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Abstract

We present the first general stability results for nonlinear offset-free
model predictive control (MPC). Despite over twenty years of active
research, the offset-free MPC literature has not shaken the assump-
tion of closed-loop stability for establishing offset-free performance.
In this paper, we present a nonlinear offset-free MPC design that is
robustly stable with respect to the tracking errors, and thus achieves
offset-free performance, despite plant-model mismatch and persistent
disturbances. Key features and assumptions of this design include
quadratic costs, differentiability of the plant and model functions,
constraint backoffs at steady state, and a robustly stable state and
disturbance estimator. We first establish nominal stability and offset-
free performance. Then, robustness to state and disturbance estimate
errors and setpoint and disturbance changes is demonstrated. Finally,
the results are extended to sufficiently small plant-model mismatch.
The results are illustrated by numerical examples.

1 Introduction

Offset-free model predictive control (MPC) is a popular advanced control method for offset-
free tracking of setpoints despite plant-model mismatch and persistent disturbances. This
is accomplished by combining regulation, estimation, and steady-state target problems,
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each designed with a state-space model that is augmented with uncontrollable integrating
modes, called integrating disturbances, that provide integral action through the estimator.
Despite over twenty years of applied use and active research, there are no results on the
stability of nonlinear offset-free MPC.

Sufficient conditions for which linear offset-free MPC stability implies offset-free per-
formance were first established by Muske and Badgwell (2002); Pannocchia and Rawlings
(2003). While Muske and Badgwell (2002); Pannocchia and Rawlings (2003) do not ex-
plicitly mention control of nonlinear plants, the results are widely applicable to both linear
and nonlinear plants with asymptotically constant disturbances, as controller stability is
assumed rather than explicitly demonstrated. In fact, Pannocchia and Rawlings (2003)
demonstrate offset-free control on a highly nonlinear, non-isothermal reactor model.

Offset-free MPC designs with nonlinear models and tracking costs were first considered
by Morari and Maeder (2012). For the special case of state feedback, Pannocchia et al.
(2015) give a disturbance model and estimator design for which the offset-free MPC is
provably asymptotically stable and offset-free. In Pannocchia et al. (2015), the state-
feedback observer design is generalized to economic cost functions, and convergence to
the optimal steady state is demonstrated. A general, output-feedback offset-free economic
MPC was first proposed by Vaccari and Pannocchia (2017), who use gradient correction
strategies to ensure the economic MPC, if it converges, achieves the optimal steady-state
performance. For further developments of offset-free economic MPC, we refer the reader
to Pannocchia (2018); Faulwasser and Pannocchia (2019); Vaccari et al. (2021).

To the best of our knowledge, there are no stability results for offset-free MPC in
the intended setting: persistent disturbances and plant-model mismatch. The results dis-
cussed thus far have assumed closed-loop stability rather than proven it. Some authors
have proposed provably stable nonlinear MPC designs for output tracking (Falugi, 2015;
Limon et al., 2018; Köhler et al., 2020; Berberich et al., 2022; Galuppini et al., 2023; Solop-
erto et al., 2023), but access to the plant dynamic equations is assumed and process and
measurement disturbances are not considered.

In this paper, we propose a nonlinear offset-free MPC design that has offset-free perfor-
mance and asymptotic stability subject to plant-model mismatch, persistent disturbances,
and changing references. Based on the results in Kuntz and Rawlings (2024), we use posi-
tive definite quadratic costs and assume differentiability of the plant and model equations
to ensure the plant-model mismatch does not prevent stability with respect to the steady-
state targets. To ensure the controller is robustly feasible, we soften any output constraints
in the regulator using an exact penalty method, and to guarantee nominal regulator stabil-
ity, we apply constraint backoffs to the steady-state target problem. Lipschitz continuity
of the steady-state target problem solutions is required to guarantee robustness to estimate
errors and setpoint and disturbance changes.

The remainder of this section outlines the paper and establishes notation, definitions,
and basic facts used throughout. In Section 2, the offset-free MPC design is presented.
In Section 4, we establish asymptotic stability of the nominal system. In Section 5, we
establish robust performance with respect to estimate errors, setpoint changes, and distur-
bance changes. In Section 6, we extend these results to the mismatched system using the
approach in Kuntz and Rawlings (2024). Finally, in Section 8, we conclude the paper with
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a discussion of limitations and future work.

Notation Let R, R≥0, and R>0 denote the real, nonnegative real, and positive real
numbers, respectively. Let I, I≥0, I>0, and Im:n denote the integers, nonnegative integers,
positive integers, and integers from m to n (inclusive), respectively. Let Rn and Rn×m

denote real n-vectors and n × m matrices, respectively. For any matrix A ∈ Rn×n, we
denote by λ(A) the set of eigenvalues of A, we call ρ(A) := maxλ∈λ(A) |λ| the spectral radius
of A. We say A is Schur stable if ρ(A) < 1. We denote by σ(A) and σ(A) the smallest
and largest singular values of A ∈ Rn×n. We say a symmetric matrix P = P⊤ ∈ Rn×n

is positive definite (semidefinite) if x⊤Px > 0 (x⊤Px ≥ 0) for all nonzero x ∈ Rn. We
define the Euclidean and Q-weighted norms by |x| :=

√
x⊤x and |x|Q :=

√
x⊤Qx, for

each x ∈ Rn, where Q is positive definite. For any positive definite Q ∈ Rn×n, we have
σ(Q)|x|2 ≤ |x|2Q ≤ σ(Q)|x|2 for all x ∈ Rn. For any function V : X → R and ρ > 0, we
define levρV := {x ∈ X | V (x) ≤ ρ }. For any signal a(k), we denote both infinite and finite
sequences in bold font as a := (a(0), . . . , a(k)) or a := (a(0), a(1), . . .). A subsequence of
a is denoted ai:j = (a(i), . . . , a(j)) where i ≤ j. We define the infinite and length-k
signal norm as ∥a∥ := supk≥0 |a(k)| and ∥a∥0:k := max0≤i≤k |a(i)|. Let K be the class of
functions α : R≥0 → R≥0 that are strictly increasing and α(0) = 0. Let K∞ be the class of
unbounded class-K functions. Let KL be the class of functions β : R≥0 × I≥0 → R≥0 such
that β(·, k) ∈ K, β(r, ·) is nonincreasing, and limi→∞ β(r, i) = 0, for all (r, k) ∈ R≥0 × I≥0.
Let id(·) := (·) ∈ K∞ denote the identity map.

2 Problem statement

2.1 System of interest

Consider the following discrete-time plant:

x+P = fP(xP, u, wP) (1a)

y = hP(xP, u, wP) (1b)

where xP ∈ X ⊆ Rn is the plant state, u ∈ U ⊆ Rnu is the input, y ∈ Y ⊆ Rny is the
output, and wP ∈ W ⊆ Rnw is the plant disturbance. The functions fP and hP are not
known. Instead, we assume access to a model of the plant,

x+ = f(x, u, d) (2a)

y = h(x, u, d) (2b)

where x ∈ X ⊆ Rn is the model state and d ∈ D ⊆ Rnd is the model disturbance. Without
loss of generality, we assume the nominal plant and model functions are consistent, i.e.,

f(x, u, 0) = fP(x, u, 0), h(x, u, 0) = hP(x, u, 0) (3)

for all (x, u) ∈ X × U. The plant disturbance wP may include process and measurement
noise, exogenous disturbances, parameter errors, discretization errors, and even unmodeled
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dynamics. The purpose of the model disturbance d is to correct for steady-state output
errors introduced by the plant disturbance wP. The model disturbance d may include any
of the plant disturbances and/or fictitious signals accounting for the effect of the plant
disturbances on the steady-state output.

Example 1. Consider a single-state linear plant with parameter errors,

fP(xP, u, wP) = (â+ (wP)1)xP + (b̂+ (wP)2)u

hP(xP, u, wP) = xP + (wP)3

and a single-state linear model with an input disturbance:

f(x, u, d) = âx+ b̂(u+ d), h(x, u, d) = x.

For this example, the plant disturbance wP includes both parameter errors and measure-
ment noise, whereas the model disturbance only provides the means to shift the model
steady states in response to plant disturbances.

The control objective is to drive the reference signal,

r = g(u, y) (4)

to the setpoint rsp using only knowledge of the model (2), past (u, y) data, and auxiliary
setpoints (usp, ysp) (to be defined). The setpoints ssp := (rsp, usp, ysp) are possibly time-
varying, but only the current value is available at a given time. The controller should be
offset-free when the setpoint and plant disturbances are asymptotically constant, i.e.,

(∆ssp(k),∆wP(k)) → 0 ⇒ r(k)− rsp(k) → 0

where ∆ssp(k) := ssp(k) − ssp(k − 1) and ∆wP(k) := wP(k) − wP(k − 1). Otherwise, the
amount of offset should be robust to setpoint and disturbance increments (∆ssp,∆wP).

Remark 1. To achieve the nominal consistency assumption (3) and track the reference (4),
we typically need the dimensional constraints ny ≤ nd and nr ≤ nu, respectively. Otherwise
their are insufficient degrees of freedom to manipulate the output and reference at steady
state with the disturbance and input, respectively.

Remark 2. We do not strictly require an asymptotically constant disturbance. For ex-
ample, if rsp(k) = sin(1/k) and wP ≡ 0, then the setpoint increments go to zero ∆rsp(k) =
sin(1/k)− sin(1/(k − 1)) = O(1/k2). But the setpoint signal becomes approximately con-
stant as k → ∞, so we should expect the offset-free MPC to be approximately offset-free.

Throughout, we make the following assumptions on plant, model, and reference func-
tions.

Assumption 1 (Continuity). The functions g : U× Y → Rnr , (fP, hP) : X× U×W →
X × Y, and (f, h) : X × U × D → X × Y are continuous, and f(0, 0, 0) = 0, h(0, 0, 0) = 0,
g(0, 0) = 0, and (3) holds for all (x, u) ∈ X× U.
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2.2 Constraints

The sets (X,Y,D,W) are physical constraints (e.g., nonnegativity of chemical concentra-
tions, temperatures, pressures, etc.) that the systems (1)–(3) automatically satisfy. These
are hard constraints enforced only during state estimation. On the other hand, we enforce
the hard constraint u ∈ U during both regulation and target selection. Additionally, we
enforce soft joint input-output constraints of the form

Zy := { (u, y) ∈ U× Y | ci(u, y) ≤ 0 ∀ i ∈ I1:nc }

where c : U×Y → Rnc is the soft constraint function. Having active constraints at steady
state is problematic, so the constraints are sometimes tightened as follows:

Zy := { (u, y) | ci(u, y) + bi ≤ 0 ∀ i ∈ I1:nc }

where b ∈ Rnc
>0 is the vector of back-off constants. No such constraint tightening is required

for the input constraints. We assume the constraints and the back-off constant satisfy the
following properties throughout.

Assumption 2 (Constraints). The sets (X,Y) are closed, (U,W,D) are compact, and
all contain the origin. The soft constraint function c : U× Y → Rnc is continuous and

0 < bi < −ci(0, 0), ∀ i ∈ I1:nc .

2.3 Offset-free model predictive control

Offset-free MPC consists of three parts or subroutines: target selection, regulation, and
state estimation.

2.3.1 Steady-state target problem

Given a model disturbance d ∈ D and setpoint rsp ∈ Rnr , we define the set of offset-free
steady-state pairs by

ZO(rsp, d) := { (x, u) ∈ X× U | x = f(x, u, d), y = h(x, u, d), (u, y) ∈ Zy, rsp = g(u, y) } .
(5)

To pick the best steady-state pair among members of ZO(rsp, d), it is customary to optimize
the steady state with respect to some auxiliary setpoint pair zsp := (usp, ysp) ∈ Zy (typically
chosen such that rsp = g(usp, ysp)). For each (rsp, usp, ysp, d) ∈ Rnr ×Zy ×D, we define the
steady-state target problem (SSTP) by

V 0
s (β) := min

(x,u)∈ZO(rsp,d)
ℓs(u− usp, h(x, u, d)− ysp) (6)

where β := (rsp, usp, ysp, d) are the SSTP parameters and ℓs : Rnu × Rny → R≥0 is a
steady-state cost function, typically a positive definite quadratic. We define the set of
feasible SSTP parameters as

B := { (rsp, zsp, d) ∈ Rnr × Zy × D | ZO(rsp, d) ̸= ∅ } . (7)
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To guarantee the existence of solutions to the SSTP (6), the following assumption is re-
quired.

Assumption 3. The function ℓs : Rnu × Rny → R≥0 is continuous and, for each β =
(rsp, usp, ysp, d) ∈ B, at least one of the following properties holds:

(i) ZO(rsp, d) is compact;

(ii) with Vs(x, u, β) := ℓs(u − usp, h(x, u, d) − ysp), the function Vs(·, β) is coercive in
ZO(rsp, d), i.e., for any sequence z ∈ (ZO(rsp, d))

∞ such that |z(k)| → ∞, we have
Vs(z(k), β) → ∞.

Under Assumptions 1 to 3, B is nonempty and the SSTP (6) has solutions for all β ∈ B.
The solution to (6) may not be unique. Throughout, we assume some selection rule has
been applied and denote the functions returning solutions to (6) by zs(·) := (xs(·), us(·)) :
B → X× U.

2.3.2 Regulator

Given the SSTP parameters β ∈ B, the regulator is defined as a finite horizon optimal
control problem (FHOCP) with the steady-state targets (xs(β), us(β)). We consider a
FHOCP with a horizon length N ∈ I>0, stage cost ℓ : X × U × B → R≥0, terminal
cost Vf : X × B → R≥0, and terminal constraint Xf (β) ⊆ X (to be defined). For each
β = (rsp, usp, ysp, d) ∈ B, we define the terminal constraint (8), feasible initial state and
input sequence pairs (9), feasible input sequences at x ∈ X (10), feasible initial states (11),
and feasible state-parameter pairs (12) by the sets

Xf (β) := levcfVf (·, β) (8)

ZN (β) := { (x,u) ∈ X× UN | ϕ(N ;x,u, d) ∈ Xf (β) } (9)

UN (x, β) := {u ∈ UN | (x,u) ∈ ZN (β) } (10)

XN (β) := {x ∈ X | UN (x, β) ̸= ∅ } (11)

SN := { (x, β) ∈ X× B | UN (x, β) ̸= ∅ } (12)

where cf > 0 and ϕ(k;x,u, d) denotes the solution to (2a) at time k given an initial state
x, constant disturbance d, and sufficiently long input sequence u. For each (x,u, β) ∈
X× UN × B, we define the FHOCP objective by

VN (x,u, β) := Vf (ϕ(N ;x,u, d), β) +
N−1∑
k=0

ℓ(ϕ(k;x,u, d), u(k), β). (13)

For each (x, β) ∈ SN , we define the FHOCP by

V 0
N (x, β) := min

u∈UN (x,β)
VN (x,u, β). (14)

Using the convention of Rockafellar and Wets (1998) for infeasible problems, we take
V 0
N (x, β) := ∞ for all (x, β) ̸∈ SN .
To guarantee closed-loop stability and robustness, we consider the following assump-

tions.
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Assumption 4 (Terminal control law). There exists a function κf : X × B → U such
that

Vf (f(x, κf (x, β), d), β)− Vf (x, β) ≤ −ℓ(x, κf (x, β), β)

for all x ∈ Xf (β) and β := (rsp, usp, ysp, d) ∈ B.

Assumption 5 (Quadratic costs). The stage and terminal costs take the form

ℓ(x, u, β) = |x− xs(β)|2Q + |u− us(β)|2R +

nc∑
i=1

wimax { 0, ci(u, h(x, u, d)) }

Vf (x, β) = |x− xs(β)|2Pf (β)

for each (x, u) ∈ X× U and β := (rsp, usp, ysp, d) ∈ B, where Q, R, and Pf (β) are positive
definite matrices for each β ∈ B, the function Pf is continuous, and wi > 0 for each i ∈ I1:nc .

Remark 3. With β = (ssp, d) ∈ B, Assumption 4 and the terminal set definition (8) imply
Vf (f(x, κf (x, β), d), β) ≤ Vf (x, β) ≤ cf for all x ∈ Xf (β) and therefore Xf (β) is positive
invariant for x+ = f(x, κf (x, β), d).

Assumptions 1 to 3 and 5 guarantee the existence of solutions to (14) for all (x, β) ∈
SN (Rawlings et al., 2020, Prop. 2.4). We denote any such solution by u0(x, β) =
(u0(0;x, β), . . . , u0(N − 1;x, β)), and define the corresponding optimal state x0(k;x, β) :=
ϕ(k;x,u0(x, β), d) and optimal state sequence x0(x, β) := (x0(0;x, β), . . . , x0(N ;x, β)). We
define the FHOCP control law by κN (x, β) := u0(0;x, β).

Remark 4. Given Assumptions 1 to 3 and 5, it may be impossible to satisfy Assumption 4
without constraint back-offs, i.e., b = 0. This is because the terminal cost difference
Vf (f(x, κf (x, β), d))−Vf (x) is, at best, negative definite with quadratic scaling (regardless
of the target value), whereas the stage cost ℓ(x, κf (x, β), β) has quadratic scaling when the
soft constraint is satisfied but linear scaling when the soft constraint is violated. Thus, if
the constraints are active at the targets, the stage cost will always exceed the decrease in
terminal cost if the state violates the constraints and is sufficiently small.

Example 2. Consider the scalar linear system x+ = x + u + d, y = x, and r = y with
stage costs of the form Assumption 5 and the soft constraint function c(u, y) = y − 1.
Let b = 0 and β = (1, 0, 1, 0). Clearly the target is reachable, and we can take the SSTP
(6) solution (xs(β), us(β)) = (1, 0). Then we have stage costs of the form ℓ(x, u, β) =
q(x−1)2+ru2+wmax { 0, x− 1 } and Vf (x, β) = pfx

2, where q, r, w, pf > 0. Assumption 4
is not satisfied if there exists x ∈ R such that

F(x, u) := pf (x+ u− 1)2 − pf (x− 1)2 + q(x− 1)2 + ru2 + wmax { 0, x− 1 } > 0

for all u ∈ R. Completing the squares gives

F(x, u) = (ãu+ b̃(x− 1))2 + c̃(x− 1)2 + wmax { 0, x− 1 }
≥ c̃(x− 1)2 + wmax { 0, x− 1 }
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for all x ∈ R and u ∈ R, where ã :=
√
r + pf , b̃ :=

pf
2ã , and c̃ := q − b̃2. Ideally, we would

have chosen (q, r, pf ) so that c̃ < 0. But this means we can still take 0 < x − 1 <
√

w
c̃ to

give
F(x, u) ≥ c̃(x− 1)2 + w(x− 1) > 0

for all u ∈ R, no matter the chosen w > 0.
On the other hand, let b = 1 and β = (0, 0, 0, 0). Again, the target is reachable and

we can take the SSTP solution (xs(0), us(0)) = (0, 0). Notice that for both problems the
backed-off constraint c(u, y) + b is active at the solution. This time, however, we have

F(x, u) := pf (x+ u)2 − pfx
2 + qx2 + ru2 + wmax { 0, x− 1 }

= (ãu+ b̃x)2 + c̃x2 + wmax { 0, x− 1 }

and with κf (x, 0) := − b̃
ãx, we have

F(x, κf (x, 0)) = c̃x2 + wmax { 0, x− 1 }

for all x ∈ R. Let cf = pf and suppose c̃ < 0. Then, for each x ∈ Xf (0), we have |x| ≤ 1
and therefore

F(x, κf (x, 0)) = c̃x2 ≤ 0.

