, λ) > 0.
25We have skipped some technical detail here for the sake of brevity. In particular, the following additional

facts are required in the hypotheses of [95, Theorems 7.15, 7.33]. Let ϕ and ϕq denote the extended-
value objective functions (i.e., let them be equal to ∞ when the constraint is violated) of (81) and (83),
respectively. Denote the c-sublevel set of a function f : Rn → R as levcf := {x ∈ Rn | f(x) ≤ c }.

1. ϕρ is level-bounded (i.e., levcϕ, levcϕρ are bounded for all c ∈ R), for all ρ > 0.

2. ϕ, ϕρ are lower semicontinuous (i.e., levcϕ, levcϕρ are closed for all c ∈ R [95, Theorem 1.6]) and
proper (i.e., ϕ, ϕρ never equal −∞ and do not always equal ∞), for all ρ > 0.

26This is the same likelihood function as the one defined in definition 32.
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Definition 54. Define B̂qMAP(y,X, V, λ) as the set of solutions to the problem

max
β∈Rp

Lβ|y(β; y,X, V, q, λ) (87)

where Lβ|y(·; y,X, V, q, λ) is the likelihood function of the parameters conditioned on the

observations given that β ∼ qN(0, λ).27 We say that β̂ is a qMAP of the model (LGM)
with prior β ∼ qN(0, λ) if β̂ ∈ B̂qMAP(y,X, V, λ).

Using the qMAP definition, we have a convenient interpretation of the sparse MLE as
the limiting estimator of a class of non-Gaussian MAP estimators, that is the limit of any
qMAP estimator as q → 0+ is a sparse MLE. The proof of this fact follows similarly to the
argument (73) using [95, Theorems 7.15, 7.33].

Conjecture 55. Let y ∈ Rn, X ∈ Rn×p, V ∈ Sn+, and T = I − V V +. If y ∈ R(
[
V X

]
),

then

B̂sMLE(y,X, V, λ) = B̂sECGLS(y,X, V +, TX, Ty, λ) (88a)

⊇ lim
q→0+

B̂qMAP(y,X, V, λ, q) (88b)

Proof. The equality (88a) follows in the same way as in the proof of lemma 33. We show the
inclusion (88b) by rewriting the qMAP problem (87) as a minimization over the negative
log-likelihood. Denote the feasible set as

B = {β ∈ Rp | y −Xβ ∈ R(V ) } = {β ∈ Rp | TXβ = Ty }

Using Bayes theorem and dropping constants, we have the negative log-likelihood

− lnLβ|y(β|y;X,V, q, λ) ∝ − lnLy,β(y, β;X,V, q, λ) ∝ ∥y −Xβ∥2V + + λ∥β∥qq
for all β ∈ B. Therefore we can optimize over the objectives

ϕq(β) =

{
∥y −Xβ∥2V + + λ∥β∥qq, β ∈ B
∞, otherwise

ϕ(β) =

{
∥y −Xβ∥2V + + λ∥β∥0, β ∈ B
∞, otherwise

for the qMAP and sMLE problems, respectively. For every q > 0, ϕq is lower semi-
continuous as it is the sum of lower semi-continuous and proper functions [95, Proposition
1.39].28 As q → 0+, we have ∥β∥qq → ∥β∥0 for all β ∈ Rp. Therefore, ϕq → ϕ uniformly as
q → 0+. The result (88b) follows from [95, Theorems 7.15, 7.33].

As a result of conjecture 55, one can find an approximate sMLE by solving for the
qMAP for some small q > 0.

27We can replace the posterior density function with the joint density function using Bayes’ theorem
pβ|y(β|y;X,V, q, λ) ∝ py,β(y, β;X,V, q, λ) = py|β(y|β;X,V )pβ(β; q, λ) where y|β ∼ N(Xβ, V ) and β ∼
qN(0, λ). We do not need to consider the density of y because it is not a function of β, and it exists when
py|β(y|β;X,V ) exists.

28We say a function f : Rp → R is proper if f ̸≡ ∞. We say a function f : Rp → R is lower semi-continuous
if, for every α ∈ R, the sublevel set {x ∈ Rp | f(x) ≤ α } is closed [95, Theorem 1.6].
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A Least squares proofs

In this appendix we prove theorems 25, 28, and 31 and corollaries 26 and 29 using the
method of Lagrange multipliers [14, 18].

A.1 Generalized least squares proofs

Proof of theorem 25. If suffices to show β̂ ∈ B̂GLS(y,X,H) if and only if β̂ ∈ (X ′HX)+X ′Hy+
N (X ′HX). By definition, β̂ ∈ B̂GLS(y,X,H) if and only if it solves (GLS). Denote the
objective as

ϕ(β) =
1

2
∥y −Xβ∥2H

Using lemma 10, we have β̂ is a solution to (GLS) if and only if

∂ϕ

∂β
(β̂) = 2X ′HXβ̂ − 2X ′Hy = 0

By lemma 3, solutions to the above equation exist becauseX ′Hy ∈ R(X ′H1/2) = R(X ′HX),
and β̂ is a solution if and only if β̂ ∈ (X ′HX)+X ′Hy +N (X ′HX).

Proof of corollary 26. First, we expand the objective function,

V (β) =
1

2
∥y −X(β − β̂)−Xβ̂∥2H

=
1

2
∥β − β̂∥2X′HX +

1

2
∥y −Xβ̂∥2H − (β − β̂)′X ′H(y −Xβ̂) (89)

Next, recall that β̂ ∈ B̂GLS(y,X, V ) if and only if β̂ = (X ′HX)+X ′Hy + α̂ for some
α̂ ∈ N (X ′HX). Then HXα̂ = 0 and

H(y −Xβ̂) = Hy −HX(X ′HX)+X ′Hy = H(I −X(X ′HX)+X ′H)y

Moreover, the cross term in (89) is zero,

X ′H(y −Xβ̂) = (X ′H −X ′HX(X ′HX)+X ′H)y = (X ′H −X ′H)y = 0 (90)

and we can rewrite the normed error in (89) as follows,

∥y −Xβ̂∥2H = y′(I −HX(X ′HX)+X ′)H(I −X(X ′HX)+X ′H)y

= y′(H −HX(X ′HX)+X ′H)y = ∥y∥2H0
(91)

Finally, combining (89)–(91) gives (22).
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A.2 Tikhonov generalized least squares proofs

Proof of theorem 28. It is clear that the objective of (TGLS) is equal to 1
2∥ỹ−X̃β∥2

H̃
where

ỹ =

[
y
β0

]
, X̃ =

[
X
I

]
, H̃ =

[
H 0
0 Γ

]
(92)

This shows (23a). To show (23b), we use (23a) and theorem 25:

B̂TGLS(y,X,H, β0,Γ) = B̂GLS(ỹ, X̃, H̃)

= (X̃ ′H̃X̃)+X̃ ′H̃ỹ +N (X̃ ′H̃X̃)

= (X ′HX + Γ)+(X ′Hy + Γβ0) +N (X ′HX + Γ)

= (X ′HX + Γ)+(X ′HX + Γ)β0

+ (X ′HX + Γ)+X ′H(y −Xβ0) +N (X ′HX + Γ)

= Γ+
0 Γ0β0 + L(y −Xβ0) +N (Γ0)

Proof of corollary 29. Using the definitions (92) and corollary 26, we have

V (β) =
1

2
∥ỹ − X̃β∥2

H̃
=

1

2
∥β − β̂∥2

X̃′H̃X̃
+

1

2
∥ỹ∥2

H̃0
(93)

where H̃0 = H̃ − H̃X̃(X̃ ′H̃X̃)+X̃ ′H̃. The first terms in the right-hand sides of (24) and
(93) are clearly equivalent because

X̃ ′H̃X̃ = X ′HX + Γ = Γ0 (94)

Moreover, by lemma 12, we have the following identities,

ΓΓ+
0 X

′H = Γ0Γ
+
0 X

′H −X ′HXΓ+
0 X

′H = X ′(H −HXΓ+
0 X

′H) = X ′Γ1

Γ− ΓΓ+
0 Γ = Γ− ΓΓ+

0 Γ0 + ΓΓ+
0 X

′HX = X ′(H −HXΓ+
0 X

′H)X = X ′Γ1X

which imply

∥ỹ∥2
H̃0

= y′Hy + β′
0Γβ0 − (y′HX + β′

0Γ)Γ
+
0 (X

′Hy + Γβ0)

= y′(H −HXΓ+
0 X

′H)y + β′
0(Γ− ΓΓ+

0 Γ)β0 − 2β′
0ΓΓ

+
0 X

′Hy

= y′Γ1y + β′
0X

′Γ1Xβ0 − 2β′
0X

′Γ1y = ∥y −Xβ0∥2Γ1
(95)

Combining (93)–(95) gives (24).

A.3 Equality constrained generalized least squares proofs

Proof of theorem 31. If w ̸∈ R(Z), the feasible set is empty (lemma 3) and therefore
B̂ECGLS(y,X,H,w,Z) must be empty. It suffices to assume w ∈ R(Z) and show (25)
and (26).
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To show (25), we eliminate the constraint and reparameterize the optimization problem.
By lemma 3, β satisfies the constraint w = Zβ if and only if

β ∈ Z+w +N (Z) = Z+w + { (I − Z+Z)α | α ∈ Rp }
= Z+w + {Bα | α ∈ Rp }

In other words, β = Z+w+Bα for some α ∈ Rp. Under this parameterization the constraint
is eliminated, and the error is y −Xβ = z −XBα. The objective function can be written

ϕ(Z+w +Bα) =
1

2
∥y −Xβ∥2H =

1

2
∥z −XBα∥2H

and therefore β̂ ∈ B̂ECGLS(y,X,H,w,Z) if and only if β̂ = Z+w + Bα̂ for some α̂ ∈
B̂GLS(z,XB,H). By theorem 25, α̂ ∈ B̂GLS(z,XB,H) if and only if

α̂ ∈ (BX ′V +XB)+BX ′Hz +N (BX ′V +XB)

Therefore β̂ ∈ B̂ECGLS(y,X,H,w,Z) if and only if

β̂ ∈ Z+w +B(BX ′V +XB)+BX ′Hz +BN (BX ′V +XB)

To show (26), we use the method of Lagrange multipliers. The Lagrangian is defined
as

L(β, λ) = 1

2
∥y −Xβ∥2H + λ′(Zβ − w)

Since the ECGLS objective is convex and constraint is linear, β̂ is a solution if and only
if there exists λ̂ ∈ Rc such that (∂L/∂β)(β̂, λ̂) = 0 and (∂L/∂λ)(β̂, λ̂) = 0 (lemma 10).
Taking the derivative, we have

∂L
∂β

(β̂, λ̂) = X ′HXβ̂ −X ′Hy + Z ′λ̂ = 0,
∂L
∂λ

(β̂, λ̂) = Zβ̂ − w = 0

which are equivalent to the linear system[
X ′HX Z ′

Z 0

] [
β̂

λ̂

]
=

[
X ′Hy
w

]
(96)

Using properties of the range space, X ′Hy ∈ R(X ′H1/2) = R(X ′HX) ⊆ R(X ′HX +
Z ′Z) = R(G) and by lemma 3, GG+X ′Hy = X ′Hy. Moreover, by lemma 12 and lemma 3,
w ∈ R(Z) = R(F ) and FF+w = w. Then by lemma 13,[

X ′HX Z ′

Z 0

]+ [
X ′HX Z ′

Z 0

] [
X ′Hy
w

]
=

[
GG+ 0
0 FF+

] [
X ′Hy
w

]
=

[
X ′Hy
w

]
and by lemma 3, (96) has solutions and (β̂, λ̂) are solutions if and only if[

β̂

λ̂

]
∈
[
X ′HX Z ′

Z 0

]+ [
X ′Hy
w

]
+N

([
X ′HX Z ′

Z 0

])
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In other words, there exists λ̂ ∈ Rc such that β̂ solves (96) if and only if

β̂ ∈
[
I 0

] [X ′HX Z ′

Z 0

]+ [
X ′Hy
w

]
+
[
I 0

]
N
([

X ′HX Z ′

Z 0

])
Simplifying the constant term, we have by lemma 13,

[
I 0

] [X ′HX Z ′

Z 0

]+ [
X ′Hy
w

]
= β0 +G+Z ′F+(w − Zβ0)

Likewise for the null space term, we have by lemma 13,

[
I 0

]
N
([

X ′HX Z ′

Z 0

])
=
[
I 0

]{(
I −

[
X ′HX Z ′

Z 0

]+ [
X ′HX Z ′

Z 0

])
q

∣∣∣∣∣ q ∈ Rn+c

}
= { (I −GG+)q1 | q1 ∈ Rp } = N (G)

Combining these results, we have that there exists λ̂ ∈ Rc such that β̂ solves (96) (and
equivalently β̂ ∈ B̂ECGLS(y,X,H,w,Z)) if and only if

β̂ ∈ β0 +G+Z ′F+(w − Zβ0) +N (G)

An immediate corollary to theorem 31 is that both of the solutions have equivalent
minimum norm and null space components. corollary 56 is inconsequential to the subse-
quent sections and therefore the proof is omitted. At the time of this writing, we do not
know of a direct (algebraic) proof of the following result.

