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Abstract

Maximum likelihood identification of linear time-invariant models is
a difficult problem because it is, in general, a nonlinear semidefinite
program, with semidefinite covariance matrix arguments and semidef-
inite filter stability constraints. To enforce filter stability, we establish
a general theory of closed constraints on the system eigenvalues us-
ing LMI regions. To solve the identification problem, we employ a
Cholesky factorization method that reduces the semidefinite program
to a standard nonlinear program. Finally, we apply the identification
algorithm to a class of linear plant and disturbance models commonly
used in offset-free model predictive control applications. Specifically,
we consider models that are structured with uncontrollable, integrat-
ing disturbance states. We solve this disturbance modeling problem,
and validate the resulting controller and estimator performance, in
two real-world case studies: first, a low-cost benchmark temperature
control laboratory, and second, an industrial-scale chemical reactor at
Eastman Chemical’s Kingsport plant.

1 Introduction

Linear system identification is an important problem in control applications and theory,
with a longstanding history of applied use and a large body of literature on its theory [1–3].
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In particular, stochastic linear time-invariant (LTI) state-space models are used in a vari-
ety of control contexts to represent dynamics with process and measurement uncertainty.
Maximum likelihood (ML) identification is the preferable method in parametric identifica-
tion for its desirable statistical properties (consistency, asymptotic efficiency) and ability
to handle general parameterizations, constraints, and stochastic noise models [4–6].

The main computational challenge to ML identification of LTI models is that, in general,
the problem is a nonlinear semidefinite program (SDP), with semidefinite matrix arguments
and semidefinite filter stability constraints. In the ML identification literature, nonlinear
SDPs are avoided either by using the expectation maximization (EM) algorithm [7–10], by
invoking simplified covariance matrix parameterizations (positive diagonal matrices, scaled
rotation matrices) [11–14], or by minimizing the determinant of the sample covariance [4–
6, 15–17]. Each of these strategies impose a specific structure on the estimates. The chief
advantage of the EM algorithm is that, for black-box models, there are closed-form so-
lutions for the iterates. When further structure on the model is imposed, it may invoke
an optimization problem within the EM algorithm iterates, significantly slowing down the
computation [18]. Diagonal covariances are a highly constrained structure, and the type
of simple covariance structures available in the literature do not scale to high-dimensional
systems. Finally, the minimum determinant approach requires a fully parameterized co-
variance matrix for the Kalman filter innovations. Moreover, these last two approaches
introduce a filter stability constraint that is not explicitly enforced in the current litera-
ture.

EM does not have strong convergence guarantees even in the best case scenario. While
it can be shown that the EM iterates produce, almost surely, an increasing sequence of
likelihood values [7, 9], slow convergence at low noise levels has been reported on a range
of problems [18–23], with hundreds or thousands of iterates being common for small ML
problems in even the latest EM works [18]. Interior point, and even gradient methods [23],
are therefore preferable to the standard EM approach.

Linear identification of nonlinear systems In a wide variety of control applications,
including chemical processes [24–26], aerospace vehicles [17, 27], combustion engines [28],
nautical vehicles [11, 29], and speech recognition [8], linear approximations of the nonlinear
plant are beneficial for the convenience of linear identification relative to that of nonlin-
ear identification and the ability to meet strict computational constraints, e.g., for on-
line optimal control. Linear black-box models are particularly useful when first-principles
knowledge of the plant dynamics is not available.

The main difficulty of linear identification of nonlinear systems is plant-model mis-
match. With ML identification, properties of the estimates are dependent on the plant’s
stochastic behavior [30, 31]. For stationary, input-free models, the solution to the mis-
matched problem can be interpreted as (asymptotically) minimizing the Kullback-Leibler
divergence between the power spectral densities of the model and plant [32]. However,
there are still gaps in the treatment of inputs, state-space models, and arbitrary nonlinear
plants. Rather than address this theory, we turn to control and estimation applications
that specifically address plant-model mismatch.
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Application to offset-free control Model predictive control (MPC) is a widely-used
advanced control method in which an optimal control problem is solved on-line, based on
the current state or state estimate, and the first input in the solution trajectory is injected
into the plant [33, 34]. Model quality is the main contributor to the performance of an
MPC implementation [35, 36], and therefore high-quality identification algorithms are of
relevance to MPC implementations.

Inherent to the use of identified plant models in MPC is the problem of plant-model
mismatch. Moreover, many applications require the rejection of a stochastic, possibly
nonstationary, disturbance process with unknown or un-modeled components (e.g., envi-
ronmental or upstream disturbances, demand changes). In linear offset-free MPC, the
stochastic LTI state-space model is augmented with uncontrollable integrating disturbance
modes to achieve offset-free control in the presence of plant-model mismatch and persistent
disturbances [37, 38]. We refer to these models as linear augmented disturbance models.

Linear augmented disturbance models (or the resulting observer) can either be tuned
or identified. Tuning of disturbance models can be roughly divided into three categories:
pole placement [39–42], diagonal covariance matrix tuning [25, 43, 44], and direct filter
gain tuning [45–47]. On the other hand, disturbance models have been identified only via
autocovariance least squares (ALS) estimation [48] and (approximate) ML estimation [49–
51]. Only our prior work in [50, 51] integrates the plant and disturbance identification
in a single step. However, the method in [50, 51] uses a nested ML estimation approach
in which unstructured stochastic LTI models are augmented with integrating disturbance
modes. The nested ML method can be improved by consolidation to a single step ML step.

Direct data-driven control The approach discussed so far is an indirect data-driven
control design of offset-free MPC. A potential alternative is the direct data-driven control
approach, where the control law is designed according to data [52–55]. The drawback of
this approach is its reliance on Willem’s Fundamental Lemma [56], which does not admit
the required linear augmented disturbance model structure.

Contributions and outline The main contributions of this work are (i) a method for
directly solving constrained ML identification problems as NLPs, more efficiently and on
a wider class of systems than the state-of-the-art, and (ii) real-world case studies of the
application of this algorithm to offset-free control. The ML problem is stated in Sec-
tion 2. In Section 3, stability and other eigenvalue constraints are formulated. Inspired
by the smoothed spectral radius and abscissa formulations of [57, 58], and we present a
novel barrier function theory of constraints on the system eigenvalues via the linear ma-
trix inequality (LMI) regions of [59]. In Section 4, we present a novel modification of
the Burer-Monteiro-Zhang (BMZ) method [60], reformulating a class of nonlinear SDPs as
NLPs via Cholesky factorization. In identification problems, Cholesky factor subsitution
has only been used for replacing semidefinite covariance matrices [49], not for general ma-
trix inequalities. In Section 5, we used the ML identification algorithm for two real-world
applications of offset-free MPC: first, a benchmark temperature microcontroller [61], and
second, an industrial-scale chemical reactor at Eastman Chemical’s Kingsport plant [51].
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The advantage of ML identification over other disturbance modeling techniques is demon-
strated. Finally, in Section 6, we conclude with a discussion of future work on applying the
identification problem to other parts of the control architecture (e.g., performance moni-
toring, steady-state optimization, and automated MPC upkeep) and extensions to direct
data-driven control.

This report is an extended version of a submitted work, and contains proofs of minor
results and details on the industrial-scale reactor case study that were omitted from the
journal version due to page limitations. Compared to the journal version, this report
additional contains the following additions:

• the proof of Proposition 6 in Appendix A;

• a longer version of Lemma 13;

• an additional discussion of LMI region properties in Section 3;

• an explicit counterexample of [62, Thm. 1] in Conjecture 18;

• the proof of Proposition 20 in Appendix B;

• the proof of Proposition 21(b,c) in Appendix C; and

• additional figures, data, and discussion of the industrial-scale reactor study in Sec-
tion 5.

Notation Denote the set of n × n symmetric, positive definite, positive semidefinite
matrices, lower triangular, and positive lower triangular by Sn, Sn++, Sn+, Ln, and Ln

++,
respectively. Recall M ∈ Rn×n is positive definite if and only if there exists a unique
L ∈ Ln

++, called the Cholesky factor, such that M = LL⊤. Denote the matrix direct sum
and the Kronecker product by ⊕ and ⊗, respectively, defined as in [63]. Define the set of
eigenvalues of a matrix A ∈ Rn×n by λ(A) ⊂ C. The spectral radius and spectral abscissa
are defined as ρ(A) := maxλ∈λ(A) |λ| and α(A) := maxλ∈λ(A)Re(λ), respectively. We say a
matrix A is Schur (Hurwitz) stable if ρ(A) < 1 (α(A) < 0). We use ∼ as a shorthand for

“distributed as” and
iid∼ as a shorthand for “independent and identically distributed as.”

The complement, interior, closure, and boundary of a set S are denoted Sc, int(S), cl(S),
and ∂S, respectively.
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2 Maximum likelihood identification

In this section, we formulate a maximum likelihood problem for identifying models of the
following form:

xk+1 = A(θ)xk +B(θ)uk + wk (1a)

yk = C(θ)xk +D(θ)uk + vk (1b)

x0 ∼ N (x̂0(θ), P̂0(θ)) (1c)[
wk

vk

]
iid∼ N (0, S(θ)) (1d)

where x ∈ Rn are the model states, u ∈ Rm are the inputs, y ∈ Rp are the outputs, w ∈ Rn

and v ∈ Rp are the process and measurement noises, and M := (A,B,C,D, x̂0, P̂0, S)
are functions, to be defined, that map the model parameters θ ∈ Θ to system matrices
or vectors of appropriate dimensions. The ML estimate θ̂N is defined a maximizer of
p(yN−1|uN−1, θ), or equivalently, a solution to

min
θ∈Θ

fN (θ) := −
N−1∑
k=0

ln p(yk|uk−1,yk−1, θ). (2)

The noise covariance matrix S(θ) may be partitioned as

S(θ) =

[
Qw(θ) Swv(θ)

[Swv(θ)]
⊤ Rv(θ)

]
(3)

where Qw(θ) ∈ Sn+ is the process noise covariance, Swv(θ) is the cross-covariance, and
Rv(θ) ∈ Sp+ is the measurement noise covariance. Throughout, we impose the stronger
requirement Rv(θ) ≻ 0 on the measurement noise covariance.

2.1 The constraint set

The main difficulty of the ML problem (2) is that the parameter constraint set Θ must nec-
essarily contain matrix inequalities that make (2) a nonlinear SDP. For example, we expect
consistency (i.e., positive semidefiniteness) of the covariance matrices and nondegeneracy
of the measurement noise distribution.

Assumption 1. For all θ ∈ Θ, we have P̂0(θ) ⪰ 0, S(θ) ⪰ 0, and Rv(θ) ≻ 0.

Other matrix inequalities may arise as stability, eigenvalue, or other system-level con-
straints. Stability and other eigenvalue constraints are explicitly covered in Section 3.

We structure the constraint set to facilitate the Cholesky factor-based reformulation
in Section 4. To define this structure, we first need to define some additional notation.
Consider the index sets Ln := { (i, j) ∈ N2 | 1 ≤ i ≤ j ≤ n } and Dn := { (i, i) ∈ N2 } corre-
sponding to the sparsity patterns of n× n lower triangular and diagonal matrices, respec-
tively. With a slight abuse of notation, we define the direct sum of index sets I ⊆ Ln and
J ⊆ Lm by

I ⊕ J := I ∪ { (i+ n, j + n) | (i, j) ∈ Lm } ⊆ Ln+m.
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For each I ⊆ Ln, define the sets

Sn[I] := {S ∈ Sn | Sij = 0 ∀ (i, j) ∈ Ln \ I }
Ln[I] := {L ∈ Ln | Lij = 0 ∀ (i, j) ̸∈ I }

Ln
++[I] := {L ∈ Ln

++ | Lij = 0 ∀ (i, j) ̸∈ I } .