2.3.3 State estimation

In practice, the SSTP and FHOCP are implemented with state and disturbance estimates
rather than the true values. To this end, we consider any estimator that estimates both
plant and disturbance states.

Definition 1. A joint state and disturbance estimator is a sequence of functions Φk :
X× D× Uk × Yk → X× D defined for each k ∈ I≥0. For each k ∈ I≥0, we define the state
and disturbance estimates by

(x̂(k), d̂(k)) := Φk(x, d,u0:k−1,y0:k−1) (15)

where (x, d) ∈ X × D is the initial guess at time k = 0, u ∈ U∞ is the input data, and
y ∈ Y∞ is the output data.

Remark 5. Since the regulator requires a state estimate to compute, and the input di-
rectly affects the output, the current state and disturbance estimates (x̂(k), d̂(k)) must be
functions of past data, not including the current measurement y(k). Therefore, at time
k = 0, there is no data available to update the prior guess, and most estimator designs will
take Φ0 as the identity map, i.e.,

(x̂(0), d̂(0)) := Φ0(x, d) = (x, d).

However, we can also consider models without direct feedthrough effects (i.e., y = h(x, d))
in which case Definition 1 can be modified so the estimator functions also take y(k) as an
argument.
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The estimator (15) is designed according to the model (2) and thus has no knowledge
of the plant state xP or plant disturbance wP. To analyze its performance and state the
assumptions needed to establish offset-free performance, we consider the following noise
model:

x+ = f(x, u, d) + w (16a)

d+ = d+ wd (16b)

y = h(x, u, d) + v (16c)

where w̃ := (w,wd, v) ∈ W̃(x, u, d) ⊆ Rnw̃ are the process, disturbance, and measurement
noises, nw̃ := n+ nd + ny, and

W̃(x, u, d) := { (w,wd, v) | (x+, d+, y) ∈ X× D× Y, (16) }

is a constraint set that ensures all quantities remain physical. We define the set of feasible
trajectories by

Z̃e := { (x,u,d,y, w̃) ∈ X∞ × U∞ × D∞ × Y∞ × (Rnw̃)∞ |
(16) and w̃ = (w,wd, v) ∈ W̃(x, u, d) }.

Finally, denoting the state, disturbance, and errors by

ex(k) := x(k)− x̂(k), ed(k) := d(k)− d̂(k), (17a)

e(k) :=

[
ex(k)
ed(k)

]
, e :=

[
x(0)− x

d(0)− d

]
, (17b)

we define robust stability of the estimator (15) as follows.

Definition 2. The estimator (15) is robustly globally exponentially stable (RGES) for the
system (16) if there exist constants ce,1, ce,2 > 0 and λe ∈ (0, 1) such that

|e(k)| ≤ ce,1λ
k
e |e|+ ce,2

k∑
j=1

λj−1
e |w̃(k − j)|

for each k ∈ I≥0, prior guess (x, d) ∈ X × D, and trajectories (x,u,d,y, w̃) ∈ Z̃e, given
definitions (15) and (17).

For the case with plant-model mismatch, the estimator (15) is not only assumed to be
RGES for the system (16), but is also assumed to admit a robust global Lyapunov function.

Assumption 6. The initial estimator Φ0 is the identity map. There exists a function
Ve : X× D× X× D → R≥0 and constants c1, c2, c3, c4, δw > 0 such that

c1|e(k)|2 ≤ Ve(k) ≤ c2|e(k)|2 (18a)

Ve(k + 1) ≤ Ve(k)− c3|e(k)|2 + c4|w̃(k)|2 (18b)

for all (x, d) ∈ X × D, (x,u,d,y, w̃) ∈ Z̃e, and k ∈ I≥0, where (15), (17), and Ve(k) :=
Ve(x(k), d(k), x̂(k), d̂(k)).
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The following theorem establishes that Assumption 6 implies RGES of the estima-
tor (15) for the system (16) (see Appendix A.1 for proof).

Theorem 1. Suppose the estimator (15) for the system (16) satisfies Assumption 6. Then
the estimator is RGES under Definition 2.

Remark 6. In Assumption 6, we assume Φ0 is the identity map, and therefore e(0) = e.
However, as mentioned in Remark 5, if we consider models without direct input-output
effects (i.e., y = ĥ(x, d)), then the estimator functions Φk may become a function of the
current output y(k) and it is no longer reasonable to assume Φ0 is the identity map. Then
e(0) ̸= e in general. However, we can modify Definition 1 to include robustness to the
current noise ñ(k), and we can modify Assumption 6 to include a linear bound of the form
|e(0)| ≤ a1|e|+ a2|w̃(0)|, for some a1, a2 > 0, to again imply RGES of the estimator.

While Assumption 6 is satisfied for stable full-order observers of (16),1 we know of
no nonlinear results that guarantee a Lyapunov function characterization of stability (i.e.,
Assumption 6) for the full information estimation (FIE) or moving horizon estimation
(MHE) algorithms. FIE and MHE were shown to be RGES for exponentially detectable
and stabilizable systems by Allan and Rawlings (2021), but they use a Q-function to
demonstrate stability. To the best of our knowledge, the closest construction is the N -step
Lyapunov function of Schiller et al. (2023). If we treat the disturbance as a parameter,
rather than an uncontrollable integrator, there are FIE and MHE algorithms for com-
bined state and parameter estimation that could also be used to estimate the states and
disturbances (Muntwiler et al., 2023; Schiller and Müller, 2023).2

3 Robust stability for tracking and estimation

In this section, we consider stabilization of the system,3

ξ+ = F (ξ, u, ω), ω ∈ Ω(ξ, u). (19)

The system (19) represents the evolution of an extended plant state ξ ∈ Ξ ⊆ Rnξ subject to
the input u ∈ U and extended disturbance ω ∈ Ω(ξ, u) ⊆ Rnω (to be defined). Greek letters
are used for the extended state and disturbance (ξ, ω) to avoid confusion with the states
and disturbances of (1), (2), and (16). Throughout, we assume Ξ is closed and 0 ∈ Ω(ξ, u)
and F (ξ, u, ω) ∈ Ξ for all (ξ, u) ∈ Ξ× U and ω ∈ Ω(ξ, u).

1A full-order state observer of (16) is a dynamical system, evolving in the same state space as (16),
stabilized with respect to x by output feedback.

2The estimation algorithms of Muntwiler et al. (2023) produce RGES state estimates, but it is not shown
the parameter estimates are RGES. The estimation algorithm of Schiller and Müller (2023) produces RGES
state and parameter estimates, but only under a persistence of excitation condition.

3To ensure unphysical states are not produced by additive disturbances, we let the disturbance set be
a function of the state and input. However, we can convert (19) to a standard form by taking ξ+ =
F̃ (ξ, u, ω), ω ∈ Ω where F̃ (ξ, u, ω) = F (ξ,projΩ(ξ,u)(ω)), Ω :=

⋃
(ξ,u)∈Ξ×U Ω(ξ, u), and projΩ(ξ,u)(ω) =

argminω′∈Ω(ξ,u) |ω − ω′|.
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3.1 Robust stability with respect to two outputs

We first consider stabilization of (19) under state feedback,

ξ+ = Fc(ξ, ω), ω ∈ Ωc(ξ) (20)

where κ : Ξ → U is the control law, Fc(ξ, ω) := F (ξ, κ(ξ), ω), and Ωc(ξ) := Ω(ξ, κ(ξ)). We
define robust positive invariance for the system (20) as follows.

Definition 3 (Robust positive invariance). A closed set X ⊆ Ξ is robustly positive
invariant (RPI) for the system (20) if ξ ∈ X and ω ∈ Ωc(ξ) imply Fc(ξ, ω) ∈ X.

Robust target- and setpoint-tracking stability are defined under the umbrella of input-
to-state stability (ISS) with respect to two measurement functions (Tran et al., 2015). We
slightly modify their definition by considering measurement functions of (ξ, ω) (rather than
just ξ) and structuring the measurement functions as norms of the outputs ζ1 ∈ Rnζ1 and
ζ2 ∈ Rnζ2 , where

ζ1 = G1(ξ, ω), ζ2 = G2(ξ, ω). (21)

The definition of Tran et al. (2015) can be reconstructed by taking G1 and G2 as scalar-
valued, positive semidefinite functions of ξ.

Definition 4 (Robust stability w.r.t. two outputs). We say the system (20) (with
outputs (21)) is robustly asymptotically stable (RAS) (on a RPI set X ⊆ Ξ) with respect
to (ζ1, ζ2) if there exist βζ ∈ KL and γζ ∈ K such that

|ζ1(k)| ≤ βζ(|ζ2(0)|, k) + γζ(∥ω∥0:k) (22)

for each k ∈ I≥0 and trajectories (ξ,ω, ζ1, ζ2) satisfying (20), (21), and ξ(0) ∈ X. We
say (20) is robustly exponentially stable (RES) w.r.t. (ζ1, ζ2) if it is RAS w.r.t. (ζ1, ζ2) with
βζ(s, k) := cζλ

k
ζs for some cζ > 0 and λζ ∈ (0, 1).

For the nominal case (i.e., Ω(ξ, u) ≡ { 0 }), we drop the word robust from Definitions 3
and 4 and simply write positive invariant, asymptotically stable (AS), and exponentially
stable (ES). Moreover, if (20) is RAS (RES) w.r.t. (ζ, ζ), where ζ = G(ξ, ω), we simply say
it is RAS (RES) w.r.t. ζ.

In Sections 4 and 5, we demonstrate nominal stability and robustness to estimate error,
noise, and SSTP parameter changes. The following cases of the system (19), control law
u = κ(ξ), and outputs (21) are considered.

1. Nominal stability : Let ξ := x, u = κ(ξ) := κN (x, β), ω := 0, ζ1 := g(u, h(x, u, d)) −
rsp, and ζ2 := x−xs(β). Then, for each fixed β = (rsp, usp, ysp, d) ∈ B, the closed-loop
system has dynamics (20) and outputs (21) with

F (ξ, ω) := f(x, κN (x, β), β)

G1(ξ) := g(x, h(x, κN (x, β), d))− rsp

G2(ξ) := x− xs(β)
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for each ξ ∈ X ρ
N := levρV

0
N and ω = 0. AS (ES) w.r.t. ζ2 corresponds to (exponential)

target-tracking stability, and AS (ES) w.r.t. (ζ1, ζ2) corresponds to (exponential)
setpoint-tracking stability.

2. Robust stability (w.r.t. estimate error, noise, SSTP parameter changes): Let ξ :=
(x̂, β̂), κ(ξ) := κN (ξ), ω := (e, e+,∆ssp, w̃), ζ1 := r − rsp, ζ2 := x̂ − xs(β̂), where

r := g(u, h(x̂+ ex, u, d̂+ ed) + v) and β̂ := (ssp, d̂). Then the closed-loop system has
dynamics (20) and outputs (21) with

F (ξ, ω) :=

f(x̂+ ex, κN (x̂, β̂), d̂+ ed) + w − e+x
ssp +∆ssp

d̂+ ed + wd − e+d


G1(ξ) := g(x, h(x̂+ ex, κN (x̂, β̂), d̂+ ed) + v)− rsp,

G2(ξ) := x̂− xs(β̂)

for each ξ = (x̂, β̂) in a to-be-defined RPI set Ŝρ
N and ω ∈ Ωc(ξ) (to be defined). RAS

(RES) of (20) w.r.t. ζ2 alone corresponds to robust (exponential) target-tracking
stability, and RAS (RES) w.r.t. (ζ1, ζ2) corresponds to robust (exponential) setpoint-
tracking stability.

Remark 7. If (20) is RAS on X ⊆ Ξ w.r.t. (ζ1, ζ2), then ω(k) → 0 implies ζ1(k) → 0 so
long as ξ(0) ∈ X.

Remark 8. Definition 4 generalizes many ISS and input-to-output stability (IOS) defini-
tions originally posed for continuous-time systems by Sontag and Wang (1995, 1999, 2000).
However, only Definition 4 is suitable for analyzing both target- and setpoint-tracking per-
formance of the offset-free MPC. ISS is not appropriate as the SSTP parameters β are often
part of the extended state ξ. IOS and robust output stability allow the tracking perfor-
mance to degrade with the magnitude of the SSTP parameters. While state-independent
IOS (SIIOS) coincides with the special case of ζ = G1(ξ) ≡ G2(ξ) (e.g., for target-tracking),
we find the setpoint-tracking error is more tightly bounded by the initial target-tracking
error.

Next, we define an (exponential) ISS Lyapunov function with respect to the noise-free
outputs

ζ1 = G1(ξ), ζ2 = G2(ξ) (23)

and show its existence implies RAS (RES) of (20) with respect to (ζ1, ζ2) (see Appendix A.2
for proof).

Definition 5. Consider the system (20) with outputs (23). We call V : Ξ → R≥0 an ISS
Lyapunov function (on a RPI set X ⊆ Ξ) with respect to (ζ1, ζ2) if there exist αi ∈ K∞, i ∈
I1:3 and σ ∈ K such that, for each ξ ∈ X and ω ∈ Ωc(ξ),

α1(|G1(ξ)|) ≤ V (ξ) ≤ α2(|G2(ξ)|) (24a)

V (Fc(ξ, ω)) ≤ V (ξ)− α3(V (ξ)) + σ(|ω|). (24b)
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We say V is an exponential ISS Lyapunov function with respect to (ζ1, ζ2) if it is an ISS
Lyapunov function with respect to (ζ1, ζ2) with αi(·) = ai(·)b for some ai, b > 0, i ∈ I1:3.

Theorem 2. If the system (20) with outputs (23) admits an (exponential) ISS Lyapunov
function V : Ξ → R≥0 on an RPI set X ⊆ Ξ with respect to (ζ1, ζ2), then it is RAS (RES)
on X with respect to (ζ1, ζ2).

Similarly to Definitions 3 and 4, we call V a Lyapunov function or exponential Lyapunov
function w.r.t. (ζ1, ζ2) if it satisfies Definition 5 in the nominal case (i.e., Ω(ξ, u) ≡ { 0 }).
Moreover, we note that the proof of Theorem 2 trivially extends to the nominal case by
setting ω = 0 throughout.

Remark 9. If ζ = G1(ξ) ≡ G2(ξ), then it suffices to replace (24b) with V (Fc(ξ, ω)) ≤
V (ξ)− α̃3(|G1(ξ)|)+σ(|ω|) to establish ISS with respect to ζ, where α̃3 ∈ K∞. Then (24b)
holds with α3 := α̃3 ◦ α−1

2 .

3.2 Combined controller-estimator robust stability

In applications without plant-model mismatch, it suffices to consider RES of each of the
controller and estimator subsystems to establish RES of the combined system. This is
because the controller and estimator error systems are connected sequentially, with the
target- and setpoint-tracking errors having no influence on the estimation errors. However,
as we show in Section 6, plant-model mismatch makes this a feedback interconnection, with
the tracking errors influencing the state estimate errors and vice versa. Therefore it is
necessary to analyze stability of the combined system.

We define the extended sensor output υ ∈ Υ ⊆ Rnυ by

υ = H(ξ, u, ω). (25)

Assume Υ is closed and H(ξ, u, ω) ∈ Υ for all (ξ, u) ∈ Ξ×U and ω ∈ Ω(ξ, u). We consider
the extended state estimator

ξ̂(k) := Φξ
k(ξ,u0:k−1,υ0:k−1) (26)

where ξ ∈ Ξ̂ ⊆ Rnξ̂ is the prior guess and Φξ
k : Ξ̂ × Uk × Υk → Ξ̂, k ∈ I≥0. The set Ξ̂ is

closed but is not necessarily the same, let alone of the same dimension, as Ξ. We consider
stabilization via state estimate feedback,

u = κ̂(ξ̂) (27)

where κ̂ : Ξ̂ → U. Finally, we define a RPI set as follows.

Definition 6. A closed set S ⊆ Ξ × Ξ̂ is RPI for the system (19) and (25)–(27) if
(ξ(k), ξ̂(k)) ∈ S for all k ∈ I≥0 and (ξ,u,ω,υ) satisfying (19), (25)–(27), and (ξ(0), ξ) ∈ S.
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With plant-model mismatch, the extended plant and model states to evolve on different
spaces. Thus, we define the estimator error ε ∈ Rnξ̂ as the deviation of the estimate ξ̂ from
an arbitrary function Gε : Ξ → Ξ̂ of the state ξ,

ε(k) = Gε(ξ(k))− ξ̂(k), ε := Gε(ξ(0))− ξ. (28)

Finally, we define robust stability with respect to the outputs

ζ1 = G1(ξ, ξ̂, u, ω), ζ2 = G2(ξ, ξ̂, u, ω) (29)

similarly to Definition 4.

Definition 7. The system (19) and (25)–(27) (with outputs (29)) is RAS in a RPI set
S ⊆ X× X̂ with respect to (ζ1, ζ2) if there exist functions βζ , γζ ∈ KL such that

|(ζ1(k), ε(k))| ≤ βζ(|(ζ2(0), ε)|, k) +
k∑

i=0

γζ(|ω(k − i)|, i) (30)

for all k ∈ I≥0 and all trajectories (ξ,u,ω,υ, ε, ζ1, ζ2) satisfying (19), (25)–(29), and
(ξ(0), ξ) ∈ S. We say (19) and (25)–(27) is RES w.r.t. (ζ1, ζ2) if it is RAS w.r.t. (ζ1, ζ2)
with βζ(s, k) := cζλ

k
ζs and γζ(s, k) := λkζσζ(s) for some cζ > 0, λζ ∈ (0, 1), and σζ ∈ K.

As in Section 3.1, we say (19) and (25)–(27) is RAS (RES) w.r.t. ζ = G(ξ, ω) if it is
RAS (RES) w.r.t. (ζ, ζ).