Corollary 56. For any y ∈ Rn, X ∈ Rn×p, H ∈ Sn+, Z ∈ Rc×n, and w ∈ R(Z),

Z+w + (BX ′V +XB)+BX ′Hz = β0 +G+Z ′F+(w − Zβ0)

BN (BX ′V +XB) = N (G)

where B = I−Z+Z, z = y−XZ+w, G = X ′HX+Z ′Z, F = ZG+Z ′, and β0 = G+X ′Hy.

B Maximum likelihood proofs

In this section we examine several methods for solving the MLE problem (MLE). There
are three methods to do this, and all are shown to give distinct but equivalent closed-form
solutions. The first method is based on solving an equivalent ECGLS problem, the second
is based on solving an equivalent saddle point system, and the third is based on taking the
limit of the perturbed MLE.
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B.1 ECGLS equivalence

Proof of lemma 33. By theorem 31, B̂ECGLS(y,X, V +, w, Z) is nonempty if and only if
w ∈ R(Z). Therefore it suffices to show (27). We start with the probability density of y.
Since y ∼ N(Xβ, V ), we have, by definition 8,

f(y;β) = (2π)−
p
2 |V |−

1
2

+ exp

(
−1

2
∥y −Xβ∥2V +

)
> 0

for all y − Xβ ∈ R(V ) and f(y;β) = 0 otherwise. Therefore the constraint f(y;β) > 0
is equivalent to y − Xβ ∈ R(V ). The range constraint can be rewritten as the following
linear equality constraint,

y −Xβ ∈ R(V ) ⇔ (I − V V +)(y −Xβ) = w − Zβ = 0

Maximizing the likelihood (subject to w = Zβ) is equivalent to minimizing the negative
log-likelihood (subject to w = Zβ), which is given by

− ln f(y;β) =
p

2
ln(2π) +

1

2
ln |V |+ +

1

2
∥y −Xβ∥2V + (97)

for all β such that w = Zβ, and is undefined otherwise. After dropping the constant
terms in (97), it is clear that minimizing the negative log-likelihood (subject to w =
Zβ) is equivalent to (ECGLS) with the stated weighting matrix and constraint parameter
definitions, which demonstrates (27).

To prove (29), we require the following preliminary lemma.

Lemma 57. For any orthogonal projectors A,B ∈ Rn×n, if AB = A and BA = B, then
A = B.

Proof. Using the definition of orthogonal projectors and the hypotheses, we can check the
conditions in theorem 1 to show A+ = B. But by lemma 5, we have A+ = A, so A = B.

Proof of theorem 36. First, note that, by lemma 33 and theorem 31,

B̂MLE(y,X, V ) = B̂ECGLS(y,X, V +, w, Z)

= Z+w +B(BX ′V +XB)+BX ′V +(y −XZ+w) +BN (BX ′V +XB)

Using lemma 5, we have Z+w = (TX)+Ty = (TX)+y = Z+y and moreover, y−XZ+w =
(I −XZ+)y = Cy. This effectively demonstrates equivalence of the minimum norm com-
ponent,

B̂MLE(y,X, V ) = Z+y +B(BX ′V +XB)+BX ′V +Cy +BN (BX ′V +XB) (98)

Next, we show X+X = M := Z+Z + (BX ′V +XB)+BX ′V +XB by lemma 57. Noting
that M is the sum of orthogonal projectors, it is symmetric, and moreover M2 = M
because the cross terms of M2 are zero,

Z+Z(BX ′V +XB)+BX ′V +XB = Z+ZB(BX ′V +XB)+BX ′V +XB) = 0
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by lemma 5. Therefore M is an orthogonal projector. Next, we have MX+X = M
using the facts where Z+ZX+X = Z+TXX+X = Z+Z and XBX+X = XX+X −
XZ+ZX+X = X −XZ+Z = XB. Finally, we have X+XM = X+X using the facts

XB = (I − V V + + V V +)XB = ZB + V V +XB = V V +XB

X+X(BX ′V +XB)+BX ′V +XB = X+XB(BX ′V +XB)+BX ′V +XB

= X+V V +XB(BX ′V +XB)+BX ′V +XB

= X+V V +XB = X+XB

which follow from lemmas 5 and 12 and the fact

R(BX ′V +) ⊆ R(BX ′(V +)1/2) = R(BX ′V +XB)

Therefore M = X+X by lemma 57, and

BN (BX ′V +XB) = B(I − (BX ′V +XB)+BX ′V +XB)Rp

= (I −M)Rp = (I −X+X)Rp = N (X) (99)

by lemma 5. Finally (29a) follows from (98) and (99).
For (29b), note that by lemma 33 and theorem 31,

B̂MLE(y,X, V ) = B̂ECGLS(y,X, V +, w, Z)

= β0 +G+Z ′F+(w − Zβ0) +N (G) (100)

Rewriting G, we have G = X ′V +X+Z ′Z = X ′(V ++T )X. It is easy to see from the SVD

V =
[
Q1 Q2

] [S1

0

] [
Q′

1

Q′
2

]
= Q1S1Q

′
1

that

V + + T = Q1S
−1
1 Q′

1 +Q2Q
′
2 =

[
Q1 Q2

] [S−1
1

I

] [
Q′

1

Q′
2

]
and (V + + T )1/2 must be invertible. Therefore

N (G) = N (X ′(V + + T )X) = N ((V + + T )1/2X) = N (X) (101)

Finally, (29b) follows from (100) and (101).

B.2 Saddle point equivalence

Proof of lemma 34. From the proof of lemma 33, we have β̂ ∈ B̂MLE(y,X, V ) if and only
if β̂ solves

min
β∈Rp

1

2
∥y −Xβ∥2V + subject to y −Xβ ∈ R(V ) (102)
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Using the definition of the range space R(V ) = {V α | α ∈ Rn }, it is clear that y −Xβ ∈
R(V ) if and only if y−Xβ = V α for some α ∈ Rn. Therefore β̂ solves (102) if and only if
there exists α̂ ∈ Rn such that (α̂, β̂) solves

min
α∈Rn,β∈Rp

1

2
∥y −Xβ∥2V + subject to y = Xβ + V α

or equivalently,

min
α∈Rn,β∈Rp

1

2
∥α∥2V subject to y = Xβ + V α (103)

The Lagrangian is defined as

L(α, β, λ) := 1

2
∥α∥2V + λ′(Xβ + V α− y)

Since the objective is convex and constraint is linear, by lemma 10, (α̂, β̂) is a solution to
(103) if and only if there exists λ̂ ∈ Rn such that

∂L
∂α

(α̂, β̂, λ̂) = V α̂+ V λ̂ = 0

∂L
∂β

(α̂, β̂, λ̂) = X ′λ̂ = 0

∂L
∂λ

(α̂, β̂, λ̂) = Xβ̂ + V α̂− y = 0

which, after making the substitution V α̂ = −V λ̂, is equivalent to the linear vector equation,[
V X
X ′ 0

] [
−λ̂

β̂

]
=

[
y
0

]
(104)

But we can always choose λ̂ = −α̂, so λ̂ ∈ Rn satisfying (104) exists if and only if α̂ ∈ Rn

satisfying (SPP) exists.

Proof of theorem 37. We have that β̂ ∈ B̂MLE(y,X, V ) if and only if there exists α̂ ∈ Rn

such that (SPP) by lemma 34. By lemma 3, solutions to (SPP) exist if and only if[
V X ′

X 0

] [
V X ′

X 0

]+ [
y
0

]
=

[
y
0

]
(105)

Using lemma 13, we have [
V X ′

X 0

] [
V X ′

X 0

]+ [
y
0

]
=

[
V0V

+
0 y
0

]
and therefore (105) if and only if y ∈ R(V0) (lemma 12). In other words, the system (SPP)
has a solution (and, by lemma 34, B̂MLE(y,X, V ) is nonempty) if and only if y ∈ R(V0).
Moreover, if y ∈ R(V0), then (α̂, β̂) solves (SPP) if and only if[

α̂

β̂

]
∈
[
(V +

0 − V +
0 XW+

0 X ′V +
0 )y

W+
0 X ′V +

0 y

]
+

[
I − V0V

+
0 0

0 I −W0W
+
0

]
Rn+p
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by lemmas 3 and 13. Clearly, there exists α̂ ∈ Rn such that (SPP) if and only if β̂ ∈
W+

0 X ′V +
0 y+N (W0) = B̂GLS(y,X, V +

0 ). The result follows by noting that R(W0) = R(X ′)
(lemma 12) is equivalent to N (W0) = N (X).

Another proof of theorem 37 follows indirectly from theorem 36, where the expressions
(29a) and (30b) are equated using facts from section 2.

Proof of theorem 37 (indirect). Using theorem 36, lemma 15, , and corollary 14,

B̂MLE(y,X, V ) = Z+y + (BX ′V +XB)+BX ′V +Cy +N (X)

= (X ′(V +XX ′)+X)+X ′(V +XX ′)+y +N (X)

= (X ′V +
0 X)+X ′V +

0 y +N (X)

From lemma 12, we have R(X ′) = R(X ′V +
0 X) and thus N (X) = N (X ′V +

0 X). Using
theorem 25,

B̂GLS(y,X, V +
0 ) = (X ′V +

0 X)+X ′V +
0 y +N (X ′V +

0 X)

= (X ′V +
0 X)+X ′V +

0 y +N (X)

= B̂MLE(y,X, V )

B.3 Barrier function method

Proof of lemma 35. Let ϕρ(β) :=
1
2∥y − Xβ∥2

V −1
ρ

and ϕ(β) := limρ→0+ ϕρ(β), and denote

the SVD of V as

V =
[
Q1 Q2

] [S1 0
0 0

] [
Q′

1

Q′
2

]
Taking the limit as ρ → 0+ gives

ϕ(β) = lim
ρ→0+

1

2
∥y −Xβ∥2

V −1
ρ

= lim
ρ→0+

1

2
∥y −Xβ∥2Q1(S1+ρI)−1Q′

1
+

1

2ρ
∥y −Xβ∥2Q2Q′

2

=

{
1
2∥y −Xβ∥2V + y −Xβ ∈ R(V )

∞ y −Xβ ̸∈ R(V )
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Because ϕρ → ϕ and ϕ, ϕρ are convex, we can use [95, Theorem 7.33] to show29

lim
ρ→0+

{
argmin
β∈Rp

ϕρ(β)

}
⊆ argmin

β∈Rp
ϕ(β) (106)

To show equality it suffices to show that each side of (106) are affine sets of equal
dimension. Starting with the left-hand side, we have, by theorem 25,

lim
ρ→0+

{
argmin
β∈Rp

ϕρ(β)

}
= lim

ρ→0+
B̂MLE(y,X, Vρ) (107a)

=

{
lim

ρ→0+
(X ′V −1

ρ X)+X ′V −1
ρ y

}
+N (X) (107b)

which is clearly affine with dimension dim(N (X)) when the limit exists, and it does by
lemma 20. For the right-hand side, we note that

B̂MLE(y,X, V ) = argmin
β∈Rp

ϕ(β) (108)

Therefore, since w ∈ R(Z), the right-hand side is affine with dimension dim(N (X)) (the-
orem 36), and (106) must hold with equality.

Proof of theorem 38. First, we have w ∈ R(Z) by lemma 33. Therefore, lemma 35 and (107)
and (108) imply (31a) and (31b). The remaining equality (31c) follows by lemma 20.

Finally, we can indirectly prove theorem 38 by equating the expressions (30b) and (31c).

Proof of theorem 38 (indirect). By lemma 33 and theorem 25,30

B̂MLE(y,X, Vρ) = B̂GLS(y,X, V −1
ρ )

= (X ′V −1
ρ X)+X ′V −1

ρ y +N (X ′V −1
ρ X)

= (X ′V −1
ρ X)+X ′V −1

ρ y +N (X)

where we have used the fact N (X ′V −1
ρ X) = N (V

−1/2
ρ X) = N (X). Taking the limit of

both sides completes the second part of the proof,

lim
ρ→0+

B̂MLE(y,X, Vρ) = lim
ρ→0+

(X ′V −1
ρ X)+X ′V −1

ρ y +N (X)

= X+(I − V (SV S)+)y +N (X)

29We have skipped some technical detail here for the sake of brevity. In particular, the following facts
are required in the hypothesis of [95, Theorem 7.33]. Denote the c-sublevel set of a function f : Rn → R as
levcf := {x ∈ Rn | f(x) ≤ c }.