Using this notation, we make the following assumptions about the structure of the param-
eter constraint set Θ.

Assumption 2. There exist index sets DnΣ ⊆ IΣ ⊆ LnΣ and DnA ⊆ IA ⊆ LnA and
differentiable functions g : Rnβ × SnΣ → Rng , h : Rnβ × SnΣ → Rnh , H : Rnβ → SnΣ , and
A : Rnβ × SnΣ → SnA [IA] such that

Θ = { (β,Σ) ∈ Rnβ × SnΣ [IΣ] | g(β,Σ) = 0, h(β,Σ) ≤ 0, Σ ⪰ H(β), A(β,Σ) ⪰ 0 }.

Moreover, cl(Θ++) = Θ where

Θ++ := { (β,Σ) ∈ Rnβ×SnΣ [IΣ] | g(β,Σ) = 0, h(β,Σ) ≤ 0, Σ ≻ H(β), A(β,Σ) ≻ 0 }.

Under Assumption 2, the parameter set Θ contains four constraints: two standard
vector equality and inequality constraints and two matrix inequalities. The purpose of
the elimination algorithm is to transform the matrix inequalities into vector equalities
while introducing as few new variables as possible. The first matrix inequality enforces a
lower bound H(β) on the sparse symmetric matrix argument Σ. In many cases this lower
bound is simply zero or a small diagonal matrix, but we have left the bound general for
illustrative purposes. This inequality is in the form used by [60], where variables in the
Cholesky factorization

Σ = LΣL
⊤
Σ +H(β), LΣ ∈ LnΣ

++ (4)

are algorithmically eliminated to write Σ in terms of just H(β) and a sparse lower tri-
angular matrix LIΣ ∈ LnΣ

++[IΣ]. Similarly, in Section 4, we use the sparsity structure in
the second matrix inequality A(β,Σ) to algorithmically eliminate variables in the squared
slack variable transformation

A(β,Σ) = LAL⊤
A, LA ∈ LnA

++ (5)

by writing LA in terms of a sparse lower triangular matrix LIA ∈ LnA
++[IA]. The second

part of Assumption 2 guarantees the existence and uniqueness of these Cholesky factors
(LΣ, LA), helps to avoid divisions by zero during the variable elimination procedure, and
allows taking limits.

Remark 3. Assumption 2 rules out direct use of the strict inequality Rv(θ) ≻ 0. To satisfy
Assumption 1, we use the closed constraint Rv(θ) ⪰ δIp with a small backoff δ > 0.
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Remark 4. The index set IΣ provides enough sparsity in Σ to reduce the problem to
nβ + |IΣ| variables (excluding slack terms). This is important when Σ has a particular

structure. The most common example is the block diagonal structure Σ = P̂0⊕Qw⊕Rv ∈
S2n+p[IΣ] where IΣ := Ln ⊕ Ln ⊕ Lp. We may further restrict Qw and Rv to take block
tridiagonal and diagonal structures, e.g.,

Qw =


Q1,1 Q1,2

Q⊤
1,2 Q2,2

. . .
. . .

. . . Qñ−1,ñ

Q⊤
ñ−1,ñ Qñ,ñ

 Rv = R1 ⊕ . . .⊕Rñ

that arise in sequentially interconnected processes such as chemical plants. Adding a Q1,ñ

block can account for an overall recycle loop. Note that if we parameterize the block
tridiagonal Qw via a sparse shaping matrix (i.e., Qw = GwG

⊤
w), then there are more

parameters than if the sparsity of Qw is known unless the rank of Gw is known to be low.

Remark 5. The index set IA provides sparsity on the range of A to eliminate all but |IA|
entries of the squared slack term LA. Typically A is a block diagonal matrix of eigenvalue
constraints, so the dense matrix LA is reduced to a sparse matrix LA = LA,1⊕ . . .⊕LA,ñA .

2.2 Kalman filtering and the log-likelihood

In this subsection, we derive exact and approximate expressions for the negative log-
likelihood. For brevity, we drop the dependence on θ where appropriate and write

xk+1 = Axk +Buk + wk

yk = Cxk +Duk + vk

x0 ∼ N (x̂0, P̂0)[
wk

vk

]
iid∼ N (0, S)

and M = (A,B,C,D, x̂0, P̂0, S).

2.2.1 Time-varying Kalman filter formulation

Consider the Kalman filter in innovations form

x̂k+1 = Ax̂k +Buk +Kkek (6a)

yk = Cx̂k +Duk + ek (6b)

ek ∼ N (0,Rk) (indep.) (6c)

where

P̂k+1 := AP̂kA
⊤ +Qw −KkRkK⊤

k (6d)

Kk := (AP̂kC
⊤ + Swv)R−1

k (6e)

Rk := CP̂kC
⊤ +Rv. (6f)
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Since the ek in (6) are mutually independent, we have the negative log-likelihood

fN (θ) ∝ 1

2

N−1∑
k=0

ln detRk(θ) + |ek(θ)|2[Rk(θ)]−1

and we can write (2) equivalently as

min
θ∈Θ

1

2

N−1∑
k=0

ln detRk(θ) + |ek(θ)|2[Rk(θ)]−1 (7)

where the ek(θ) and Rk(θ) are given by the recursion (6). For black-box covariance models

M(β, P̂0 ⊕ S) = (A(β), B(β), C(β), D(β), x̂0(β), P̂0, S)

the covariance consistency constraint

Θ := { (β,Σ) ∈ Rnβ × Sn+p[Ln ⊕ Ln+p] | Σ ⪰
[
0
εIp

]
}

suffices, without any vector constraints or general matrix inequalities. These constraints
say nothing about stability of the filter (6), so unstable filters may be realized during
optimization, producing numerically infinite or undefined values.

2.2.2 Steady-state Kalman filter formulation

In most situations, the state error covariance matrix converges exponentially fast to a
steady-state solution P̂k → P̂ , so it suffices to consider the following steady-state filter:

x̂k+1 = Ax̂k +Buk +Kek (8a)

yk = Cx̂k +Duk + ek (8b)

ek
iid∼ N (0, Re) (8c)

whereK := (AP̂C⊤+Swv)R
−1
e , Re := CP̂C⊤+Rv, and P̂ is the unique, stabilizing solution

to the discrete algebraic Riccati equation (DARE),

P̂ = AP̂A⊤ +Qw − (AP̂C⊤ + Swv)× (CP̂C⊤ +Rv)
−1(AP̂C⊤ + Swv)

⊤. (9)

Recall a solution to the DARE (9) is stabilizing if the resulting AK := A−KC is stable.
Convergence of P̂k to P̂ is equivalent to the solution to the DARE (9) being unique and

stabilizing. We generally assume such a solution exists, but for completeness, we state the
following proposition, adapted from [64, Thm. 18(iii)] (see Appendix A for proof).

Proposition 6. Assume Rv ≻ 0 and consider the full rank factorization[
Qw Swv

S⊤
wv Rv

]
=

[
B̃

D̃

] [
B̃⊤ D̃⊤]

Then the following statements are equivalent:
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1. The DARE (9) has a unique, stabilizing solution P̂ ⪰ 0.

2. The error covariance converges exponentially fast P̂k → P̂ for any P̂0 ⪰ 0.

3. (A,C) is detectable and (A− FC, B̃ − FD̃) is stabilizable for all F ∈ Rn×p.

Under the steady-state approximation, the likelihood is

f̃N (θ) :=
N

2
ln detRe(θ) +

1

2

N−1∑
k=0

|ek(θ)|2[Re(θ)]−1

and we can approximate solutions to (2) by solving

min
θ∈Θ

N

2
ln detRe(θ) +

1

2

N−1∑
k=0

|ek(θ)|2[Re(θ)]−1 (10)

where the ek(θ) are given by the recursion (8) and Re(θ) is found by solving the DARE
(9).

While Re(θ) and K(θ) could be defined via P̂ (θ), taken as the function that returns
solutions to the DARE (9) and therefore enforcing filters stability, it is more convenient
to directly parameterize these matrices. In fact, it is equivalent to consider the model
structure

M =

(
A,B,C,D, x̂0, 0,

[
KReK

⊤ KRe

ReK
⊤ Re

])
where K : Θ → Rn×p and Re : Θ → Sp++ are now given functions that are not explicitly
related to the DARE (9). We write this model parameterization as

MKF = (A,B,C,D, x̂0,K,Re) (11)

using the subscript KF to denote that MKF represents a Kalman filter in innovation
form (11). Since the model structure (11) no longer enforces filter stability, the following
stability assumption is required.

Assumption 7. Given the model structure (11), we have ρ(AK(θ)) < 1 for all θ ∈ Θ.

Since ρ is continuous but not differentiable, Assumption 7 cannot be directly implemented
in a form satisfying Assumption 2, even with a backoff term to make the inequality non-
strict, i.e., ρ(AK(θ)) ≤ 1− δ where δ > 0. We deal with enforcing the stability constraint
in Section 3.

2.2.3 Minimum determinant formulation

Suppose, in the model structure (11), that Re is parameterized fully, and separately from
the other terms, i.e.,

MKF(β, Σ̃⊕Re) =
(
A(β, Σ̃), B(β, Σ̃), C(β, Σ̃), D(β, Σ̃), x̂0(β, Σ̃),K(β, Σ̃), Re

)
.



TWCCC Technical Report 2024-01 10

Moreover, assume Re is constrained separately as well, i.e.,

Θ = { (β, Σ̃⊕Re) ∈ Rnβ × SnΣ [IΣ] | g̃(β, Σ̃) = 0, h̃(β, Σ̃) ≤ 0, Σ̃ ⪰ H̃(β),

Re ⪰ εIp, Ã(β, Σ̃) ⪰ 0 }

for some sufficiently small ε > 0, differentiable functions (g̃, h̃, H̃, Ã), and index set IΣ :=
IΣ̃⊕Lp where DñΣ ⊆ IΣ̃ ⊆ LñΣ and nΣ̃ := nΣ−p. Then we can always solve (10) stagewise,

first in Re, and then in the remaining variables (β, Σ̃). Solving the inner problem gives the
solution

R̂e(β, Σ̃) :=
1

N

N−1∑
k=0

ek(β, Σ̃)[ek(β, Σ̃)]
⊤

where we use the fact that ek is only dependent on (β, Σ̃), and we assume R̂e(β, Σ̃) ⪰ εIp
for all (β, Σ̃) ∈ Θ̃ where

Θ̃ := { (β, Σ̃) ∈ Rnβ × SñΣ [IΣ̃] | g̃(β, Σ̃) = 0, h̃(β, Σ̃) ≤ 0, Σ̃ ⪰ H̃(β), Ã(β, Σ̃) ⪰ 0 }.

The outer problem can be written

min
(β,Σ̃)∈Θ̃

det R̂e(β, Σ̃). (12)

The problem (12) is of relevance for avoiding the nonlinear SDP formulation of (10),
both in the early ML identification literature [4–6] and in recent works [15–17]. None
of these works consider filter stability constraints. To the best of our knowledge, only
[18] consider the ML problem (7) with stability constraints, but they consider open-loop
stability (i.e., ρ(A) < 1) and use the EM algorithm. To satisfy Assumption 7, we must
consider filter stability constraints (i.e., ρ(AK) < 1).

Remark 8. For real-world data, det R̂e(β, Σ̃) = 0 is not attainable because that would
imply some direction of yk were perfectly modeled. Therefore, a constant ε > 0 exists such
that the lower bound R̂e(β, Σ̃) ⪰ εIp is satisfied for all (β, Σ̃) ∈ Θ̃. Moreover, we need not
explicitly choose ε > 0 to satisfy the constraint Re ≻ 0 of Assumption 1.