In Section 6, we establish robustness of offset-free MPC with plant-model mismatch
in terms of Definition 7, using the following definition of the system (19) and (25)–(27),
estimate errors (28), and outputs (29):

3. With mismatch: Let ξ := (xP, α), ξ̂ := (x̂, β̂), u := κN (ξ̂), ω := (∆ssp,∆wP),

υ := (y,∆ssp), ε := (xP+∆xs(α), ssp, ds(α))− ξ̂, ζ1 := r−rsp, ζ2 := x̂−xs(β̂), where
r := g(u, hP(x, u, wP)), α := (ssp, wP), β̂ := (ssp, d̂), and (∆xs(α), ds(α)) are to be
defined. Then the closed-loop system has dynamics (19) and (25)–(27), errors (28),
and outputs (29) with

F (ξ, u, ω) :=

fP(xP, u, wP)
ssp +∆ssp
wP +∆wP

 , H(ξ, u, ω) :=

[
hP(ξ, u, wP)

∆ssp

]
,

Φξ
k(ξ,u0:k−1,υ0:k−1) := (x̂(k), ssp(k), d̂(k)), Gε(ξ) :=

[
xP +∆xs(α)

ds(α)

]
G1(ξ, u, ω) := g(u, hP(xP, u, wP))− rsp, G2(ξ̂) := x̂− xs(β̂)

for each (ξ, ξ̂) = (x, β, x̂, β̂) in a to-be-defined RPI set Sρ,τ
N and ω ∈ Ωc(ξ) (to be

defined), where (x̂(k), d̂(k)) := Φk(x, d,u0:k−1,y0:k−1) as in Definition 1.

As in Section 3.1, RAS (RES) w.r.t. ζ2 corresponds to robust (exponential) target-tracking
stability, and RAS (ES) w.r.t. (ζ1, ζ2) corresponds to robust (exponential) setpoint-tracking
stability.
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Remark 10. If (19) and (25)–(27) is RAS on a RPI set S ⊆ Ξ × Ξ̂ w.r.t. (ζ1, ζ2), then
ω(k) → 0 implies (ζ1(k), ε(k)) → 0 so long as (ξ(0), ξ) ∈ S (cf. (Allan and Rawlings, 2021,
Prop. 3.11)).

To analyze stability of the system (19) and (25)–(27), we use the following theorem
(see Appendix A.3 for proof).

Theorem 3. Consider the system (19) and (25)–(27) with errors (28) and output ζ =

G(ξ̂). Suppose Φξ
0 is the identity map and there exist constants ai, bi > 0, i ∈ I1:4, a RPI

set S ⊆ X × X̂, and functions V : Ξ̂ → R≥0, Vε : Ξ × Ξ̂ → R≥0, and σ, σε ∈ K such
that a4c4

a3c1
< 1, a4c4

a3c3
< c1

c1+c2
, and, for all trajectories (ξ, ξ̂,u,ω,υ, ε, ζ) satisfying (19) and

(25)–(28), ζ = G(ξ̂), and (ξ(0), ξ) ∈ S, we also satisfy

a1|ζ|2 ≤ V (ξ̂) ≤ a2|ζ|2 (31a)

V (ξ̂+) ≤ V (ξ̂)− a3|ζ|2 + a4|(ε, ε+)|2 + σ(|ω|) (31b)

c1|ε|2 ≤ Vε(ξ, ξ̂) ≤ c2|ε|2 (31c)

Vε(ξ
+, ξ̂+) ≤ Vε(ξ, ξ̂)− c3|ε|2 + c4|ζ|2 + σε(|ω|). (31d)

Then the system (19) and (25)–(27) is RES in S w.r.t. ζ.

4 Nominal offset-free performance

In this section, we consider the application of offset-free MPC to the model (2) in the
nominal case (i.e., without estimate errors or setpoint and disturbance changes). Consider
the following modeled closed-loop system:

x+ = fc(x, β) := f(x, κN (x, β), d) (32a)

y = hc(x, β) := h(x, κN (x, β), d) (32b)

r = gc(x, β) := g(κN (x, β), hc(x, β)) (32c)

where (x, β) := (x, rsp, usp, ysp, d) ∈ SN . For each ρ > 0 and β ∈ B, we define the candidate
domain of stability

X ρ
N (β) := levρV

0
N (·, β). (33)

In the following theorem, we establish nominal stability and offset-free performance of
the modeled closed-loop system (32), under Assumptions 1 to 5 and with constant, known
setpoints ssp = (rsp, usp, ysp) and disturbance d.

Theorem 4. Suppose Assumptions 1 to 5 hold. Let ρ > 0.

(a) For each compact Bc ⊆ B, there exist constants a1, a2, a3 > 0 such that

a1|x− xs(β)|2 ≤ V 0
N (x, β) ≤ a2|x− xs(β)|2 (34a)

V 0
N (fc(x, β), β) ≤ V 0

N (x, β)− a3|x− xs(β)|2 (34b)

for all x ∈ X ρ
N (β) and β ∈ Bc.



TWCCC Technical Report 2024-04 16

(b) For each β ∈ B, the system (32a) is ES on X ρ
N (β) with respect to the target-tracking

error δx := x− xs(β).

(c) For each β = (rsp, usp, ysp, d) ∈ B, the system (32a) is AS on X ρ
N (β) with respect to

(δr, δx), where δr := gc(x, β)− rsp is the setpoint-tracking error.

(d) If g and h are Lipschitz continuous on bounded sets, then part (c) can be upgraded to
ES.

We include a proof of Theorem 4 in Appendix B.1. Two details of the proof are required
for the subsequent results. First, from (Rawlings et al., 2020, Prop. 2.4), we have

VN (fc(x, β), ũ(x, β), β) ≤ V 0
N (x, β)− ℓ(x, κN (x, β), β) (35)

for all (x, β) ∈ SN , where

ũ(x, β) := (u0(1;x, β), . . . , u0(N − 1;x, β), κf (x
0(N ;x, β), β)) (36)

is a suboptimal sequence for x+ := fc(x, β). Second, for each (x, β) ∈ SN , the suboptimal
sequence ũ(x, β) steers the system from fc(x, β) to the terminal constraint Xf (β) in N − 1
moves and keeps it there (by Assumption 4). Therefore ũ(x, β) ∈ UN (fc(x, β), β) and
fc(x, β) ∈ XN (β).

Remark 11. Theorem 4(a) provides Lyapunov bounds that are uniform in the SSTP
parameters β on compact subsets Bc ⊆ B. This implies a guaranteed decay rate λ ∈ (0, 1)
for the deviation of the state from its target x− xs(β), although this guaranteed rate may
become arbitrarily close to 1 as we expand the size of the compact set Bc.

5 Offset-free performance without mismatch

In this section, we show offset-free MPC (without plant-model mismatch) is robust to
estimate errors and setpoint and disturbance changes. We assume the actual plant evolves
according to the noisy model equations (16). We assume the setpoints evolve according to

s+sp = ssp +∆ssp (37)

where ssp := (rsp, usp, ysp) and ∆ssp := (∆rsp,∆usp,∆ysp). At each time, we define β :=
(ssp, d) and ∆β := (∆ssp, wd) and sometimes write β+ = β + ∆β. Taking the approach
of (Rawlings et al., 2020, Sec. 4.6), the estimate error system evolves as

x̂+ = f(x̂+ ex, u, d̂+ ed) + w − e+x (38a)

d̂+ = d̂+ ed + wd − e+d (38b)

y = h(x̂+ ex, u, d̂+ ed) + v. (38c)



TWCCC Technical Report 2024-04 17

We lump the perturbation terms from (37) and (38) into a single disturbance variable,
defined as d̃ := (e, e+,∆ssp, w̃). To ensure the noise does not result in unphysical states,
disturbances, or measurements, we define the set of admissible perturbations as

D̃(x̂, u, d̂) := { d̃ = (ex, ed, e
+
x , e

+
d ,∆ssp, w̃) | (38),

(x̂+, d̂+) ∈ X× D, w̃ ∈ W̃(x̂+ ex, u, d̂+ ed) }

for each (x̂, u, d̂) ∈ X×U×D. The closed-loop estimate error system, defined by (6), (14),
(15), (37), and (38), evolves as

x̂+ = f̂c(x̂, β̂, d̃) := f(x̂+ ex, κN (x̂, β̂), d̂+ ed) + w − e+x (39a)

β̂+ = f̂β,c(β̂, d̃) :=

[
ssp +∆ssp

d̂+ ed + wd − e+d

]
(39b)

y = ĥc(x̂, β̂, d̃) := h(x̂+ ex, κN (x̂, β̂), d̂+ ed) + v

r = ĝc(x̂, β̂, d̃) := g(κN (x̂, β̂), hc(x̂, β̂, d̃))

where β̂ := (ssp, d̂).

5.1 Steady-state target problem assumptions

Even with bounds on the estimate errors and setpoint and disturbance changes, there are
no guarantees the SSTP (6) is feasible at all times. Moreover, there is no guarantee the
SSTP solutions themselves are robust to disturbance estimate errors. To guarantee robust
feasibility of the SSTP (6) and robustness of the targets themselves, we make the following
assumption.

Assumption 7. There exists a compact set Bc ⊆ B and constant δ0 > 0 such that

(i) B̂c := { (s, d̂) | (s, d) ∈ Bc, |ed| ≤ δ0, d̂ := d− ed ∈ D } ⊆ B; and

(ii) zs is continuous on B̂c.

Assumption 7(i) guarantees robust feasibility of the SSTP so long as β ∈ B∞
c and

∥ed∥ ≤ δ0. Whenever Assumption 7(i) is satisfied, it is convenient to define

D̃c(x̂, β̂) := { d̃ ∈ D̃(x̂, κN (x̂, β̂), β̂) | f̂β,c(β̂, d̃) ∈ B̂c }

for each (x̂, β̂) ∈ SN . As long as the disturbance always lies in D̃(x̂, β̂), the SSTP is feasible
at all times.

In the following lemma, we show Assumption 7 holds for some Bc = δBnβ when a rank
condition is satisfied by the system linearized at the origin (see Appendix C for proof).

Lemma 1. Suppose Assumptions 1 and 2 hold, the sets X,U,D contain neighborhoods
of the origin, the functions f, g, h, ℓs are twice continuously differentiable, ℓs(0, 0) = 0,
∂(u,y)ℓs(0, 0) = 0, ∂2(u,y)ℓs(0, 0) is positive definite,

M1 :=

[
A− I B
HyC HyD +Hu

]
(40a)
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is full row rank, and (A,C) is detectable, where

A := ∂xf(0, 0, 0), B := ∂uf(0, 0, 0), (40b)

C := ∂xh(0, 0, 0), D := ∂uh(0, 0, 0), (40c)

Hy := ∂yg(0, 0), Hu := ∂ug(0, 0). (40d)

Then there exists a compact set Bc ⊆ B and a function zs : B → X× U satisfying all parts
of Assumption 7. Moreover, zs(β) uniquely solves (6) for all β ∈ B̂c.

5.2 Robust stability

In Proposition 1, we establish recursive feasibility of the FHOCP given feasibility of the
SSTP at each time for sufficiently small d̃ ∈ D̃c(x̂, β̂). For brevity, we defer the proof to
Appendix B.2. However, we sketch the proof as follows. First, we show the suboptimal
input sequence ũ(x, β̂) is recursively feasible. Second, we establish a cost decrease of the
form

VN (x̂+, ũ(x̂, β̂), β̂+) ≤ V 0
N (x̂, β̂)− a3|δx̂|2 + σr(|d̃|) (41)

where a3 > 0, σr ∈ K∞, and δx̂ := x̂ − xs(β̂) is the target-tracking error. Third, we use
this cost decrease to show the FHOCP is recursively feasible.

Proposition 1. Suppose Assumptions 1 to 5 and 7 hold and let ρ > 0. There exists
σr ∈ K∞ and a3, δ > 0 such that

(a) ũ(x̂, β̂) ∈ UN (x̂+, β̂+),

(b) (41) holds, and

(c) x̂+ ∈ X ρ
N (β̂+),

for all β̂ ∈ B̂c, x̂ ∈ X ρ
N (β̂) and d̃ ∈ D̃c(x̂, β̂) ∩ δBnd̃, where (x̂+, β̂+) are defined as in (39).

Finally, we present the main result of this section.

Theorem 5. Suppose Assumptions 1 to 5 and 7 hold and let ρ > 0. There exists δ > 0
such that

(a) the following set is RPI for the closed-loop system (39) with disturbance d̃ ∈ D̃c(x̂, β̂)∩
δBnd̃:

Ŝρ
N := { (x̂, β̂) ∈ SN | x̂ ∈ X ρ

N (β̂), β̂ ∈ B̂c } ; (42)

(b) there exist ai > 0, i ∈ I1:3 and σr ∈ K∞ such that

a1|δx̂|2 ≤ V 0
N (x̂, β̂) ≤ a2|δx̂|2 (43a)

V 0
N (x̂+, β̂+) ≤ V 0

N (x̂, β̂)− a3|δx̂|2 + σr(|d̃|) (43b)

for all (x̂, β̂) ∈ Ŝρ
N and d̃ ∈ D̃c(x̂, β̂) ∩ δBnd̃, given (39) and δx̂ := x̂− xs(β̂);
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(c) the closed-loop system (39) with disturbance d̃ ∈ D̃c(x̂, β̂) ∩ δBnd̃ is RES on Ŝρ
N with

respect to the target-tracking error δx̂ := x̂− xs(β̂);

(d) the closed-loop system (39) with disturbance d̃ ∈ D̃c(x̂, β̂) ∩ δBnd̃ is RAS on Ŝρ
N with

respect to (δr, δx̂), where δr := ĝc(x̂, β̂, d̃) − rsp is the setpoint-tracking error and

β̂ = (rsp, usp, ysp, d̂); and

(e) if g and h are Lipschitz continuous on bounded sets, then part (d) can be upgraded to
RES.

To prove Theorem 5(d,e), we require the following proposition (see Appendix B.3 for proof).

Proposition 2. Let Assumptions 1 to 5 hold, ρ, δ > 0, and Bc ⊆ B be compact. There
exist σr, σg ∈ K∞ such that

|gc(x̂, β̂)− rsp| ≤ σr(|x̂− xs(β̂)|) (44a)

|ĝc(x̂, β̂, d̃)− rsp| ≤ |gc(x̂, β̂)− rsp|+ σg(|d̃|) (44b)

for all x̂ ∈ X ρ
N (β), β̂ = (rsp, zsp, d) ∈ Bc, and d̃ ∈ D̃c(x̂, β̂) ∩ δBnd̃. If g and h are Lipschitz

on bounded sets, then we can take σr(·) := cr(·) and σg(·) := cg(·) for some cr, cg > 0.

Proof of Theorem 5. (a)—If (x̂, β̂) ∈ ŜN and d̃ ∈ D̃c(x̂, β̂), then β̂+ := f̂β,c(β̂, d̃) ∈ B̂c

by construction of D̃c(x̂, β̂), and by Proposition 1(c), there exists δ > 0 such that x̂+ :=
f̂c(x̂, β̂, d̃) ∈ X ρ

N (β̂) so long as |d̃| ≤ δ.
(b)—Theorem 4 gives (43a), and Proposition 1(a,b) and the principle of optimality

give (43b).
(c)—This follows from part (b) due to Theorem 2.
(d)—Let (x̂, β̂, d̃, r) satisfy (39), (x̂(0), β̂(0)) ∈ Ŝρ

N , d̃ ∈ D̃c(x̂, β̂) ∩ δBnd̃ , and r =

ĝc(x̂, β̂, d̃). Define δr := r − rsp and δr̂ = gc(x̂, β̂)− rsp where β̂ = (rsp, zsp, d̂). Then

α1(|δr̂|) := a1[σ
−1
r (|δr̂|)]2 ≤ a1|δx̂|2 ≤ V 0

N (x̂, β̂)

by Proposition 2 and part (b). Moreover, V 0
N is an ISS Lyapunov function on Ŝρ

N with

respect to (δr̂, δx̂), and RAS on Ŝρ
N with respect to (δr̂, δx̂) follows by Theorem 2. Then

RAS w.r.t. (δr̂, δx̂) and (Rawlings and Ji, 2012, Eq. (1)) gives

|δr(k)| ≤ σr(|δr̂(k)|) + σg(|d̃(k)|)
≤ σr(cλ

k|δx̂(0)|+ γ(∥d̃∥0:k−1)) + σg(|d̃(k)|)
≤ σr(2cλ

k|δx̂(0)|) + σr(2γ(∥d̃∥0:k−1)) + σg(|d̃(k)|)
≤ σr(2cλ

k|δx̂(0)|) + (σr ◦ 2γ + σg)(∥d̃∥0:k)
=: βr(|δx̂(0)|, k) + γr(∥d̃∥0:k) (45)

for all k ∈ I≥0 and some c > 0, λ ∈ (0, 1), and γ ∈ K.
(e)—If g and h are Lipschitz continuous on bounded sets, then by Proposition 2, we

can repeat part (d) with σr(·) := cr(·) and some cr > 0.
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6 Offset-free MPC under mismatch

In this section, we show offset-free MPC, despite (sufficiently small) plant-model mismatch,
is robust to setpoint and disturbance changes. We consider the plant (1), setpoint dynam-
ics (37), and plant disturbance dynamics

w+
P = wP +∆wP. (46)

With α := (ssp, wP) and ∆α := (∆ssp,∆wP), we have the relationship α+ = α+∆α. The
SSTP and regulator are designed with the model (2), and the estimator is designed with
the noisy model (16).

6.1 Target selection under mismatch

With plant-model mismatch, the connection between the steady-state targets and plant
steady states becomes more complicated. To guarantee there is a plant steady state pro-
viding offset-free performance and that we can align the plant and model steady states
using the disturbance estimate, we make the following assumptions about the SSTP.

Assumption 8. There exist compact sets Ac ⊆ Rnr ×Zy ×W and Bc ⊆ B containing the
origin, continuous functions (xP,s, ds) : Ac → X× D, and a constant δ0 > 0 for which

(a) B̂c (as defined in Assumption 7) is contained in B;

(b) zs is Lipschitz continuous on B̂c;

(c) for each α = (ssp, wP) ∈ Ac, the pair (xP,s, ds) = (xP,s(α), ds(α)) is the unique
solution to

xP,s = fP(xP,s, us(ssp, ds), wP) (47a)

ys(ssp, ds) := hP(xP,s, us(ssp, ds), wP) (47b)

where ys(ssp, ds) := h(xs(ssp, ds), us(ssp, ds), ds);

(d) (ssp, ds(ssp, wP)) ∈ Bc for all (ssp, wP) ∈ Ac; and

(e) (ssp, 0) ∈ Ac for all (ssp, wP) ∈ Ac.

For each α = (ssp, wP) ∈ Ac, Assumption 8 guarantees there is a unique model dis-
turbance ds(α) to estimate and the SSTP (6) is robustly feasible at β = (ssp, ds(α)).
Of course, the system cannot be stabilized for unbounded plant-model mismatch. Given
Assumption 8, we define

Ac(δw) := { (ssp, wP) ∈ Ac | |wP| ≤ δw }
Ac(α, δw) := {∆α ∈ Rnα | α+∆α ∈ Ac(δw) } .