1. ϕ, ϕρ are level-bounded (i.e., levcϕ, levcϕρ are bounded for all c ∈ R), for all ρ > 0.

2. ϕ, ϕρ are lower semicontinuous (i.e., levcϕ, levcϕρ are closed for all c ∈ R [95, Theorem 1.6]) and
proper (i.e., ϕ, ϕρ never equal −∞ and do not always equal ∞), for all ρ > 0.

Both of these facts can easily be shown by observing that ϕρ is strictly convex on Rp, and ϕ is strictly
convex on the feasible set {β ∈ Rp | y −Xβ ∈ R(V ) }.

30The constraints for this problem are trivial since Vρ is nonsingular, so the ECGLS problem reduces to
a GLS problem.
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where the second equality follows from lemma 20. Finally, the proof is completed using
lemma 21 and theorem 37,

X+(I − V (SV S)+)y +N (X) = (X ′V +
0 X)+X ′V +

0 y +N (X) = B̂MLE(y,X, V )

C Maximum a posteriori estimator proofs

To show theorems 40 to 42, we first require the following preliminary lemma.

Lemma 58. For any y ∈ Rn, X ∈ Rn×p, V ∈ Sn+, β, β0 ∈ Rp, and Σ ∈ Sp+, let

ỹ :=

[
y
β0

]
, X̃ :=

[
X
I

]
, Ṽ :=

[
V 0
0 Σ

]
(109)

and L := ΣX ′(V +XΣX ′)+. Then the following statements are equivalent.

1. y −Xβ ∈ R(V ) and β − β0 ∈ R(Σ).

2. ỹ − X̃β ∈ R(Ṽ ).

3. β − β0 − L(y −Xβ0) ∈ R(Σ− LXΣ) and y −Xβ0 ∈ R(V +XΣX ′).

Proof. (1. ⇔ 2.) The first two statements are easily shown to be equivalent via the definition
of R(·).

(1. ⇔ 3.) First, let V0 := V + XΣX ′ and Σ0 := (Σ − LXΣ), and note the following
identities due to corollary 4 and the fact that R(V ) ⊆ R(V0) and R(XΣ1/2) = R(XΣX ′) ⊆
R(V0),

LV = ΣX ′V +
0 V = ΣX ′V +

0 V0 − ΣX ′V +
0 XΣX ′ = Σ0X

′

(I −XL)V0 = V +XΣX ′ −XΣX ′V +
0 V0 = V

XΣ0 = XΣ− V0V
+
0 XΣ+ V V +

0 XΣ = V V +
0 XΣ

(⇒) Suppose y −Xβ ∈ R(V ) and β − β0 ∈ R(Σ). Then there exist α1 ∈ Rn and α2 ∈ Rp

such that y −Xβ = V α1 and β − β0 = Σα2. Moreover,

y −Xβ0 = y −Xβ +X(β − β0) = V α1 +XΣα2 =
[
V 1/2 XΣ1/2

] [V 1/2α1

Σ1/2α2

]
∈ R

([
V 1/2 XΣ1/2

])
= R

([
V 1/2 XΣ1/2

] [ V 1/2

Σ1/2X ′

])
= R(V0)

and

β − β0 − L(y −Xβ0) = (I − LX)(β − β0)− L(y −Xβ)

= (I − LX)Σα2 − LV α1

= Σ0α2 − Σ0X
′α1 ∈ R(Σ0)
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(⇐) Suppose y−Xβ0 ∈ R(V0) and β−β0−L(y−Xβ0) ∈ R(Σ0). Then there exist α1 ∈ Rn

and α2 ∈ Rp such that y −Xβ0 = V0α1 and β − β0 − L(y −Xβ0) = Σ0α2. Moreover,

β − β0 = β − β0 − L(y −Xβ0) + L(y −Xβ0) = Σ0α2 + L(y −Xβ0)

= Σ(I −X ′V +
0 XΣ)α2 +ΣX ′V0(y −Xβ0) ∈ R(Σ)

and

y −Xβ = y −Xβ0 −X(β − β0 − L(y −Xβ0) + L(y −Xβ0))

= (I −XL)(y −Xβ0)−X(β − β0 − L(y −Xβ0))

= (I −XL)V0α1 −XΣ0α2 = V α1 − V V +
0 XΣα2 ∈ R(V )

Proof of theorem 40. To show (32), we show that the MAP and MLE problems have the
same feasible set their objectives are proportional for all β in that feasible set.

Consider the shorthand notation (109) and the joint density of y and β,[
y
β

]
∼ N

([
Xβ0
β0

]
,

[
V +XΣX ′ XΣ

X ′Σ Σ

])
By lemma 9, we have,

β|y ∼ N(β0 + L(y −Xβ0),Σ− LXΣ) (110)

for all y − Xβ0 ∈ R(V + XΣX ′). Therefore, the probability density corresponding to
(MAP) is given by

f(β|y) = (2π)−
n
2 |Σ− LXΣ|−

1
2

+ exp

(
−1

2
∥β − β0 − L(y −Xβ0)∥2(Σ−LXΣ)+

)
> 0 (111)

whenever β−β0−L(y−Xβ0) ∈ R(Σ−LXΣ) and y−Xβ0 ∈ R(V +XΣX ′), and f(β|y) = 0
otherwise. In other words, the MAP problem has the feasible set{

β ∈ Rn

∣∣∣∣ β − β0 − L(y −Xβ0) ∈ R(Σ− LXΣ),
y −Xβ0 ∈ R(V +XΣX ′)

}
(112)

Note the second constraint y − Xβ0 ∈ R(V + XΣX ′) only serves to make the feasible
set empty when the conditional density function is ill-defined. We can always choose
β = β0 + L(y − Xβ0) to satisfy the first constraint, so the feasible set is empty (and by
implication, B̂MAP(y,X, V, β0,Σ) is empty) if and only if y −Xβ0 ̸∈ R(V +XΣX ′).

For the MLE problem, we have the probability density

f(ỹ;β) = (2π)−
n+p
2 |Ṽ |−

1
2

+ exp

(
−1

2
∥ỹ − X̃β∥2

Ṽ +

)
> 0 (113)

whenever ỹ − X̃β ∈ R(Ṽ ) and f(ỹ;β) = 0 otherwise. In other words, the MLE problem
has the feasible set

{β ∈ Rp | ỹ − X̃β ∈ R(Ṽ ) } (114)
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By lemma 58, the feasible sets (112) and (114) are equivalent. Let β be in the feasible
set. Then, by lemma 58, we also have y − Xβ ∈ R(V ) and β − β0 ∈ R(Σ). Using basic
facts about the pseudoinverse and pseudodeterminant of block diagonal matrices,31 we can
rewrite (113) as

f(ỹ;β) = (2π)−
p
2 |V |−

1
2

+ exp

(
−1

2
∥y −Xβ∥2V +

)
(2π)−

n
2 |Σ|−

1
2

+ exp

(
−1

2
∥β0 − β∥2Σ+

)
= f(y|β)f(β)

which is clearly proportional to (111) by Bayes’ theorem.

Proof of theorem 41. To simplify the notation, let y := E[β|y] = β0 +L(y−Xβ0), X := I,

S := I −XX
+
= 0, and V := var[β|y] = Σ−LXΣ, where the formula for the expectation

and variance follow from (110). By theorem 40, B̂MAP(y,X, V, β0,Σ) being nonempty
implies that y − Xβ0 ∈ R(V + XΣX ′), and the probability density corresponding to
(MAP) is given by (111) whenever

y −Xβ = β0 + L(y −Xβ0) ∈ R(Σ− LXΣ) = R(V )

and f(β|y) = 0 otherwise. But the probability density (111) is clearly equivalent to the
probability density corresponding to the MLE problem

B̂MLE(β0 + L(y −Xβ0), I,Σ− LXΣ) = B̂MLE(y,X, V )

and by theorem 38, we have

B̂MAP(y,X, V, β0,Σ) = B̂MLE(y,X, V )

= X
+
(I − V S(SV S)+S)y +N (X)

= { y } = {E[β | y] } = {β0 + L(y −Xβ0) }

where the third equality follows from the fact that S = 0 and N (X) = { 0 ∈ Rp }.

Proof of theorem 42. Equations (34a) and (34c) follow from theorem 41. To finish the
proof we show that the first and last expressions are equivalent,

B̂MAP(y,X, V, β0,Σ) = B̂MLE

([
y
β0

]
,

[
X
I

]
,

[
V 0
0 Σ

])
= lim

ρ→0+
B̂MLE

([
y
β0

]
,

[
X
I

]
,

[
V 0
0 Σ

]
+ ρI

)
= lim

ρ→0+
B̂MAP(y,X, V + ρI, β0,Σ+ ρI)

where the first and last equalities follow by theorem 41 and the second equality follows by
theorem 38.

31For all A ∈ Rn×n and B ∈ Rp×p,

[
A 0
0 B

]+

=

[
A+ 0
0 B+

]
and

∣∣∣∣[A 0
0 B

]∣∣∣∣
+

= |A|+ · |B|+.
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D Best affine unbiased estimator proofs

In order to prove lemma 44, theorem 45, , and corollary 46, we first require the following
preliminary lemma.

Lemma 59. Let X ∈ Rn×p, V ∈ Sn+, W ∈ Rm×n, V0 := V +XEX ′ for any E ∈ Sp+ such

that R(X) ⊆ R(V0), and Â(X,V,W ) be the set of solutions to (MTP). Then the following
statements hold.

1. R(
[
V X

]
) = R(V0).

2. ŴBAUE(X,V,W ) = {A(·) : R(V0) → Rm | AX = W }.

3. ŴBBAUE(X,V,W ) is nonempty if and only if R(W ′) ⊆ R(X ′).

4. Â(X,V,W ) is nonempty if and only if R(W ′) ⊆ R(X ′).

5. ŴBBAUE(X,V,W ) ⊆ { Â(·) : R(V0) → Rm | Â ∈ Â(X,V,W ) }.

Proof. (1.) Noting that R(V ) ⊆ R(
[
V X

]
), R(X) ⊆ R(

[
V X

]
), R(V ) ⊆ R(V0), and

R(X) ⊆ R(V0), we have

V0V
+
0

[
V X

]
=
[
V0V

+
0 V V0V

+
0 X

]
=
[
V X

]
and [

V X
] [

V X
]+

V0 =
[
V X

] [
V X

]+
V +

[
V X

] [
V X

]+
XEX ′

= V +XEX ′ = V0

which implies that R(
[
V X

]
) = R(V0) (corollary 4).

(2.) Let ŴB(X,W ) := {A(·) : R(V0) → Rm | AX = W }. Note that all functions in

ŴBAUE(X,V,W ) and ŴB(X,W ) have the same domain because R(
[
V X

]
) = R(V0).

(⊆) Suppose θ(·) = Â(·) + ĉ ∈ ŴBAUE(X,V,W ). Then

Wβ = E[θ(y)|β] = E[Ây + ĉ|β] = ÂXβ + ĉ

for all β ∈ Rp. For this to be true, we must have ĉ = 0 and ÂX = W . Therefore,
θ(·) = Â(·) ∈ ŴB(X,W ).

(⊇) Suppose θ(·) = Â(·) ∈ ŴB(X,W ). Then

E[θ(y)|β] = E[Ây|β] = ÂXβ = Wβ

for any β ∈ Rp, and therefore θ ∈ ŴBAUE(X,V,W ).
(3–4.) According to the second part of this lemma, the feasible set of the BAUE

“optimization” problem ŴBAUE(X,V,W ) = ŴB(X,W ) is nonempty if and only if there
exists A ∈ Rm×n such that AX = W . Likewise, the feasible set of (MTP) is nonempty if
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and only if there exists A ∈ Rm×n such that AX = W . But AX = W has solutions if and
only if R(W ′) ⊆ R(X ′) by corollary 4, so the third and fourth statements are true.

(5.) Suppose θ ∈ ŴBBAUE(X,V,W ) ⊆ ŴB(X,W ). Then θ(·) = Â(·) for some Â ∈
Rm×n. It suffices to show Â is a solution to (MTP). By (BAUE) and (2.) of this lemma,
we have

var[θ(y)|β] ⪯ var[θ̃(y)|β] ∀β ∈ Rp, θ̃ ∈ ŴBAUE(X,V,W ) = ŴB(X,W ) (115)

But θ, θ̃ ∈ ŴBBAUE(X,V,W ) implies that θ(·) = Â(·), θ̃(·) = Ã(·), ÂX = W and ÃX = W
for some Â, Ã ∈ Rm×n. Rewriting (115) in terms of Â, Ã,

ÂV Â′ ⪯ ÃV Ã′ ∀Ã ∈ {A ∈ Rm×n | AX = W } (116)

The Loewner is preserved under trace32 so (116) implies

tr(ÂV Â′) ≤ tr(ÃV Ã′) ∀Ã ∈ {A ∈ Rm×n | AX = W }

and therefore Â is a solution to (MTP).