3 Eigenvalue constraints

In this section, we describe stability and other eigenvalue constraints conforming to As-
sumption 2. Notably, we consider the smoothed spectral radius and abscissa formulations
of [57, 58], the linear matrix inequality (LMI) region approach of [59], and a novel barrier
function method that combines the two approaches. While we consider the matrix A in
this section, constraints can be added to any square matrix of interest, such as A, AK , or
some submatrix thereof.
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3.1 Spectral radius and abscissa bounds

Recall that, for any Q ∈ Sn++, a matrix A is Schur stable if and only if there exists P ∈ Sn++

such that
P −APA⊤ = Q. (13)

Likewise, for any Q ∈ Sn++, a matrix A is Hurwitz stable if and only if there eixsts P ∈ Sn++

such that
AP + PA⊤ = −Q. (14)

Moreover, solutions to (13) and (14), when they exist, are uniquely given by Pd(A,Q) :=∑∞
k=0A

kQ(A⊤)k and Pc(A,Q) :=
∫∞
t=0 e

AtQeA
⊤tdt, respectively. It is a well-known obser-

vation that discrete- and continuous-time stability of A are equivalent to finiteness of the
matrices Pd(A,Q) and Pc(A,Q), respectively.

Lemma 9 ([57, Lem. 5.1] and [58, Lem. 2.1]). Let Q ∈ Sn++ and ∥ · ∥ : Rn×n → R≥0 be a
submultiplicative norm. A matrix A ∈ Rn×n is Schur stable (Hurwitz stable) if and only if
∥Pd(A,Q)∥ (∥Pc(A,Q)∥) is finite.

Inspired by this observation, [57, 58] impose an upper bound on the norm of P satisfying
either (13) or (14).

3.1.1 Smoothed spectral radius

Let W,V ∈ Sn++ and consider the function ϕd(A, s) := tr(V Pd(A/s,W )). In [57], the
implicit function theorem is used to show the existence of a smoothed spectral radius ρε(A)
satisfying

ϕd(A, ρε(A)) = ε−1. (15)

Properties of ρε(A) are reiterated in the following theorem.

Theorem 10 ([57, Thms. 5.4, 5.6]). There exists a function ρ(·)(·) : R>0 × Rn×n → R
such that, for each A ̸= 0 and ε > 0, ρε(A) uniquely solves (15), and ρε(0) = 0. Moreover,
ρ(·)(·) has the following properties:

1. ρ(·)(·) is analytic on R>0 × Rn×n \ { 0 } and continuous on R>0 × { 0 };

2. ρε(A) > ρ(A) for all A ̸= 0 and ε > 0;

3. ρε(A) ↘ ρ(A) as ε ↘ 0 for all A ∈ Rn×n;

4. for each ε, s > 0, ρε(A) ≤ s if and only if there exists P ⪰ 0 such that s2P−APA⊤ =
W and tr(V P ) ≤ ε−1.

The first property of Theorem 10 establishes the smoothness of ρε. The second and
fourth properties of Theorem 10 let us construct constraint sets satisfying Assumptions 2
and 7. Finally, the third property demonstrates that ρε is an approximation of ρ in the
sense that ε can be made arbitrarily small to keep ρε(A)− ρ(A) arbitrarily small.
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3.1.2 Smoothed spectral abscissa

Let W,V ∈ Sn++ and consider the function ϕc(A, s) := tr(V Pc(A − sI,W )). In [58], the
implicit function theorem is used to show the existence of a smoothed spectral abscissa
αε(A) satisfying

ϕc(A,αε(A)) = ε−1. (16)

Properties of αε(A) are reiterated in the following theorem.

Theorem 11 ([58, Thms. 2.5, 2.6]). There exists a function α(·)(·) : R>0 × Rn×n → R
such that, for each A ∈ Rn×n and ε > 0, αε(A) uniquely solves (15). Moreover, α(·)(·) has
the following properties:

1. α(·)(·) is analytic on R>0 × Rn×n;

2. αε(A) > α(A) for all A ∈ Rn×n and ε > 0;

3. αε(A) ↘ α(A) as ε ↘ 0 for all A ∈ Rn×n; and

4. for each ε, s > 0, αε(A) ≤ s if and only if there exists P ⪰ 0 such that (A− sI)P +
P (A− sI)⊤ = −W and tr(V P ) ≤ ε−1.

Similarly to the properties of Theorem 10, the first property of Theorem 11 gives αε its
smoothness property, the second and fourth properties allow us to construct constraints
that satisfy Assumption 2, and the third property demonstrates that αε is an approximation
of α.

3.2 D-stability constraints

We may wish to place the eigenvalues in a specified region. In [59] the problem of placing
eigenvalues in any convex, open region of the complex plane is posed in terms of solving a
linear matrix inequality (LMI). These so-called “LMI regions” are defined as follows.

Definition 12. A subset D ⊆ C that takes the form

D = { z ∈ C | fD(z) ≻ 0 }

is called an LMI region with the characteristic function fD : C → Cm×m, defined as

fD(z) := M0 +M1z +M⊤
1 z

and generating matrices (M0,M1) ∈ Sn × Rn×n.

The following lemma defines the four basic LMI regions: shifted half-planes, circles
centered on the real axis, conic sections, and horizontal bands.
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Lemma 13. For each s, x0 ∈ R, the subsets

D1 := { z ∈ C | Re(z) < s }
D2 := { z ∈ C | |z − x0| < s }
D3 := { z ∈ C | |Im(z)| < s(Re(z)− x0) }
D4 := { z ∈ C | |Im(z)| < s }

are LMI regions with characteristic functions

fD1(z) := 2s− z − z

fD2(z) :=

[
s −x0

−x0 s

]
+

[
0 1
0 0

]
z +

[
0 0
1 0

]
z

fD3(z) := −2sx0I2 +

[
s 1
−1 s

]
z +

[
s −1
1 s

]
z

fD4(z) := −2sI2 +

[
0 1
−1 0

]
z +

[
0 −1
1 0

]
z.

Proof. The first identity follows from the formula 2Re(z) = z+ z. For the second identity,
we have fD2(z) =

[
s z−x0

z−x0 s

]
≻ 0 if and only if s > 0 and s2 > |z − x0|2, or equivalently,

|z − x0| < s. For the third identity, we have fD3(z) =
[
2s(Re(z)−x0) 2ιIm(z)

−2ιIm(z) 2s(Re(z)−x0)

]
≻ 0

if and only if 2s(Re(z) − x0) > 0 and 4s2(Re(z) − x0)
2 > 4|Im(z)|2, or equivalently,

|Im(z)| < s(Re(z)− x0). For the fourth identity, we have fD4(z) =
[

2s 2ιIm(z)
−2ιIm(z) 2s

]
≻ 0 if

and only if 2s > 0 and 4s2 > 4|Im(z)|2, or equivalently, |Im(z)| < s.

Remark 14. For continuous-time systems, D1 corresponds to a minimum decay rate of
s > 0, D3 corresponds to a minimum damping ratio − cos(θ), and D2 ∩ D3 implies to a
maximum natural frequency r sin(θ), where θ = tan−1(s) and s < 0 [59]. For discrete-time
systems, D2 corresponds to a minimum decay rate of − ln r, and D2∩D3 implies a minimum
damping ratio − cos(tan−1(θ/ ln r)) and maximum natural frequency (ln(r)2+θ2)/∆, where
θ = tan−1(s), s > 0, and ∆ is the sample time.

Remark 15. An LMI region D is convex, open, and symmetric about the imaginary axis.
The intersection of two LMI regions D := D1 ∩D2 is an LMI region with the characteristic
function fD(z) = fD1(z)⊕fD2(z). An LMI region D with characteristic function fD also has
characteristic function MfD(·)M⊤ for any nonsingular M ∈ Rm×m. By this property, we
can construct any convex polyhedron that is symmetric about the real axis by intersecting
left and right half-planes, horizontal strips, and conic sections. Moreover, since any convex
region can be approximated, to any desired accuracy, by a convex polyhedron, the set of
LMI regions is dense in the space of convex subsets of C that are symmetric about the real
axis. For an in-depth discussion of LMI region geometry and other properties, see [65].

Throughout, assume the LMI region D is nonempty, not equal to C, and its charac-
teristic function fD and generating matrices (M0,M1) are fixed. We seek LMI conditions
under which the eigenvalues of A ∈ Rn×n lie in D or cl(D).
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3.2.1 D-stability

In the following definition, we generalize the notion of asymptotic stability to include pole
placement within a given LMI region D.

Definition 16. We say the matrix A ∈ Rn×n is D-stable if λ(A) ⊂ D.

In [59], D-stability of a matrix A ∈ Rn×n is shown to be equivalent to the strict
feasibility of the following system of matrix inequalities:

MD(A,P ) ≻ 0, P ≻ 0 (17)

where MD : Rn×n × Sn → Snm is defined by

MD(A,P ) := M0 ⊗ P +M1 ⊗ (AP ) +M⊤
1 ⊗ (AP )⊤. (18)

This fact is restated in the following theorem.

Theorem 17 ([59, Thm. 2.2]). The matrix A ∈ Rn×n is D-stable if and only if (17) holds
for some P ∈ Sn.

3.2.2 Marginal D-stability

The drawback of Theorem 17 is strictness of the matrix inequalities (17), making them
inadmissible in constraint sets satisfying Assumption 2. Suppose we relax the first inequal-
ity,

MD(A,P ) ⪰ 0, P ≻ 0. (19)

Since MD(A,P ) is linear in P , feasibility of (19) is equivalent to feasibility of

MD(A,P ) ⪰ 0, P ⪰ P0 (20)

for some fixed P0 ∈ Sn++.
1 Therefore the system (19) is admissible to constraint sets

satisfying Assumption 2 with minor alteration.
An attempt was made in [62, Thm. 1] to characterize the class of matrices A ∈ Rn×n for

which (19), but this theorem does not correctly treat eigenvalues on the boundary ∂D. We
restate [62, Thm. 1] below as a conjecture and disprove it with a simple counterexample.

Conjecture 18 ([62, Thm. 1]). The matrix A ∈ Rn×n satisfies λ(A) ⊂ cl(D) if and only
if (19) holds for some P ∈ Sn.

Counterexample. Let D be the left half-plane, consider the Jordan block A = [ 0 1
0 0 ], and

suppose P = [ p11 p12
p12 p22 ] ∈ S2 such that (19) holds. Then λ(A) ⊂ cl(D) and

0 ⪯ MD(A,P ) = −
[
2p12 p22
p22 0

]
which implies p12 = p22 = 0, a contradiction of (19). ※

1For any P0 ≻ 0 and P satisfying (19), define the scaling factor γ := ∥P0∥2∥P−1∥2 and a rescaled
solution P ∗ := γP . Then P ∗ ⪰ P0 and MD(A,P ∗) = γMD(A,P ) ⪰ 0.
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The correction to Conjecture 18 requires a more careful treatment of eigenvalues lying
on the the LMI region’s boundary ∂D. Recall that a matrix A is marginally stable (in
continuous- or discrete-time) if all its eigenvalues lie in the closure of the stability region
(left half-plane or unit disc) and the non-simple eigenvalues lie strictly in the interior of
that region. Replacing the stability region with D, we propose the following definition of
marginal D-stability.

Definition 19. We say a matrix A ∈ Rn×n is marginally D-stable if λ(A) ⊆ cl(D) and
λ ∈ D for all non-simple eigenvalues λ ∈ λ(A).

