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Abstract

This paper addresses the identification of models for offset-free
model predictive control (MPC), where LTI models are augmented
with (fictitious) uncontrollable integrating modes, called integrating
disturbances. The states and disturbances are typically estimated
with a Kalman filter. The disturbance estimates effectively provide
integral control, so the quality of the disturbance model (and result-
ing filter) directly influences the control performance. We implement
eigenvalue constraints to protect against undesirable filter behavior
(unstable or marginally stable modes, high-frequency oscillations).
Specifically, we consider the class of linear matrix inequality (LMI)
regions for eigenvalue constraints. These LMI regions are open sets
by default, so we introduce a barrier function method to create tight-
ened, but closed, eigenvalue constraints. To solve the resulting nonlin-
ear semidefinite program, we approximate it as a nonlinear program
using a Cholesky factorization method that exploits known sparsity
structures of semidefinite optimization variables and matrix inequal-
ities. The algorithm is applied to real-world data taken from two
physical systems: first, a low-cost benchmark temperature microcon-
troller suitable for classroom laboratories, and second, an industrial-
scale chemical reactor at Eastman Chemical’s plant in Kingsport, TN.

∗This report is an extended version of a submitted paper. The code is made available at https:

//github.com/rawlings-group/mlid_2024. This work was supported by the National Science Foundation
(NSF) under Grant 2138985. (e-mail: skuntz@ucsb.edu ; jbraw@ucsb.edu )

†Version 2: The text and case studies are updated. The main technical results remain unchanged.

1

https://github.com/rawlings-group/mlid_2024
https://github.com/rawlings-group/mlid_2024
https://github.com/rawlings-group/mlid_2024
https://github.com/rawlings-group/mlid_2024
mailto:skuntz@ucsb.edu
mailto:jbraw@ucsb.edu


TWCCC Technical Report 2024-01 2

1 Introduction

Offset-free model predictive control (MPC) is a widely-used advanced control method
that combines regulation, estimation, and steady-state optimization problems to track
prescribed setpoints [1, 2]. In linear offset-free MPC, a stochastic linear time-invariant
(LTI) model is augmented with uncontrollable integrating modes, called integrating distur-
bances, providing integral action through the estimator—typically a Kalman filter—and
allowing offset-free tracking even in the presence of plant-model mismatch and persistent
disturbances [3, 4]. We call such a model a linear augmented disturbance model (LADM).

The LADM or its corresponding Kalman filter can either “tuned” by hand or identified
automatically from data. Common tuning methods include pole placement [5–8], covari-
ance matrix selection [9–11], and filter gain selection [12–14]. Disturbance models can be
identified with autocovariance least squares estimation [15] or maximum likelihood (ML)
identification [16–19].

Tuning of integrating disturbance models can be a time-consuming and ad-hoc proce-
dure, requiring simplified parameterizations (e.g., diagonal covariance matrices). In prior
work, we have suggested identification as the preferred strategy for acquiring LADMs [16,
17]. In this work, we further develop ML identification because of its desirable statis-
tical properties (consistency, asymptotic efficiency) and ability to handle general model
structures and constraints [20, 21].

Design constraints can be included in tuning procedures to avoid undesirable filter
behaviors (slow response time, fictitious high frequencies) that are passed to the control
performance through the integrating disturbance estimates. Control-relevant design con-
straints and prior knowledge have sometimes been incorporated into identification prob-
lems [22–24]. However, there are no general approaches to shaping the closed-loop filter
behavior in ML identification. To address this gap, we consider ML identification with
eigenvalue constraints implemented via the LMI regions commonly used in robust con-
trol [25, 26].

LMI region constraints have been used in subspace identification [27]. However, sub-
space identification cannot be used for LADM identification as it is not possible to impose
the required disturbance model structure. Open-loop stability constraints have been in-
cluded in the expectation maximization (EM) algorithm [28], but this formulation is not
obviously generalized to filter stability or general LMI region constraints.

While EM is an algorithm for ML, it does not have strong convergence guarantees.
While it can be shown that the EM iterates produce, almost surely, an increasing sequence
of likelihood values [29, 30], slow convergence at low noise levels has been reported on a
range of problems [28, 31–35]. Interior point, and even gradient methods [35], are therefore
preferable to the EM approach.

As originally posed by [25, 26], LMI regions are strict semidefinite matrix inequalities.
While [27] used relaxed LMI regions with nonstrict inequalities, as we show in Section 4,
the constraint sets are not closed, and thus problematic as optimization constraints. To
address this issue, we formulate tightened LMI region constraints that define a closed
constraint set. This formulation introduces nonlinear matrix inequalities and semidefinite
matrix arguments, making the ML problem a nonlinear semidefinite program (NSDP).
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To efficiently convert the NSDP to a nonlinear program (NLP), we generalize the
Burer-Monteiro-Zhang (BMZ) method [36, 37], which was originally used to convert sparse
semidefinite matrix arguments into vector arguments with minimal dimension. An addi-
tional advantage of the BMZ method over standard Cholesky factor substitution is that
structural knowledge of the plant design (e.g., flowsheet or network structure) can be im-
posed in the model parameterization in an efficient manner. Finally, while this work is
primarily motivated by identification of LADMs and offset-free MPC implementations,
we remark that any linear Gaussian state-space model can be identified, with eigenvalue
constraints, using this approach.

The remainder of this section is devoted to outlining the paper and establishing no-
tation. In Section 2, the ML identification problem is stated. In Section 3 the algorithm
is outlined (Algorithm 1). In Section 4, we introduce tightened LMI region constraints
show they define closed sets of system matrices (Theorem 2). In Section 5, we present
our substitution and elimination scheme for approximating NSDPs as NLPs (Theorems 4
and 5). In Section 6, we solve the reformulated ML identification problem for two real-
world applications of offset-free MPC: first, a benchmark temperature microcontroller used
for classroom laboratories and prototyping [38], and second, an industrial-scale chemical
reactor at Eastman Chemical’s plant in Kingsport, TN [17]. Finally, in Section 7 we discuss
broader implications and potential future research.

This report is an extended version of a submitted work, and contains additional review,
discussion, and proofs of minor results that were omitted from the journal version due to
page limitations. Compared to the journal version, this report contains the following
additions:

• a longer discussion of problem formulations in Section 2;

• a characterization of models that can be converted to innovation form (Proposition 1,
see Appendix A for proof);

• additional basic LMI regions in Section 3 (see Lemma 1);

• an explicit counterexample of [27, Thm. 1], which (incorrectly) characterized the
eigenvalues of relaxed LMI regions, in Conjecture 1;

• a proof of our (correct) characterization of the eigenvalues of relaxed LMI regions
(Proposition 2) in Appendix B;

• a proof of the fact that relaxed LMI regions define neither open nor closed sets of
system matrices (Proposition 4(b,c)) in Appendix C;

• an additional results on solution uniqueness and minimum/infimum equivalences for
the BMZ and generalized BMZ method properties (Lemma 2, Proposition 5, and
Theorems 3 and 4) in Section 5;

• and additional remarks throughout.
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Notation For any z ∈ C, let z denote its complex conjugate. Denote the set of n × n
symmetric, positive definite, and positive semidefinite matrices by Sn, Sn++, and Sn+. Denote
the set of lower triangular matrices and lower triangular matrices with positive diagonal
entries by Ln and Ln

++. Recall M ∈ Rn×n is positive definite if and only if there exists
a unique L ∈ Ln

++, called the Cholesky factor, such that M = LL⊤. A 2 × 2 Hermitian
matrix M =

[
a b
b c

]
∈ H2 is positive (semi)definite if and only if a, c > 0 (a, c ≥ 0) and

ac > |b|2 (ac ≥ |b|2). Denote the matrix direct sum and the Kronecker product by ⊕ and
⊗, respectively, defined as in [39]. Define the set of eigenvalues of a matrix A ∈ Rn×n by
λ(A) ⊂ C. The spectral radius and spectral abscissa are defined as ρ(A) := maxλ∈λ(A) |λ|
and α(A) := maxλ∈λ(A)Re(λ), respectively. We say a matrix A is Schur (Hurwitz) stable if

ρ(A) < 1 (α(A) < 0). We use ∼ as a shorthand for “distributed as” and
iid∼ as a shorthand

for “independent and identically distributed as.” The complement, interior, closure, and
boundary of a set S are denoted Sc, int(S), cl(S), and ∂S, respectively.

2 Problem statement

We consider stochastic LTI models in innovation form:

x̂k+1 = A(θ)x̂k +B(θ)uk +K(θ)ek (1a)

yk = C(θ)x̂k +D(θ)uk + ek (1b)

ek
iid∼ N (0, Re(θ)) (1c)

where x̂ ∈ Rn are the model states, u ∈ Rm are the inputs, y ∈ Rp are the outputs, e ∈ Rp

are the innovation errors, and θ ∈ Θ are the model parameters. The model functions
M(·) := (A(·), B(·), C(·), D(·), x̂0(·),K(·), Re(·)) are assumed to be known. While the
model M is kept fairly general throughout, it is advantageous to assume the model is
identifiable in Θ. Last, for brevity, we often drop the dependence on the parameters θ ∈ Θ
and write the model functions asM = (A,B,C,D, x̂0,K,Re).

While the subsequent developments apply to any model of the form (1), our main
motivation is to identify the LADM,

ŝk+1 = As(θ)ŝk +Bd(θ)d̂k +Bs(θ)uk +Ks(θ)ek (2a)

d̂k+1 = d̂k +Kd(θ)ek (2b)

yk = Cs(θ)ŝk + Cd(θ)d̂k +D(θ)uk + ek (2c)

ek
iid∼ N (0, Re(θ)) (2d)

where ŝ ∈ Rns denote plant states and d̂ ∈ Rnd denote integrating disturbances. The
LADM (2) is clearly a special case of (1) and can be put back into the standard form (1)
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by consolidating the plant and disturbance states x̂k :=
[
ŝ⊤k d̂⊤k

]⊤
and defining

A :=

[
As Bd

0 I

]
, B :=

[
Bs

0

]
,

C :=
[
Cs Cd

]
, K :=

[
Ks

Kd

]
.

Typically the LADM (2) is parameterized with (As, Cs) in observability canonical form [40],
(Bd, Cd) fixed,1 (Bs,Ks,Kd, Re) fully parameterized, and (D, ŝ0, d̂0) = (0, 0, 0). Alterna-
tively, we could choose a physics-based or gray-box plant model for the plant dynamics
(As, Bs, Cs, D).

2.1 Constrained maximum likelihood identification

The ML identification problem is defined as follows:

min
θ∈Θ

LN (θ) :=
N

2
ln detRe(θ) +

1

2

N−1∑
k=0

|ek(θ)|2[Re(θ)]−1 (3)

where the ek(θ) are given by the recursion (1) [20, p. 557], [21, p. 219]. Often, we may wish
to regularize with respect to a previous parameter estimate θ, or incorporate an available
prior distribution of the parameters p0(θ). In either case, we consider the maximum a
posteriori (MAP) estimation problem,

min
θ∈Θ

LN (θ) +R0(θ) (4)

where R0(θ) ∝ − ln p0(θ) is the regularization term, typically chosen as a distance from
θ [42, 43].

For a Gaussian prior or generalized ℓ2 penalty, we use

R0(θ) :=
1

2
|vec(θ)− vec(θ)|2V −1 (5)

where θ ∈ Θ is the prior estimate, vec is a vectorization operator, 2 and V ≻ 0 is the prior
estimate variance. Such penalties are useful for model updating and re-identification. We
typically use the penalty (5) with V = ρ−1I. Later on, we transform the parameters θ into
a more convenient space for optimization and find it more convenient to define the prior
directly in the transformed space.

For plants of the form (1), the ML estimates are consistent and asymptotically effi-
cient [20]. In a standard setting, the plant is of the form (1) with A−KC stable, and its

1With (As, Bs, Cs, D) fixed, all (Bd, Cd) such that (2) is observable are equivalent up to a similarity
transform [41]. Thus, (Bd, Cd) are chosen by the practitioner to maximize interpretability of the disturbance
estimates.