Proof of lemma 44. Let V0 := V + XEX ′ for any E ∈ Sp+ such that R(X) ⊆ R(V0).

Then R(
[
V X

]
) = R(V0) by lemma 59. Suppose (35) holds and ŴBBAUE(X,V,W ) is

nonempty. Then Â(X,V,W ) is nonempty (lemma 59) and the functions Â1(·) : R(V0) →
Rm and Â2(·) : R(V0) → Rm are equivalent for any Â1, Â2 ∈ Â(X,V,W ). We can rewrite
the set of so-called minimum trace estimators as a singleton,

{ Â(·) : R(V0) → Rm | Â ∈ Â(X,V,W ) } = { Â1(·) : R(V0) → Rm } (117)

for any Â1 ∈ Â(X,V,W ). By lemma 59, we have

ŴBBAUE(X,V,W ) ⊆ { Â(·) : R(V0) → Rm | Â ∈ Â(X,V,W ) } (118)

= { Â1(·) : R(V0) → Rm }

But ŴBBAUE(X,V,W ) is nonempty, so (118) must hold with equality, which demonstrates
(36).

Proof of theorem 45. We aim to use lemma 44 to derive the BAUE. Let W0 := X ′V +
0 X

and suppose ŴBBAUE(X,V,W ) is nonempty. Then Â(X,V,W ) is nonempty by lemma 59.
It suffices to show that, WW+

0 X ′V +
0 ∈ Â(X,V,W ) and (35) holds.

We first solve (MTP) by the method of Lagrange multipliers. The Lagrangian is defined
as

L(A,Λ) = 1

2
tr(AV A′) + tr(Λ′(AX −W ))

32That is, A ⪯ B implies trA ≤ trB for all A,B of suitable dimensions.
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Since (MTP) has a convex objective and linear constraints, lemma 10 implies that Â ∈
Â(X,V,W ) if and only if there exits Λ̂ ∈ Rm×n such that33

∂L
∂A

(Â, Λ̂) = V Â′ +XΛ̂′ = 0,
∂L
∂Λ

(Â, Λ̂) = ÂX −W = 0

or equivalently [
V X
X ′ 0

] [
Â′

Λ̂′

]
=

[
0
W ′

]
(119)

By corollary 4 and lemma 12, R(W ′) ⊆ R(X ′) = R(W0) and W0W
+
0 W ′ = W ′. Using

lemma 13, [
V X
X ′ 0

]+ [
V X
X ′ 0

] [
0
W ′

]
=

[
V0V

+
0 0

0 W0W
+
0

] [
0
W ′

]
=

[
0
W ′

]
By corollary 4, (Â, Λ̂) is a solution to (119) if and only if[

Â′

−Λ̂′

]
∈
[
V X
X ′ 0

]+ [
0
W ′

]
+

{(
I −

[
V X
X ′ 0

]+ [
V X
X ′ 0

])
Q

∣∣∣∣∣ Q ∈ Rn+p×m

}

=

[
V +
0 XW+

0 W ′

W0W
+
0 EW0W

+
0 W ′ −W+

0 W ′

]
+

{[
(I − V0V

+
0 )Q1

(I −W0W
+
0 )Q2

] ∣∣∣∣ [Q1

Q2

]
∈ Rn+p×m

}
where the equality follows from lemma 13. In other words, there exists Λ̂ ∈ Rm×n such
that Â solves (119) if and only if

Â ∈ Â(X,V,W ) = WW+
0 X ′V +

0 + {Q(I − V0V
+
0 ) | Q ∈ Rm×n }

Choosing Q = 0 shows that WW+
0 X ′V +

0 ∈ Â(X,V,W ). Let Â1, Â2 ∈ Â(X,V,W ) and
y ∈ R(V0). Then there exists Q1, Q2 ∈ Rm×n such that

Âi = WW+
0 X ′V +

0 +Qi(I − V0V
+
0 )

for i = 1, 2. Moreover, (I − V0V
+
0 )y = 0 and Â1y = Â2y = WW+

0 X ′V +
0 y, which demon-

strates (35).

Proof of corollary 46. Let V0 := V + XEX ′ for any E ∈ Sp+ such that R(X) ⊆ R(V0).

Then R(
[
V X

]
) = R(V0) by lemma 59. Suppose y ∈ R(

[
V X

]
) = R(V0) and Ŵβ ∈

ŴBBAUE(X,V,W ). Then Ŵβ(y) = W (X ′V +
0 X)+X ′V +

0 y by theorem 45. Since ŴBBAUE(X,V,W )
was assumed nonempty, we have R(W ′) ⊆ R(X ′) by lemma 59. Then theorem 37 gives

W B̂MLE(y,X, V ) = W (X ′V +
0 X)+X ′V +

0 y +WN (X) = {W (X ′V +
0 X)+X ′V +

0 y }

where WN (X) = {W (I −X+X)q | q ∈ Rp } = { 0 ∈ Rp } by corollary 4. Finally, we have

that { Ŵβ(y) = W (X ′V +
0 X)+X ′V +

0 y } = W B̂MLE(y,X, V ).
33While we have shifted to matrix arguments from vector arguments, lemma 10 still applies. To see this,

consider vectorization of the constraint AX = W and note the identity tr(A′B) = [vec(A)]′vec(B). Since
vectorization is bijective and differentiable, the unvectorized derivatives are zero if and only if the vectorized
derivatives are zero.
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E Background

In this appendix we collect background results which are referenced in the main text and
subsequent appendices.

E.1 Linear algebra

Throughout we use the following properties of the range and null spaces,

R(A) ⊆ R(
[
A B

]
), R(A) ⊇ R(AB)

and
R(A) ⊆ R(B) ⇔ N (A′) ⊇ N (B′)

for A and B of suitable dimension. We present Woodbury’s matrix identity and two
corollaries to it [41].

Theorem 60. For any A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×m, and D ∈ Rm×n,

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1

subject to existence of the inverses.

Proof of theorem 60. First note the following identities,

BC(C−1 +DA−1B) = B +BCDA−1B = (A+BCD)A−1B

(A+BCD)−1BC = A−1B(C−1 +DA−1B)−1

where the second follows from the first by multiplying (A + BCD)−1 on the left and
(C−1 +DA−1B)−1 on the right. Then

A−1 = (A+BCD)−1(A+BCD)A−1

= (A+BCD)−1 + (A+BCD)−1BCDA−1

= (A+BCD)−1 +A−1B(C−1 +DA−1B)−1DA−1

Below, we prove theorem 1.

Proof of theorem 1. Existence follows from the fact that X = V1Σ
−1
1 U ′

1 is a solution to (6),
where A = U1Σ1V

′
1 is the economic SVD of A.

To show uniqueness, suppose both X̃,X ∈ Rm×n are solutions to (6). Then by the
third equality of (6), we have AX̃ = AXAX̃, and by symmetry of AX and AX̃, we can
take the transpose to show AX̃ = AX̃AX. We also have X̃A = X̃AXA = XAX̃A by a
similar argument using the last equality of (6). Combining these results gives

X̃ = X̃AX̃ = X̃AX̃AX = X̃AX = XAX̃AX = XAX = X

and clearly A+ = X = X̃ is the unique solution to (6).
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E.2 Projectors

Below, we prove lemmas 5 and 61 which are stated but not proven in section 2.

Proof of lemma 5. The first identity is shown by noting that PP = P is symmetric and
PPP = P , which covers all conditions in (6). The second identity is also shown by
substitution into (6),

(PA)+PPA = (PA)+PA

PA(PA)+P = (PA(PA)+)′P ′ = (PPA(PA)+)′

= (PA(PA)+)′ = PA(PA)+

PA(PA)+PPA = PA(PA)+PA = PA

(PA)+PPA(PA)+P = (PA)+PA(PA)+P = (PA)+P

Lemma 61. If P ∈ Rn×n is a projector such that 0 < rank(P ) < n, then ∥P∥ ≥ 1 and
∥P∥ = ∥I − P∥.

Proof of lemma 61. For the first part, we have ∥P∥ = ∥P 2∥ ≤ ∥P∥2 which can only be
true if ∥P∥ ≥ 1 or ∥P∥ = 0. However, ∥P∥ ≠ 0 because rank(P ) > 0, so ∥P∥ ≥ 1.

For the second part, it suffices to show ∥P∥ ≤ ∥I − P∥ since I − P is a projector
and therefore ∥I − P∥ ≤ ∥I − (I − P )∥ = ∥P∥. Let u ∈ Rp such that ∥u∥ = 1. Denote
x = Pu and y = u − x = (I − P )u. If x = 0, we have ∥Pu∥ = 0. If y = 0, then
∥Pu∥ = ∥u∥ = 1 ≤ ∥I − P∥. If x ̸= 0 and y ̸= 0 (which is guaranteed to happen by the
rank constraint), then let w = x̃+ ỹ where

x̃ =
∥y∥
∥x∥

x, ỹ =
∥x∥
∥y∥

y

Then ∥w∥2 = ∥y∥2 + ∥x∥2 + 2x′y = ∥u∥2 = 1, and we have the equivalence

∥Pu∥ = ∥x∥ = ∥ỹ∥ = ∥(I − P )w∥ ≤ ∥I − P∥

Taking the maximum of both sides over all ∥u∥ = 1 gives the result.

E.3 Linear equations

Below, we prove lemma 3 and corollary 4 which was stated but not proven in section 2.

Proof of lemma 3. (1. ⇔ 2.) By definition, Ax = b has solutions if and only if b ∈ R(A).
(1. ⇒ 3.) Suppose there exists x ∈ Rp such that Ax = b. Then b = Ax = AA+Ax =

AA+b.
(1. ⇐ 3.) Suppose AA+b = b. Then with x = A+b, we have Ax = AA+b = b.
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Suppose b ∈ R(A). Then with x0 = x− A+b, we can rewrite the (nonempty) solution
set as desired,

S = {x ∈ Rp | Ax = b } = {A+b+ x0 ∈ Rp | A(A+b+ x0) = b }
= {A+b+ x0 ∈ Rp | Ax0 = 0 }
= A+b+ {x0 ∈ Rp | Ax0 = 0 }
= A+b+N (A)

Proof of corollary 4. The above statements can each be rewritten,

1. the linear vector equation Axi = bi has a solution for xi for i = 1, . . . , p,

2. bi ∈ R(A) for i = 1, . . . , p,

3. AA+bi = bi for i = 1, . . . , p,

where xi and bi are the i-th columns of X and B. The result follows by lemma 3.

E.4 Singular value decomposition

Proof of lemma 6. These identities follow directly from the definition of orthogonal matri-
ces (Q′Q = I) and substitution into (6).

E.5 The matrix 2-norm

The 2-norm is convex and submultiplicative, that is

∥A+B∥ ≤ ∥A∥+ ∥B∥, ∥AC∥ ≤ ∥A∥∥C∥

for any A,B ∈ Rm×n and C ∈ Rn×p. Under an orthogonal transformation, the vector
2-norm is preserved,

∥Ux∥ =
√
x′U ′Ux =

√
x′x = ∥x∥

for any orthogonal matrix U ∈ Rm×n and vector x ∈ Rp. Therefore the matrix 2-norm is
also preserved,

∥UAV ′∥ = max
x∈Rq

∥UAV ′x∥
∥x∥

= max
x∈Rq

∥AV ′x∥
∥x∥

= max
z∈Rn

∥AV ′V z∥
∥V z∥

= max
z∈Rn

∥Az∥
∥z∥

= ∥A∥

for any orthogonal matrices U ∈ Rm×n, V ∈ Rq×p and matrix A ∈ Rn×p. From this result,
we can write the 2-norm of a matrix and its pseudoinverse in terms of the singular values,

∥A∥ = ∥U1Σ1V
′
1∥ = ∥Σ1∥ = σ1, ∥A+∥ = ∥U1Σ

−1
1 V ′

1∥ = ∥Σ−1
1 ∥ = σ−1

r

given the SVD (8). It is also clear that ∥U∥ = 1 for any orthogonal U ∈ Rn×m, and
∥AA′∥ = ∥U1Σ

2
1U

′
1∥ = ∥Σ2

1∥ = ∥A∥2 for any A ∈ Rn×m.
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E.6 Matrix limits

Proof of (7). Rewriting R(α) in terms of the SVD matrices,

R(α) = (A′A+ αI)−1(A′ − (A′A+ αI)A+)

= (A′A+ αI)−1(A′ −A′AA+ − αA+)

= −α(A′A+ αI)−1A+

= −α(V1Σ
2
1V

′
1 + αI)−1V1Σ

−1
1 U ′

1

and using theorem 60,

R(α) = −α(α−1I − α−2V1(α
−1I +Σ−2

1 )−1V ′
1)V1Σ

−1
1 U ′

1

= −V1[α(α
−1I − α−2(α−1I +Σ−2

1 )−1)Σ−1
1 ]U ′

1

= −V1[α(αI +Σ2
1)

−1Σ−1
1 ]U ′

1

where r = rank(A). Noting that the final expression of R(α) is a SVD (up to the ordering
of the singular values) with maximum singular value α

σ(A)(σ2(A))+α
, we have

∥R(α)∥ =
α

σ(A)(σ2(A)) + α

and therefore limα→0+ ∥R(α)∥ = limα→0+
α

σ(A)(σ2(A))+α
= 0 and limα→0+ R(α) = 0.

