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Abstract

Multivariate linear regression is a classic statistical method that has
been used in a wide array of scientific and engineering fields, in some
for over two centuries. While the maximum likelihood estimation
problem is well-solved in the case of nonsingular data and error covari-
ance matrices, the nonsingular case is less well understood, especially
the singular error covariance case. The purpose of this report is to
define and derive the maximum likelihood of the singular multivari-
ate regression model, under no assumptions about the rank of the
underlying data or parameters. We show that a näıve definition of
the estimator has no solutions, almost surely, but it can be rigorously
defined so that solutions exist and coincide with the nonsingular case.
Illustrative examples of the technical results are included throughout,
and applied examples in system identification are included after the
technical results.

1 Introduction

Consider the multivariate linear regression model,

yk = Θ0xk + ek, ek
i.i.d.∼ Np(0,Σ0) (1)

where k = 1, . . . , N is the sample index, yk, ek ∈ Rp are the measurements and measurement
errors, xk ∈ Rn are the predictors, Np is the p-dimensional vector normal distribution (to
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be defined), and Θ0 ∈ Rp×n and Σ ⪰ 0 ∈ Rp×p are the model parameters. It is convenient
to express the linear model (1) in a compact matrix form,

YN = Θ0XN + EN , EN ∼ Np×N (0,Σ0, IN ) (2)

where YN :=
[
y1 . . . yN

]
, EN :=

[
e1 . . . eN

]
, and XN :=

[
x1 . . . xN

]
are matrices

of measurements, measurement errors, and predictors, respectively, and Np×N is the (p ×
N)-dimensional matrix normal distribution (to be defined). When the sample size N does
not change, we suppress this notation and simply write Y = YN , X = XN , and E = EN .

A great deal of effort has been devoted to the study of estimators for the model (2),
including maximum likelihood (ML) estimators [1, Ch. 8], maximum a posteriori (MAP)
estimators [2, 3], and reduced-rank regression (RRR) estimators [4–8]. The vast major-
ity of these results, however, assume the matrices XX⊤ and Σ0 are nonsingular. As
sensors have become cheaper and large systems rely more heavily on automation, sin-
gular and ill-conditioned problems may arise in a number of practical scenarios, including
high-dimensional sensing (e.g., image processing, spectroscopy), systems with physical con-
straints or feedback (e.g., conservation laws, biological systems, controlled systems), and
the analysis of happenstance data (e.g., process monitoring, state estimation). As such, a
general theory for handling singular multivariate linear regression problems is needed.

A few papers have been devoted to ML estimators of the model (2) under the assumption
that XX⊤ and Σ0 may be singular [9, 10], but each of these papers assumes the rank of
Σ0 is known a priori, and none of these results are built upon a solid probabilistic basis
for the definition of the ML estimator. The purpose of this report is to define and find the
ML estimator of the parameters (Θ0,Σ0) of the model (2). We pose our definition in a way
that makes it clear where the rank constraint on Σ0 originates. In Section 2, we review the
case of nonsingular XX⊤ and Σ0. In Section 3 we provide a measure-theoretic definition
of the singular normal probability density. In Section 4, we show that a näıve definition
of the ML estimator has no solutions, almost surely. Finally, in Section 5, we provide a
rank-constrained definition of the ML estimator that has solutions, almost surely, and show
how the rank can be computed from the data. Many of the proofs and preliminary results
are deferred to the appendices.

Notation. Throughout, we let (Ω,F ,P) denote a common probability space. A random
variable Y on that probability space is a measurable function Y : Ω → Y from the proba-
bility space (Ω,F) to a measurable space (Y,FY ). We typically suppress this notation and
simply call Y ∈ Y a random variable, with the σ-algebra FY implied from context. The
random variable Y is completely described by its probability distribution PY := P ◦ Y −1

which is a probability measure on (Y,FY ). Unless otherwise specified, assume the σ-
algebra of a random variable Y on a Banach space Y is the standard Borel algebra of Y,
denoted B(Y). As a shorthand, we let P[P ] := P({ω ∈ Ω : P (ω) }) for any propositional

function P : Ω → {True,False }. Let ∼ denote the phrase “is distributed as” and
i.i.d.∼

denote the phrase “are independently and identically distributed as.” We say p : Y → R≥0

is a probability density function (PDF) of the random variable Y ∈ Y with respect to a
reference measure µ : FY → R≥0 if P[Y ∈ A] =

∫
A pdµ for all A in the σ-algebra FY . The
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Radon-Nikodým theorem states a PDF of Y ∈ Y w.r.t. µ exists if and only if µ(A) = 0
implies P[Y ∈ A] = 0 for all A ∈ FY , and moreover, such a density is unique up to µ-null
sets (c.f. [11, Thm. 32.2] or [12, Thm. 19.2]). Common reference measures include the
n-dimensional Lebesgue measure λn and the (m×n)-dimensional Lebesgue measure λm×n.

2 Nonsingular Σ0 case

Before we attempt the singular Σ0 case, let us review the nonsingular Σ0 case so they can
be compared. Under the assumption that Σ0 is nonsingular, the ML estimates of (Θ0,Σ0)
for the model (2) are given by solving

max
Θ∈Rp×n,Σ≻0∈Rp×p

p(Y |X,Θ,Σ) (3)

By linearity, Y |(X,Θ,Σ) ∼ Np×N (ΘX,Σ, IN ), and we have the conditional PDF (w.r.t.
the Lebesgue measure λp×N ) [13, Thm. 2.2.1]:

p(Y |X,Θ,Σ) =
exp

(
−1

2tr[Σ
−1(Y −ΘX)(Y −ΘX)⊤]

)
(2π)pN/2|Σ|N/2

(4)

Taking the negative logarithm of (4) and dropping constants, we can equivalently write
the maximization problem (3) as

min
Θ∈Rp×n,Σ≻0∈Rp×p

ϕ(Θ,Σ) :=
N

2
ln |Σ|+ 1

2
tr[Σ−1(Y −ΘX)(Y −ΘX)⊤] (5)

Solutions follow naturally from (5) as a staged minimization problem: first Θ is minimized
as a function of Σ using convex programming theory, and then Σ is minimized after sub-
stituting back in the Θ solution. A general characterization of solutions to (3) are given in
Proposition 1, for which a proof is supplied in Appendix A.