2The vectorization operator may depend on the parameterization, as θ may contain both a vector
portion and a sparse (semidefinite) matrix portion. The vectorization should only preserve the uniquely
definednonzero elements of the sparse matrix.
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coefficients are asymptotically recovered by (3). With sufficient data, the identified filter
is stable. However, the LADM (2) is an intentional misspecification of the plant. Under
certain regularity assumptions, we are consistent with respect to the estimates nearest in
relative entropy rate, taken between the plant and model measurement distributions,

θ∗ := min
θ∈Θ

N−1E[LN (θ)]

where the expectation is taken over the true distribution of measurements (yk)
N−1
k=0 [44, 45].

Identified LADM filters do not necessarily inherit stability from the plant, so we must design
Θ to guarantee offset-free control.

2.2 Constraints

The constraint set Θ should capture both estimator design specifications and system knowl-
edge. At a bare minimum, we require nondegeneracy of the innovation errors,

Re(θ) ≻ 0 (6)

and stability of the estimator,

ρ(A(θ)−K(θ)C(θ)) < 1. (7)

Other useful constraints include spectral abscissa bounds,

α(−Ã(θ)) < 0, (8)

and bounds on the argument of the eigenvalues,

0 < |Im(µ)|/Re(µ) < tan(ω), ∀µ ∈ λ(Ã(θ)) (9)

for either the open-loop stability Ã = A or estimator stability Ã = A −KC matrices, to
eliminate artificial high-frequency dynamics that may affect the control performance.

Chemical processes exhibit sparse interactions between units (mass and energy flows),
especially for large-scale plants [46, 47]. Sparse parameterizations of (A,B,C,D,K) are
easily encoded, but the sparse parameterization of Re is less obviously accomplished. While
the covariance Re for a centralized Kalman filter is dense even for sparse plants, correlations
between distant units are small [48]. Thus, it suffices to consider only nearest-neighbor
correlations, e.g.,

Re =


R1,1 R1,2

R⊤
1,2 R2,2

. . .
. . .

. . . RNu−1,Nu

R⊤
Nu−1,Nu

RNu,Nu

 (10)

where Ri,j ∈ Rpu×pu is the covariance between the innovations of the i-th and j-th pro-
cess unit innovations. In (10), the sparse formulation introduces just O(Nup

2
u) variables

compared to O(N2
up

2
u) variables for the dense formulation. Another algorithm goal is to

simultaneously and efficiently enforce both (6) and (10). Finally, we remark that such
constraints can be applied to the ML identification of any networked system with a time-
invariant topology, as in [49].
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2.3 Other parameterizations

The remainder of this section presents some other formulations of the ML identification
problem. While we do not consider these formulations explicitly in our algorithm formu-
lation (Section 3) or case studies (Section 6), the methods are readily generalized to these
formulations.

2.3.1 Time-varying Kalman filter formulations

More generally, we could consider models of the following form:

xk+1 = A(θ)xk +B(θ)uk + wk (11a)

yk = C(θ)xk +D(θ)uk + vk (11b)

x0 ∼ N (x̂0(θ), P̂0(θ)) (11c)[
wk

vk

]
iid∼ N (0, S(θ)) (11d)

where w ∈ Rn and v ∈ Rp are the process and measurement noises andM := (A,B,C,D, x̂0, P̂0, S)
are the model functions. The noise covariance matrix S(θ) may be partitioned as

S(θ) =

[
Qw(θ) Swv(θ)

[Swv(θ)]
⊤ Rv(θ)

]
(12)

where Qw(θ) ∈ Sn+ is the process noise covariance, Swv(θ) is the cross-covariance, and
Rv(θ) ∈ Sp+ is the measurement noise covariance. Throughout, we impose the stronger
requirement Rv(θ) ≻ 0 on the measurement noise covariance.

For the model (11), the ML problem is defined as

min
θ∈Θ

LN (θ) :=
1

2

N−1∑
k=0

ln detRk(θ) + |ek(θ)|2[Rk(θ)]−1 (13)

where the ek and Rk are defined by the Kalman filtering equations

x̂k+1 = Ax̂k +Buk +Kkek (14a)

yk = Cx̂k +Duk + ek (14b)

ek ∼ N (0,Rk) (indep.) (14c)

where

P̂k+1 := AP̂kA
⊤ +Qw −KkRkK⊤

k (14d)

Kk := (AP̂kC
⊤ + Swv)R−1

k (14e)

Rk := CP̂kC
⊤ +Rv. (14f)

We remark that Rv ≻ 0 suffices to guarantee the innovations are uniformly nondegenerate,
i.e., Rk ≻ 0. However, stability of the filter is more difficult to guarantee as the early
iterates A−KkC may not be stable, even though the overall filter is stable, or vice versa.
Instead, it is necessary to check that a stabilizing solution to the Riccati equation exists,
which we elaborate on in the next formulation.
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2.3.2 Time-invariant Kalman filter formulations

In most situations, the state error covariance matrix converges exponentially fast to a
steady-state solution P̂k → P̂ , so it suffices to consider the original steady-state filter
model (1). In terms of the model (11), the steady-state filter takes the form K := (AP̂C⊤+
Swv)R

−1
e and Re := CP̂C⊤+Rv, where P̂ is the unique, stabilizing solution to the discrete

algebraic Riccati equation (DARE),

P̂ = AP̂A⊤ +Qw − (AP̂C⊤ + Swv)× (CP̂C⊤ +Rv)
−1(AP̂C⊤ + Swv)

⊤. (15)

Recall a solution to the DARE (15) is stabilizing if the resulting AK := A−KC is stable.
Convergence of P̂k to P̂ is equivalent to the solution to the DARE (15) being unique

and stabilizing. We generally assume such a solution exists, but for completeness, we state
the following proposition, adapted from [50, Thm. 18(iii)] (see Appendix A for proof).

Proposition 1. Assume Rv ≻ 0 and consider the full rank factorization[
Qw Swv

S⊤
wv Rv

]
=

[
B̃

D̃

] [
B̃⊤ D̃⊤]

Then the following statements are equivalent:

1. The DARE (15) has a unique, stabilizing solution P̂ ⪰ 0.

2. The error covariance converges exponentially fast P̂k → P̂ for any P̂0 ⪰ 0.

3. (A,C) is detectable and (A− FC, B̃ − FD̃) is stabilizable for all F ∈ Rn×p.

Remark 1. The hypothesis of Proposition 1 holds if we constrain A to be stable or (A,C)
to be observable.

Remark 2. The cross-covariance Swv complicates the filter stability analysis. With Swv =
0, it would suffice to assume (A,C) detectable and (A,Qw) stabilizable. With nonzero Swv,
however, a more elaborate stabilizability condition is needed. [50, Thm. 18] considers the
regulation problem with a cross-weighting term and semidefinite input weights. Proposi-
tion 1 specializes this result to the filter problem with positive definite Rv.

Remark 3. While Re(θ) and K(θ) could be defined via P̂ (θ), taken as the function that
returns solutions to the DARE (15) and therefore enforcing filters stability, it is more
convenient to directly parameterize these matrices as in (1).

2.3.3 Minimum determinant formulation

Suppose in the model (1), that Re is parameterized fully, and separately from the other
terms, i.e.,

M(θ̃, Re) =
(
A(θ̃), B(θ̃), C(θ̃), D(θ̃), x̂0(θ̃),K(θ̃), Re

)
.

Moreover, assume Re is constrained separately as well, i.e.,

Θ = Θ̃× Sp++.
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Then we can always solve (3) stagewise, first in Re, and then in the remaining variables θ̃.
Solving the inner problem gives the solution

R̂e(θ̃) :=
1

N

N−1∑
k=0

ek(θ̃)[ek(θ̃)]
⊤

where we use the fact that ek is only dependent on θ̃, and we assume R̂e(θ̃) ≻ 0 for all
θ̃ ∈ Θ̃. The outer problem can be written

min
θ̃∈Θ̃

det R̂e(θ̃). (16)

The problem (16) is of relevance because it avoids posing (3) as a NSDP. It has been
used both in the early ML identification literature [51–53] and in recent works [54–56].
None of these works consider filter stability constraints. To the best of our knowledge,
only [28] consider the ML problem (13) with stability constraints, but they consider open-
loop stability (i.e., ρ(A) < 1) and use the EM algorithm.

Remark 4. For real-world data, det R̂e(β, Σ̃) = 0 is not attainable because that would
imply some direction of yk were perfectly modeled. Therefore, R̂e(θ̃) ≻ 0 for all θ̃ ∈ Θ̃ is a
reasonable assumption.

3 Algorithm outline

3.1 Constraint set formulation

More generally, we seek to (i) impose eigenvalue constraints on any model function Ã(θ)
and (ii) impose a sparsity structure on any semidefinite model function Q̃(θ).

3.1.1 Eigenvalue constraints

First, we define a LMI region.

Definition 1. We call D ⊆ C an LMI region if

D = { z ∈ C | fD(z) := M0 +M1z +M⊤
1 z ≻ 0 }

for some generating matrices (M0,M1) ∈ Sm × Rm×m. We call fD : C → Sm the charac-
teristic function of D.

The following lemma defines the four basic LMI regions: shifted half-planes, circles
centered on the real axis, conic sections, and horizontal bands. For a general discussion of
LMI regions properties, see [25, 57].
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Lemma 1. For each s, x0 ∈ R, the subsets

D1(s) := { z ∈ C | Re(z) > s }
D2(s, x0) := { z ∈ C | |z − x0| < s }
D3(s, x0) := { z ∈ C | |Im(z)| < s(Re(z)− x0) }
D4(s) := { z ∈ C | |Im(z)| < s }

are LMI regions with characteristic functions

fD1(x0)(z) := −2x0 + z + z

fD2(s,x0)(z) :=
[

s −x0
−x0 s

]
+ [ 0 1

0 0 ]z + [ 0 0
1 0 ]z

fD3(s,x0)(z) := −2sx0I2 +
[

s 1
−1 s

]
z +

[
s −1
1 s

]
z

fD4(s)(z) := −2sI2 +
[

0 1
−1 0

]
z +

[
0 −1
1 0

]
z.

Proof. The first identity follows from the formula 2Re(z) = z+ z. For the second identity,
we have fD2(s,xs)(z) =

[
s z−x0

z−x0 s

]
≻ 0 if and only if s > 0 and s2 > |z−x0|2, or equivalently,

|z − x0| < s. For the third identity, we have fD3(s,x0)(z) =
[
2s(Re(z)−x0) 2ιIm(z)

−2ιIm(z) 2s(Re(z)−x0)

]
≻ 0

if and only if 2s(Re(z) − x0) > 0 and 4s2(Re(z) − x0)
2 > 4|Im(z)|2, or equivalently,

|Im(z)| < s(Re(z)− x0). For the fourth identity, we have fD4(s)(z) =
[

2s 2ιIm(z)
−2ιIm(z) 2s

]
≻ 0

if and only if 2s > 0 and 4s2 > 4|Im(z)|2, or equivalently, |Im(z)| < s.

Remark 5. For continuous-time systems, −D1(α) corresponds to a minimum decay rate
of α > 0, D3(− tan(ω), 0) corresponds to a minimum damping ratio cos(ω), and D2(r, 0) ∩
D3(− tan(ω), 0) implies to a maximum undamped natural frequency r sin(ω), where α, r >
0 and ω ∈ [0, π/2] [25]. For discrete-time systems, D2(r, 0) corresponds to a minimum decay
rate of− ln r, andD2(r, 0)∩D3(tan(ω), 0) implies a minimum damping ratio− cos(tan−1(ω/ ln r))
and maximum natural frequency (ln(r)2 + ω2)/∆, where r > 0, ω ∈ [0, π/2], and ∆ is the
sample time.