E.7 Probability

Below, we prove lemma 9 using the method outlined by Marsaglia [69].

Proof of lemma 9. First note that since the joint covariance

Σ =

[
Σx Σxy

Σ′
xy Σy

]
is positive semidefinite, there exist U ∈ Rn×r and V ∈ Rm×r, where r = rank(Σ), such
that

Σ =

[
U
V

] [
U
V

]′
=

[
UU ′ UV ′

V U ′ V V ′

]
and therefore R(Σ′

xy) = R(V U ′) ⊆ R(V ) = R(V V ′) = R(Σy), and by corollary 4, we have
ΣxyΣ

+
y Σy = Σxy. Let z = x−ΣxyΣ

+
y y. Using the linearity of Gaussians, we have the joint

distribution of [
z
y

]
=

[
I −ΣxyΣ

+
y

0 I

] [
x
y

]
is Gaussian with mean

E
[[

z
y

]]
=

[
I −ΣxyΣ

+
y

0 I

] [
µx

µy

]
=

[
µx − ΣxyΣ

+
y µy

µy

]
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and covariance

var

([
z
y

])
=

[
I −ΣxyΣ

+
y

0 I

] [
Σx Σxy

Σ′
xy Σy

] [
I 0

−Σ+
y Σ

′
xy I

]
=

[
Σx − ΣxyΣ

+
y Σ

′
xy 0

Σ′
xy Σy

] [
I 0

−Σ+
y Σ

′
xy I

]
=

[
Σx − ΣxyΣ

+
y Σ

′
xy 0

0 Σy

]
Since z and y are uncorrelated and Gaussian, they are independent. Then for any a ∈
R(Σy),

x| { y = a } = z +ΣxyΣ
+
y a ∼ N(µx +ΣxyΣ

+
y (y − µy),Σx − ΣxyΣ

+
y Σ

′
xy)

E.8 Optimization

Below, we prove lemma 10 using the method outlined in [18, pp. 141–142].

Proof of lemma 10. By lemma 3, the feasible set S = {x ∈ Rp | Ax = b } is nonempty and
S = A+b+N (A). We have that x0 ∈ Rp solves (11) if and only if x0 ∈ S and

(x− x0)′
df

dx
(x0) ≥ 0 ∀x ∈ S (120)

Moreover, if x0 ∈ S, we have that Ax0 = b, A+b − x0 ∈ N (A), and S = x0 + N (A).
Therefore we can rewrite the condition (120) as

v′
df

dx
(x0) ≥ 0 ∀v ∈ N (A) (121)

But v′(df/dx)(x0) is linear in v, so for it to be nonnegative for all v ∈ N (A), it must be
zero for all v ∈ N (A). Therefore (121) is equivalent to

v′
df

dx
(x0) = 0 ∀v ∈ N (A) (122)

As a range space condition, (122) can be written as (df/dx)(x0) ∈ R(A′), which is true if
and only if there exists λ0 ∈ Rp such that

df

dx
(x0) +A′λ0 = 0 (123)

Taking derivatives of the Lagrangian (12), we get that x0 ∈ S and (123) are collectively
equivalent to (13).
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F Block matrix pseudoinversion proof

In this appendix, we prove lemmas 12 and 13. In this appendix, we prove lemmas 12 and 13
and corollary 14

Proof of lemma 12. (1.) R(V ) ⊆ R(V +XEX ′) = R(V0).
(2.) The hypothesis R(X) ⊆ R(V0) and first statement R(V ) ⊆ R(V0) are equivalent

to V0V
+
0 X = X and V0V

+
0 V = V by corollary 4.

(3.) First, let F := (V +
0 )1/2 so that R(X ′) ⊇ R(X ′F ) = R(X ′V +

0 X) = R(W0). Next
we show R(X ′) ⊆ R(W0). Let G := X ′F so that

W0 = X ′V +
0 X = X ′F 2X = GG′

By the second statement and symmetry of V0 and V +
0 , we have

X ′ = (V0V
+
0 X)′ = X ′V +

0 V0

Finally, using properties of the psuedoinverse, we have

W0W
+
0 X ′ = W0W

+
0 X ′V +

0 V0 = (GG′)(GG′)+GFV0

= GFV0 = X ′F 2V0 = X ′V +
0 V0 = X ′

which by corollary 4 is equivalently stated R(X ′) = R(W0).

Proof of lemma 13. Let N be defined as

N =

[
N11 N12

N21 N22

]
=

[
V +
0 − V +

0 XW+
0 X ′V +

0 V +
0 XW+

0

W+
0 X ′V +

0 W0W
+
0 EW0W

+
0 −W+

0

]
.

Then we can write MN as

MN =

[
V X
X ′ 0

] [
N11 N12

N21 N22

]
=

[
V N11 +XN21 V N12 +XN22

X ′N11 X ′N12

]
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Using lemma 12 we can rewrite each block in MN as

V N11 +XN21

= (V0 −XEX ′)(V +
0 − V +

0 XW+
0 X ′V +

0 ) +XW+
0 X ′V +

0

= V0V
+
0 −XEX ′V +

0 − V0V
+
0 XW+

0 X ′V +
0 +XEW0W

+
0 X ′V +

0 +XW+
0 X ′V +

0

= V0V
+
0 −XEX ′V +

0 −XW+
0 X ′V +

0 +XEX ′V +
0 +XW+

0 X ′V +
0

= V0V
+
0

V N12 +XN22

= (V0 −XEX ′)V +
0 XW+

0 +X(W0W
+
0 EW0W

+
0 −W+

0 )

= V0V
+
0 XW+

0 −XEW0W
+
0 +XW0W

+
0 EW0W

+
0 −XW+

0

= XW+
0 −XEW0W

+
0 +XEW0W

+
0 −XW+

0

= 0

X ′N11 = X ′V +
0 −X ′V +

0 XW+
0 X ′V +

0

= X ′V +
0 −W0W

+
0 X ′V +

0

= X ′V +
0 −X ′V +

0

= 0

X ′N12 = X ′V +
0 XW+

0

= W0W
+
0

which gives

MN =

[
V0V

+
0 0

0 W0W
+
0

]
= (MN)′ = N ′M ′ = NM

since M and N are symmetric. Using lemma 12 we can write MNM as

MNM =

[
V0V

+
0 0

0 W0W
+
0

] [
V X
X ′ 0

]
=

[
V0V

+
0 V V0V

+
0 X

W0W
+
0 X ′ 0

]
=

[
V X
X ′ 0

]
= M

and NMN as

NMN =

[
V +
0 − V +

0 XW+
0 X ′V +

0 V +
0 XW+

0

W+
0 X ′V +

0 W0W
+
0 EW0W

+
0 −W+

0

] [
V0V

+
0 0

0 W0W
+
0

]
=

[
V +
0 V0V

+
0 − V +

0 XW+
0 X ′V +

0 V0V
+
0 V +

0 XW+
0 W0W

+
0

W+
0 X ′V +

0 V0V
+
0 (W0W

+
0 EW0W

+
0 −W+

0 )W0W
+
0

]
=

[
V +
0 − V +

0 XW+
0 X ′V +

0 V +
0 XW+

0

W+
0 X ′V +

0 W0W
+
0 EW0W

+
0 −W+

0

]
= N

and therefore N = M+ is the pseudoinverse of M , and MN = NM = MM+ = M+M are
the orthogonal projectors.

Proof of corollary 14. By lemma 13, we have the pseudoinverse[
V X
X ′ 0

]+
=

[
V +
0 − V +

0 XW+
0 X ′V +

0 V +
0 XW+

0

W+
0 X ′V +

0 W0W
+
0 EW0W

+
0 −W+

0

]
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where W0 = X ′V +
0 X. Moreover, since R(X) = R(XX ′) ⊆ R(V +XX ′) = R(V1), there is

an alternate expression for the pseudoinverse,[
V X
X ′ 0

]+
=

[
V +
1 − V +

1 XW+
1 X ′V +

1 V +
1 XW+

1

W+
1 X ′V +

1 W1W
+
1 −W+

1

]
where W1 = X ′V +

1 X and the simplification W1W
+
1 W1W

+
1 = W1W

+
1 has been applied. By

uniqueness of the pseudoinverse, the (2, 1) block of each expression must be equal.

G Pseudoinverse of sum of positive semidefinite matrices

In this appendix we prove lemmas 15 and 16. First however, consider the following defini-
tions

T = I − V V + Z = TX w = Ty (124a)

B = I − Z+Z C = I −XZ+ D = I +BX ′V +XB (124b)

and the following lemma, which collects identities for the matrices (124).

Lemma 62. For any V ∈ Sn+ and X ∈ Rn×p,

V +Z = 0 Z+X = Z+Z

Z+V = 0 CV = V

CX = XB CV V + = V V +

V V +C = V V + −XZ+ + ZZ+ V V +XB = XB

CZZ+ = ZZ+ −XZ+ D−1BX ′V +XB = I −D−1

given the definitions (124).

Proof. The first fact is V +Z = V +TX = 0. Using lemma 5 the next two facts are shown

Z+X = (TX)+X = (TX)+TX = Z+Z

Z+V = Z+TV = 0

The next two facts are corollaries to the previous facts,

CV = (I −XZ+)V = V

CX = (I −XZ+)X = X −XZ+Z = XB

CV V + = (I −XZ+)V V + = V V +

Finally,

V V +C = V V +(I −XZ+) = V V + − (I − T )XZ+

= V V + −XZ+ + ZZ+

V V +XB = (I − T )XB = XB − ZB = XB

CZZ+ = (I −XZ+)ZZ+ = ZZ+ −XZ+

D−1BX ′V +XB = D−1(I +BX ′V +XB)−D−1 = I −D−1
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Before proving lemmas 15 and 16, we show in the following lemma a sufficient condition
for which the pseudoinverse of a sum is equal to the sum of the pseudoinverses.

Lemma 63. For any matrices A,B ∈ Rn×m such that A′B = 0 and BA′ = 0, (A+B)+ =
A+ +B+.

Proof. Noting that A′B = 0 ⇔ R(B) ⊆ N (A′) and BA′ = 0 ⇔ R(A′) ⊆ N (B), we also
have

R(B) ⊆ N (A′) = N (A+) ⇔ A+B = 0

⇔ R(A) ⊆ N (B′) = N (B+) ⇔ B+A = 0

R(A′) = R(A+) ⊆ N (B) ⇔ BA+ = 0

⇔ R(B′) = R(B+) ⊆ N (A) ⇔ AB+ = 0

The result follows by substitution into (6),

(A+B)(A+ +B+) = AA+ +BB+

(A+ +B+)(A+B) = A+A+B+B

(A+B)(A+ +B+)(A+B) = (A+B)(A+A+B+B)

= AA+A+BB+B = A+B

(A+ +B+)(A+B)(A+ +B+) = (A+A+B+B)(A+ +B+)

= A+AA+ +B+BB+ = A+ +B+

Finally, we prove lemmas 15 and 16 below.