Proposition 1. The ML problem (3) has solutions if and only if Y (IN − X+X)Y ⊤ is
nonsingular. Moreover, if solutions exist, the pair (Θ̂, Σ̂) solves (3) if and only if

Θ̂ ∈ {Y X+ +Q : R(Q⊤) ⊆ N (X⊤) } , Σ̂ =
1

N
Y (IN −X+X)Y ⊤ (6)

Proposition 1 reveals exactly when solutions to (3) exist and are unique. Specifically,
existence of a solution depends on the data matrix Y (IN −X+X)Y ⊤ being nonsingular.
On the other hand, given a solution exists, uniqueness of the solution depends on the data
matrix XX⊤ being nonsingular. To illustrate the importance of these data matrices, we
consider the following elementary examples.

Example 2. In this example, we construct the simplest system where XX⊤ is singular.
Suppose n = p = 1 and the true system (2) is generated by the parameters Θ0 = Σ0 = 1.



TWCCC Technical Report 2023-02 4

Σ

0
2

4

Θ

−2

0
2

4
6

−4

−2

0

2

4

φ1(Θ,Σ)

φ1(Θ̂,Σ)

0 1 2 3 4 5

Σ

−4

−3

−2

−1

0

1

φ1(Θ̂,Σ)

Σ

0
2

4

Θ

−2

0
2

4
6

2

3

4

φ2(Θ,Σ)

φ2(Θ̂,Σ)

0 1 2 3 4 5

Σ

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

φ2(Θ̂,Σ)

Figure 1: Plots of the objective functions (top) ϕ1(Θ,Σ) and (bottom) ϕ2(Θ,Σ) for Exam-
ple 3.

We observe a sequence of samples y1, . . . , yN corresponding to the predictors x1 = . . . =
xN = 0. Clearly XX⊤ = 0 is singular, and the objective is

ϕ(Θ,Σ) =
N

2
ln |Σ|+ 1

2Σ

N∑
k=1

y2k

Since ϕ(·,Σ) is a constant for each Σ, we can simply minimize Σ, which occurs at Σ̂ =
N−1

∑N
k=1 y

2
k, and set Θ̂ ∈ R. △

Example 3. In this example, we construct the simplest system where Y (IN −X+X)Y ⊤

is nonsingular. Suppose n = p = 1 and the true system (2) is generated by the parameters
Θ0 = Σ0 = 1. We observe a single sample (x1, y1) = (1, 2). Then y1(1 − x−1

1 x1)y1 =
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2(1− 1)2 = 0 and the likelihood function is

ϕ1(Θ,Σ) =
1

2
lnΣ +

(2−Θ)2

2Σ

With Σ > 0 fixed, we can minimize ϕ1(·,Σ) at Θ̂ = 2. However, evaluating the likelihood
at Θ̂ = 2 gives

ϕ1(Θ̂,Σ) =
1

2
lnΣ

which is unbounded from below with Σ ↘ 0. Therefore no estimate of Σ can be obtained.
However, this is not an unexpected result, as we have not collected enough data to estimate
the parameters. Suppose a second sample (x2, y2) = (1, 0) is available. Then

[
y1 y2

] (
I2 −

[
x1 x2

]+ [
x1 x2

]) [
y1
y2

]
=

[
2 0

](
I2 −

[
1/2 1/2
1/2 1/2

])[
2
0

]
= 1 > 0

and

ϕ2(Θ,Σ) = lnΣ +
(2−Θ)2 + (0−Θ)2

2Σ
= lnΣ +

2(1−Θ)2 + 2

2Σ

With Σ > 0 fixed, we can minimize ϕ2(·,Σ) at Θ̂ = 1. And evaluating the likelihood gives

ϕ2(Θ,Σ) = lnΣ +
1

Σ

which has a minimum at Σ̂ = 1. △

We conclude our discussion of the nonsingular Σ0 case with the remark that Example 3
reveals the importance of acquiring sufficient data. It can be shown that N = n+ p is the
minimum sample size for which we can design X to guarantee the existence and uniqueness
of ML estimators of (Θ0,Σ0). However, the facts required to show this are easily subsumed
into the singular Σ0 case, so we defer the discussion until then.

3 Singular normal vectors and matrices

Before considering the singular version of (3), we take an aside to discuss the singular
normal distribution. Recall, for any m ∈ Rn and positive definite S ≻ 0 ∈ Rn×n, the
multivariate normal vector z ∼ Nn(m,S) has the PDF,

p(z|m,S) =
exp

(
−1

2(z −m)⊤S−1(z −m)
)

(2π)n/2|S|1/2
(7)

with respect to the Lebesgue measure λn, and similarly for the conditional PDF.1 As shown
by Cramér [14, p. 290], Rao [15, pp. 527–528], and Srivastava and von Rosen [16, p. 4], if S
is singular, then z ∼ Nn(m,S) lies on a rank(S)-dimensional subspace of Rn, almost surely.

1This PDF is defined with respect to the n-dimensional Lebesgue measure λn
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As a result, λn(A) ≤ λn(m+R(S)) = 0 for any measureable subset A of the affine space
m+R(S). However, z ∈ m+R(S) almost surely, so by the Radon-Nikodým theorem z has
no PDF with respect to λn. To define the multivariate normal for singular covariances, we
need a definition that does not start with the PDF (7). We take the approach of Rao [15,
p. 522] and fall back to the scalar normal distribution z ∼ N(µ, σ2), defined in the classical
sense for σ2 > 0 (using, e.g., the Box-Muller transform), and defined as having a Dirac
probability measure at z = µ for σ2 = 0. A random vector must satisfy linearity, so we
define it as satisfying linearity for all outer products of the form a⊤z.