Then Ac(δw) is RPI for the system α+ = α +∆α,∆α ∈ A(α, δw), and if ∥ed∥ ≤ δ0, then
β̂ = (ssp, ds(α)− ed) ∈ B̂c and the SSTP is feasible at all times.

Assumption 8 can be verified through a linearization analysis that is similar to the stan-
dard linear offset-free conditions (Muske and Badgwell, 2002; Pannocchia and Rawlings,
2003) (see Appendix C for proof).
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Lemma 2. Suppose the conditions of Lemma 1 hold, fP, hP are twice continuously differ-
entiable, and

M2 :=

[
A− I Bd

C Cd

]
(48)

is invertible, given the definitions (40), Bd := ∂df(0, 0, 0), and Cd := ∂dh(0, 0, 0). Then
there exist compact sets Ac ⊆ Rnr × Zy ×W and Bc ⊆ B containing neighborhoods of the
origin and functions zs : B → X × U and (xP,s, ds) : Ac → X × D satisfying all parts
of Assumption 8. Moreover, zs(β) and (xP,s(α), ds(α)) are the unique solutions to (6) and
(47) for all α = (ssp, wP) ∈ Ac and β := (ssp, ds(α)).

6.2 State estimation and regulation under mismatch

Given Assumption 8, we can define a “true” model state as x := xP − ∆xs(α) where
∆xs := xP,s(α)− xs(ssp, ds(α)) and α = (ssp, wP). Then the plant (1) can be rewritten in
terms of the model state x as

x+ = fP(x+∆xs(α), u, wP)−∆xs(α
+) (49a)

y = hP(x+∆xs(α), u, wP). (49b)

Alternatively, the plant can be written as (16), where

w := fP(x+∆xs(α), u, wP)− f(x, u, ds(α))−∆xs(α
+) (50a)

wd := ds(α
+)− ds(α) (50b)

v := hP(x+∆xs(α), u, wP)− h(x, u, ds(α)). (50c)

Clearly w̃ := (w,wd, v) ∈ W(x, u, d) by construction. Under Assumption 6, the state and
disturbance estimator (15) is RGES for the constructed model state x and noise vector w̃.

The noise vector w̃ is still a function of the model state x, input u, and steady-state
parameters α. Therefore, we bound it by more manageable variables, i.e., the tracking error
z − zs(β), estimate errors e, plant disturbance wP, and changes to the plant steady-state
parameters ∆α. To this end, the following differentiability assumption is required.

Assumption 9. The derivatives ∂(x,u)fP and ∂(x,u)hP exist and are continuous on X×U×
W. The functions f, h and g are continuously differentiable on X× U× D and U× Y.

Remark 12. Assumption 9 implies f, h are Lipschitz continuous on bounded sets.

Consider the closed-loop system

x+ = fP(x+∆xs(α), κN (x̂, β̂), wP)−∆xs(α
+) (51a)

α+ = α+∆α (51b)

y = hP(x+∆xs(α), κN (x̂, β̂), wP). (51c)

In the following propositions, we establish cost decreases for estimator and regulator Lya-
punov functions for (51) (see Appendices B.4 and B.5 for proofs).
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Proposition 3. Suppose Assumptions 1 to 6, 8 and 9 hold. Let ρ > 0. There exist
ĉ3, δw > 0 and σ̂w, σ̂α ∈ K∞ such that

V +
e ≤ Ve − ĉ3|e|2 + σ̂w(|wP|)|δx̂|2 + σ̂α(|∆α|) (52)

so long as (x̂, β̂) ∈ Ŝρ
N , x ∈ X, α = (ssp, wP) ∈ Ac(δw), ∆α = (∆ssp,∆wP) ∈ Ac(α, δw),

and |e|, |e+| ≤ δ0, where Ve(k) := Ve(x(k), ds(α(k)), x̂(k), d̂(k)), (17), (50), and (51).

Proposition 4. Let Assumptions 1 to 5, 8 and 9 hold and ρ > 0. There exist ã3, ã4, δ, δw >
0 and σ̃α ∈ K∞ such that

V 0
N (x̂+, β̂+) ≤ V 0

N (x̂, β̂)− ã3|δx̂|2 + ã4|(e, e+)|2 + σα(|∆α|) (53)

so long as (x̂, β̂) ∈ Ŝρ
N , x ∈ X, α = (ssp, wP) ∈ Ac(δw), ∆α = (∆ssp,∆wP) ∈ Ac(α, δw),

and |d̃| ≤ δ, where d̃ := (e, e+,∆ssp, w̃), (17), (50), and (51).

6.3 Main result

Finally, we state the main result of this section.

Theorem 6. Suppose Assumptions 1 to 6, 8 and 9 hold and let ρ > 0. There exists
τ, δw, δα > 0 such that, with

Sρ,τ
N := { (x, α, x̂, β̂) ∈ X×Ac × Ŝρ

N | Ve(x, ds(α), x̂, d̂) ≤ τ, α = (ssp, wP), β̂ = (ssp, d̂) }

the following statements hold:

(a) Sρ,τ
N is RPI for the closed-loop system (15) and (51) with the disturbance ∆α ∈

Ac(α, δw) ∩ δαBnα;

(b) the closed-loop system (15) and (51) with the disturbance ∆α ∈ Ac(α, δw)∩ δαBnα is
RES on Sρ,τ

N with respect to the target-tracking error δx̂ := x̂− xs(β̂); and

(c) the closed-loop system (15) and (51) with the disturbance ∆α ∈ Ac(α, δw) ∩ δαBnα

is RES on Sρ,τ
N with respect to (δr, δx̂), where δr := r − rsp is the setpoint-tracking

error, α = (rsp, usp, ysp, wP), r = g(κN (x̂, β̂), y), and (51c).

Proof. (a)—We already have that (x̂, β̂) ∈ Ŝρ
N and d̃ ∈ D̃c(x̂, β̂) ∩ δBnd implies (x̂+, β̂+) ∈

Ŝρ
N for some δ > 0. To keep the trajectory of (x, α, x̂, β̂) in Sρ,τ

N at all times, it suffices
to show there exist τ, δw, δα > 0 such that α ∈ Ac(δw), ∆α ∈ Ac(α, δw) ∩ δαBnα , and
Ve := Ve(x, ds(α), x̂, d̂) ≤ τ implies V +

e := Ve(x
+, x̂+) ≤ τ and |(e, e+, w)| ≤ δ.

By Propositions 3 and 10 (in Appendix B.5), there exist constants ĉ3, c̃e, δw > 0 and
functions σ̂w, σ̂α, σ̃w, σ̃α ∈ K∞ satisfying (52) and

|d̃|2 ≤ c̃e|(e, e+)|2 + σ̃w(|wP|)|δx̂|2 + σ̃α(|∆α|) (54)

so long as α = (ssp, wP) ∈ Ac(δw) and ∆α ∈ Ac(α, δw).



TWCCC Technical Report 2024-04 23

Assume, without loss of generality, that δw < ( 4c2c̃3
a1c1ĉ3

σ̂w + σ̃w)
−1(a1δ

2

ρ ), which implies
2c2σ̂w(δw)ρ

a1ĉ3
<
(
δ2 − σ̃w(δw)ρ

a1

)
c1
2c̃e

and σ̃w(δw)ρ
a1

< δ2. Then we can take

τ ∈
(
2c2σ̂w(δw)ρ

a1ĉ3
,

(
δ2 − σ̃w(δw)ρ

a1

)
c1
2c̃e

)
which implies τ ĉ3

2c2
> σ̂w(δw)ρ

a1
and δ2 > 2c̃eτ

c1
+ σ̃w(δw)ρ

a1
.

From (52), we have

V +
e ≤

{
τ
2 + σ̂w(δw)ρ

a1
+ σ̂α(|∆α|), Ve ≤ τ

2

τ − τ ĉ3
2c2

+ σ̂w(δw)ρ
a1

+ σ̂α(|∆α|), τ
2 < Ve ≤ τ.

But ĉ3 ≤ c2 (otherwise we could show Ve < 0 with wP = 0, ∆α = 0, and e ̸= 0) so
τ
2 ≥ τ ĉ3

2c2
> σ̂w(δw)ρ

a1
and we have V +

e ≤ τ so long as |∆α| ≤ δα,1 := σ̂−1
α ( τ ĉ32c2

− σ̂w(δw)ρ
a1

), which

is positive by construction. Moreover, Ve, V
+
e ≤ τ implies |(e, e+)|2 = |e|2+ |e+|2 ≤ 2τ

c1
and

by (54),

|d̃|2 ≤ c̃e|(e, e+)|2 + σ̃w(|wP|)|x̂− xs(β̂)|2 + σ̃α(|∆α|)

≤ 2c̃eτ

c1
+ σ̃w(δw)ρ

2 + σ̃α(δα)

≤ δ2

so long as |∆α| ≤ δα,2 := σ̃−1
α (δ2 − 2c̃eτ

c1
− σ̃w(δw)ρ

a1
), which exists and is positive by con-

struction. Finally, we can take δα := min { δα,1, δα,2 } to achieve (x, α, x̂, β̂) ∈ Sρ,τ
N at all

times.
(b)—From part (a), we already have τ, δw, δα > 0 such that Sρ,τ

N is RPI. By Assump-
tion 6 and Theorem 5 we have (18a) and (43a) at all times for some a1, a2, c1, c2 > 0. By
Propositions 3 and 4, there exist ĉ3, ã3, ã4 > 0 and σ̂w, σ̂α, σα ∈ K∞ such that (52) and (53)
at all times. Assume, without loss of generality, that δw < σ̂−1

w (min { c1ã3
ã4
, a3ĉ3a4

c1
c1+c2

}). By
Theorem 3, the system is RES on Sρ,τ

N w.r.t. δx̂.

(c)—By Proposition 2, there exist cr, cg > 0 such that |δr| ≤ cr|δx̂| + cg|d̃| where
d̃ := (e, e+,∆ssp, w̃). Combining this inequality with (18a), (52), and (54) gives

|δr| ≤ cr,x|δx̂|+ cr,e|e|+ γ̃r(|∆α|)

where cr,x := cr + cg(
√
σ̃α(δw) +

√
c̃eσ̂α(δw)), cr,e := cg

√
c̃e(1 +

√
c2 − ĉ3), and γ̃r :=

cg(
√
σ̃α +

√
c̃eσ̂α). Then

|(δr, e)| ≤ c̃r|(δx̂, e)|+ γ̃r(|∆α|)

where c̃r := cr,x + cr,e + 1. Finally, RES w.r.t. δx̂ gives

|(δx̂(k), e(k))| ≤ c̃λk|(δx̂(0), e)|+
k∑

j=0

λj γ̃(|∆α(k − j)|)
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θ = 0

ℓ

m

θ
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(a) Simple pendulum

F0, T0, c0

Fc, Tc

F0 T, c

(b) Continuous stirred-tank reactor

Figure 1: Example systems.

for some c̃ > 0, λ ∈ (0, 1), and γ̃ ∈ K, and therefore

|(δr(k), e(k))| ≤ c̃r|(δx̂(k), e(k))|+ γ̃r(|∆α(k)|)

≤ cλk|(δx̂(0), e)|+
k∑

j=0

λjγ(|∆α(k − j)|)

where c := c̃r c̃ > 0 and γ := c̃rγ̃ + γ̃r ∈ K∞.

7 Examples

In this section, we illustrate the main results using the example systems depicted in Fig-
ure 1. We compare two MPCs in our experiments.

Offset-free MPC The offset-free MPC (OFMPC) uses (6) and (14) and the following
MHE problem:

min
(x,d)∈XTk+1×DTk+1

V MHE
T (x,d,u,y) (55)

where Tk := min { k, T }, T ∈ I>0, and

V MHE
T (x,d,u,y) :=

Tk−1∑
j=0

|xj+1 − f(xj , u(j), dj)|2Q−1
w

+ |dj+1 − dj |2Q−1
d

+ |y(j)− h(xj , u(j), dj)|2R−1
v
. (56)
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For simplicity, a prior term is not used. Let x̂(j;u,y) and d̂(j;u,y) denote solutions to
the above problem, and define the estimates by

x̂(k) := x̂(k;uk−Tk:k−1,yk−Tk:k−1), d̂(k) := d̂(k;uk−Tk:k−1,yk−Tk:k−1).

Tracking MPC The nominal tracking MPC (TMPC) uses (6) and (14) and the following
MHE problem:

min
x∈XTk+1

V MHE
T (x, 0,uk−Tk:k−1,yk−Tk:k−1) (57)

With solutions denoted by x̂(j;u,y), we define the estimates by estimates by

x̂(k) := x̂(k;uk−Tk:k−1,yk−Tk:k−1), d̂(k) := 0.

We also construct, in the proof of the following lemma, terminal ingredients satisfying
Assumption 4.

Lemma 3. Suppose Assumptions 1 to 3 and 7 hold with B = B̂c and nc = 0, let Q ∈ Rn×n

and R ∈ Rnu×nu be positive definite, and ∂2(x,u)fi, i ∈ I1:n exist and are bounded on X×U×D.
For each β = (rsp, usp, ysp, d) ∈ B, let

A(β) := ∂xf(zs(β), d), B(β) := ∂uf(zs(β), d).

If (A(β), B(β)) is stabilizable for each β ∈ B, then there exist functions κf : X × B and
Pf : B → Rn×n, and a constant cf > 0 satisfying Assumptions 4 and 5.

Proof. Throughout this proof, we let β = (rsp, usp, ysp, β) ∈ B. Since (A(β), B(β)) is
stabilizable, there exists a positive definite P (β) that uniquely solves the following discrete
algebraic Riccati equation,

P = A⊤PA+Q−A⊤PB(B⊤PB +R)−1B⊤PA

where dependence on β has been suppressed for brevity. The solution P is continuous
at each (A,B,Q,R) such that (A,B) is stabilizable and (Q,R) are positive definite (Sun,
1998).4 Moreover, since f is twice differentiable and (xs, us) are continuous on B, then
(A,B) must be continuous on B. Therefore P is continuous on B and Assumption 5 holds
for Pf (β) := 2P (β).

Next, with K := PB(B⊤PB+R)−1, AK := A−BK, and QK := Q+K⊤RK, we have
A⊤

KPfAK − Pf = −2QK , where dependence on β has been suppressed for brevity. Then

Vf (x
+, β)− Vf (x, β) ≤ −2|δx|2QK(β) (58)

where x+ := AK(β)δx+xs(β) and δx := x−xs(β). Since the second derivatives ∂2(x,u)fi, i ∈
I1:n are bounded, there exists c > 0 (independent of β) such that |x+ − x+| ≤ c|δx|2

4In fact, Sun (1998) only needed (A,Q1/2) detectable to derive perturbation bounds. However, Assump-
tion 5 guarantees positive definiteness of Q, so we get this automatically.
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where x+ := f(x, κf (x, β), d) and κf (x, β) := −K(β)δx+ us(β).
5 Therefore, with a(β) :=

2cσ([AK(β)]⊤Pf (β)) and b(β) := c2σ(Pf (β)), we have

|Vf (x+, β)− Vf (x
+, β)| ≤ a(β)|δx|3 + b(β)|δx|4 (59)

and combining (58) with (59), we have

Vf (x
+, β)− Vf (x, β) + ℓ(x, κf (x, β), β)

≤ −|δx|2QK(β) + Vf (x
+, β)− Vf (x

+, β)

≤ −[c(β)− b(β)|δx| − a(β)|δx|2]|δx|2 (60)

where c(β) := σ(QK(β)). The polynomial pβ(s) = c(β) − b(β)s − a(β)s2 has roots at

s±(β) =
−b(β)±

√
[b(β)]2+4a(β)c(β)

2a(β) and is positive in between. Moreover, s± are continuous

over B because (a, b, c) are as well, and s±(β) are positive and negative, respectively.
Define cf := minβ∈B σ(Pf (β))[s+(β)]

2 which exists and is positive due to continuity and
positivity of x+ and σ(Pf (·)) and compactness of B. Finally, we have that Vf (x, β) ≤ cf

implies σ(Pf (β))|δx|2 ≤ Vf (x, β) ≤ cf and therefore |δx| ≤
√

cf
σ(Pf (β))

≤ s+(β) and (60)

implies Assumption 4 with Pf (β) and cf > 0 as constructed.

7.1 Simple pendulum

Consider the following nondimensionalized pendulum system (Figure 1a):

ẋ = FP(x, u, wP) :=

[
x2

sinx1 − (wP)
2
1x2 + (k̂ + (wP)2)u+ (wP)3

]
(61a)

y = hP(x, u, wP) := x1 + (wP)4 (61b)

r = g(u, y) := y (61c)

where (x1, x2) ∈ X := R2 are the angle and angular velocity, u ∈ U := [−1, 1] is the
(dimensionless) motor voltage, k̂ = 5 rad/s2 is the estimated motor gain, (wP)1 is an air
resistance factor, (wP)2 is the error in the motor gain estimate, (wP)3 is an externally
applied torque, and (wP)4 is the measurement noise. Let ψ(t;x, u, wP) denote the solution
to (61) at time t given x(0) = x, u(t) = u, and wP(t) = wP. We model the discretization
of (61) by

x+ = fP(x, u, wP) := x+∆FP(x, u, wP) + (wP)5rd(x, u, wP) (62a)

where (wP)5 scales the discretization error, rd is a residual function given by

rd(x, u, wP) :=

∫ ∆

0
[FP(x(t), u, wP)− FP(x, u, wP)]dt (62b)

5This follows by applying Taylor’s theorem to e(x, β) := x+ − x+ at (xs(β), d) and noting the intercept
and first derivative (in x) is zero.
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and x(t) = ψ(t;x, u, wP). Assuming a zero-order hold on the input u and disturbance wP,
the system (61) is discretized (exactly) as (62) with (wP)5 ≡ 1. We model the system with
wP = w(d) := (0, 0, d, 0, 0), i.e.,

x+ = f(x, u, d) := fP(x, u, w(d)) = x+∆

[
x2

sinx1 + k̂u+ d

]
(63a)

y = h(x, u, d) := hP(x, u, w(d)) = x1 (63b)

and therefore we do not need access to the residual function rd to design the offset-free
MPC.

For the following simulations, assume wP ∈ W := [−3, 3]3 × [−0.05, 0.05]× { 0, 1 }, and
let the sample time be ∆ = 0.1 s. Regardless of objective ℓs, the SSTP (6) is uniquely
solved by

xs(β) :=

[
rsp
0

]
, us(β) := −1

k̂
(sin rsp + d)

for each β = (rsp, usp, ysp, d) ∈ Bc, where

Bc := { (r, u, y, d) ∈ R4 | | sin r + d|, | sin y + d| ≤ k̂, |u| ≤ 1 }

and δ0 > 0. Likewise, the solution to (47) is

xP,s(α) :=

[
rsp
0

]
, ds(α) :=

k̂(wP)3 − (wP)2 sin rsp

k̂ + (wP)2
(64)

for each α = (rsp, usp, ysp, wP) ∈ Ac, where

Ac := { (r, u, y, w) ∈ R3 ×W | | sin r + (wP)3|, | sin y + (wP)3| ≤ k̂ + (wP)2, |u| ≤ 1 } .