Proof of lemma 15. Let H = C ′V +C + Z ′+Z+ − C ′V +XBD−1BX ′V +C. We show that
this is the unique pseudoinverse of V0 = V + XX ′ by directly checking (6). We use the
results of lemma 62 throughout and without reference. First consider the following results,

C ′V +CV0 = C ′V +CV + C ′V +CXX ′

= C ′V +V + C ′V +XBX ′

= V V + − Z ′+X ′ + ZZ+ + C ′V +XBX ′,

Z ′+Z+V0 = Z ′+Z+XX ′ = Z ′+Z+ZX ′ = Z ′+X ′,

C ′V +XBD−1BX ′V +CV0 = C ′V +XB(D−1BX ′V +CV +D−1BX ′V +CXX ′)

= C ′V +XB(D−1BX ′V +V +D−1BX ′V +XBX ′)

= C ′V +XB(D−1BX ′ + (I −D−1)BX ′)

= C ′V +XBX ′

From these results we can rewrite the product HV0 as

HV0 = (C ′V +C + Z ′+Z+ − C ′V +XBD−1BX ′V +C)V0

= V V + − Z ′+X ′ + ZZ+ + C ′V +XBX ′ + Z ′+X ′ − C ′V +XBX ′

= V V + + ZZ+
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which confirms the third Moore-Penrose condition. The fourth condition is verified by
noting that V0 and H are symmetric,

V0H = (HV0)
′ = (V V + + ZZ+)′ = V V + + ZZ+

The first condition follows from substitution of the above formula,

V0HV0 = (V V + + ZZ+)(V +XX ′)

= V V +V + V V +XX ′ + ZZ+XX ′

= V +XX ′ − TXX ′ + ZX ′

= V +XX ′

Notice that V0H = V V + +ZZ+ is a projection, and we can show each term of H is in the
range space of that projection,

C ′V +CV0H = C ′V +CV V + + C ′V +CZZ+

= C ′V + + C ′V +(ZZ+ −XZ+)

= C ′V +C,

Z ′+Z+V0H = Z ′+Z+ZZ+ = Z ′+Z+,

C ′V +XBD−1BX ′V +CV0H = C ′V +XBD−1BX ′(V +CV V + + V +CZZ+)

= C ′V +XBD−1BX ′(V + + V +(ZZ+ −XZ+))

= C ′V +XBD−1BX ′V +C

from which the second condition follows,

HV0H = (C ′V +C + Z ′+Z+ − C ′V +XBD−1BX ′V +C)(V V + + ZZ+)

= C ′V +C + Z ′+Z+ − C ′V +XBD−1BX ′V +C

Therefore H satisfies (6) and is the unique pseudoinverse of V0.

Proof of lemma 16. The first statement is shown directly. Due to lemma 62 and lemma 15,

V +
0 X = C ′V +CX + Z ′+Z+X − C ′V +XBD−1BX ′V +CX

= C ′V +XB + Z ′+Z+Z − C ′V +XBD−1BX ′V +XB

= C ′V +XB + Z ′+Z+Z − C ′V +XB(I −D−1)

= Z ′+ + C ′V +XBD−1

which implies

X ′V +
0 X = X ′Z ′+ +X ′C ′V +XBD−1

= Z ′Z ′+ +BX ′V +XBD−1

= I −B + I −D−1
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Using theorem 60, we have

I −D−1 = I − (I +BX ′V +XB)−1 = BAB

where A = X ′W (I +W ′XBX ′W )−1W ′X and W = (V +)1/2. which implies (I − B)(I −
D−1) = 0 and (I −D−1)(I −B) = 0. Moreover, using lemma 5 we have

(I −D−1)+ = B(I −D−1)+ = (I −D−1)+B

D−1B = (I −BAB)B = B(I −BAB) = BD−1

(I −D−1)+D−1 = (BAB)+(I −BAB)

= (I −BAB)(BAB)+ = D−1(I −D−1)+

Using lemma 63, we can write

(X ′V +
0 X)+ = (I −B + I −D−1)+ = I −B + (I −D−1)+

We show that (I −D−1)+D−1 = (BX ′V +XB)+ by checking (6),

(I −D−1)+D−1BX ′V +XB = (I −D−1)+(I −D−1)

BX ′V +XB(I −D−1)+D−1 = BX ′V +XBD−1(I −D−1)+

= (I −D−1)(I −D−1)+

BX ′V +XB(I −D−1)+D−1BX ′V +XB

= D−1(I −D−1)(I −D−1)+(I −D−1)

= D−1(I −D−1)

= BX ′V +XB

(I −D−1)+D−1BX ′V +XB(I −D−1)+D−1

= (I −D−1)+(I −D−1)(I −D−1)+D−1

= (I −D−1)+D−1

Finally, we have that

(X ′V +
0 X)+X ′V +

0 = (I −B + (I −D−1)+)(Z+ +D−1BXV +C)

= (I −B)Z+ + (I −D−1)+Z

+ (I −B)D−1BXV +C + (I −D−1)+D−1BXV +C

= Z+ + (BXV +XB)+BXV +C

since (I −D−1)+Z = (I −D−1)+BZ = 0 and (I −B)D−1B = (I −B)BD−1 = 0.
To show the second statement, first notice that

BN (XB) = B { (I − (XB)+XB)q | q ∈ Rp }
= {B(I − (XB)+XB)q | q ∈ Rp }
= { (B −B(XB)+XB)q | q ∈ Rp }
= { (I − Z+Z − (XB)+XB)q | q ∈ Rp }

N (X) = { (I −X+X)q | q ∈ Rp }



TWCCC Technical Report 2023-01 74

Therefore it suffices to show Z+Z + (XB)+XB = X+X to prove BN (XB) = N (X). We
can show that Z+Z + (XB)+XB = (X+X)+ by checking (6),

(Z+Z + (XB)+XB)X+X = Z+Z + (XB)+XB

X+X(Z+Z + (XB)+XB) = Z+Z +X+XB(XB)+XB

= Z+Z +X+XB

= Z+Z +X+X(I − Z+Z)

= X+X

X+X(Z+Z + (XB)+XB)X+X = X+XX+X = X+X

(Z+Z + (XB)+XB)X+X(Z+Z + (XB)+XB) = (Z+Z + (XB)+XB)X+X

= Z+Z + (XB)+XB

Finally, since X+X is an orthogonal projector, it is its own pseudoinverse, and Z+Z +
(XB)+XB = (X+X)+ = X+X.

H Global bounds on the perturbed problem

Proof of theorem 17 ([103, 111]). First, we show that (15b) implies (15a). It follows by
substitution into (6) that (A′DA)+ = V1Σ

−1
1 (U ′

1DU1)
−1Σ−1

1 V ′
1 (theorem 1). Moreover,

A(A′DA)+A′D = U1(U
′
1DU1)

−1U ′
1D

(A′DA)+A′D = V1Σ
−1
1 (U ′

1DU1)
−1U ′

1D = A+A(A′DA)+A′D

Using the last equality, we have that, if (15b) holds, then

∥(A′DA)+A′D∥ = ∥A+A(A′DA)+A′D∥ ≤ ∥A+∥ · ∥A(A′DA)+A′D∥ ≤ 1

σ(A)χ(A)

Therefore it suffices to show (15b).
Next, we show that X(A) and Y(A) are disjoint, where Y(A) denotes the closure of

Y(A). Suppose that z ∈ X(A) ∩ Y(A). Then ∥z∥ = 1 and z = Aw for some w ∈ Rp. Since
z ∈ Y(A), there exists a sequence { zk } ⊂ Rm such that zk → z, and a sequence of matrices
{Dk } ⊂ Dm

>0 such that A′Dkzk = 0 for all k ∈ I>0. Therefore, 0 = w′A′Dkyk = yDkyk for
all k ∈ I>0. But since zk → z, there must be some ℓ ∈ I>0 sufficiently large such that, for
each nonzero entry of z, the corresponding entry of zℓ has the same sign. Since ∥z∥ = 1,
there is at least one nonzero entry of z (and zℓ). Then z′Dℓzℓ > 0 which contradicts that
z′Dkzk = 0 for all k ∈ I>0.

Next, we show that X(A)∩Y(A) = ∅ implies ∥A(A′DA)+A′D∥ ≤ 1
χ(A) for all D ∈ Dm

>0.

Since X(A) is compact, Y(A) is closed (by construction), and they are disjoint, there exists
ρ > 0 such that ρ ≤ ∥x− y∥ for all x ∈ X(A) and y ∈ Y(A). In other words, χ(A) > 0.

Let D ∈ Dm
>0 and z ∈ Rm such that ∥z∥ = 1. Define x = A(A′DA)+A′Dz and y = z−x

so that A′Dy = A′D(z − x) = A′Dz − A′DA(A′DA)+A′Dz = 0 by lemma 12. Then with
α = 1/∥x∥, we have

αx+ αy = αz
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Noting that αx ∈ X(A) and −αy ∈ Y(A), it is clear that

χ(A) ≤ ∥αx+ αy∥ = ∥αz∥ =
1

∥x∥

Taking the reciprocal of both sides, we have

1

χ(A)
≥ ∥x∥ = ∥A(A′DA)+A′Dz∥

and taking the maximum over ∥z∥ = 1 gives 1
χ(A) ≥ ∥A(A′DA)+A′D∥.

Finally, we show that ∥A(A′DA)+A′D∥ ≥ 1
χ(A) for some D ∈ Dm

>0. Let x ∈ X(A) and

y ∈ Y(A). Then there exists D ∈ Dm
>0 and w ∈ Rp such that A′Dy = 0 and x = Aw.

Moreover,
A′D(x− y) = A′Dx = A′DAw

and therefore we can write w = (A′DA)+A′D(x − y) by lemma 12. Moreover, we have
x = A(A′DA)+A′D(x− y). Taking the norm of x and using submultiplicativity gives

1 ≤ ∥A(A′DA)+A′D∥ · ∥x− y∥

since ∥x∥ = 1 by x ∈ X(A). Taking the infimum of both sides over x ∈ X(A) and y ∈ Y(A)
produces the desired result.

Proof of corollary 18. The proof follows straightforwardly by taking the SVDs of X and V
and rewriting (17) in the form (15). Using the SVDs gives

(X ′V −1
D X)+X ′V −1

D = V1(X̃
′D̃X̃)−1X̃ ′D̃Q′

X(X ′V −1
D X)+X ′V −1

D = Q′X̃(X̃ ′D̃X̃)−1X̃ ′D̃Q′

where D̃ = (S+D)−1, X̃ = Q′U1Σ1, and X̃ ′D̃X̃ is clearly positive definite (and invertible).
Taking the norm of both sides of both of the above equations and noting that the norm is
invariant to orthogonal transformations, we get

∥(X ′V −1
D X)+X ′V −1

D ∥ = ∥(X̃ ′D̃X̃)−1X̃ ′D̃∥
∥X(X ′V −1

D X)+X ′V −1
D ∥ = ∥X̃(X̃ ′D̃X̃)−1X̃ ′D̃∥

Since the image of Dm
>0 through (S +D)−1 is a subset of Dm

>0 itself, taking the supremum
over the former yields a smaller result than taking the supremum over the latter. In other
words,

sup
D∈Dm

>0

∥(X ′V −1
D X)+X ′V −1

D ∥ ≤ sup
D̃∈Dm

>0

∥(X̃ ′D̃X̃)−1X̃ ′D̃∥

sup
D∈Dm

>0

∥X(X ′V −1
D X)+X ′V −1

D ∥ ≤ sup
D̃∈Dm

>0

∥X̃(X̃ ′D̃X̃)−1X̃ ′D̃∥

Finally, lemma 19 imples (17).
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Proof of lemma 19 ([80, 103]). Noting that

X(A) = X(U1), Y(A) = Y(U1), U(A) = U(U1)

it is clear that (18) equivalent to

χ(A) = χ(U1) = min
U∈U(U1)

σ(U) = min
U∈U(A)

σ(U)

and therefore we can assume A = U1 without loss of generality.
(≤) First, we show that

χ(U1) ≤ min
U∈U(U1)

σ(U) (126)

using the method in [103]. Let U1,1 ∈ Rp×r be the submatrix of U1 that solves the right hand

side of (126). Then there exists a permutation matrix P such that PU1 =
[
U ′
1,1 U ′

2,1

]′
where U2,1 ∈ Rm−p×r contains the remaining rows of U1. Denote the SVDs of U1,1 as

U1,1 =
[
W1 W2

] [S1 0
0 0

]
V ′

where S1 = diag(s1, . . . , sk) and k = rank(U1,1). Moreover, the smallest singular value sk is
equal to the right hand side of (126). Noting that U1 and U1V

′ have the same left singular
vectors, and that both sides of (126) are invariant to row permutations, we see that (126)
is equivalent to

χ(PU1V
′) ≤ sk = min

U∈U(PU1V ′)
σ(U) (127)

Rewriting PU1V
′ in terms of the columns of U1,1V

′ and U2,1V
′, we have

PU1V
′ =

[
U1,1V

′

U2,1V
′

]
=

[
s1w1 . . . skwk 0 . . . 0
z1 . . . zk zk+1 . . . zr

]
It is clear that { s1w1, . . . , skwk } and { z1, . . . , zr } are sets of orthogonal vectors since
PU1V

′ is an orthogonal matrix.
Since X(PU1V

′) is nonempty and 0 ∈ Y(PU1V
′), we have

χ(PU1V
′) = inf

x∈X(PU1V ′),y∈Y(PU1V ′)
∥x− y∥ ≤ 1

This implies sk ≤ 1, but we can assume sk < 1 without loss of generality. Under this as-
sumption, ∥zk∥ > 0 because PU1V