Definition 4 ([15, p. 522]). The random vector z is normally distributed with mean
m ∈ Rn and covariance S ⪰ 0 ∈ Rn×n, denoted z ∼ Nn(m,S), if a⊤z ∼ N(a⊤m, a⊤Sa) for
all a ∈ Rn.

Using this definition, one can reverse the linear transformation over a basis of a vectors,
and derive the following PDF of a singular normal vector.

Proposition 5 ([9]). Let z ∼ Nn(m,S) and define the affine map f(·) := m + U1(·) :
Rr → Rn where r := rank(S) and S = U1Σ1U

⊤
1 is the thin SVD of S. Then z has a PDF

p(z|m,S) =


exp(− 1

2
(z−m)⊤S+(z−m))
(2π)r/2|S|1/2+

, z ∈ m+R(S)

0, z ̸∈ m+R(S)
(8)

with respect to the reference measure µ := λr ◦ f−1 : B(Rn) → R≥0.

While the PDF (9) is not a valid density with respect to the n-dimensional Lebesgue
measure λn, it is a valid density with respect to µ := λr ◦ f−1, the r-dimensional measure
supported on the affine space m+R(S):

P[z ∈ A] =

∫
A
p(z|m,S)dµ(z) (9)

for any A ∈ B(Rn). In fact, the density outside of the affine space m + R(S) can be set
to any value one wishes without changing (9), but to keep things simple and consistent
we choose 0. If S is nonsingular, then z ∈ m +R(S) = m + Rn = Rn is always satisfied,
|S|+ = |S|, and S+ = S−1, and the nonsingular case (7) is recovered from Proposition 5.

Similarly, we define the matrix normal distribution without reference to an underlying
PDF by considering the vectorization of the normally distributed matrix.

Definition 6 ([13, Defn. 2.2.1]). The random matrix Z is normally distributed with
mean M ∈ Rm×n and covariances U ⪰ 0 ∈ Rm×m and V ⪰ 0 ∈ Rn×n, denoted Z ∼
Nm×n(M,U, V ), if vec(Z) ∼ Nmn(vec(M), U ⊗ V ).

Using Definition 6 in conjunction with Proposition 5, one can reverse the vectorization and
derive the following PDF of a singular normal matrix.
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Proposition 7 ([9]). Let Z ∼ Nm×n(M,U, V ) and define the affine map f(·) = M +
W1(·)Q⊤

1 : Rr×s → Rm×n where r := rank(U), s := rank(V ), and U = W1Σ1W
⊤
1 and

V = Q1D1Q
⊤
1 are the thin SVDs of U and V . Then Z has a PDF

p(Z|M,U, V ) =


exp(− 1

2
tr[U+(Z−M)V +(Z−M)⊤])
(2π)rs/2|U |n/2

+ |V |m/2
+

, Z ∈ {M + UQV : Q ∈ Rm×n }

0, Z ̸∈ {M + UQV : Q ∈ Rm×n }
(10)

with respect to the reference measure µ := λr×s ◦ f−1 : B(Rm×n) → R≥0.

Again, the PDF (9) is not taken with respect to the matrix Lebesgue measure λm×n, but
an affine transformation of the lower-dimensional tranformation of it µ := λr×s ◦ f−1:

P[Z ∈ A] =

∫
A
p(Z|M,U, V )dµ(Z) (11)

for any A ∈ B(Rm×n), and the density outside the space {M + UQV : Q ∈ Rm×n } could
have been chosen arbitrarily, albeit with greater complexity in the presentation.

4 Singular Σ0 case

If Σ0 is possibly singular, the maximum likelihood estimates of (Θ0,Σ0) for the model (2)
are given by solving

max
Θ∈Rp×n,Σ⪰0∈Rp×p

p(Y |X,Θ,Σ) subject to p(Y |X,Θ,Σ) > 0 (12)

where

p(Y |X,Θ,Σ) =


exp(− 1

2
tr[Σ+(Y−ΘX)(Y−ΘX)⊤])
(2π)rank(Σ)N/2|Σ|N/2

+

, Y ∈ {ΘX +ΣZ : Z ∈ Rp×N }

0, Y ̸∈ {ΘX +ΣZ : Z ∈ Rp×N }

Here we have avoided the case where p(Y |X,Θ,Σ) is zero independently of (Θ,Σ) to rule
out models that would suggest we have just observed zero-probability data. Since the
objective is positive in the feasible region, we can take the negative logarithm to produce
the equivalent minimization problem:

min
Θ∈Rp×n,Σ⪰0∈Rp×p

ϕ(Θ,Σ) subject to Y ∈ {ΘX +ΣZ : Z ∈ Rp×N } (13a)

where

ϕ(Θ,Σ) :=
N

2
[ln(2π)rankΣ + ln |Σ|+] +

1

2
tr[Σ+(Y −ΘX)(Y −ΘX)⊤] (13b)

We fully characterize the solutions to (3) in Proposition 1. While the solutions are identical
to that of (3), the methods required are substantially different, so the proof is included in
Appendix C for completeness.
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Proposition 8. The ML problem (12) has solutions if and only if Y (IN − X+X)Y ⊤ is
nonsingular. Moreover, the pair (Θ̂, Σ̂) solves (12) if and only if (6).

Proposition 1 again claims solutions to (12) will only exist when Y (IN −X+X)Y ⊤ is
nonsingular. This poses an issue for the singular Σ0 case because the errors should naturally
be rank deficient almost surely. We explore this problem in the following example, which
is an extension of Example 3.