Remark 6. For any LMI region D (including those in Lemma 1), the set D is convex, open,
and symmetric about the real axis. The intersection of two LMI regions D := D1∩D2 is an
LMI region with the characteristic function fD(z) = fD1(z)⊕ fD2(z). By this property, we
can construct any convex polyhedron that is symmetric about the real axis by intersecting
left and right half-planes, horizontal strips, and conic sections. Moreover, since any convex
region can be approximated, to any desired accuracy, by a convex polyhedron, the set of
LMI regions is dense in the space of convex subsets of C that are symmetric about the
real axis. An LMI region D with characteristic function fD also has characteristic function
MfD(·)M⊤ for any nonsingular M ∈ Rm×m. For an in-depth discussion of LMI region
geometry and other properties, see [57].

In [25], it is shown a matrix Ã ∈ Rñ×ñ has eigenvalues in a LMI region D if and only
if the following system of matrix inequalities is feasible:

MD(Ã, P ) ≻ 0, P ≻ 0 (17)
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where the matrix characteristic function MD : Rñ×ñ × Sñ → Sñm̃ of D is defined by

MD(Ã, P ) := M0 ⊗ P +M1 ⊗ (ÃP ) +M⊤
1 ⊗ (ÃP )⊤. (18)

From this equivalence, we can build tractable eigenvalue constraints. For the constraint
(7), Lemma 1 gives the generating matrices (M0,M1) := ([ 1 0

0 1 ], [
0 1
0 0 ]) and we have the

matrix inequalities[
P (A−KC)P

P (A−KC)⊤ P

]
≻ 0, P ≻ 0

which is a well-known LMI for checking stability [58]. Similarly, to implement (8), we
can use the generating matrices (M0,M1) := (0, 1), and to implement (9), we can use

(M0,M1) :=
([

−2 tan(ω) 0
0 −2 tan(ω)

]
,
[
tan(ω) 1
−1 tan(ω)

])
.

The system of matrix inequalities (17) contains only strict inequalities, but we can
“tighten” them as follows:

MD(Ã, P ) ⪰M, P ⪰ 0, tr(V P ) ≤ ε−1 (19)

where ε > 0, V ∈ Sñ++, andM ∈ Sñm̃++. The set of Ã ∈ Rñ×ñ for which (19) is feasible defines

a closed set for which λ(Ã) ⊆ D. In Section 4, we show this fact and other properties of
the constraint (19).

3.1.2 Sparsity structure

To encode sparsity information, we adapt the notation of [36]. Define the index sets
Ln := { (i, j) ∈ I21:n | i ≥ j } andDn := { (i, i) ∈ I21:n } corresponding to the sparsity patterns
of n×n lower triangular and diagonal matrices. With a slight abuse of notation, we define
the direct sum of index sets I ⊆ Ln and J ⊆ Lm by

I ⊕ J := I ∪ { (i+ n, j + n) | (i, j) ∈ J } ⊆ Ln+m.

For each I ⊆ Ln, define the sets

Sn[I] := {S ∈ Sn | Sij = 0 ∀ (i, j) ∈ Ln \ I }
Ln[I] := {L ∈ Ln | Lij = 0 ∀ (i, j) ̸∈ I }

Ln
++[I] := {L ∈ Ln

++ | Lij = 0 ∀ (i, j) ̸∈ I } .

Finally, let vecsI : Sn → R|I| denote the operator that vectorizes the |I| entries of the
argument corresponding to the index set I.

3.1.3 Constraint definition

To combine the LMI region and sparsity constraints, we partition the parameter into vector
and sparse symmetric matrix parts, i.e., θ = (β,Σ), and define the constraint set Θ by

Θ = { (β,Σ) ∈ Rnβ × SnΣ [IΣ] | g(β,Σ) = 0, h(β,Σ) ≤ 0, Σ ⪰ H(β), A(β,Σ) ⪰ 0 } (20)
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where DnΣ ⊆ IΣ ⊆ LnΣ , DnA ⊆ IA ⊆ LnA , g : Rnβ × SnΣ → Rng , h : Rnβ × SnΣ → Rnh ,
H : Rnβ → SnΣ , and A : Rnβ×SnΣ → SnA [IA]. The purpose of the partition θ = (β,Σ) is to
clearly delineate the sparse semidefinite matrix argument Σ from the remaining parameters
β. The index set IΣ defines the sparsity pattern of Σ and H, and the index set IA defines
the sparsity pattern of A.

Remark 7. Assumption 1 rules out direct use strict inequalities, e.g., Re(θ) ≻ 0 or Rv(θ) ≻
0. To satisfy nondegeneracy requirements, we use the closed constraint Re(θ) ⪰ δIp with
a small backoff δ > 0.

Remark 8. Typically, the index set IΣ encodes block diagonal structures, e.g., for the
model (11), Σ = P̂0 ⊕ Qw ⊕ Rv ∈ S2n+p[IΣ] where IΣ := Ln ⊕ Ln ⊕ Lp. However, more
general structures (e.g., (10)) can be stated. For the time-varying formulation (13), we
may further restrict Qw and Rv to take block tridiagonal and diagonal structures, e.g.,

Qw =


Q1,1 Q1,2

Q⊤
1,2 Q2,2

. . .
. . .

. . . Qñ−1,ñ

Q⊤
ñ−1,ñ Qñ,ñ

 , Rv = R1 ⊕ . . .⊕Rñ

that arise in sequentially interconnected processes such as chemical plants. Adding a Q1,ñ

block can account for an overall recycle loop. Note that if we parameterize the block
tridiagonal Qw via a sparse shaping matrix (i.e., Qw = GwG

⊤
w), then there are more

parameters than if the sparsity of Qw is known.

Remark 9. As alluded to in Section 2, the Riccati equation solution has a dense solution,
but the entries far from the core sparsity pattern decay rapidly. Thus, we can approximate
an eigenvalue constraint, e.g., P −APA⊤ ≻ 0, as a function that maps to the same sparsity
pattern as A [48, 59–61].

3.2 Cholesky factorization and elimination

At this juncture, the ML and MAP problems (3) and (4) with the constraints (20) are in
standard NSDP form and can be solved with any dedicated NSDP solver, e.g., [62, 63].
However, such solvers are neither as widely available nor as well-understood as NLP solvers
such as IPOPT [64].

The Burer-Monteiro-Zhang (BMZ) method is a Cholesky factorization-based substi-
tution and elimination algorithm that can convert certain NSDPs to NLPs [36, 37]. In
Section 5, we consider a generalization of this algorithm to (approximately) transform a
given NSDP into a NLP while only introducing |IA| new variables. This generalization
requires the following assumption:

Assumption 1. The model functionsM are twice differentiable and the constraint func-
tions C are differentiable. Moreover, cl(Θ++) = Θ where

Θ++ := { (β,Σ) ∈ Rnβ × SnΣ [IΣ] | g(β,Σ) = 0, h(β,Σ) ≤ 0, Σ ≻ H(β), A(β,Σ) ≻ 0 } .
(21)
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In Section 5, we construct functions

T : Rnβ × LnΣ
++[IΣ]× LnA

++[IA]→ Rnβ × SnΣ [IΣ]
AT : Rnβ × LnΣ

++[IΣ]× LnA
++[IA]→ SnA

++[IA]

and define transformed constraint functions

gT (ϕ) :=
[

g(T (ϕ))
vecsIA(A(T (ϕ))−AT (ϕ))

]
(22a)

hT (ϕ) := h(T (ϕ)) (22b)

and a transformed constraint set

Φ := {ϕ ∈ Rnβ × LnΣ
++[IΣ]× LnA

++[IA] | gT (ϕ) = 0, hT (ϕ) ≤ 0 } (23)

such that, under Assumption 1, T is an invertible map from Φ to Θ++. Finally, to elim-
inate the strict inequalities on the diagonal entries of (LΣ, LA) ∈ LnΣ

++[IΣ] × LnA
++[IA], we

introduce a fixed lower bound ε > 0 on the diagonal entries,

Φε := {ϕ ∈ Rnβ × LnΣ
ε [IΣ]× LnA

ε [IA] | gT (ϕ) = 0, hT (ϕ) ≤ 0 } (24)

where we have defined, for any ε > 0 and I ⊆ Ln,

Ln
ε [I] := {L ∈ Ln[I] | Lii ≥ ε ∀i ∈ I1:n } .

We define the approximate transformed problem as

min
ϕ∈Φε

LN (T (ϕ)) +R0(T (ϕ)). (25)

If ϕ̂ solves the problem (25), then θ̂ := T (ϕ̂) approximately solves the MAP problem (4).
We recover the ML problem (3) and its approximate solutions with R0 ≡ 0.

3.3 Algorithm summary

Algorithm 1 provides an example of our approach towards solving the identification problem
(4) with eigenvalue constraints and the Cholesky factor-based substitution and elimination
scheme.

4 Eigenvalue constraints

In this section, we elaborate on the LMI region constraints previewed in Section 3. Through-
out, assume the LMI region D is nonempty, not equal to C, and its characteristic function
fD and generating matrices (M0,M1) are fixed. Our goal in this section is to define, using
only matrix inequalities, a closed set of matrices A ∈ Rn×n such that λ(A) ⊆ D. For this
section, the matrix A ∈ Rn×n need not have any relation to the model function in (1), and
can in fact be any square matrix of any dimension (e.g., the filter stability matrix A−KC,
the plant stability matrix As from (2), or any submatrix thereof). Throughout this section,
we assume the matrix characteristic function MD is fixed.



TWCCC Technical Report 2024-01 14

Algorithm 1 Identification of an innovation form model (1) with eigenvalue constraints
and the Cholesky factor-based substitution and elimination scheme.

Require: Model functions M = (A,B,C,D, x̂0,K,Re), regularization term R0, initial
parameters θ0 = (β,Σ0) constraint functions (g, h0, H0,A0) and sparsity patterns
(IΣ0 , IA0), a series of LMI region constraints (Di, Ãi(·))nc

i=1, and small ε, εi > 0.
1: For each i ∈ I1:nc , let MDi : Rni×ni × Sni → Snimi denote the matrix characteristic

function for Di.
2: Extend the parameters Σ := Σ0 ⊕ (

⊕nc
i=1 Pi) and θ := (β,Σ) with Pi ∈ Sni .

3: Extend the constraint functions h(θ) :=
[
[h0(θ0)]

⊤ tr(V1P1)− ε−1
1 . . . tr(VncPnc)− ε−1

nc

]⊤
,

H(β) := H0(β)⊕ (
⊕nc

i=1 0ni×ni), and A(θ) := A0(θ0)⊕
(⊕nc

i=1MDi(Ãi(θ0), Pi)− εI
)
.

4: Extend the index sets IΣ := IΣ0 ⊕ (
⊕nc

i=1 Lni) and IA := IA0 ⊕ (
⊕nc

i=1 Lnimi).
5: Form the functions T , T −1, and Ã as in Section 5.
6: Form the transformed constraint functions (22).
7: Solve (24) and (25), and let ϕ̂ denote the solution.
8: Let θ̂ := T (ϕ̂).

4.1 LMI region constraints

Originally, [25] proved the following theorem relating the eigenvalues of A ∈ Rn×n to
feasibility of a system of matrix inequalities.

Theorem 1 ([25, Thm. 2.2]). For any A ∈ Rn×n, we have λ(A) ⊆ D if and only if

MD(A,P ) ≻ 0, P ≻ 0. (26)

holds for some P ∈ Sn.

Ultimately, we seek matrix inequalities that define a closed set of constraints. Due to
the strictness of the inequalities (26), it is unlikely that [25, Thm. 2.2] achieves this goal.

4.2 Relaxed constraints

In [27], the following relaxation of (26) was considered,

MD(A,P ) ⪰ 0, P ≻ 0. (27)

Since MD(A,P ) is linear in P , feasibility of (28) is equivalent to feasibility of

MD(A,P ) ⪰ 0, P ⪰ P0 (28)

for some fixed P0 ∈ Sn++.
3

An attempt was made in [27, Thm. 1] to characterize the eigenvalues of matrices A ∈
Rn×n for which (27) is feasible, but this theorem does not correctly treat eigenvalues on the
LMI region’s boundary ∂D. We restate [27, Thm. 1] below as a conjecture and disprove it
with a simple counterexample.