Notice that Ac and Bc are compact and satisfy Assumption 8. We define a regulator with
N := 20, U := [−1, 1], ℓs(u, y) = |u|2 + |y|2, ℓ(x, u,∆u, β) := |x − xs(β)|2 + 10−2(u −
us(β))

2 + 102(∆u)2,6 Vf (x, β) := |x − xs(β)|2Pf (β)
, and Xf := levcfVf , where Pf (β) and

cf ≈ 0.4364 are chosen according to the proof of Lemma 3 to satisfy Assumptions 4 and 5.
Assumption 2 is satisfied trivially and Assumptions 1, 8 and 9 are satisfied since smoothness
of F implies that ψ, r, and f are smooth (Hale, 1980, Thm. 3.3). Finally, we use MHE
designs (55) and (57) for the offset-free MPC and tracking MPC, respectively, where T = 5,

Qw :=
[
10−3

10−6

]
, and Qd := Rv := 1. While the estimators defined by (55) and (57)

should be RGES (Allan and Rawlings, 2021), it is not known if they satisfy Assumption 6.
If Assumption 6 is satisfied, then Theorem 6 gives robust stability with respect to the
tracking errors.

We present the results of numerical experiments in Figure 2. To ensure numerical
accuracy, the plant (61) is simulated by four 4th-order Runga-Kutta steps per sample

6The ∆u(k) := u(k)− u(k − 1) penalty is a standard generalization used by practitioners to “smooth”
the closed-loop response in a tuneable fashion.
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(b) Mismatch: (wP)1 ≡ 1 and (wP)2 ≡ 2.
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(c) Noise and mismatch: (wP)
+
3 = (wP)3 + (∆wP)3,

(∆wP)3 ∼ N(0, 10−2), and (wP)4 ∼ N(0, 10−4).
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(d) Oscillating disturbance and mismatch:
(wP)3(k) = 1− cos( 2πk

50
) and rsp(k) ≡ π.

Figure 2: Simulated closed-loop trajectories for the offset-free MPC and tracking MPC of
(61). Solid blue and dot-dashed orange lines represent the closed-loop estimates and inputs
(x̂, d̂, u) for the offset-free MPC and tracking MPC simulations, respectively. Dashed blue
and dotted orange lines represent the closed-loop plant states xP for the offset-free MPC
and tracking MPC simulations, respectively. Dotted black lines represent the intended
steady-state targets and disturbance values (xP,s, ds, us) found by solving (6) and (47).
We set (wP)1 ≡ 1, (wP)2 ≡ 2, (wP)3(k) = 3H(k − 240), (wP)4 ≡ 1, (wP)5 ≡ 0, and
rsp(k) = πH(5− k) + π

2H(k − 120), unless otherwise specified.
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time. Unless otherwise specified, we consider, in each simulation, unmodeled air resistance
(wP)1 ≡ 1, motor gain error (wP)2 ≡ 2, an exogenous torque (wP)3(k) = 3H(k − 240),
the discretization parameter (wP)4 ≡ 1, no measurement noise (wP)5 ≡ 0, and a reference
signal rsp(k) = πH(5 − k) + π

2H(k − 120), where H denotes the unit step function. The
setpoint brings the pendulum from the resting state x1 = π, to the upright position x1 = 0,
to the half-way position x1 =

π
2 .

In the first experiment, we consider the case without plant-model mismatch, i.e.,
(wP)1 ≡ 0 and (wP)2 ≡ 0 (Figure 2a). Both offset-free and tracking MPC remove off-
set after the setpoint changes. However, only offset-free MPC removes offset after the
disturbance is injected. Without a disturbance model, the tracking MPC cannot produce
useful steady-state targets, and the pendulum drifts far from the setpoint. Moreover, the
tracking MPC produces pathological state estimates, with nonzero velocity at steady state.

The second experiment considers plant-model mismatch (wP)1 ≡ 1 and (wP)2 ≡ 2
(Figure 2b). As in the first experiment, both the tracking MPC and offset-free MPC bring
the pendulum to the upright position x1 = 0, without offset. However, only the offset-
free MPC brings the pendulum to the half-way position x1 = π

2 . The tracking MPC,
not accounting for motor gain errors, provides an insufficient force and does not remove
offset. Note the intended disturbance estimate ds = 13

7 is a smaller value that the actual
injected disturbance (wP)3 = 3, as underestimation of the motor gain necessitates a smaller
disturbance value to be corrected. Again, the tracking MPC produces pathological state
estimates.

The third experiment follows the second, except the exogenous torque is an integrating
disturbance (wP)

+
3 = (wP)3+(∆wP)3 where (wP)3 ∼ N(0, 10−2), and we have measurement

noise (wP)5 ∼ N(0, 10−4) (Figure 2c). In this experiment, we see the remarkable ability of
offset-free MPC to track a reference subject to random disturbances. While the tracking
MPC is robust to the disturbance (wP)3, it is not robust to the disturbance changes (∆wP)3
and wanders far from the setpoint as a result. On the other hand, offset-free MPC is
robust to both and exhibits practically offset-free performance. We remark that, while
the example is mechanical in nature, we are illustrating a behavior that is often desired in
chemical process control, where process specifications must be met despite constantly, but
slowly varying upstream conditions.

In the fourth and final experiment, the pendulum maintains the resting position rsp = π
subject to an oscillating torque (wP)3(k) = 1 − cos(2πk50 ) (Figure 2d). Tracking MPC
wanders away from the setpoint, whereas offset-free MPC oscillates around it with small
amplitude. We note the disturbance estimate d̂ does not ever “catch” the intended value ds
as the disturbance model has no ability to match its velocity or acceleration. More general
integrator schemes (e.g., double or triple integrators) could provide more dynamic tracking
performance at the cost of a higher disturbance dimension (c.f., Maeder and Morari (2010)
or (Zagrobelny, 2014, Ch. 5)).
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Figure 3: Nominal steady states for the CSTR (65).

7.2 Continuous stirred-tank reactor

Consider the following nonisothermal continuous stirred-tank reactor (CSTR) (Hicks and
Ray, 1971; Kameswaran and Biegler, 2006) (Figure 1b):

ẋ = FP(x, u, wP)

:=

[
θ−1(1 + (wP)1 − x1)− ke(wP)2−M/x2x1

θ−1(xf − x2) + ke(wP)2−M/x2x1 − γu(x2 − xc − (wP)3)

]
(65a)

y = hP(x, u, wP) := x2 + (wP)4 (65b)

r = g(u, y) := y (65c)

where (x1, x2) ∈ X := R2
≥0 are the dimensionless concentration and temperature, u ∈ U :=

[0, 2] is the dimensionless coolant flowrate, θ = 20 s is the residence time, k = 300 s−1

is the rate coefficient, M = 5 is the dimensionless activation energy, xf = 0.3947 and
xc = 0.3816 are dimensionless feed and coolant temperatures, γ = 0.117 s−1 is the heat
transfer coefficient, (wP)1 is a kinetic modeling error, (wP)2 is a change to the coolant
temperature, and (wP)4 is the measurement noise. Again, we discretize the system (65)
via the equations (62), where the continuous system is recovered with (wP)5 = 1 and zero-
order holds on u and wP. The system is modeled with wP = w(d) := (0, d, 0, 0, 0), i.e.,

x+ = f(x, u, d) := x+∆

[
θ−1(1− x1)− ke−M/x2x1

θ−1(xf − x2) + ke−M/x2x1 − γu(x2 − xc − d)

]
(66a)

y = h(x, u, d) := x2. (66b)

The goal in the following simulations is to control the CSTR (65) from a nominal steady
state (x(0), u(−1)) ≈ (0.9831, 0.3918, 0.8305) to a temperature setpoint rsp ∈ [0.6, 0.7].
In this range the nominal steady states are unstable, with a nearby Hopf bifurcation at
(xHopf , uHopf) ≈ (0.1728, 0.7009, 0.6973). We plot the nominal steady states (i.e., wP = 0)
along with the initial steady state x(0) and the Hopf bifurcation xHopf in Figure 3.
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For the following simulations, assume disturbance set is wP ∈ W := [−0.05, 0.05]4 ×
{ 0, 1 }, and let the sample time be ∆ = 1 s. Regardless of objective ℓs, the SSTP (6) is
uniquely solved by

xs(β) :=

[ 1
1+θke−M/r

rsp

]
, us(β) :=

xf − r + 1− (xs(β))1
θγ(r − xc − d)

for each β = (rsp, usp, ysp, d) ∈ Bc, where

Bc := [0.6, 0.7]× U× [0.6, 0.7]× [−0.1, 0.1]

and δ0 > 0. Likewise, the solution to (47) is

xP,s(α) :=

[
rsp
0

]
, ds(α) (67)

for each α = (rsp, usp, ysp, wP) ∈ Ac, where

Ac := [0.6, 0.7]× U× [0.6, 0.7]×W.

It is straightforward to verify Ac and Bc are compact and satisfy Assumption 8.
We define a regulator with N := 150, ℓ(x, u,∆u, β) := |x−xs(β)|2Q+10−3(u−us(β))2+

(∆u)2, Q =
[
10−3

1

]
, Vf (x, β) := |x − xs(β)|2Pf (β)

, and Xf := levcfVf , where Pf (β) and

cf ≈ 6.7031×10−16 are chosen according to the proof of Lemma 3 to satisfy Assumption 4.7

Finally, we use MHE designs (55) and (57) for the offset-free MPC and tracking MPC,
respectively, where T := N , Qw := 10−4I, Qd := 10−2, and Rv := 1. As in the simple
pendulum example, if Assumption 6 is satisfied, then Theorem 6 implies the offset-free
MPC can robustly track setpoints despite plant-model mismatch.

The results of the CSTR experiments are presented in Figure 4. Throughout these
experiments, the plant (65) is simulated by ten 4th-order Runga-Kutta steps per sample
time. Unless otherwise specified, each simulation is carried out with error in the feed
concentration (wP)1 ≡ −0.05, error in the activation energy (wP)2 ≡ −0.05, a step in the
coolant temperature (wP)3(k) = −0.05H(k − 300), no measurement noise (wP)4 ≡ 0, the
discretization parameter (wP)5 ≡ 1, and a constant reference signal rsp ≡ 0.65.

In the first experiment, we consider the case without plant-model mismatch, i.e.,
(wP)1 ≡ 0 and (wP)2 ≡ 0 (Figure 4a). As in the pendulum experiment, both offset-
free and tracking MPC remove offset after the setpoint changes, but only offset-free MPC
removes offset after the disturbance is injected. We also note that, after the disturbance is
injected, the tracking MPC state estimates are slightly different than the plant states.

We consider plant-model mismatch (wP)1 ≡ −0.05 and (wP)2 ≡ −0.05 in the second
experiment (Figure 2b). The offset-free MPC is able to track the reference and reject
the disturbance despite mismatch, this time at the cost of a significant temperature spike

7While cf was chosen near machine precision, the CSTR tends to evolve to the nearest stable steady
state, and the horizon is chosen long enough to easily achieve this steady state to a high degree of precision.
Thus, the system remains robust despite the tight terminal constraint.
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(b) Mismatch: (wP)1 ≡ −0.05 and (wP)2 ≡ −0.05.
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(c) Noise and mismatch: (wP)
+
3 = (wP)3 + (∆wP)3,

(∆wP)3 ∼ N(0, 10−6), and (wP)4 ∼ N(0, 10−4).
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(d) Oscillating setpoint: rsp(k) = 0.05 sin( 2πk
90

) +
0.65.

Figure 4: Simulated closed-loop trajectories for the offset-free MPC and tracking MPC of
the CSTR (65). Solid blue and dot-dashed orange lines represent the closed-loop estimates
and inputs (x̂, d̂, u) for the offset-free MPC and tracking MPC simulations, respectively.
Dashed blue and dotted orange lines represent the closed-loop plant states xP for the offset-
free MPC and tracking MPC simulations, respectively. Dotted black lines represent the
intended steady-state targets and disturbance values (xP,s, ds, us) found by solving (6) and
(47). We set (wP)1 ≡ −0.05, (wP)2 ≡ −0.05, (wP)3(k) = −0.05H(k − 300), (wP)4 ≡ 0,
(wP)5 ≡ 1, and rsp ≡ 0.65 unless otherwise specified.
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around k = 170. On the other hand, the tracking MPC fails to bring the temperature
above x2 = 0.5, far from the setpoint rsp = 0.65.

In the third experiment, the coolant temperature is an integrating disturbance (wP)
+
3 =

(wP)3+(∆wP)3, (∆wP)3 ∼ N(0, 10−6), and we have measurement noise (wP)4 ∼ N(0, 10−4)
(Figure 4c). As in the corresponding pendulum experiment, offset-free MPC tracks the
reference despite the randomly drifting disturbance. Here we are illustrating a behavior
that is often desired in chemical process control, where process specifications must be met
despite constantly, but slowly varying upstream conditions. We remark that, while the
pendulum example is mechanical in nature, it illustrated the same property. The tracking
MPC, on the other hand, still cannot handle the plant-model mismatch and fails to bring
the temperature up to the setpoint.

In the fourth and final experiment, the setpoint follows an oscillating pattern rsp(k) =
0.05 sin(2πk90 ) + 0.65. Tracking MPC again fails bring the temperature up to the setpoint.
Offset-free MPC closely follows the setpoint, substantially deviating from it only at the
start-up phase and when the coolant temperature disturbance is injected. Again, we note
that a precise tracking of this disturbance and reference signal could be accomplished by
more general integrator schemes. (c.f., Maeder and Morari (2010) or (Zagrobelny, 2014,
Sec. 5.3, 5.4)).

8 Conclusions

In this paper, we presented a nonlinear offset-free MPC design that is robustly stable
with respect to setpoint- and target-tracking errors, despite persistent disturbances and
plant-model mismatch. Our results are significantly stronger than the standard offset-free
sufficient conditions that can be found in the literature. Notably, we do not assume stability
of the closed-loop system to guarantee offset-free performance. The results are illustrated
in numerical experiments.

These results form a foundation on which offset-free performance guarantees can be es-
tablished on a wider class of MPC designs and applications. The results without mismatch
(Theorem 5) should also extend to the control of plants with parameter drifts. A few
limitations of this work, notably the requirement of a Lyapunov function for the estimator
(Assumption 6), and the necessity of quadratic costs (Assumption 5), are also possible
areas of future research.

A Proofs of robust estimation and tracking stability

A.1 Proof of Theorem 1

Proof of Theorem 1. First, note that c3 ≤ c2, as otherwise, this would imply Ve(k+1) ≤ 0
whenever w̃(k) = 0. We combine the upper bound (18a) and bound on the difference (18b)
to give

Ve(k + 1) ≤ λVe(k) + c4|w̃(k)|2
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where λ := 1− c3
c2

∈ (0, 1). Recursively applying the above inequality gives

Ve(k) ≤ λkVe(0) +

k∑
j=1

c4λ
j−1|w̃(k − j)|2

≤ c2λ
k+1|e|2 +

k∑
j=1

c4λ
j−1|w̃(k − j)|2

noting that e(0) = e because Φ0 is the identity map. Finally,

|e(k)| ≤

√
Ve(k)

c1
≤ ce,1λ

k
e |e|+ ce,2

k+1∑
j=1

λj−1
e |w̃(k − j)|

where ce,1 :=
√

c2
c1
, ce,2 :=

√
c4
c1
, and λe :=

√
λ.

A.2 Proof of Theorem 2

Proof of Theorem 2. Suppose X ⊆ Ξ is RPI for (20). Let the functions V : Ξ → R≥0 and
αi, σ ∈ K∞, i ∈ I1:3 satisfy (24) for all ξ ∈ X and ω ∈ Ωc(ξ). Let (ξ,ω, ζ1, ζ2) satisfy (20)
and ξ(0) ∈ X.

Asymptotic case. The proof of this part follows similarly to (Jiang and Wang, 2001,
Lem. 3.5) and (Tran et al., 2015, Thm. 1). We start by noting (24b) can be rewritten

V (Fc(ξ, ω)) ≤ (id− α4)(V (ξ)) + σ(|ω|) (68)

where α4 := α3 ◦α−1
2 ∈ K∞. Without loss of generality, we can assume id−α4 ∈ K (Jiang

and Wang, 2001, Lem. B.1). Let ρ ∈ K∞ such that id− ρ ∈ K∞.
Let b := α−1

4 (ρ−1(σ(∥ω∥))) and D := { ξ ∈ Ξ | V (ξ) ≤ b }. The following intermediate
result is required.

Lemma 4. If there exists k0 ∈ I≥0 such that ξ(k0) ∈ D, then ξ(k) ∈ D for all k ≥ k0.

Proof. Suppose k ≥ k0 and ξ(k) ∈ D. Then V (ξ(k)) ≤ b and by (68),

V (ξ(k + 1)) ≤ (id− α4)(V (ξ(k))) + σ(∥ω∥)
≤ (id− α4)(b) + σ(∥ω∥)
= −(id− ρ)(α4(b))︸ ︷︷ ︸

≤0

+b−ρ(α4(b)) + σ(∥ω∥)︸ ︷︷ ︸
=0

≤ b.

The result follows by induction.

Next, let j0 := min { k ∈ I≥0 | ξ(k) ∈ D }. The above lemma gives V (ξ(k)) ≤ γ(∥ω∥)
for all k ≥ j0, where γ := α−1

4 ◦ ρ−1 ◦ σ. On the other hand, if k < j0, then we have
ρ(α4(V (ξ(k)))) > σ(∥ω∥) and therefore

V (ξ(k + 1))− V (ξ(k)) ≤ −α4(V (ξ(k))) + σ(∥ω∥)
= −α4(V (ξ(k))) + ρ(α4(V (ξ(k))))− ρ(α4(V (ξ(k)))) + σ(∥ω∥)
≤ −α4(V (ξ(k))) + ρ(α4(V (ξ(k)))).
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By (Jiang and Wang, 2002, Lem. 4.3), there exists β ∈ KL such that

α1(|ζ1(k)|) ≤ V (ξ(k)) ≤ β(V (ξ(0)), k) ≤ β(α2(|ζ2(0)|), k).

Combining the above inequalities gives

|ζ1(k)| ≤ max{βζ(|ζ2(0)|, k), γζ(∥ω∥)} ≤ βζ(|ζ2(0)|, k) + γζ(∥ω∥)

where βζ(s, k) := α−1
1 (β(α2(s), k)) and γζ := α−1

1 ◦ γ. Finally, causality lets us drop future
terms of ω from the signal norm in the above inequality and simply write (22).