In the following proposition, we show D-stability of A ∈ Rn×n is equivalent to feasibility
of (19) (see Appendix B for proof).

Proposition 20. The matrix A ∈ Rn×n is marginally D-stable if and only if (19) holds
for some P ∈ Sn.

3.2.3 D-stability barrier functions

Thus far, we have proposed LMI equivalences without regard to the topology of the set of
D-stable and marginally D-stable matrices

An
D := {A ∈ Rn×n | A is D-stable }

Ãn
D := {A ∈ Rn×n | A is marginally D-stable } .

The following proposition characterizes the topology of An
D and An

D (see Appendix C for
proof).

Proposition 21. (a) An
D is open.

(b) Ãn
D is not open if (i) n ≥ 2 or (ii) ∂D ∩ R is nonempty.

(c) Ãn
D is not closed if (i) n ≥ 4 or (ii) ∂D ∩ R is nonempty and n ≥ 2.

(d) cl(An
D) = {A ∈ Rn×n | λ(A) ⊂ cl(D) }.

Proposition 21 reveals a weakness of the marginal D-stability constraints (19) and (20).
Since Ãn

D is not closed and P ∈ Sn+ is neither bounded nor regularized, the optimizer may

fail to converge in P as it seeks an A that is not a limit point in Ãn
D. While the optimizer can

approach A in this case, P grows unbounded along the path of iterates, and the optimizer
itself does not converge.

Motivated by the smoothed spectral radius and abscissa, we upper bound tr(V P ) for
some V ∈ Sn++. This still allows rescaling of P , however, so we also lower bound MD(A,P ),

MD(A,P ) ⪰ M, P ⪰ 0, tr(V P ) ≤ ε−1 (21)

and assume M ∈ Snm+ is chosen in a way that implies (17). Consider the parameterized
linear SDP,

ϕD(A) := inf
P∈Sn+

tr(V P ) subject to MD(A,P ) ⪰ M. (22)
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The optimal value function ϕD : Rn×n → R≥0 ∪ {∞} is a barrier function for the con-
straint A ∈ An

D. Proposition 22 establishes properties of ϕD and its ε−1-sublevel sets (see
Appendix D for proof).

Proposition 22. Let V ∈ Sn++ and M ∈ Sn+ such that MD(A,P ) ⪰ M implies MD(A,P ) ≻
0. Then

(a) ϕD is continuous on AD;

(b) for each ε > 0, the ε−1-sublevel set of ϕD,

An
D(ε) := {A ∈ Rn×n | ϕD(A) ≤ ε−1 } = {A ∈ Rn×n | ∃P ⪰ 0 : (21) holds } (23)

is closed; and

(c) An
D(ε) ↗ An

D as ε ↘ 0.

Remark 23. It is sufficient, but not necessary, to choose a positive definite lower bound
M ≻ 0.

Remark 24. To reconstruct the s-sublevel sets of the smoothed spectral radius via Propo-
sition 22, we set M = sW ⊕ 0n×n for any W,V ≻ 0 and s > 0 and apply the Schur
complement lemma to MD2(A,P )/s − M/s, where D2 is the circle defined in Lemma 13
with x0 = 0, and MD2 is defined by the generating matrices used in Lemma 13. Then the
ε−1-sublevel set of ϕD2 equals the s-sublevel set of ρε.

Remark 25. The ε−1-sublevel sets of ϕD1 equal the s-sublevel sets of αε, where D1 is the
shifted half-plane defined in Lemma 13, and M = W for any W,V ≻ 0.

3.3 Discussion

We conclude this section with a discussion on implementing eigenvalue constraints. Discrete
LTI models with eigenvalues having positive real parts have a one-to-one correspondence
with continuous LTI models [66]. As such, it is important to satisfy not only the filter
stability constraint ρ(AK) < 1 (and, if desired, open-loop stability constraint ρ(A) < 1),
but it is also desirable to satisfy differentiability constraints α(−A) < 0 and α(−AK) < 0.
In practice, we find ρε(AK) ≤ 1− δ and αε(−AK) ≤ 0 to be important constraints in ML
identification of linear augmented disturbance models. Without the former constraint, the
optimizer will frequently pick unstable filters that evaluate to infinite objective values, and
without the latter constraint, the optimal filter equations degenerate to aphysical solutions
that incorrectly estimate u 7→ y gain matrices. Last, we refer the reader to [67] for other
examples of matrix inequalities (e.g., detectability, minimum phase) that may be useful in
system identification.
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4 Cholesky reparameterizations

In this section, we seek to transform the ML problems (2), (7), and (10) from nonlinear
SDPs to standard NLPs, while introducing as few new variables as possible. The main
idea is to combine a squared slack variable substitution (4) and (5) with an elimination
scheme that adds only |IA| variables to the optimization problem.

For this section, we define the following notation. For each I ⊆ Ln, let πL
I : Rn×n →

Ln[I] and πI : Rn×n → Sn[I] denote the orthogonal projections (in the Frobenius norm)
from Rn×n onto the subspaces Ln[I] and Sn[I], respectively. Let chol : Sn++ → Ln

++ denote
the invertible function that maps a positive definite matrix to its Cholesky factor.

4.1 Burer-Monteiro-Zhang method

In the Burer-Monteiro-Zhang (BMZ) method [60], an invertible map is constructed between
the interior of

ΘBMZ := { (β,Σ) ∈ Rnβ × SnΣ [IΣ] | Σ ⪰ H(β) } (24)

and
ΘChol := Rnβ × LnΣ

++[IΣ] (25)

where H : Rnβ → SnΣ and IΣ is some index set satisfying DnΣ ⊆ IΣ ⊆ LnΣ . The set ΘBMZ

satisfies Assumption 2 so long as H is differentiable since

int(ΘBMZ) = { (β,Σ) ∈ Rnβ × SnΣ [IΣ] | Σ ≻ H(β) } .

Recall Σ ≻ H(β) if and only if Σ = LΣL
⊤
Σ + H(β) for some LΣ ∈ LnΣ

++. With JΣ :=
LnΣ \ IΣ, we split LΣ into the sum of LIΣ ∈ LnΣ

++[IΣ] and LJΣ ∈ LnΣ [JΣ],

Σ = (LIΣ + LJΣ)(LIΣ + LJΣ)⊤ +H. (26)

But Σ ∈ SnΣ [IΣ], so we can take

πJΣ
[(LIΣ + LJΣ)(LIΣ + LJΣ)⊤ +H] = 0 (27)

to produce |JΣ| equations to eliminate the |JΣ| variables of LJΣ . For each (H,LIΣ) ∈
SnΣ × LnΣ [IΣ], define

LJΣ
ij := − 1

LIΣ
jj

(
Hij +

j−1∑
k=1

(LIΣ
ik + LJΣ

ik )(LIΣ
jk + LJΣ

jk )

)
(28)

for each (i, j) ∈ JΣ, in a top-to-bottom and left-to-right order. So long as we never divide
by zero, each LJΣ is fully defined by H and LIΣ via (28), and we have the following lemma.

Lemma 26 ([60, Lem. 1]). For each (β, LIΣ) ∈ Rnβ ×LnΣ [IΣ] such that LIΣ
ii ̸= 0 for each

i ∈ I1:nΣ, there is a unique LJΣ ∈ LnΣ [JΣ] satisfying (27).
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Let LJΣ : Rnβ × LnΣ
++[IΣ] → LnΣ [JΣ] be the function that maps each (β, LIΣ) ∈ ΘChol

to the LJΣ ∈ LnΣ [JΣ] defined by (28) with H = H(β). Similarly, let Σ : Rnβ ×LnΣ
++[IΣ] →

SnΣ [IΣ] be the map defined by (26) for each (β, LIΣ) ∈ ΘChol with H = H(β) and LJΣ =
LJΣ(β, LIΣ). Finally, we let

Ψ(β, LIΣ) :=
(
β,Σ(β, LIΣ)

)
(29)

which has the inverse

Ψ−1(β,Σ) :=
(
β, πL

IΣ [chol(Σ−H(β))]
)

(30)

and we have the following lemma.

Lemma 27 ([60, Lem. 2]). The function Ψ defined by (29) is a bijection between ΘChol

and int(ΘBMZ).

Differentiability of Ψ and Ψ−1 follow from differentiability of H and the algorithm (28).
In fact, these functions are as smooth as H is, so if H is analytic, so are Ψ and Ψ−1. More
importantly, the bijection Ψ allows us to transform the minimum of a continuous function
in ΘBMZ to an infimum of a function in ΘChol, given by the following theorem.

Theorem 28 ([60, Thm. 1]). For any continuous function f : Rnβ ×SnΣ → R that attains
a minimum in ΘBMZ,

min
(β,Σ)∈ΘBMZ

f(β,Σ) = inf
(β,LIΣ )∈ΘChol

fΨ(β, L
IΣ) (31)

where fΨ := f ◦Ψ.

We reiterate the proof of Theorem 28 for illustrative purposes.

Proof. Continuity of f implies its minimum over ΘBMZ equals its infimum over int(ΘBMZ),
i.e.,

min
(β,Σ)∈ΘBMZ

f(β,Σ) = inf
(β,Σ)∈int(ΘBMZ)

f(β,Σ)

Since Ψ is a bijection, we can transform the optimization variables as follows:

inf
(β,Σ)∈int(ΘBMZ)

f(β,Σ) = inf
(β,LIΣ )∈Ψ−1(int(ΘBMZ))

f(Ψ(β, LIΣ))

and ΘChol = Ψ−1(int(ΘBMZ)) and fΨ = f ◦Ψ imply (31).

4.2 Modified Burer-Monteiro-Zhang method

For constraint sets Θ satisfying Assumption 2, the BMZ method only suffices to eliminate
the variables Σ and the matrix inequality Σ ⪰ H(β). The addition of the general matrix
inequality A(β,Σ) ⪰ 0 requires a similar procedure to introduce squared slack variables,
although the elimination procedure will no longer eliminate as many variables as are intro-
duced. We further complicate the generalization of Lemma 27 and Theorem 28 by requiring
general vector equality and inequality constraints g(β,Σ) = 0 and h(β,Σ) ≤ 0.
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Lemma 27 gives the invertible map Ψ : ΘChol → ΘBMZ with which we can define

gΨ := g ◦Ψ, hΨ := h ◦Ψ, AΨ := A ◦Ψ.

In this notation, consider the set

ΘNLP := { (β, LIΣ) ∈ Rnβ × LnΣ
++[IΣ] | gΨ(β, LIΣ) = 0,

hΨ(β, L
IΣ) = 0, AΨ(β, L

IΣ) ≻ 0 }. (32)

Recall Σ(β, LIΣ) ≻ H(β) holds automatically for all (β, LIΣ) ∈ ΘChol := Rnβ × LnΣ
++[IΣ].

Then by a simple change of variables we have Ψ−1(Θ++) = ΘNLP. Since ΘNLP and Θ++

are subsets of ΘChol and int(ΘBMZ), respectively, we have proven the following lemma.

Lemma 29. The function Ψ defined by (29) is a bijection between ΘNLP and Θ++.

Next, we remove the matrix inequality AΨ(β, L
IΣ) ≻ 0 from our representation of the

constraint set ΘNLP. Recall AΨ(β, L
IΣ) ≻ 0 if and only if AΨ(β, L

IΣ) = LAL⊤
A for some

LA ∈ LnA
++. With JA := LnA \ IA, we split LA into the sum of LIA ∈ LnA

++[IA] and
LJA ∈ LnA [JA],

AΨ(β, L
IΣ) = (LIA + LJA)(LIA + LJA)⊤. (33)

But AΨ(β, L
IΣ) ∈ SnA [IA], so we can take

πJA [(L
IA + LJA)(LIA + LJA)⊤] = 0

to produce |JA| equalities with which to eliminate the |JA| free variables in LJA . For each
LIA ∈ LnA

++[IA], we define

LJA
ij := − 1

LIA
jj

j−1∑
k=1

(LIA
ik + LJA

ik )(LIA
jk + LJA

jk ) (34)

for each (i, j) ∈ JA, in a top-to-bottom and left-to-right order. Each LJA satisfying (33)
is thus fully defined by LIA via (34), and we have the following corollary of Lemma 26.