′ is an orthogonal matrix and therefore ∥
[
skw

′
k z′k

]′ ∥ =
sk + ∥zk∥ = 1. Choose ε > 0 and define

y =

[
−εskwk

zk

]
, D = diag

(
I,

εs2k
∥zk∥

I

)
so that

(PU1V
′)′Dy = −εskV U ′

1,1wk +
εs2k
∥zk∥

V U ′
2,1zk = −εs2kek + εs2kek = 0
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where ek is the k-th elementary vector in Rr, and clearly y ∈ Y(PU1V
′). Let x =[

skw
′
k z′k

]′
which is clearly in X(PU1V

′). Then

∥x− y∥ =

∥∥∥∥[(1 + ε)skwk

0

]∥∥∥∥ = (1 + ε)sk

Taking the limit as ε → 0+, we recover (127), and equivalently (126).
(≥) Next, we show that χ(U1) ≥ minU∈U(U1) σ(U) using the method in [80]. Define the

scalar sign function as

sign(α) =

{
α/|α| if α ̸= 0

0 otherwise

And define the vector sign function component-wise. Let y ∈ Y(U1) and ỹ ∈ Rm such that
sign(y) = sign(ỹ). Then define the scaling matrix S ∈ Dm

>0 as

Sii =

{
yi/ỹi if yi ̸= 0

1 otherwise

which gives U ′
1DSỹ = U ′

1Dy = 0 and ỹ ∈ Y(U1) for some D ∈ Dm
>0. Note also that since

∥U1w∥ = ∥w∥ for all w ∈ Rr, we have R(U1) = {U1w | ∥w∥ = 1 }. Applying the preceeding
results to (16a),

χ(U1) = inf
x∈X(U1)
y∈Y(U1)

∥x− y∥

= inf
y∈Y(U1)

inf
x∈X(U1)

sign(y)=sign(ỹ)

∥x− ỹ∥

= inf
y∈Y(U1)

inf
∥w∥=1

sign(y)=sign(ỹ)

∥U1w − ỹ∥

With the signs of each ỹ fixed by the choice of y ∈ Y(U1) in the outer infimum, we can
now select, by scaling, the components of ỹ to create a lower bound on the solution to the
inner infimum. First, note that for every ỹ ∈ Y(U1) and w such that ∥w∥ = 1, we must
have sign(U1w) ̸= sign(ỹ). To see this, suppose we had sign(U1w) = sign(ỹ). Then we
could always find a scaling matrix S ∈ Dm

>0 so that Sy = U1w ∈ Y(U1). But that implies
χ(U1) = 0 which contradicts theorem 17.

Let ∥w∥ = 1. Denote the set of indices i such that sign((U1w)i) ̸= sign(ỹi) as I. For any
matrix (or vector) B, let BI denote the submatrix formed by the rows of B corresponding
to the index set I. For this w, define ỹ as

ỹi =

{
(U1w)i if i ̸∈ I
εisign(yi) if i ∈ I

where εi > 0 is arbitrarily small. The resulting value of ∥ỹ − Uα∥ is no less than
∥(U1w)I∥=∥(U1)Iw∥ and therefore ∥ỹ − Uα∥ is bounded below by the smallest singular
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value of (U1)I . In other words,

χ(U1) = inf
y∈Y(U1)

inf
∥w∥=1

sign(y)=sign(ỹ)

∥U1w − ỹ∥ ≥ min
U∈U(U1)

σ(U)

I Proof of the limit of the perturbed problem solution

In this appendix we prove lemma 20. First, we state a few preliminary definitions that are
used in the proof. Consider the following SVDs,

X =
[
U1 U2

] [Σ1 0
0 0

] [
V ′
1

V ′
2

]
= U1Σ1V

′
1 (128a)

V =
[
Q1 Q2

] [S1 0
0 0

] [
Q′

1

Q′
2

]
= Q1S1Q

′
1 (128b)

A = U ′
2Q1S

1/2
1 =

[
W1 W2

] [Y1 0
0 0

] [
Z ′
1

Z ′
2

]
= W1Y1Z

′
1 (128c)

and use the following definitions,

Vρ := V + ρI, Q :=
[
Q1 Q2

]
B := U ′

1Q1, (129a)

C := ρS−1
1 − I, S := I −XX+ = U2U

′
2 (129b)

where ρ > 0, r = rank(V ), and q = rank(X).
To prove lemma 20, we use a series of three approximations to the perturbed solution,

which facilitated by the following lemma.

Lemma 64. Let X ∈ Rn×p, V ∈ Sn+, ρ > 0, and consider (128) and (129). Denoting the
residuals,

R1(ρ) := (U ′
1V

−1
ρ U1)

−1U ′
1V

−1
ρ − (I +BCB′)−1(U ′

1 +BCQ′
1) (130a)

R2(ρ) := (I +BCB′)−1(U ′
1 +BCQ′

1)− U ′
1 +B(Q′

1SQ1 + ρS−1
1 )−1Q′

1S (130b)

R3(ρ) := B(Q′
1SQ1 + ρS−1

1 )−1Q′
1S − U ′

1V (V SV )+ (130c)

we have the upper bounds,

∥Ri(ρ)∥ ≤ αiρ

βi + ρ
, i = 1, 2, 3 (131)

where α1 := σ(V )
χ2(Q′U1)σ(V )

, α2 := σ(SV 1/2)

χ(Q′U1)σ1/2(V )
, α3 := σ1/2(V )

σ(SV 1/2)
, β1 := σ(V ), β2 := β3 :=

σ2(SV 1/2), and χ(·) is defined by (16a).
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Proof. Throughout the proof, we use without reference the submultiplicativity of the ma-
trix 2-norm (i.e., ∥AB∥ ≤ ∥A∥∥B∥ for all A,B of suitable dimensions) and the equivalence
between the maximum singular value and the 2-norm (i.e., ∥A∥ = ∥A′∥ = σ(A) for all
A). Note that the second fact implies ∥U∥ = ∥U ′∥ = 1 for all orthogonal matrices U , and
∥D∥ = maxi=1,...,max{m,n} |Dii| for all D ∈ Rm×n such that Dij = 0 for all i ̸= j.

It is also worth pointing out that the singular values of SV 1/2 and A are equivalent.
To see this, we rewrite SV 1/2 in terms of the SVD of A,

SV 1/2 = U2U
′
2Q1S

1/2
1 Q′

1 = U2AQ
′
1 = (U2W1)Y1(Q1Z1)

′

which is the SVD of SV 1/2 with left and right singular vectors U2W1 and Q1Z1.
(R1) First we write the SVD of Vρ,

Vρ := V + ρI =
[
Q1 Q2

] [S1 + ρI
ρI

] [
Q′

1

Q′
2

]
and therefore V −1

ρ can be written,

V −1
ρ =

[
Q1 Q2

] [(S1 + ρI)−1

ρ−1I

] [
Q′

1

Q′
2

]
= Q1(S1 + ρI)−1Q′

1 + ρ−1Q2Q
′
2

Using theorem 60, we can expand (S1 + ρI)−1 and rewrite V −1
ρ as

V −1
ρ = Q1[S

−1
1 − S−1

1 (ρ−1I + S−1
1 )−1S−1

1 ]Q′
1 + ρ−1Q2Q

′
2

= Q1S
−1
1 Q′

1 − ρQ1S
−2
1 (I + ρS−1

1 )−1Q′
1 + ρ−1(I −Q1Q

′
1)

V −1
ρ = ρ−1(I +Q1CQ′

1) +R1,1(ρ) (132)

where R1,1(ρ) := −ρQ1S
−2
1 (I + ρS−1

1 )−1Q′
1. Rewriting U ′

1V
−1
ρ U1,

U ′
1V

−1
ρ U1 = ρ−1(I +BCB′) + U ′

1R1,1(ρ)U1

Note that U ′
1V

−1
ρ U1 is invertible because it is positive definite. Rewriting the sum I+BCB′

as a product,

I +BCB′ = I + U ′
1Q1(ρS

−1
1 − I)Q′

1U1 = U ′
1Q

[
ρS−1

1

I

]
Q′U1 (133)

it is clear that I +BCB′ is positive definite (and invertible). Using theorem 60, we have

(U ′
1V

−1
ρ U1)

−1 = ρ(I +BCB′)−1 +R1,2(ρ) (134)
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where R1,2(ρ) := −ρ(I+BCB)−1U ′
1R1,1U1(U

′
1V

−1
ρ U1)

−1. Combining the results (132) and
(134) we can write R1(ρ) as

R1(ρ) = [ρ(I +BCB′)−1 +R1,2(ρ)]U
′
1[ρ

−1(I +Q1CQ′
1) +R1,1(ρ)]

− (I +BCB′)−1(U ′
1 +BCQ′

1)

= ρ(I +BCB′)−1U ′
1R1,1(ρ) +R1,2(ρ)U

′
1[ρ

−1(I +Q1CQ′
1) +R1,1(ρ)]

= ρ(I +BCB′)−1U ′
1R1,1(ρ) +R1,2(ρ)U

′
1V

−1
ρ

= ρ2(I +BCB′)−1U ′
1R1,1(ρ)(I − U1(U

′
1V

−1
ρ U1)

−1U ′
1V

−1
ρ )

R1(ρ) = ρR1,3(ρ)R1,4(ρ)R1,5(ρ) (135)

where R1,3(ρ) := ρ(I + BCB′)−1B, R1,4(ρ) := S−2
1 (I + ρS−1

1 )−1, and R1,5(ρ) := Q′
1(I −

U1(U
′
1V

−1
ρ U1)

−1U ′
1V

−1
ρ ).

To bound the norm of the residual R1(ρ), we find bounds on the norms of R1,3(ρ),
R1,4(ρ), and R1,5(ρ). First, we use (133) to rewrite R1,3(ρ) and R1,5(ρ),

R1,3(ρ) =

(
U ′
1Q

[
ρS−1

1

I

]
Q′U1

)−1

U ′
1Q

[
ρS−1

1

I

] [
S1

0

]
R1,5(ρ) = Q′

1Q

(
I −Q′U1

(
U ′
1Q

[
ρS−1

1

I

]
Q′U1

)−1

U ′
1Q

[
ρS−1

1

I

])
Q′

Bounds on R1,3(ρ) and R1,5(ρ) follow from theorem 17,

∥R1,3(ρ)∥ ≤ σ(V )

χ(Q′U1)
, ∥R1,5(ρ)∥ ≤ 1

χ(Q′U1)
(136)

The bound on R1,4(ρ) is directly computed,

∥R1,4(ρ)∥ =
1

σ2(V )(σ(V ) + ρ)
(137)

Finally, the desired bound on the norm of R1(ρ) follows from (135)–(137),

∥R1(ρ)∥ ≤ ρ∥R1,3(ρ)∥∥R1,4(ρ)∥∥R1,5(ρ)∥ ≤ σ(V )

σ2(V )χ2(Q′U1)

ρ

σ(V ) + ρ
=

α1ρ

β1 + ρ

(R2) For this residual, it suffices to derive a bound on the norm for all ρ > 0 such that
I +CB′B is invertible. This is because I +CB′B is invertible for almost every ρ > 0, and
since the residual is continuous for all ρ > 0, we can use the limit to ensure the bound
holds for any ρ > 0 such that I + CB′B is singular.