3For any P0 ≻ 0 and P satisfying (27), define the scaling factor γ := ∥P0∥2∥P−1∥2 and a rescaled
solution P ∗ := γP . Then P ∗ ⪰ P0 and MD(A,P ∗) = γMD(A,P ) ⪰ 0.
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Conjecture 1 ([27, Thm. 1]). The matrix A ∈ Rn×n satisfies λ(A) ⊂ cl(D) if and only if
(27) holds for some P ∈ Sn.

Counterexample. Let D be the left half-plane, consider the Jordan block A = [ 0 1
0 0 ], and

suppose P = [ p11 p12
p12 p22 ] ∈ S2 such that (27) holds. Then λ(A) ⊂ cl(D) and

0 ⪯MD(A,P ) = −
[
2p12 p22
p22 0

]
which implies p12 = p22 = 0, a contradiction of (27). ※

The correction to Conjecture 1 requires a more careful treatment of eigenvalues lying
on the the LMI region’s boundary ∂D. Specifically, we show in the following proposition
that feasibility of (27) for a given A ∈ Rn×n is equivalent to the eigenvalues of A being in
cl(D), with all non-simple eigenvalues lying in D (see Appendix B for proof).

Proposition 2. The matrix A ∈ Rn×n satisfies λ(A) ⊆ cl(D) and λ ∈ D for all non-simple
eigenvalues λ ∈ λ(A) if and only if (27) holds for some P ∈ Sn.

4.3 Tightened constraints

Instead of the “relaxed” constraints (27), we consider “tightened” constraints of the form

MD(A,P ) ⪰M, P ⪰ 0, tr(V P ) ≤ ε−1 (29)

where M ∈ Snm+ and V ∈ Sn++ are fixed and chosen in a way that (29) implies (26). While
we allow M to be semidefinite,4 in the following proposition, we show M ≻ 0 always
suffices.

Proposition 3. Suppose M ∈ Snm++ and V ∈ Sn++. Then (29) implies (26) for all A ∈ Rn×n

and ε > 0.

Proof. With M ≻ 0 and (29), we automatically have MD(A,P ) ≻ 0. It remains to show
(29) implies P ≻ 0. For contradiction suppose (29) and M ≻ 0, but P ̸≻ 0. Then there
exists a nonzero v ∈ Rn such that Pv = 0, and

(Im ⊗ v)⊤MD(A,P )(Im ⊗ v) = M0 ⊗ (v⊤Pv) +M1 ⊗ (v⊤APv) +M⊤
1 ⊗ (v⊤PA⊤v) = 0

a contradiction of the assumption MD(A,P ) ⪰M ≻ 0.

Remark 10. The tightened constraint (29) was inspired by a similar set of constraints
was introduced by Diehl and colleagues [65] to “smooth” the spectral radius. Specifically,
feasibility of the nonlinear system

s2P −APA⊤ = W, P ⪰ 0, tr(V P ) ≤ ε−1 (30)

4For some LMI regions, M ⪰ 0 is advantageous. For example, we can always take M := [ 1 0
0 0 ] ⊗ Q

with Q ≻ 0 for circular LMI regions. Then we can reduce the constraint dimension by taking the Schur
complement.
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implies ρ(A) < s where W,V ∈ Sn++ and s, ε > 0 are fixed [65, Thms. 5.4, 5.6]. Similarly,
the spectral abscissa was “smoothed” in [66, Thms. 2.5, 2.6], and it is straightforward to
generalize [65, Thms. 5.4, 5.6] to show feasibility of

(A− sI)P + P (A− sI)⊤ = −W, P ⪰ 0, tr(V P ) ≤ ε−1 (31)

implies α(A) < s where W,V ∈ Sn++, s ∈ R, and ε > 0 are fixed. The authors do not
discuss LMI regions and the results are not obviously generalizable to them.

4.4 Constraint topology

Consider the constraint sets,

An
D := {A ∈ Rn×n | ∃P ∈ Sn : (26) holds }

Ãn
D := {A ∈ Rn×n | ∃P ∈ Sn : (27) holds }

An
D(ε) := {A ∈ Rn×n | ∃P ∈ Sn : (29) holds } .

The following proposition characterizes the topology of An
D and Ãn

D (see Appendix C for
proof).

Proposition 4. (a) An
D is open.

(b) Ãn
D is not open if (i) n ≥ 2 or (ii) ∂D ∩ R is nonempty.

(c) Ãn
D is not closed if (i) n ≥ 4 or (ii) ∂D ∩ R is nonempty and n ≥ 2.

(d) cl(An
D) = {A ∈ Rn×n | λ(A) ⊂ cl(D) }.

Proposition 4 reveals a weakness of the relaxed constraints (27) and (28). Since Ãn
D is

not closed, any feasible path towards a matrix A ∈ cl(An
D) \ Ãn

D has no feasible limiting P .
In fact, P will grow unbounded along the path of iterates.

To analyze the topology of An
D(ε), we take a barrier function approach. Consider the

parameterized linear SDP,

ϕD(A) := inf
P∈Sn+

tr(V P ) subject to MD(A,P ) ⪰M. (32)

The optimal value function ϕD : Rn×n → R≥0∪{∞} is a barrier function for the constraint
A ∈ An

D. Theorem 2 establishes properties of ϕD and its ε−1-sublevel sets (see Appendix D
for proof).

Theorem 2. Let V ∈ Sn++ and M ∈ Sn+ such that MD(A,P ) ⪰M implies MD(A,P ) ≻ 0.
Then

(a) ϕD is continuous on AD;

(b) for each ε > 0, An
D(ε) is equivalent to the ε−1-sublevel set of ϕD, i.e.,

An
D(ε) = {A ∈ Rn×n | ϕD(A) ≤ ε−1 } (33)

and both are closed; and
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(c) An
D(ε)↗ An

D as ε↘ 0.

Remark 11. To reconstruct (30) via Theorem 2, we set M = sW ⊕0n×n for any W,V ≻ 0
and s > 0 and apply the Schur complement lemma to MD2(A,P )/s −M/s, where D2 is
the circle defined in Lemma 1 with x0 = 0, and MD2 is defined by the generating matrices
used in Lemma 1. Then the ε−1-sublevel set of ϕD2 equals the set of A ∈ Rn×n for which
(30) is feasible.

Similarly, we can reconstruct the set of A ∈ Rn×n for which (31) is feasible as ε−1-
sublevel sets of ϕD1 , where D1 is the shifted half-plane defined in Lemma 1, and M = W
for any W,V ≻ 0.

5 Cholesky substitution and elimination

In this section, we seek to approximate certain NSDPs by NLPs. Specifically, we consider
the NSDP

min
(β,Σ)∈Θ

f(β,Σ) (34)

where Θ is defined as in (20). This covers both ML (3) and MAP (4) problems with con-
straints (20). We combine Cholesky factor-based substitution with an elimination scheme
to convert the NSDP to a NLP while adding just |IA| variables to the optimization problem.

For this section, we define the following notation. For each I ⊆ Ln, let πL
I : Rn×n →

Ln[I] and πI : Rn×n → Sn[I] denote the orthogonal projections (in the Frobenius norm)
from Rn×n onto the subspaces Ln[I] and Sn[I], respectively. Let chol : Sn++ → Ln

++ denote
the invertible function that maps a positive definite matrix to its Cholesky factor.

5.1 Burer-Monteiro-Zhang method

We first consider the simplified constraint set

P := { (x,Q) ∈ Rm × Sn[I] | Q ⪰ H(x) } (35)

where Dn ⊆ I ⊆ Ln and H : Rm → Sn. As in [36], we parameterize the matrix argument
Q in a way that automatically enforces the constraint Q ≻ H(x) while introducing just n
scalar inequality constraints.

RecallQ ≻ H if and only ifQ = H+LL⊤ for the unique matrix L = chol(Q−H) ∈ Ln
++.

With J := Ln \ I, we can split L into a sum of LI ∈ Ln
++[I] and LJ ∈ Ln[J ], giving

Q = H + (LI + LJ )(LI + LJ )⊤. (36)

But Q ∈ Sn[I], so we can apply the vectorization operator vecsJ on both sides to give

vecsJ (H + (LI + LJ )(LI + LJ )⊤) = 0. (37)

Equation (37) defines |J | equations to solve for the |J | variables of LJ , where each LJ
ij is

fully specified by Hij and the Li′j′ with (i′, j′) < (i, j).5 In Algorithm 2, we compute the
LJ
ij in ascending lexicographic order via Cholesky factorization.

5The lexicographic order < on I2 is defined by (i, j) < (i′, j′) if i < i′ or (i = i′) ∧ (j < j′).
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Algorithm 2 Cholesky factorization algorithm for solving systems of the form (37) based
on [36, Lem. 1].

Require: Dn ⊆ I ⊆ Ln, LI ∈ Ln
++[I], and H ∈ Sn

1: (J , LJ )← (Ln \ I, 0n×n)
2: for each (i, j) ∈ J in ascending lexicographic order do
3: LJ

ij ← −
1

LI
jj
(Hij +

∑j−1
k=1(L

I
ik + LJ

ik)(L
I
jk + LJ

jk))

4: end for
5: return LJ

Notice that each LJ is fully defined by H and LI via algorithm 2, so we have proven
the following lemma.

Lemma 2 ([36, Lem. 1]). For each (H,LI) ∈ Sn×Ln[I] such that LI
ii ̸= 0 for each i ∈ I1:n,

there is a unique LJ ∈ Ln[J ] satisfying (37).

With a slight abuse of notation, we let LJ = LJ (H,LI) denote the function defined by
Algorithm 2, which maps each (H,LI) ∈ Sn × Ln

++[I] to the matrix LJ ∈ Ln[J ] uniquely
satisfying (37). Moreover, we let

Q(H,LI) := H + (LI + LJ (H,LI))(LI + LJ (H,LI))⊤

as in (36). Clearly Q(H,LI) ≻ H is satisfied by definition. Finally, we define the transfor-
mation

T (x, LI) :=
(
x,Q(H(x), LI)

)
(38)

which has the inverse
T−1(x,Q) :=

(
x, πL

I [chol(Q−H(x))]
)

(39)

and we have the following lemma.

Lemma 3 ([36, Lem. 2]). The function T defined by (38) is a bijection between Rm×Ln
++[I]

and int(P).

Differentiability of T and T−1 follow from differentiability of H and algorithm 2. In
fact, these functions are as smooth as H. More importantly, the bijection T allows us to
transform the minimum of a continuous function over P to an infimum over Rm×Ln

++[I],
given by the following theorem.

Theorem 3 ([36, Thm. 1]). If f : P → R is continuous and attains a minimum in P, then

min
(x,Q)∈P

f(x,Q) = inf
(x,LI)∈Rm×Ln

++[I]
f(T (x, LI)). (40)

We reiterate the proof of Theorem 3 for illustrative purposes.

Proof. Continuity of f implies its minimum over P equals its infimum over int(P), i.e.,

min
(x,Q)∈P

f(x,Q) = inf
(x,Q)∈int(P)

f(x,Q)
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Since T is a bijection, we can transform the optimization variables as follows:

inf
(x,Q)∈int(P)

f(x,Q) = inf
(x,LI)∈T−1(int(P))

f(T (x, LI)).

Finally, since Rm × Ln
++[I] = T−1(int(P)), we have (40).

5.2 Generalized Burer-Monteiro-Zhang method

We return to constraints of the form (20). Recall Assumption 1 requires the matrix inequal-
ities are strictly feasible in the constraint set. We use a similar procedure to Section 5.1,
but Algorithm 2 must be applied to each strict inequality Σ ≻ H and A(β,Σ) ≻ 0.

For the sparse symmetric matrix Σ and matrix inequality Σ ≻ H(β), the procedure
is the same as in Section 5.1. Let LJΣ = LJΣ(H,LIΣ) denote the function defined by
Algorithm 2 with LI = LIΣ , I = IΣ, and n = nΣ. Then

Σ(β, LIΣ) := H + (LIΣ + LJΣ(H,LIΣ))(LIΣ + LJΣ(H,LIΣ))⊤

guarantees Σ(H,LIΣ) ≻ H and Σ(H,LIΣ) ∈ SnΣ [IΣ] for all (H,LIΣ) ∈ SnΣ × LnΣ
++[IΣ].