Corollary 30. For each LIA ∈ LnA [IA] such that LIA
ii ̸= 0 for each i ∈ I1:nA, there exists

a unique LJA ∈ LnA [JA] satisfying (33).

Let LJA : LnA
++ → LnA [IA] denote the map described by Corollary 30, and let Ã(LIA) :=

(LIA + LJA(LIA))(LIA + LJA(LIA))⊤. Then AΨ(β, L
IΣ) ≻ 0 if and only if AΨ(β, L

IΣ) =
Ã(LIA) for some LIA ∈ LnA

++[IA]. Subsuming this constraint gΨ, we have

g̃(β, LIΣ , LIA) :=

[
gΨ(β, L

IΣ)

vecsIA
(
AΨ(β, L

IΣ)− Ã(LIA)
)]

for all (β, LIΣ , LIA) ∈ Rnβ × LnΣ
++[IΣ] × LnA

++[IA], where vecsIA : SnA → R|IA| vectorizes
the |IA| entries of the argument corresponding to the index set IA. We have proven the
following lemma.
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Lemma 31. The set ΘNLP, defined by (32), equals

{ (β, LIΣ) ∈ Rnβ × LnΣ
++[IΣ] | ∃LIA ∈ LnA

++[IA] : g̃(β, LIΣ , LIA) = 0, hΨ(β, L
IΣ)) ≤ 0 } .

Finally, we have the following equivalence between minimization problems over the
parameter sets Θ and ΘNLP.

Proposition 32. For any continuous function f : Rnβ ×SnΣ → R that attains a minimum
in Θ,

min
(β,Σ)∈Θ

f(β,Σ) = inf
(β,LIΣ )∈ΘNLP

fΨ(β, L
IΣ)

where fΨ := f ◦Ψ.

Proof. The proof follows that of Theorem 28, noting that Assumption 2 gives cl(Θ++) = Θ
and therefore the minimum of f over Θ equals the infimum of f over Θ++.

4.3 ε-approximate solutions

The strict inequalities implied by constraints LnΣ
ε [IΣ] and LnA

ε [IA] are not amenable to
implementation in standard NLP software. In [60], a log-barrier approach is used to achieve
global convergence for a class of linear SDPs. Instead, we consider a constant backoff on
the inequalities, providing a small but nonzero lower bound on the diagonal elements. For
each Dn ⊆ I ⊆ Ln, we define

Ln
ε [I] := {L ∈ Ln

++[I] | Lii ≥ ε ∀i ∈ I1:n } .

These sets imply an additional n inequality constraints, but do not have any ill-posed
strictness requirements. Therefore we can optimize over the restricted set

Θε := { (β, LIΣ) ∈ Rnβ × LnΣ
ε [IΣ] | ∃LIA ∈ LnA

ε [IA] :
g̃(β, LIΣ , LIA) = 0, hΨ(β, L

IΣ) ≤ 0 }. (35)

In the following proposition we show, for any continuous function f , the infimum of f
over Θε converges to the minimum of f over Θ, so long as Assumption 2 is satisfied (see
Appendix E for proof).

Proposition 33. For any continuous f : Rnβ × SnΣ → R that attains a minimum in Θ,
let µ0 := min(β,Σ)∈Θ f(β,Σ) and

µε := inf
(β,LIΣ )∈Θε

f(β, LIΣ) (36)

where f(β, LIΣ) := f(Ψ(β, LIΣ)). If Assumption 2 is satisfied, then µε ↘ µ as ε ↘ 0.

With requirements on the objective f , convergence of ε-approximate solutions to the
exact solution is guaranteed by the following proposition (see Appendix E for proof).
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Proposition 34. For any continuous f : Rnβ ×SnΣ → R, consider the set-valued function
θ̂ : R≥0 → P(Θ), defined as

θ̂ε := argmin
(β,Σ)∈Ψ(Θε)

f(β,Σ)

for all ε > 0, and
θ̂0 := argmin

(β,Σ)∈Θ
f(β,Σ).

If there exists α ∈ R and compact C ⊆ Θ such that

Θf≤α := { (β,Σ) ∈ Θ | f(β,Σ) ≤ α }

is contained in C and Θf≤α ∩Θ++ is nonempty, then there exists ε > 0 such that, for all
ε0 ∈ [0, ε),

(a) f achieves a minimum in Θ and θ̂0 is nonempty;

(b) if ε0 > 0, then f achieves a minimum in Ψ(Θε0) and θ̂ε0 is nonempty;

(c) µε is continuous and θ̂ε is outer semicontinuous at ε = ε0; and

(d) if θ̂0 is a singleton, then lim supε↘0 θ̂ε = θ̂0.

5 Case Studies

In this section, we apply the identification methods outlined in the previous sections to
design Kalman filters for the linear augmented disturbance models used in offset-free MPC:

[
x̂k+1

d̂k+1

]
=

[
A Bd

0 Ip

] [
x̂k
d̂k

]
+

[
B
0

]
uk +

[
Kx

Kd

]
ek (37a)

yk =
[
C Cd

] [x̂k
d̂k

]
+ ek (37b)

ek
iid∼ N (0, Re) (37c)

where x̂ ∈ Rn denote plant state estimates, d̂ ∈ Rnd denote disturbance state estimates,
(Bd, Cd) ∈ Rn×nd × Rp×nd denote disturbance shaping matrices, and (Kx,Kd) ∈ Rn×p ×
Rnd×p are plant and disturbance state filter gains.

In the first case study, we consider the TCLab (Figure 1), an Arduino-based tempera-
ture control laboratory that serves as a low-cost2 benchmark for linear MIMO control [61].
We identify the TCLab from open-loop data and use the resulting model to design an offset-
free MPC. We compare closed-loop control and estimation performance of these models
to that of offset-free MPCs designed with the identification methods from [50, 51]. In

2The TCLab is available for under $40 from https://apmonitor.com/heat.htm and
https://www.amazon.com/gp/product/B07GMFWMRY.
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Figure 1: Benchmark temperature Control Laboratory (TCLab) [61].

the second case study, data from an industrial-scale chemical reactor is used to design
Kalman filters for the linear augmented disturbance model, and the closed-loop estimation
performance is compared to that of the designs proposed in [51].

To aid in optimizer convergence and guarantee uniqueness of the solution, to any like-
lihood function fN (θ), we add a regularization term or prior distribution,

min
θ∈Θ

fN (θ)− ln p(θ)

where p(θ) is the prior density. Throughout, we use the following prior,

− ln p(β,Σ) ∝ ρ

2

(
∥β − β0∥22 + tr(Σ− Σ0)

)
(38)

where ρ > 0 and (β0,Σ0) ∈ Θ++ is the initial guess given to the optimizer. The prior (38)
is equivalent to a Frobenius norm regularizer in the Cholesky factor space,

− ln p(Ψ(β, LIΣ)) ∝ ρ

2

(
∥β − β0∥22 + ∥LIΣ − LIΣ

0 ∥2F + ∥LJΣ(β, LIΣ)− LJΣ
0 ∥2F

)
(39)

where LIΣ
0 := πL

IΣ [chol(Σ0 −H(β0))] and LJΣ
0 := LJΣ(β0, L

IΣ
0 ). When Σ is block diagonal,

LJΣ(β, LIΣ) = 0 and the last term of (39) vanishes. The squared slack variables LA =
LIA + LJA are not regularized.

Throughout these experiments, we use the steady-state filter likelihood (10) and a
Cholesky factor diagonal backoff ε of 10−6. When constraints are considered, they either
take the form of smoothed spectral radius and abscissa constraints,

Pd −
AKPdA

⊤
K

(1− δ)2
= εdIn+p, Pd ⪰ 0, tr(Pd) ≤ ε−1

d (40a)

AKPc + PcA
⊤
K = εcIn+p, Pc ⪰ 0, tr(Pc) ≤ ε−1

c (40b)

or the LMI region barrier function constraints,

Pd −
AKPdA

⊤
K

(1− δ)2
⪰ εdI, Pd ⪰ 0, tr(Pd) ≤ ε−1

d (41a)

AKPc + PcA
⊤
K ⪰ εcI, Pc ⪰ 0, tr(Pc) ≤ ε−1

c . (41b)
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Figure 2: TCLab identification data and noise-free responses ŷk =
∑k

j=1 ĈÂj−1B̂uk−j of
a few selected models.

Table 1: TCLab model fitting results. ∗ The augmented PCA/CCA identification methods
are not iterative. ∗∗ The maximum number of iterations was set at 500.

Model Time (s) Iterations Log-likelihood

Augmented PCA 0.01 N/A∗ 3823.4

Augmented CCA 0.04 N/A∗ 2415.8

Unregularized ML 121.9∗∗ 500∗∗ -9431.4

Regularized ML 7.5 17 -9411.7

Constrained ML 1 36.3 61 -9407.5

Constrained ML 2 45.1 78 -9412.5

Constrained ML 3 14.2 23 -9407.5

Constrained ML 4 25.1 54 -9412.5

Each optimization problem is formulated in CasADi as a ε-approximate problem in Cholesky
factor form (35) and (36), and solved with IPOPT. Wall times for a single-thread run on an
Intel Core i9-10850K processor are reported. The initial guesses for these models are based
on a nested ML identification approach described in [50, 51]. This approach effectively
augments a standard identification method (e.g., PCA, Ho-Kalman, canonical correlation
analysis algorithms), so we refer to the initial guess models as “augmented” versions of the
standard method being used.

5.1 TCLab

Unless otherwise specified, the TCLab is modeled as a two-state system of the form

(1), with internal temperatures as plant states x =
[
T1 T2

]⊤
, heater voltages as inputs

u =
[
V1 V2

]⊤
, and measured temperatures y =

[
Tm,1 Tm2

]⊤
as outputs. Throughout,

we choose nd = p to satisfy the offset-free necessary conditions in [37, 38], and we con-
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Figure 3: TCLab models open-loop and closed-loop (filter) eigenvalues.

sider output disturbance models (Bd, Cd) = (02×2, I2). We use an observability canonical
form [68] with (A,B) fully parameterized and C = I2 to guarantee model identifiability
and make the states interpretable as internal temperatures. The remaining model terms
(Kx,Kd, Re) are fully parameterized. As in (37), the models do not include a passthrough
term, i.e., D = 0.

Eight TCLab models were considered:

1. Augmented PCA: the 6-state TCLab model used in [50], where principle compo-
nent analysis on a 400× 5100 data Hankel matrix is used to determine the states in
the disturbance-free model.

2. Augmented CCA: a 2-state augmented canonical correlation analysis (CCA) model,
based on the canonical method of [69].

3. Unregularized ML: a 2-state model, fit directly to (10) without regularization or
constraints, using Augmented CCA as the initial guess.

4. Regularized ML: the same as Unregularized ML but with an added regularizer (38)
with ρ = 10−2N .

5. Constrained ML 1: the same as Unregularized ML but with the smoothed LMI
region constraints (41) with δ = εd = 10−3 and εc = 10.

6. Constrained ML 2: the same as Constrained ML 1 but with δ = 2× 10−3.

7. Constrained ML 3: the same as Constrained ML 1, but using the smoothed spectral
radius and abscissa constraints (40) (and the same constants).