Using theorem 60, we have

(I +BCB′)−1(U ′
1 +BCQ′

1)

= (I −B(I + CB′B)−1CB′)U ′
1 + (I +BCB′)−1BCQ′

1

= U ′
1 −B(I + CB′B)−1CQ′

1U1U
′
1 + (I +BCB′)−1BCQ′

1

= U ′
1 +B(I + CB′B)−1CQ′

1S

= U ′
1 −B(I + CB′B)−1Q′

1S +R2,1(ρ) (138)
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where R2,1(ρ) := ρB(I + CB′B)−1S−1
1 Q′

1S. Using theorem 60 and the fact that B′B =
Q′

1U1U
′
1Q1 = I −Q′

1SQ1, we have

(I + CB′B)−1 = (I −B′B + ρS−1
1 B′B)−1

= (Q′
1SQ1 + ρS−1

1 − ρS−1
1 Q′

1SQ1)
−1Q′

1S

= (Q′
1SQ1 + ρS−1

1 )−1 +R2,2(ρ) (139)

where R2,2(ρ) := ρ(I + CB′B)−1S−1
1 Q′

1SQ1(Q
′
1SQ1 + ρS−1

1 )−1, and Q′
1SQ1 + ρS−1

1 is
positive definite (and invertible). Combining the results (138) and (139), we have

(I +BCB′)−1(U ′
1 +BCQ′

1)

= U ′
1 −B[(Q′

1SQ1 + ρS−1
1 )−1 +R2,2(ρ)]Q

′
1S +R2,1(ρ)

= U ′
1 −B(Q′

1SQ1 + ρS−1
1 )−1Q′

1S +R2,1(ρ)−BR2,2(ρ)Q
′
1S

which implies

R2(ρ) = R2,1(ρ)−BR2,2(ρ)Q
′
1S

= ρB(I + CB′B)−1S−1
1 Q′

1S(I −Q1(Q
′
1SQ1 + ρS−1

1 )−1Q′
1S)

= ρ(I +BCB′)−1BS−1
1 Q′

1S(I −Q1(Q
′
1SQ1 + ρS−1

1 )−1Q′
1S)

= ρ2(I +BCB′)−1BS−2
1 (Q′

1SQ1 + ρS−1
1 )−1Q′

1S

where the third equality follows from theorem 60 and the fourth is shown below,

Q′
1S(I −Q1(Q

′
1SQ1 + ρS−1

1 )−1Q′
1S)

= Q′
1S −Q′

1SQ1(Q
′
1SQ1 + ρS−1

1 )−1Q′
1S

= Q′
1S − (Q′

1SQ1 + ρS−1
1 − ρS−1

1 )(Q′
1SQ1 + ρS−1

1 )−1Q′
1S

= ρS−1
1 (Q′

1SQ1 + ρS−1
1 )−1Q′

1S

Therefore, we can rewrite R2(ρ) as follows,

R2(ρ) = ρR2,3(ρ)R2,4(ρ) (140)

where R2,3(ρ) := ρ(I +BCB′)−1BS
−3/2
1 and R2,4(ρ) := S

−1/2
1 (Q′

1SQ1 + ρS−1
1 )−1Q′

1S.
To bound the norm of R2(ρ), we again find bounds on the norms of R2,3(ρ) and R2,4(ρ).

Since R2,3(ρ) = R1,3(ρ)S
−3/2
1 , we can use (136) to rewrite it as

R2,3(ρ) =

(
U ′
1Q

[
ρS−1

1

I

]
Q′U1

)−1

U ′
1Q

[
ρS−1

1

I

][
S
−1/2
1

0

]

and by theorem 17 we have

∥R2,3(ρ)∥ ≤ 1

χ(Q′U1)σ1/2(V )
(141)
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by (136). Second, we rewrite R2,4(ρ) in terms of A := U ′
2Q1S

1/2
1 = W1Y1Z

′
1,

R2,4(ρ) = (S
1/2
1 Q′

1SQ1S
1/2
1 + ρI)−1S

1/2
1 Q′

1S

= (A′A+ ρI)−1A′U ′
2

=

([
Z1 Z2

] [Y 2
1 + ρI

ρI

] [
Z ′
1

Z ′
2

])−1

Z1Y1W
′
1U

′
2

= Z1(Y
2
1 + ρI)−1Y1W

′
1U

′
2

and therefore

∥R2,4(ρ)∥ ≤ σ(A)

σ2(A) + ρ
(142)

Combining the results (140)–(142), we have

∥R2(ρ)∥ ≤ ρ∥R2,3(ρ)∥∥R2,4(ρ)∥ ≤ σ(A)

χ(Q′U1)σ1/2(V )

ρ

σ2(A) + ρ
=

α2ρ

β2 + ρ

(R3) By lemma 2, we have

(A′A+ ρI)−1A′ = A+ +R3,1(ρ) (143)

where R3,1(ρ) = ρZ1(Y
2
1 + ρI)−1Y −1

1 W ′
1. Moreover,

Q1S
1/2
1 A+U ′

2 = Q1S
1/2
1 A′(AA′)+U ′

2

= Q1S1Q
′
1U2(U

′
2Q1SQ

′
1U2)

+U ′
2

= Q1S1Q
′
1U2U

′
2(U2U

′
2Q1SQ

′
1U2U

′
2)

+U2U
′
2

= V S(SV S)+S (144)

Combining results (143) and (144) gives

B(Q′
1SQ1 + ρS−1

1 )−1Q′
1S

= U ′
1Q1S

1/2
1 (A′A+ ρI)−1A′U ′

2

= U ′
1Q1S

1/2
1 A+U ′

2 + U ′
1Q1S

1/2
1 R3,1(ρ)U

′
2

= U ′
1V S(SV S)+S + U ′

1Q1S
1/2
1 R3,1(ρ)U

′
2

and therefore
R3(ρ) = BS

1/2
1 R3,1(ρ)U

′
2 (145)

Taking the norm of (145) gives

∥R3(ρ)∥ ≤ ∥S1/2
1 ∥∥R3,1(ρ)∥ ≤ σ1/2(V )

σ(A)

ρ

σ2(A) + ρ
=

α3ρ

β3 + ρ
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The proof of lemma 20 follows directly from lemma 64.

Proof of lemma 20. Using the SVD (128a), we can rewrite the residual matrix in terms of
the intermediate residuals of lemma 64 as follows,

R(ρ) := (X ′V −1
ρ X)+X ′V −1

ρ −X+ +X+V S(SV S)+S

= V1Σ
−1
1 [(U ′

1V
−1
ρ U1)

−1U ′
1V

−1
ρ − U ′

1 + U ′
1V S(SV S)+S]

= V1Σ
−1
1 [R1(ρ) +R2(ρ)−R3(ρ)]

and therefore we have the following bounds on ∥R(ρ)∥,

0 ≤ ∥R(ρ)∥ ≤ ∥Σ−1
1 ∥(∥R1(ρ)∥+ ∥R2(ρ)∥+ ∥R3(ρ)∥) ≤

1

σ(X)

3∑
i=1

αiρ

βi + ρ

Absorbing the factor 1/σ(X) into the constants αi, we get (19). Taking the limit on the
inequalities gives limρ→0+ ∥R(ρ)∥ = 0 and therefore limρ→0+ R(ρ) = 0, which is equivalent
to (20).

J Miscellaneous results

In this appendix, we prove lemma 21 and corollary 22.

Proof of lemma 21. Let r = rank(X) and denote the SVDs of X and V as

X =
[
U1 U2

] [Σ1 0
0 0

] [
V ′
1

V ′
2

]
, V =

[
Q1 Q2

] [S1 0
0 0

] [
Q′

1

Q′
2

]
,

Since R(U1) = R(X) ⊆ R(V0), we have R(U ′
1) = R(U ′

1V
+
0 U1) by lemma 12. Moreover, U ′

1

is full row rank so Rr = R(U ′
1) = R(U ′

1V
+
0 U1) and U ′

1V
+
0 U1 is nonsingular.

We show Z = V1Σ
−1
1 (U ′

1V
+
0 U1)

−1Σ−1
1 V ′

1 is the pseudoinverse of X ′V +
0 X by checking

(6),

ZX ′V +
0 X = V1Σ

−1
1 (U ′

1V
+
0 U1)

−1Σ−1
1 V ′

1V1Σ1U
′
1V

+
0 U1Σ1V

′
1 = V1V

′
1

X ′V +
0 XZ = (X ′V0X)′Z ′ = (ZX ′V +

0 X)′ = V1V
′
1

X ′V +
0 XZX ′V +

0 X = X ′V +
0 U1Σ1V

′
1V1V

′
1 = X ′V +

0 U1Σ1V
′
1 = X ′V +

0 X

ZX ′V +
0 XZ = V1Σ

−1
1 (U ′

1V
+
0 U1)

−1Σ−1
1 V ′

1V1V
′
1

= V1Σ
−1
1 (U ′

1V
+
0 U1)

−1Σ−1
1 V ′

1 = Z

and therefore Z = (X ′V +
0 X)+.

Let Y = F +U ′
1(V −V U2(U

′
2V U2)

+U2V )U1 where F = Σ1V
′
1EV1Σ1, which we propose

is the inverse of U ′
1V

+
0 U1. By corollary 4 and the fact that R(U1) ⊆ R(V0),

V +
0 V0U1 = V0V

+
0 U1 = U1

U ′
1V

+
0 V0U1 = U ′

1U1 = I
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Since U ′
2U1 = 0 and V0 = V +XEX ′ = V + U1FU ′

1, we have

V U2 = V U2 + U1FU ′
1U2 = V0U2

U ′
1V

+
0 V U2 = U ′

1V
+
0 V0U2 = U ′

1U2 = 0

By corollary 4 and the fact that R(U ′
2V ) ⊆ R(U ′

2V U2),

U ′
2V U2(U

′
2V U2)

+U ′
2V = U ′

2V

Using the above identities,

U ′
1V

+
0 U1Y = U ′

1V
+
0 U1[F + U ′

1(V − V U2(U
′
2V U2)

+U2V )U1]

= U ′
1V

+
0 [(V + U1FU ′

1)U1 − (I − U1U
′
1)V U1

− U1U
′
1V U2(U

′
2V U2)

+U2V U1]

= U ′
1V

+
0 [V0U1 − U2U

′
2V U1 − V U2(U

′
2V U2)

+U2V U1

+ U2U
′
2V U2(U

′
2V U2)

+U2V U1]

= U ′
1V

+
0 [V0U1 − U2U

′
2V U1 − V0U2(U

′
2V U2)

+U2V U1 + U2U2V U1]

= I

Y U ′
1V

+
0 U1 = Y ′(U ′

1V
+
0 U1)

′ = (U ′
1V

+
0 U1Y )′ = I

and therefore Y = (U ′
1V

+
0 U1)

−1. Combining these results,

(X ′V +
0 X)+X ′ = V1Σ

−1
1 (U ′

1V
+
0 U1)

−1Σ−1
1 V ′

1V1Σ1U
′
1

= V1Σ
−1
1 (F + U ′

1(V − V U2(U
′
2V U2)

+U2V )U1)U
′
1

= V1Σ
−1
1 (Σ1V

′
1EV1Σ1 + U ′

1(V − V U2(U
′
2V U2)

+U2V )U1)U
′
1

= X+XEX ′ +X+(V − V U2(U
′
2V U2)

+U2V )U1U
′
1

Before deriving the final result, note that

V U2(U
′
2V U2)

+U2V0V
+
0 = V (SV S)+V0V

+
0

= V (V 1/2S)+(SV 1/2)+V0V
+
0

= V (V 1/2S)+(SV 1/2)+

= V (SV S)+

where we have used properties of the pseudoinverse, lemma 5, and

R((V 1/2S)+) = R(V 1/2S) ⊆ R(V 1/2) = R(V ) ⊆ R(V0)

Combining the above identities gives

(X ′V +
0 X)+X ′V +

0 = [X+XEX ′ +X+(V − V U2(U
′
2V U2)

+U ′
2V )U1U

′
1]V

+
0

= [X+V0 −X+V (I − U1U
′
1)−X+V U2(U

′
2V U2)

+U ′
2V U1U

′
1]V

+
0

= X+ − [X+V U2U
′
2 +X+V U2(U

′
2V U2)

+U ′
2V

−X+V U2(U
′
2V U2)

+U ′
2V U2U

′
2]V

+
0

= X+ − [X+V U2U
′
2 +X+V U2(U

′
2V U2)

+U ′
2V0 −X+V U2U

′
2]V

+
0

= X+ −X+V U2(U
′
2V U2)

+U ′
2V0V

+
0

= X+ −X+V (SV S)+
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Proof of corollary 22. By lemma 21,

(X ′V +
0 X)+X ′V +

0 = X+ −X+V (SV S)+ = (X ′V +
1 X)+X ′V +

1

Proof of lemma 23. Suppose β ∈ Rp such that (LGM) with nonzero probability. Noting
that e ∈ R(V ) ⊆ R(V0) (almost surely) because e ∼ N(0, V ), we have V V +e = e (almost
surely) by lemma 3. Then

y = Xβ + e = Xβ + V V +e =
[
V X

] [V +e
β

]
∈ R(

[
V X

]
)

almost surely. Suppose that y ∈ R(
[
V X

]
) (almost surely). Then there exists θ ∈ Rn

and β ∈ Rp such that

y =
[
V X

] [θ
β

]
= Xβ + V θ

where e = V θ with nonzero probability.
Noting that R(V ) ⊆ R(

[
V X

]
) and R(X) ⊆ R(

[
V X

]
), we have

V0V
+
0

[
V X

]
=
[
V0V

+
0 V V0V

+
0 X

]
=
[
V X

]
⇔ R(

[
V X

]
) ⊆ R(V0)[

V X
] [

V X
]+

V0 =
[
V X

] [
V X

]+
V +

[
V X

] [
V X

]+
XEX ′

= V +XEX ′ = V0

⇔ R(V0) ⊆ R(
[
V X

]
)

by corollary 4. Therefore R(
[
V X

]
) = R(V0) and the proof is complete.
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Paris: Courcier, 2nd ed., 1806.
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