Example 9. Suppose n = p = 2 and the true system (2) is generated by the parameters

Θ =

[
1 0
0 1

]
, Σ =

[
1 0
0 0

]
Θ = Σ = 1. Suppose we observe the data2

X4 =

[
1 0 1 0
0 1 0 1

]
, Y4 =

[
2 1 0 1
0 1 0 1

]
Then the objective is

ϕ4(Θ,Σ) = 2 lnΣ +
1

2
tr

[
Σ−1

([
6 2
2 2

]
− 2Θ

[
2 0
2 2

]
+ 2ΘΘ⊤

)]
With Σ > 0 fixed, we can minimize ϕ1(·,Σ) at

Θ̂ =

[
1 1
0 1

]
Evaluating the objective at Θ̂ = 2 gives

ϕ4(Θ̂,Σ) = 2 lnΣ +
1

2
tr

[
Σ−1

[
2 0
0 0

]]
which is unbounded from below because we can take Σ12 = Σ21 = 0 and Σ22 ↘ 0 to get

ϕ4(Θ̂,Σ) = 2 lnΣ11 + 2 lnΣ22 +Σ−1
11 → −∞

Therefore ϕ4 is unbounded from below and no estimate of Σ can be obtained. △

In fact, no sufficient sample number can be taken to produce an estimate if Σ0 is singular.
By linearity, have that E := Y − Θ0X = Σ0Q for some Q ∼ Np×N (0, Ip, IN ). Therefore
R(E) ⊆ R(Σ0). Moreover, Y (IN −X+X) = Σ0Q(IN −X+X) so

R(Y (IN −X+X)Y ⊤) = R(Y (IN −X+X)) ⊆ R(Σ0)

In other words, if Σ0 is singular, then Y (IN − X+X)Y ⊤ is singular, and the problem
(12) has no solutions. As such, the näıve maximum likelihood formulation (12) appears
incapable of handling models with structural rank deficiencies, motivating a reformulation.

2Although these matrices were hand-selected for illustrative purposes, the errors have the expected mean
and standard deviation suggested by the system covariance matrix.
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5 Rank-constrained multivariate linear regression

The ML estimator (12) is defined for a PDF that is taken with respect to a parameter-
dependent measure. Most classic probability and statistics literture require a fixed reference
measure with which to define the PDF [17, Theorems 7.49 and 7.54]. While [9] note this
issue, they claim that the reference measure does not affect the results. While this claim is
likely true (due to the prior knowledge of the rank), it benefits us to know how to formulate
the ML estimator in a rigorous manner and provide a method by which the rank can be
deduced from data. To this end, we consider the following measure-theoretic definition of
a ML estimator.

Definition 10. Let θ : Ω → Θ and Y : Ω → Y be random variables such that Θ ⊆ Rp and
Y ⊆ Rn. Suppose Y conditioned on any θ = θ1 ∈ Θ has the conditional PDF p(y|θ1) with
respect to a common reference measure µ on a space (Y,FY ). Let y be an observation of
Y conditioned on θ = θ0 ∈ Θ. We say θ̂ is a µ-maximum likelihood (ML) estimator of θ0
if it solves

max
θ∈Θ

p(y|θ) (14)

It is fairly straightforward to show the ML estimator, if it exists, is independent up to
equivalent reference measures.

Proposition 11. Let θ̂µ and θ̂ν be the µ- and ν-ML estimators of θ0. If µ ≡ ν, then

θ̂µ = θ̂ν almost surely.

Proof. Let pµ(·|θ1) and pν(·|θ1) be the PDFs of Y |(θ = θ1) with respect to the reference

measure µ and ν, respectively. Then we have pµ(·|θ1) = pν(·|θ1)dµdν (·) almost surely, so the
likelihood functions are equivalent up to a parameter-independent coefficient.

Since we defined the reference measure in Section 3 by an affine transformation cor-
responding to the support of the singular normal random variable, the reference measure
was parameter-dependent. Instead, we can consider an extension of that measure to the
parameter-independent case. Let m ∈ Rn and U1 ∈ Rn×r such that U⊤

1 U1 = Ir, and define

µ(A) := λr({x ∈ Rr : m+ U1x ∈ A })

for each A ∈ A(m,U1) := {m+ U1B : B ∈ B(Rn) }. Let

A := {A ∈ A(m,U1) : m ∈ Rn, U1 ∈ Rn×r, U⊤
1 U1 = Ir }

It can be shown that A is a ring and µ is a pre-measure on it. Therefore, Carathéordy’s
extension theorem implies the existence of an extension that is a measure on (Rn, σ(A)).
Therefore, the PDF (9) is also valid with respect to µ. A similar process can be used
to extend the reference measure of Proposition 7 so that it is parameter-independent.
However, we cannot avoid defining the rank r at the outset, so the parameter-independence
of the reference measure is constraining the rank in our estimation problem.
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Extending this idea to ML of (2), we have the rank-constrained ML problem

max
Θ∈Rp×n,Σ⪰0∈Rp×p

p(Y |X,Θ,Σ) subject to p(Y |X,Θ,Σ) > 0 and rank(Σ) = r (15)

where the PDF is now taken with respect to µN as defined above. However, it is not clear
how we may deduce the rank r. To see how r is readily apparent from the data, we require
a preliminary fact about the rank of a zero-mean normally distributed matrix.

Proposition 12. If Z ∼ Nn×p(M,U, V ) where U ⪰ 0 ∈ Rn×n and V ⪰ 0 ∈ Rp×p, then
rank(Z −M) = min{rank(U), rank(V )} almost surely.

See Appendix B for a proof of Proposition 12. Consider the residual vector R := Y (IN −
X+X) for the standard solution. We have

R = Y (IN −X+X) = (Θ0X + E)(IN −X+X) = E(IN −X+X)

and by linearity (Lemma 17),

R ∼ Np×N (0,Σ0, IN −X+X)

By Proposition 12, we have rank(R) = min{rank(Σ0), rank(IN − X+X)} almost surely.
Computationally it is simpler to check the rank ofRR⊤ = Y (IN−X+X)Y ⊤ since rank(R) =
rank(RR⊤). Finally, we have by the rank-nullity theorem that

rank(IN −X+X) = N − rank(X) ≥ N −min{n,N}

so we can always choose the number of samples sufficient large (N ≥ n + p) to guarantee
that rank(RR⊤) = rank(Σ0). As a result, we can guess the rank from the data, and write
the rank-constrained ML problem (15) with r := rank(Y (IN −X+X)Y ⊤).