8. Constrained ML 4: the same as Constrained ML 3 (i.e., using (40)) but with
δ = 2× 10−3.

Each ML model uses Augmented CCA as the initial guess as it has the smallest number
of states. The augmented PCA model is, in effect, an unsupervised learner of the state
estimates, and therefore does not produce a parsimonious state description.
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Figure 5: TCLab disturbance rejection tests.

In Figure 2, the identification data is presented along with the noise-free responses
ŷk =

∑k
j=1 ĈÂj−1B̂uk−j of a few selected models. Computation time, number of IPOPT

iterations, and the unregularized log-likelihood value are reported in Table 1. The open-
loop A and closed-loop AK eigenvalues of each model are plotted in Figure 3.

Except for the augmented PCA model, all of the open-loop eigenvalues cluster around
the same region of the complex plane (figure 3). The closed-loop filter eigenvalues are placed
similarly, with the exception of the unregularized ML model, which has a slightly unstable
filter. Despite these differences, the ML models all have about the same unregularized
log-likelihood value (Table 1) and appear to have identical noise-free responses (Figure 2).
Here, the constraints (40) and (41) appear to enforce filter stability and aid in convergence
with only a small computational penalty.

As reported in Table 1, the unregularized ML model fitting did not converge. It is
our experience that encountering iterates with unstable filters and filters with eigenvalues
having negative real parts can cause convergence issues. This is because the likelihood
function becomes sensitive to small changes in the parameter values due to filter instability
or rapid oscillations in the filter predictions.

To test offset-free control performance, we performed two sets of closed-loop exper-
iments on offset-free MPCs designed with the models. In Figure 4, identical setpoint
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Figure 6: TCLab setpoint tracking test performance.
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Figure 8: TCLab identification index data for (left) setpoint tracking and (right) distur-
bance rejection tests.

changes were applied to a TCLab running at a steady-state power output of 50%. The set-
point changes were tracked with the offset-free MPC design described in [50]. In Figure 5,
step disturbances in the output pi and the input mi are injected into a plant trying to
maintain a given steady-state temperature. The setpoints are tracked with the offset-free
MPC design described in [50].

Control performance indexed by squared distance from the setpoint ℓk := ∥yk−ysp,k∥22.
Estimation performance is indexed by squared filter errors e⊤k ek. For any signal ak, we

define a T -sample moving average by ⟨ak⟩T := T−1
∑T−1

j=0 ak−j . Setpoint tracking per-
formance is reported in Figure 6, and disturbance rejection performance is reported in
Figure 7. From Figures 6 and 7, it is clear that the regularized ML model delivers the best
overall performance.

To investigate the accuracy of the stochastic models, we consider the inverse-covariance
weighted squared norm of the filter errors q := e⊤R−1

e e as an identification index. Recall

the signal ek is an i.i.d., zero-mean Gaussian process, i.e., ek
iid∼ N (0, Re), and therefore the

index qk is i.i.d. with a χ2
p distribution. Moreover, the moving average ⟨qk⟩T is distributed

as χ2
pT /T , although it is no longer independent in time. In Figure 8, histograms of ⟨q⟩T are

plotted against their expected distribution for T ∈ { 1, 10, 100 } and the augmented PCA,
augmented CCA, and regularized ML models. The extreme discrepancies between the
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Figure 9: Schematic of the DMT reactor and MPC control strategy.

augmented PCA and CCA models’ performance index ⟨q⟩T and the reference distribution
χ2
pT /T are primarily due to the augmented PCA/CCA models significantly overestimating

Re,

R̂aug-PCA
e = [ 0.5871 0.3365

0.3365 0.2878 ], R̂aug-CCA
e = [ 0.5889 0.0918

0.1791 0.3152 ], R̂ML
e = [ 0.0107 0.0006

0.0006 0.008 ].

The reference distribution and the ML model’s ⟨q⟩T distribution diverge at large T since,
due to plant-model mismatch, the filter’s innovation errors are slightly autocorrelated.

5.2 Eastman reactor

A schematic of the chemical reactor considered in the next case study is presented in
Figure 9.The control objective of the chemical reactor considered in the next case study is

to pick three inputs (the reactant flow rates and utility temperatures u =
[
F1 TH F2

]⊤
)

that steer the system to three setpoints (the output, a specified reactor temperature y = T ,

and the flowrates
[
u1 u2

]⊤
=
[
F1 F2

]⊤
) without offset. See [51] for more details about

the reactor operation. As in Subsection 5.1, we choose nd = p, consider output disturbance
models (Bd, Cd) = (03×1, 1), and use an observability canonical form [68] this time with

the parameterization A =
[

0 1 0
0 0 0
a1 a2 a3

]
and C =

[
1 0 0

]
. Again, the remaining model

terms (B,Kx,Kd, Re) are fully parameterized. As in (37), the models do not include a
passthrough term, i.e., D = 0. We fit eight models (two augmented, six ML) of this form
to closed-loop data of this core 3-input, 1-output system:
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Table 2: Eastman reactor model fitting results. ∗ The augmented HK/CCA identification
methods are not iterative.

Model Time (s) Iterations Log-likelihood

Augmented HK 0.08 N/A∗ -7143.1

Augmented CCA 0.07 N/A∗ -11288.4

Unregularized ML 1 23.7 93 -14345.5

Unregularized ML 2 19.4 73 -14345.5

Regularized ML 1 10.0 28 -13053.6

Regularized ML 2 8.8 22 -13587.7

Constrained ML 1 44.6 115 -13034.1

Constrained ML 2 37.1 91 -13587.7
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Figure 10: Training data and noise-free responses for the Eastman reactor models (Aug-
mented HK and ML models using Augmented HK as the initial guess).
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1. Augmented HK: a Ho-Kalman-based subspace model is augmented with a distur-
bance model, as detailed in [50].

2. Augmented CCA: a CCA subspace model, based on the method of [69], is aug-
mented with a disturbance model, as detailed in [51].

3,4) Unregularized ML 1 and 2: a model is fit directly to (10) without regularization
or constraints, using Augmented HK and CCA (resp.) as the initial guesses.

5,6) Regularized ML 1 and 2: the same as Unregularized ML 1 and 2, but with an
added regularizer (38) with ρ = 4N .

7,8) Constrained ML 1 and 2: the same as Regularized ML 1 and 2, but with the
smoothed spectral radius and abscissa constraints (40) with δ = 0, εd = 10−3, and
εc = 10.

Computation time, number of IPOPT iterations, and the unregularized log-likelihood value
are reported in Table 1.In Figures 10 and 11, the identification data is presented along with
the noise-free responses ŷk =

∑k
j=1 ĈÂj−1B̂uk−j of the Ho-Kalman-based and CCA-based

models, respectively. The open-loop A and closed-loop AK eigenvalues of each model are
plotted in Figure 12.

The eigenvalue clustering of the reactor models is more variable than that of the
TCLab models. Unregularized models converge to the same solution despite different ini-
tial guesses, and regularization pulls the eigenvalues towards the subspace model clustering
around z = 0.98. A notable feature of the unregularized models is their strong oscillating
modes at λ = 0.7246 ± 0.3141ι. While these oscillations are substantially dampened by
regularization and constraints, they persist for most models. These oscillations are likely
true plant dynamics caused by oscillations in the lower-level PID loops (i.e., level or flow
controls). This effect could be seen as an advantage or disadvantage, with the model either
correctly fitting desired oscillations so they can be corrected in a supervisory MPC layer,
or the model incorrectly overfitting to unwanted process dynamics. Removing unwanted
process dynamics may be desirable when experimentation is costly, as it allows the user to
“fix” the data rather than run another experiment.

The models’ estimation performances are compared against each other in Figures 13
and 14 using one of the test datasets from in [51]. Control performance could not be
compared without a costly redesign of the existing MPC strategy. The unregularized
models perform the best here, providing over 70% reduction in average filter error for the
HK-based models. While the regularized models still capture much of this improvement,
they do not have the same level of filter accuracy. This is again evidence of the oscillating
modes being a real part of the reactor dynamics rather than a feature of model overfitting.

6 Conclusion

We conclude with a discussion of possible future directions of research for applying our ML
identification scheme. An advantage of ML identification is the large body of literature on
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Figure 13: Test performance for the Eastman reactor models (Augmented HK and ML
models using Augmented HK as the initial guess).
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Figure 14: Test performance for the Eastman reactor models (Augmented CCA and ML
models using Augmented CCA as the initial guess).
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the asymptotic distribution and statistical efficiency of the parameter estimates. From the
asymptotic distribution, decision functions can be constructed to map the on-line MPC
performance to a re-identification signal. These decision functions can be constructed
so as to not alarm unless sufficiently exciting data is available. Decision-theoretic re-
identification therefore has lower cost and risk compared to classic adaptive control or online
reinforcement learning methods that require a persistently exciting identification signal.
This approach could bring statistical data efficiency to the fields of adaptive control and
online reinforcement learning. Recent work on direct data-driven control has incorporated
likelihood functions with measurement noise models into the control design [70]. To the
best of our knowledge, no current work has considered process noise, Kalman filter forms,
or structuring the model with uncontrollable integrators for offset-free MPC. There is a
future possibility of direct data-driven offset-free MPC design with both optimal control
and estimation performance.

A Proof of Proposition 6

Silverman [64] contains a more complete characterization of the DARE solutions for reg-
ulation problems with cross terms. However, this admits additional nullspace terms into
the gain matrix which the Kalman filtering problem does not allow. We avoid nullspace
terms through the assumption Rv ≻ 0 and therefore streamline the proof of Proposition 6.

For the following definitions and lemmas, consider the system matricesW := (A,B,C,D)
corresponding to a noise-free system.

Definition 35. The system W is left invertible on I0:k−1 if

0 =


D
CB D
...

. . .
. . .

CAk−2B . . . CB D


 u0

...
uk−1


implies u0 = 0. The system W is left invertible if there is some j ∈ N such that W is left
invertible on I0:k−1 for all k ≥ j.

Definition 36. The system W is strongly detectable if yk → 0 implies xk → 0.

The following lemmas are taken directly from [64, Thms. 8, 18(iii)], but the proofs are
omitted for the sake of brevity.

Lemma 37 ([64, Thm. 8]). If W is left invertible, then W is strongly detectable if and
only if (A−BF,C −DF ) is detectable for all F of appropriate dimension.

Lemma 38 ([64, Thm. 18(iii)]). If W is left invertible, then the DARE

P = A⊤PA− (A⊤PB + C⊤D)(B⊤PB +D⊤D)−1(B⊤PA+D⊤C)
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has a unique, stabilizing solution3 if and only if W is stabilizable and semistrongly de-
tectable.

For the remainder of this section, we consider the full rank factorization[
Qw Swv

S⊤
wv Rv

]
=

[
B̃

D̃

] [
B̃⊤ D̃⊤]

and the dual system W̃ := (A⊤, C⊤, B̃⊤, D̃⊤) to analyze the properties of the original
system (1). The following lemma relates the properties Rv ≻ 0 and left invertability of W̃.

Lemma 39. If Rv ≻ 0 then W̃ is left invertible.

Proof. Left invertability on I0:k−1 is equivalent to

0 =


D̃⊤

B̃⊤C⊤ D̃⊤
...

. . .
. . .

B̃⊤(A⊤)k−2C⊤ . . . B̃⊤C⊤ D̃⊤


 u0

...
uk−1

 (42)

implying u0 = 0. But Rv = D̃D̃⊤ ≻ 0, so D̃⊤ has a zero nullspace. For each k ∈ N, the
coefficient matrix of (42) has a zero nullspace. Thus, u0 = 0 and W̃ is left invertible.