Exponential case. Suppose, additionally, that αi(·) := ai(·)b, i ∈ I1:3. Without loss
of generality, we can assume λ := 1− a3 ∈ (0, 1). Recursively applying (24b) gives

V (ξ(k)) ≤ λkV (ξ(0)) +
k∑

i=1

λi−1σ(|ω(k − i)|)

≤ λka2|ζ2(0)|b +
σ(∥ω∥0:k−1)

1− λ
.

Applying (24a), we have

|ζ1(k)| ≤
(
a2
a1
λk|ζ2(0)|b +

σ(∥ω∥0:k−1)

a1(1− λ)

)1/b

.

If b ≥ 1, the triangle inequality gives

|ζ1(k)| ≤ cζλ
k
ζ |ζ2(0)|+ γζ(∥ω∥0:k−1) (69)

with cζ :=
(
a2
a1

)1/b
, λζ := λ1/b, and γζ(·) :=

(
σ(·)

a1(1−λ)

)1/b
. Otherwise, if b < 1, then

convexity gives (69) with cζ :=
1
2

(
2a2
a1

)1/b
, λζ := λ1/b, and γζ(·) := 1

2

(
2σ(·)

a1(1−λ)

)1/b
.

A.3 Proof of Theorem 3

Proof of Theorem 3. Throughout, we fix k ∈ I≥0 and drop dependence on k when it is
understood from context. Let the trajectories (ξ, ξ̂,u,ω,υ, ε, ζ) satisfy (19) and (25)–

(28), ζ = G(ξ̂), and (ξ(0), ξ) ∈ S, where S is RPI. Suppose Φξ
0 is the identity map. Let

ai, bi > 0, i ∈ I1:4, V : Ξ̂ → R≥0, Vε : Ξ × Ξ̂ → R≥0, and σ, σε ∈ K satisfy a4c4
a3c1

< 1,
a4c4
a3c3

< c1
c1+c2

, and (31).
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Joint Lyapunov function Combining the fact |(ε, ε+)|2 = |ε|2+ |ε+|2 with the inequal-
ities (31), we have

V (ξ̂+)− V (ξ̂)
(31b)

≤ −a3|ζ|2 + a4|ε|2 + a4|ε+|2 + σ(|ω|)
(31c)

≤ −a3|ζ|2 + a4|ε|2 +
a4
c1
Vε(ξ

+, ξ̂+) + σ(|ω|)

(31d)

≤ −ã3|ζ|2 + a4

(
1− c3

c1

)
|ε|2 + a4

c1
Vε(ξ, ξ̂) + σ̃(|ω|)

(31c)

≤ −ã3|ζ|2 + ã4|ε|2 + σ̃(|ω|)

where ã3 := a3 − a4c4
c1

, ã4 := a4

(
1 + c2−c3

c1

)
, and σ̃ := a4

c1
σε + σ ∈ K. Note that ã3 =

a3

(
1− a4c4

a3c1

)
> 0 by assumption, and ã4 > 0 since c2 > c3.

Let W (ξ, ξ̂) := V (ξ̂) + qVε(ξ, ξ̂) where q > 0. With b1 := min { a1, qc1 }, we have the
lower bound,

b1|(ζ, ε)|2 = b1|ζ|2 + b1|ε|2 ≤ a1|ζ|2 + qc1|ε|2 ≤ V (ξ̂) + qVε(ξ, ξ̂) =:W (ξ, ξ̂). (70)

With b2 := max { a2, qc2 }, we have the upper bound

W (ξ, ξ̂) := V (ξ̂) + qVε(ξ, ξ̂) ≤ a2|ζ|2 + qc2|ε|2 ≤ b2|ζ|2 + b2|ε|2 = b2|(ζ, ε)|2. (71)

For the cost decrease, we first note that a4c4
a3c3

< c1
c1+c2

implies

ã4c4 = a4

(
c1 + c2
c1

− c3
c1

)
c4 < a4

(
a3c3
a4c4

− c3
c1

)
c4 = a3c3 −

a4c3c4
c1

= ã3c3

and therefore ã4
c3
< ã3

c4
. With q ∈

(
ã4
c3
, ã3c4

)
, we have

W (ξ+, ξ̂+) ≤ V (ξ̂+) + qVε(ξ
+, ξ̂+) ≤W (ξ, ξ̂)− b3|(ζ, ε)|2 + σW (|ω|) (72)

where b3 := min { ã3 − qc4, qc3 − ã4 } > 0 and σW := σ̃ + qσε ∈ K by construction.

Robust exponential stability Substituting the upper bound (71) into the cost de-
crease (72) gives

W (ξ+, ξ̂+) ≤ λW (ξ, ξ̂)− b3|(ζ, ε)|2 + σW (|ω|) (73)

where λ := 1− b3
b2

and we can assume λ ∈ (0, 1) since

b2 ≥ qc2 > qc3 > qc3 − ã4 ≥ b3.

Recursively applying (73) gives

W (ξ(k), ξ̂(k)) ≤ λkW (ξ(0), ξ̂(0)) +

k∑
i=1

λi−1σ(|ω(k − i)|)

≤ b2λ
k|(ζ(0), ε(0))|2 +

k∑
i=1

λi−1σ(|ω(k − i)|)
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where the second inequality follows from (71). Finally, by (70) and the triangle inequality,
we have

|(ζ(k), e(k))| ≤ cζλ
k
ζ |(ζ(0), ε(0))|+

k∑
i=1

γζ(|ω(k − i)|, i)

where cζ :=
√

b2
b1
, λζ :=

√
λ, and γζ(s, k) := λk−1

ζ

√
σ(s)
b1

.

B Proofs of offset-free MPC stability

B.1 Proof of Theorem 4

We begin by proving Theorem 4(a,b).

Proof of Theorem 4(a,b). (a)—Suppose x ∈ X ρ
N (β) and β ∈ Bc. From the main text,

ũ(x, β) is feasible, so

V 0
N (fc(x, β), β) ≤ VN (fc(x, β), ũ(x, β), β)

and, applying the inequality (35), we have

V 0
N (fc(x, β), β) ≤ V 0

N (x, β)− ℓ(x, κN (x, β), β).

But
σ(Q)|x− xs(β)|2 ≤ ℓ(x, κN (x, β), β) ≤ V 0

N (x, β)

so the lower bound (34a) and the cost decrease (34b) both hold with a1 = a3 = σ(Q).
To establish the upper bound of (34a), we first note that since Pf (·) is continuous and

positive definite, and Bc is compact, the maximum γ := maxβ∈Bc σ(Pf (β)) > 0 exists.

Then |x− xs(β)| ≤ ε :=
√

cf
γ implies

Vf (x, β) ≤ σ(Pf (β))|x− xs(β)|2 ≤ γ|x− xs(β)|2 ≤ cf

and therefore x ∈ Xf (β). By monotonicity of the value function (Rawlings et al., 2020,
Prop. 2.18) we have V 0

N (x, β) ≤ Vf (x, β) whenever x ∈ Xf (β), and therefore

V 0
N (x, β) ≤ Vf (x, β) ≤ γ|x− xs(β)|2

whenever |x− xs(β)| ≤ ε. On the other hand, if |x− xs(β)| > ε, then

V 0
N (x, β) ≤ ρ ≤ ρ

ε2
|x− xs(β)|2.

Finally, we have the upper bound (34a) with a2 := max { γ, ρ
ε2

}.
(b)—Let β ∈ B. We already have that V 0

N (·, β) is a Lyapunov function (for the system
(32), on X ρ

N (β)) with respect to x − xs(β), and fc(x, β) ∈ XN (β) for all x ∈ X ρ
N (β) by

recursive feasibility. We can choose any compact set Bc ⊆ B containing β to achieve the
descent property (34b). Then, for each x ∈ X ρ

N (β), we have

V 0
N (fc(x, β), β) ≤ V 0

N (x, β)− a1|x− xs(β)|2 ≤ ρ

and therefore fc(x, β) ∈ X ρ
N (β). In other words, X ρ

N (β) is positive invariant for the sys-
tem (32a). Finally, ES in X ρ

N (β) w.r.t. x− xs(β) follows from Theorem 2.
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To prove Theorem 4(c,d), we need a few preliminary results.

Proposition 5 ((Allan et al., 2017, Prop. 20)). Let C ⊆ D ⊆ Rm, with C compact,
D closed, and V : D → Rp continuous. Then there exists α ∈ K∞ such that |V (x)−V (y)| ≤
α(|x− y|) for all x ∈ C and y ∈ D.

Proposition 6. Suppose Assumptions 1 to 5 hold. Let ρ > 0 and Bc ⊆ B be compact.
There exist cx, cu > 0 such that

|x0(j;x, β)− xs(β)| ≤ cx|x− xs(β)| (74a)

|u0(k;x, β)− us(β)| ≤ cu|x− xs(β)| (74b)

for each x ∈ X ρ
N (β), β ∈ Bc, j ∈ I1:N , and k ∈ I1:N−1.

Proof. Throughout, we fix x ∈ X ρ
N (β) and β ∈ Bc. Unless otherwise specified, the con-

structed constants and functions are independent of (x, β). By Theorem 4(a), there exists
a2 > 0 satisfying the upper bound (43a). Since Pf is continuous and positive definite and
Bc is compact, the minimum γ := minβ∈Bc σ(Pf (β)) exists and is positive. Moreover, since
Q,R are positive definite, we have σ(Q), σ(R) > 0. For each k ∈ I0:N−1,

σ(Q)|x0(k;x, β)− xs(β)|2 ≤ |x0(k;x, β)− xs(β)|2Q
≤ V 0

N (x, β) ≤ a2|x− xs(β)|2

γ|x0(N ;x, β)− xs(β)|2 ≤ |x0(N ;x, β)− xs(β)|2Pf (β)

≤ V 0
N (x, β) ≤ a2|x− xs(β)|2

σ(R)|u0(k;x, β)− us(β)|2 ≤ |u0(k;x, β)− us(β)|2R
≤ V 0

N (x, β) ≤ a2|x− xs(β)|2.

Thus, (74) holds for all j ∈ I1:N and k ∈ I1:N−1 with cx := max {
√

a2
σ(Q) ,

√
a2
γ } and

cu :=
√

a2
σ(R) .

Proposition 7. Suppose Assumptions 1 to 5 hold. Let ρ > 0, Bc ⊆ B be compact. There
exists σr ∈ K∞ such that

|gc(x, β)− rsp| ≤ σr(|x− xs(β)|) (75)

for each x ∈ X ρ
N (β) and β = (rsp, zsp, d) ∈ Bc. Moreover, if g and h are Lipschitz con-

tinuous on bounded sets, then (75) holds on the same sets with σr(·) := cr(·) and some
cr > 0.

Proof. By Proposition 5, there exists σ̃r ∈ K∞ such that

|g(u, h(x, u, d))− g(ũ, h(x̃, ũ, d̃))| ≤ σ̃r(|(x− x̃, u− ũ, β − β̃)|)
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for all x, x̃ ∈ X ρ
N , u, ũ ∈ U, and β = (r, z, d), β̃ = (r̃, z̃, d̃) ∈ Bc. Fix x ∈ X ρ

N (β) and
β ∈ Bc. The following constructions are independent of (x, β) unless otherwise specified.
By Proposition 6, there exists cu > 0 such that

|κN (x, β)− us(β)| ≤ cu|x− xs(β)|

Combining these inequalities gives

|gc(x, β)− rsp| ≤ σ̃r(|(x− xs(β), κN (x, β)− us(β))|)
≤ σ̃r((1 + cu)|x− xs(β)|)
≤ σr(|x− xs(β)|)

where σr(·) := σ̃r((1+cu)(·)) ∈ K∞. If we also have that g and h are Lipschitz on bounded
sets, then we can take σr(·) := cr(·) and cr := Lr(1+cu) > 0, where Lr > 0 is the Lipschitz
constant for g(u, h(x, u, d)) over X ρ

N × U× Bc.

Proof of Theorem 4(c,d). Fix x ∈ X ρ
N (β) and β ∈ B. Let Bc ⊆ B be compact, containing

β. Define δr := gc(x, β)− rsp and δx := x− xs(β).
(c)—By Proposition 7, there exists σr ∈ K∞ such that (75) holds. Then

α1(|δr|) := a1[σ
−1
r (|δr|)]2 ≤ a1|δx|2 ≤ V 0

N (x, β)

so V 0
N (·, β) is a Lyapunov function on X ρ

N (β) w.r.t. (δr, δx), and AS on X ρ
N (β) w.r.t. (δr, δx)

follows by Theorem 2.
(d)—If g and h are Lipschitz continuous on bounded sets, then by Proposition 7, we can

repeat part (c) with α1(·) := a1c
−2
r (·)2 and some cr > 0. Then V 0

N (·, β) is an exponential
Lyapunov function on X ρ

N (β) w.r.t. (δr, δx), and ES on X ρ
N (β) w.r.t. (δr, δx) follows by

Theorem 2.

B.2 Proof of Proposition 1

To establish Proposition 1, we require the following result.

Proposition 8. Suppose Assumptions 1 to 5 and 7 hold and let ρ > 0. The set

X̂ ρ
N :=

⋃
β̂∈B̂c

X ρ
N (β̂)

is compact, where B̂c is defined as in Assumption 7(i).

Proof. Consider the lifted set

F := { (x̂,u, β̂) ∈ X× UN × B̂c | Vf (ϕ(N ; x̂,u, β̂)) ≤ cf , VN (x̂,u, β̂) ≤ ρ } .

Notice X̂ ρ
N is equivalent to the projection of F onto the first coordinate, i.e., X̂ ρ

N = P (F)

where P (x̂,u, β̂) = x̂. Since P is continuous, the image X̂ ρ
N = P (F) is compact whenever

F is compact. Thus, it suffices to show F is compact.
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The set F is closed because (X,U, B̂c) are closed, and continuity of (f, xs, us, ℓ, Vf )
implies continuity of Vf (ϕ(N ; ·, ·, ·)) and VN (·, ·, ·). Next, we show F is bounded. Since

xs is continuous and B̂c is compact, the maximum ρs := maxβ̂∈B̂c
|xs(β̂)| exists and is

finite. For each (x̂,u, β̂) ∈ F , we have V 0
N (x̂, β̂) ≤ VN (x̂,u, β̂) ≤ ρ by construction.

But V 0
N (x̂, β̂) ≥ σ(Q)|x̂ − xs(β̂)|2, so this implies |x̂ − xs(β̂)| ≤

√
ρ

σ(Q) and therefore

|x̂| ≤
√

ρ
σ(Q) + ρs. But u and β̂ always lie in compact sets, so F must be bounded.

Proof of Proposition 1. Let β̂ ∈ B̂c, x̂ ∈ X ρ
N (β̂), and |d̃| ≤ δ0 such that β̂+ := f̂β,c(β̂, d̃) ∈

B̂c. For brevity, let

x+ := fc(x̂, β̂), x+(N) := ϕ(N ;x+, ũ(x̂, β̂), d̂), x(N) := x0(N ; x̂, β̂),

x̂+ := f̂c(x̂, β̂, d̃), x̂+(N) := ϕ(N ; x̂+, ũ(x̂, β̂), d̂+).

Recall d̃ := (e, e+,∆β,w, v), e := (ex, ed), e
+ := (e+x , e

+
d ), and ∆β := (∆ssp, wd).

From Proposition 8, the set X̂ ρ
N is compact. Since the functions (f, xs, us, Pf ) are

continuous, so are (Vf , VN ). By Proposition 5, there exist σf , σVf
, σVN

∈ K∞ such that

|f(x1, u1, d̂1)− f(x2, u2, d̂2)| ≤ σf (|(x1 − x2, u1 − u2, d̂1 − d̂2)|) (76)

|Vf (ϕ(N ;x1,u1, d̂1), β̂1)− Vf (ϕ(N ;x2,u2, d̂2), β̂2)| ≤ σVf
(|(x1 − x2,u1 − u2, β̂1 − β̂2)|)

(77)

|VN (x1,u1, β̂1)− VN (x2,u2, β̂2)| ≤ σVN
(|(x1 − x2,u1 − u2, β̂1 − β̂2)|) (78)

for all x1 ∈ X, x2 ∈ X̂ ρ
N , u1, u2 ∈ U, u1,u2 ∈ UN , and β̂1 = (s1, d̂1), β̂2 = (s2, d̂2) ∈ B̂c.

Substituting x1 = x̂ + ex, x2 = x̂, u1 = u2 = κN (x̂, β̂), d̂1 = d̂ + ed, and d̂2 = d̂ into
(76), we have |x̂+ − x+| ≤ σf (|e|) + |w|+ |e+x |. But |β̂+ − β̂| ≤ |∆β|+ |ed|+ |e+d |, so

|(x̂+ − x+, β̂+ − β̂)| ≤ σf (d̃) + 5|d̃|. (79)

Substituting x1 = x̂+, x2 = f̂c(x̂, β̂), u1 = u2 = ũ(x̂, β̂), β̂1 = β̂+, and β̂2 = β̂ into (77)
and (78) gives

|Vf (x̂+(N), β̂+)− Vf (x
+(N), β̂)| ≤ σVf

(|(x̂+ − x+, β̂+ − β̂)|)
≤ σ̃Vf

(|d̃|) (80)

|VN (x̂+, ũ(x̂, β̂), β̂+)− VN (x+, ũ(x̂, β̂), β̂)| ≤ σVN
(|(x̂+ − x+, β̂+ − β̂)|)

≤ σr(|d̃|) (81)

where σ̃Vf
(·) := σVf

(σf (·) + 5(·)) ∈ K∞, σr(·) := σVN
(σf (·) + 5(·)) ∈ K∞, and the second

and fourth inequalities follow from (79).
Part (a). By definition (9) and (10), we have ũ(x̂, β̂) ∈ UN (x̂+, β̂+) if and only if

Vf (x̂
+(N), β̂+) ≤ cf . Thus, it suffices to construct δ1 > 0 (independently of β̂ and d̃)
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for which x̂ ∈ XN (β̂) implies Vf (x̂
+(N), β̂+) ≤ cf . Since x̂ ∈ XN (β̂), we already have

Vf (x(N), β̂) ≤ cf , and by Assumptions 4 and 5,

Vf (x
+(N), β̂) ≤ Vf (x(N), β̂)− ℓ(x(N), κf (x(N), β̂), β̂)

≤ Vf (x(N), β̂)− σ(Q)|x(N)− xs(β̂)|2.

Since B̂c is compact and σ, Pf are continuous functions, the maximum

af,2 := max
β̂∈B̂c

σ(Pf (β̂))

exists and is finite, so

cf
2

≤ Vf (x(N), β̂) ≤ af,2|x(N)− xs(β̂)|2.