In other words, Σ is fully defined and the constraint Σ ≻ H automatically satisfied by
(H,LIΣ) ∈ SnΣ × LnΣ

++[IΣ].
For the general matrix inequality A(β,Σ) ⪰ 0, the procedure is slightly different. Let

LJA = LJA(LIA) denote function defined by Algorithm 2 with LI = LIA , I = IA, n = nA,
and H = 0. Define the functions

A(LIA) := (LIA + LJA(LIA))(LIA + LJA(LIA))⊤

which guarantees A(LIA) ∈ SnA
++[IA] for all LIA ∈ LnA

++[IA]. However, the constraint is
not fully eliminated; we are left with |IA| equality constraints in the transform space,

vecsIA(A(β,Σ(H(β), LIΣ))−A(LIA)) = 0

with the other |LnA \ IA| constraints automatically guaranteed by Algorithm 2.
To define the new constraints, we require the variable transformations

T (β, LIΣ , LIA) :=
(
β,Σ(H(β), LIΣ)

)
(41a)

AT (β, LIΣ , LIA) := A(LIA) (41b)

which are well-defined for all (β, LIΣ , LIA) ∈ Rnβ ×LnΣ [IΣ]×LnA [IA]. With the functions
(41), we define the transformed constraint functions (gT , hT ) and the transformed con-
straint set Φ ⊆ Rnβ ×LnΣ [IΣ]×LnA [IA] according to (22) and (23). The inverse transform
is

T −1(β,Σ) :=
(
β, πL

IΣ [chol(Σ−H(β))], πL
IA [chol(A(β,Σ))]

)
(42)

for all (β,Σ) ∈ Θ++, and we have the following lemma.

Lemma 4. The function T defined by (41) is a bijection between Φ and Θ++.



TWCCC Technical Report 2024-01 20

Proof. First, we have T (Φ) ⊆ Θ++ since the transformed constraints guarantee the con-
straints g(β,Σ) = 0, h(β,Σ) ≤ 0, Σ ≻ H(β), and A(β,Σ) ≻ 0 for any (β,Σ) := T (ϕ) and
ϕ ∈ Φ. Next, it is clear by construction that T −1◦T is the identity map on Φ. Therefore T
is injective. Similarly, we have T −1(Θ++) ⊆ Φ by construction, and T ◦T −1 is the identity
map on Θ++, so T : Φ is surjective.

Under Assumption 1, the functions T , T −1, and AT are as smooth as H, and moreover,
the bijection T transforms a minimum over Θ into an infimum over Φ.

Proposition 5. If Assumption 1 holds and f : Θ → R is continuous and attains a mini-
mum in Θ, then

min
θ∈Θ

f(θ) = inf
ϕ∈Φ

f(T (ϕ)).

Proof. The proof follows that of Theorem 3, noting that Assumption 1 gives cl(Θ++) = Θ
and therefore the minimum of f over Θ equals the infimum of f over Θ++.

5.3 Approximate solutions

As mentioned in Section 3, we consider a lower bound ε > 0 on the diagonal elements of
(LIΣ , LIA). We define the tightened constraint set Φε by (24). In the following theorem
we show, under Assumption 1 and continuity of f , the infimum of f ◦ T over Φε converges
to the minimum of f over Θ (see Appendix E for proof).

Theorem 4. Suppose f is continuous and attains a minimum in Θ. Define µ0 := minθ∈Θ f(θ)
and

µε := inf
ϕ∈Φε

f(T (ϕ)). (43)

If Assumption 1 holds, then µε ↘ µ as ε↘ 0.

In fact, with a few additional requirements on the objective f , convergence of ap-
proximate problem solutions to the solution of the original problem is guaranteed by the
following theorem (see Appendix E for proof).

Theorem 5. Suppose f is continuous and Assumption 1 holds. Consider the set-valued
function θ̂ : R≥0 → P(Θ), defined as θ̂ε := argminθ∈T (Φε) f(θ) for all ε > 0, and θ̂0 :=
argminθ∈Θ f(θ). If there exists α ∈ R and compact C ⊆ Θ such that

Θf≤α := { θ ∈ Θ | f(θ) ≤ α }

is contained in C and Θf≤α ∩Θ++ is nonempty, then there exists ε > 0 such that, for all
ε0 ∈ [0, ε),

(a) f achieves a minimum in Θ and θ̂0 is nonempty;

(b) if ε0 > 0, then f achieves a minimum in T (Θε0) and θ̂ε0 is nonempty;

(c) µε is continuous and θ̂ε is outer semicontinuous at ε = ε0; and
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Figure 1: Benchmark temperature Control Laboratory (TCLab) [38].

(d) if θ̂0 is a singleton, then lim supε↘0 θ̂ε = θ̂0.

Remark 12. Originally, [36] used a log-barrier approach to handle the strict inequalities
implied by L ∈ Ln

++[I] and achieve global convergence for a class of linear SDPs. For prob-
lems of the form (40), the log-barrier term eliminates all remaining constraints. However,
for problems of the form (34) many constraints remain in addition to the strict inequalities
on the diagonal elements of (LIΣ , LIA) ∈ LnΣ

++[IΣ]× LnA
++[IA].

6 Case Studies

In this section, we present two real-world case studies in which Algorithm 1 is used to
identify the LADM (2) and implement offset-free MPC. In the first case study, we consider
the TCLab (Figure 1), an Arduino-based temperature control laboratory that serves as a
low-cost6 benchmark for linear MIMO control [38]. We identify the TCLab from open-loop
data and use the resulting model to design an offset-free MPC. We compare closed-loop
control and estimation performance of these models to that of offset-free MPCs designed
with the identification methods from [16, 17]. In the second case study, data from an
industrial-scale chemical reactor is used to design Kalman filters for the linear augmented
disturbance model, and the closed-loop estimation performance is compared to that of the
designs proposed in [17].

Throughout these experiments, we use an ℓ2 regularization term in the transformed
space,7,8

− ln p0(β, L
IΣ) ∝ R0(β, L

IΣ) :=
ρ

2

(
|β − β|2 + ∥LΣ(β, L

IΣ)− LΣ(β, L
IΣ)∥2F

)
. (44)

where ρ ≥ 0 is the regularization weight and (β, L
IΣ , L

IA) denote the initial guess for the

6The TCLab is available for under $40 from https://apmonitor.com/heat.htm and https://www.

amazon.com/gp/product/B07GMFWMRY.
7With LΣ(β, L

IΣ) = 0, the last term of (44) becomes proportional to tr(LΣL
⊤
Σ) = tr(Σ) where LΣ =

LΣ(β, L
IΣ) and Σ = Σ(β, LIΣ).

8With LJΣ(β, LIΣ) ≡ 0 (e.g., Σ is block diagonal and H(β) ≡ 0) the last term of (44) is proportional

to ∥LIΣ − L
IΣ∥2F = |vecIΣ(L

IΣ − L
IΣ)|2.

https://apmonitor.com/heat.htm
https://apmonitor.com/heat.htm
https://www.amazon.com/gp/product/B07GMFWMRY
https://www.amazon.com/gp/product/B07GMFWMRY
https://www.amazon.com/gp/product/B07GMFWMRY
https://www.amazon.com/gp/product/B07GMFWMRY
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Figure 2: TCLab identification data and noise-free responses ŷk =
∑k

j=1 ĈÂj−1B̂uk−j of
a few selected models.

optimizer. The variable LA is not regularized. With ρ = 0, the MAP problem (4) with the
regularizer (44) simplifies to the standard ML identification problem (3).

The initial guess for the ML and MAP problems is based on a nested ML estima-
tion approach described in [16, 17]. The initial guess methods effectively augment stan-
dard identification methods (e.g., principal component analysis (PCA), Ho-Kalman (HK),
canonical correlation analysis (CCA) algorithms), so we refer to the initial guess models
as “augmented” versions of the standard method being used (e.g., augmented PCA, aug-
mented HK, augmented CCA). Each optimization problem is formulated in CasADi via
Algorithm 1 and solved with IPOPT. Information about each model fit and configuration
is presented in Table 1. Wall times for a single-thread of an Intel Core i9-10850K processor
are reported.

6.1 Benchmark temperature controller

Unless otherwise specified, the TCLab is modeled as a two-state, two-disturbance system

of the form (2), with internal temperatures as plant states s =
[
T1 T2

]⊤
, heater volt-

ages as inputs u =
[
V1 V2

]⊤
, and measured temperatures y =

[
Tm,1 Tm2

]⊤
as outputs.

Throughout, we choose nd = p to satisfy the offset-free necessary conditions in [3, 4],
and we consider output disturbance models (Bd, Cd) = (02×2, I2). We use (As, Bs) fully
parameterized and C = I2 to guarantee model identifiability and make the states inter-
pretable as internal temperatures. For the remaining model terms, we have (Kx,Kd, Re)
fully parameterized and (D, ŝ0, d̂0) = (0, 0, 0).

Eight TCLab models are presented.

1. Augmented PCA: the 6-state TCLab model used in [16], where principle compo-
nent analysis on a 400× 5100 data Hankel matrix is used to determine the states in
the disturbance-free model.

2. Augmented ARX: a VARX(1, 1) model, equivalent to a stochastic LTI model with
process noise but zero measurement noise.
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Table 1: TCLab model fitting results. ∗ The augmented PCA/ARX identification methods
are not iterative. ∗∗ The maximum number of iterations was set at 500.

Model
Results Configuration

Time (s) Iterations LN (θ̂) Method ρ D ε εi

Augmented PCA 0.01 N/A∗ 3823.4 [16] N/A N/A N/A N/A

Augmented ARX 0.04 N/A∗ 3807.3 see text N/A N/A N/A N/A

Unregularized ML 119.46 500∗∗ -9430.9 Algo. 1 0 C 10−6 N/A

Regularized ML 1 120.06 500∗∗ -9431.7 Algo. 1 0.002 C 10−6 N/A

Regularized ML 2 9.06 21 -9416.6 Algo. 1 0.005 C 10−6 N/A

Constrained ML 1 71.92 97 -9347.2 Algo. 1 0 D1(0.3) ∩ D2(0.998, 0) 10−6 0.03

Constrained ML 2 50.69 62 -9358.2 Algo. 1 0 D1(0.3) ∩ D2(0.999, 0) 10−6 0.03

Reg. & Cons. ML 36.59 40 -9338.4 Algo. 1 0.001 D1(0.3) ∩ D2(0.998, 0) 10−6 0.03
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Figure 3: TCLab models open-loop and closed-loop (filter) eigenvalues.
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Figure 4: TCLab setpoint tracking tests.

3–5) Unregularized ML, Regularized ML 1 and 2: classic ML and MAP models.

6–8) Constrained ML 1 and 2, Reg. & Cons. ML: eigenvalue-constrained ML and
MAP models. LMI region constraints enforce filter stability and impose a lower
bound on the real part of the filter eigenvalues.

Each ML model uses Augmented ARX as the initial guess as it has the smallest number
of states. The augmented PCA model is, in effect, an unsupervised learner of the state
estimates, and therefore does not produce a parsimonious state description.

In Figure 2, the identification data is presented along with the noise-free responses
ŷk =

∑k
j=1 ĈÂj−1B̂uk−j of a few selected models. Computation times, numbers of IPOPT

iterations, and unregularized log-likelihood LN (θ̂) values are reported in Table 1. The
open-loop A and closed-loop AK := A − KC eigenvalues of each model are plotted in
Figure 3.

Except for the augmented PCA model, all of the open-loop eigenvalues cluster around
the same region of the complex plane (figure 3). The closed-loop filter eigenvalues are also
placed similarly, although the classic ML models (Unregularized ML, Regularized ML 1 and
2) suffer from slow or even unstable filter eigenvalues, despite achieving lower LN (θ̂) values
than their eigenvalue-constrained counterparts. The models with unstable eigenvalues fail
to converge (Table 1) as the unstable filter modes make the problem extremely sensitive
to changes in the parameter values. While sufficiently high ρ is sufficient to achieve filter
stability, there are no clear minimum value of ρ to achieve this. On the other hand,
the constrained ML models have stable filter eigenvalues without regularization, and have
well-defined estimator performance guarantees based on the applied constraints.