Finally, we can prove Proposition 6.

Proof of Proposition 6. By Lemma 39, we have that W̃ is left invertible. Therefore, by
Lemma 38, the DARE (9) has a unique, stabilizing solution if and only if W̃ is stabilizable
and strongly detectable. But by Lemma 37 and duality, the latter statement is true if and
only if (A,C) is detectable and (A− FC, B̃ − FD̃) is stabilizable for all F ∈ Rn×p.

B Proof of Proposition 20

Throughout this appendix, we define the set of n×n Hermitian, Hermitian positive definite,
and Hermitian positive semidefinite matrices as Hn, Hn

++, and Hn
+. Notice that fD maps

to Hermitian matrices so we can write it as f : C → Hm. We define the extension of MD
to complex arguments MD : Cn×n ×Hn

+ → Hnm as

MD(A,P ) := M0 ⊗ P +M1 ⊗ (AP ) +M⊤
1 ⊗ (AP )H.

To show Proposition 20, we need a preliminary result about Hermitian positive semidefinite
matrices, generalized from Lemma A.1 in [59].

Lemma 40. For any M ∈ Hn, if M ⪰ 0 (M ≻ 0) then Re(M) ⪰ 0 (Re(M) ≻ 0).

3Contrary to in Section 2, here we mean the solution P is stabilizing when A−BK(P ) is stable, where
K(P ) := (B⊤PB +D⊤D)−1B⊤P .
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Proof. With M = Re(M) + ιIm(M), it is clear M Hermitian implies Re(M) is symmetric
and Im(M) is skew-symmetric. Thus v⊤Mv = v⊤Re(M)v for all v ∈ Rn, and positive
(semi)definiteness of M implies positive (semi)definiteness of Re(M).

In proving Proposition 20, we take the approach of [59] but are careful to distinguish
eigenvalues on the interior D from those on the boundary ∂D.

Proof of Proposition 20. (⇐) Suppose that MD(A,P ) ⪰ 0 for some P ≻ 0 and let λ ∈
λ(A). Then there exists a nonzero v ∈ Cn for which vHA = λvH. Consider the identity

(Im ⊗ v)HMD(A,P )(Im ⊗ v) = M0 ⊗ vHPv +M1 ⊗ (vHAPv) +M⊤
1 ⊗ (vHPA⊤v)

= M0 ⊗ vHPv +M1 ⊗ (λvHPv) +M⊤
1 ⊗ (λvHPv)

= vHPv(M0 +M1λ+M⊤
1 λ)

= vHPvfD(λ).

The assumption P ≻ 0 implies vHPv > 0, and MD(A,P ) ⪰ 0 further implies fD(λ) ⪰ 0.
Therefore λ ∈ cl(D).

Next suppose λ ∈ λ(A) is non-simple and λ ∈ ∂D. Then there exists nonzero v1, v2 ∈ Cn

(linearly independent) such that vHfD(λ)v = 0, vH1 A = λvH1 , and vH2 A = λvH2 +v1. Because
D is open, λ ∈ ∂D = cl(D) \ D must satisfy both fD(λ) ⪰ 0 and fD(λ) ̸≻ 0. Therefore
fD(λ) is singular, and there exists a nonzero vector v ∈ Cm such that vHfD(λ)v = 0. With
the 2× 2 matrices

P̃ =

[
p11 p12
p12 p22

]
:=

[
vH1
vH2

]
P
[
v1 v2

]
≻ 0

J̃ := λI2 +

[
0 1
0 0

]
we have

[
v1 v2

]H
A = J̃

[
v1 v2

]H
and therefore

(Im ⊗
[
v1 v2

]
)HMD(A,P )(Im ⊗

[
v1 v2

]
) = M0 ⊗ P̃ +M1 ⊗ J̃ P̃ +M⊤

1 ⊗ (J̃ P̃ )⊤

= MD(J̃ , P̃ ) ⪰ 0.

Next, we have

M̃ := K2,mMD(J̃ , P̃ )K⊤
2,m

= P̃ ⊗M0 + J̃ P̃ ⊗M1 + (J̃ P̃ )⊤ ⊗M⊤
1

= P̃ ⊗ fD(λ) +
[
p12(M1 +M⊤

1 ) p22M1

p22M
⊤
1 0

]
⪰ 0.

Finally,

(I2 ⊗ v)HM̃(I2 ⊗ v) =

[
p12v

H(M1 +M⊤
1 )v p22v

HM1v
p22v

HM⊤
1 v 0

]
⪰ 0.
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But P̃ ≻ 0 implies p22 > 0, so the above matrix inequality implies vHM1v = 0. Moreover,
with vHfD(λ)v = 0, we also have vHM0v = 0 and therefore f(z) ≡ 0 and D is empty, a
contradiction. Therefore each λ ∈ λ(A) non-simple implies λ ∈ D.

(⇒) Suppose λ(A) ⊂ cl(D) and λ ∈ λ(A) non-simple implies λ ∈ D.
If A = λ is a (possibly complex) scalar, then it lies in cl(D) by assumption, with

MD(λ, p) = pfD(λ) ⪰ 0 for all p > 0.
If A = λIn+N is a (possibly complex) Jordan block, where N ∈ Rn×n is a shift matrix

and n > 1, then λ ∈ D and fD(λ) ≻ 0. Let Tk := diag(kn−1, . . . , k, 1) for each k ∈ N. Then
T−1
k ATk = λIn + k−1N → λIn as k → ∞. Moreover, because MD is continuous, we have

MD(T
−1
k ATk, In) → MD(λIn, In) = fD(λ)⊗ In ≻ 0.

Therefore there exists some k0 ∈ N such that MD(T
−1
k ATk, In) ≻ 0 for all k ≥ k0. With

P := TkT
⊤
k , we have

MD(A,P ) = M0 ⊗ TkT
⊤
k +M1 ⊗ (ATkT

⊤
k ) +M⊤

1 ⊗ (ATkT
⊤
k )⊤

= (Im ⊗ Tk)(M0 ⊗ In +M1 ⊗ T−1
k ATk +M⊤

1 ⊗ (T−1
k ATk)

⊤)(Im ⊗ Tk)
⊤

= (Im ⊗ Tk)MD(T
−1
k ATk, In)(Im ⊗ Tk)

⊤ ≻ 0.

Finally, for any A ∈ Rn×n, let A = V (
⊕p

i=1 Ji)V
−1 denote the Jordan decomposition

of A, where Ji = λiIni +Ni, λi ∈ λ(A), Ni are shift matrices, and n =
∑p

i=1 ni. We have
already shown that for each i ∈ I1:p, there exists Pi ≻ 0 such that MD(Ji, Pi) ⪰ 0. Then
with P̃ := V (

⊕p
i=1 Pi)V

−1, we have

(Im ⊗ V −1)MD(A, P̃ )(Im ⊗ V −1)H

= M0 ⊗

(
p⊕

i=1

Pi

)
+M1 ⊗

(
p⊕

i=1

JiPi

)
+M1 ⊗

(
p⊕

i=1

JiPi

)⊤

= Kn,m

(
p⊕

i=1

Km,niMD(Ji, Pi)K
⊤
m,ni

)
K⊤

n,m ⪰ 0

and therefore MD(A, P̃ ) ⪰ 0. Last, Lemma 40 gives MD(A,P ) ⪰ 0 with P := Re(P̃ ) since

MD(A,P ) = MD(A,Re(P̃ )) = Re(MD(A, P̃ )).

C Proof of Proposition 21

To show Proposition 21(a), we first require the following eigenvalue sensitivity result due
to [63, Thm. 7.2.3].

Theorem 41 ([63, Thm. 7.2.3]). For any A ∈ Cn×n, denote its Schur decomposition by
A = Q(D +N)QH, where Q ∈ Cn×n is unitary, D ∈ Cn×n is diagonal, and N ∈ Cn×n is
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strictly upper triangular.4 Let p be the smallest integer for which Mp = 0 where Mij :=
|Nij |. Then

min
λ∈λ(A)

|µ− λ| ≤ max { c∥E∥, (c∥E∥)1/p }

where c :=
∑p−1

k=0 ∥N∥k.

Proof of Proposition 21. Throughout this proof, we show a set S is not open (or not closed)
by demonstrating that Sc (or S) does not contain all its limit points.

(a)—For any A ∈ An
D, continuity of fD gives the existence of a function δ(λ) > 0 such

that fD(z) ≻ 0 for all |z−λ| < δ(λ) and λ ∈ λ(A). Let δ := minλ∈λ(A) δ(λ). By Theorem 41
and norm equivalence, there exist c > 0 and p ∈ I1:n such that

max
µ∈λ(A+E)

min
λ∈λ(A)

|λ− µ| ≤ max { c∥E∥F, (c∥E∥F)1/p }

for all E ∈ Rn×n. Therefore there exists a ε > 0 such that

max
µ∈λ(A+E)

min
λ∈λ(A)

|λ− µ| < δ

for all E ∈ B := {E′ ∈ Rn×n | ∥E′∥F < ε }. Finally, A+B is a neighborhood of A contained
in An

D, and, since A ∈ An
D was chosen arbitrarily, An

D is open.
(b)(i)—Because D is open, nonempty, and not equal to D, ∂D is nonempty. Let λ ∈ ∂D

and λk ∈ Dc be a sequence for which λk → λ. By symmetry, we also have λ ∈ D and
λk ∈ Dc.

For n = 2, we have A :=
[
Re(λ) −Im(λ)
Im(λ) Re(λ)

]
∈ R2×2 has eigenvalues λ, λ ∈ D, and Ak :=[

Re(λk) −Im(λk)
Im(λk) Re(λk)

]
∈ R2×2 has eigenvalues λk, λk ∈ Dc for each k ∈ N. The corresponding

eigenvectors are
[±ι

1

]
∈ C2. Therefore A ∈ Ã2

D but Ak ∈ (Ã2
D)

c for each k ∈ N, and the

limit Ak → A gives us that (Ã2
D)

c does not contain all its limit points.
For n > 2, let A0 ∈ Ãn−2

D , and we can extend the prior argument with the sequence
Bk := Ak ⊕A0 ∈ (Ãn

D)
c, k ∈ N that converges to B := A⊕A0 ∈ Ãn

D.
(b)(ii)—By part (b)(i), it suffices to consider the case n = 1. By closure and convexity

of D, D∩R is either a closed line segment, a closed ray, or R itself. In other words, D∩R is
open if and only if it has no endpoints. Moreover, since ∂D ∩R is the set of the endpoints
of D ∩ R, D ∩ R is open if and only if ∂D ∩ R is empty. Finally, since Ã1

D = D ∩ R, Ã1
D is

open if and only if ∂D ∩ R is empty.
(c)(i)—Let λ ∈ ∂D. Suppose n = 4. Then λ ∈ ∂D by symmetry. Because D is

open, there exists a sequence λk ∈ D such that λk → λ, and by symmetry, we also have
λk ∈ D and λk → λ. Consider again the 2 × 2 matrices A and Ak from part (b)(i),
which have eigenvalues λ, λ ∈ D and λk, λk ∈ Dc, respectively. Then the block matrices

B :=
[
A I2
0 A

]
∈ R4×4 and Bk :=

[
Ak I2
0 Ak

]
∈ R4×4 have the same eigenvalues, but this time

the eigenvectors are

[±ι
1
0
0

]
,

[
0
0
±ι
1

]
∈ C4 and the eigenvalues are non-simple. Since λ is a

4A matrix U is strictly upper triangular if Uij = 0 for all i ≥ j.
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non-simple eigenvalue on the boundary of D, we have B ̸∈ Ã4
D. However, λk are all in the

interior of D, so Bk ∈ Ã4
D. Since Bk → B, the set Ã4

D does not contain all its limit points.
On the other hand, let λ ∈ ∂D and suppose n > 4. Similarly to part (b)(i), with

any Ã0 ∈ Ãn−4
D , we can extend the argument for the n = 4 case with the sequence Ãk :=

Bk ⊕ Ã0 ∈ Ãn
D, k ∈ N that converges to Ã := B ⊕ Ã0 ∈ (Ãn

D)
c.