Solutions to (15) are characterized by the following proposition, with a proof included
in Appendix C. Again, solutions, when they exist, are identical to that of (3). However,
we now have a guarantee that solutions exist and are the correct rank, almost surely, and
up to numerical precision of our computations.

Proposition 13. The pair (Θ̂, Σ̂) solves (12) if and only if (6). Moreover, if N ≥ n +
rank(Σ0), then rank(Σ̂) = rank(Σ0) almost surely.

6 Applications

In this section, we consider examples in system identification. The examples are elementary,
intended to demonstrate the practicality of Proposition 13. First, we consider the fully
observed linear state-space model,

xk+1 = Axk +Buk + wk, wk
i.i.d.∼ N(0, Q)

If we collect a finite trajectory of data (x0, . . . , xN , u0, . . . , uN−1), the ML estimates are[
Â B̂

]
= Y X+, Q̂ = Y (IN −X+X)Y
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according to Proposition 13, where Y :=
[
x1 . . . xN

]
and X :=

[
x0 . . . xN−1

u0 . . . uN−1

]
.

Consider the system

xk+1 =

[
0.9 1
0 0

]
xk +

[
0
1

]
uk + wk wk

i.i.d.∼ N

(
0,

[
1 1
1 1

])

Notice that the rank deficiency of Q :=

[
1 1
1 1

]
necessitates the singular regression formu-

lation. We collect a short trajectory (N = 10) of data and fit the parameters (A,B,Q),

Â =

[
0.661 0.903
−0.239 −0.097

]
, B̂ =

[
0.011
1.011

]
, Q̂ =

[
0.427 0.427
0.427 0.427

]
Notice that while Q̂ is not an exact estimate, it has the same rank and range space as Q
to within machine precision.

Next, we consider the partially-observed linear state-space model,

xk+1 = Axk +Buk + Lvk

yk = Cxk +Duk + vk

[
Lvk
vk

]
i.i.d.∼ N(0, S), S :=

[
LRL⊤ LR
RL⊤ R

]
(16)

For simplicity, we put the system in innovations form, which can be done without loss of
generality [18]. If we had access to the states (x0, . . . , xN ), inputs(u0, . . . , uN−1), and out-
puts (y0, . . . , yN−1), then we could straightforwardly estimate the parameters (A,B,C,D, S).
Since we do not, we employ a common method of state approximation [19, Section 7.4]. If
A− LC is stable (i.e., the system is observable), we choose an integer np and there exists
L̃ ∈ Rn×ñ such that

xk ≈ L̃x̃k

where nz := m + p, ñ := nznp, and x̃k :=
[
y⊤k−1 u⊤k−1 . . . y⊤k−np

u⊤k−np

]⊤
, and the

desired precision can be reached by choosing np sufficiently large. Suppose for simplicity
that A−LC is nilpotent of order np+1 or less so that the system can be exactly rewritten

x̃k+1 = Ãx̃k + B̃uk + w̃k

yk = C̃x̃k +Duk + vk

[
w̃k

vk

]
i.i.d.∼ N(0, S̃)

where ñ′ := ñ− nz,

Ã :=

 CL̃

0m×ñ

Iñ′ 0ñ′×nz

 , B̃ :=

 D
Im

0ñ′×m

 , C̃ := CL̃, S̃ :=

R 0ñ′×ñ′

R

 .

While this is a significant overparameterization of the system (16), it turns out to be
well-posed and gives estimates that are no worse than standard ARX(np, np) estimates.
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Consider the system

xk+1 =

[
a1 1
a2 0

]
xk +

[
0
1

]
uk +

[
a1
a2

]
vk

yk =
[
1 0

]
xk + vk

vk
i.i.d.∼ N(0, 1)

where a1 = 0.9 and a2 = 0.1. Clearly, A − LC =

[
0 1
0 0

]
is nilpotent (order 2), so

we have an exact representation of the form xk = L̃x̃k where x̃k :=
[
y⊤k−1 u⊤k−1

]⊤
and

L̃ :=

[
0.9 0 0.1 1
0.1 1 0 0

]
. Again, we collect a short trajectory (N = 10) of data and fit the

parameters (Ã, B̃, C̃,D, S̃):

Â =


0.2018 -0.1585 0.5085 0.7528

5.015× 10−16 −9.953× 10−16 5.085× 10−17 4.623× 10−16

1.000 −1.266× 10−16 −2.842× 10−16 2.602× 10−16

3.642× 10−16 1.000 1.404× 10−16 4.240× 10−16

 ,

B̂ =


0.2321
1.000

2.019× 10−16

1.778× 10−16

 , Ĉ =
[
0.202 -0.159 0.508 0.753

]
, D̂ = 0.232,

Ŝ =


0.2073 8.105× 10−18 1.358× 10−17 −2.111× 10−17 0.2073

8.105× 10−18 1.084× 10−30 −8.217× 10−32 −3.746× 10−31 8.105× 10−18

1.358× 10−17 −8.217× 10−32 1.679× 10−31 −2.465× 10−32 1.358× 10−17

−2.111× 10−17 −3.746× 10−31 −2.465× 10−32 5.382× 10−31 −2.111× 10−17

0.2073 8.105× 10−18 1.358× 10−17 −2.111× 10−17 0.2073


Again, Ŝ is of the correct rank and range space, but notice that a large number of entries in
the other estimates (Â, B̂) are near machine precision. This is because many data rows are
duplicated across both Y and X, so some rows of Y can be computed exactly from X. The
linear system solver takes case of this fact, meaning a structured ML estimation problem
is not really necessary to most efficiently construct the state approximation xk = L̃x̃k.