Then |x(N)− xs(β̂)| ≥
√

cf
2af,2

and

Vf (x
+(N), β̂) ≤ cf −

cfσ(Q)

2af,2
. (82)

On the other hand, if Vf (x(N), β̂) ≤ cf
2 , then we have

Vf (x
+(N), β̂) ≤

cf
2
. (83)

Finally, combining (80), (82), and (83), we have

Vf (x̂
+(N), β̂+) ≤ cf − γf + σ̃Vf

(|d̃|)

where γf := min { cf
2 ,

cfσ(Q)
2af,2

} was defined independently of (β̂, d̃). Finally, taking δ1 :=

min { δ0, σ̃−1
Vf

(γf ) }, we have Vf (x̂
+(N), β̂+) ≤ cf and ũ(x̂, β̂) ∈ UN (x̂+, β̂+).

Part (b). By (35), we have

VN (x+, ũ(x̂, β̂), β̂) ≤ V 0
N (x̂, β̂)− ℓ(x̂, κN (x̂, β̂), β̂)

≤ V 0
N (x̂, β̂)− σ(Q)|x(N)− xs(β̂)|2. (84)

Combining (81) and (84) gives (41) with a3 := σ(Q), which is positive since Q is positive
definite.

Part (c). The proof of this part follows similarly that of part (a). Since x̂ ∈ X ρ
N (β̂),

we have V 0
N (x̂, β̂) ≤ ρ. If V 0

N (x̂, β̂) ≥ ρ
2 , then, by Theorem 4(a), we have

ρ

2
≤ V 0

N (x̂, β̂) ≤ a2|x̂− xs(β̂)|2

for some a2 > 0. Therefore |x̂− xs(β̂)| ≤
√

ρ
2a2

and

VN (x+, ũ(x̂, β̂), β̂) ≤ ρ− ρσ(Q)

2a2
. (85)
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On the other hand, if V 0
N (x̂, β̂) ≤ ρ

2 , then

VN (x+, ũ(x̂, β̂), β̂) ≤ ρ

2
. (86)

Combining (41), (85), and (86) gives

VN (x̂+, ũ(x̂, β̂), β̂) ≤ ρ− γ + σ̃VN
(|d̃|)

where γ := min { ρ
2 ,

ρσ(Q)
2a2

}. But ũ(x̂, β̂) is feasible by part (a), so by optimality, we have

V 0
N (x̂+, β̂+) ≤ VN (x̂+, ũ(x̂, β̂), β̂) ≤ ρ− γ + σ̃VN

(|d̃|).

Thus, as long as |d̃| ≤ δ := min { δ1, σ̃−1
VN

(γ) }, we have V 0
N (x̂+, β̂+) ≤ ρ and x̂+ ∈ X ρ

N (β̂+).

B.3 Proof of Proposition 2

Proof of Proposition 2. Proposition 7 gives (44a). By Proposition 5, there exists σg ∈ K∞
such that

|g(u1, h(x1, u1, d1) + v1)− g(u2, h(x2, u2, d2) + v2)|
≤ σg(|(x1 − x2, u1 − u2, d1 − d2, v1 − v2)|) (87)

for all x1, x2 ∈ X ρ
N (β), u1, u2 ∈ U, d1, d2 ∈ Dc, and v1 ∈ Vc(x1, u1, d1), and v2 ∈

Vc(x2, u2, d2), where

Dc := { d ∈ D | (ssp, d) ∈ Bc }
Vc(x, u, d) := { v ∈ δBny | h(x, u, d) + v ∈ Y }

Fix x̂ ∈ X ρ
N (β̂), β̂ = (ssp, d̂) ∈ Bc, and d̃ = (e, e+,∆ssp, w̃) ∈ D̃c(x̂, β̂) ∩ δBnd̃ , where

e = (ex, ed) and w̃ = (w,wd, v). Substituting x1 = x̂ + ex, x2 = x̂, u1 = u2 = κN (x̂, β̂),
d1 = d̂+ ed, d2 = d̂, v1 = v, and v2 = 0 into (87) gives, independently of (x̂, β̂, d̃),

|ĝc(x̂, β̂, d̃)− gc(x̂, β̂)| ≤ σg(|(ex, ed, v)|) ≤ σg(|d̃|).

Then (44b) follows by the triangle inequality. Finally, if g and h are Lipschitz continuous
on bounded sets, we can take σg(·) := cg(·) where cg > 0 is the Lipschitz constant for
g(u, h(x, u, d) + v).

B.4 Proof of Proposition 3

To prove Proposition 3, we derive a bound on |w̃|.

Proposition 9. Suppose Assumptions 1 to 3, 8 and 9 hold. For any compact X ⊆ X and
Ac ⊆ Rnr × Zy × W such that (ssp, wP) ∈ Ac implies (ssp, 0) ∈ Ac, there exist functions
σw, σα ∈ K∞ for which

|w̃| ≤ σw(|wP|)|z − zs(β)|+ σα(|∆α|) (88)

for all z ∈ X × U and α = (ssp, wP), α
+ ∈ Ac, where β := (ssp, ds(α)), w̃ := (w,wd, v),

∆α := α+ − α, and (50).
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Proof. For ease of notation, we let z = (x, u) ∈ X×U, α = (ssp, wP) ∈ Ac, β := (ssp, ds(α)),
w̃ := (w,wd, v), and

∆w̃(x, u, α) :=

[
fP(x+∆xs(α), u, wP)− f(x, u, d̂s(α))−∆xs(α)

hP(x+∆xs(α), u, wP)− h(x, u, d̂s(α))

]
throughout. We also note that, by definition of the SSTP (6) and the nominal model
assumption (3), we have

∆w̃(zs(β), α) = 0, ∂z∆w̃(z, ssp, 0) = 0. (89)

Assume all functions continuously differentiable on X×U have been extended continuously
differentiable functions on all of Rn+nu using appropriately defined partitions of unity
(cf. (Lee, 2012, Lem. 2.26)).

Let Zc denote the convex hull of X×U. For each i ∈ I1:n+ny , ∂z∆w̃i is continuous, and
by Proposition 5, there exists σi ∈ K∞ such that

|∂z∆w̃i(z1, α1)− ∂z∆w̃i(z2, α2)| ≤ σi(|(z1 − z2, α1 − α2)|)

for all z1, z2 ∈ Zc and α1, α2 ∈ Ac. Substituting z1 = z2 = z, α1 = α, and α2 = (ssp, 0)
into the above inequality, we have

|∂z∆w̃i(z, α)| = |∂z∆w̃i(z, α)− ∂z∆w̃(z, ssp, 0)| ≤ σi(|wP|) (90)

where the equality follows by (89). By Taylor’s theorem (Apostol, 1974, Thm. 12.14), for
each i ∈ I1:n+ny , there exist zi(z, α) ∈ Zc and ti(z, α) ∈ (0, 1) such that

∆w̃i(z, α) = ∂z∆w̃i(z̃i(z, α), α)(z − zs(β)) (91)

where z̃i(z, α) := ti(z, α)zs(β) + (1 − ti(z, α))zi(z, α) ∈ Zc by convexity of Zc, and the
zero-order term drops by (89). Combining (90) and (91),

|∆w̃(z, α)| ≤
n+ny∑
i=1

|∆w̃i(z, α)| ≤
n+ny∑
i=1

σi(|wP|)|z − zs(β)| = σw(|wP|)|z − zs(β)| (92)

where σw :=
∑n+ny

i=1 σi. By Proposition 5, since xP,s, xs, ds are continuous, there exist
σx, σd ∈ K∞ such that

|∆xs(α1)−∆xs(α2)| ≤ σx(|α1 − α2|) (93a)

|ds(α1)− ds(α2)| ≤ σd(|α1 − α2|) (93b)

for all α1, α2 ∈ Ac. Finally, using (92) and (93) with α1 = α and α2 = α+ gives

|w̃| ≤ |∆w̃(z, α)|+ |∆xs(α+)−∆xs(α)|+ |ds(α+)− ds(α)|
≤ σw(|wP|)|z − zs(β)|+ σα(|∆α|)

with σα := σx + σd ∈ K∞.
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Proof of Proposition 3. With δw ∈ (0, σ−1
w (
√

c3
4c4L2

s
)), we can combine (18b), (74b), and

(88) (from Assumption 6 and Propositions 6 and 9, respectively) and the identity (a+b)2 ≤
2a2 + 2b2 to give

|w̃|2 ≤ [σw(|wP|)|z − zs(β)|+ σα(|∆α|)]2

≤ 2[σw(|wP|)]2|z − zs(β)|2 + 2[σα(|∆α|)]2

≤ 2[σw(|wP|)]2[(1 + cu)|x̂− xs(β̂)|+ Ls|e|]2 + 2[σα(|∆α|)]2

≤ 4[σw(|wP|)]2(1 + cu)
2|x̂− xs(β̂)|2 + 4[σw(|wP|)]2L2

s|e|2 + 2[σα(|∆α|)]2

and therefore (52), where ĉ3 := c3 − 4c4[σw(δw)]
2L2

s > 0, σ̂w(·) := 4c4[σw(·)]2(1 + cu)
2,

σ̂α(·) := 2c4[σα(·)]2, and Ls > 0 is the Lipschitz constant for zs.

B.5 Proof of Proposition 4

To establish Proposition 4, we require two preliminary results.

Proposition 10. Suppose Assumptions 1 to 5, 8 and 9 hold. Let ρ, δw > 0. There exist
c̃e > 0 and σ̃w, σ̃α ∈ K∞ such that

|d̃|2 ≤ c̃e|(e, e+)|2 + σ̃w(|wP|)|x̂− xs(β̂)|2 + σ̃α(|∆α|) (94)

so long as α = (ssp, wP) ∈ Ac(δw), ∆α = (∆ssp,∆wP) ∈ Ac(α, δw), (x̂, β̂) ∈ Ŝρ
N , d̃ =

(e, e+,∆ssp, w̃) ∈ D̃c(x̂, β̂) ∩ δ0Bnd̃, and β̂ = (ssp, d̂), given (17) and (50).

Proof. From Propositions 6 and 9 and (Rawlings and Ji, 2012, Eq. (1)),

|w̃|2 ≤ [σw(|wP|)|z − zs(β)|+ σα(|∆α|)]2

≤ [σw(|wP|)|z − zs(β̂)|+ Lsσw(|wP|)|e|+ σα(|∆α|)]2

≤ [σw(|wP|)|x− xs(β̂)|+ σw(|wP|)|u− us(β̂)|+ Lsσw(|wP|)|e|+ σα(|∆α|)]2

≤ [(1 + cu)σw(|wP|)|x̂− xs(β̂)|+ (Ls + 1)σw(|wP|)|e|+ σα(|∆α|)]2

≤ 9(1 + cu)
2[σw(|wP|)]2|x̂− xs(β)|2 + 9(Ls + 1)2[σw(|wP|)]2|e|2 + 9[σα(|∆α|)]2

where Ls > 0 is the Lipschitz constant for zs and cu > 0 and σw, σα ∈ K∞ satisfy (74b)
and (88). Therefore

|d̃|2 = |(e, e+)|2 + |∆ssp|2 + |w̃|2

≤ 9(1 + cu)
2(σw(|wP|))2|x̂− xs(β)|2

+ (1 + 9(Ls + 1)2(σw(δw))
2)|(e, e+)|2 + |∆α|2 + 9σα(|∆α|))2

so (94) holds with c̃e := 1 + 9(Ls + 1)2[σw(δw)]
2 > 0 and σ̃w := 9(1 + cu)

2σ2w, σα :=
id2 + 9σα ∈ K∞.
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Proposition 11. Suppose Assumptions 1 to 5, 8 and 9 hold and let ρ > 0. There exist
aVN ,1 ∈ (0, σ(Q)) and aVN ,2, δ > 0 and σVN

∈ K∞ such that

|VN (x̂+, ũ(x̂, β̂), β̂+)− VN (x+, ũ(x̂, β̂), β̂)| ≤ aVN ,1|x̂− xs(β̂)|2 + aVN ,2|d̃|2 (95)

for all (x̂, β̂) ∈ Ŝρ
N and d̃ ∈ D̃c(x̂, β̂) ∩ δBnd̃, where x+ := fc(x̂, β̂), x̂

+ := f̂c(x̂, β̂, d̃), and

β̂+ := f̂β,c(β̂, d̃).

Proof. By continuity of Pf , there exists σPf
∈ K∞ such that

∥Pf (β1)− Pf (β2)∥ ≤ σPf
(|β1 − β2|) (96)

for all β1, β2 ∈ B̂c. Moreover, since B̂c is compact and Pf (·) is continuous and positive

definite, the maximum γ := maxβ̂∈B̂c
σ(Pf (β̂)) exists and is finite and the minimum γ0 :=

maxβ̂∈B̂c
σ(Pf (β̂)) exists and is positive. Let Ls > 0 denote the Lipschitz constant for zs

on B̂c. Throughout, we let (x̂, β̂) ∈ Ŝρ
N , δx̂ := x̂ − xs(β̂), d̃ ∈ D̃c(x̂, β̂), x

+ := fc(x̂, β̂),

x̂+ := f̂c(x̂, β̂, d̃), β̂
+ := f̂β,c(β̂, d̃), ũ := ũ(x̂, β̂), x+(k) := ϕ(k;x+, ũ, β̂), and x̂+(k) :=

ϕ(k; x̂+, ũ, β̂+).
By Assumption 9, we have

|x+ − x̂+| ≤ Lf |e|+ |w|+ |e+x | ≤ L′
f |d̃| (97)

where Lf > 0 is the Lipschitz constant for f and L′
f := Lf + 2, by Assumption 8(b), we

have
|zs(β̂+)− zs(β̂)| ≤ Ls|β̂+ − β̂| ≤ Ls(|∆β|+ |ed|+ |e+d |) ≤ 3Ls|d̃| (98)

and by Proposition 6, we have cx, cu > 0 such that

|x+(j)− xs(β̂)| ≤ cx|δx̂| (99)

|ũ(k)− us(β̂)| ≤ cu|δx̂| (100)

for each j ∈ I0:N−1 and k ∈ I0:N−2.
By Assumptions 4 and 5, we have

γ0|x+(N)− xs(β̂)|2 ≤ Vf (x
+(N − 1), β̂)

≤ Vf (x
+(N − 1), β̂)− σ(Q)|x+(N − 1)− xs(β̂)|2

≤ [γ − σ(Q)]|x+(N − 1)− xs(β̂)|2

(99)

≤ [γ − σ(Q)]c2x|δx̂|2.

Therefore
|x+(N)− xs(β̂)| ≤ γfcx|δx̂| (101a)
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where γf :=
√

γ−σ(Q)
γ0

. Similarly, using the fact that Vf (x
+(N), β̂) ≥ 0, we have

σ(R)|ũ(N − 1)− us(β̂)|2 ≤ Vf (x
+(N − 1), β̂)− σ(Q)|x+(N − 1)− xs(β̂)|2

≤ (γ − σ(Q))|x+(N − 1)− xs(β̂)|2

(99)

≤ (γ − σ(Q))c2x|δx̂|2

and therefore
|ũ(N − 1)− us(β̂)| ≤ cu,f |δx̂| (101b)

with cu,f := cx

√
γ−σ(Q)
σ(R) .

Due to continuous differentiability of f , we have

|x̂+(k)− x+(k)| = |f(x̂+(k − 1), ũ(k), d̂+)− f(x+(k − 1), ũ(k), d̂)|
≤ Lf |x̂+(k − 1)− x+(k − 1)|+ Lf |d̂+ − d̂|

where Lf > 0 is the Lipschitz constant for f . Applying this inequality recursively, for all
k ∈ I0:N , we have

|x̂+(k)− x+(k)| ≤ Lk
f |x̂+ − x+|+ Lf (k)|d̂+ − d̂| ≤ L′

f (k)|d̃| (102)

where Lf (k) :=
∑k

i=1 L
i
f and L′

f (k) := Lk
fL

′
f +3Lf (k), and we have used (97) and the fact

that |d̂+ − d̂| ≤ |wd|+ |ed|+ |e+d | ≤ 3|d̃|. Moreover,

|x̂+(k)− xs(β̂)|
(99),(102)

≤ cx|δx̂|+ L′
f (k)|d̃| (103)

and

|x̂+(N)− xs(β̂)|
(101),(102)

≤ cxγf |δx̂|+ L′
f (N)|d̃|. (104)

Using the inequalities, ||ξ|2M1
− |ξ|2M2

| ≤ ∥M1 −M2∥|ξ|2, (96), and |β̂+ − β̂| ≤ |∆β| +
|ed|+ |e+d | ≤ 3|d̃|, we have

Vf (x̂
+(N), β̂+) ≤ |x̂+(N)− xs(β̂

+)|2
Pf (β̂)

+ σPf
(3|d̃|)|x̂+(N)− xs(β̂

+)|2.

Using the identity |ξ1 + ξ2|2 ≤ 2|ξ1|2 + 2|ξ2|2, we have

Vf (x̂
+(N), β̂+) ≤ |x̂+(N)− xs(β̂

+)|2
Pf (β̂)

+ σPf ,x(|d̃|)|δx̂|
2 + σPf ,d(|d̃|)|d̃|

2. (105)

where σPf ,x(·) := 2c2xγ
2
fσPf

(3(·)) and σPf ,d(·) := 2(L′
f (N))2σPf

(3(·)).
For the remainder of this part, we let λ > 0 (to be defined) and use the identity

2ab ≤ λa2 + λ−1b2. Expanding quadratics and using the identities (98)–(100), we have

||x̂+(N)− xs(β̂
+)|2

Pf (β̂)
− |x̂+(N)− xs(β̂)|2Pf (β̂)

|

≤ 6γLs|x̂+(N)− xs(β̂)||d̃|+ 9γL2
s|d̃|2

≤ 6γLscxγf |δx̂||d̃|+ (6γLsL
′
f (N) + 9γL2

s)|d̃|2

≤ 3γλLscxγf |δx̂|2 + (6γLsL
′
f (N) + 9γL2

s + 3λ−1γLscxγf )|d̃|2

≤ λL̂1(N)|δx̂|2 + L̂2(N,λ)|d̃|2 (106)
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where L̂1(N) := 3γLscxγf and L̂2(N,λ) := 6γLsL
′
f (N) + 9γL2

s + 3λ−1γLscxγf . Similarly,
for each k ∈ I0:N−1,

||x̂+(k)− xs(β̂
+)|2Q − |x̂+(k)− xs(β̂)|2Q|

≤ 6σ(Q)Ls|x̂+(k)− xs(β̂)||d̃|+ 9σ(Q)L2
s|d̃|2

≤ 6σ(Q)Lscx|δx̂||d̃|+ (6σ(Q)LsL
′
f (k) + 9σ(Q)L2

s)|d̃|2

≤ 3λσ(Q)Lscx|δx̂|2 + (6σ(Q)LsL
′
f (k) + 9σ(Q)L2

s + 3λ−1γLscx)|d̃|2

≤ λL̂1(k)|δx̂|2 + L̂2(k, λ)|d̃|2 (107)

where L̂1(k) := 3σ(Q)Lscx and L̂2(k, λ) := 6σ(Q)LsL
′
f (k) + 9σ(Q)L2

s + 3λ−1γLscx, and

||ũ(k)− us(β̂
+)|2R − |ũ(k)− us(β̂)|2R|

≤ 6σ(R)Ls|ũ(k)− us(β̂)||d̃|+ 9σ(R)L2
s|d̃|2

≤ 6σ(R)Lscu(k)|δx̂||d̃|+ 9σ(R)L2
s|d̃|2

≤ 3λσ(R)Lscu(k)|δx̂|2 + (9σ(R)L2
s + 3λ−1σ(R)Lscu(k))|d̃|2

≤ λL̃1(k)|δx̂|2 + L̃2(k, λ)|d̃|2 (108)

where L̃1(k) := 3σ(R)Lscu(k), L̃2(k, λ) := 9σ(R)L2
s + 3λ−1σ(R)Lscu(k), and cu(k) = cu if

k ∈ I0:N−2 and cu(N − 1) = cu,f .