(c)(ii)—Let λ ∈ ∂D ∩ R and n ≥ 2. Because D is convex, open, and nonempty, there
exists ε > 0 such that exactly one of the real intervals (λ, λ+ε) or (λ−ε, λ) is contained inD,
whereas the other is contained in int(Dc). Without loss of generality, assume (λ−ε, λ) ⊆ D.5

ThenAk := (λ−ε/k)In+Nn ∈ Ãn
D for each k ∈ N, butAk → λIn+Nn ∈ (Ãn

D)
c and therefore

Ãn
D does not contain all its limit points. (d)—Since An

D := {A ∈ Rn×n | λ(A) ⊂ cl(D) }
contains An

D, it suffices to show any A ∈ An
D is a limit point of An

D. Denote the Jordan form
by A = V (

⊕p
i=1 µiIni +Nni)V

−1, where V ∈ Rn×n is invertible, µi ∈ λ(A), n =
∑p

i=1 ni,
and Ni ∈ Rni×ni is a shift matrix. Because µi ∈ cl(D), there exists a sequence µi,k ∈ D
such that µi,k → µi. Then Ak := V (

⊕p
i=1 µi,kIni +Ni)V

−1 ∈ An
D and Ak → A.

D Proof of Proposition 22

To prove Proposition 22(a,b), we use sensitivity results on the value functions of parame-
terized nonlinear SDPs,

V (y) := inf
x∈X(y)

F (x, y) (43)

where the set-valued function X : Rm → P(Rn) is defined by

X(y) := {x ∈ Rn | G(x, y) ⪰ 0 } .

Consider also the graph of the set-valued function X,

Z := { (x, y) ∈ Rn+m | G(x, y) ⪰ 0 } .

Notice that Z is closed if G is continuous. We say Slater’s condition holds at y ∈ Rm if
there exists x ∈ Rn such that x ∈ int(X(y)), or equivalently, G(x, y) ≻ 0.

In [71, Prop. 4.4], continuity of a general class of optimization problems is considered.
In the following proposition, we state the specialization to nonlinear SDPs.

Proposition 42 ([71, Prop. 4.4]). Let y0 ∈ Rm and suppose

(i) F and G are continuous on Rn+m;

(ii) there exist α ∈ R and compact C ⊂ Rn such that, for each y in a neighborhood of y0,
the level set

lev≤αF (·, y) := {x ∈ X(y) | F (x, y) ≤ α }

is nonempty and contained in C; and

(iii) Slater’s condition holds at y0.

5Otherwise, take the reflection about the imaginary axis −D and −Ãn
D.
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Then F (·, y) attains a minimum on X(y) for all y ∈ Ny, and V (y) is continuous at y = y0.

Proof. See [71, Prop. 4.4] and the discussions in [71, pp. 264, 483–484, 491–492].

Finally, we prove Proposition 22.

Proof of Proposition 22. Let vec : Rn×n → Rn2
and vecs : Rn×n → R(1/2)(n+1)n denote the

vectorization and symmetric vectorization operators, respectively.
(a)—With x := vecs(P ), y := vec(A), F (x, y) := tr(V P ), andG(x, y) := P⊕(MD(A,P )−

M), we can use Proposition 42 to show the continuity of ϕD on An
D. Let A0 ∈ An

D.
Condition (i) of Proposition 42 holds by assumption. Slater’s condition (iii) holds be-
cause for any P ≻ 0 such that MD(A0, P ) ≻ 0, we can define P0 := γP ≻ 0 for some
γ > γ0 := ∥M∥ × ∥[MD(A0, P )]−1∥ to give

MD(A0, P0) = γMD(A0, P ) ≻ γ0MD(A0, P ) ⪰ M.

Moreover, by continuity ofMD, there exists a neighborhoodNA ofA0 such thatMD(A,P0) ≻
M for all A ∈ NA. Letting α := tr(V P0) > 0, we have that the set

{P ∈ Sn+ | tr(V P ) ≤ α }

is compact and contains the nonempty level set

{P ∈ P(A) | tr(V P ) ≤ α }

for all A ∈ NA. Taking the image of each of the above sets under the vecs operation gives
condition (ii) of Proposition 42. All the conditions of Proposition 42 are thus satisfied for
each A0 ∈ An

D, and we have ϕD is continuous on An
D.

(b)—Continuity of ϕD on An
D implies closure of the sublevel sets of ϕD, and (23) follows

by definition of An
D(ε).

(c)—First, MD(A,P ) ≻ 0 implies P ≻ 0 since, if MD(A,P ) ≻ 0 and P ⪰ 0 but P ̸≻ 0,
there exists a nonzero v ∈ Rn such that Pv = 0 and

(Im ⊗ v)⊤(MD(A,P ))(Im ⊗ v) = M ⊗ (v⊤Pv)

+M1 ⊗ (v⊤APv) +M⊤
1 ⊗ (v⊤PA⊤v) = 0

a contradiction of the assumption MD(A,P ) ≻ 0. Moreover, for any P ≻ 0 such that
MD(A,P ) ≻ 0, we have MD(A,P ) ⪰ γMD(A,P ) ⪰ M with P := γP and γ := ∥M∥ ×
∥[MD(A,P )]−1∥, so feasibility of (17) is equivalent to feasibility of

MD(A,P ) ≻ M, P ⪰ 0

and therefore
⋃

ε>0An
D(ε) = An

D. But An
D(ε) is monotonically decreasing,6 so An

D(ε) ↗⋃
ε>0An

D(ε) = An
D as ε ↘ 0.

6By “monotonically decreasing” we mean An
D(ε) ⊇ An

D(ε′) for all ε ≤ ε′.
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E Proof of Propositions 33 and 34

Starting with Proposition 33:

Proof of Proposition 33. Since µε is nondecreasing and bounded from below by µ, it suffices
to show that for each δ > 0, there exists a ε > 0 such that µε − µ < δ.

Let (β∗,Σ∗) ∈ Θ denote a point for which µ = f(β∗,Σ∗). If (β∗,Σ∗) ∈ Θ++, we could
simply choose ε > 0 small enough to put (β∗,Σ∗) in Θε and achieve µε − µ = 0 < δ.

Instead, we assume (β∗,Σ∗) ̸∈ Θ++. By Assumption 2, there exists a sequence (βk,Σk) ∈
Θ++, k ∈ N such that βk → β and Σk → Σ as k → ∞. Defining νk := f(βk,Σk), we have
νk → µ by continuity of f . Therefore, there exists some k0 ∈ N such that νk − µ < δ for
all k ≥ k0.

For each (βk,Σk) ∈ Θ++, there exist unique LIΣ
k ∈ LnΣ

++[IΣ] and LIA
k ∈ LnA

++[IA] such
that the constraints

g̃(βk, L
IΣ
k , LIA

k ) = 0 h(βk, L
IΣ
k ) ≤ 0

are satisfied (by Lemmas 29 and 31). Let ε be the minimum value over all the diagonal
elements of LIΣ

k0
and LIA

k0
. Then (βk0 , L

IΣ
k0
) ∈ Θε by construction, so νk0 ≥ µε by optimality,

and therefore µε − µ ≤ νk0 − µ < δ.

As in Appendix D, we use sensitivity results of [71] on optimization problems to to
prove Proposition 34. This time, however, we consider the continuity of the value function
for parameterized NLPs on Banach spaces. Let X , Y, and K be Banach spaces and consider
the parameterized NLP,

V (y) := inf
x∈X(y)

F (x, y) (44)

where the set-valued function X : Y → P(X ) is defined by

X(y) := {x ∈ X | G(x, y) ∈ K }

for some G : X ×Y → K and K ⊆ K is closed. Let X0(y) denote the (possibly empty) set
of solutions to (44). Define the graph of the set-valued function X(·) by

Z := { (x, y) ∈ X × Y | G(x, y) ∈ K } .

Notice that Z is closed if G is continuous and K is closed.

Proposition 43 ([71, Prop. 4.4]). Let y0 ∈ Y and assume:

(i) F and G are continuous on X × Y and K is closed;

(ii) there exist α ∈ R and a compact set C ⊆ X such that, for every y in a neighborhood
of y0, the level set

{x ∈ X(y) | f(x, y) ≤ α }

is nonempty and contained in C; and
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(iii) for any neighborhood Nx of the solution set X0(y0), there exists a neighborhood Ny

of y0 such that Nx ∩ X(y) is nonempty for all y ∈ Ny;

then V (y) is continuous and X0(y) is outer semicontinuous at y = y0.

Proof of Proposition 34. First, we must specify ε. For each θ ∈ Θ++, let

ε(θ) := max { ε > 0 | θ ∈ Ψ(Θε) }

where the maximum is achieved since there is a finite number of diagonal elements of the
Cholesky factors that must be lower bounded. Now we specify ε as the supremum of ε(θ)
over all θ ∈ Θf≤α ∩Θ++,

ε := sup { ε(θ) | θ ∈ Θf≤α ∩Θ++ }

so that, for any ε ∈ (0, ε), Θf≤α ∩Ψ(Θε) is nonempty and is contained in the compact set
C.

(a)—Following the proof of [71, Prop. 4.4], we have (i) F is continuous and (ii) the
level set Θf≤α is nonempty and contained in the compact set C, which implies Θf≤α is a
compact level set and therefore the minimum of f over Θf≤α is achieved and equals the

minimum over Θ. Moreover, θ̂0 must be nonempty.
(b)—Similarly to part (a), we have, for each ε ∈ (0, ε), that the level set Θf≤α ∩Ψ(Θε)

is nonempty and contained in the compact set C, so f achieves its minimum over Ψ(Θε)
and θ̂ε is nonempty.

(c)—Consider the graph of the constraint function,

Z := { (θ, ε) ∈ Θ× R≥0 | θ ∈ Ψ(Θε) if ε > 0 } .

Consider a sequence (θk, εk) ∈ Z, k ∈ N that is convergent (θk, εk) → (θ, ε). Then ε ≥ 0,
otherwise the sequence would not converge. Moreover, θ ∈ Θ since θk ∈ Ψ(Θεk) ⊆ Θ for all
k ∈ N and Θ contains all its limit points. If ε = 0, then (θ, ε) ∈ Z trivially. On the other
hand, if ε > 0, then ε(θk) converges to ε(θ) because Ψ is continuous and the max can be
taken over a finite number of elements of Ψ−1(θk). Moreover, ε(θk) and upper bounds εk
because θk ∈ Ψ(Θεk), so ε(θ) ≥ ε. Finally, we have θ ∈ Ψ(Θε), (θ, ε) ∈ Z, and Z is closed.

Let ε0 ≥ 0 and Nθ be a neighborhood of θ̂ε0 . With

δ := sup { ε(θ) | θ ∈ Nθ } > 0

we have Nθ ∩Θ and Nθ ∩Ψ(Θε) are nonempty for all ε ∈ (0, ε0 + δ).
Finally, the requirements of [71, Prop. 4.4] are satisfied for all ε0 ∈ [0, ε), so µε is

continuous and θ̂ε is outer semicontinuous at ε = ε0.
(d)—The last statement follows by the definition of outer semicontinuity and the fact

that the lim sup is nonempty.
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