7 Conclusions

Using a measure-theoretic definition of the ML estimator, we have shown that singular
multivariate linear regression models can be estimated using only a minor modification
of the nonsingular estimates. The importance of this theory was shown in numerical
examples and applied to elementary problems in system identification. There are two areas
of future research and applications of this work. First, Bayesian estimation, reduced-rank
regression, and nonlinear regression problems can each be extended using the reference
measure defined in Section 5. Second, more practical system identification problems, such
as subspace identification and direct ML estimation of stochastic linear systems of the form
(16) can be explored if some of the more exotic regression problems are addressed.
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A Nonsingular multivariate linear regression

The approach to solving (5) is to solve an inner, convex problem in Θ, substitute that
solution back into the objective, and then solve the outer problem in Σ. In Lemmas 14
and 15 we solve the inner and outer problems, respectively.

Lemma 14. Suppose Σ ≻ 0 ∈ Rp×p and consider the optimization problem

min
Θ∈Rp×n

ϕ(Θ,Σ) :=
1

2
tr[Σ−1(Y −ΘX)(Y −ΘX)⊤] (17)

Then Θ̂ solves (17) if and only if

Θ̂ ∈ {Y X+ +Q : R(Q) ⊆ N (X) } (18)

Proof. Since the problem is convex and unconstrained, we can simply take the derivative
and set it to zero:

∂ϕ

∂Θ
(Θ̂,Σ) = Σ−1(Y − Θ̂X)X⊤ = 0 ⇔ Y X⊤ = Θ̂XX⊤

which holds if and only if Θ̂ = Y X(XX⊤)++Q = Y X++Q for some Q ∈ Rn×p such that
R(Q) ⊆ N (X), regardless of Σ ≻ 0.

Lemma 15. Let R ∈ Rp×N and consider the optimization problem

min
Σ≻0∈Rp×p

ϕ(Σ, R) :=
N

2
ln |Σ|+ 1

2
tr(Σ−1RR⊤) (19)

Then (19) has solutions if and only if RR⊤ is nonsingular. Moreover, if RR⊤ is nonsingular,
then Σ̂ = (1/N)RR⊤ is the unique solution to (19).

Proof. Consider the singular value decomposition RR⊤ = USU⊤, where U ∈ Rp×p is
unitary and S ∈ Rp×p is diagonal with nonnegative entries.

Suppose RR⊤ is singular and consider the candidate estimate Σ̃ = US̃U⊤, where
S̃ ∈ Rp×p is a diagonal matrix with positive diagonal entries. Rewriting the objective in
terms of (U, S, S̃):

ϕ(US̃U⊤, R) =
N

2
ln |S̃|+ 1

2
tr(S̃−1S) =

1

2

p∑
i=1

N ln S̃ii +
Sii

S̃ii
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Since RR⊤ is singular, Spp = 0 and S̃pp ↘ 0 gives ϕ(US̃U⊤, R) → −∞. Therefore (17) has
no solutions when RR⊤ is singular.

On the other hand, suppose RR⊤ is nonsingular. Then we can define its positive
definite square root by V := (RR⊤)1/2 = US1/2U , and the invertible transformation Ω =
f(Σ) := V Σ−1V , where Σ = f−1(Ω) = V Ω−1V . Consider the singular value decomposition
Ω = WDW⊤. Rewriting the objective using properties of the determinant and trace:

ϕ(f−1(Ω), R) =
N

2
ln |V Ω−1V |+ 1

2
tr((V Ω−1V )−1RR⊤)

= N ln |V | − N

2
ln |Ω|+ 1

2
tr(Ω)

= N ln |V |+ 1

2

p∑
i=1

(−N lnDii +Dii)

The objective is minimized by D̂ii = N , independently of W . Then Ω̂ := WD̂W⊤ =
W (NIp)W

⊤ = NWW⊤ = NIp is the unique minimizer of ϕ(f−1(·), R). Taking the inverse
transform gives that Σ̂ := f−1(Ω̂) = V (NIp)

−1V = (1/N)V 2 = (1/N)RR⊤ is the unique
minimizer of ϕ(·, R).

Finally, we combine Lemmas 14 and 15 to solve (3) (equivalently, (5)).

Proof of Proposition 1. It suffices to work with the negative log-transformed problem (5).
By Lemma 14, Θ̂ is a solution to the inner Θ optimization problem if and only if Θ̂ =
Y X+ +Q for some Q ∈ Rp×n such that R(Q) ⊆ N (X). Substituting this back into ϕ, we
get R := Y − Θ̂X = Y − Y X+X = Y (IN −X+X) and the outer problem

min
Σ≻0∈Rp×p

ϕ(Θ̂,Σ) =
N

2
ln |Σ|+ 1

2
tr(Σ−1RR⊤) (20)

By Lemma 15, the problem (20) has solutions if and only if RR⊤ = Y (IN −X+X)Y ⊤ is
nonsingular, and moreover, if RR⊤ is nonsingular, then Σ̂ uniquely solves (20). Therefore
the pair (Θ̂, Σ̂) solves (3) if and only if (6) hold.

B Matrix normal properties

In this section we prove Proposition 12. To prove Proposition 12 we need some preliminary
results.

Lemma 16. If X ∼ Nn×p(M,U, V ) where U ⪰ 0 ∈ Rn×n and V ⪰ 0 ∈ Rp×p, then
X⊤ ∼ Np×n(M

⊤, V, U).

Proof. The result follows from (4) and invariance of the trace under cyclic permutations.

Lemma 17. If X ∼ Nn×p(M,U, V ), then AXB + C ∼ Nn×p(AMB + C,AUA⊤, BV B⊤).

Proof. This follows from the fact that a matrix normal is fully defined by its mean matrix
and covariance matrices.
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Lemma 18. If X ∼ Nn×p(M,FF⊤, GG⊤) where F ∈ Rn×r and G ∈ Rp×s are full column
rank, then X −M ∼ FQG⊤ where Q ∼ Nr×s(0, Ir, Is).

Proof. This follows by linearity (Lemma 17).

Lemma 19. If X ∼ Nn×p(0, In, Ip), then rank(X) = min{n, p} with probability 1.