To test offset-free control performance, we performed two sets of closed-loop exper-
iments on offset-free MPCs designed with the models. In Figure 4, identical setpoint
changes were applied to a TCLab running at a steady-state power output of 50%. The set-
point changes were tracked with the offset-free MPC design described in [16]. In Figure 5,
step disturbances in the output pi and the input mi are injected into a plant trying to
maintain a given steady-state temperature. The setpoints are tracked with the offset-free
MPC design described in [16].
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Figure 8: TCLab identification index data for (left) setpoint tracking and (right) distur-
bance rejection tests.

Control performance is quantified by the squared distance from the setpoint ℓk :=
|yk − ysp,k|2. Estimation performance is quantified by the squared filter errors e⊤k ek. For

any signal ak, we define a T -sample moving average by ⟨ak⟩T := T−1
∑T−1

j=0 ak−j . Setpoint
tracking performance is reported in Figure 6, and disturbance rejection performance is
reported in Figure 7. The worst performing models are those with unstable filters (Un-
regularized ML and Regularized ML 1). These models shut off over the course of the ex-
periment as the integrating disturbance estimates grow unbounded. The remaining classic
ML model (Regularized ML 2) has slow filter eigenvalues that contribute to poor control
performance on the disturbance rejection test (Figure 7, left). The augmented models
(Augmented PCA/ARX) perform poorly in either control or estimation aspect on both
test. The best performance is achieved by the remaining ML models, which all perform
approximately the same across the tests.

To investigate the distributional accuracy of the models, we quantify performance with
the identification index q := e⊤R−1

e e. Recall the signal ek ∈ R2 is an i.i.d., zero-mean

Gaussian process, i.e., ek
iid∼ N (0, Re), and therefore the index qk is i.i.d. with a χ2

2 dis-
tribution. Moreover, the moving average ⟨qk⟩T is distributed as χ2

2T /T , although it is no
longer independent in time. In Figure 8, histograms of ⟨q⟩T , T ∈ { 1, 10, 100 } are plotted
against their expected distribution for a few selected models (Augmented PCA/ARX, Un-
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Figure 9: Schematic of the DMT reactor and MPC control strategy.

regularized ML, and Reg. & Cons. ML). The extreme discrepancies between the augmented
models’ performance index ⟨q⟩T and the reference distribution χ2

2T /T are primarily due to
the augmented models significantly overestimating Re compared to the ML models,

R̂Aug. PCA
e = [ 0.5871 0.3365

0.3365 0.2878 ], R̂Aug. ARX
e = [ 0.5084 0.2198

0.2198 0.2980 ],

R̂Unreg. ML
e = [ 0.0106 0.0007

0.0007 0.008 ], R̂Reg. Cons. ML
e = [ 0.0107 0.0007

0.0007 0.008 ].

The reference distribution and the ML models’ ⟨q⟩T distribution diverge at large T since,
due to plant-model mismatch, the filter’s innovation errors are slightly autocorrelated.
Frequent right-tail errors from the unregularized ML model are due to filter instability.

6.2 Eastman reactor

A schematic of the chemical reactor considered in the next case study is presented in
Figure 9.The control objective of the chemical reactor is to track three setpoints (the out-

put, a specified reactor temperature y = T , and the flowrates
[
u1 u3

]⊤
=
[
F1 F2

]⊤
),

without offset, by controlling the three inputs (the reactant flow rates and utility tem-

peratures u =
[
F1 TH F2

]⊤
).9 See [17] for more details about the reactor operation.

As in Section 6.1, we choose nd = p and consider output disturbance models (Bd, Cd) =
(02×1, 1). This time, we use an observability canonical form [40] with As =

[
0 1
a1 a2

]
and

9The flowrates are both manipulated variables and controlled variables. At steady-state, we should reach

the setpoints in y = T and
[
u1 u3

]⊤
=

[
F1 F2

]⊤
, but u2 = TH will not reach a predefined setpoint.
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Figure 10: Training data and noise-free responses for the Eastman reactor models (Aug-
mented HK and ML models using Augmented HK as the initial guess).

Table 2: Eastman reactor model fitting results. ∗ The augmented identification methods
are not iterative. ∗∗ The maximum number of iterations was set at 500.

Model
Results Configuration

Time (s) Iterations LN (θ̂) Method ρ D ε εi

Augmented CCA 0.09 N/A∗ -11399.3 [17] N/A N/A N/A N/A

Unregularized ML 5.59 19 -14383.1 Algo. 1 0 C 10−6 N/A

Regularized ML 1 5.46 17 -14362.5 Algo. 1 0.0 C 10−6 N/A

Regularized ML 2 5.75 20 -14346.7 Algo. 1 0.1 C 10−6 N/A

Regularized ML 3 4.89 13 -14108.0 Algo. 1 1.0 C 10−6 N/A

Constrained ML 1 19.89 92 -13944.9 Algo. 1 0 D1(0.3) 10−6 0.01

Constrained ML 2 16.58 73 -13941.1 Algo. 1 0 D1(0.3) 10−6 0.02

Constrained ML 3 14.01 58 -13928.5 Algo. 1 0 D1(0.3) 10−6 0.04

Cs =
[
1 0

]
. For the remaining model terms, we have (Bs,Kx,Kd, Re) fully parameterized

and (D, ŝ0, d̂0) = (0, 0, 0).
Eight reactor models were fit to the closed-loop data from [17]:

1. Augmented CCA: a CCA model [67] augmented with a disturbance model, as
detailed in [17].10

3–5) Unregularized ML, Regularized ML 1 to 3: classic ML and MAP models.

6–8) Constrained ML 1 to 3: eigenvalue-constrained ML and MAP models. LMI region
constraints impose a lower bound on the real part of the filter eigenvalues.

Each ML model uses the augmented CCA model as the initial guess. In Figure 10, the
closed-loop identification data and noise-free responses are presented. Computational de-
tails, the unregularized log-likelihood value, and model configuration details are reported
in Table 2. The open-loop As and closed-loop AK eigenvalues are plotted in Figure 11.

The main difference between eigenvalues of the unconstrained ML models (Unregular-
ized ML and Regularized ML 1–3) and the constrained ML models (Constrained ML 1–3)

10This is not the same model used in [17], as a different input-output model is considered, although the
same data is used. Specifically, [17] considered a model with both regulatory-layer setpoints and measured
values.
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Figure 11: Eastman reactor models open-loop and closed-loop (filter) eigenvalues.
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Figure 12: Test performance for the Eastman reactor models on the test data sets from [17].

are faster open-loop eigenvalues and closed-loop eigenvalues with possibly negative real
part (Figure 11). For the constrained ML models, the real part of this fast filter eigenvalue
is bounded from below using the LMI region constraint D1(0.3). As in the TCLab case
study, sufficiently high ρ is sufficient to avoid the negative eigenvalue, but there is no clear
cutoff to achieve this.

The estimation performance for these filters are compared on two test data sets (from [17])
in Figure 12. While the unconstrained models appear to have the best test performance,
it is at a cost of undesirable estimate dynamics. In Figure 13, we plot the filter response
to an initial guess equal to the eigenvector corresponding to the smallest eigenvalue of AK .
Those filters with eigenvalues having negative real parts exhibit overshoot in the estimate.
The best performing filters without this behavior are the constrained ML models.

Control performance could not be compared on the real plant due to cost and safety
considerations. However, the closed-loop responses can be compared in simulation. In
Figure 14, we plot simulated responses to a setpoint change. Each simulation considers
the nominal closed-loop response (i.e., plant as the model, no noise) using the offset-free



TWCCC Technical Report 2024-01 30

0 10 20 30 40 50

time (s)

0

1

2

ek

Augmented CCA

Unregularized ML

Regularized ML 1

Regularized ML 2

Regularized ML 3

Constrained ML 1

Constrained ML 2

Constrained ML 3

Figure 13: Eastman reactor models’ closed-loop (filter) response to the eigenvector corre-
sponding to the fastest eigenvalue.

58

59

60

T

Setpoints Augmented CCA

Unregularized ML

Regularized ML 1

Regularized ML 2

Regularized ML 3

Constrained ML 1

Constrained ML 2

Constrained ML 3

8

10

12

F 1

0.0 0.1 0.2 0.3 0.4

time (hours)

96

98

TH

0.0 0.1 0.2 0.3 0.4

time (hours)

65

70

F 2

Figure 14: Eastman reactor models simulated closed-loop test performance.
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MPC design in [17] with Qs = 1 and Rs = diag(0.01, 1, 0.01). The regularized ML models
exhibit significant overshoot in the response, whereas the unregularized ML model and
constrained ML models do not.

6.3 Discussion

The main limitation of eigenvalued-constrained ML is computational cost. While con-
strained ML retains linear scaling in sample size N , each LMI region constraint on an
arbitrary system matrix Ã ∈ Rñ×ñ requires an additional O(ñ2(m2 + 1)) variables and
O(ñ2m2) equality constraints. These requirements can be significantly reduced for spec-
tral abscissa bounds D1(s) and stability constraints D2(s, 0). As mentioned in remark 10,
these constraints are quite similar to the “smooth” spectral radii and abscissa constraints
of [65, 66], which only add O(ñ2) variables and O(ñ2) equality constraints. For eigenvalues
constrained to the LMI regions D1(s) or D2(s, x0), implementing these constraints as a
special case can reduce the computational cost significantly.

For a standard, black-box LADM (2) with nd = p, a canonical form for (As, Bs, Cs),
and (D, ŝ0, d̂0) = (0, 0, 0), there are O(ns(p + m) + p2) variables before constraints are
added, and O(n2

s) variables after. Thus, fitting black-box models of large-scale systems is
computationally prohibitive. However, as discussed in Section 2, large-scale chemical plants
and networked systems may be represented by significantly fewer variables: O(Nunu(pu +
mu) + Nup

2
u) without constraints, or O(Nun

2
u) with constraints, where Nu is the number

of units or nodes, and nu,mu, pu are the number of states, inputs, and outputs per unit or
node.

7 Conclusion

We propose an algorithm for identifying offset-free MPC-relevant models with ML iden-
tification, which includes a method of generating closed constraints on the eigenvalues
of system matrices, and a Cholesky factor reparameterization of nonlinear SDPs as stan-
dard NLPs. The algorithm is validated on real-world data in two case studies: a low-cost
benchmark temperature controller, and an industrial-scale reactor.

The code, including sample TCLab datasets and scripts for model fitting, is made
available at github.com/rawlings-group/mlid_2024. The Eastman reactor data is pro-
prietary and is not made available. We will develop this code further for reliable applica-
tions on large-scale systems.

We conclude with some suggestions of future research. Since ML identified models are
more distributionally accurate, they are more suitable to the performance monitoring tech-
nique of [68]. Integrated identification and offset-free controller validation may be possible
by combining this method with ours. There are limitations to the performance of Kalman
filter-based disturbance observers, as shown by [69]. Specifically, the largest real filter
eigenvalue is often bounded from below by the largest real open-loop eigenvalue. We find
these limitations present in all our case studies. Filter designs with eigenvalue constraints
may overcome these limitations and deliver superior offset-free MPC performance.

https://github.com/rawlings-group/mlid_2024
github.com/rawlings-group/mlid_2024
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A Proof of Proposition 1

Silverman [50] contains a more complete characterization of the DARE solutions for reg-
ulation problems with cross terms. However, this admits additional nullspace terms into
the gain matrix which the Kalman filtering problem does not allow. We avoid nullspace
terms through the assumption Rv ≻ 0 and therefore streamline the proof of Proposition 1.

For the following definitions and lemmas, consider the system matricesW := (A,B,C,D)
corresponding to a noise-free system.

Definition 2. The system W is left invertible on I0:k−1 if

0 =


D
CB D
...

. . .
. . .

CAk−2B . . . CB D


 u0

...
uk−1


implies u0 = 0. The system W is left invertible if there is some j ∈ I>0 such that W is left
invertible on I0:k−1 for all k ≥ j.