For the uniform β̂ bound, we have

|VN (x̂+, ũ, β̂)− VN (x+, ũ, β̂)|

≤
N−1∑
k=0

2σ(Q)|x̂+(k)− x+(k)||x+(k)− xs(β̂)|+ σ(Q)|x̂+(k)− x+(k)|2

+ 2γ|x̂+(N)− x+(N)||x+(N)− xs(β̂)|+ γ|x̂+(N)− x+(N)|2

≤
N−1∑
k=0

2σ(Q)cxL
′
f (k)|δx̂||d̃|+ σ(Q)(L′

f (k))
2|d̃|2

+ 2γcxγfL
′
f (N)|δx̂||d̃|+ γ(L′

f (N))2|d̃|2

≤
N−1∑
k=0

λσ(Q)cxL
′
f (k)|δx̂|2 + (σ(Q)(L′

f (k))
2 + λ−1σ(Q)cxL

′
f (k))|d̃|2

+ λγcxγfL
′
f (N)|δx̂|2 + (γ(L′

f (N))2 + λ−1γcxγfL
′
f (N))|d̃|2

≤
N−1∑
k=0

λL1(k)|δx̂|2 + L2(k, λ)|d̃|2 + λL1(N)|δx̂|2 + L2(N,λ)|d̃|2

where L1(k) := σ(Q)cxL
′
f (k) and L2(k, λ) := σ(Q)(L′

f (k))
2 + λ−1σ(Q)cxL

′
f (k) for each

k ∈ I0:N−1, and L1(N) := γcxγfL
′
f (N) and L2(N,λ) := γ(L′

f (N))2 + λ−1γcxγfL
′
f (N).
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Finally, we compile the above results,∣∣∣|x̂+(N)− xs(β̂
+)|2

Pf (β̂+)
− |x+(N)− xs(β̂)|2Pf (β̂)

∣∣∣
(105)

≤
∣∣∣|x̂+(N)− xs(β̂

+)|2
Pf (β̂)

− |x+(N)− xs(β̂)|2Pf (β̂)

∣∣∣+ σPf ,x(|d̃|)|δx̂|
2 + σPf ,d(|d̃|)|d̃|

2

(106)

≤
∣∣∣|x̂+(N)− xs(β̂

+)|2
Pf (β̂)

− |x+(N)− xs(β̂)|2Pf (β̂)

∣∣∣
+ (σPf ,x(|d̃|) + λL̂1(N))|δx̂|2 + (σPf ,d(|d̃|) + L̂2(N,λ))|d̃|2 (109)

and therefore

|VN (x̂+, ũ, β̂+)− VN (x̂+, ũ, β̂)|
(107)–(109)

≤
N−1∑
k=0

λ(L̂1(k) + L̃1(k))|δx̂|2 + (L̂2(k, λ) + L̃2(k, λ))|d̃|2

+ (σPf ,x(|d̃|) + λL̂1(N))|δx̂|2 + (σPf ,d(|d̃|) + L̂2(N,λ))|d̃|2

Finally (95) holds so long as |d̃| ≤ δ, with

aVN ,1 := σPf ,x(δ) + λ

(
L1(N) + L̂1(N) +

N−1∑
k=0

L1(k)

)

aVN ,2 := σPf ,d(δ) + L2(N,λ) + L̂2(N,λ) +
N−1∑
k=0

L2(k, λ)

where L1(k) := L1(k) + L̂1(k) + L̃1(k) and L2(k, λ) := L2(k, λ) + L̂2(k, λ) + L̃2(k, λ).

To ensure aVN ,1 < σ(Q), we can simply choose λ ∈
(
0,

σ(Q)−σPf ,x(δ)

L1(N)+L̂1(N)+
∑N−1

k=0 L1(k)

)
and

δ ∈ (0, σ−1
Pf ,x

(σ(Q))).

Proof of Proposition 4. For convenience, we define ũ := ũ(x̂, β̂). From Propositions 10
and 11, we have aVN ,1 ∈ (0, σ(Q)), aVN ,2, c̃e, δ, δw > 0, and σ̃w, σ̃α ∈ K∞ such that

|VN (x̂+, ũ, β̂+)− VN (x+, ũ, β̂)| ≤ (aVN ,1 + σ̃w(|wP|))|δx̂|2 + aVN ,2ce|(e, e+)|2 + σ̃α(|∆α|)

so long as d̃ ∈ D̃c(x̂, β̂)∩δBnd̃ , α ∈ Ac(δw), and ∆α ∈ Ac(α, δw). Without loss of generality,
assume δw < σ̃−1

w (σ(Q) − aVN ,1). By Proposition 1, we can choose δ > 0 such that

ũ ∈ UN (x̂+, β̂+), so

V 0
N (x̂+, β̂+) ≤ VN (x̂+, ũ, β̂+)

≤ VN (x+, ũ, β̂) + (aVN ,1 + σ̃w(δw))|δx̂|2 + aVN ,2ce|(e, e+)|2 + σ̃α(|∆α|)
≤ V 0

N (x̂, β̂)− (σ(Q)− aVN ,1 − σ̃w(δw))|δx̂|2 + aVN ,2ce|(e, e+)|2 + σ̃α(|∆α|).

where the first inequality follows by optimality and the third inequality follows by (35).
Thus, (53) holds with ã3 := σ(Q)− aVN ,1 − σ̃w(δw) > 0 and ã4 := aVN ,2ce > 0.
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C Establishing steady-state target problem assumptions

C.1 Proof of Lemma 1

Proof of Lemma 1. First, note that M1 full row rank implies nr ≤ nu. Consider the
function

f1(zs, β) :=

[
f(xs, us, d)− xs

g(u, h(xs, us, d))− rsp

]
and define the objective and Lagrangian

ϕ(zs, β) := ℓs(us − usp, ys(zs, β)− ysp)

L(zs, β, λ) := ϕ(zs, β) + λ⊤f1(zs, β)

where zs := (xs, us), ys(zs, β) := h(xs, us, d), and β := (rsp, usp, ysp, d). The first-order
derivatives of the Lagrangian are

∂zsL(zs, β, λ) = ∂zsϕ(zs, β) + [∂zsf1(zs, β)]
⊤λ

∂λL(zs, β, λ) = f1(zs, β).

The goal of the proof is to use the implicit function theorem on ∂(zs,λ)L(zs, β, λ) to establish
Lipschitz continuity of the SSTP solution map zs(·). We already have ∂(zs,λ)L(0, 0, 0) = 0
by assumption. Next, we aim to show ∂(zs,λ)L(zs, β, λ) = 0 is a necessary and sufficient
condition for solving (6).

First, we have the partial derivatives ∂zsf1(0, 0) = M1, which is full row rank by as-
sumption. By continuity of ∂zsf1, there exist constants ε1, δ1 > 0 such that ∂zsf1(zs, β) is
full row rank for all |zs| ≤ ε1 and |β| ≤ δ1. Then, so long as (zs, β) are kept sufficiently
small, the linear independence constraint qualification holds, and ∂(zs,λ)L(zs, β, λ) = 0 is a
necessary condition for solving (6).

Consider the following second-order derivatives:

∂2zsL(0, 0, 0) =M⊤
3 ∂

2
(u,y)ℓs(0, 0)M3

∂zs∂λL(0, 0, 0) = ∂zsf1(0, 0) =M1

∂2λL(0, 0, 0) = 0

where M3 :=
[
0 I
C D

]
.8 We have ∂(zs,λ)L(zs, β, λ) = 0 is a sufficient condition for solving (6)

if
d⊤∂2zsL(zs, β, λ)d > 0

for all d ∈ N (∂zsf1(zs, β)) \ { 0 }. We require the following intermediate result.

Lemma 5. For each A = A⊤ ∈ Rn×n and B ∈ Rm×n, we have x⊤Ax > 0 for all x ∈
N (B) \ { 0 } if and only if

[
A
B

]
is full column rank.

8The second-order derivatives of ys(zs, β) and f1(zs, β) vanish since ∂(u,y)ℓs(0, 0) and ys(0, 0) = 0 (by
assumption) and we have set λ = 0.
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Proof. First, note that N (A+ B⊤B) = N (
[
A
B

]
), so

[
A
B

]
is full column rank is equivalent

to A+B⊤B being positive definite.
(⇒) Suppose x⊤Ax > 0 for all x ∈ N (B) \ { 0 }. Then x⊤(A+B⊤B)x ≥ x⊤Ax > 0 for

all x ∈ N (B) \ { 0 } and x⊤(A+B⊤B)x ≥ x⊤B⊤Bx > 0 for all x ̸∈ N (B), so A+B⊤B is
positive definite.

(⇐) Suppose A + B⊤B is positive definite. Then x⊤Ax = x⊤(A + B⊤B)x > 0 for all
x ∈ N (B) \ { 0 }.

Thus, it suffices to show [
∂2zsL(zs, β, λ)
∂zsf1(zs, β)

]
(110)

is full column rank. Since ∂2(u,y)ℓs(0, 0) is positive definite, N (∂2zsL(0, 0, 0)) = N (M3).

Then with M4 :=
[
∂2
zs

L(0,0,0)
∂zs f1(0,0)

]
we have

N (M4) = N (∂2zsL(0, 0, 0)) ∩N (∂zsf1(0, 0))

= N (M3) ∩N (M1)

= N
([
M3

M1

])
= { 0 }

where the last equality follows from the fact that[
M3

M1

]
=

[
0 I
C D

A−I B
HyC Hu+HyD

]
is full column rank, as it is the row permutation of a block triangular matrix with full
column rank diagonal blocks I and

[
A−I
C

]
.9 ThereforeM4 is full column rank, and because

(110) is continuous, there exist ε2, δ2, γ2 > 0 for which (110) is full column rank for all
|zs| ≤ ε2, |β| ≤ δ2, and |λ| ≤ γ2. Therefore, so long as (zs, β, λ) are kept sufficiently small,
∂(zs,λ)L(zs, β, λ) = 0 is in fact a necessary and sufficient condition for solving (6).

Now we are able to solve (6). We have the derivatives

∂2(zs,λ)L(0, 0, 0) =
[
M⊤

3 ∂
2
(u,y)ℓs(0, 0)M3 M⊤

1

M1 0

]
.

According to (Magnus and Neudecker, 2019, Thm. 3.21), we have the nullspace relationship

N (∂2(zs,λ)L(0, 0, 0)) = N
([
V0

W0

])
(111)

where

V0 :=M⊤
3 ∂

2
(u,y)ℓs(0, 0)M3 +M⊤

1 M1 =

[
M3

M1

]⊤ [
∂2(u,y)ℓs(0, 0)

I

] [
M3

M1

]
W0 :=M1V

+
0 M

⊤
1 .

9Full column rank of
[
A−λI

C

]
for all |λ| ≥ 1 follows from detectability of (A,C).
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Recall
[
M3
M1

]
is full column rank and ∂2(u,y)ℓs(0, 0) is invertible, so V0 is invertible. Like-

wise, M1 full row rank and V0 invertible implies that W0 is invertible. Finally,
[
V0

W0

]
is invertible, and by (111), ∂2(zs,λ)L(0, 0, 0) is invertible. By the implicit function theo-

rem (Rudin, 1976, Thm. 9.24) there exist δ3 > 0 and continuously differentiable func-
tions g1 : Rnβ → Rn+nu and gλ : Rnβ → Rn+nr such that g1(0) = 0, gλ(0) = 0, and
∂(α,λ)L(g1(β), β,gλ(β)) = 0 for all |β| ≤ δ3.

For convenience, we define the functions

g1(β) =: (xs(β), us(β))

c̃(β) := max
1≤i≤nc

ci(us(β), h(xs(β), us(β), d)) + bi

for each β = (rsp, zsp, d) ∈ B, which are continuous because g1, h, and c are continu-
ous. Moreover, X,U contain neighborhoods of the origin and c̃(0) < 0 by assumption,
so there exists δ3 > 0 for which zs(β) ∈ X × U and c̃(β) ≤ 0 for all |β| ≤ δ3. Let
δ < δ4 := min { δ1, δ2, δ3 }, δ0 := δ4 − δ, Bc := δBnβ , and Bc := δ4Bnβ . Defining B̂c as in
Assumption 7(i), we have |β̂| ≤ |β| + |ed| ≤ δ + δ0 = δ4 for each β̂ = (ssp, d̂) ∈ B̂c, and

therefore Bc ⊆ B̂c ⊆ Bc ⊆ B. Moreover, (xs(β̂), us(β̂)) ∈ ZO(rsp, d̂) and (xs(β̂), us(β̂))

uniquely solve (6) and are continuously differentiable for each β̂ = (ssp, d̂) ∈ B̂c. Finally,
Assumption 7 is satisfied by zs, Bc ⊆ B, and δ0 > 0.

C.2 Proof of Lemma 2

Proof of Lemma 2. Recall from the proof of Lemma 1 that M1 full row rank implies nr ≤
nu. Moreover, M2 invertible implies nd = ny. Consider the functions

f2(zs,xs, α) :=

[
fP(xP,s, us, wP)− xP,s

hP(xP,s, us, wP)− h(xs, us, ds)

]
f(zs,xs, α) :=

[
f1(zs, β)

f2(zs,xs, α)

]
where zs := (xs, us), xs := (xP,s, ds), α := (rsp, usp, ysp, wP), β := (rsp, usp, ysp, ds), and f1
is defined in the proof of Lemma 1. Defining ϕ and L as in the proof of Lemma 1, we seek
to use the implicit function theorem on

h(zs,xs, λ, α) :=

[
∂(zs,λ)L(zs,xs, β, λ)

f2(zs,xs, β)

]
=

[
∂zsϕ(zs,xs, β) + [∂zsf1(zs,xs, β)]

⊤λ
f(α, β)

]
which is the combination of the stationary point condition for the Lagrangian of (6) with
the steady-state disturbance problem (47). We already have h(0, 0, 0, 0) = 0 by assump-
tion. From the proof of Lemma 1, there exists δ1 > 0 such that, for all |(xs, α)| ≤ δ1,
∂(zs,λ)L(zs,xs, α, λ) = 0 is a necessary and sufficient condition for solving (6). Thus, if we
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keep |(xs, α)| ≤ δ1 sufficiently small, then h(zs,xs, λ, α) = 0 is necessarily and sufficient
for simultaneously solving (6) and (47).

Defining the invertible matrices

T1 :=

[
In 0 0 0
0 Inr 0 0
In 0 −In 0
0 0 0 Iny

]
, T2 :=

[
In 0 0 0
0 Inu 0 0
In 0 −In 0
0 0 0 Ind

]
,

We have

T1∂(zs,xs)f(0, 0, 0)T2 =

[
M1 ∗
0 M2

]
.

We can write the derivatives

∂(zs,xs,λ)h(0, 0, 0, 0) =

[
M⊤

3 ∂
2
(u,y)ℓs(0, 0)M5 M⊤

1

∂(zs,xs)f(0, 0, 0) 0

]
where M3 is defined as in the proof of Lemma 1, and M5 :=

[
0 I 0 0
C D 0 Cd

]
. Note that

M5T2 =M5 and M5 =
[
M3 ∗

]
. Define the invertible matrices

T3 :=
[
In+nu

T1

]
, T4 :=

[
T2

In+nd

]
, P :=

[
In+nu 0 0

0 0 In+nd
0 In+nr 0

]
.

Then we can write

T3∂(zs,xs,λ)h(0, 0, 0, 0)T4P =

[
M⊤

3 ∂2
(u,y)

ℓs(0,0)M3 M⊤
1 ∗

M1 0 ∗
0 0 M2

]
. (112)

But M2 is invertible by assumption, and
[
M⊤

3 ∂2
(u,y)

ℓs(0,0)M3 M⊤
1

M1 0

]
was shown to be invertible

in the proof of Lemma 1, so ∂(zs,xs,λ)h(0, 0, 0, 0) must be invertible. By the implicit func-
tion theorem (Rudin, 1976, Thm. 9.24) there exist δ2 > 0 and continuously differentiable
functions g : Rnα → R2n+nu+nd and gλ : Rnα → R2n+nr+ny (where A := Rnr × Zy ×W)
such that g(0) = 0, gλ(0) = 0, and ∂(zs,xs,λ)L(g(α), α,gλ(α)) = 0 for all |α| ≤ δ2.

As in the proof of Lemma 1, we define the functions

g(α) =: (xs(α), us(α), xP,s(α), ds(α))

c̃(α) := max
1≤i≤nc

ci(us(α), hP(xP,s(α), us(α), wP)) + bi

for each α = (rsp, zsp, wP) ∈ Rnα , which are continuous because g, hP, and c are con-
tinuous. From Lemma 1, we already have a set Bc ⊆ B containing a neighborhood
of the origin and continuously differentiable functions (with a slight abuse of notation)
(xs, us) : B → X×U that uniquely solve (6) (and satisfies Assumption 7). Since X,U,D,Bc

contain neighborhoods of the origin, there must exist δ3 > 0 such that g(α) ∈ X×U×X×D,
β = (rsp, zsp, ds(α)) ∈ Bc, |(xs(α), α)| ≤ δ2, and c̃(β) ≤ 0 for all |α| ≤ δ3. There-
fore (xs(α), us(α)) are also the unique solutions to (6) with β = (rsp, zsp, ds(α)), i.e.,
(xs(α), us(α)) = (xs(β), us(β)), and all parts of Assumption 8 are satisfied with (xs, us) :
B → X× U, (xP,s, ds) : Ac → X× D, Ac := δBnα , and δ := min { δ1, δ2, δ3 } > 0.
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