Proof. By Lemma 16, we can assume n ≥ p without loss of generality. For each n ≥ 1 and
p = 1, X is a vector which has rank p = 1 if and only if X ̸= 0. Therefore

P[rank(X) = p] = P[X ̸= 0] = 1− P[X = 0] = 1−
∫
{ 0 }

exp
(
−1

2x
⊤x

)
(2π)n/2

dλn(x) = 1

We complete the proof by induction. Assume the hypothesis holds for some n > p ≥ 1. Let
X ∼ Nn×(p+1)(0, In, Ip+1) and consider the partition X =

[
X1 x2

]
where X1 ∈ Rn×p and

x2 ∈ Rn. Then X1 ∼ Nn×p(0, In, Ip) and x2 ∼ Nn(0, In) because all the entries of X are
i.i.d. normals. For all X̃1 ∈ Rn×p, R(X̃1) is a subspace of Rn with dimension no greater
than p < n and λn(R(X̃1)) = 0. Therefore

P[x2 ∈ R(X1)|X1 = X̃1] =

∫
R(X̃1)

exp
(
−1

2x
⊤x

)
(2π)n/2

dλn(x) ≤ 1

(2π)n/2
λn(R(X̃1)) = 0

regardless of the value of X̃1 ∈ Rn×p, so P[x2 ∈ R(X1)] = 0. Moreover, P[rank(X1) < p] = 0
by the assumption, so

P[rank(X) < p+ 1] = P[(rank(X1) < p) ∨ (x2 ∈ R(X1))]

≤ P[rank(X1) < p] + P[x2 ∈ R(X1)] = 0

Finally, P[rank(X) = p+ 1] = 1− P[rank(X) < p+ 1] = 1.

Proof of Proposition 12.. Consider the thin SVDs U = W1Σ1W
⊤
1 and V = Q1D1Q

⊤
1 and

full-rank factors F := W1Σ
1/2
1 and G := Q1D

1/2
1 . By Lemma 18, we have X−M = FQG⊤

where Q ∼ Nr×s(0, Ir, Is), r := rank(U), and s := rank(V ). By Lemma 19, rank(X−M) =
rank(FQG⊤) = rank(Q) = min{r, s} (almost surely).

C Singular multivariate linear regression

As in Appendix A, the solution approach will be to first solve an inner convex optimization
problem in Θ as a function of Σ, and then to solve an outer nonconvex problem in Σ.
Lemmas 20 and 21 solve these two problems. While the solutions are identical to that of
Proposition 1, they require slightly different methods that may be of interest to the reader.

Lemma 20. Suppose Σ ⪰ 0 ∈ Rp×p and consider the optimization problem

min
Θ∈Rp×n

ϕ(Θ,Σ) :=
1

2
tr[Σ+(Y −ΘX)(Y −ΘX)⊤] subject to Y ∈ Z(X,Θ,Σ) (21)

Then Θ̂ solves (21) if and only if

Θ̂ ∈ {Y X+ +Q : R(Q) ⊆ N (X) } (22)
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Proof. We can relax the set constraint to a linear constraint by adding Z ∈ Rp×N as an
optimization variable,

min
Θ∈Rp×n,Z∈Rp×N

ϕ(Θ,Σ) subject to Y = ΘX +ΣZ (23)

Substituting the linear constraint into the objective gives

ϕ(Θ,Σ) =
1

2
tr[Σ+(Y −ΘX)(Y −ΘX)⊤] =

1

2
tr[Σ+ΣZZ⊤Σ] =

1

2
tr[ΣZZ⊤]

for all (Θ,Σ) such that Y = ΘX +ΣZ. Therefore (23) is equivalent to

min
Θ∈Rp×n,Z∈Rp×N

1

2
tr[ΣZZ⊤] subject to Y = ΘX +ΣZ (24)

We can solve (24) with the method of Lagrange multipliers. Let

LΣ(Θ, Z,Λ) :=
1

2
tr[ΣZZ⊤] + tr[Λ⊤(Y −ΘX − ΣZ)]

where Λ ∈ Rp×N . Then (Θ̂, Ẑ) solve (24) (equivalently, (21)) if and only if

∂LΣ

∂Θ
(Θ̂, Ẑ, Λ̂) = Λ̂X⊤ = 0 (25a)

∂LΣ

∂Z
(Θ̂, Ẑ, Λ̂) = ΣẐ − ΣΛ̂ = 0 (25b)

∂LΣ

∂Λ
(Θ̂, Ẑ, Λ̂) = Y − Θ̂X − ΣẐ = 0 (25c)

for some Λ̂ ∈ Rp×N . Equation (25b) holds if and only if

Ẑ = Σ+ΣΛ̂ +R

for some R ∈ Rp×N such that R(R) ⊆ N (Σ). Substituting this into (25c) gives the reduced
system,

Λ̂X⊤ = 0, Y − Θ̂X − ΣΛ̂ = 0 (26)

But (25a) implies R(Λ̂⊤) ⊆ N (X) = N ((X+)⊤), so (26) implies Θ̂ must satisfy

Θ̂ = Y X+ − ΣΛ̂X+ +Q = Y X+ +Q

for some Q ∈ Rp×n such that R(Q) ⊆ N (X⊤). Substituting this back into (26) gives

Λ̂X⊤ = 0, Y (IN −X+X)− ΣΛ̂ = 0

Moreover, we have that such a Λ̂ exists if and only if R(Y (IN −X+X)) ⊆ R(Σ), and the
solution is given by

Λ̂ = Σ+Y (IN −X+X) + (Ip − ΣΣ+)T (IN −X+X)
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for some T ∈ Rp×N , and this implies Ẑ = Σ+Y (IN −X+X) +R for some R ∈ Rp×N such
that R(R) ⊆ N (Σ). In summary, Λ̂ ∈ Rp×N exists such that (Θ̂, Ẑ) satisfy (25) if and only
if there exist Q ∈ Rp×n and R ∈ Rp×N such that

Θ̂ = Y X+ +Q, R(Q) ⊆ N (X⊤),

Ẑ = Σ+Y (IN −X+X) +R, R(R) ⊆ N (Σ)

In other words, we can solve (21) if and only if R(Y (IN − X+X)) ⊆ R(Σ), and if this
condition holds, then Θ̂ is a solution if and only if (22).