Definition 3. The system W is strongly detectable if yk → 0 implies xk → 0.

The following lemmas are taken directly from [50, Thms. 8, 18(iii)], but the proofs are
omitted for the sake of brevity.

Lemma 5 ([50, Thm. 8]). If W is left invertible, then W is strongly detectable if and only
if (A−BF,C −DF ) is detectable for all F of appropriate dimension.

Lemma 6 ([50, Thm. 18(iii)]). If W is left invertible, then the DARE

P = A⊤PA− (A⊤PB + C⊤D)(B⊤PB +D⊤D)−1(B⊤PA+D⊤C)

has a unique, stabilizing solution11 if and only if W is stabilizable and semistrongly de-
tectable.

For the remainder of this section, we consider the full rank factorization[
Qw Swv

S⊤
wv Rv

]
=

[
B̃

D̃

] [
B̃⊤ D̃⊤]

and the dual system W̃ := (A⊤, C⊤, B̃⊤, D̃⊤) to analyze the properties of the original
system (11). The following lemma relates the properties Rv ≻ 0 and left invertability of
W̃.

Lemma 7. If Rv ≻ 0 then W̃ is left invertible.

11Contrary to in Section 2, here we mean the solution P is stabilizing when A−BK(P ) is stable, where
K(P ) := (B⊤PB +D⊤D)−1B⊤P .
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Proof. Left invertability on I0:k−1 is equivalent to

0 =


D̃⊤

B̃⊤C⊤ D̃⊤
...

. . .
. . .

B̃⊤(A⊤)k−2C⊤ . . . B̃⊤C⊤ D̃⊤


 u0

...
uk−1

 (45)

implying u0 = 0. But Rv = D̃D̃⊤ ≻ 0, so D̃⊤ has a zero nullspace. For each k ∈ I>0, the
coefficient matrix of (45) has a zero nullspace. Thus, u0 = 0 and W̃ is left invertible.

Finally, we can prove Proposition 1.

Proof of Proposition 1. By Lemma 7, we have that W̃ is left invertible. Therefore, by
Lemma 6, the DARE (15) has a unique, stabilizing solution if and only if W̃ is stabilizable
and strongly detectable. But by Lemma 5 and duality, the latter statement is true if and
only if (A,C) is detectable and (A− FC, B̃ − FD̃) is stabilizable for all F ∈ Rn×p.

B Proof of Proposition 2

Throughout this appendix, we define the set of n×n Hermitian, Hermitian positive definite,
and Hermitian positive semidefinite matrices as Hn, Hn

++, and Hn
+. Notice that fD maps

to Hermitian matrices so we can write it as f : C → Hm. We define the extension of MD
to complex arguments MD : Cn×n ×Hn

+ → Hnm as

MD(A,P ) := M0 ⊗ P +M1 ⊗ (AP ) +M⊤
1 ⊗ (AP )H.

To show Proposition 2, we need a preliminary result about Hermitian positive semidefinite
matrices, generalized from Lemma A.1 in [25].

Lemma 8. For any M ∈ Hn, if M ⪰ 0 (M ≻ 0) then Re(M) ⪰ 0 (Re(M) ≻ 0).

Proof. With M = Re(M) + ιIm(M), it is clear M Hermitian implies Re(M) is symmetric
and Im(M) is skew-symmetric. Thus v⊤Mv = v⊤Re(M)v for all v ∈ Rn, and positive
(semi)definiteness of M implies positive (semi)definiteness of Re(M).

In proving Proposition 2, we take the approach of [25] but are careful to distinguish
eigenvalues on the interior D from those on the boundary ∂D.

Proof of Proposition 2. (⇐) Suppose that MD(A,P ) ⪰ 0 for some P ≻ 0 and let λ ∈ λ(A).
Then there exists a nonzero v ∈ Cn for which vHA = λvH. Consider the identity

(Im ⊗ v)HMD(A,P )(Im ⊗ v) = M0 ⊗ vHPv +M1 ⊗ (vHAPv) +M⊤
1 ⊗ (vHPA⊤v)

= M0 ⊗ vHPv +M1 ⊗ (λvHPv) +M⊤
1 ⊗ (λvHPv)

= vHPv(M0 +M1λ+M⊤
1 λ)

= vHPvfD(λ).
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The assumption P ≻ 0 implies vHPv > 0, and MD(A,P ) ⪰ 0 further implies fD(λ) ⪰ 0.
Therefore λ ∈ cl(D).

Next suppose λ ∈ λ(A) is non-simple and λ ∈ ∂D. Then there exists nonzero v1, v2 ∈ Cn

(linearly independent) such that vHfD(λ)v = 0, vH1 A = λvH1 , and vH2 A = λvH2 +v1. Because
D is open, λ ∈ ∂D = cl(D) \ D must satisfy both fD(λ) ⪰ 0 and fD(λ) ̸≻ 0. Therefore
fD(λ) is singular, and there exists a nonzero vector v ∈ Cm such that vHfD(λ)v = 0. With
the 2× 2 matrices

P̃ =

[
p11 p12
p12 p22

]
:=

[
vH1
vH2

]
P
[
v1 v2

]
≻ 0

J̃ := λI2 +

[
0 1
0 0

]
we have

[
v1 v2

]H
A = J̃

[
v1 v2

]H
and therefore

(Im ⊗
[
v1 v2

]
)HMD(A,P )(Im ⊗

[
v1 v2

]
) = M0 ⊗ P̃ +M1 ⊗ J̃ P̃ +M⊤

1 ⊗ (J̃ P̃ )⊤

= MD(J̃ , P̃ ) ⪰ 0.

Next, we have

M̃ := K2,mMD(J̃ , P̃ )K⊤
2,m

= P̃ ⊗M0 + J̃ P̃ ⊗M1 + (J̃ P̃ )⊤ ⊗M⊤
1

= P̃ ⊗ fD(λ) +
[
p12(M1 +M⊤

1 ) p22M1

p22M
⊤
1 0

]
⪰ 0.

Finally,

(I2 ⊗ v)HM̃(I2 ⊗ v) =

[
p12v

H(M1 +M⊤
1 )v p22v

HM1v
p22v

HM⊤
1 v 0

]
⪰ 0.

But P̃ ≻ 0 implies p22 > 0, so the above matrix inequality implies vHM1v = 0. Moreover,
with vHfD(λ)v = 0, we also have vHM0v = 0 and therefore f(z) ≡ 0 and D is empty, a
contradiction. Therefore each λ ∈ λ(A) non-simple implies λ ∈ D.

(⇒) Suppose λ(A) ⊂ cl(D) and λ ∈ λ(A) non-simple implies λ ∈ D.
If A = λ is a (possibly complex) scalar, then it lies in cl(D) by assumption, with

MD(λ, p) = pfD(λ) ⪰ 0 for all p > 0.
If A = λIn+N is a (possibly complex) Jordan block, where N ∈ Rn×n is a shift matrix

and n > 1, then λ ∈ D and fD(λ) ≻ 0. Let Tk := diag(kn−1, . . . , k, 1) for each k ∈ I>0.
Then T−1

k ATk = λIn + k−1N → λIn as k →∞. Moreover, because MD is continuous, we
have

MD(T
−1
k ATk, In)→MD(λIn, In) = fD(λ)⊗ In ≻ 0.

Therefore there exists some k0 ∈ I>0 such that MD(T
−1
k ATk, In) ≻ 0 for all k ≥ k0. With

P := TkT
⊤
k , we have

MD(A,P ) = M0 ⊗ TkT
⊤
k +M1 ⊗ (ATkT

⊤
k ) +M⊤

1 ⊗ (ATkT
⊤
k )⊤

= (Im ⊗ Tk)(M0 ⊗ In +M1 ⊗ T−1
k ATk +M⊤

1 ⊗ (T−1
k ATk)

⊤)(Im ⊗ Tk)
⊤

= (Im ⊗ Tk)MD(T
−1
k ATk, In)(Im ⊗ Tk)

⊤ ≻ 0.
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Finally, for any A ∈ Rn×n, let A = V (
⊕p

i=1 Ji)V
−1 denote the Jordan decomposition

of A, where Ji = λiIni +Ni, λi ∈ λ(A), Ni are shift matrices, and n =
∑p

i=1 ni. We have
already shown that for each i ∈ I1:p, there exists Pi ≻ 0 such that MD(Ji, Pi) ⪰ 0. Then
with P̃ := V (

⊕p
i=1 Pi)V

−1, we have

(Im ⊗ V −1)MD(A, P̃ )(Im ⊗ V −1)H

= M0 ⊗

(
p⊕

i=1

Pi

)
+M1 ⊗

(
p⊕

i=1

JiPi

)
+M1 ⊗

(
p⊕

i=1

JiPi

)⊤

= Kn,m

(
p⊕

i=1

Km,niMD(Ji, Pi)K
⊤
m,ni

)
K⊤

n,m ⪰ 0

and therefore MD(A, P̃ ) ⪰ 0. Last, Lemma 8 gives MD(A,P ) ⪰ 0 with P := Re(P̃ ) since

MD(A,P ) = MD(A,Re(P̃ )) = Re(MD(A, P̃ )).

C Proof of Proposition 4

To show Proposition 4(a), we first require the following eigenvalue sensitivity result due
to [39, Thm. 7.2.3].

Theorem 6 ([39, Thm. 7.2.3]). For any A ∈ Cn×n, denote its Schur decomposition by
A = Q(D +N)QH, where Q ∈ Cn×n is unitary, D ∈ Cn×n is diagonal, and N ∈ Cn×n is
strictly upper triangular.12 Let p be the smallest positive integer for which Mp = 0 where
Mij := |Nij |. Then, for any E ∈ Rn×n and µ ∈ λ(A+ E),

min
λ∈λ(A)

|µ− λ| ≤ max { c∥E∥, (c∥E∥)1/p }

where c :=
∑p−1

k=0 ∥N∥
k.

Proof of Proposition 4. Throughout this proof, we show a set S is not open (or not closed)
by demonstrating that Sc (or S) does not contain all its limit points.

(a)—For any A ∈ An
D, continuity of fD gives the existence of a function δ(λ) > 0 such

that fD(z) ≻ 0 for all |z−λ| < δ(λ) and λ ∈ λ(A). Let δ := minλ∈λ(A) δ(λ). By Theorem 6
and norm equivalence, there exist c > 0 and p ∈ I1:n such that

max
µ∈λ(A+E)

min
λ∈λ(A)

|λ− µ| ≤ max { c∥E∥F, (c∥E∥F)1/p }

for all E ∈ Rn×n. Therefore there exists a ε > 0 such that

max
µ∈λ(A+E)

min
λ∈λ(A)

|λ− µ| < δ

12A matrix U is strictly upper triangular if Uij = 0 for all i ≥ j.
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for all E ∈ B := {E′ ∈ Rn×n | ∥E′∥F < ε }. Finally, A+B is a neighborhood of A contained
in An

D, and, since A ∈ An
D was chosen arbitrarily, An

D is open.
(b)(i)—Because D is open, nonempty, and not equal to D, ∂D is nonempty. Let λ ∈ ∂D

and λk ∈ Dc be a sequence for which λk → λ. By symmetry, we also have λ ∈ D and
λk ∈ Dc.