Lemma 21. Let R ∈ Rp×N and consider the optimization problem

min
Σ⪰0∈Rp×p

ϕ(Σ, R) subject to R(R) ⊆ R(Σ) (27a)

where

ϕ(Σ, R) :=
N

2
ln(2π)rank(Σ) +

N

2
ln |Σ|+ +

1

2
tr(Σ+RR⊤) (27b)

Then (27) has solutions if and only if RR⊤ is nonsingular. Moreover, if RR⊤ is nonsingular,
then Σ̂ = 1

NRR⊤ is the unique solution to (27).

Proof. To simplify the notation, let r := rank(Σ) and r̂ := rank(RR⊤) throughout. As
in the proof of Lemma 15, we consider the singular value decomposition RR⊤ = USU⊤,
where U ∈ Rp×p is unitary and S ∈ Rp×p is diagonal with nonnegative entries.

Suppose RR⊤ is singular and consider the candidate estimate Σ̃ = US̃U⊤, where
S̃ ∈ Rp×p is a diagonal matrix with S̃ii > 0 for i = 1, . . . , r and S̃ii ≥ 0 for i = r+1, . . . , p.
Assume S̃ii are chosen so that r ≥ r̂ and the candidate Σ̃ is feasible. Rewriting the objective
in terms of (U, S, S̃):

ϕ(US̃U⊤, R) =
N

2
ln(2π)r +

N

2
ln |US̃U⊤|+ +

1

2
tr(US̃+U⊤USU⊤)

=
N

2
ln(2π)r +

N

2
ln |S̃|+ +

1

2
tr(S̃+S)

=
N

2
ln(2π)r +

N

2

r∑
i=1

ln S̃ii +
1

2

r̂∑
i=1

Sii

S̃ii

Finally, we can choose S̃ such that r = r̂+1 and take S̃rr → 0 to give ϕ(US̃U⊤, R) → −∞.
Therefore (27) has no solutions when RR⊤ is singular.

On the other hand, suppose RR⊤ is nonsingular. Then R(Σ) ⊇ R(R) = Rp, so Σ must
also be nonsingular, and we can follow the proof of Lemma 15 to show that Σ̂ = 1

NRR⊤

uniquely solves (27).

We combine Lemmas 20 and 21 to solve (12).
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Proof of Proposition 8. It suffices to work with the negative log-transformed problem (13).
By Lemma 20, Θ̂ is a solution to the inner Θ optimization problem if and only if R(Y (IN −
X+X)) ⊆ R(Σ) and Θ̂ = Y X+ + Q for some Q ∈ Rp×n such that R(Q) ⊆ N (X).
Substituting this back into ϕ, we get R := Y − Θ̂X = Y − Y X+X = Y (IN −X+X) and
the outer problem

min
Σ≻0∈Rp×p

ϕ(Θ̂,Σ) =
N

2
rank(Σ) +

N

2
ln |Σ|+ +

1

2
tr(Σ+RR⊤) (28)

By Lemma 21, the problem (28) has solutions if and only if RR⊤ = Y (IN −X+X)Y ⊤ is
nonsingular, and moreover, if RR⊤ is nonsingular, then Σ̂ uniquely solves (28). Therefore
(12) has solutions if and only if R(Y (IN − X+X)) ⊆ R(Σ) and Y (IN − X+X)Y ⊤ is
nonsingular, and the pair (Θ̂, Σ̂) are solutions if and only if (6) hold.

Finally, we modify the proofs of Proposition 8 and Lemmas 20 and 21 to accommodate the
rank constraint in (15).

Proof of Proposition 13. It suffices to work with the negative log-transformed problem

min
Θ∈Rp×n,Σ⪰0∈Rp×p

ϕ(Θ,Σ) subject to Y ∈ Z(X,Θ,Σ) and rank(Σ) = r (29)

where R := Y −Θ̂X = Y (IN−X+X) and we have rewritten the constraints Y ∈ Z(X, Θ̂,Σ)
and rank(Σ) = r := rank(RR⊤) = rank(R) as

(Y ∈ Z(X, Θ̂,Σ) := { Θ̂X +ΣZ : Z ∈ Rp×N } ∧ rank(Σ) = r) ⇔
(R := Y − Θ̂X ∈ {ΣZ : Z ∈ Rp×N } ∧ rank(Σ) = r) ⇔

(R(R) ⊆ R(Σ) ∧ rank(Σ) = r) ⇔
R(R) = R(Σ)

Following the proof of Lemma 20, we again get that Θ̂ ∈ {Y X+ +Q : R(Q⊤) ⊆ N (X⊤) }
minimizes ϕ(·,Σ) for any feasible Σ. Substituting this solution into the likelihood and
dropping constants gives the following outer problem,

min
Σ⪰0∈Rp×p

ϕ(Σ, R) :=
N

2
ln |Σ|+ +

1

2
tr(Σ+RR⊤) subject to R(R) = R(Σ)

Consider the thin singular value decomposition RR⊤ = U1S1U
⊤
1 . Each Σ ⪰ 0 satisfies

R(RR⊤) = R(R) = R(Σ) if and only if there exists a nonsingular matrix M ≻ 0 ∈ Rp×p

such that Σ = U1MU⊤
1 . Rewriting the objective in terms of M :

ϕ(U1MU⊤
1 , R) =

N

2
ln |U1MU⊤

1 |+ +
1

2
tr((U1MU⊤

1 )+U1S1U
⊤
1 )

=
N

2
ln |M |+ 1

2
tr(M−1S1)

which, by Lemma 15, is minimized by M̂ = (1/N)S1. Therefore Σ̂ := U1M̂U⊤
1 =

(1/N)U1S1U
⊤
1 = (1/N)RR⊤ minimizes ϕ(·, R). In summary, (Θ̂, Σ̂) solves (15) if and

only if (6) holds.
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