For n = 2, we have A :=
[
Re(λ) −Im(λ)
Im(λ) Re(λ)

]
∈ R2×2 has eigenvalues λ, λ ∈ D, and Ak :=[

Re(λk) −Im(λk)
Im(λk) Re(λk)

]
∈ R2×2 has eigenvalues λk, λk ∈ Dc for each k ∈ I>0. The corresponding

eigenvectors are
[±ι

1

]
∈ C2. Therefore A ∈ Ã2

D but Ak ∈ (Ã2
D)

c for each k ∈ I>0, and the

limit Ak → A gives us that (Ã2
D)

c does not contain all its limit points.
For n > 2, let A0 ∈ Ãn−2

D , and we can extend the prior argument with the sequence
Bk := Ak ⊕A0 ∈ (Ãn

D)
c, k ∈ I>0 that converges to B := A⊕A0 ∈ Ãn

D.
(b)(ii)—By part (b)(i), it suffices to consider the case n = 1. By closure and convexity

of D, D∩R is either a closed line segment, a closed ray, or R itself. In other words, D∩R is
open if and only if it has no endpoints. Moreover, since ∂D ∩R is the set of the endpoints
of D ∩ R, D ∩ R is open if and only if ∂D ∩ R is empty. Finally, since Ã1

D = D ∩ R, Ã1
D is

open if and only if ∂D ∩ R is empty.
(c)(i)—Let λ ∈ ∂D. Suppose n = 4. Then λ ∈ ∂D by symmetry. Because D is

open, there exists a sequence λk ∈ D such that λk → λ, and by symmetry, we also have
λk ∈ D and λk → λ. Consider again the 2 × 2 matrices A and Ak from part (b)(i),
which have eigenvalues λ, λ ∈ D and λk, λk ∈ Dc, respectively. Then the block matrices

B :=
[
A I2
0 A

]
∈ R4×4 and Bk :=

[
Ak I2
0 Ak

]
∈ R4×4 have the same eigenvalues, but this time

the eigenvectors are

[±ι
1
0
0

]
,

[
0
0
±ι
1

]
∈ C4 and the eigenvalues are non-simple. Since λ is a

non-simple eigenvalue on the boundary of D, we have B ̸∈ Ã4
D. However, λk are all in the

interior of D, so Bk ∈ Ã4
D. Since Bk → B, the set Ã4

D does not contain all its limit points.
On the other hand, let λ ∈ ∂D and suppose n > 4. Similarly to part (b)(i), with

any Ã0 ∈ Ãn−4
D , we can extend the argument for the n = 4 case with the sequence Ãk :=

Bk ⊕ Ã0 ∈ Ãn
D, k ∈ I>0 that converges to Ã := B ⊕ Ã0 ∈ (Ãn

D)
c.

(c)(ii)—Let λ ∈ ∂D ∩ R and n ≥ 2. Because D is convex, open, and nonempty,
there exists ε > 0 such that exactly one of the real intervals (λ, λ + ε) or (λ − ε, λ) is
contained in D, whereas the other is contained in int(Dc). Without loss of generality,
assume (λ − ε, λ) ⊆ D.13 Then Ak := (λ − ε/k)In + Nn ∈ Ãn

D for each k ∈ I>0, but
Ak → λIn +Nn ∈ (Ãn

D)
c and therefore Ãn

D does not contain all its limit points.
(d)—Since An

D := {A ∈ Rn×n | λ(A) ⊂ cl(D) } contains An
D, it suffices to show any

A ∈ An
D is a limit point of An

D. Denote the Jordan form by A = V (
⊕p

i=1 µiIni +Nni)V
−1,

where V ∈ Rn×n is invertible, µi ∈ λ(A), n =
∑p

i=1 ni, and Ni ∈ Rni×ni is a shift
matrix. Because µi ∈ cl(D), there exists a sequence µi,k ∈ D such that µi,k → µi. Then
Ak := V (

⊕p
i=1 µi,kIni +Ni)V

−1 ∈ An
D and Ak → A.

13Otherwise, take the reflection about the imaginary axis −D and −Ãn
D.
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D Proof of Theorem 2

To prove Theorem 2(a,b), we use sensitivity results on the value functions of parameterized
nonlinear SDPs,

V (y) := inf
x∈X(y)

F (x, y) (46)

where the set-valued function X : Rm → P(Rn) is defined by

X(y) := {x ∈ Rn | G(x, y) ⪰ 0 } .

Consider also the graph of the set-valued function X,

Z := { (x, y) ∈ Rn+m | G(x, y) ⪰ 0 } .

Notice that Z is closed if G is continuous. We say Slater’s condition holds at y ∈ Rm if
there exists x ∈ Rn such that x ∈ int(X(y)), or equivalently, G(x, y) ≻ 0. In the following
proposition, we specialize [70, Prop. 4.4] to nonlinear SDPs.

Proposition 6 ([70, Prop. 4.4]). Let y0 ∈ Rm and suppose

(i) F and G are continuous on Rn+m;

(ii) there exist α ∈ R and compact C ⊂ Rn such that, for each y in a neighborhood of y0,
the level set

lev≤αF (·, y) := {x ∈ X(y) | F (x, y) ≤ α }

is nonempty and contained in C; and

(iii) Slater’s condition holds at y0.

Then F (·, y) attains a minimum on X(y) for all y ∈ Ny, and V (y) is continuous at y = y0.

Proof. See [70, Prop. 4.4] and the discussions in [70, pp. 264, 483–484, 491–492].

Proof of Theorem 2. Let vec : Rn×n → Rn2
and vecs : Rn×n → R(1/2)(n+1)n denote the

vectorization and symmetric vectorization operators, respectively.
(a)—With x := vecs(P ), y := vec(A), F (x, y) := tr(V P ), andG(x, y) := P⊕(MD(A,P )−

M), we can use Proposition 6 to show the continuity of ϕD on An
D. Let A0 ∈ An

D.
Condition (i) of Proposition 6 holds by assumption. Slater’s condition (iii) holds be-
cause for any P ≻ 0 such that MD(A0, P ) ≻ 0, we can define P0 := γP ≻ 0 for some
γ > γ0 := ∥M∥ × ∥[MD(A0, P )]−1∥ to give

MD(A0, P0) = γMD(A0, P ) ≻ γ0MD(A0, P ) ⪰M.

Moreover, by continuity ofMD, there exists a neighborhoodNA ofA0 such thatMD(A,P0) ≻
M for all A ∈ NA. Letting α := tr(V P0) > 0, we have that the set

{P ∈ Sn+ | tr(V P ) ≤ α }
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is compact and contains the nonempty level set

{P ∈ P(A) | tr(V P ) ≤ α }

for all A ∈ NA. Taking the image of each of the above sets under the vecs operation gives
condition (ii) of Proposition 6. All the conditions of Proposition 6 are thus satisfied for
each A0 ∈ An

D, and we have ϕD is continuous on An
D.

(b)—Continuity of ϕD on An
D implies closure of the sublevel sets of ϕD, and (33) follows

by definition of An
D(ε).

(c)—First, MD(A,P ) ≻ 0 implies P ≻ 0 by Proposition 3. Moreover, for any P ≻ 0
such that MD(A,P ) ≻ 0, we have MD(A,P ) ⪰ γMD(A,P ) ⪰ M with P := γP and
γ := ∥M∥ × ∥[MD(A,P )]−1∥, so feasibility of (17) is equivalent to feasibility of

MD(A,P ) ≻M, P ⪰ 0

and therefore
⋃

ε>0An
D(ε) = An

D. But An
D(ε) is monotonically decreasing,14 so An

D(ε) ↗⋃
ε>0An

D(ε) = An
D as ε↘ 0.

E Proof of Theorems 4 and 5

Starting with Theorem 4:

Proof of Theorem 4. Since µε is nondecreasing and bounded from below by µ, it suffices
to show that for each δ > 0, there exists a ε > 0 such that µε − µ < δ.

Let θ∗ ∈ Θ denote a point for which µ = f(θ∗). If θ∗ ∈ Θ++, we could simply choose
ε > 0 large enough to put θ∗ in T (Φε) and achieve µε − µ = 0 < δ.

Instead, we assume θ∗ ̸∈ Θ++. By Assumption 1, there exists a sequence θk ∈ Θ++, k ∈
I>0 such that θk → θ as k → ∞. Defining νk := f(θk), we have νk → µ by continuity
of f . Therefore, there exists some k0 ∈ I>0 such that νk − µ < δ for all k ≥ k0. For
each θk ∈ Θ++, there exists a unique ϕk = (βk, L

IΣ
k , LIA

k ) ∈ Φ such that θk = T (ϕk) (by

Lemma 4). Let ε be the minimum over all the diagonal elements of LIΣ
k0

and LIA
k0

. Then

(βk0 , L
IΣ
k0
, LIA

k0
) ∈ Φε by construction, νk0 ≥ µε by optimality, and µε−µ ≤ νk0−µ < δ.

As in Appendix D, we use sensitivity results of [70] on optimization problems to prove
Theorem 5. This time, however, we consider the continuity of the value function for
parameterized NLPs on Banach spaces. Let X , Y, and K be Banach spaces and consider
the parameterized NLP,

V (y) := inf
x∈X(y)

F (x, y) (47)

where the set-valued function X : Y → P(X ) is defined by

X(y) := {x ∈ X | G(x, y) ∈ K }
14By “monotonically decreasing” we mean ε ≤ ε′ ⇒ An

D(ε) ⊇ An
D(ε′).
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for some G : X ×Y → K and K ⊆ K is closed. Let X0(y) denote the (possibly empty) set
of solutions to (47). Define the graph of the set-valued function X(·) by

Z := { (x, y) ∈ X × Y | G(x, y) ∈ K } .

Notice that Z is closed if G is continuous and K is closed.

Proposition 7 ([70, Prop. 4.4]). Let y0 ∈ Y and assume:

(i) F and G are continuous on X × Y and K is closed;

(ii) there exist α ∈ R and a compact set C ⊆ X such that, for every y in a neighborhood
of y0, the level set

{x ∈ X(y) | f(x, y) ≤ α }

is nonempty and contained in C; and

(iii) for any neighborhood Nx of the solution set X0(y0), there exists a neighborhood Ny

of y0 such that Nx ∩ X(y) is nonempty for all y ∈ Ny;

then V (y) is continuous and X0(y) is outer semicontinuous at y = y0.

Proof of Theorem 5. First, we must specify ε. For each θ ∈ Θ++, let

ε(θ) := max { ε > 0 | θ ∈ T (Φε) }

where the maximum is achieved since there is a finite number of diagonal elements of the
Cholesky factors that must be lower bounded. Now we specify ε as the supremum of ε(θ)
over all θ ∈ Θf≤α ∩Θ++,

ε := sup { ε(θ) | θ ∈ Θf≤α ∩Θ++ }

so that, for any ε ∈ (0, ε), Θf≤α ∩ T (Φε) is nonempty and is contained in the compact set
C.

(a)—Following the proof of [70, Prop. 4.4], we have (i) F is continuous and (ii) the
level set Θf≤α is nonempty and contained in the compact set C, which implies Θf≤α is a
compact level set and therefore the minimum of f over Θf≤α is achieved and equals the

minimum over Θ. Moreover, θ̂0 must be nonempty.
(b)—Similarly to part (a), we have, for each ε ∈ (0, ε), that the level set Θf≤α ∩T (Φε)

is nonempty and contained in the compact set C, so f achieves its minimum over T (Φε)
and θ̂ε is nonempty.

(c)—Consider the graph of the constraint function,

Z := { (θ, ε) ∈ Θ× R≥0 | θ ∈ T (Φε) if ε > 0 } .

Consider a sequence (θk, εk) ∈ Z, k ∈ I>0 that is convergent (θk, εk)→ (θ, ε). Then ε ≥ 0,
otherwise the sequence would not converge. Moreover, θ ∈ Θ since θk ∈ T (Φεk) ⊆ Θ for all
k ∈ I>0 and Θ contains all its limit points. If ε = 0, then (θ, ε) ∈ Z trivially. On the other
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hand, if ε > 0, then ε(θk) converges to ε(θ) because T is continuous and the max can be
taken over a finite number of elements of T −1(θk). Moreover, ε(θk) and upper bounds εk
because θk ∈ T (Φεk), so ε(θ) ≥ ε. Finally, we have θ ∈ T (Φε), (θ, ε) ∈ Z, and Z is closed.

Let ε0 ≥ 0 and Nθ be a neighborhood of θ̂ε0 . With

δ := sup { ε(θ) | θ ∈ Nθ } > 0

we have Nθ ∩Θ and Nθ ∩ T (Φε) are nonempty for all ε ∈ (0, ε0 + δ).
Finally, the requirements of Proposition 7 are satisfied for all ε0 ∈ [0, ε), so µε is

continuous and θ̂ε is outer semicontinuous at ε = ε0.
(d)—The last statement follows by the definition of outer semicontinuity and the fact

that the lim sup is nonempty.
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